

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-24T05:18:24Z

Some rights reserved. For more information, please see the item record link above.

Title StoRHm: A Protocol Adapter for mapping SOAP-based Web
Services to RESTful HTTP Format

Author(s) Kennedy, Sean

Publication
Date 2011-09-29

Item record http://hdl.handle.net/10379/2621

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

i

StoRHm: A Protocol

Adapter for mapping SOAP-based Web Services

to RESTful HTTP Format

Sean Kennedy

PhD Thesis

September 2011

Supervisor : Dr. Owen Molloy

Department of Information Technology

National University of Ireland, Galway

Ireland.

ii

Contents
Contents ii

List of Figures vi

List of Tables ix

List of Program Listings x

Abstract xii

Acknowledgements xiii

Declaration xiv

Publications xv

Glossary of Terms xvii

Chapter 1 Introduction 19

1.1 Motivation 19
1.2 Research Opportunities 22
1.3 Principal Contributions 23
1.4 Thesis Overview 28

Chapter 2 Web Services 30

2.1 Introduction 30
2.1.1 Background 30
2.1.2 Definition 35

2.2 Service Oriented Architecture (SOA) [15] [16] 36
2.2.1 SOA Roles 37

2.3 Web Services Architecture 38
2.3.1 WS-* Interoperability Stack 40

2.4 SOAP 42
2.4.1 SOAP Messaging Model 43
2.4.2 SOAP Headers (vertical extensibility) 46
2.4.3 SOAP Intermediaries (horizontal extensibility) 46
2.4.4 SOAP Processing model 48
2.4.5 SOAP faults (errors) 48
2.4.6 Transport binding 49
2.4.7 Message Exchange Patterns (MEPs) 50
2.4.8 SOAP 1.2 51

2.5 Web Services Description Language (WSDL) 52
2.6 Universal Description, Discovery and Integration (UDDI) 67
2.7 Quality of Service (QoS) in Web Services 68
2.8 Plain Old XML (POX) 76
2.9 HTTP Tunnelling 77
2.10 Web Services Interoperability 77
2.11 Summary 78

iii

Chapter 3 Representational State Transfer (REST) 80

3.1 Introduction 80
3.1.1 Background 80

3.2 REST 83
3.2.1 Definition 84
3.2.2 REST nomenclature 85
3.2.3 Deriving REST 86
3.2.4 Summary 91

3.3 The Web 92
3.3.1 HyperText Transfer Protocol (HTTP) 92
3.3.2 Uniform Resource Identifier (URI) 109
3.3.3 Representations and Media Types 111
3.3.4 Web Caching 112

3.4 Web Service architectures 114
3.5 REST anti-patterns 116

3.5.1 Tunnelling everything through GET 116
3.5.2 Tunnelling everything through POST 117

3.6 Summary 118

Chapter 4 Semantic Web 119

4.1 Introduction 119
4.1.1 “The Web” versus “The Semantic Web” 119
4.1.2 Background 120

4.2 Resource Description Framework (RDF) 121
4.2.1 RDF graphs 121
4.2.2 RDF Identifiers [69] 122
4.2.3 RDF Serialisation 123
4.2.3.1 RDF/XML 124
4.2.3.2 N-Triples 130
4.2.3.3 Turtle (Terse RDF Triple Language) 130
4.2.3.4 Notation 3 (N3) 130

4.3 Adding semantics to RDF data 131
4.3.1 RDFS (Resource Description Framework Schema) 131
4.3.2 Ontologies 136
4.3.3 OWL Web Ontology Language 137
4.3.4 OWL Ontologies [67] 138

4.4 Querying RDF data 140
4.4.1 SPARQL 141

4.5 Semantically annotated Web Services 143
4.5.1 Semantic Web Services 144
4.5.1.1 SAWSDL 145
4.5.2 Semantic annotation of RESTful Web Services 147
4.5.2.1 Microformats/Poshformats 148
4.5.2.2 hRESTS 148
4.5.2.3 MicroWSMO 149
4.5.2.4 GRDDL 154
4.5.2.5 WSMO-Lite 155
4.5.2.6 SA-REST 158
4.5.2.7 RDFa 160

4.6 Summary 162

iv

Chapter 5 StoRHm 163

5.1 Introduction 163
5.2 Architecture overview 163
5.3 Project lifecycle 165
5.4 StoRHm v1 166

5.4.1 StoRHm v1 requirements 166
5.4.2 StoRHm v1 architecture 169
5.4.3 StoRHm v1 Design 170
5.4.3.1 StoRHm v1 (POX) Configuration Wizard 170
5.4.3.2 StoRHm v1 (POX) Protocol Adapter 177
5.4.3.3 StoRHm v1 (SOAP) Configuration Wizard 182
5.4.3.4 StoRHm v1 (SOAP) Protocol Adapter 189

5.5 StoRHm v2 192
5.5.1 StoRHm v2 requirements 192
5.5.2 StoRHm v2 architecture 192
5.5.3 StoRHm v2 Design 193
5.5.3.1 StoRHm v2 Configuration Wizard 193
5.5.3.2 StoRHm v2 Protocol Adapter 200

5.6 Summary 203

Chapter 6 Implementation and Evaluation 204

6.1 Introduction 204
6.2 StoRHm v1 implementation 205

6.2.1 StoRHm v1 (POX) Configuration Wizard 205
6.2.2 StoRHm v1 (POX) Protocol Adapter 208
6.2.3 StoRHm v1 (SOAP) Configuration Wizard 210
6.2.4 StoRHm v1 (SOAP) Protocol Adapter 212

6.4 StoRHm v2 implementation 214
6.4.1 Configuration Wizard 214
6.4.2 Protocol Adapter 217

6.5 Testing 218
6.5.1 Test Environment 219
6.5.2 POX example 220
6.5.3 SOAP example 222

6.6 Evaluation 224
6.6.1 Configuration Wizards 225
6.6.2 Protocol Adapter 227
6.6.2.1 Software artefacts 227
6.6.2.2 LAN performance – StoRHm v2 adapter 229
6.6.2.3 Internet performance – StoRHm v2 adapter 233
6.6.2.4 Message Visibility 238
6.6.3 Ease of Migration 238

6.7 Summary 238

Chapter 7 Conclusion 239

7.1 Thesis Summary 239
7.2 Research Conclusions 240
7.3 Future Work 242

v

References 244

Appendix 257

Listing 1 – POX Internet-based ServiceView Request 257
Listing 2 – POX Internet-based ServiceAdd Request 258
Listing 3 – POX Internet-based ServiceDelete Request 259
Listing 4 – POX Internet-based ServiceUpdate Request 260
Listing 5 – SOAP Internet-based ServiceView Request 261
Listing 6 – SOAP Internet-based ServiceAdd Request 262
Listing 7 – SOAP Internet-based ServiceDelete Request 263
Listing 8 – SOAP Internet-based ServiceUpdate Request 264
Listing 9 – POX request that involves significant parsing 265
Listing 10 – GET equivalent of Listing 1 269

vi

List of Figures

Figure 1-1 Recent middleware history .. 20
Figure 1-2 XML Web Services protocols ... 21
Figure 1-3 Web Infrastructure enabler .. 23
Figure 1-4 Migration enabler ... 24
Figure 1-5 SOAP caching .. 25
Figure 1-6 (a) Semantic Web Services Interoperability ... 27
Figure 1-6 (b) SOAP WS output mapped to RESTful WS input... 27
Figure 1-6 (c) SOAP WS input mapped to RESTful WS input ... 27
Figure 1-7 Thesis Road Map.. 28
Figure 2-1 SOA Roles [17] .. 37
Figure 2-2 Basic Web services architecture .. 39
Figure 2-3 WS-* Interoperability Stack [16] .. 39
Figure 2-4 SOAP message path ... 42
Figure 2-5 SOAP message structure.. 43
Figure 2-6 Request-Response MEP... 50
Figure 2-7 SOAP Response MEP.. 51
Figure 2-8 Overview of WSDL 1.1 file structure [28] ... 54
Figure 2-9 service relationship to portType in WSDL [18].. 57
Figure 2-10 WSDL 1.1 versus WSDL 2.0 [35]... 64
Figure 2-11 WS-RM Design [16] .. 69
Figure 2-12 Symmetric key encryption... 72
Figure 2-13 Asymmetric key encryption... 72
Figure 2-14 Digital Signature .. 73
Figure 2-15 SOAP-REST Web Services interoperability... 78
Figure 3-1 REST [5]... 84
Figure 3-2 Terminology used in REST ... 85
Figure 3-3 Deriving REST... 87
Figure 3-4 Uniform Interface... 89
Figure 3-5 HTTP request message format [53]... 93
Figure 3-6 HTTP response message format [53] .. 94
Figure 3-7 POE example.. 100
Figure 3-8 HTTPLR example .. 101
Figure 3-9 Message Reliability [based on 58] .. 102
Figure 3-10 In-order message delivery.. 104
Figure 3-11 URI syntax structure .. 109
Figure 3-12 HTTP POST Tunnelling .. 118
Figure 4-1 RDF graph of Listing 4-1... 122
Figure 4-2 RDF graph .. 123
Figure 4-3 RDF graph with a blank node.. 126
Figure 4-4 RDF graph with the age property untyped .. 128

vii

Figure 4-5 RDF graph with the age property typed .. 128
Figure 4-6 N-Triples, Turtle and N3 relationships ... 131
Figure 4-7 UML Diagram of the hierarchy... 133
Figure 4-8 Domain and Range of a property expressing eye colour [73] .. 136
Figure 4-9 Semantic Layers [80] ... 144
Figure 4-10 SAWSDL annotation using Core Dashboard.. 146
Figure 4-11 RESTful Hotel WS description ... 150
Figure 4-12(a) SWEET: hRESTS annotation... 150
Figure 4-12(b) SWEET: MicroWSMO annotation... 151
Figure 5-1 (a) XML WS Architecture.. 164
Figure 5-1 (b) StoRHm Architecture.. 164
Figure 5-2 Timeline of Architectures .. 165
Figure 5-3 Relationship of the two versions ... 166
Figure 5-4 StoRHm Use Case Diagram .. 167
Figure 5-5 XML Web Service to RESTful Interface Mapping [26] .. 167
Figure 5-6 StoRHm v1 Architecture ... 170
Figure 5-7 StoRHm v1 (POX) Configuration Wizard GUI Layout ... 171
Figure 5-8 StoRHm v1 (POX) GUI Layout Managers... 172
Figure 5-9 Sample StoRHm v1 (POX) Configuration Wizard... 172
Figure 5-10 (a) StoRHm v1 (POX) Configuration Wizard sequence diagram (with WADL) 173
Figure 5-10 (b) StoRHm v1 (POX) Configuration Wizard sequence diagram (without WADL)................................ 174
Figure 5-11 StoRHm v1 (POX) Configuration Wizard package diagram... 175
Figure 5-12 StoRHm v1 (POX) Configuration Wizard class Diagram.. 176
Figure 5-13 StoRHm v1 (POX) CSV file.. 177
Figure 5-14 StoRHm v1 (POX) Protocol Adapter design .. 177
Figure 5-15 StoRHm v1 (POX) Protocol Adapter sequence diagram ... 178
Figure 5-16 StoRHm v1 (POX) Protocol Adapter package diagram... 181
Figure 5-17 StoRHm v1 (POX) Protocol Adapter class diagram .. 181
Figure 5-18 StoRHm v1 (SOAP) Configuration Wizard GUI Layout... 182
Figure 5-19 StoRHm v1 (SOAP) GUI Layout Managers... 183
Figure 5-20 Sample StoRHm v1 (SOAP) Configuration Wizard .. 184
Figure 5-21 StoRHm v1 (SOAP) Configuration Wizard sequence diagram (with WADL)... 185
Figure 5-22 StoRHm v1 (SOAP) Configuration Wizard sequence diagram (without WADL).. 186
Figure 5-23 StoRHm v1 (SOAP) Configuration Wizard package diagram... 187
Figure 5-24 StoRHm v1 (SOAP) Configuration Wizard class diagram .. 188
Figure 5-25 StoRHm v1 (SOAP) CSV file ... 189
Figure 5-26 StoRHm v1 (SOAP) Protocol Adapter design.. 189
Figure 5-27 StoRHm v1 (SOAP) Protocol Adapter sequence diagram ... 190
Figure 5-28 StoRHm v1 (SOAP) Protocol Adapter package diagram... 191
Figure 5-29 StoRHm v1 (SOAP) Protocol Adapter class diagram .. 192
Figure 5-30 StoRHm v2 Architecture ... 193
Figure 5-31 StoRHm v2 Configuration Wizard GUI Layout... 194
Figure 5-32 StoRHm v2 GUI Layout Managers... 194
Figure 5-33 (a) StoRHm v2 Configuration Wizard (POX).. 195
Figure 5-33 (b) StoRHm v2 Configuration Wizard (SOAP).. 195
Figure 5-34 (a) StoRHm v2 (POX) Configuration Wizard Sequence Diagram.. 196
Figure 5-34 (b) StoRHm v2 (SOAP) Configuration Wizard Sequence Diagram.. 196
Figure 5-35 StoRHm v2 Configuration Wizard flow diagram... 197
Figure 5-36 StoRHm v2 Configuration Wizard package diagram... 199
Figure 5-37 StoRHm v2 Configuration Wizard class diagram .. 199
Figure 5-38 StoRHm v2 Protocol Adapter design .. 200
Figure 5-39 (a) StoRHm v2 Protocol Adapter (SOAP) sequence diagram ... 201
Figure 5-39 (b) StoRHm v2 Protocol Adapter (POX) sequence diagram ... 201
Figure 5-40 StoRHm v2 Protocol Adapter package diagram... 202
Figure 5-41 StoRHm v2 Protocol Adapter class diagram .. 202
Figure 6-1 POX to RESTful HTTP Configuration Wizard .. 205
Figure 6-2 Configuration Wizard with WADL selected .. 208
Figure 6-3 Adapter mapping a POX message to RESTful format ... 210
Figure 6-4 StoRHm v1 Configuration Wizard.. 211
Figure 6-5 Building the URI Wizard... 212
Figure 6-6 Adapter mapping a SOAP message to RESTful format... 213
Figure 6-7 (a) StoRHm v2 Configuration Wizard - SOAP... 217

viii

Figure 6-7 (b) StoRHm v2 Configuration Wizard - POX ... 217
Figure 6-8 (a) LAN-based Test environment .. 219
Figure 6-8 (b) Internet-based Test environment .. 219
Figure 6-9 POX to RESTful HTTP Transformation... 221
Figure 6-10 RESTful response... 222
Figure 6-11 SOAP to RESTful HTTP Transformation .. 223
Figure 6-12 RESTful HTTP to SOAP Transformation .. 224
Figure 6-13 LAN: GET versus POST performance.. 230
Figure 6-14 LAN: ServiceView performance.. 231
Figure 6-15 LAN: ServiceAdd performance ... 232

ix

List of Tables

Table 2-1 SOAP 1.2 MEPs [24]... 52
Table 3-1 Key properties induced by REST.. 92
Table 3-2 HTTP Response codes ... 95
Table 3-3 Safety/Idempotence of HTTP methods ... 98
Table 3-4 Security and Message Reliability in HTTP... 99
Table 3-5 Criteria for evaluating Web Service Architectures... 114
Table 4-1 SPARQL SELECT (results) .. 142
Table 4-2 Existing XHTML attributes used by RDFa .. 160
Table 4-3 New XHTML RDFa attributes .. 161
Table 5-1 Specific Interface mapped to Uniform Interface .. 168
Table 6-1 Software Artefacts.. 204
Table 6-2 (a) LAN Performance Tests – GET versus POST .. 232
Table 6-2 (b) LAN Performance Tests – ServiceView versus ServiceAdd ... 232
Table 6-3 POX Internet Performance Tests... 233
Table 6-4 SOAP Internet Performance Tests... 235
Table 6-5 Adapter statistics when significant Parsing required.. 237

x

List of Program Listings

Listing 2-1 Sample SOAP request message.. 44
Listing 2-2 RPC/Literal SOAP message for myMethod [21] .. 45
Listing 2-3 Document/Literal SOAP message for myMethod [21]... 45
Listing 2-4 Wrapped Document/Literal SOAP message for myMethod [21].. 46
Listing 2-5 SOAP Response .. 46
Listing 2-6 SOAP Fault Message [16] .. 49
Listing 2-7 Sample WSDL 1.1 file.. 58
Listing 2-8 One-way MEP... 60
Listing 2-9 Request-response MEP ... 60
Listing 2-10 Notification MEP .. 61
Listing 2-11 Solicit-response MEP.. 61
Listing 2-12 WS-Policy example [31]... 63
Listing 2-13 Sample WSDL 2.0 file.. 66
Listing 2-14 Sample WSRM client message [18]... 70
Listing 2-15 Sample WSRM server response [18] ... 70
Listing 2-16 Sample WS-Security document.. 74
Listing 2-17 Sample POX file [157].. 76
Listing 3-1 HATEOAS example [52].. 91
Listing 3-2 A sample HTTP request message... 93
Listing 3-3 A sample HTTP response message .. 95
Listing 3-4 GET on a protected resource .. 105
Listing 3-5 401 Unauthorized access message.. 105
Listing 3-6 Authorization header... 106
Listing 3-7 Digest authentication challenge.. 106
Listing 3-8 Sample client request using Digest Authentication ... 108
Listing 3-9 Sample URI ... 110
Listing 3-10 RESTful request .. 115
Listing 3-11 RPC-style request.. 115
Listing 3-12 RPC_REST request [45]... 116
Listing 3-13 GET anti-pattern example... 117
Listing 3-14 Accidentally RESTful GET anti-pattern example ... 117
Listing 4-1 Information about the authors... 122
Listing 4-2 The graph in Fig. 4-2 in triple notation format .. 124
Listing 4-3 The general form of a statement in RDF/XML [67].. 124
Listing 4-4 RDF/XML of graph in Fig. 4-2 .. 125
Listing 4-5 RDF/XML of graph in Fig. 4-3 .. 127
Listing 4-6 RDF/XML of graph in Fig. 4-5 .. 129
Listing 4-7 Collated RDF/XML of examples so far ... 129
Listing 4-8 N-Triple notation of Listing 4-7 ... 130
Listing 4-9 N3 notation of Listing 4-7 .. 131
Listing 4-10 Turtle/N3 serialisation of hierarchy [69].. 133
Listing 4-11 RDF/XML format of hierarchy [69] .. 134
Listing 4-12 Truck resource segment from Listing 4-11.. 135
Listing 4-13 Alternative RDF/XML syntax for Truck resource .. 135
Listing 4-14 Domain and Range example [73] ... 136
Listing 4-15 DatatypeProperty and ObjectProperty example... 140
Listing 4-16 (a) SPARQL SELECT (data) ... 141

xi

Listing 4-16 (b) SPARQL SELECT (syntax) ... 142
Listing 4-17 (a) SPARQL CONSTRUCT (data)... 142
Listing 4-17 (b) SPARQL CONSTRUCT (syntax)... 142
Listing 4-17 (c) SPARQL CONSTRUCT (results)... 143
Listing 4-18 (a) SPARQL ASK (data).. 143
Listing 4-18 (b) SPARQL ASK (syntax) .. 143
Listing 4-19 SAWSDL annotation using Core Dashboard [81]... 147
Listing 4-20 hRESTS and MicroWSMO annotated Hotel WS (HTML)... 152
Listing 4-21 hRESTS and MicroWSMO annotated Hotel WS (RDF/XML) .. 153
Listing 4-22 XHTML section annotated with GRDDL metadata .. 154
Listing 4-23 RDF produced from the GRDDL annotated Listing 4-20... 155
Listing 4-24 WSMO-Lite Ontology (Notation 3) ... 157
Listing 4-25 WSMO-Lite Example ... 157
Listing 4-26 (a) SAWSDL Information model references.. 158
Listing 4-26 (a) SAWSDL Functional semantics reference.. 158
Listing 4-26 (c) SAWSDL Non-functional semantics reference .. 158
Listing 4-27 domain-rel property example ... 159
Listing 4-28 sem-rel property example ... 159
Listing 4-29 sem-class property example.. 159
Listing 4-30 XHTML annotated with RDFa... 161
Listing 4-31 RDF extracted from Listing 4-30 (N3 notation) .. 162
Listing 6-1 Sample WADL file ... 207
Listing 6-2 SAWSDL example (segment) .. 214
Listing 6-3 MicroWSMO example (segment) .. 215
Listing 6-4 Ontology example (segment).. 216
Listing 6-5 StoRHm_Client.xml.. 228
Listing 6-6 (a) POX ServiceView.xml.. 229
Listing 6-6 (b) POX ServiceAdd.xml ... 229
Listing 6-6 (c) Test data returned.. 229

xii

Abstract

Two of the most popular approaches to Web Services’ implementation are SOAP-based Web

Services, which are based on an XML messaging protocol and RESTful HTTP Web Services, which

use HTTP in line with Representational State Transfer (REST) principles. RESTful HTTP Web

services adhere closely to REST principles and therefore avail of existing sophisticated features of

Web infrastructure. SOAP on the other hand, uses HTTP purely as a transport for its messages. This

is known as “SOAP tunnelling” and is against REST principles because it disables Web

intermediaries, as they are unable to inspect the SOAP message.

The research documented in this thesis proposes a protocol adapter named StoRHm (SOAP to

RESTful HTTP mapping) that, within certain constraints, addresses SOAP tunnelling by seamlessly

transforming opaque SOAP messages into visible RESTful HTTP format. The previously opaque

messages are now visible to Web intermediaries, thereby enabling advanced Web features such as

caching. The adapter described in this research enables SOAP clients to interact seamlessly with

back-end RESTful Web services. Thus, StoRHm is also a technology migration enabler i.e. an

enterprise can migrate from SOAP-based Web Services to RESTful HTTP Web services, in a

gradual fashion, by adopting the adapter. StoRHm proposes to leverage the Semantic Web to

automate the mapping element of its solution.

xiii

Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Owen Molloy, for his advice and guidance

throughout the process.

Secondly, I would also like to thank my colleagues at Athlone Institute of Technology (AIT) for their

support and advice. They are Mary Giblin, Frank Doheny, Dr. Robert Stewart and Dr. Paul Jacob.

Lastly, I want to thank my wife Maria for her patience and understanding.

xiv

Declaration

I hereby declare that the work presented in this thesis is my own and that a degree in this university

or elsewhere has not been obtained with it.

Signed,

Sean Kennedy

xv

Publications

Journal Publications

Kennedy S, Molloy O, Stewart R, Jacob P " StoRHm: A protocol adapter for mapping SOAP based

Web Services to RESTful HTTP format ", published in the Electronic Commerce Research Journal,

Volume 11, Issue 3, pp245-269, 2011, available at http://dx.doi.org/10.1007/s10660-011-9075-3.

Conference Publications

Kennedy S, Molloy O, Stewart R, Jacob P, Daglioglu G, "StoRHm: a semantically automated

protocol adapter for mapping SOAP Web Services to RESTful HTTP format", in the 4th

International Conference on Internet Technologies and Applications, Wrexham, Wales, 2011.

Kennedy S, Molloy O, Stewart R, "Leveraging the Semantic Web to automate the mapping of SOAP

Web Services to RESTful HTTP format", in the 6th International Conference in Networking and

Electronic Commerce Research, Lake Garda, Italy, 2010.

Kennedy S, Molloy O, Stewart R, "An adapter for mapping Plain Old XML (POX) Web Services to

RESTful HTTP", International Conference on e-Society, Porto, Portugal, 2010.

Kennedy S, Molloy O, Stewart R and Jacob P, "StoRHm: A novel framework for RESTifying SOAP

based Web Services", in the 5th International Conference in Networking and Electronic Commerce

Research, Lake Garda, Italy, 2009.

Kennedy S and Molloy O, "A novel approach to mapping Web Services to REST", in the 3rd

International Conference on Internet Technologies and Applications, Wrexham, Wales, 2009.

xvi

Kennedy S and Molloy O, "A framework for transitioning Enterprise Web Services from XML-RPC

to REST", International Conference Information Resources Management, Al Ain, United Arab

Emirates, 2009.

Kennedy S, Molloy O and Richardson I, "eCommerce Web Services : REST or WS-*", in the 4th

International Conference in Networking and Electronic Commerce Research, Lake Garda, Italy,

2008.

xvii

Glossary of Terms

ADSL Asymmetric Digital Subscriber Line
BPEL4WS Business Process Execution Language for Web Services
CA Certificate Authority
CICS Customer Information Control System
CORBA Common Object Request Broker Architecture
DCE Distributed Component Environment
DCOM Distributed Component Object Model
DTD Document Type Definition
FOAF Friend Of A Friend
GUI Graphical User Interface
GRDDL Gleaning Resource Descriptions from Dialects of Languages
HATEOAS Hypermedia As The Engine Of Application State
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IANA Internet Assigned Numbers Authority
IDL Interface Definition Language
IETF Internet Engineering Task Force
IIOP Internet Inter-ORB Protocol
ISBN International Standard Book Number
Java EE Java Platform, Enterprise Edition
JMS Java Message Service
JSON JavaScript Object Notation
MD5 Message-Digest algorithm 5
MEP Message Exchange Pattern
MQ Message Queue
MSS Mashup Services System
OLTP Online Transaction Processing
OASIS Organization for the Advancement of Structured

Information Standards
OMG Object Management Group
ORB Object Request Broker
PDF Portable Document Format
POSH Plain Old Semantic HTML
QoS Quality of Service
RDF Resource Description Framework
RDFa Resource Description Framework in Attributes
RDFS Resource Description Framework Schema
REST Representational State Transfer
ROA Resource Oriented Architecture
RPC Remote Procedure Call
RSS Rich Site Summary
SMTP Simple Mail Transfer Protocol
SA-REST Semantic Annotation of Web Resources
SOA Service Oriented Architecture
SOAP SOAP (no longer an acronym, used to stand for Simple Object Access Protocol)

xviii

SPARQL SPARQL Protocol and RDF Query Language
SSL Secure Sockets Layer
StoRHm SOAP to RESTful HTTP mapping
TLS Transport Layer Security
Turtle Terse RDF Triple Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
UDDI Universal Description Discovery and Integration
W3C World Wide Web Consortium
WS-BPEL Web Services Business Process Execution Language
WSDL Web Services Description Language
WS-I Web Services Interoperability Organisation
XHTML eXtensible HyperText Markup Language
XML eXtensible Markup Language
XSLT Extensible Stylesheet Language Transformations

19

Chapter 1

Introduction

1.1 Motivation

Since the very first centralised mainframes, computer systems have evolved over time, into

decentralised distributed systems. These decentralised systems have become increasingly

heterogeneous due to the continuous change in technology and the fact that creating and managing

decentralised systems is, in itself decentralised. This is obviously true on the Internet, given its

immense size, but also true in enterprises with a smaller machine base. Add factors such as mergers,

takeovers and e-business and the heterogeneity in the overall system rises sharply.

Due to the increase in heterogeneous systems and their distributed nature, distributed application

integration, under the umbrella term “middleware”, has been an area of research for many years.

Middleware refers to “software that resides between an application and the operating system,

network or database underneath it” [1]. Middleware systems can trace their origins back to Online

20

Transaction Processing (OLTP) systems such as IBM’s Customer Information Control System

(CICS) system. From these origins, other middleware systems have developed, such as: IBM’s

Websphere Message Queue (MQ), Common Object Request Broker Architecture (CORBA),

Distributed Component Environment (DCE), Microsoft’s Distributed Component Object Model

(DCOM), Java Platform, Enterprise Edition (Java EE) and more recently, Web Services. Figure 1-1

gives an overview of the more recent middleware solutions.

Figure 1-1 Recent middleware history

The explosion of the Internet in the 1990’s ensured that HTTP (HyperText Transfer Protocol) was

ubiquitous and ushered in the era of e-commerce. The advent of e-commerce resulted in Web

browsers needing access to enterprise Web servers residing behind the corporate firewall, resulting in

ports 80 and 443 (HTTP/HTTPS respectively) being opened up. The surge in e-commerce also led to

the development and widespread adoption of XML (eXtensible Markup Language) as an information

exchange representation. XML is a simple, text-based “meta-language” i.e. it allows users to invent

their own languages. Due to its text-based nature, XML is both language-independent and platform-

independent, making XML highly interoperable.

Distributed object middleware solutions such as CORBA were ideally suited to corporate intranets

[2]. However, CORBA ports were not opened on the firewall by administrators leading to firewall

traversal issues [119]. This led to CORBA’s HTTP adapter e.g. VisiBroker GateKeeper, which is

used “to tunnel the HTTP requests” [120]. In addition, the scale of the Internet created a gap in the

market place for a middleware solution that would provide a worldwide interoperable distributed

computing solution. The widespread deployment of firewall-friendly HTTP, coupled with the simple,

interoperable XML format heralded the invention of Web Services [133]. “It is the gap between what

21

the Web provides (HTTP and XML) and what application integration requires that Web Services are

trying to fill” [117].

A major part of the research in this thesis relates to XML Web Services. There are two types of XML

Web Services: WS-* and POX (Plain Old XML). Both are used in the area of application integration

in a heterogeneous distributed environment. WS-* Web Services are a suite of standardised, XML-

based technologies organised conceptually into a stack model. WS-* Web Services use SOAP as its

message format and WSDL (Web Services Description Language) for describing the Web Services

interface, protocol and location to potential consumers. (Note: SOAP is no longer an acronym. SOAP

used to stand for Simple Object Access Protocol but since SOAP was neither simple nor object based, the

acronym was dropped). WS-* Web Services are “protocol agnostic” i.e. they can be accessed over any

transport or application protocol e.g. HTTP, TCP, Simple Mail Transfer Protocol (SMTP) and Java

Message Service (JMS) [2]. However, HTTP is the default transport. POX Web Services on the other

hand, are a more lightweight approach in that there is no stack of standards and the de facto protocol

used is HTTP. As POX Web Services have no standard for message description or format,

enterprises use proprietary XML Schema definitions to describe their interfaces and messages. Fig 1-

2 contrasts the protocol used by POX Web Services with the protocol agnostic nature of WS-* Web

Services.

Figure 1-2 XML Web Services protocols

Due to its ubiquity and firewall-friendly nature, HTTP is widely used to transport both WS-* and

POX Web Service messages. HTTP is an application protocol following the principles of

Representational State Transfer (REST), an architectural style defined by Roy Fielding in his PhD

thesis “Architectural Styles and the Design of Network-based Software Architectures” [3]. The

research presented in this thesis explores the issues of WS-* and POX Web Services’ use of HTTP.

22

The modern Web is primarily intended for human use. The Semantic Web on the other hand,

annotates Web content so that machines can make sense of it. One of the benefits of the Semantic

Web is the intelligence it lends to software solutions i.e. the Semantic Web facilitates automation.

An architecture that addresses the issues of WS-* and POX Web Services’ use of HTTP is presented

and discussed in later chapters. The architecture leverages the Semantic Web to provide

intelligence/automation.

1.2 Research Opportunities

During the extensive review of the work carried out in XML Web Services, a number of

shortcomings in the body of research have become evident. The following is a list of these, as yet

unanswered questions:

• XML Web Services do not follow the REST (REpresentational State Transfer) style when

using HTTP (an instantiation of REST principles) to transport its’ messages. This can be

attributed to the fact that XML Web Services use HTTP, as a transport protocol, when HTTP

is in fact, an application protocol [4] [131]. XML Web Services operations are encapsulated

in XML and are therefore opaque to Web intermediaries, such as caches and proxies [5].

XML Web Services interact remotely “through the Web but remain “outside” of the Web”

[101]. This is referred to as ‘HTTP tunnelling’. The question arises: is it possible to design an

architecture to address “POST Tunnelling”?

• Technology changes are a common occurrence within the enterprise. For example, a merger or

acquisition can lead to a change in technology: “during a merger, there is often a winner and

loser; and often for simplicity, one technology will lose out” [6]. An enterprise wishing to

migrate from XML Web Services to RESTful Web Services is faced with the prospect of a

wholesale replacement of one technology with another. This approach causes concern for

enterprises, as “they prefer approaches that allow them to gradually shift from one

technology to another” [7]. This results in the question: can an architecture be designed to

enable this gradual migration?

• SOAP to RESTful Web Services protocol adapters in literature are server based and do not take

into account the current SOAP interface [8]. Thus, the SOAP request messages are still

opaque to Web intermediaries and to avail of this type of adapter requires a re-compilation of

the client software. In addition, these adapters do not avail of the Semantic Web to add

intelligence to the mappings. This leads to the following questions:

23

o can messages be immediately visible to all intermediaries?

o is it possible to design an architecture that has minimal impact on the client?

o can the architecture avail of Semantic Web intelligence?

1.3 Principal Contributions

From the research questions raised in the previous section, this section contains a number of

contributions made by the research presented in this thesis. These contributions are listed below and

are discussed at various stages throughout the thesis.

Web Infrastructure enabler
This research proposes an approach, which transforms the opaque XML Web Services messages into

visible RESTful HTTP format. As a consequence, Web intermediaries such as caches and proxies are

enabled as they can now inspect the visible messages. In essence, the proposed research aims to avail

of the existing, proven Web infrastructure capability by enabling it. Figure 1-3 demonstrates this.

Figure 1-3 Web Infrastructure enabler

The proposed solution provides, via mappings, the ability to transform the opaque Web Service

message to visible RESTful HTTP format. These mappings are set up a priori and are dynamically

referenced before the message ever leaves the client. Consequently, all messages are RESTful on

leaving the client, thereby enabling the Web infrastructure. As a result, there is no need for

developers to provide their own custom caching mechanisms.

24

Migration Enabler
The research proposals presented in this thesis include an approach that enables enterprises to

gradually migrate from XML Web Services to RESTful HTTP Web Services. The research presents

a service-specific gateway that maintains the SOAP/POX interface thereby enabling the back-end

servers to migrate to RESTful HTTP Web Services. This allows the server to migrate “without

breaking existing clients, allowing those clients to migrate when convenient” [7]. Figure 1-4

illustrates this.

Figure 1-4 Migration enabler

Novel XML Web Services caching approach

As far back as 2003 people have examined the caching issue with XML Web Services: “XML Web

services present new challenges ..., as well as their lack of involvement in the caching process” [9].

Microsoft Research implemented a client-side SOAP cache to mimic continued access to XML Web

services from mobile devices during disconnections [9]. This cache was implemented as a data store.

Microsoft’s findings are interesting. Firstly, they comment on how REST’s Uniform Interface

principle simplifies the caching issue - “Web-browser caches, map URIs to HTML pages and need

worry about only one operation – namely, the HTTP GET operation”. Secondly, they note that the

specific-interface nature of SOAP increases the complexity of the solution - “The diverse nature of

Web services poses a major problem in identifying the semantics of the operations exposed by the

Web service”.

25

Andersen et al note that: “SOAP, being based on XML, inherits not only the advantages, but its

relatively poor performance” [10]. Andersen et al outline an approach to improve SOAP

performance by implementing a server-side SOAP cache [10]. Given a client request, the server side

cache is checked using the client request as the key; if an entry exists, the associated response object,

serialized in XML, is returned. Otherwise the request is satisfied using normal business logic and the

client request and its associated response object are stored in the cache (for the benefit of subsequent,

identical client requests). Figure 1-5 represents both approaches to SOAP caching outlined above:

Figure 1-5 SOAP caching

Our proposal to use REST principles addresses the caching issues outlined in [9][10]. The Uniform

Interface constraint of REST is particularly relevant and has major advantages over the specific

interface approach of SOAP in the area of visibility into system interactions [11]. For example, a

cache can understand a HTTP GET request by simply inspecting the URI (Uniform Resource

Identifier) in the message to determine the resource being accessed. This is not possible with the

HTTP POST requests used by XML Web Services because the actual operation to be performed

(whose semantics are only known to the SOAP receiver) is located inside the XML payload

document [5]. Even if the cache were programmed to understand a particular SOAP vocabulary, this

would not scale; as every new SOAP application, each with its own new vocabulary would require

the cache to be modified [5].

Vinoski states that the Uniform Interface constraint makes it easier for developers “to apply critical

distributed systems concepts such as proxying, caching…” [12]. Vinoski also states that systems

conforming to the Uniform Interface constraint gain the following advantages with regard to caching:

“developers can easily insert caches…without breaking the client or needing to specialize the

caches” [11].

So rather than implementing a client or server side SOAP cache (as in Figure 1-5), we propose to

seamlessly migrate SOAP messages, with its specialized interface, to RESTful HTTP, with its

Uniform Interface (as in Figure 1-3). The messages will conform to the Uniform Interface constraint,

26

be visible to Web intermediaries (e.g. caches) and enable us to automatically avail of the benefits

outlined in [11] and [12]. In essence, we are going to leverage the Web’s proven caching

architecture.

Novel Web Services Interoperability mapping

In similar research, Briggs outlines a design, which, from a high level, is similar in appearance to the

design proposed in this thesis (a RESTful back end with a SOAP front end) [8]. There are several

distinct differences to the model outlined in this thesis:

• Briggs is SOAP enabling RESTful Web Services by wrapping them with a SOAP interface.

In contrast, the approach outlined in this thesis is REST(ful HTTP) enabling SOAP clients.

• Briggs’ adapter is on the server whereas the adapter presented in this thesis resides on the

client. Thus, the on-the-wire client messages by Briggs are opaque and tunneled whereas our

messages are visible. As outlined earlier this has ramifications for Web intermediaries.

• Briggs does not take the existing SOAP interface into account. In Briggs solution, there is no

intention to migrate existing clients from SOAP and new clients are SOAP based. The

adapter outlined in this thesis is exactly the opposite: the existing SOAP interface is taken

into account leading to a seamless migration tool for transitioning SOAP clients to RESTful

HTTP format. In addition, new clients are RESTful HTTP based.

Novel use of Semantic Web Services’ stacks

The research proposals in this thesis include an automated, intelligent mapping approach. This is

achieved via the use of Semantic Web Services technologies. These technologies identify their

concepts using URI references and consequently enable matching of SOAP Web Services with their

equivalent RESTful HTTP counterparts.

Semantic Web Service technology stacks exist for both SOAP and RESTful HTTP-based services.

These stacks support composability, integration and mediation within and across the stacks (see

Figure 1-6 (a)). The novelty in this thesis is the use of the stacks. These stacks were invented for

mediating and integration within and across the SOAP and RESTful HTTP paradigms. For example,

Figure 1-6 (b) demonstrates the mapping of a SOAP WS output up to the Semantic layer so that the

output can then be mapped to the input format required by the RESTful WS. The complete

replacement of the SOAP message with its RESTful HTTP counterpart was not envisaged when the

stacks were created. Rather than mediate an output response from a SOAP Web Service to the input

27

of a RESTful HTTP Web Service, we are mediating the SOAP Web Service input to the RESTful

HTTP Web Service input (see Figure 1-6 (c)).

Figure 1-6 (a) Semantic Web Services Interoperability

Figure 1-6 (b) SOAP WS output mapped to RESTful WS input

Figure 1-6 (c) SOAP WS input mapped to RESTful WS input

SWEET contribution

The research conducted as part of the Semantic Web Services element of this thesis, resulted in the

use of the SWEET [13] editing tool. This tool was used to add semantic markup to the RESTful Web

Service descriptions. A core issue was discovered and reported to the developer. The issue was

resolved on the 27th January, 2011.

28

1.4 Thesis Overview

This thesis consists of three sections: the background to the contribution; the contribution and the

conclusions. The chapter structure of this thesis is visually represented in Fig. 1-7. The background

section contains the literature review of the specific areas of motivation and contribution. The second

section contains two chapters which detail the contribution of this research and the last section relates

to the conclusions of the research.

Figure 1-7 Thesis Road Map

Chapter 1: Introduction

This chapter introduces the domain and motivations behind this research. The principal research

contributions are identified and briefly discussed. A high level overview of the research is presented

as well as a road map of the thesis.

Chapter 2: Web Services

This chapter introduces the reader to the domain of Web Services. As “Web Services are the de facto

implementation of the Service Oriented Architecture (SOA) paradigm” [121], an overview of Service

Oriented Architecture (SOA) is given. The two popular XML Web Services approaches, namely

29

SOAP and Plain Old XML (POX) are discussed. The WS-* stack, to which SOAP belongs, is

detailed and how the WS-* stack provides Quality of Service (QoS) is covered.

Chapter 3: Representational State Transfer (REST)

This chapter focuses on the architectural style called REST. As REST is in itself abstract, REST’s

most popular incarnation, the Web and especially, HTTP is discussed. How HTTP implements QoS

is also detailed. Criteria for deciding whether an architecture is RESTful or not is outlined and

finally, some common REST anti-patterns are detailed.

Chapter 4: Semantic Web

One of the techniques in the research offering presented in this thesis involves adding intelligence

and automation to a software artefact created as part of this research. This chapter focuses on

introducing the core technologies of the Semantic Web. This chapter also discusses Semantic Web

Services from both the SOAP/POX WS perspective and the RESTful WS perspective. The

technologies presented in this chapter enabled an intelligent and automated artefact to be created.

Chapter 5: StoRHm (SOAP to RESTful HTTP mapping)

This chapter outlines the architecture and design of StoRHm: the core contribution of this thesis. The

constituent elements of StoRHm’s two versions and the design decisions that guided them are

discussed. The gradual evolution towards a semantically enabled and automated architecture is

outlined.

Chapter 6: Implementation and Evaluation

This chapter outlines the implementation instances of the architecture outlined in Chapter 5. Test

cases are outlined and examples of the on-the-wire runtime messages are presented. The architecture

is then evaluated based on criteria such as message visibility and performance.

Chapter 7: Conclusions

This chapter summarises the thesis, focusing on the results and benefits of the architecture. Some

interesting future directions are also discussed.

30

Chapter 2

Web Services

2.1 Introduction

In this chapter, an overview is given of Service Oriented Architecture (SOA) and one of its most

popular implementation paradigms: Web Services. The core technologies enabling Web Services,

namely SOAP and WSDL are discussed in detail. How Web Services address advanced enterprise

requirements i.e. Quality of Service is outlined. Plain Old XML (POX), a more lightweight approach

to Web Services is detailed. Lastly, HTTP tunnelling and Web Services interoperability is discussed.

2.1.1 Background
As outlined in the Introduction, Web Services evolved from a previous distributed computing

paradigm, CORBA. CORBA is a specification maintained by the OMG (Object Management Group)

that enables software components written in different computer languages, residing on different

31

computers using different operating systems to interoperate. The first version of CORBA (v1.0) was

released in late 1991 and the latest version is v3.1, released in 2008. CORBA interfaces were

specified using Interface Definition Language (IDL) for which language mappings were available to

generate client-side stubs and server-side skeleton code. Object Request Brokers (ORBs) exist on

both the client and server side to handle the communication between the application and the remote

objects. CORBA’s interoperability protocol over TCP/IP, namely Internet Inter-ORB Protocol (IIOP)

was released in 1996. CORBA, a binary protocol, had issues with client-side firewalls when the

Internet exploded.

XML, a text-based W3C (World Wide Web Consortium) standard, was defined in 1998. XML is a

meta-language i.e. when defining an XML vocabulary, one can customise the tag names used.

Customised Document Type Definitions (DTDs) or XML Schemas specify the structure and

elements allowed in XML documents. The DTD/Schema enables XML instance documents to be

validated. Despite its verbosity, XML’s simplicity and flexibility has made it extremely popular as a

data interchange format. XML has parsers for processing documents and many XML-based

languages have been developed e.g. XHTML (eXtensible HyperText Markup Language), SOAP (no

longer an acronym), RSS (Rich Site Summary) and Atom.

HTTP, a text-based application protocol for transferring hypertext documents was initially defined in

1991 (v0.9). The latest version is v1.1 [51]. The Internet Engineering Task Force (IETF) and W3C

control the HTTP standard. What initially started as a simple means of communicating ideas within a

research group led by Tim Berners-Lee has become the foundation of the modern Web. The

explosion of the Web ensured that the firewall-friendly HTTP protocol is now ubiquitous.

The technologies just outlined have influenced Web Services in different ways:

• HTTP is firewall friendly (CORBA was not)

• HTTP is also pervasive

• XML was the de facto standard for data interchange. In fact, such is the role that XML plays

in Web Services that Nordbotten states in [146] that “the suitability of Web Services for

integrating heterogeneous systems is largely facilitated through its extensive use of

Extensible Markup Language (XML)”.

• XML is also text-based

Thus, an XML-based distributed systems protocol that would leverage HTTP (by default) heralded

the arrival of Web Services. The W3C first used the term “Web Services” in 2001.

32

Since its inception in 2001, Web Services have inspired many books including [15][16] and [18]. In

[16], the authors describe Web Services as “the next generation of distributing computing”. A lot of

academic research has also been carried out in the field of Web Services, for example:

• Web Service adapters are the subject of research in [116] and [118] where the authors

propose a framework for developing Web Service adapters. The authors concern themselves

with signature mismatches between functionally similar services e.g. different operation

names and/or number of arguments and also business protocol mismatches e.g. different

order and/or number of messages. The authors define template patterns requiring user

provided XSLT (Extensible Stylesheet Language Transformations) or XQuery

transformations to adapt the messages. The work done in [116] and [118] is specifically Web

Services oriented and consequently differs from the research conducted as part of this thesis

in the following areas:

o RESTful WS are not integrated and as a result, a key research objective, namely,

“POST tunnelling” is not addressed. In addition, POX services are not catered for.

o The authors in [116] and [118] do not leverage the Semantic Web to automate the

matching i.e. the user must provide this information manually.

• Web Services raison d’etre is integration. This is demonstrated by the work done in [110]

where the authors implement a Web based student appeals system involving Web Services

across both Java EE and .NET platforms. In [110], the authors explain in detail the SOAP

invocation process e.g. marshalling to/from XML and encapsulating to/from HTTP.

• A simple atomic Web service is defined as a service that does not invoke other Web services

to fulfil the consumer request; whereas a composite Web service is an aggregation of simples

and/or composite Web Services [151]. As “Web Services are autonomous units of code,

independently developed and evolved” [153], the efficient and intelligent composition of Web

Services has been the subject of research attention over the years. For example, in [151], a

framework that utilises the Semantic Web for the automatic composition of Web Services is

outlined. The framework involves the user specifying (at a high level) their requirements (e.g.

service, operations, parameters). The framework then semantically matches these

requirements against predefined Web Services stored in a registry. In [153], an alternative

approach to composition is outlined. The authors in [153] detail a token based approach

whereby important tokens are extracted from the WSDL description and free-form Web

Service description (metadata in a UDDI (Universal Description Discovery and Integration)

repository). These tokens are used to calculate proximity values against other Web Service

descriptions in order to suggest possible compositions. It is an exploratory approach i.e. the

33

framework matches and ranks rather than automatically composes. Both [151] and [153] are

traditional top-down goal-centric approaches. A bottom-up approach in which a Web Service

mining framework that presents potentially interesting and useful compositions to the user, is

outlined in [65]. In the framework, the user initially specifies a general topic e.g. medicine.

This scoping input determines (and limits) the search space in the registry. The resultant Web

Services are linked together into compositions. This is achieved via semantic ontologies e.g.

operations pre- and post-conditions must hold. The proposed new compositions are then

presented to the user for evaluation. In [140], a framework that searches WSDL repositories

based on an existing user-specified WSDL is presented. In their framework, proximity is

based on keyword matching in order to rank proximity so that the user can select the WSDL

to compose with.

• The Web Services standards of SOAP, WSDL and UDDI enabled “automatic and dynamic

interoperability between systems” [133], However, these specifications are not considered

sufficient given the challenges of the enterprise, especially in the area of security and

reliability [113]. Thus, Web Services standards have evolved over time from a basic suite

enabling interoperability to a sophisticated stack enabling many advanced features required in

the enterprise. For example, security in Web Services has evolved from reliance on HTTPS to

a comprehensive suite of standards, encapsulated in WS-Security. HTTPS is viewed as

insufficient in a Web Services scenario because, while HTTPS secures a direct connection

between one machine and another, it offers no help in the Web Services scenario where a

message may travel over several connections e.g. where messages originate deep inside one

enterprise and travel deep inside another (travelling over SOAP intermediaries along the way)

[113][133]. If a SOAP intermediary inserts/removes a SOAP header, HTTPS breaks [146].

WS-Security relates to a family of specifications used to secure Web Services messages

[146]:

o WS-Security specifies how to apply XML Encryption and XML Signature to SOAP

messages, effectively providing confidentiality and integrity to SOAP messages

[147]. In addition, WS-Security also enables the inclusion of security tokens e.g.

X.509 certificates into SOAP messages, thereby enabling authentication.

o WS-Security has no concept of a conversation/session i.e. it is concerned with a single

request/response exchange. If a sender is sending multiple messages to the same

recipient then sending the same security token (e.g. a public key on an X.509

certificate) repeatedly is a waste of bandwidth and could result in multiple validations

on the recipient side. In these situations, WS-SecureConversation is a framework that

can be used for establishing and maintaining the context required for a conversation.

34

In the given scenario, full key exchange and validation is only required when

establishing the security context and not for all the messages in the conversation.

o WS-SecurityPolicy enables a service provider to assert its security requirements and

capabilities (in a WSDL file). Examples would be security tokens required to

successfully invoke a service (e.g. X.509 certificates); cryptographic algorithms

supported and what parts (or all) of the SOAP message needs integrity and/or

confidentiality protection via digital signature and encryption respectively.

o WS-Security provides for including security tokens in SOAP messages and WS-

SecurityPolicy provides for asserting what security policies are required. If a

consumer does not have access to the security token required by a service, WS-Trust

defines a security token service (as a Web Service) from which security tokens can be

requested (by service consumers) and subsequently validated (by service providers)

[147].

In [149], the authors examine WS-Security and identify the following issues:

 The “alphabet soup of standards can be confusing to Web Services developers

who don’t know which standards to follow” [149]

 All of the standards relate to network security and none address protecting the

data while it is being stored e.g. in a server side database

 “SQL injection” attacks are not addressed by the standards. SQL injection is a

malicious SQL command such as “delete * from orders” inserted as XML into

a Web Service request which can result in data being deleted on the server. To

address this type of attack, the authors suggest using “XML firewalls”. XML

firewalls operate much like traditional firewalls (which base their decisions on

network address information), except that they can also filter XML traffic.

Thus, data that looks like SQL can be filtered.

• An important challenge in SOA is to find adequate services to solve a particular task [131]. In

Web Services architecture, Web Service descriptions are published in a registry to be later

discovered by potential Web Service consumers. UDDI is the official registry standard.

However, “service discovery is too complex” [132]. This is attributed to UDDI’s limited

category-based keyword-browsing search facility [132] and UDDI’s complex data model/API

[38]. Consequently, research has been conducted to improve the discovery of Web Services.

In [132], a two-step approach that acts as a front-end to UDDI is outlined. The framework

utilises linear algebra techniques for matching similar documents – each WSDL document is

35

mapped to a vector of elements where each element represents the importance of a word in

the document. As a result, similar documents will have similar vectors. Initially the category

of the query is calculated so that the search space is reduced to a subspace. Subsequently, the

query is compared against service descriptions in the subspace. Service discovery is also

pertinent to the work in [132] where an architecture that enables the efficient searching for

services running on embedded devices is outlined. Once devices power up they register

themselves on the network and advertise their services in a process called “network

discovery”. The services metadata advertised during network discovery is stored in a

repository. Due to the constraints on the devices, the services keywords advertised are

limited. The framework requires the user to enter specific keywords that act as search criteria.

The keywords are automatically augmented/enhanced with other keywords from an analysis

of searching existing repositories such as web encyclopaedias (e.g. Wikipedia) and search

engines (e.g. Google and Yahoo!).The services repository is searched with the augmented

keyword list and all services that potentially support the functionality the user is looking for

are returned [131].

2.1.2 Definition
Web Services are defined by the W3C as “a software system designed to support interoperable

machine to machine interaction over a network" [14]. Web Services are a suite of XML based

technologies that are used in the area of application integration in a heterogeneous distributed

environment. A Web service is a software application (i.e. procedure, method or object) with a

stable, published, programming interface that can be invoked by clients [117]. The Web services

model borrows from the success of the Web. Instead of a simple markup language (HyperText

Markup Language (HTML)) over a lightweight transport (HTTP) as we have in the Web; we have an

open, portable, platform-neutral language, namely XML, over HTTP (or any other supported

transport). All that is required for Web services is that they can understand an XML-formatted

request over a supported communications transport (e.g. HTTP) and return an XML-formatted reply

(if required) [15]. Web services are invoked by other programs [117] and can be invoked by small

mobile devices e.g. mobile phones [129], personal digital assistants (PDAs) [111], PC-based

programs, Web browsers and mainframe systems.

Web Services are “based on the notion that pieces of software applications can be developed and

then published to a registry where they can be dynamically discovered and consumed by other client

applications over different transport protocols irrespective of the language used to develop those

36

applications on which they are implemented” [108]. Web services are attractive because existing

legacy systems can be wrapped as Web services and made available for integration with other

applications, even if these applications are running on different platforms and written in different

programming languages. The complexity of these legacy systems is hidden behind the Web services

interface. Now, instead of integrating one system with another, we can integrate one system with

many others i.e. once we expose the system in Web services, many systems can integrate with it.

This ability to wrap existing software has the benefit of promoting software reuse [16]. In effect,

Web services act as entry points to the local information systems [117].

Web services’ are a popular approach to implementing an SOA. According to [132]: “The software

industry has broadly adopted SOA by using Web Service technologies”. Consequently, an overview

of SOA is necessary. A discussion on Web Services architecture and its constituent core technologies

then follows.

2.2 Service Oriented Architecture (SOA) [15] [16]

SOA is an architectural approach to building application systems whereby the focus is on a loosely

coupled set of services which can be dynamically discovered and invoked. In an SOA, software

services are exposed over a network via well-defined interfaces. This focus on the service interface

abstracts the service requestor from the service implementation thereby promoting loose coupling.

As applications are integrated at the interface level (and not the implementation level), SOA

increases flexibility as it allows applications to integrate with any implementation of the contract.

This allows the consumer to pick and choose the service it wants to invoke based on other criteria

e.g. security or message reliability.

The SOA approach to building IT systems is to align IT services with business services. The ultimate

goal is to create a repository of IT services that can be orchestrated/composed into business processes

quickly and easily using tools. This enables enterprises to react more quickly if market conditions

change e.g. a business merger.

In an SOA, existing applications can be refactored and wrapped as services, to be consumed by

existing or new applications. Thus previous IT investments hidden away in legacy silos can be

exposed as services and their logic reused and integrated into new applications. In the SOA

approach, the designer is not building a software service for one purpose only; rather they are

37

building a service that can potentially be used in many different business contexts. Enterprises no

longer want their business functionality buried deep in a monolithic application which is difficult to

integrate with. They want to abstract the business logic out into services so that these services can be

invoked and re-used from a variety of locations and platforms.

The concept of SOA is not new. However, while the idea of separating the interface from its

implementation to create a software service definition has been well proven in CORBA, the ability to

completely separate a service description (into a text file) from its execution environment is new.

This allows us to mix and match services from different execution environments e.g. CORBA, Java

EE, .NET etc... Previous SOA implementations were based on a single execution environment. With

SOA, the implementation environments of the services don’t matter; it’s the service that’s important.

2.2.1 SOA Roles

Any SOA contains three roles: service requestor, service provider and service registry:

Figure 2-1 SOA Roles [17]

Service provider

A service provider creates the service description (contract). The service description is very

important in an SOA because it describes everything the service requestor needs to know in order to

invoke the service. The service provider deploys the service, makes it accessible over the network,

publishes the service description in a registry (broker) and invokes the service when it receives

service requests.

38

Service requestor

A service requestor must find the service description published in a service registry and then bind

(execute or interact) the service based on the description metadata.

Service registry

The service registry is responsible for advertising service descriptions published to it by service

providers and for allowing service requestors to search for services within the registry.

Service description

The key to SOA is the service description. The service description is published in the service registry

by the service provider; the service description is what the service requestor “finds” and it is the

service description that tells the service requestor everything it needs to know in order to bind to the

service.

2.3 Web Services Architecture

“No single technological advancement has been more successful in manifesting a service-oriented

architecture (SOA) than Web Services” [147]. As stated in the introduction, Web Services are a suite

of XML based integration technologies used in implementing an SOA. The major advantages of

implementing a SOA with Web Services are:

• the use of HTTP

o HTTP is the default (and most common) transport and due to the success of

the Web is ubiquitous

o HTTP is firewall friendly

• the use of XML

o simplicity – service descriptions and messages are plain text files

o platform-neutrality – XML is by its nature both platform and language neutral

thereby increasing interoperability; it is the lingua franca for information

exchange [114] and platform independence [113].

Figure 2-2 illustrates the basic Web services architecture. In this diagram, the Web service producer

publishes the service description (an XML file called a WSDL description) in a registry. The Web

39

service consumer accesses this registry, finds the services details via the published description and

binds to the service (executes it) by sending a SOAP message to the provider [147].

Figure 2-2 Basic Web services architecture

Web services can be considered conceptually as a layered set of technologies. There are many

specifications and Figure 2-3 shows the more important ones. The stack is known as the “WS-*”

interoperability stack due to the fact that the vast majority of the standards begin with the “WS-”

prefix. As the Web Service framework is modular, “you can just use the parts of the stack you need”

[113].

Figure 2-3 WS-* Interoperability Stack [16]

40

2.3.1 WS-* Interoperability Stack

The WS-* stack is a suite of XML specifications supported and maintained by various standards

bodies (principally the W3C and OASIS (Organization for the Advancement of Structured

Information Standards)). The specifications are organised into a stack conceptual model to help

understand at which layer the specifications reside.

Transport layer

Web services are transport neutral i.e. a Web service message can be transported over HTTP, TCP,

SMTP etc…The default transport is HTTP.

Messaging layer

At the messaging layer we have the core Web services technologies of XML, SOAP and WS-

Addressing. XML is used for formatting the messages between producer and consumer (SOAP) and

also for describing the services themselves (WSDL). SOAP was one of the original Web services

standards. It defines an enveloping mechanism for Web services messages [18]. WS-Addressing

standardizes the concept of response addresses i.e. where the response of the Web service should go.

It is used in asynchronous messaging as it enables the response message to be addressed to a

different end-point from the original request. The consumer can poll this end-point for the response

at a later stage.

Description layer

A service description is additional descriptive meta-data. It helps SOA systems such as Web services

achieve loose coupling and dynamic binding. With WSDL, programmers define the functional

characteristics of their Web services e.g. what operations the service provides and what input/output

messages are associated with those operations. “It is the XML-based file that any developer needs in

order to develop a client application to consume the Web Service” [108]. SOAP and WSDL enable

application developers to create Web Service wrappers around their applications that expose the

applications functionality through a standardised interface definition language [137].

WS-Policy is an approach to describing non-functional characteristics of a Web service. For

example, how does a consumer know that a particular Web Service supports message security and/or

reliability? These non-functional characteristics of a Web service can be described using WS-Policy

that allows Web service providers advertise the properties and capabilities of their Web service.

41

Depending on the policy, the requestor may have to provide extra information to validly invoke the

Web service [18].

Web services are published in registries. UDDI is the most widely known specification for Web

service registries. A complex specification, its adoption has been poor.

QoS layer

This layer contains specifications that deal with the quality of service of the Web services solution.

At this layer, we are dealing with the capabilities and requirements of Web services with regard to

reliable messaging, security and transactions.

WS-ReliableMessaging is a standard that addresses the requirement for reliable messaging. It is a

protocol for exchanging SOAP messages that supports guaranteed delivery, guaranteed message

ordering and non-duplication of messages [15].

WS-Security is a family of related specifications that address the need for Web service interactions to

be conducted in a secure fashion.

WS-Transactions is a set of specifications addressing how Web services enable transactions.

Compositional layer

At this layer we have the WS-BPEL (Web Services Business Process Execution Language)

specification. WS-BPEL was formerly known as BPEL4WS (Business Process Execution Language

for Web Services). WS-BPEL is a standard that addresses how Web services can be composed or

orchestrated into higher level business process workflows. “WS-PEL is essentially a layer on top of

WSDL, with WSDL defining the specific operations and WS-PEL defining how the operations can be

sequenced” [133].

How the stack works

All these WS-* standards can be intimidating but one must remember that Web services address a

complicated problem: that of loosely coupled, dynamically configured, heterogeneous distributed

computing. Rather than deliver one massive specification, the community is delivering a series of

smaller, domain-specific specifications e.g. security, reliable messaging or transactions. The

individual specifications can be composed into an overall Web services system because each Web

services specification is designed to integrate with the others. For example, rather than WS-

42

ReliableMessaging defining its own security standard it will rely on WS-Security. One can therefore

pick and choose the specifications that relate to your solution e.g. if security is not required then

there is no need to use WS-Security.

WS-I

The Web Services Interoperability (WS-I) organization is an open industry organisation chartered

with establishing best practices for Web Services interoperability. The WS-I was setup to help

designers determine how to combine the WS-* specifications. The WS-I is standardizing

combinations of specifications to increase interoperability between them [108].

2.4 SOAP

SOAP is a messaging protocol that defines the rules by which a client interacts with a Web Service

[108]. The SOAP specification is maintained by the W3C and the latest recommendation is SOAP

v1.2 [24]. SOAP is simple, flexible and extensible; as it is XML based, SOAP is programming-

language, platform and hardware neutral. Figure 2-4 shows how client and server applications

communicate in a SOAP over HTTP environment. The client method request is serialised as SOAP

(i.e. native language formats to SOAP), wrapped in HTTP and directed to the Web Service. The Web

Service server decodes (i.e. unwraps) the HTTP message, deserialises the SOAP message contained

therein and invokes the Web Service. The Web Service response is returned via the same process: the

response is serialised as SOAP, encoded in HTTP and returned to the client. The client decodes the

HTTP message and deserialises the Web Service response from SOAP back to the native

programming language types [110][114].

Figure 2-4 SOAP message path

43

SOAP provides the following [16]:

• The SOAP Messaging Model - this is a mechanism for defining the unit of communication

for SOAP messages. All information in a SOAP message is encapsulated within a SOAP

envelope. The envelope has a body and any number of optional header sections.

• A processing model - this defines how SOAP messages are handled in software e.g. SOAP

engines. It is particularly important when headers/extensions are involved.

• A mechanism for error handling - with SOAP faults, one can identify the source and cause of

an error

• An extensibility model - SOAP headers are used to implement extensions on top of SOAP.

For example, QoS features are implemented using SOAP headers.

• A protocol binding framework - bindings allow the transmission of SOAP messages over

arbitrary underlying transports. The default binding it to the ubiquitous HTTP transport.

Each of these topics is now examined in greater detail.

2.4.1 SOAP Messaging Model
A SOAP message is an ordinary XML document with a simple structure: “an XML element with two

child elements, one of which contains the header and the other the body” [113]. The header contains

information not visible to the end-host applications e.g. QoS; the body contains the actual payload

encoded in XML format [114].

Figure 2-5 SOAP message structure

44

SOAP messaging defines how SOAP messages are structured and the rules processors must abide by

when producing and consuming them. Listing 2-1 shows a sample SOAP message segment.

Listing 2-1 Sample SOAP request message

S:Envelope is the root of the document and is defined in the

http://schemas.xmlsoap.org/soap/envelope/ namespace. The SOAP envelope contains

optional headers and a mandatory body section. The headers allow vertical extensibility (discussed

later). The S:Body surrounds the Web service to be executed and the parameters to be passed in. In

Listing 2-1, we are invoking a Web service called getPhoneNumber which, when passed a first name

and a surname, returns that person’s phone number.

RPC-style versus Document-style

This discussion is covered in more detail in section 2.5.4 but a brief overview is necessary at this

point so as to introduce the “wrapped document-literal” pattern. Two styles of messages are

supported: document and rpc (Remote Procedure Call). These can be combined with a style of

“encoding” or “literal” in the WSDL file (see section 2.5). However, the WS-I [19], state in their

Basic Profile v1.1 that “the Profile prefers the use of literal, non-encoded XML” [20]. In [18],

Papazoglou states that “The RPC/Encoded and Document/Encoded modes are explicitly prohibited

[in the WS-I Basic Profile]”. Consequently, a discussion follows on the “literal” style only.

Listing 2-2 outlines a SOAP message using RPC/literal style. The rpc-literal style specifies that the

<soap:body> contains an element with the name of the Web service operation being invoked. This

element contains the parameters to be passed to the Web Service operation as child elements. With

this style, dispatching is easy as the Web service name myMethod is inside the SOAP body.

45

However, validation is difficult as not every element in the SOAP body is defined in an XML

schema – myMethod is a WSDL definition [21].

Listing 2-2 RPC/Literal SOAP message for myMethod [21]

Listing 2-3 outlines a SOAP message using document/literal style. With this style, validation is

possible as all elements inside the SOAP body are defined in a schema i.e. XSD is used to literally

describe the transmitted XML [113]. However, dispatching is difficult as the Web service operation

to be invoked i.e. myMethod is no longer inside the SOAP body [21]. This issue has led to the style

known as “wrapped document-literal”.

Listing 2-3 Document/Literal SOAP message for myMethod [21]

wrapped Document-literal

The style in Listing 2-4 is known as a “wrapped document literal”. “Wrapped” means that the child

element of the <soap:Body> is deliberately given the same name as the Web Service operation to be

invoked. This is achieved by wrapping the input parameters with an XML complex element which

has the same name as the operation to be executed in the Web Service [22]. The wrapped document

literal style was introduced by Microsoft in order to get the operation name back into the

<soap:Body> when using the document-literal pattern outlined above. With this pattern, both

dispatching and validation are possible. It has now become a de facto best practice [23]. Note that the

sample SOAP message in Listing 2-1 follows the wrapped Document/Literal style.

46

Listing 2-4 Wrapped Document/Literal SOAP message for myMethod [21]

Listing 2-5 below is the SOAP response to the SOAP request from Listing 2-1.

Listing 2-5 SOAP Response

2.4.2 SOAP Headers (vertical extensibility)

The optional header section is how SOAP achieves message extensibility. The headers (if present)

appear before the body section. Because the headers sit on top of the message, it is termed “vertical

extensibility”. The headers are used to achieve QoS. SOAP QoS is discussed in more detail in

Section 2.7.

2.4.3 SOAP Intermediaries (horizontal extensibility)

Whereas vertical extensibility is about introducing new information into a SOAP message, horizontal

extensibility is about targeting different parts of the same SOAP message to different recipients. This

leads us to SOAP intermediaries. SOAP intermediaries are applications that can process a SOAP

47

header specifically targeted at it, as the SOAP message travels from source to destination.

Intermediaries are useful in several situations [16]:

a) Securing message exchange through untrustworthy domains - this can be done by sending

the message first to an intermediary that would first encrypt and then digitally sign the message. On

the receiving end an intermediary would do the opposite - check the digital signature and if ok,

decrypt the message.

b) Nonrepudiation - used to make a record of a transaction (so that the transaction cannot be

later repudiated or denied by either party). Instead of sending the message directly to the receiver, the

sender sends it to the intermediary who makes a persistent copy of the request and then sends it on to

the receiver. The response comes back via the intermediary as well and both parties are given a token

to reference the transaction.

c) Message tracing facilities - this allows a message recipient to trace the message route,

complete with timings of arrivals and departures to and from intermediaries. This information is very

useful for measuring quality of service and identifying bottlenecks.

All header elements can have the optional soapenv:role attribute. The value of this attribute is a role

URI that identifies the intermediary that should handle that header. The URI can be a specific node

or a class of nodes e.g. “any cache manager along the message path”. As such, nodes can play many

roles and if a message arrives at a node for one (or more) of the roles the node plays, the node

processes the relevant headers, removes the headers from the message and then forwards on the

message (assuming the node is not the ultimate receiver). Headers that are not targeted at the

intermediary are passed on untouched.

There are some specific roles i.e. URIs :

• http://www.w3.org/2003/05/soap-envelope/role/next - this role targets all nodes in the

message path i.e. all nodes must recognise this role; it is useful where hop-by-hop processing

is required e.g. tracing a message.

• http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver - this role targets the final

recipient (the node which processes the SOAP body); this is the same as not setting the role

attribute on the header i.e. the final recipient processes headers which have no role set

• http://www.w3.org/2003/05/soap-envelope/role/none - no node plays this role; however this

header can be inspected and as a result, it is a way of passing data along the full message

path. For example, if one updated a schema but did not want older systems to fail validation,

one could put the new information into a header and mark it with the none role. Thus, newer

48

systems (which have the newer schema) will be able to retrieve the new data without impact

to older systems.

“mustUnderstand” attribute

A SOAP header targeted at a node does not necessarily have to be processed by the node. This is

because the SOAP 1.2 specification states that a SOAP node may process non-mandatory headers

targeted at it [24]. To ensure a header is processed by the targeted node, one uses the

“mustUnderstand” attribute. If a message header arrives with the correct role and the

mustUnderstand attribute is set, then the node must process the header. If a node is unable to process

a mandatory header block it must generate a SOAP fault (error) and stop processing.

“relay” attribute

The relay attribute is used to ensure that a header is forwarded on to the next node in the message

path i.e. even if a node processes the header, it must not remove the header. This would be useful in

hop-by-hop processing scenarios e.g. message tracing.

2.4.4 SOAP Processing model

The processing model outlines what are the steps to perform when a node receives a message [16]:

a) Identify the mandatory headers that are targeted at the node e.g. role set to “…/next” and

mustUnderstand set to true

b) If the node fails to understand any of the mandatory headers identified then generate a SOAP

fault and stop processing.

c) Process all the mandatory headers identified and if the node is the ultimate receiver, process

the SOAP body. A SOAP node may also choose to process non-mandatory SOAP headers

targeted at it.

d) If an intermediary (i.e. not the final recipient), remove the headers that have been processed

(except where the relay attribute is true) and pass on the message.

2.4.5 SOAP faults (errors)

To signify that an error has occurred, a SOAP fault is generated. This is much like an exception in

Java. A SOAP fault is a normal SOAP message except that you have Fault as the main element

inside the SOAP Body element. Here is an example:

49

Listing 2-6 SOAP Fault Message [16]

In SOAP 1.2, a SOAP Fault element, contains a Code element, followed by a Reason element

followed by a Detail element. The Code element outlines the general issue with the following

possibilities:

• Sender – incorrect or missing data in the request message from the client. In Listing 2-6, the

sender has sent an incomplete XML document i.e. it is the senders responsibility to correct

the issue.

• Receiver - something went wrong at the receiving end while processing the message e.g. a

database was down. If the original message is resent, it may succeed.

• mustUnderstand - a mandatory header was not understood by the targeted node

• versionMismatch – there is a mis-match between the SOAP message and the SOAP server

The Subcode element (sub-element of Code) allows us to provide further detail. In this case, it is

an invalid purchase order.

The Reason element contains a human-readable description of the error (which could be displayed to

the user or logged).

The Detail element contents depends on the SOAP server implementation i.e. the server can insert

any information necessary to help the client further understand the cause of the fault. In Listing 2-6,

the contents reflect the line and column numbers of where validation had an issue with the request

document.

2.4.6 Transport binding

A protocol binding is a specification, named with a URI, of how to serialise SOAP messages over a

particular underlying protocol. SOAP is “protocol agnostic”, which means SOAP can bind to any

50

transport. However, HTTP, identified by the URI http://www.w3.org/2003/05/soap/bindings/HTTP/ ,

is the default transport and is the only binding supported by the WS_I Basic Profile. If you are

sending SOAP messages over HTTP then the SOAP HTTP binding describes how you take a SOAP

message from one node and serialize it across a HTTP connection to another node. Bindings serve to

pass messages between adjacent nodes along the message path. If, for example, one wanted to send a

message securely, one could do it either by using a protocol binding or SOAP headers. For example,

assuming that HTTP is available (and HTTPS is viewed as secure enough), one could use the SOAP-

HTTPS binding to serialize the SOAP messages. Alternatively, if HTTP is not available (or HTTPS

is not viewed as being secure enough), one could use a SOAP header e.g. WS-Security to

encrypt/sign the SOAP message (as this will work over any binding).

2.4.7 Message Exchange Patterns (MEPs)

An MEP is a feature that specifies how many messages move around in an interaction, where they

originate from and where they end up. SOAP 1.2 [24] defines two standard MEPs:

• Request-Response and

• SOAP Response

Figure 2-6 outlines the Request-Response MEP. The Request-Response MEP is straightforward: the

requesting node sends a SOAP message to a responding node. The responding node replies with a

SOAP message of its own to the requesting node. This response could be a fault.

Figure 2-6 Request-Response MEP

Figure 2-7 outlines the SOAP Response MEP. The SOAP Response MEP is similar to the SOAP

Request-Response MEP except that the request message is not a SOAP message [24]. This means

that the receiving node does not have to implement the SOAP processing model (examining headers

etc...). For example, it could be a HTTP server that responds with SOAP messages stored on a file

system. The SOAP Response MEP was introduced in SOAP 1.2[24] so as to support REST-style

51

interactions with SOAP; for example, the request could be a simple HTTP GET with the HTTP

server free to respond with any SOAP message it chooses.

Figure 2-7 SOAP Response MEP

2.4.8 SOAP 1.2

SOAP v1.2 became a W3C recommendation in April 2007. The principal reason for discussing it

here is that certain features were introduced to address the issues that are at the core of this thesis.

This is echoed in [137]: “the incorporation of REST ideas into the latest SOAP”. Note that a

“feature” is abstract. It is given a name (a URI) and a specification stating what it does. It is

generally convenient to provide the specification at the URI naming the feature i.e. type in the

features URI into a browser and what is returned is a description of what the feature does. Features

are implemented at the SOAP layer by SOAP headers (modules) or below the SOAP layer by SOAP

bindings. The relevant features are as follows:

Message Exchange Pattern (MEP) feature

The MEPs in section 2.4.7 were introduced in SOAP 1.2. The important one from a Web-friendly

perspective is the SOAP Response MEP (http://www.w3.org/2003/05/soap/mep/soap-response/).

This MEP must use the abstract “GET” WebMethod feature which the HTTP binding translates into

an HTTP GET message [24]. The other MEP is the SOAP Request-Response MEP

(http://www.w3.org/2003/05/soap/mep/request-response/). This MEP must use the abstract “POST”

WebMethod feature which the HTTP binding translates into an HTTP POST message i.e. your

normal SOAP request. This is how SOAP 1.1 operated.

WebMethod feature

The WebMethod feature (named http://www.w3.org/2003/05/soap/features/web-method/) allows us

to specify GET or POST as the HTTP verb to be used (depending on the MEP used).

52

SOAP HTTP Binding

The binding (named http://www.w3.org/2003/05/soap/bindings/HTTP/) outlines how the above

MEPs and WebMethod features are to be implemented in HTTP. Note that, in section 7.1.2 of the

SOAP 1.2 specification [24] it states that “This binding is not intended to fully exploit the features of

HTTP... Therefore, this HTTP binding for SOAP does not specify the use and/or meaning of all

possible HTTP methods, header fields and status responses”. As outlined in section 7.4 of the

specification [24], the value of the WebMethod feature depends on the MEP in use:

Table 2-1 SOAP 1.2 MEPs [24]

The SOAP 1.2 specification attempts to address the criticisms that SOAP 1.1 was not “Web-

friendly”. One of the principle concerns was that all SOAP 1.1 messages were issued with the same

HTTP verb i.e. POST. This disabled Web intermediaries such as caches and proxies and the valuable

work they do because the HTTP verb GET was not used. This changed in SOAP 1.2 with the

introduction of an updated HTTP binding that covered the features outlined above. However, “very

few people use SOAP 1.2; of those who do, even fewer use the WebMethod feature” [25]. Tilkov re-

iterates this in his Devoxx presentation [26]. I believe this is because of the impact involved in such

a migration. Firstly, all the clients must change to use the new MEP and WebMethod features of

SOAP 1.2. Not only that, but a Web Server must be setup (to co-exist with the SOAP server) in order

to respond to client HTTP GET requests to the new URI’s. Specifically, as shown in Figure 2-6, the

MEP of direct interest relates to the SOAP Request-Response MEP i.e. where the client issues a

SOAP request message using POST.

2.5 Web Services Description Language (WSDL)

WSDL is the Interface Definition Language (IDL) for Web services. WSDL describes the service

description (both functional and non-functional). The service description is key in an SOA in that the

provider publishes it, the consumer finds it and then binds to the Web service based on the service

description’s contents.

53

2.5.1 Service Description

The service description is a key component in an SOA in that it tells a service requestor everything it

needs to know in order to invoke the Web service. A Web service has two major components: its

functional and non-functional descriptions. The functional description details the syntax of the

application-specific message, the transport to be used and where the service resides i.e. where to send

the request messages. The non-functional description describes details that are secondary to the

message and are specified in SOAP headers. The non-functional description enables a provider to

specify the properties and capabilities of the Web service. For example, are there any extra

requirements (e.g. Security headers) that requestors need to provide. For most of the remainder of

this section the aspects of WSDL relating to the functional description are covered, followed by a

section on WS-Policy covering the non-functional aspects.

2.5.2 WSDL 1.1/2.0

According to [27], WSDL 1.1 “has become a de facto standard for the description of Web services”

and that “WSDL 1.1 remains the predominant technology for describing Web services”. The

differences between WSDL 1.1 and 2.0 are discussed in section 2.5.7.

2.5.3 WSDL 1.1 Structure

A WSDL description has three essential properties [15]:

• the service signature - the operations (methods) the service provides and the data passed

(arguments and returns)

• how to access the service - the transport protocols to be used e.g. SOAP over HTTP

• where the service is located - the protocol specific network address of the endpoint hosting

the Web service e.g. a URL (Uniform Resource Locator).

Figure 2-8 gives a diagrammatic overview. The constituent elements are then explained in detail.

Note that there is a clear separation of concerns into abstract (light blue portion) and concrete

descriptions (beige portion) [133]. This enables the same Web service to be offered via different

mechanisms e.g. the Web service could be offered over HTTP (via a URL) and also offered over

SMTP (via an email address).

54

Figure 2-8 Overview of WSDL 1.1 file structure [28]

The WSDL file is often broken up into two separate files so that the service interface definition is

separate from the service implementation definition:

• service interface definition (abstract description)

o the types, message, and portType elements (the “what”)

• service implementation definition (concrete description)

o binding elements (the “how”)

o the port and service elements (the “where”)

The service interface can then be published on a well-known website and any organization interested

in implementing that Web service is free to do so using their own preferred implementation.

definitions element

The Definitions element is the root of a WSDL document. It defines the namespaces to be used and

their associated prefixes.

portType element

This is the element that abstractly defines the interface of the Web service. It is key to understanding

what the Web service does because all the other WSDL definitions exist to support the PortType. It

is similar to a Java interface in that it specifies what operations (methods in a Java interface) are

available. A portType is a collection of operations that are supported by an end point [113]. Even

though a WSDL document can contain more than one PortType, the convention is to have only one

55

[16]. This granularity of having one WSDL document per Web service interface definition promotes

reuse i.e. one can import the WSDL interface definition into a second WSDL document which

implements the interface differently.

operation element

An operation in WSDL is equivalent to a method signature in Java. A PortType can have many

operation elements i.e. the Web Service can support many operations. Each operation defines a

message exchange pattern via its input, output and optional fault messages [113]. These messages

define the input to and output from the Web service operation.

message element

Messages are aggregations of part elements. The messages defined are referred to from the operation

section.

part element

The part element links the message element and the types section (the native XML schema section).

types element

The default type system in WSDL is XML Schema. To increase interoperability between Web

services, one should only use types defined using XML Schema. The types section is essentially a

place where user-defined XML types and elements can be specified for later use from parts

elements. A types section contains a schema section where one defines the application-specific types

required. Alternatively, one can import externally defined XML Schemas.

At this point we know the abstract or reusable portion of the WSDL definition i.e. the portType,

message and types elements. However, we do not know how to format the message (RPC or

document style), what transport protocol to use or the end-point where the Web Service resides. The

concrete description section of WSDL (beige section of Fig. 2-8) answers all these questions.

binding element

The binding element tells a requestor what transport protocol to use and how the application inserts

the payload into the body of the SOAP message e.g. document-literal [114]. For example, if a

message is to be sent using SOAP over HTTP, the binding describes how the message parts are

mapped to elements in the SOAP <Body>. The binding element structure is very similar to the

portType element – this is no coincidence as the binding is the implementation of the portType [18].

56

A portType can be associated with many binding elements. For interoperability reasons, each

portType should have one SOAP/HTTP binding defined because many clients can participate in a

protocol defined by SOAP over HTTP. The type attribute (of the binding element) identifies which

portType a binding relates to.

If the transport used is SOAP then the first sub-element of the WSDL binding element will be a

SOAP binding element from the SOAP namespace (see line 41 in Listing 2-7). The SOAP binding

element has two attributes: the style attribute specifies whether the operations are document-style

(“document”) or RPC-style (“rpc”) and the transport attribute, which specifies via a URI how the

SOAP messages will be transported e.g. for SOAP over HTTP the URI is

(“http://schemas.xmlsoap.org/soap/http”).

The operation(s) are the next sub-elements under binding. The operation attribute name ties the

implementation operation element (in binding) to the abstract operation element (in portType). The

operation element has input, output and optional fault sub-elements. The input/output/fault sub-

elements have a soap:body child element (from the SOAP namespace, assuming soap prefix) with a

use attribute. This use attribute is generally set to “literal” (as it is the recommendation of the WS-I

Basic Profile [20]). This means that the content of the SOAP body will literally be the XML schema

types/elements referred to in the WSDL.

The first sub-element of (the WSDL) operation is a soap:operation with a soapAction attribute. In

SOAP 1.1, all XML documents (including SOAP documents) had the same media type i.e. there was

no way to differentiate SOAP traffic from other XML documents going over HTTP connections. The

Request URI was that of the SOAP server and thus the server had to parse the SOAP message to

figure out what operation to invoke [5][136]. To address these issues, an HTTP header named

SOAPAction was introduced. Its value was a URI and it was used “to indicate the intent of the SOAP

HTTP request” [29]. This enabled firewalls to identify and filter SOAP messages and enabled servers

in routing the message. Note however, that the SOAPAction header is discouraged by the WS-I Basic

Profile [101].

SOAP 1.2 uses the application/soap+xml [30] media type. This new media type has an optional

parameter called action that can be used as SOAP 1.1 used the HTTP header soapAction [30] i.e. set

it to the URI of the relevant operation to be called by the Web service. Thus, in SOAP 1.2, the issue

of identifying the intent of SOAP messages using the HTTP header soapAction is no longer needed.

Listing 2-7 was constructed using Netbeans v6.8 where the SOAP default was 1.1. In Listing 2-7, the

57

soapAction attribute is “” which implies that the SOAP Body element will have to be parsed for

dispatching purposes.

service element

The service element takes the binding element(s) defined previously and ties them to one or more

port elements. A port element, which is a sub-element of service, is a single endpoint defined as a

combination of a binding and a network address. A port element defines the endpoint at which the

operations of a specific portType, using a particular transport protocol, can be invoked [18]. For

example, the endpoint is a URL when HTTP is the transport protocol used. The port refers to the

binding which in turn refers to the portType. Thus the abstract interface in the portType is tied to an

endpoint in the port via the binding. A service can contain a set of related ports i.e. the interface is

implemented by two or more bindings (e.g. SOAP/HTTP and SOAP/SMTP). Fig. 2-9 below details

this.

Figure 2-9 service relationship to portType in WSDL [18]

An example

Listing 2-9 details an example service called PhoneDirectoryService (line 57). Note that the

default namespace is the WSDL namespace i.e. “http://schemas.xmlsoap.org/wsdl/”. The service

contains one port element that refers to the PhoneDirectoryPortBinding. The port’s

soap:address gives us the endpoint location of where to send our messages. The binding

PhoneDirectoryPortBinding (line 40) binds to the portType PhoneDirectory (line 33).

PhoneDirectoryPortBinding states that the messaging/transport protocol is SOAP/HTTP (line 42)

and that the style of messaging is document-style (line 42). One operation is defined in the binding,

namely getPhoneNumber. This operation defines both an input and output message and does not

use the soapAction parameter. These messages are literal messages i.e. their contents are XML

elements. The portType PhoneDirectory, referred to from the binding, defines an abstract

operation namely getPhoneNumber, with an input and output message (in that order). These

messages (getPhoneNumber and getPhoneNumberResponse) are defined using part elements. The

58

parts are defined in the XML schema types section - getPhoneNumber (the input) is defined as

consisting of two XML strings and getPhoneNumberResponse (the output) is also an XML string.

Listing 2-7 Sample WSDL 1.1 file

59

2.5.4 RPC vs. Document style

A SOAP message’s payload (i.e. contents) is structured depending on whether one is using RPC-

style or document-style messaging. The style of messaging used is specified in the WSDL file.

RPC-style

When using RPC-style messaging, clients issue their request as a method call with a set of

parameters, which returns a response containing a return value. In order to facilitate this paradigm,

RPC style supports the automatic serialisation/deserialisation of programming constructs such as

methods, parameters and responses to and from XML when transmitting messages over-the-wire.

The client and Web service are tightly coupled and communicate synchronously [18].

RPC-style messages have a definite structure: the SOAP <Body> element’s first child represents the

operation to be performed i.e. this element will have the same name as the operation in the portType.

This element’s children represent the parameters of the method call. For example, in Listing 2-2, the

method called is myMethod and the parameters passed are x and y with values 3 and 4 respectively.

To specify that one wants RPC-style, set the style attribute to “rpc” in the binding section of the

WSDL file (line 42 of Listing 2-7).

Document-style

Document-style (or message-style) Web services exchange arbitrary XML document fragments. The

focus is on a client sending an entire document e.g. a purchase order, rather than a discrete set of

parameters. The Web service processes the document and may or may not return a response, leading

to an asynchronous communication model (as the client is free to continue processing without

waiting for a response). The response, if any, may appear at any time later [18].

There is no serialisation/deserialisation to/from XML as in RPC; instead there is an assumption that

the contents of the SOAP <Body> is well formed XML containing arbitrary application data. The

SOAP runtime accepts the SOAP <Body> element as is and hands it over to the target application

unchanged. To specify that one wants Document-style, set the style attribute to “document” in the

binding section (line 42 of Listing 2-7). Note that Listing 2-7 defines a document-literal SOAP

message i.e. the messages defined “will be included in the message payload ‘as is’, with no further

encoding performed” [114].

60

2.5.5 WSDL Message exchange patterns (MEPs)

In section 2.5.4, we discussed the payload of a SOAP message as either an XML document fragment

(document/literal) or an XML representation of a method, its parameters and return values (RPC-

literal). In this section we are concerned with the flow of messages (not their contents). WSDL

supports four patterns for exchanging messages. The message exchange pattern (MEP) for an

operation is defined by the existence and ordering of the messages. The two most popular message

exchange patterns are: one-way and request/response.

One-way

In this pattern, a service receives a message but does not send back a response. This is thought of as

an asynchronous model as the client does not have to block for a reply. An operation which defines

an input message but no output message is defining a one-way MEP.

Listing 2-8 One-way MEP

Request-response

In this common pattern, a request message is sent to a particular service, the service then fulfils the

request and returns a response accordingly [107]. This is a synchronous model as the client blocks

waiting for a response. An operation which defines an input message followed by an output message

is defining a request-response MEP.

Listing 2-9 Request-response MEP

61

Note that while both RPC-style and Document-style messaging can be used with both one-way and

request/response MEPs, RPC-style messaging is commonly used with request/response messaging

[18]. Note also, that Listing 2-7 defines the abstract request/response MEP (lines 35,36) and that

HTTP is the transport to be used (line 42). Thus, the abstract request/response MEP defined is

implemented by HTTP’s native request/response model.

Notification

In this pattern, a service sends a message to the client but does not expect a response. This is a push

model where a service needs to notify subscribed clients of events as and when they occur. An

operation which defines an output message but no input message is defining a notification MEP.

Listing 2-10 Notification MEP

Solicit/response

This pattern is very similar to the Notification pattern except that a response is expected from the

client. It is the exact opposite to the request-response model in that it is the server that is initiating the

operation. An operation which first defines an output message followed by an input message is

defining a solicit/response MEP.

Listing 2-11 Solicit-response MEP

2.5.6 Non-functional (WS-Policy)

The non-functional aspects of Web services are detailed by WS-Policy. This allows service providers

to advertise the properties and capabilities of their Web service and enables consumers to check that

62

a Web service provides the facilities it requires. For example, providers can state that their Web

service operates in a secure environment enabling consumers requiring secure information exchange

to realise that the provider meets their requirements. When advertising a WSDL file that supports

QoS, Web service providers specify the extra information required for the successful invocation of

the Web service, such as security headers.

Assertions

Policy assertions are the building blocks of policies. Assertions are context-specific i.e. they relate to

security, reliable messaging etc… One chooses the relevant assertions and then combine them into a

policy. WS-Policy defines certain XML elements to facilitate these capabilities [18]:

<wsp:Policy> is the overall container element that defines a policy expression

<wsp:ExactlyOne> and <wsp:All> are the two most frequently used policy operators. They

enable us to combine assertions in different ways:

<wsp:ExactlyOne> means that a message must conform to exactly one of the assertions

that are children of this element

<wsp:All> means that a message must conform to all of the assertions that are children of

this element

WS-PolicyAttachment

WS-PolicyAttachment is a specification used when associating a policy with a Web service. Policy

expressions can be defined internally (as in Listing 2-12) or externally and referenced from the

WSDL document. The wsp:PolicyReference is used within a WSDL to refer to a policy.

Listing 2-12 details a simple WS-Policy example. The wsu prefix relates to OASIS’s Web Services

Security Utility specification. This specification contains an Id element, which is used to identify

the policy and to associate the policy with a binding element. The policy expression

wsp:Policy in Listing 2-12 contains one policy assertion. This assertion

sp:TransportBinding (where the sp prefix relates to the Web Services Security Policy XML

namespace), states that transport layer security (HTTPS) must be used when invoking the operation

GetShipmentPrice. The PolicyReference element in the binding has a URI attribute

which associates the binding with the identified policy.

63

Listing 2-12 WS-Policy example [31]

2.5.7 WSDL 2.0 differences

WSDL 2.0 [32] became an official W3C recommendation in June 2007 (WSDL 1.1 is a W3C Note).

While initially it was intended to be a minor upgrade to WSDL 1.1 [33] the changes were considered

significant enough to call the new version 2.0. The primary differences are in the areas of:

• message and part elements removed

• portType and port elements renamed to interface and endpoint respectively

• the method of expressing MEPs and operation styles (RPC/Document) has been changed

• SOAP 1.2 binding support

• the HTTP binding supports GET, PUT, POST and DELETE (previously only GET and POST

was supported). Note: WSDL 2.0 “was designed with REST Web services in mind” [111].

Fig. 2-10 shows the differences. Note that the tool used for Web services development as part of this

thesis was Netbeans v6.8 [34]. This supported SOAP 1.1 (default) and WSDL 1.1. Note also that the

WS-I Basic Profile v1.1 [20] uses WSDL 1.1 and not WSDL 2.0.

64

Figure 2-10 WSDL 1.1 versus WSDL 2.0 [35]

Differences [16]

• message and part elements removed

o in WSDL 1.1 these elements were referred to by the input, output and fault elements

from the portType section; now the input, output and fault elements refer to the XML

schema elements directly

• portType element renamed to interface

o introduced to align the name of the element with its semantics

• operation element (interface section):

o pattern attribute - WSDL 2.0 introduces eight MEPs, all of which are identified by

URI. Whereas in WSDL 1.1 the ordering of the input and output messages defined the

MEP, WSDL 2.0 uses the pattern attribute. The most popular are listed below (note

that these are the only ones discussed in the Adjuncts section of the specification [36])

:

 In-Only: identified with the URI “http://www.w3.org/ns/wsdl/in-only” means

that there is exactly one input message only.

 Robust In-Only: identified with the URI “http://www.w3.org/ns/wsdl/robust-

in-only” means that there is exactly one input message with the possibility of

faults being generated and returned [37])

65

 In-Out. identified with the URI “http://www.w3.org/ns/wsdl/in-out” means

that there is exactly one input message followed by exactly one output

message.

• binding element

o interface attribute to refer to the interface element that this binding is associated with

o type attribute : a URI that identifies the binding in question; for example, to bind to

SOAP, the value of this URI is http://www.w3.org/ns/wsdl/soap (to bind to HTTP,

this attribute would have a value of http://www.w3.org/ns/wsdl/http).

o w s o a p : p r o t o c o l attribute (where w s o a p is a prefix for the

http://www.w3.org/ns/wsdl/soap namespace): the value of this attribute determines

which protocol SOAP uses as its underlying protocol e.g. to use SOAP over HTTP

this attribute would be set to “.../bindings/HTTP”.

o wsoap:version attribute: this attribute can be used to specify the version of SOAP

used.

o wsoap:mepDefault attribute: this attribute can be used to specify the SOAP MEP for

all operations inside this binding e.g. for SOAP Request-Response MEP this attribute

will have a value of http://www.w3.org/2003/05/soap/mep/request-response

(alternatively, this value can be assigned to the wsoap:mep attribute on each operation

in the binding as in Listing 2-13).

• service element

o interface attribute

 links the service with the interface

o port element renamed to endpoint

 introduced to align the name of the element with its semantics

Listing 2-13 is a WSDL 2.0 version of the WSDL 1.1 file (detailed in Listing 2-7).

66

Listing 2-13 Sample WSDL 2.0 file

The example in Listing 2-13 shows a Web service PhoneDirectoryService that refers to an

interface PhoneDirectory. The Web service is hosted at the URL

67

 http://example.com:8080/PhoneDirectoryService (line 40). The interface PhoneDirectory

(line 23) has one operation getPhoneNumber (line 24) which has an input message getPhoneNumber

(line 26) and an output message getPhoneNumberResponse (line 27). Both of the messages refer to

XML schema types defined in the types section (lines 9 and 15 respectively). The abstract WSDL

MEP for getPhoneNumber is “in-out” (line 24). Also, document-literal is the style of message

passing as the style attribute (line 25) is set to “…/style/iri”. The binding (lines 31-37) that make the

abstract interface concrete specifies that the interface is bound to SOAP (line 32) over HTTP (line

34) and that the SOAP MEP that will be used to implement the abstract WSDL MEP is the SOAP

“Request-Response” MEP (line 36).

2.6 Universal Description, Discovery and Integration (UDDI)

Before a service can be used, one must discover the service description and the service location. The

service provider publishes the service description in a service registry; the service requestor finds the

service description in the registry and uses the information in the description to bind to (invoke) the

service. This decouples the service provider and service consumer and provides location

transparency. UDDI, an OASIS standard, performs the role of service broker in Fig. 2-1 and registry

in Fig. 2-2. UDDI started out as one of the core specifications in SOA and the UDDI Business

Registry (UBR) was intended as a global yellow pages, where enterprises could advertise their

services. In reality, however, UDDI is complex [131], difficult to use [132] and has proven to be

unpopular as “very little serious real world Web Services have used this complex system” [108]. The

main reasons for this were that from a business perspective, enterprises were uncomfortable with

competitors viewing their services and technically, UDDI is viewed as having a complex data model

and API [38]. In addition, UDDI contains many obsolete entries [152][153]. This has led to poor

adoption and in fact, Microsoft, IBM and SAP closed their UBR in 2007 [108]. Zimmermann (a WS-

* advocate) concedes that UDDI is “not a mainstream technology” [38] and “has failed to reach

widespread acceptance in the industry” [101]. Tilkov goes further, stating that “UDDI is dead...The

standard isn't being extended, there is no working group, there are no new initiatives” [39]. The fact

that SOAP and WSDL are the core technologies in Web Services is confirmed in [134] and [137].

This is echoed by Kopecky et al : “The major technologies for Web Services are SOAP and WSDL”

[109].

Given UDDI’s issues, enterprises have used alternative methods to inform potential consumers of the

WSDL file details. Enterprises can publish the WSDL file details much more simply via methods

68

such as a web portal supported by databases acting as service repositories [101]. In any event, UDDI

is not relevant to this thesis, which is concerned with mapping the SOAP message, with the

assistance of Semantic Web technologies, to RESTful HTTP format.

2.7 Quality of Service (QoS) in Web Services

QoS specifications refer to the extended features required by mission-critical applications e.g.

security, reliable messaging and transactions [15]. QoS is implemented in a SOAP environment via

SOAP headers. Feedback from a paper submitted to the Distributed Objects, Middleware and

Applications conference (DOA 2009) directed this thesis towards Security and Reliable Messaging

and consequently, they are the two QoS features discussed.

SOAP and RESTful HTTP implement these features very differently. The concern of this thesis is to

realise when they are required and address them in RESTful HTTP. As a result a brief overview of

these QoS features in WS-* follows.

2.7.1 Reliable Messaging

There are three aspects to message reliability [18]:

• both the sender/receiver must be certain whether or not a message was actually sent/received

• a message is sent once and only once

• received messages are in the same order that they were sent

To address this, WS-* uses the WS-ReliableMessaging standard defined by IBM, Microsoft, BEA

and Tibco.

WS-ReliableMessaging (WS-RM)

This is a protocol that ensures that lost or duplicate SOAP messages are detected and received

messages are processed in the order in which they were sent [18]. To achieve this, WS-RM

implements client and server side datastores coupled with SOAP header correlation identifiers.

69

The WS-RM model is outlined in Figure 2-11:

Figure 2-11 WS-RM Design [16]

WS-RM is developed around three key components [18]:

• Sequences – message exchanges are modelled as sequences even if there is only one message

to be transmitted

• Message numbers – individual messages in a sequence are identified by an ascending

message number; this enables missing or duplicate messages to be detected and simplifies

acknowledgement generation

• Acknowledgements – an acknowledgement indicates that a message was successfully

transferred to its destination

Listings 2-14 and 2-15 are examples of WS-RM client and server response messages respectively.

Listing 2-14 demonstrates the Sequence element with its mandatory elements Identifier and

MessageNumber. The Identifier element is the unique URI-style identifier for this sequence. The

MessageNumber element numbers this message within the sequence thereby enabling the WS-RM

server to order the messages in a sequence and identify the messages is has/has not received. The

LastMessage element is sent with the last message in the sequence. Only when the server-side WS-

RM receives this flag and has received all the messages in the sequence, will it execute the Web

service.

70

Listing 2-14 Sample WSRM client message [18]

Listing 2-15 is a sample WS-RM server response that demonstrates the SequenceAcknowledgement

element. The example in Listing 2-15 states, using the AcknowledgementRange and Nack elements,

that while messages 1, 2 and 4 have been successfully received, message number 3 has not been

received. This response can be used by the client to re-send message number 3.

Listing 2-15 Sample WSRM server response [18]

71

2.7.2 Security

Sending data over an insecure network such as the Internet poses security risks such as messages

being stolen, lost or modified. The following security requirements address this:

• confidentiality ensures that sensitive data such as credit card numbers are not stolen

• integrity ensures that a message has not been modified in transit

• authentication ensures that access is only given to those who can prove their identity

• nonrepudiation means that a sender cannot deny having sent a message

o authorisation means that access is only given to what one has access to

The first four requirements affect the message content i.e. headers related to these requirements are

included in the SOAP message. The last requirement, authorisation, is often implemented by a Web

server or an application server using for example, access control lists. These access control lists are

userid or group specific i.e. your userid or the group to which you belong, determine your level of

access, if any, to protected resources.

Conventional security measures such as firewalls provide a secure layer between the private, trusted

network and the external, untrusted network. However, firewalls operate at the network layer and

consequently are unable to provide the application layer security that Web services require. In any

event, Web services are designed to go through conventional security measures such as firewalls, by

using port 80. In addition, Web services are standardised, with SOAP providing the structure of a

message and WSDL providing the endpoint location, the interface and the supported protocol. This is

significant information to a potential intruder [18]. A general discussion on security topics follows.

Symmetric encryption

Symmetric encryption uses a single key that both the sender and receiver possess. The sender

encrypts the plaintext message with the key to create an encrypted message called ciphertext. The

receiver decrypts the ciphertext with the same (i.e. symmetric) key to obtain the plaintext message.

Symmetric encryption is fast and easy to implement. Its weakness is that every pair of users’ needs a

unique key (otherwise everyone can read all messages), resulting in a large number of keys.

72

Figure 2-12 Symmetric key encryption

Asymmetric encryption

Asymmetric encryption uses two separate keys, one for encryption and the other for decryption. The

key pair are created at the same time and share a mathematical property that if a message is

encrypted with one key, only the other key can decrypt the message i.e. the original key cannot

decrypt it [18]. A recipient publishes its public key but keeps its private key private. The sender

encrypts a message with the recipient’s public key and the recipient can decrypt the message with its

private key. Asymmetric encryption suffers from performance [18] and cannot guarantee the sender’s

authenticity, as anybody can use the recipient’s public key.

Figure 2-13 Asymmetric key encryption

73

Digital certificates/signatures

To guarantee a sender’s authenticity (identity), digital certificates can be used. A digital certificate is

a document that binds an enterprise to its public key. They are issued by third parties known as

Certificate Authorities (CA), in an infrastructure known as Public Key Infrastructure (PKI). The CA

(Certificate Authority) guarantees that the public key listed in the certificate belongs to the party

identified in the certificate [18].

To address the performance concerns of asymmetric encryption, digital signatures can be used. A

digital signature is not involved in data encryption but is used for ensuring message integrity and

non-repudiation [18]. To create a digital signature a sender encrypts a “digest” of the original

message with its private key. A message digest is a code, which is usually much smaller than the

original message but nonetheless unique to it. Fig. 2-14 outlines how this works. Firstly, the sender

calculates the message digest using a hashing (digest) algorithm. The message digest is encrypted

with the sender’s private key giving the digital signature. The plaintext message, along with the

digital signature is sent to the receiver. The receiver, using the plaintext message and the same

hashing algorithm re-calculates the message digest. The receiver also decrypts the digital signature

using the sender’s public key (which is on the digital certificate that the sender attached to the

message) and then compares the two message digests. If they are different then the message has been

altered otherwise the integrity of the message has been proven [18].

Figure 2-14 Digital Signature

74

Web Services Security

SOAP provides end-to-end message security using the WS-Security suite of standards. Using SOAP

headers, it offers a comprehensive solution that involves significant performance overhead (of course

there is nothing preventing SOAP from using HTTP’s own point-to-point transport layer security,

namely HTTPS). In fact, such is the performance penalty with the WS-Security suite of standards

that:

(a) one can expect to use hardware accelerators [38] and

(b) as advised by O hEigeartaigh in [41], if HTTPS is an option then use HTTPS.

WS-Security

WS-Security is the foundation specification for security in Web services. WS-Security defines a

format for including:

• security tokens e.g. a username/password pair or a digital certificate.

• digital signatures via W3C’s XML Signature specification.

• encryption via W3C’s XML Encryption specification.

The format of a WS-Security message is detailed in Listing 2-16:

Listing 2-16 Sample WS-Security document

The generic XML specifications XML Encryption and XML Signature provide confidentiality and

integrity respectively. In addition XML Signature provides nonrepudiable evidence of who created

75

the document [148]. Neither specification defines new cryptographic algorithms; rather they define

how to apply existing algorithms to XML.

The XML Signature specification defines the parent Signature element and its children. WS-

Security defines how to embed the Signature element in a SOAP header. Within the Signature

subtree, one will find [16]:

• a reference (the Reference element) to the section of the document to be used in calculating

the digest e.g. the soap:Body section.

• the digest value and the algorithm used to calculate it (DigestValue and DigestMethod

elements respectively)

• the digital signature itself and the algorithm used to calculate it (SignatureValue and

SignatureMethod elements respectively)

The XML Encryption specification enables encryption of all or various elements of XML

documents. Initially, a shared secret symmetric key is generated. This symmetric key is used to

encrypt the data. To ensure the symmetric key remains secure it is encrypted with the receiver’s

public key i.e. only the receivers private key can be used to gain access to the symmetric key. Thus,

only the receiver can gain access to the symmetric key and decrypt the message. WS-Security

defines how XML Encryption is incorporated into SOAP headers. The EncryptedKey element is a

directive to message receivers detailing which sections are encrypted and how to decrypt them. The

EncryptedKey element contains the following elements [16]:

• the EncryptedData element points to the encrypted section e.g. soap:Body

• the EncryptionMethod element informs the receiver of the encryption algorithm used

• the CipherData element contains the encrypted symmetric key

• the KeyIdentifier element contains the public key

The UsernameToken element represents a security token i.e. a requestors claims. This is an XML

representation of a username/password pair (as in Listing 2-16). A digital certificate would be

represented by the BinarySecurityToken element and is used for implementing authentication.

76

2.8 Plain Old XML (POX)

POX is defined by Microsoft as “messages that consist solely of XML payloads without any

enclosing SOAP envelope” [42]. POX is a lighter approach to the WS-* approach and is attractive to

enterprises that “exchange data over HTTP and have no requirement to use the advanced protocol

capabilities of SOAP and WS-* such as non-HTTP transports, message exchange patterns other than

request/response, and message-based security, reliability, and transactions” [42]. POX relies purely

on XML Schema i.e. POX has no WSDL file.

Its relevance to this thesis is that POX is an alternative paradigm to implementing Web Services.

Many POX implementations follow the SOAP model i.e. the POX messages are POSTed to a

gateway URI where the message is parsed and the identified Web service invoked. A sample POX

file from industry is shown in Listing 2-17. Note that there is no SOAP content.

Listing 2-17 Sample POX file [157]

77

2.9 HTTP Tunnelling

“Though it is often mistaken for a transport protocol, HTTP is really an application protocol. Those

seeking to exploit HTTP’s ubiquity – to transport SOAP over it, for instance – tend to focus on its

ability to transport other protocols, an act commonly called tunnelling” [43]. This is achieved by

using HTTP POST to transport the other protocol inside the entity-body of the message. Typically

there is only one gateway URI used, where the XML is parsed to elicit the Web Service to execute

and its associated parameters. Both SOAP and POX both use HTTP in this fashion.

HTTP provides a generic application interface with defined semantics via its verbs: GET, PUT,

POST and DELETE. Tunnelling other protocols through HTTP “is an abuse of the protocol if the

tunnelling does not respect those semantics” [43]. This is not how HTTP was intended to be used

and can result in the disabling of Web intermediaries such as proxies or caches.

As outlined in section 2.4.8, SOAP 1.2. attempted to address this issue by enabling SOAP usage

without violating REST principles [137]. SOAP 1.2 introduced a new SOAP Response MEP, a new

WebMethod feature and modified the SOAP/HTTP binding to support both POST and GET.

However, the new features of SOAP 1.2 are not widely used [26][25]. This was suspected in [137]:

“the problem will be in the adoption process – for there is nothing that prevents the non-RESTful use

of the SOAP standard”. In any event, the MEP of direct interest to this thesis is the SOAP Request-

Response MEP i.e. where POST is used to send the SOAP request. This MEP is the one used by

SOAP 1.1.

2.10 Web Services Interoperability

In similar research, Briggs outlines a design, which, from a high level, is similar in appearance to the

design proposed in this thesis (a RESTful back end with a SOAP front end) [8]. Briggs’ paper was

written in 2006 and the motivation for the architecture was to introduce RESTful techniques in a

SOAP-based culture. In fact, Briggs states that the article is aimed at those “wanting to design REST

systems, but stuck [sic] delivering SOAP messages because it’s the standard, and what everyone

expects you to deliver”. To do this, Briggs suggests implementing the backend system using REST

principles and then plugging in a SOAP wrapper (on the server) to enable SOAP clients to access the

RESTful backend (see Figure 2-15). For example, an existing order resource that supports GET is

78

mapped to a new GetOrder SOAP interface. In short, Briggs is SOAP enabling RESTful Web

Services.

Figure 2-15 SOAP-REST Web Services interoperability

As outlined in the Introduction, the major differences between Briggs’ model and the model in this

thesis are:

• Briggs puts a SOAP wrapper around the RESTful Web Services. The approach outlined in

this thesis is to transform the SOAP messages to RESTful HTTP format.

• Briggs’ adapter is on the server and thus the on-the-wire client messages are SOAP based.

The adapter presented in this thesis resides on the client and the on-the-wire client messages

are RESTful HTTP based.

• Briggs does not take the existing SOAP interface into account whereas the adapter outlined in

this thesis does, leading to a seamless migration tool for transitioning SOAP clients to

RESTful HTTP format.

• Briggs does not include POX WS or leverage the Semantic Web whereas the architecture

outlined in this thesis does both.

2.11 Summary

In this section, SOA and one of its most popular implementation paradigms, WS-* Web Services,

was discussed. The most important standards in the WS-* stack, namely SOAP and WSDL [121],

were covered in detail. Quality of Service, from the perspective of Security and Message Reliability

79

was outlined. An alternative Web Services implementation model, Plain Old XML (POX) was also

discussed. The similarities of SOAP and POX Web Services were outlined from the perspective of

HTTP tunnelling. This is a core issue in this thesis. Addressing this issue formulates the

requirements of the adapter to be detailed later. Lastly, Briggs Web Services interoperability model

was outlined and contrasted with the model in this thesis.

The next chapter will focus on Representational State Transfer (REST), the architectural style behind

the Web : “the largest and most successful distributed system in existence” [43].

80

Chapter 3

Representational State Transfer (REST)

3.1 Introduction
In the previous chapter, SOA and WS-* Web Services were outlined. In this chapter, an overview of

an alternative methodology for implementing Web Services, based on the REST architectural style

[111] is given. As REST is “an abstract model of the Web architecture” [112], the Web itself i.e.

HTTP, URI and Media Types [44] is also outlined.

3.1.1 Background
The initial version of REST in late 1995 was used as a means of communicating Web concepts while

developing HTTP 1.0 and the initial HTTP 1.1 proposal. Over the next 5 years REST was iteratively

improved as a model of how the Web should work. The REST architectural style informed the

Internet Engineering Taskforce on flaws in the existing Web and helped validate extensions prior to

81

deployment e.g. HTTP 1.1 (1996) and URI (1998) [112]. As REST was published in 2000 [3], it is in

some respects “a retrospective abstracting of the principles that make the World Wide Web scalable”

[137]. In [124], Fielding discusses the possibilities of the Web moving from just a barrier remover

for personal publishing to a platform for virtual enterprises (“an organisation unconstrained by

geographic location” [124]).

Web Services that conform to REST principles are known as “RESTful Web Services” and have

“long been championed as a competing Web service paradigm to the WS-* stack” [125]. There are a

variety of reasons for the increase in RESTful WS popularity:

• RESTful WS offer a more lightweight and simpler alternative to the more complex and

heavyweight WS-* Web Services [121][154]. Even though the goals of RESTful WS and

WS-* WS are similar i.e. interoperability for distributed applications, RESTful WS achieve

this in a “more lightweight manner seamlessly integrated with the Web” [131]. In contrast,

the specifications in the WS-* stack are complex, numerous and daunting [101][127].

• RESTful WS are based on open Web standards such as HTTP, URI and XML. There is no risk

of vendor lock-in and competing, duplicate or overlapping specifications [127]. In addition,

the infrastructure is ubiquitous i.e. HTTP clients and servers are available for all major

programming languages and operating systems/hardware platforms and the default HTTP

port (port 80) is left open by default in most firewall configurations [101].

• REST’s Uniform Interface constraint stipulates that messages must be self-describing and

therefore visible to intermediaries. This enables critical distributed systems features such as

proxying, caching and intermediation [12].

• RESTful WS representation formats are decoupled from their resources i.e. a resource is free to

return any MIME type. This enables RESTful WS clients to use content negotiation to

request their preferred representation format. As Vinoski states in [7], “the ability to have

formats other than XML is huge”.

However, RESTful WS are not without their critics. In [101] Pautasso et al stated that WS-* Web

Services are to be preferred “for professional enterprise application integration scenarios, with a

longer lifespan and advanced QoS requirements”. The authors highlighted the following

weaknesses:

• RESTful WS use HTTPS, which is a point-to-point SSL (Secure Sockets Layer) protocol

[101]. This may not be suitable in a Web Services context where multiple intermediary nodes

may exist between two communicating endpoints. In addition, SSL secures messages at the

transport level and not the message level i.e. messages are only protected while they are being

transmitted. This means that sensitive data residing on someone’s machine is unprotected

(unless some proprietary encryption is used) [108].

82

• Even though there is no URI length limit in the HTTP specification, servers impose their own

limits e.g. Apache imposes an 8Kb limit [45]. The HTTP verbs GET and DELETE have no

entity bodies to carry data so the arguments to be passed are encoded in the URI. If a

requirement arises where a large amount of data must be passed, the URI (for a GET or

DELETE) may become too long and lead to malformed URIs [101]. In addition, some

proxies and firewalls support only GET and POST connections; refusing to handle PUT or

DELETE connections [101][154]. This has led to workarounds where the “real” verb is either

passed via special HTTP headers e.g. X-HTTP-Method-Override [101] or appended at the

end of the URL [154].

• In [101], the authors also pointed out the lack of standards regarding advanced requirements in

enterprise computing i.e. Quality of Service (QoS). This lack of standards results in ad-hoc

solutions [101][125]. With regard to message reliability, options available to RESTful WS

are Post Once Exactly (POE) [56], HTTPLR [57] and Joe Gregorio’s common best practice

approach [58]. POE is an IETF draft that expired in 2005 and HTTPLR is a pre-draft memo.

Gregorio’s approach outlined in [58] is the common best practice. None of these approaches

have been standardised. In addition, the lack of a framework for distributed transactions was

also noted [101].

Given the Web’s influence in today’s society, and the fact that Fielding’s thesis [3] is the definitive

reference point for REST [26], Fielding’s thesis is regarded in the Web field as seminal. REST “lies

at the heart of the Web” [131] and has influenced many authors, for example:

• In [44], Allamaraju has authored a cookbook for designers and developers of RESTful Web

Services. In the book, the author states that REST “describes the foundation of the World

Wide Web” [44].

• Ruby and Richardson’s book “RESTful Web Services” [45] is regarded in the REST

community as very important. It was the first book on the topic and explained the principles

behind RESTful Web Services. The authors also define a Resource Oriented Architecture

(ROA) that is based on REST. In essence, whereas REST is abstract and does not mandate a

specific protocol, interface or technologies, ROA (Resource Oriented Architecture) mandates

the use of HTTP, its interface GET, PUT, POST and DELETE, and the use of URI’s and

XML.

• The Java API for RESTful Web Services (JSR-311) [126] was created in 2007 in response to

the growing popularity of RESTful Web Services.

• In October 2011, Prentice Hall are publishing a new book entitled “SOA with REST:

Principles, Patterns and Constraints” by Pautasso et al. Patterns such as content negotiation

83

and response caching will be covered.

• WS-REST (an international workshop on RESTful Design) was established in 2010 and brings

together academics and enterprise practitioners to share research and ideas in the area.

• In academia, REST has received attention in the “Web of Things” [134][135] where its

simplicity, lightweightness and ubiquitous aspects are attractive for integrating the physical

world of devices (e.g. wireless sensors) with the virtual world of software systems. In [134],

HTTP servers are embedded directly onto the sensor nodes enabling REST APIs (verbs on

resource URIs) to be used to read temperatures on the sensor nodes. In [135], sensor networks

and the Internet are integrated via a “TinyREST” protocol. This is achieved by implementing

an HTTP-2-TinyREST gateway which maps HTTP requests to native sensor node calls i.e.

TinyOS operating system calls.

• In [123], Khare extends REST to define new architectural styles enabling features such as

asynchronous event notification and mutually exclusive access to resources for decentralised

systems i.e. independent agencies that can make their own decisions.

• In [125], RETRO, a RESTful Transaction Model is outlined to address one of the criticisms

levelled against REST i.e. transactions [38][101]. In effect, Web applications (running over

HTTP, which is based on REST) have to resort to ad-hoc solutions to address this need [125].

RETRO is a model that attempts to address this.

• The evolution of Web 2.0 has led to the increased adoption of RESTful WS. Using XML

messaging, discrete data from disparate RESTful services can be integrated together into one

service. This is referred to as building a mashup i.e. the creation of a new service from two or

more existing services. In other words, a mashup is a composition of RESTful services [83].

To build a mashup, a services output is chained to another services input with necessary

format changes. Tools exist to simplify this process e.g. Yahoo! Pipes and Google Mashup

Editor [83].In [150], the issue of novice Web users requiring expertise with mashup editors is

addressed. The authors propose a Mashup Services System (MSS) framework that contains a

Graphical User Interface (GUI) front end where “users only need to declare their needs”.

MSS, executing queries over a service registry, builds a mashup that reflects their

requirements. The process is automated by the use of Semantic models i.e. the service

descriptions refer to a domain ontology.

3.2 REST
In this section, REST is explained with the aid of an example. In addition, terminology that is

84

important to understanding REST is outlined.

3.2.1 Definition
The REST architectural style was defined by Fielding in this doctoral thesis “Architectural Styles

and the Design of Network-based Software Architectures” [3]. An architectural style is a named set

of constraints, applied to elements and the relationships between those elements, for any architecture

conforming to that style [3][112]. A style provides a name by which we can refer to a set of

architectural decisions and the properties induced by applying the style. Constraints are chosen for

the properties they induce [112].

Fielding describes REST as follows: “The name Representational State Transfer is intended to

evoke an image of how a well-designed Web application behaves: a network of web pages (a virtual

state-machine), where the user progresses through the application by selecting links (state

transitions), resulting in the next page (representing the next state of the application) being

transferred to the user and rendered for their use” [3]. Thus, REST is an architectural style for

building distributed hypermedia systems (systems linked by hyperlinks).

Figure 3-1 illustrates an example.

Figure 3-1 REST [5]

Costello explains Fig. 3-1 as follows, “the Client references a Web resource using a URL. A

representation of the resource is returned (in this case as an HTML document). The representation

(e.g., Boeing747.html) places the client application in a state. The result of the client traversing a

hyperlink in Boeing747.html is that another resource is accessed. The new representation places the

client application into yet another state. Thus, the client application changes (transfers) state with

each resource representation, hence Representational State Transfer” [5]. A resource in REST is an

85

abstract concept, which is made concrete via a representation of that resource. For example, note that

in Fig. 3-1 that the resource being accessed is logical, and not a physical object i.e. the URI finishes

with “747” as opposed to “747.html”. The URI accessed is the abstract resource and what is returned

is the HTML representation of that resource i.e. Boeing747.html. This decouples the implementation

of the resource from the clients [5] and allows a server to handle millions or even billions of URI’s

[25].

3.2.2 REST nomenclature
In order to understand the REST architectural style, an explanation of REST terminology is

appropriate. As is shown in Fig. 3-2, REST resources are manipulated via the transfer of

representations of those resources.

Figure 3-2 Terminology used in REST

Resources
REST refers to information abstractly as “resources”. “A resource can be anything a client might

want to link to” [45]. Examples include “today’s weather at Dublin airport” and “version 1.1 of the

software”. A resource has an identifier and a representation. For example, on the Web, one uses a

URI to identify a resource, which may have a HTML representation. The representation can change

over time e.g. “the authors preferred version” of an academic paper or can remain static e.g. “the

paper published in the proceedings of conference X”.

86

Representations
Actions are performed on resources by transferring representations that capture the current or

intended state of the resources [112]. A representation consists of data and metadata describing the

data. The data represents the physical version of the abstract resource e.g. an HTML representation

of the resource “Sky News home page”. The data format of a representation is known as a media type

[3][112]. Media types are well known standard types maintained by the Internet Assigned Numbers

Authority (IANA) [46]. The metadata is in the form of name-value header pairs that inform

intermediaries of, for example, the media type contained in the message, when the resource was last

changed etc..

Resource State
Resource state is information about resources that is the same for all clients. It resides on the server

(in databases typically) and is sent to the client via representations. An example would be a Flickr

[47] image resource, which resides on a server available to everybody.

Application State
Application state is information about the path taken by a client though an application and is

therefore client-specific i.e. application state is different for each client. Application state resides on

the client. Examples of application state stored locally by a browser during a Google search would be

the Next, Previous links and the page 1..n links. The previous pages visited by the user are also

stored as application state. This enables users to go back through their browsing history (i.e. their

previous application states) via the Back button.

3.2.3 Deriving REST
REST is a hybrid style derived from other network-based architectural styles. In his thesis, Fielding

defines an architectural style as a “coordinated set of architectural constraints that has been given a

name for ease of reference” [3]. The use of an architectural style applies the associated constraints on

the system. Each constraint induces certain desired properties e.g. simplicity and scalability. Thus, a

style applies (its) constraints, which induce certain desired properties.

Fielding defines the properties of key interest when considering the target architecture of network-

based hypermedia systems. For example: scalability, simplicity, visibility and independent

evolvability. Fielding evaluates several common network-based architectural styles (e.g. client-

server) for the properties they would induce. Fielding then derives REST by applying the styles that

induce the properties he requires. To do this, Fielding firstly defines the “null” style i.e. a style with

87

no constraints at all. Fielding then adds certain pre-defined styles, which induce the desired

properties for the target architecture of network-based hypermedia. This hybrid style is combined

with other constraints (most notably the uniform interface constraint) to form the REST architectural

style (see Fig. 3-3).

Figure 3-3 Deriving REST

Client-Server style (CS)
This is the first style to be added to the “null” style. The software engineering principle guiding this

style is the “separation of concerns” principle. The separation of concerns is with respect to the

“allocation of functionality within components” [3] e.g. separating GUI and database concerns. This

separation of concerns is the primary method by which architectural styles induce simplicity [3].

REST separates the interface from both the implementation and the data format (the resource

representation) [48]. This simplifies the server components, improving scalability [112]. This

separation of concerns also enables components to evolve independently, an important consideration

given the scale of the Web and the large number of enterprises it hosts [3].

Stateless constraint (CSS = Client-Stateless-Server)
The stateless constraint is added to the client-server interaction and constrains that each client request

is independent of any other request i.e. “each request from client to server must contain all the

information necessary to understand the request” [112]. The server considers each request in

isolation, bearing in mind the current resource state. The server (except for resource state), must not

rely on information from any previous requests. This is why a bookmark in a browser works

regardless of what page you are currently viewing now. If the client wants any application state to be

taken into consideration, the client must submit it as part of the request [45]. For example, when a

88

user clicks a browser’s Next link on a list of search results, the application state representing that

“next page” is sent along with the request. Statelessness does not mean that you cannot have state

persisted in a database on a server – this is the resource state outlined earlier. “A RESTful service is

‘stateless’ if the server never stores any application state” [45].

The stateless constraint induces the properties of visibility and scalability. Visibility is improved

because an intermediary can inspect and understand a message in complete isolation. This is because

all the information necessary to understand the message is present in the message. For example, a

cache can decide whether or not to cache a response by looking at that one response on its own i.e.

there is no concern that a previous response may affect the cacheability of this one. As no two

requests depend on each other, different servers can handle the requests i.e. it does not matter which

server you talk to (as long as the resource state exists on the server). Thus, improving scalability is

simply a matter as adding extra servers to a load balancer [45].

Cache constraint (C$SS = Client-Cache-Stateless-Server)
The next constraint added is the cache constraint. This constraint is added to improve network

efficiency. The cache constraint specifies that a response to a request can be cached so as to satisfy

subsequent equivalent requests. Caches can be inserted at any point along the message path. Caches

improve network efficiency (as the request may not travel all the way to the origin server) and

scalability (a shared cache allows the introduction of extra client components).

Layered System (LC$SS = Layered-Client-Cache-Stateless-Server)
A layered system is organised hierarchically such that each layer provides services to the layer above

it and uses services from the layer below it e.g. the TCP/IP model. Each layer is constrained from

seeing beyond the layer with which it is communicating thereby placing a bound on the overall

system complexity [112]. Thus, an application can interact with a resource without knowing if or

how many intermediaries exist between it and the server actually holding the information. A layered

client-server model adds components such as proxies and firewalls to the client-server style, thereby

adding features such as caching and security checking to systems.

Code-On-Demand (LCODC$SS = Layered-Code-On-Demand-Client-Cache-
Stateless-Server)
With this style, a client downloads code from a server and executes it locally e.g. applets or scripts.

Extensibility is improved because features can be added to pre-implemented clients. Clients are

simplified as the number of pre-implemented features can be reduced. The most significant limitation

is the lack of visibility as the server is sending code not simple data and thus it is only an optional

constraint in REST [3].

89

Uniform Interface (REST = LCODC$SS + Uniform Interface)
The last constraint added to define REST is the uniform interface constraint (see Fig. 3-4). The

uniform interface is the most differentiating of REST’s constraints [3][112]. Generality and

information hiding are the software engineering principles guiding this constraint. The generality

principle encourages simplicity whereas the information hiding principle ensures that

implementations are decoupled from the interface thereby encouraging independent evolvability.

Figure 3-4 Uniform Interface

The uniform interface constraint enables visibility into component interactions and is obtained with

the support of the following sub-constraints [3][112]:

1) Identification of resources

2) Self-descriptive messages

3) Manipulation of resources through representations

4) Hypermedia as the engine of application state

Identification of Resources
All resources that merit identification get an identifier. On the Web, “resources are named with

URI’s” [49] and as URI’s make up a global namespace, using URI’s to identify your resources means

they get a unique, global ID. This is how the online store Amazon.com operates: every one of its

products gets a unique ID (a URI). Resources are abstract and can relate to anything one merits as

being identifiable, for example:

90

• an individual item e.g. http://example.com/customers/1234

• a collection of items e.g. http://example.com/customers

• a process step e.g. http://example.com/processes/salary-increase-123

• a non-virtual object e.g. http://example.com/people/john

Self-descriptive messages
 “REST constrains messages between components to be self-descriptive in order to support

intermediate processing of interactions” [3]. This means that the message semantics are visible

without looking at the message body [50] enabling intermediaries (e.g. proxies and caches) to inspect

the message and act accordingly. This constraint enables “critical distributed systems concepts such

as proxying, caching, intermediation and monitoring” [12]. For a message to be self-descriptive

requires the following [3]:

• stateless communication: each request contains all the information necessary to understand

the request, independent of any previous request

• use standard methods: in HTTP, the primary methods are GET, PUT, POST and DELETE.

These methods have well defined semantics as per the HTTP specification [51]. For example,

a proxy understands that a HTTP GET is a retrieval message.

• standard media types: the format of the information exchanged by components is standard

and well-known e.g. on the Web, one has the Internet media types [46].

• response messages that are to be cached must be marked accordingly

Manipulation of resources through representations
Resources are manipulated via representations in the format of media types. If a resource supports

more than one representation, the client can use content negotiation to select the most appropriate

one. For example, in HTTP, if a resource supports both HTML and XML representations then both

browser and application-based clients can be supported. A browser client can issue a GET with the

Accept header set to “text/html”; whereas an XML application client can issue a GET with the

Accept header set to “text/xml”. The Content-Type header on the response will depend on the

representation contained in the message.

Clients can send content to create/update the resource state by sending the resource representation

with the message. For example, to update a resource in HTTP, a client PUTs the new representation

type identified by the Content-Type header e.g. text/xml, to the resource identified by the URI.

Hypermedia as the engine of application state (HATEOAS)
This sub-constraint is based on the idea of hypermedia i.e. links. “HATEOAS is a defining

characteristic of the REST architectural style. State transitions in an application occur when moving

91

from one resource to another using the links provided in representations” [103] In practical terms it

means that resources return representations that contain URI’s so that clients can navigate from them

to other resources [136]. Given that the Web is a RESTful application it helps to refer to it when

explaining this sub-constraint. When one executes a Web application, for example visiting

www.nuigalway.ie, one receives back HTML, images and hyperlinks. At this point, we are in the

initial state of a virtual state machine representing the Web application. By clicking on a hyperlink

on the page we execute a state transition whereby a new resource representation (a HTML page), is

transferred to the browser. This reflects our transfer into a new application state. Thus, we move

between application states in the virtual state machine by clicking on hyperlinks.

Listing 3-1 is an example file demonstrating how HATEOAS should be supported in a programmatic

client i.e. a non-browser based client. Firstly, note that the ref attribute contains a link. However this

link is not just some application-specific identifier: it is a URI. As URI’s are global standards, all the

resources on the Web can be linked to each other i.e. using URI’s as links means that the links can

point to resources provided by a different application on a different server anywhere in the world

[52]. Note that it is the server that is guiding the client through the application because it is the server

that builds the representations containing the links that guide the client through the application state.

Listing 3-1 HATEOAS example [52]

If implemented properly, a client need only be aware of the entry-point URI; the other URI’s will be

in the resource representations [48]. This is similar to a Web site visit i.e. one enters the first URL in

a browser and follows hyperlinks from that point on.

3.2.4 Summary
REST is an abstract architectural style that places constraints on the elements within the architecture.

It was defined for optimal performance for the common case on the Web i.e. large-grain (large

amounts) data transfer [3]. Fielding identified other architectural styles that demonstrated properties

92

desirable in the Web. He amalgamated these styles together to obtain a hybrid style to which he

added a uniform interface constraint: “to form a new architectural style that better reflects the

desired properties of a modern Web architecture” [3]. This new style he called REST. Table 3-1

outlines the most important properties induced by the REST style and their origin.

Table 3-1 Key properties induced by REST

REST is an architectural style and as such it is abstract. The best-known implementation of REST

principles today is the Web. The Web is the topic of the next section.

3.3 The Web
The Web consists of many technologies; the core technologies being HTTP, URI, HTML and the

Internet Media Types [46][44]. In this section the topics detailed are HTTP, URI and media types as

they have direct relevance to REST.

3.3.1 HyperText Transfer Protocol (HTTP)
HTTP is a text-based application protocol that has ubiquitous deployment on the Web. It is the

Web’s primary information transfer protocol and is based on a client/server model i.e. the server

waits for client requests, locates the requested resource, applies the method requested to that resource

and returns the response back to the client [124]. The latest version is 1.1 [51]. For the purposes of

this thesis, it is necessary to define “RESTful HTTP” as “using HTTP as intended and as described

by the REST principles” [4].

93

Request
When creating a client request, a client creates a message that contains a request line, followed by

some message headers, a blank line and an optional entity body. Figure 3-5 outlines the overall

format of the request and Listing 3-2 details an example request.

Figure 3-5 HTTP request message format [53]

Listing 3-2 A sample HTTP request message

Fig. 3-5 states that a request is a request line followed by some headers, each on a separate line in the

form of name-value pairs, followed by a blank line and an optional entity body. CRLF stands for

carriage return and line feed i.e. /r/n [53]. The request line details the HTTP verb to be used (GET in

Listing 3-2), the resource URI path (/PartsServer/resources/parts/200 in Listing 3-2)

and the HTTP version (HTTP/1.1 in Listing 3-2).

General headers - there are a few headers that have general applicability for both request and

response messages but not to the entity itself [51]. Examples are Date and Connection. The

Connection header states whether or not the underlying TCP connection will be kept open by the

server. The Connection header should be set to keep-alive if the TCP connection is to be

persisted or set to close if not. The reason for keeping TCP connections alive arose from the

performance hit in re-opening connections that were closed by the server – in HTTP1.0, the servers

automatically closed the TCP connection after sending back the response to the client. However, if

the HTML page had for example, images, these would not have been downloaded initially with the

HTML page and thus the browser would have to re-open the TCP connection (which the server had

just closed) [53]. Note that in Listing 3-2 the client has requested that the TCP connection be closed

94

after the server sends its response – this is because that version of RESTlet software (version 1.1.2)

did not support persistent connections (fixed in version 2.0).

Request-headers - the request-header fields allow the client to pass additional information about the

request, and about the client itself, to the server [51]. These header fields are called metadata,

information describing attributes of the representation [124]. Examples include Host which identifies

the host and port number for the resource requested. Note that the URI resource path from the

request line is appended onto the host to give the absolute path to the resource. So for example, in

Listing 3-2, the full address is

http://127.0.0.1:8083/PartsServer/resources/parts/200. User-Agent is

another request header. Usually it identifies a browser but in Listing 3-2 the user agent is the

RESTlet library. Accept is a request header that informs the server what representation(s) the client

will accept. In Listing 3-2, XML is the representation requested.

Entity-headers – metadata about the entity body is defined by entity headers. Examples include

Content Type and Content Length, which signify the media type in the entity body and its size in

octets (8 bit bytes) respectively. As Listing 3-2 is a GET there is no entity body and thus no entity

headers.

Response
When creating a server response, a server creates a message that contains a status line, followed by

some headers, a blank line and an optional entity body. Figure 3-6 outlines the overall format of the

response and Listing 3-3 details an example response.

Figure 3-6 HTTP response message format [53]

95

Listing 3-3 A sample HTTP response message

The status-line outlines the protocol, followed by a numeric status code and its textual phrase [51].

The status codes are grouped into 5 classes or categories as shown in Table 3-2:

Table 3-2 HTTP Response codes

The status line in Listing 3-3 states that the protocol is HTTP 1.1 and that this is a response to a

successful request. The headers section is similar to the request headers except that in the response,

the server can provide certain headers specific to the response:

Response-headers - the response-header fields allow the server to pass additional information about

the server and/or response. For example, the Server header details information about the server that

handled the request and the Location header is used to inform the client of the location of a newly

96

created resource. In Listing 3-3, the response header Server indicates that the server was Apache’s

Coyote [54].

Listing 3-3 contains the entity-header Content-Type, indicating to the client (and intermediaries) the

media type (application/xml) of the message in the entity body. Listing 3-3 also contains the

general headers Date and Connection indicating the date of the response and that the server intends

to close the TCP connection.

HTTP methods
HTTP specifies various methods as part of the uniform interface constraint. These methods have

well-defined semantics as per the HTTP specification [51]. One is restricted to manipulating

resources via these methods only.

GET
To retrieve a resource representation one issues a GET on the resource’s URI. The server sends back

a representation in the response entity-body. The client can issue a “conditional GET” by including

certain request header fields. For example, the client can include the request header

If-Modified-Since stating the date/time of the latest representation of the requested resource that the

client currently has. If the server determines that the resource has not changed since the date/time the

client provided i.e. the client has an up-to-date version, the server returns a 304 Not Modified

response with no message body, thereby reducing unnecessary network usage [49].

HEAD
“The HEAD method is identical to GET except that the server MUST NOT return a message-body in

the response” [51] i.e. HEAD gives you exactly what GET would give you, but without the entity-

body. HEAD is used to retrieve metadata (headers) about the resource without downloading the

possibly enormous entity-body. A client can use HEAD to test for the existence of a resource and for

finding out information about the resource (e.g. does it support an XML representation) without

downloading the entire representation [45].

OPTIONS
The OPTIONS method enables the client to determine what methods are supported by a resource.

The server responds with the Allow header e.g. Allow: GET, HEAD (a read-only resource) [45].

97

DELETE
To delete a resource representation one issues a DELETE on the resource’s URI. If the request was

successful, the server can either send back a 200 OK message with further status information in the

entity-body or a 204 No Content if there is no entity-body returned i.e. success but no entity-body.

PUT
 “The PUT method requests that the enclosed entity be stored under the supplied Request-URI” [51].

If the request-URI does not exist, then the server creates the resource at the given URI with the

content (of the entity-body) in the message. If the request-URI does exist, then the server updates the

resource identified by the URI with the content in the message. Thus, PUT is used to create/update a

resource when the client is in charge of the resource URI to be used [45].

POST
POST can be used in different situations [45]:

• To create new resources underneath a parent resource. For example, a client may send a

request to create a customer by passing the customer details to a /customers resource. The

server, based on some internal identification system, assigns a customer number to the

customer, for example, “2561”. The server stores the details in a database (resource state)

and sends a 201 Created response to the client with the new URI /customers/2561 in

the Location header of the response.

• To append data to an existing resource. For example, assume an event log service that is

exposed as URI /log. To add an event, a client POSTs a message to /log. However, in this

instance, the server appends the given entity to the end of the log

• POST can be used to turn the resource into a tiny message processor. This is the version of

POST that forms and SOAP/POX WS use. This use is described in [51] as “providing a block

of data, such as the result of submitting a form, to a data-handling process”. Essentially, this

is a directive for the server to look elsewhere in the request for the real method e.g. the entity-

body. Sometimes however, this ”is the easiest way to express complex operations that span

multiple resources” [45].

98

Some of the methods have certain useful properties (for free) as shown in Table 3-3:

Table 3-3 Safety/Idempotence of HTTP methods

Safety
A method is considered “safe”, if making the request once is the same as making it n times or not

making the request at all. In Mathematics, multiplying by 1 is safe because 4 = 4*1 = 4*1*1*1 [45].

This property applies to the retrieval methods GET and HEAD. Essentially, side-effects (if any) have

not been user driven. This does not mean that GET or HEAD cannot have side-effects e.g. log files

on the server are often updated and hit counters incremented based on retrieval requests. “The

important distinction here is that the user did not request the side-effects, so therefore cannot be held

accountable for them” [51].

Idempotence
A method is considered “idempotent”, if making the request once is the same as making it n times

i.e. “the second and subsequent requests leave the resource state in exactly the same state as the first

request did” [45]. In Mathematics, multiplying by 0 is idempotent as 4*0 = 4*0*0*0 = 0. However,

multiplying by 0 is not safe as 4*0 is not the same as 4. GET, HEAD, PUT and DELETE are all

idempotent (POST is not). If you DELETE a resource it is gone; if you DELETE it again it is still

gone. If you create a new resource with PUT, it is created; if you resend the same PUT request, the

resource is still there and it has the same properties as when you created it. If you use PUT to update

the resource state, sending the same PUT request results in resource state which is the same as

before. Note that PUT has to be programmed properly to avail of idempotence. For example, “setting

x to 5” is idempotent whereas “adding 1 to x” is not.

Quality of Service (QoS)

HTTP is a sophisticated protocol that supports many advanced features such as caching and

Conditional GET. Two of the most important QoS requirements, namely, security and message

reliability are now discussed. How HTTP addresses these features is encapsulated by Table 3-4:

99

Table 3-4 Security and Message Reliability in HTTP

Firstly, the Message Reliability approaches are outlined.

Post Once Exactly (POE)

POE is an IETF draft (expired 2005) that renders POST idempotent. “If a resource supports Post

Once Exactly, then it will only respond successfully to POST once, over its entire lifetime” [45]. This

is achieved via the use of the custom HTTP headers POE (on the request) and POE-Links (on the

response). On the request, the header POE tells the server that the client is expecting a link to a POE

resource and on the response, POE-Links informs the client of the link(s). The client can POST its

representation to a link returned in POE-Links. Once a successful POST has been processed by the

service, any further POSTs to that resource will result in a 405 Operation Not Supported response.

Thus the resource supports one and only one POST.

Figure 3-7 demonstrates how POE works.

100

Figure 3-7 POE example

HTTPLR

HTTPLR is a pre-draft memo published by Bill de hOra. The document “describes an application

protocol for guaranteed once and only once transmission of messages using HTTP” [57]. Its key

requirement is that the server and client can agree on the success of the message exchange. This is

achieved by representing state transitions in the message exchange using URI’s. The URI assigned

by the server for the message exchange is known as an “exchange URI”. The exchange URI, which

is unique for each message exchange, is associated on both the client and the server with a URI,

represented the current state of the exchange. These well-defined URI’s that represent the state of the

message exchange are as follows:

• http://purl.oclc.org/httplr/state/created/ - this notifies the client that the server has created

the exchange URI and that the client can now send its message

• http://purl.oclc.org/httplr/state/accepted/ - the server has successfully received the client

message at the exchange URI

• http://purl.oclc.org/httplr/state/finished/ - the client has received the server’s response

Both the client and server maintain and link these URI’s with the exchange URI. Consequently, the

client and server are aware at all times, of the state of the exchange. Fig 3-8 outlines the process:

101

1. Establish the Exchange URI

2. Send the Message

3. Reconciliation

Figure 3-8 HTTPLR example

The process is for the client to request an exchange URI (using POST). The server sets this up and

the exchange is in the http://purl.oclc.org/httplr/state/created/ state. The client then sends its

message to the exchange URI on the server; the server accepts the message, updates the state for the

exchange to http://purl.oclc.org/httplr/state/accepted/. The server sends a 202 Accepted response

to the client and the client updates its state to http://purl.oclc.org/httplr/state/accepted/ also. The

client then sends a reconciliation message to the exchange URI on the server to indicate that it has

rece ived the server’s response . The server updates i t s s ta te to

http://purl.oclc.org/httplr/state/finished/ and responds with a 410 Gone message. When the client

receives the 410 Gone message it updates its state to http://purl.oclc.org/httplr/state/finished/

also. Out of order requests can be handled also; for example, if a client sends a reconciliation

message to an exchange URI that is in the created state and not the accepted state, the server

responds with a 405 Not Allowed message.

102

Gregorio’s Best Practice
The approach in [58] is best practice [55]. Essentially, the approach is premised on the following:

• PUT is idempotent

• The difference between PUT and POST is that: with PUT, the client knows the resource URI

that will be used; with POST, the server decides on the resource URI to use (the client

POST’s to a collection URI).

The pattern outlined by Gregorio is shown in Fig. 3-9. In the pattern, a client initially POST’s to a

pseudo-live (pending) collection with no data. The server assigns a pending URI and returns it in the

Location header of a 201 Created response. The client now knows the (pending) resource URI and

can therefore PUT to it, with the actual data. Upon a successful PUT, the pending resource will be

made “live” i.e. the server creates a live URI for the representation in the PUT request and then sends

a 303 See Other response with the live URI in the Location header. If the PUT request or the

response to the PUT request gets lost, the client can re-submit the request, as PUT is idempotent; if

the POST gets lost, we can also re-submit the request, as there was no data within the POST message

(all we lose are some logical URI’s) [58].

Figure 3-9 Message Reliability [based on 58]

Message Reliability
The essential requirements of message reliability are:

103

• Notification of success/failure

• Once and only once processing

• In-order message processing

Notification of success/failure

HTTP has a rich set of response codes that identify both successful (2xx) and unsuccessful responses

(e.g. 4xx and 5xx). From a client’s perspective, receiving a 200 OK response indicates that your

request has been received and processed successfully.

Once and only once processing

Questions arise when no response is received: was it the request or the response that was lost; if it

was the response that was lost, was the request processed? The simplest solution would be for the

client to keep re-sending the request until it gets a successful response. This is only possible if the

server can “handle” duplicates. HTTP achieves this with the idempotence property, whereby

executing the request more than once is the same as executing it once. GET, PUT and DELETE are

all idempotent and thus, providing the server is implemented properly, if the client does not receive a

response for a GET, PUT or DELETE request, the client can simply re-issue the request [55]. POST,

however, is not idempotent. There are various options available to address this: Mark Nottingham’s

Post Once Exactly (POE), Bill de hOra’s HTTPLR and Joe Gregorio’s common best practice

approach.

In-order message processing

HTTP’s native response codes and Gregorio’s best practice provide support for notification of

success/failure and once and only once processing respectively. Thus, the first two requirements for

message reliability are catered for. The last requirement of in-order messaging can be provided via

appropriate use of headers and response codes [59]. This approach involves the client maintaining a

token representing the client’s view of the current state of the resource. Each time the client sends up

a request it inserts this token; the server checks the client’s token (or view) with its own view of the

resource state. If these tokens do not match then a message has been duplicated or lost. The server

could respond with a 409 Conflict indicating that there is “a conflict with the current state of the

resource’ [51]. Fig. 3-10 gives an example scenario. Note that in the figure, the token being

maintained is an XML attribute named expectedState. The 409 Conflict message should include

information or a link that enables the client to refresh its view of state so that it can re-sync with the

server.

104

Figure 3-10 In-order message delivery

At this point, the second QoS requirement, namely security is outlined.

Security
HTTP security is referred to as HTTPS (HyperText Transfer Protocol Secure). HTTPS is not a

separate protocol in itself, but is in fact an HTTP message (at the application layer) being transmitted

over an encrypted channel setup (at the lower transport layer) by Transport Layer Security (TLS) or

its predecessor SSL. HTTPS is a point-to-point protocol where the entire message is encrypted i.e.

made secure [18].

The Internet has the following security requirements:

• authentication (ensures that access is only given to those who can prove their identity)

• authorisation (determines the resources a given identity has access to)

• confidentiality (ensures that sensitive data such as credit card numbers remain private)

• integrity (ensures that a message is not modified in transit)

• nonrepudiation (means that a sender cannot later deny having sent a message)

HTTP provides authentication and authorisation via the use of Basic authentication and Digest

authentication. Both of these authentication schemes use HTTP headers to transmit sensitive data.

Both approaches use the following HTTP headers:

105

o WWW-Authenticate
 server to client header; the server uses this header to inform the client what it

must provide in order to authenticate

o Authorization
 client to server header; the client uses this header to pass information

regarding its credentials to the server

Basic Authentication. [45]

If the client tries to access a resource that is protected by Basic authentication and the client does not

provide the proper credentials, the client receives a challenge and has to make the request again. For

example, if the client makes a request to a protected resource as in Listing 3-4:

Listing 3-4 GET on a protected resource

This request does not include the correct credentials; in fact it has no credentials at all. The server

will response with a challenge similar to the following (Listing 3-5):

Listing 3-5 401 Unauthorized access message

The server informs the client (via the 401 Unauthorized challenge) that the credentials

provided were incorrect. The server uses the WWW-Authenticate header to inform the client of

the type of authentication it is using (Basic) and the realm. The realm is used to identify a

collection of resources protected in a certain way. Certain realms may use Basic authentication

whereas other realms may use Digest authentication. Users may be authorised to access some realms

but not others. The realm states: “what is being protected” and the authentication type states: “how

the realm is protected”. To meet a Basic authentication challenge, the client provides a

username/password pair, combined as a single base 64 encoded string.

106

The resulting string is the value of the Authorization header on the client’s next request:

Listing 3-6 Authorization header

The server will decode the supplied string and check it against its username and password list. If they

match, authorisation is given and the request is processed; if not the 401 Unauthorized is again

returned to the client. However, if the server can decrypt the password then so can network snoops.

To prevent this, instead of using plain HTTP, HTTPS is used (as HTTPS encrypts all the

communication between the client and server, including the Authorization header).

Digest Authentication

Digest authentication is another way to hide the authorization credentials from network snoops. It is

more complex than Basic authentication but is secure, even over plain HTTP. It is however, less well

supported [50]. Digest authentication follows the pattern of Basic authentication, in that the client

issues a request and gets a challenge. Assuming the same resource as above, here is a sample

challenge:

Listing 3-7 Digest authentication challenge

The qop parameter returned from the server indicates the “quality of protection”. If it is set to “auth”

(as above) this means that the client calculates the second MD5 (Message-Digest algorithm 5) hash

(known as HA2) based on the HTTP method and resource path. If qop is set to “auth-int” then the

entity body of the request is included in the HA2 calculation also. The nonce (number used once) is

a randomly generated single-use value that is different for each 401 Unauthorized challenge. It acts

as a session token i.e. any attempt to use those credentials other than in the current session will be

rejected e.g. a replay-attack where the message is intercepted and the same credentials are re-used.

107

The opaque parameter is a lookup that provides context for the server. The client is expected to send

it back unchanged. The client uses the information provided by the server to create an encrypted

string. This encrypted string needs to prove that the client knows the password without actually

providing the password [45]. This is called a “digest” and the sequence of steps involved for a client

in calculating a digest is as follows (where HA1, HA2 and Digest are all MD5 hash functions):

• HA1 = MD5 (username : realm : password) where realm is retrieved from the server

challenge

• HA2 = MD5 (HTTP method : resource path) where qop=”auth”

• Digest = MD5 (HA1 : server nonce : client sequence_number : client nonce : qop : HA2)

The client uses the realm (“Private fruit”), server nonce (“dcd98b7102dd2f0e8b11d0f600bfb0c093”)

and qop (“auth”) from the server challenge; and its own HTTP method (“GET”), resource path

(“/apples.html”), username (“skennedy”), password (“jellyfish”), sequence number (“00000001”)

and client nonce (“0a4f113b”) to calculate the digest. The sequence number is expected to increase

by one for each request for that server nonce (prevents the same credentials being used in replay-

attacks). So, for example, the client would calculate the Digest as follows (backslash means a

continuation):

• HA1 = MD5 (“skennedy” : ”Private fruit” : “jellyfish”)

 = 939e7578ed9e3c518a452acee763bce9

• HA2 = MD5 (“GET” : “/apples.html”)

 = 39aff3a2bab6126f332b942af96d3366

• Digest = MD5 (“939e7578ed9e3c518a452acee763bce9: \

 dcd98b7102dd2f0e8b11d0f600bfb0c093: \

 00000001 : 0a4f113b : auth: \

 39aff3a2bab6126f332b942af96d3366")

 = 6629fae49393a05397450978507c4ef1

Now that the client has calculated the Digest, the client can re-submit the request with the correct

credentials (as in Listing 3-8):

108

Listing 3-8 Sample client request using Digest Authentication

The server, based on the same information (except the password), re-calculates the Digest and if they

match, the message is processed. This means that in Digest authentication, the server need not keep

passwords. This is possible because, when the password is being set for a user on that realm, the

server stores the HA1 value (not the password). When a Digest authentication request is received, the

server retrieves the HA1 value based on the username and realm passed in the request. The Digest

can then be calculated based on the HA1 retrieved and the parameters in the message.

Both Basic and Digest authentication follow a “request, challenge, response” model. However, one

difference is that Basic authentication will not receive a challenge if the initial request provides the

correct credentials (username and password). Part of the Digest authentication model is for the server

to challenge the client on every initial request [45]. As pointed out earlier, another difference is that

in Digest authentication, the server does not need to know or store the client’s passwords.

As stated earlier, TLS encrypts the complete communication thereby providing confidentiality. Both

symmetric and asymmetric encryption is used. The initial setup (known as a TLS handshake),

involves the client initially requesting a secure connection from the server. The server returns its

certificate, including the server’s public key. The client encrypts a random number with the server’s

public key and sends this value to the server. The server uses its private key to decrypt the random

number sent by the client. This random number is used to generate shared symmetric keys (called

session keys) for the remainder of the secure connection.

109

Authentication is provided at two levels:

1. both Basic and Digest authentication ensure the client provides the correct credentials. Once

authentication is complete, authorisation is normally implemented via access control lists.

2. digital certificates provide proof of identity i.e. they ensure that the individual/organisation is

who they say they are. This is achieved by the server sending a digital certificate, which is

digitally signed by a trusted third party, the CA. The CA binds the public key on the

certificate to the identity on the certificate. The client can, if desired, authenticate that the CA

issued the certificate.

Digital signatures provide integrity and non-repudiation (as opposed to confidentiality). Once a

message is signed, it cannot be modified without invalidating the signature. In addition, an

organisation cannot subsequently claim that they did not send a signed message (while at the same

time claiming that their private key is secret).

3.3.2 Uniform Resource Identifier (URI)

REST specifies that resources be given unique names. On the Web, resources are named with URI’s.

A URI is a string of characters used to identify a resource on the Internet. Fielding describes URI’s

as “both the simplest element of the Web architecture and the most important” [3]. URI’s enable us

“to describe the location of something, anywhere in the world, from anywhere in the world” [60].

The syntax of a URI is outlined in Fig. 3-11:

Figure 3-11 URI syntax structure

The URI structure is best explained with a simple example. In this example, we are looking for

specific details of an employee’s educational history. We will assume HTML format and a browser

client. In Listing 3-9, the details of employee 15481 are requested but the details in the

representation are narrowed to just his/her educational history by passing in a query parameter

(p=education). By specifying the fragment #thirdLevel, the browser will jump to that

section of the employees educational history (bypassing their second level education for example).

110

Listing 3-9 Sample URI

In Listing 3-9:
• http is the scheme name

• //example.org/employees/15481/details is the hierarchical part which can be

broken down in to the naming authority (//example.org) and the path

(/employees/15481/details)

• p=education is the query

• #thirdLevel is the fragment (the section of the HTML representation that the browser

will jump to)

On the Web, URI’s identify resources and resource state is transferred using resource

representations. URI’s are opaque. This means that one should not infer the nature of a resource by

inspecting the URI that identifies it [61]. For example, a resource is identified as

http://example.org/page.html does not have to serve HTML as its representation i.e. HTTP does not

infer the media type from the URI [62]. Note that servers can, if they wish, use this mechanism or

they can use the Accept header from the request [45]. The Web architecture “promotes

independence between an identifier and the state of the identified resource.” [62]. This is the

information-hiding principle governing the uniform interface constraint and it means that changes in

resource state do not require changes to the URI identifying that resource state [62].

URI opacity versus readable URI’s

REST states that resources should have names but nothing about whether the names should be

readable or opaque. A readable URI is a meaningful URI. In order to be meaningful, a URI must

refer to the resource and therefore it contains elements of resource state. A problem arises if the

resource state being used as part of the URI changes e.g. someone gets married and changes their

name. Any links to the old resource URI from other web pages or bookmarks are broken.

An opaque URI is a URI where “you should not look at the contents of the URI string to gain other

information” [61]. Even though the URI may look meaningful, one cannot make any assumptions i.e.

one cannot assume that by varying the URI that one is varying the resource. Opaque URI’s are also

known as “cool” URI’s [63] and are designed for longevity, not human readability. Cool URI’s can

111

expose resource state also but because the intention is that the URI will never change, the resource

state used is usually meaningless e.g. a database table ID [45].

Whether to use opaque URI’s, where there is no visible relationship to the resource it names, or

meaningful (readable) URI’s, where the URI breaks when its resource state changes, is very

subjective. Both [45] and [4] prefer meaningful URI’s. Richardson in [45] prefers to use resource

state that is least likely to change and thus least likely to result in broken URI’s. Ruby in [45] would

use resource state that may change and use a permanent redirect at old/broken URI’s.

Note: URI’s can act as URN’s (Uniform Resource Name) or URL’s. A Uniform Resource Name (URN) is like a person’s

name (how you identify someone) whereas a Uniform Resource Locator (URL) resembles that persons address (where

and how to find them). The example of a book helps: one can discuss an exact edition of a certain book by referring to its

International Standard Book Number (ISBN) e.g. urn:isbn:0-486-27557-4 specifies the unique identifier within the

ISBN identifier system that identifies a specific edition of Shakespeare’s play “Romeo and Juliet”. One can discuss the

play based on the URN of the play. However, to read the book one needs its URL (it’s location and how to access it) e.g.

http://example.org/RomeoAndJuliet.pdf. One can type this link into a browser and the browser will (try to) find the

resource “Shakespeare’s play RomeoAndJuliet” based on the protocol (http) and the network host (example.org)

specified in the URL. The PDF (Portable Document Format) representation of the resource is returned and rendered by

the browser [64].

3.3.3 Representations and Media Types

The term REST comes from Representational State Transfer and this term comes from the fact that

“RESTful clients and resources transfer resource state representations to each other” [49]. The data

format of the representations are known as media types [46]. Media types are registered with IANA

and are available globally. RESTful Web Service authors need to understand their client types so as

to serve meaningful representations. For example, a service that has browser and application based

clients should return (X)HTML for the browser clients and XML or JSON (JavaScript Object

Notation) for the programmatic clients. The client and server must agree on the resource

representation. This can be done out-of-band. For example, the client developer looks up the

RESTful Web Service description beforehand (typically published on a Web page) and develops the

client application accordingly. Alternatively, the client application can use HTTP’s Content

Negotiation whereby a client sends a request with the Accept header containing the list of media

types that it understands (in order of preference). Assuming the server supports one of the media

types the client understands, the server responds with the Content-Type header set to the

representation data format (media type) it is returning.

112

Services must be aware of the HATEOAS constraint when returning representations. To quote

Vinoski: “To support the hypermedia constraint, resource representations should contain hyperlinks

to related resources” [49].

3.3.4 Web Caching

Transforming opaque messages into visible messages is an important contribution of the research

presented in this thesis because message visibility enables the Web infrastructure. One of the most

important features native to the Web is caching. Caching is a critical feature in enabling the

scalability and efficiency of the Web. The goal of caching in HTTP/1.1 is to: “eliminate the need to

send requests in many cases, and to eliminate the need to send full responses in many other cases.

The former reduces the number of network round-trips required for many operations; we use an

"expiration" mechanism for this purpose. The latter reduces network bandwidth requirements; we

use a "validation" mechanism for this purpose” [51]. Note that, in caching, it is the servers that

control whether their responses can be cached and if so, for how long [49].

Expiration

To mark a response as cacheable, the origin server (i.e. the server from where the representation was

originally served) inserts certain HTTP headers into the response message. The Expires header is

one such header. This header enables servers to insert a specific time indicating how long a

particular response can be considered “fresh” or “stale”. Subsequent equivalent requests to the cache

can be served with fresh copies. If however, the content is stale then the request is forwarded onto

the origin server. Thus, Web servers can specify static content such as navigation bars on Web sites

to expire well into the future; in addition, news stories can be can expired at a specific time of day

e.g. 6am, forcing caches to retrieve new representations. One of the issues with an absolute time

approach is that because it is time-related, both the Web server and cache clocks must be

synchronised. If the Web server and cache have different ideas of the time, then stale content could

be considered fresh.

The Cache-Control header addresses the Expires header issue and enables Web server’s

greater control over caches as it enables the specification of directives that “MUST be obeyed by all

caching mechanisms along the request/response chain” [51]. For example, “max-age=3600”

specifies that this response is fresh for 3600 seconds (one hour) from the time of the request. This

time setting is relative as opposed to the absolute Expires header time.

113

Validation

If a cache has a stale representation that it would like to serve, the cache needs to “validate” if the

cached entry is still usable. HTTP/1.1 supports “Conditional GET” in order to enable the cache to

check:

• If the cached entry is valid: the server should inform the cache of this fact without

retransmitting the full response, as this is an unnecessary overhead [51]:

• If the cached entry is invalid: the server should serve the up-to-date representation to the

cache without the need for an extra round trip, as this also is unnecessary overhead

Conditional GET

Conditional GET can be implemented in two different ways. In the first method, when a client issues

a GET for a resource, the server returns the date and time of the most recent change to that resource

in the Last-modified header. The response can of course include caching headers/directives as

outlined above, enabling caches to store a copy of the representation. Now, when a cache needs to

check if its local copy is still fresh, it can use the date/time from the Last-modified header in an

If-modified-since request header. The server uses this header to see if the resource has

changed; if not, the server returns a status code 304 Not Modified with an empty message

body, thereby informing the cache that it can use the representation it has. If the server determines

that the resource has changed then the new representation is served to the cache [49].

This date/time approach to Conditional GET leaves open a one second where changes cannot be

detected. The entity tag mechanism is the second method for implementing Conditional GET and it

addresses this one second window issue. A server returns a hash value as a string in the Etag

header. Caches can send this hash value back to the server in the If-none-match header. If the

server rehashes the resource and the values match then the cache has an up-to-date representation of

the resource and the server returns a status code 304 Not Modified with an empty message

body (as above). If the hash values do not match then the server returns the new representation to the

cache. Note that for the entity tag mechanism to be of benefit, the cost of calculating the hash value

must be less than the cost of acquiring and returning the whole representation [49].

In summary, caching improves the efficiency of the Web by lowering the latency of requests and

reducing network bandwidth. Latency is reduced due to the fact that, instead of a request having to

travel all the way to the origin server, an intermediate cache, which contains an up-to-date copy of

the representation, can satisfy that request. Network bandwidth is reduced because conditional

114

requests can be sent to the server and if the cache has an up-to-date representation, the server will

inform the cache of this fact without sending the (possibly large) entity body.

3.4 Web Service architectures
For the purposes of this thesis, it is important to be able to outline the criteria by which a service is

considered RESTful. The criteria are outlined in [45] and relate to the location in the request of the

method and scoping information. The method informs the server what operation the client wants to

perform, for example: to retrieve or delete data. The scoping information informs the server what

data the client wants to operate on, for example: customer data or order data. Table 3-5 shows the

matrix of how the locations of both the method and scoping information affect whether a service is

considered to be RESTful, RPC or REST-RPC hybrid.

Table 3-5 Criteria for evaluating Web Service Architectures

The three Web Service architectures defined by [45] are as follows:

• RESTful - In a RESTful architecture, the method information is in the HTTP

method and the scoping information goes into the URI. Listing 3-10

is an example RESTful request:

115

Listing 3-10 RESTful request

• RPC - RPC-style services encapsulate the method and scoping information

in an envelope. The kinds of envelope are unimportant but HTTP

and SOAP are popular examples. Every RPC-style service defines

its own brand new vocabulary [45]. Only one URI is exposed (the

“endpoint”) and POST is the only verb supported. The messages are

parsed to elicit the Web Service to execute and its associated

parameters. Examples of RPC-based Web Services are SOAP and

POX Web Services. Note that, to improve efficiency, some SOAP

services also insert the Web Service to be executed into a specific

“SOAPAction” header (thereby saving on the overhead of parsing

the entity body). Listing 3-11 is an example RPC-style request

(SOAP in this instance):

Listing 3-11 RPC-style request

• RPC-REST - RPC-REST services encapsulate both the method and scoping

information in the URI. The RPC classification is due to the fact

that these services define their own vocabulary and use HTTP as an

envelope format, inserting the method and scoping information

116

wherever they please. The method GET is used for all messages.

For example, Listing 3-12 is the HTTP message used when

searching for “kingfisher” on the Flickr online photo sharing

service:

Listing 3-12 RPC_REST request [45]

Note that in Listing 3-12, both the method and scoping information

are passed in the URI i.e. the method is flickr.photos.search and the

scoping information is kingfisher. As GET is for retrieving, this

message is in fact RESTful. Many read-only Web Services (which

use GET) are in fact RESTful even though the method information

is passed in the URI. The issue arises when a client wants to

modify the data set. For example, deleting a photo on Flickr

involves making a GET request to a URI that includes

flickr.photos.delete. In this scenario, the method semantics of GET

conflict with the operation carried out. The Flickr Web API is in

fact a hybrid: RESTful when retrieving data and RPC-style when

modifying the data set.

3.5 REST anti-patterns
Based on the architectures identified in the previous section, REST anti-patterns identified in [26]

merit further discussion. Of particular relevance to this thesis is “POST Tunnelling”. It is worth

noting, that the motivation for the development of the REST architectural style was predicated on the

following: “how do we introduce a new set of functionality to an architecture that is already widely

deployed, and how do we ensure that its introduction does not adversely impact, or even destroy, the

architectural properties that have enabled the Web to succeed?” [112].

3.5.1 Tunnelling everything through GET

This anti-pattern corresponds to the REST-RPC hybrid architecture above. Rather than a URI

identifying a resource, the URI becomes a convenient means for encoding parameters. This leads to

URIs like the following:

117

Listing 3-13 GET anti-pattern example

In this scenario, it is unlikely that the GET will be “safe” and that the client will be held responsible

for the customer deletion. “The spec says that GET is the wrong method to use for such cases” [26].

The attraction for developers is that it is very easy to test from a browser i.e. paste the URI into the

address bar, edit some parameters and press Enter.

As with the REST-RPC architecture, certain URIs can be accidentally RESTful. Take for example,

the following URI:

 Listing 3-14 Accidentally RESTful GET anti-pattern example

It can be argued that this URI identifies a resource (as it can be argued that this URI identifies an

operation and its parameters). Doing a GET on the URI may well be “safe”. However, this is often

unintentional. Often, APIs start this way, exposing a “read” interface, but when developers start

adding “write” functionality, “safety” breaks. In many cases, if the developer wanted to update a

customer, rather than using PUT, the developer would use GET and encode the operation and

parameters in the URI [26].

3.5.2 Tunnelling everything through POST

This anti-pattern [26] corresponds to the RPC architecture above. In this scenario, HTTP POST is

used for all operations. The entity body contains the real operation to be executed along with its

parameters. This message is POSTed to a gateway URI where the message is parsed and the relevant

Web service is executed. This is how SOAP and POX systems operate. Listing 3-11 is a sample

SOAP message. Rather than actually violating REST principles, this anti-pattern simply ignores

them. One of the implications of this anti-pattern is that native Web caching is disabled. This is due

to the fact that the Uniform Interface is ignored even when retrieving data. Instead of using GET

where appropriate, the real intention of the message is located inside the XML. This is demonstrated

in Fig 3-12:

118

Figure 3-12 HTTP POST Tunnelling

Essentially, for a read/write Web Service to be considered RESTful, it should use GET for retrieval

and PUT/POST/DELETE for modification of the data set. Other REST anti-patterns exist, but they

are not as relevant to this thesis e.g. services which ignore response codes [26].

3.6 Summary
In this section the REST architectural style and its constituent constraints were presented. The

reasoning behind the constraints i.e. their benefits to a distributed hypermedia system were

highlighted. As REST is, in itself abstract, the most popular implementation of REST to date, the

Web, was outlined. The Web’s constituent elements, namely: HTTP, URI’s and Media Types were

covered from the viewpoint of “RESTful HTTP” i.e. “using HTTP as intended and as described by

the REST principles” [4]. Web Service architectures and REST anti-patterns were also discussed.

The next chapter will focus on the Semantic Web, a suite of technologies that enables machines to

reason about formatted information.

119

Chapter 4

Semantic Web

4.1 Introduction

In the previous chapter, the REST architectural style and it’s most ubiquitous and popular

implementation, namely HTTP were outlined. At this point, the major Web Service implementation

paradigms have now been detailed i.e. XML Web services (SOAP/POX) and RESTful Web services.

The goal of this thesis is to map the XML Web service to its RESTful HTTP counterpart. This can of

course be achieved in a manual fashion with human intervention. However, a state of the art

implementation would avail of Semantic Web technologies to automate this mapping. This chapter

introduces the core technologies underpinning the Semantic Web before going on to explain the

technologies required by the architecture central to this thesis.

4.1.1 “The Web” versus “The Semantic Web”

The classic Web focuses on publishing and linking documents and is designed for humans i.e. web

pages are designed to be read and understood by humans. The focus of the Semantic Web is on

publishing and linking both documents and data [105] and is designed for computers i.e. the

information content is structured so that machines can understand it. The vision of the Semantic Web

is of “building a global Web of machine-readable data” [104]. The rationale behind this vision is the

fact that the HTML files that constitute the Web are a major repository of hidden data [108]. “The

120

ultimate goal of the Semantic Web is to transform the Web into a medium through which data can be

shared, understood and processed by automated tools” [151]. The Semantic Web is a set of

technologies, which provide “semantics” or meaning to the current Web content. Thus, the Semantic

Web is not a replacement for the existing Web but “is an extension of the current web in which

information is given well-defined meaning, better enabling computers and people to work in

cooperation.” [66].

4.1.2 Background
The Semantic Web is the vision of Tim Berners-Lee, first outlined in [66]. This vision of a Web of

data having well-defined meaning has received a lot of attention in academia in recent years. In

[115], Hepp states that: “the Semantic Web is, without doubt, gaining momentum in both industry

and academia”. The Semantic Web was identified as having the potential to address issues facing

Web Services researchers in areas such as interoperation and especially in the areas of automation of

discovery and composability. This area of research is known as Semantic Web Services (SWS) and

is an active area of research:

• In [155], the authors state “Semantic Web services (SWS) are a research effort towards

automation of the use of Web services, enhancing existing SOA capabilities with intelligent

and automated integration”. This is exactly how the architecture outlined in this thesis

utilises the Semantic Web.

• In [156], the authors propose a semantic-based Web service registry that filters client requests

in order to improve Web Service discovery.

• In [83], how Semantic Web technologies can assist in the composability of RESTful WS is

addressed. A RESTful WS composition is known as a “mashup” and a semantically

informed mashup is called as “SMashup” (semantic mashup). The authors semantically

annotate RESTful WS descriptions using a poshformat called SA-REST (Semantic

Annotation of Web Resources: discussed in section 4.5.2.6) thereby giving their “SMashups

the ability to know more about what the service is doing and what the inputs and outputs are

so that data mediation can be done automatically without human intervention” [83].

• In [154], the authors outline Semantic Bridge for Web Services (SBWS); a framework for

integrating both SOAP and RESTful WS into the Semantic Web. The SOAP WS described

by WSDL and the RESTful WS described by WADL are semantically annotated, thereby

enabling SBWS to execute queries against the semantically-enhanced WS descriptions via a

SPARQL (SPARQL Protocol and RDF Query Language) endpoint. Thus, SBWS adapts

existing SOAP and RESTful WS for semantic query. The authors also present Semantic

REST, a framework that maps between the HTTP verb set and SPARQL commands e.g.

121

GET maps to SELECT. The result is the ability to interact with RDF (Resource Description

Framework) data via RESTful endpoints i.e. “semantic resources double as web-resolvable

pages” [154].

Semantic Web Services are discussed further in section 4.5.

4.2 Resource Description Framework (RDF)

On the Semantic Web, information is represented as a set of assertions called statements. Statements

are made of three parts (or triples): subject, predicate and object (in that order). The subject is the

thing the statement describes and the predicate is the relationship between the subject and the object

[67]. The Semantic Web represents these statements using RDF.

RDF [68], a W3C specification, is the Semantic Web’s data model for representing statements. RDF

is modelled abstractly as a graph. RDF identifiers are URI references and RDF’s official standard

syntax is RDF/XML. The RDF model encodes data in the form of subject, predicate, object triples.

The subject and object of a triple are both URIs that identify a resource (or a URI and string literal

respectively). The predicate is also represented by a URI and describes the relationship between the

subject and object. For example, an RDF triple can relate a person A to a scientific article B by

stating that A is the author of B [104]. These topics are now discussed in more detail.

4.2.1 RDF graphs

“RDF is based on the idea that the things being described have properties which have values” [69].

RDF statements have the triple form previously described i.e. subject, predicate and object. These

statements are modelled abstractly as a labelled directed graph. For example, in Listing 4-1 we have

some English statements, which are graphed in Fig 4-1. In Fig. 4-1, the nodes, represented by ovals,

are the subjects and objects of the statements. The relationships between the nodes are the predicates

(or properties) and are represented by directed arrows. For example, in Fig. 4-1, Sean is a subject

node, Rob is an object node and their relationship is represented by the predicate “knows”. Literals,

represented by rectangles e.g. “Kennedy”, are strings, dates, numbers etc.. and cannot be used as

subjects or predicates.

122

Listing 4-1 Information about the authors

Figure 4-1 RDF graph of Listing 4-1

Natural language, such as English, is ambiguous e.g. Sean in Listing 4-1 could be anybody whose

first name is Sean. To make these statements machine-processable, there are two requirements [69]:

• identifiers used for subjects, predicates and objects must be unique across the Web

• a machine-processable language for representing these statements and exchanging them

between machines

The first is covered by RDF Identifiers (section 4.2.2) and the second is covered by RDF

Serialisation (Section 4.2.3).

4.2.2 RDF Identifiers [69]

A Uniform Resource Identifier (URI) is the more general term for Uniform Resource Locators

(URLs) and Uniform Resource Names (URNs). A URN is similar to a person’s name whereas a

URL resembles a person’s address i.e. an URN identifies an item whereas a URL provides a method

for finding it. URI references (URIrefs) are URI’s with an optional fragment appended (separated by

a #). For example, assuming a base URI for an ontology of

“http:/ /www.lei trimmills . ie/ontologies/animals” , one could have a URIRef such as

“http://www.leitrimmills.ie/ontologies/animals#goats” . It is the URIrefs that RDF uses for

identifying resources. RDF defines a resource as anything that is identifiable by a URI reference and

thus RDF can describe anything and any relationship. RDF describes resources in terms of simple

properties and property values. Fig. 4-2 represents an RDF graph of the following sentences:

123

• http://www.leitrimmills.ie/index.html has a creator whose value is Sean Kennedy

• http://www.leitrimmills.ie/index.html has a creation-date whose value is June 11, 2006

• http://www. leitrimmills.ie/index.html has a language whose value is English

In Fig. 4-2, http://www.leitrimmills.ie/index.html represents the subject in all the

statements and thus all arcs leave from it. The creator, creation-date and language

predicates/properties have been replaced with URIrefs. The value of the creator property is a URIref

representing “Sean Kennedy” (as staff id 458). The values of the creation-date and language

properties are literals (strings, numbers, dates). Note that the creator property is very specific i.e.

rather than using a literal to identify one of the thousands of “Sean Kennedy” resources, we use a

URIref. This creates a very specific association to the “Sean Kennedy” at leitrimmills.ie whose staff

id is 458. Another benefit in using a resource for “Sean Kennedy” and not a literal, is that, as “Sean

Kennedy” is now an object resource, we can assign properties to him. We could not do this if we

have directly used the literal “Sean Kennedy” as the value for the creator property.

Figure 4-2 RDF graph

4.2.3 RDF Serialisation

The graph in Fig. 4-2 can be shown in triple notation format. This notation takes the format of each

statement consisting of a subject, predicate and object in that order. Listing 4-2 is the triple notation

form of the graph in Fig. 4-2. (Note that there should be just three lines, one for each statement, but

space and clarity of text required the use of more lines):

124

Listing 4-2 The graph in Fig. 4-2 in triple notation format

4.2.3.1 RDF/XML

In order to exchange RDF graphs between applications, the graphs must be serialised to file.

RDF/XML [70], an XML syntax defined by the W3C is the standard format for representing RDF

triples (as in Listing 4-2). As a result, RDF/XML “must be supported by all well-behaved Semantic

Web applications” [67]. As RDF/XML is XML based, it is machine processable. However, unlike

HTML, the links are URIrefs and not URL’s. Consequently, RDF/XML can refer to things that are

not retrievable on the Web. XML allows you to define namespaces for your elements. These

namespaces are URI-like strings and guarantee that your elements are unique across the Web. XML

element references are shortened by using qualified names (QNames) i.e. a prefix which stands for

the namespace is used instead of the longer namespace string; this is followed by a colon (:) and the

local (element) name. Listing 4-3 gives an outline of how a statement is represented in RDF/XML:

Listing 4-3 The general form of a statement in RDF/XML [67]

Given the form above, Listing 4-4 is the RDF/XML serialisation of the graph in Fig. 4-2.

125

Listing 4-4 RDF/XML of graph in Fig. 4-2

As this is an XML document, the first line is the XML declaration, which indicates that the content is

XML and the version of XML is “1.0”. The root of all RDF documents is the RDF element from the

"http://www.w3.org/1999/02/22-rdf-syntax-ns#" namespace. This RDF element (the

root) defines the namespace prefixes to be used. As the namespace prefixes (in Listing 4-4) are

defined on the root element, the prefixes have global scope within the document. The prefixes

defined are for RDF (rdf), the Dublin Core vocabulary (dc) and the example organisation

(e x t e r m s). This means that any tags prefixed with r d f come from the

"http://www.w3.org/1999/02/22-rdf-syntax-ns#" namespace. Any tags prefixed with dc

come from the Dublin Core vocabulary, which is a set of properties widely used in documenting

Internet resources. Typical properties in the Dublin Core vocabulary are Title, Creator, Date,

Publisher etc.. The exterms prefix points to the organisation’s own tags in the namespace
http://www.leitrimmills.ie/terms/.

At this point we have the content defined as RDF/XML and the namespaces to be used, along with

their associated prefixes. Now, we must define the statements: “an obvious way to talk about any

RDF statement is to say it is a description, and that it [the description] is about the subject of the

statement” [69]. Within the root RDF element, there are a series of rdf:Description elements. A

Description element is the RDF/XML serialisation of a statement. The rdf:about attribute states

the subject of the statement. The children elements of the Description element (creation,

language and creator) are the predicates of the statement. If the property value is a literal, then

126

the literal will be enclosed in start and end tag names of the property. If the property value is another

resource (i.e. URIref) then the property is serialised as an empty-element tag (no closing tag) and the

attribute rdf:resource is used to refer to this other resource.

Blank nodes [69]

Real world data is often more complicated than the statements presented thus far. Take for example,

Sean Kennedy’s address: if the address is modelled as a string it is straightforward to graph (and

serialise as RDF/XML). If however, one wanted to break down the address further into street, town

and county, then this would require a new node (as RDF is a binary relationship). One of the nodes is

for “Sean Kennedy” and the second new node is an aggregate node to represent his address. The new

node, being a resource would get a new URIref. However, this may occur often and lead to many

new nodes and many new URIrefs. These new aggregate nodes may never need to be referred to

directly from outside the particular graph, and hence may not require "universal" identifiers.

Blank nodes (or anonymous nodes) take the place of these intermediate nodes. They are given an

identifier so as to distinguish them from other blank nodes in the graph. Blank node identifier’s have

no visibility outside the current graph. If it is expected that a node in a graph will need to be

referenced from outside the graph, a URIref should (instead) be assigned to identify it. While a blank

node has no identifier in the graph (see Fig. 4-3), an identifier is used when serialising the graph (as

XML/RDF for example). Fig. 4-3 is a sample graph with a blank node:

Figure 4-3 RDF graph with a blank node

127

The blank node is an aggregate node for the three properties representing Sean Kennedy’s address. A

blank node is referred to in RDF/XML using an rdf:nodeID attribute, with a blank node identifier

as its value, in places where the URIref of a resource would otherwise appear. Specifically, a

statement with a blank node as its subject uses rdf:nodeID attribute instead of an rdf:about

attribute in the rdf:Description element. Similarly, a statement with a blank node as its object

can be written using a property element with an rdf:nodeID attribute instead of an rdf:resource

attribute. Listing 4-5 is the RDF/XML serialisation of the RDF graph in Fig. 4-3.

Listing 4-5 RDF/XML of graph in Fig. 4-3

Typed literals [69]

Fig. 4-4 shows how a graph representing Sean Kennedys age. Note that the literal value “43” is

untyped. Does this represent the number 43; the string “43” or the octal value 43 ? Given that the

type is not represented in the graph, some out-of-band information would be needed to understand

that this value is indeed the decimal/integer value 43.

128

Figure 4-4 RDF graph with the age property untyped

Giving the literal value a type and representing that type in the graph can improve this situation. RDF

has no built-in datatypes of its own and uses the datatypes defined with XML Schema Datatypes

[71]. An RDF typed literal is formed by pairing a string with a URIref that identifies the particular

datatype. This results in a single literal node in the RDF graph with the pair as the literal. Fig. 4-5

shows the new graph with the age property typed as an integer. Note that the type is stored with the

literal value in the graph in the format literal_value^^URIref_of_datatype.

Figure 4-5 RDF graph with the age property typed

A typed literal is represented in RDF/XML by adding an rdf:datatype attribute specifying the

datatype URIref, to the property element containing the literal. Listing 4-6 shows Fig. 4-5 serialised

as RDF/XML.

129

Listing 4-6 RDF/XML of graph in Fig. 4-5

Listing 4-7 is the RDF/XML representation of the examples so far.

Listing 4-7 Collated RDF/XML of examples so far

130

4.2.3.2 N-Triples

As RDF/XML is based on XML, it is tree based and this leads to verbosity and issues when

integrating different trees i.e. which root becomes the overall root? N-Triple notation is an RDF-

specific syntax. It is not based on XML and therefore does not have to represent the graph as a tree.

As a result, it is more concise and readable. Each line in N-Triple notation represents a single

statement containing a subject, predicate and object followed by a dot. Subjects, predicates and

objects are expressed as absolute URI’s enclosed in angle brackets (except for blank nodes and

literals). Subjects and objects which are blank nodes are expressed as _:nodeName. Object literals

are double quoted strings. The file extension is .nt and when these files are sent over HTTP the

media type text/plain is used. Listing 4-8 is the N-Triple representation of Listing 4-7.

Listing 4-8 N-Triple notation of Listing 4-7

4.2.3.3 Turtle (Terse RDF Triple Language)

While N-Triple notation is conceptually simple, it is verbose and leads to a lot of repetition. If the

dataset is large this can lead to inefficiencies in transmission and parsing of the dataset. Turtle, a

notation defined by the W3C [72], is a superset of N-Triples that condenses much of the repetition in

the N-Triple format. For example, Turtle allows us to define a URI prefix much like XML allows us

to define namespace prefixes. Using the N-Triple format requires the URI of the subject to be used

regardless of the fact that we may be saying many things about that same subject. Turtle reduces this

repetition by allowing you to combine several statements about the same subject by using a semi-

colon after the first statement. This means that the subject is stated only once - you only need to state

the predicate and object for other statements relating to the same subject [73]. Turtle uses the media

type text/turtle and the file extension .ttl.

4.2.3.4 Notation 3 (N3)

N3 is a superset of Turtle i.e. all of the shorthand statements introduced by Turtle are supported by

N3. Thus a library capable of handling N3 will handle Turtle (and also N-Triples). N3 uses the file

suffix .n3 and the media type text/n3.

131

Fig. 4-6 shows the relationship between the N-Triples, Turtle and N3 notations.

Figure 4-6 N-Triples, Turtle and N3 relationships

Listing 4-9 is the N3 version of Listing 4-7. Note that, in Listing 4-9, the square angle brackets []

represent a blank node and the ; represents “AND” i.e. the subject is the same but the predicate and

object are different. This saves on repeating the subject.

Listing 4-9 N3 notation of Listing 4-7

4.3 Adding semantics to RDF data

RDF is all about describing information: it allows you to make statements about resources that are

identified using URIrefs. These statements take the form of triples that associate a resource (subject)

with a value (object) using a property (predicate). Flexible though it is, RDF lacks explicit support

for specifying the semantics, or meaning, behind the descriptions [67]. How to add semantics to RDF

data is the purpose of this section.

4.3.1 RDFS (Resource Description Framework Schema)

RDFS, a W3C specification [74] is a vocabulary (i.e. a well-defined set of terms) for describing

properties, classes and their inter-relationships in a hierarchical fashion. To describe “kinds of

things”, RDFS provides classes. Classes are analogous to the generic concept of types or categories.

N-Triples Turtle N3

132

RDFS provides extensions to RDF that enable us to describe classes of things and their properties

and to indicate which classes and properties will be used together: “RDF Schema provides a type

system for RDF” [69]. The extensions have a well-defined meaning thereby lending semantics. For

example, if we have the triple:
ex:Van rdfs:subClassOf ex:MotorVehicle

it implies the following [67]:

• ex:Van is a specialisation (a subclass of) of ex:MotorVehicle

• each member of ex:Van must pass all restrictions imposed by ex:MotorVehicle

• instances of ex:Van automatically become instances in ex:MotorVehicle

• properties of ex:MotorVehicle are inherited by ex:Van

Note the use of shorthand QNames to refer to URIrefs. This is the shorthand used in the RDF primer

[69] and will be used here also in the interests of brevity.

Semantic classes versus OOP classes

RDFS classes are similar but not exactly the same as classes in an OOP language such as Java. It is

similar in that, using RDFS, you can arrange classes and properties into generalisation/specialisation

hierarchies. Also, resources that belong to a class are called instances. However, in OOP, an object is

an instance of the class i.e. the class is the blueprint for the object. This means that when an object is

created in OOP, it contains all the members (methods and variables) of that class. In OOP, when you

know the class an object is derived from, you know which properties it will contain. This is not the

case in semantic systems as “properties are defined independently” [73]. RDFS defines properties in

terms of the classes to which they apply (rdfs:domain and rdfs:range properties). For

example, we could define the ex:author property to have a domain of ex:Document and a

range of ex:Person (a document has an author who is a Person), whereas in OOP one might

typically define a class ex:Book with an attribute called ex:author of type ex:Person. This

property-centric approach enables properties to be arbitrarily assigned to classes.

Classes

The RDFS vocabulary is defined in the http://www.w3.org/2000/01/rdf-schema#

namespace which, by convention is given the rdfs: prefix. In RDF Schema, a class is any resource

having an rdf:type property whose value is the resource rdfs:Class. For example, the

following triple defines the class MotorVehicle:
ex:MotorVehicle rdf:type rdfs:Class .

To describe an instance of a class (as opposed to a class itself) requires the following triple:

133

ex:CompanyCar rdf:type rdfs:MotorVehicle .

Note that a resource can be an instance of more than one class [69] (see MiniVan in Listing 4-10).

To explain how RDFS enables a taxonomy (a hierarchy of terms) to be built up, the example from

[69] is useful.

Fig. 4-7 shows the UML diagram of the hierarchy.

Figure 4-7 UML Diagram of the hierarchy

This is represented in Turtle/N3 format in Listing 4-10. In the example, the ex: prefix stands for the

URIref “http://www.example.org/schemas/vehicles”.

Listing 4-10 Turtle/N3 serialisation of hierarchy [69]

In Listing 4-10, the classes are defined first using the rdf:type property with rdfs:Class as

the object of the statement. The rdfs:subclassOf is then used to create a hierarchy within the

classes with the subject of the rdfs:subClassOf property becoming a subclass of the statement

object.

134

Note that the ex:MiniVan class is a subclass of both ex:Van and ex:PassengerVehicle.

Listing 4-11 shows how this is serialised in RDF/XML:

Listing 4-11 RDF/XML format of hierarchy [69]

There are two things to note from Listing 4-11. The first point to note is the use of the rdf:ID

attribute instead of the rdf:about attribute. Both serve the same purpose but with rdf:ID, one

creates a label that can be referred to from this or other RDF documents. The rdf:ID attribute is

similar to the ID attribute in XML and HTML, in that it defines a unique name relative to the current

base URI. For example, assuming the base URI (the identifier and location for the RDF/XML file)

for Listing 4-11 is http://www.example.org/schemas/vehicles, then the Van

resource is available externally (to the RDF document) as

 http://www.example.org/schemas/vehicles#Van and internally as #Van. The

second point is the use of rdfs:Class where normally we would see rdf:Description. This is

an RDF/XML abbreviation for “typed nodes” (instances of a class). “In this abbreviation, the

rdf:type property and its value are removed, and the rdf:Description element for the node is replaced

by an element whose name is the QName corresponding to the value of the removed rdf:type

property” [69]. So, for example, the Truck resource segment from Listing 4-11 :

135

Listing 4-12 Truck resource segment from Listing 4-11

could also be written (in the more verbose format):

Listing 4-13 Alternative RDF/XML syntax for Truck resource

Properties

RDFS properties specify the relationships between subject resources and object resources [74]. The

most important properties defined by RDFS are rdf:type, rdfs:subClassOf (see above

example), rdfs:domain and rdfs:range. The rdf:type property states that a triple of the

form R rdf:type C, means that resource R is an instance of class C.

Domain and Range

When defining a property, one can indicate which types of resources have the property. The

collection of types that are being described by the property (the subject of the triple), are known as

the domain of the property. The values of the property (the object of the triple) are known as the

range [73]. The W3C explains them as follows [74]:

• rdfs:domain - triples of the form P rdfs:domain C state that P is an

instance of rdf:Property (a property), C is an instance of rdfs:Class (a class) and

that the subjects of triples whose predicate is P are instances of C [74]. In other words,

rdfs:domain declares the class of the subject that use this property.

• rdfs:range - triples of the form P rdfs:domain C state that P is an

instance of rdf:Property (a property), C is an instance of rdfs:Class (a class) and

that the objects of triples whose predicate is P are instances of C [74]. In other words,

rdfs:range declares the class of the datatype or object that use this property.

136

The following example demonstrates domain and range more clearly:

Figure 4-8 Domain and Range of a property expressing eye colour [73]

The model in Fig. 4-8 represents information about a person’s eye colour. This can be stated in N3 as

follows (where ex: is the prefix for example.org namespace):

Listing 4-14 Domain and Range example [73]

In Listing 4-14, the property ex:hasEyeColour is defined initially to be a property type. The

property is then given a domain of ex:Animal and ex:Human. This means that the subject in

statements where this property is used, is of type ex:Animal or of type ex:Human. Lastly, the

property is given a range of ex:Colour. This means that the objects of the statements are of type

ex:Colour.

4.3.2 Ontologies

RDFS is a fundamental building block of ontologies. Using RDFS you can define

generalisation/specialisation hierarchies for both classes and properties, assert class membership and

specify datatypes. Before we look at ontologies and how to create them using OWL, the Web

Ontology Language, we will first define an ontology: “An ontology uses a specific vocabulary of

terms to define concepts and the relationships between them for a specific area of interest, or

domain” [67]. While RDFS is perfectly acceptable to build ontologies, OWL enables us to build

more expressive ontologies [67].

domain of ex:hasEyeColour

ex:Animal

ex:Human

ex:Colour

range of ex:hasEyeColour

ex:hasEyeColour

137

4.3.3 OWL Web Ontology Language

OWL extends the RDFS vocabulary by introducing extra terms that have special semantics

associated with them. These terms are used to give meaning to the data they describe. The OWL

vocabulary (terms) is defined in the http://www.w3.org/2002/07/owl# namespace, which,

by convention is given the owl: prefix. OWL 2, delivered in late 2009, is the latest version [75].

OWL ontologies model domain knowledge and the language is designed to be flexible, allowing

users to choose from a number of predefined subsets, called “profiles”. These profiles, which are

discussed later, trade off expressivity with computational complexity.

OWL is built on top of RDF and RDF describes resources using URIrefs i.e. they are inherently

distributed. Consequently, how information is represented (the knowledge model) of OWL is also

distributed. To be able to make valid inferences (i.e. where new data is inferred from existing data) in

this distributed knowledge model, OWL makes two assumptions: the Open World Assumption and

the No Unique Names Assumption.

Open World Assumption [67]

The Open World Assumption states that the truth of a statement is independent of whether it is

known or not. In other words, not knowing whether a statement is explicitly true, does not imply that

the statement is false. This is best explained by contrasting the open world assumption with its

opposite: the closed world assumption. In this example, we have a database table customer (note:

databases presume the closed world assumption). In the closed world assumption, information is

considered complete and true and any unknown data is considered false. For example, if we have a

customer “John Smith” in the customer table then we know we have a customer by that name. If

“John Smith” does not exists in the customer table then we know we have no customer of that name.

In the open world assumption, if we do not have a customer “John Smith” then that does not mean

anything about him as a customer i.e. we cannot assume that he is not a customer. The open world

assumption impacts OWL in the way information is inferred. Reasoning is performed on known data

only i.e. the absence of information cannot be used to infer the presence of other information.

No Unique Names Assumption [67]

Resources are described using URIrefs. Given the distributed nature and massive scale of the Web, it

is unrealistic to assume that everyone uses the same URI to identify a specific resource. A simple

example of this is email: one can reach the resource “Sean Kennedy” using either skennedy@ait.ie or

138

sean@leitrimmills.ie. Therefore, this assumption states: you cannot assume that resources identified

by different URIs are different.

OWL Profiles

OWL has several profiles (or sub-languages) that balance expressiveness and computational

efficiency [76]:

• OWL-Full not a sub-language but rather, is the full unrestricted OWL specification. It places

no restrictions on RDF and thereby maintains RDF’s ability “to say anything about anything“

[67]. This flexibility comes at a cost: OWL-Full is not computationally decidable i.e. there

are no guarantees that all conclusions can be computed or that the computations will ever

finish.

• OWL-DL is a computationally efficient alternative to OWL-Full. It uses the same OWL-Full

constructs but with some restrictions in place to ensure computational completeness and

decidability. For example, the URI's used for classes, properties and individuals must be

mutually disjoint i.e. the same URI cannot be used for a class, a property or an individual.

• OWL-Lite is a further subset of OWL-DL with additional cardinality constraints (0 or 1

only). OWL-Lite is used to create classification hierarchies with straightforward constraints.

4.3.4 OWL Ontologies [67]

OWL ontologies are commonly stored as RDF documents. There is no official partition between

ontologies and the data they describe (i.e. the instances), although it is common to maintain the

ontologies and instances separately. Ontologies can contain the following elements: header,

annotations, datatypes, classes, individuals and properties. These are discussed in turn.

Ontology header

This is an optional element that usually contains annotation properties that describe the ontology.

This is where other ontologies can be imported using the owl:imports property. Labels and

comments can be inserted also, using the rdsf:label and rdfs:comment properties.

Annotations

Annotation properties are semantic-free properties and are used mainly by tools and user interface

environments. The properties outlined above, namely, rdsf:label and rdfs:comment are

examples of annotation properties.

139

Datatypes

Datatypes represent ranges of data values. Pre-defined datatype examples are string and integer.

OWL 2 allows us to define our own custom datatypes by defining value range (or facet) restrictions.

For example, one could create a datatype to represent the valid age for driving in the Republic of

Ireland i.e. 17.

Classes

 A class represents the category of “thing” being modelled. The rdf:type property is used to

assign class membership and the owl:Class resource is the resource that specifies that the subject

of the statement is a class. For example:
ex:Person rdf:type owl:Class.

states that Person is a class.

Individuals

The individuals of a class are the instances of a class. Extending the example above:
ex:Person rdf:type owl:Class.

ex:John rdf:type ex:Person.

states that John is an instance of the class Person; in other words, John is a person. The “class

extension” is the set of individuals (instances) of a class. Note that, “containment in a class extension

does not preclude an individual from being a member of any other class” [67]. OWL individuals can

have any structure i.e. they are not restricted to their class types (unlike OOP instances, which get

their information from their class types).

Properties

Properties establish relationships between resources. They are the predicates in the subject-predicate-

object triples. The two principle types of properties in OWL are:

• owl:ObjectProperty – used when defining a relationship between individuals

• owl:DatatypeProperty – used when defining a relationship between an individual and

a literal value

Both are subclasses of the RDF class rdf:Property. Listing 4-15 below states that John and

James are cousins and that James is known as “Jim”:

140

Listing 4-15 DatatypeProperty and ObjectProperty example

Important Classes and Properties

The full vocabulary of OWL uses URIrefs from the RDF, RDFS and OWL namespaces, as well as

XML Schema literal definitions. When creating an ontology, the following classes (appearing as

objects in a triple) are important [73]:

owl:Thing The class of all things in OWL. All classes implicitly

 subclass this class and all instances (individuals) are

implicitly instances of owl:Thing. This is similar

to Object in Java.

owl:Class All classes are instance of this class i.e. when describing

a class, this is the object value for an rdf:type predicate.

owl:DatatypeProperty defines a property where the ranges are literals

owl:ObjectProperty defines a property where the ranges are instances of

 owl:Class

4.4 Querying RDF data

James Hendler, a leading figure in the Semantic Web, stated in [77] that there were three core areas

in the Semantic Web:

• a data format that can include links i.e. RDF

• domain descriptions i.e. OWL ontologies

• a language for querying the data

The language for querying RDF datastores, known as SPARQL, is the subject of this section.

141

4.4.1 SPARQL

SPARQL, a W3C standard [78], is a “Semantic Web extension of SQL” [77]. SPARQL is both a

query language and a protocol [67]. The protocol refers to how a SPARQL client (such as one

accessible via a browser) interacts with a SPARQL endpoint/processor e.g.

http://dbpedia.org/sparql. The endpoint is a service that follows the protocol i.e. the endpoint accepts

and processes SPARQL queries and returns the results in various formats depending on the query

form [67]. The W3C has created a special XML format for the results called: SPARQL Query

Results XML format [79]. This specification [79] defines a document root element called sparql,

which has two sub-elements, head and a results element (either results or boolean) in that

order. Whether the results element is results or boolean depends on the query form

(results for SELECT and boolean for ASK).

SPARQL supports four query forms [67] [78]:

SELECT – SELECT is similar to SQL’s SELECT statement. In SPARQL, SELECT instructs

endpoints to bind RDF terms such as blank nodes, URIrefs and literals to variables based on a

given graph pattern (the WHERE clause). Variables are prefixed with ? or $. The WHERE

clause specifies our graph pattern (also known as triple patterns). Triple patterns are very

similar to RDF triples except that the subject, predicate or object may be a variable. Assuming

the subgraph specified in the WHERE clause is matched in the RDF graph we are searching,

the variables are bound and the bindings returned. Here is a straightforward example from [78]

using the Turtle/N3 format (note the “_:blankNodeID”):

Listing 4-16 (a) SPARQL SELECT (data)

142

Listing 4-16 (b) SPARQL SELECT (syntax)

Table 4-1 SPARQL SELECT (results)

CONSTRUCT - CONSTRUCT allows you to reformulate the bound variables into any RDF

graph you choose. This allows us to transform from one graph into a completely different one.

The following example from [78] uses Friend Of A Friend (FOAF) information to create vcard

properties:

Listing 4-17 (a) SPARQL CONSTRUCT (data)

Listing 4-17 (b) SPARQL CONSTRUCT (syntax)

143

Listing 4-17 (c) SPARQL CONSTRUCT (results)

ASK - ASK is used to determine whether a particular graph exists or not. If the graph exists

then the boolean true is returned otherwise false is returned.

Listing 4-18 (a) SPARQL ASK (data)

Listing 4-18 (b) SPARQL ASK (syntax)

This ASK command returns true.

DESCRIBE - DESCRIBE returns an RDF graph. The endpoint decides what RDF data is

returned with limited input from the client. DESCRIBE is the least used of the forms [67].

4.5 Semantically annotated Web Services

While the Semantic Web relates to semantically annotating data derived from the human-readable

Web, Semantic Web Services (SWS) relates to annotating functionality (as opposed to data) [115]

i.e. “syntactic service descriptions that have been augmented with machine-processable semantic

information” [121]. In this section, the technologies that provide semantic meaning to both

traditional Web Services (the WS-* stack) and RESTful Web Services are discussed. Fig 4-9 shows

the SWS and semantically annotated RESTful Web Services (RWS) stacks, side by side. With regard

to SWS, WSDL is used for machine automation (from a syntactic viewpoint). SAWSDL enables us

to non-intrusively annotate the purely syntactic WSDL descriptions with pointers to the

144

(conceptually higher) semantic layer [40][109][121]. From the RESTful Web Services viewpoint,

hRESTS and MicroWSMO accomplish what WSDL and SAWSDL accomplish respectively. These

technologies form the basis of this section. The WSMO-Lite ontology is common to both.

Figure 4-9 Semantic Layers [80]

An example is used to explain both approaches. The Web Service is a Hotel Web Service that

supports one operation: a retrieval of hotel details given a hotel identifier. The RESTful Web Service

description is in HTML for the following reasons:

a) there is no commonly accepted description standard yet for RESTful Web Services

[101][122]

b) there is a multitude of plain HTML service descriptions already on the Web [121][122]

Netbeans was used to create the WSDL description of the SOAP service (.wsdl) and Dreamweaver

used to create the RESTful Web Service description (.html). The tool used to annotate the WSDL

description with SAWSDL is Core Dashboard [81]. The tool used to annotate the HTML description

with hRESTS and MicroWSMO is SWEET (hosted on Core Dashboard). Core Dashboard [81] is a

suite of tools developed by the Knowledge Media Institute at Milton Keynes in England. These tools

enable semantic annotation of Web Service descriptions, both the WS-* and RESTful variety.

4.5.1 Semantic Web Services

The traditional WS-* stack provides WSDL to describe the syntax of the operation and the structure

of the data sent and received. WSDL provides no facility to apply semantics to either the operation or

the data. SWS are a suite of technologies that semantically annotate traditional SOAP-based Web

Service descriptions. With regard to Fig. 4-9, we are referring to SAWSDL and WSMO-Lite

145

technologies. SAWSDL is discussed first. WSMO-Lite is common to both stacks and is discussed

along with the technologies that enable semantic annotation of RESTful Web Services.

4.5.1.1 SAWSDL

SAWSDL (Semantic Annotations for WSDL and XML Schema) [82] is a W3C specification that

“defines how semantic annotation is accomplished using references to semantic models, e.g.

ontologies” [82]. SAWSDL is a W3C recommendation since August 2007. SAWSDL builds mainly

on WSDL 2.0 but also supports WSDL 1.1. SAWSDL is independent of any semantic technology

and assumes that semantic concepts can be pointed to via URIs [109]. While SAWSDL itself does

not provide any specific semantics, it does enable us to annotate the purely syntactic WSDL

descriptions with pointers to semantic concepts. “SAWSDL extends WSDL with pointers to semantics

that are crucial for achieving automation” [109]. Conceptually SAWSDL resides above WSDL (see

Fig. 4-9). With WSDL, one is concerned with service signature, service location and the protocol to

use when invoking the Web service. SAWSDL, on the other hand, is concerned with mapping

elements from WSDL to a higher conceptual level i.e. the ontology level. To achieve this SAWSDL

defines the following extension attributes [82]:

• modelReference – an extension attribute that can be applied to any WSDL or XML

Schema element in order to point to, via a set of URIs to one or more semantic concepts

[109].

• liftingSchemaMapping – added to element declarations and type definitions for

specifying the mapping from a messages XML structure to the semantic model

• loweringSchemaMapping – added to element declarations and type definitions for

specifying the mapping from the semantic layer to XML

The liftingSchemaMapping and loweringSchemaMapping attributes enable data

mediation between Web services. Take for example, two Web services that are trying to

communicate where the output from the first does not match the input of the second. The output from

the first Web service can be lifted to the ontology layer by that Web services

liftingSchemaMapping. Note that the second Web service is also pointing at the same

ontology concept. The second Web service provides a loweringSchemaMapping that lowers

from the (shared/common) ontology to the input format it requires [83].

146

Fig 4-10 shows the Hotel WS WSDL file being semantically annotated using Core Dashboard:

Figure 4-10 SAWSDL annotation using Core Dashboard

Listing 4-19 is the resultant SAWSDL file with the model references pointing to the semantic

concepts highlighted in red. Note that there are no liftingSchemaMapping or

loweringSchemaMapping elements as this example did not require lifting/lowering to/from the

semantic layer.

Note: Listing 4-19 is based on WSDL 1.1 (use of portType for the abstract interface). SAWSDL

was primarily built for WSDL 2.0 but does support the more prevalent WSDL 1.1 version. Note that

in the operation “getHotelDetails” of the portType “HotelWS” that the modelReference is

an attribute of the element attrExtensions. This is because the WSDL 1.1 schema prohibits

attribute extensions on the operation element. It does however allow element extensions. Thus,

SAWDL defines the element attrExtensions to carry extension attributes in places where only

element extensibility is allowed [109].

147

Listing 4-19 SAWSDL annotation using Core Dashboard [81]

4.5.2 Semantic annotation of RESTful Web Services

RESTful Web Services (RWS) have several options for describing themselves. One option is Web

Application Description Language or WADL, a W3C submission [84]. WADL is an XML-based

format that provides a machine-readable description of HTTP-based applications. WADL “works

148

similarly to WSDL with SOAP” [136]. Another alternative is WSDL 2.0 [32] with the HTTP binding.

However, Kopecky et al in [85], describe HTML as the “medium of choice” for describing RWS and

claim that WSDL 2.0 and WADL are not gaining traction due to their perceived complexity.

In this section, the technologies of Microformats/poshformats, hRESTS, MicroWSMO, GRDDL

(Gleaning Resource Descriptions from Dialects of Languages), WSMO-Lite, SA-REST and RDFa

(Resource Description Framework in Attributes) are discussed. Microformats are discussed because

hRESTS is a microformat for annotating key parts of an (X)HTML document so that the RWS

description can be elicited. MicroWSMO is an extension to hRESTS that annotates key elements of

the RWS description to point to the semantic layer. GRDDL is a markup format used to extract RDF

triples from the hRESTS/MicroWSMO annotated (X)HTML page. The technology for specifying

ontologies in Web Services i.e. WSMO-Lite is also covered. Note that WSMO-Lite applies to both

SOAP based Web Services and RESTful Web Services. SA-REST, a poshformat (a less formal

microformat) for describing RWS is also outlined. Lastly, RDFa, a W3C specification for inserting

RDF data directly into (X)HTML is discussed.

4.5.2.1 Microformats/Poshformats

Microformats are carefully designed (X)HTML class names that extend the semantics of (X)HTML

so authors can publish semantic content [86]. Microformats use for example, the class attribute in

(X)HTML tags to add semantic information to Web content and the result is an (X)HTML format

that is readable by both machines and humans. Formats such as vCard [87] (for publishing/sharing

contact information) and vCalendar [88] (for publishing/sharing event information) have proven

popular.

A poshformat, where posh stands for Plain Old Semantic HTML, is similar to a microformat in that

HTML attributes are used to add semantics to the Web page. However, a poshformat [89] is more a

once-off, ad-hoc format whereas microformats are more formal and have gone through a rigorous

community process. Microformats are therefore a subset of poshformats.

4.5.2.2 hRESTS

RESTful Web service descriptions are generally described in plain, unstructured HTML [80][121].

hRESTS (HTML for RESTful Services) [80] is a microformat aimed at making these HTML based

Web APIs machine readable by annotating the key information on the HTML page. In other words,

“hRESTS provides a machine-readable service description within a human-readable document”

[121]. hRESTS defines a set of classes and uses the class attribute of XHTML to refer to them. This

149

identifies the key information of the service description “effectively creating an analogue of WSDL”

[80]. The hRESTS classes defined are:

• service - indicates that this block describes a RESTful Web service

• label - the human-readable name of the RESTful Web service

• operation - indicates that this block describes a Web service operation

• method - specifies the HTTP method used by the operation

• address - identifies the URI of the operation (or a URI template in case the URI contains

input parameters)

• input - marks the input of the operation

• output - marks the output of the operation

The hRESTS model is very similar to the WSDL model e.g. both share service, operation, input and

output elements. In [80] the authors state that “hRESTS is roughly equivalent to WSDL”.

4.5.2.3 MicroWSMO

MicroWSMO [80] is an extension of hRESTS that refers to the semantic layer [85]. As explained

earlier, SAWSDL is an extension to WSDL that specifies how to annotate (typically SOAP-based)

service descriptions with semantic information. Given that the hRESTS service model is so similar to

the WSDL model, it is not surprising that MicroWSMO is very similar to SAWSDL. “Because the

hRESTS view of services is so similar to that of WSDL, we can adopt SAWSDL properties to add

semantic annotations” [80]. In effect, MicroWSMO is to hRESTS, what SAWSDL is to WSDL.

MicroWSMO defines three relations i.e. elements with the rel attribute set as follows:

• model – the href attribute points to an ontology concept or instance (corresponds to the

sawsdl:modelReference).

• lifting and lowering – the href attribute points to the transformations to and from the

ontology layer respectively (correspond to sawsdl:liftingSchemaMapping and

sawsdl:loweringSchemaMapping respectively).

hRESTS and MicroWSMO tool support

With regard to this thesis, the architecture requires a semantically annotated representation of the

RESTful API description i.e. an RDF representation. This will enable the automated matching of

semantically equivalent SOAP requests with their RESTful counterparts. With regard to the Hotel

WS example, Fig. 4-11 shows the RESTful WS description in HTML:

150

Figure 4-11 RESTful Hotel WS description

Fig. 4-12 shows how this description is annotated with hRESTS and MicroWSMO using the SWEET

editing tool. Part (a) is hRESTS annotation and part (b) is MicroWSMO annotation:

Figure 4-12(a) SWEET: hRESTS annotation

151

Figure 4-12(b) SWEET: MicroWSMO annotation

Listing 4-20 shows the HTML serialisation of the RESTful Hotel WS with both hRESTS (in red) and

MicroWSMO (in brown) annotations.

152

Listing 4-20 hRESTS and MicroWSMO annotated Hotel WS (HTML)

Note how hRESTS uses the class attribute and MicroWSMO uses the rel attribute. In Listing 4-20,

MicroWSMO identifies two model link relations: the first model tells us that this service is an

accommodation search service. The second model states that the input to the operation is an instance

of the class Hotel in the data ontology. There are no liftings or lowerings as this example did not

require them.

Listing 4-21 shows the RDF/XML serialisation of the RESTful Hotel WS with both hRESTS (in red)

and MicroWSMO (in brown) annotations.

153

Listing 4-21 hRESTS and MicroWSMO annotated Hotel WS (RDF/XML)

Such is the similarity between SAWSDL and MicroWSMO that SWEET re-uses the

sawsdl:modelReference annotation for MicroWSMO. SWEET also defines a Minimal Service Model

(prefix msm:) which it shares across vocabularies other than hRESTS. Thus, the Service, Operation,

hasInput and hasOutput elements are defined in the msm: namespace. Both, hasAddress and

hasMethod are defined in the hRESTS namespace.

154

4.5.2.4 GRDDL

GRDDL is a W3C recommendation [90] that enables RDF to be extracted from XML documents,

including XHTML. This is achieved in two steps:

• firstly, the document creator informs document consumers that this is a GRDDL source

document by setting the p r o f i l e attribute of the h e a d element to

http://www.w3.org/2003/g/data-view

• secondly, an XSLT transformation that will transform the source document into RDF is

specified using the rel attribute of the link element

For example, Listing 4-22 is the head section of Listing 4-20 modified accordingly. The

transformation is an openly available XSLT stylesheet that parses (X)HTML documents marked-up

with hRESTS and MicroWSMO to produce RDF.

Listing 4-22 XHTML section annotated with GRDDL metadata

Note that a GRDDL aware parser is required for the RDF to be produced. One is available at

http://www.w3.org/2007/08/grddl/. This parser was used to parse Listing 4-22, producing the RDF of

Listing 4-23. Thus, annotating a RESTful WS description with GRDDL will also provide the RDF

representation required by the architecture.

155

Listing 4-23 RDF produced from the GRDDL annotated Listing 4-20

4.5.2.5 WSMO-Lite

WSMO-Lite [91] is a lightweight, bottom-up approach for semantic annotation of Web services.

Languages such as RDF, RDFS and OWL are used at this layer. WSMO-Lite is based on the more

heavyweight, top-down semantics-first approach of WSMO [92]. WSMO-Lite captures four aspects

of service semantics:

• Information model – the information model relates to the ontology and any lifting/lowering

transformations to/from the semantic layer. The information model is useful for data

mediation i.e. using a common ontology for transforming outputs from one Web service to

the input format required by another Web service [109].

156

• Functional semantics – what the service does. Functional semantics are specified in

SAWSDL on the service and/or interface elements and in MicroWSMO on the

service and/or operation class. Functional semantics “describe the service capability –

that is, what the service can offer” [109]. Functional semantics are useful in service discovery

and composition and are specified by:

o Categorisation – “the service functionality falls within some category in an agreed

classification scheme” [109] e.g. RosettaNet Technical Directory. WSMO-Lite offers

the RDFS class

FunctionalClassificationRoot to setup classification hierarchies.

o Capability – the functionality can also be defined using logical conditions that must

hold before and after service invocation; these conditions are known as preconditions

and effects [109]. The preconditions outline the conditions that must hold before the

service can be executed and the effects identify the outputs that will hold after

successfully executing the service. WSMO-Lite offers the RDFS classes

Capability and Effect so that preconditions and effects can be setup in an

ontology.

• Non-functional semantics – this is information that the consumer of the Web service may

require even though the information is incidental to the successful execution of the Web

service. A good example is the price of the Web service. As a result, non-functional

semantics are often used for ranking and selection e.g. execute the cheapest service. WSMO-

Lite provides the class NonFunctionalParameter to mark items with non-functional

semantics.

• Behavioural semantics – similar to Functional semantics in that the behavioural semantics are

defined using categories and/or preconditions and effects. However, rather than being guided

by an explicit process, the client selects the operation (annotated with behavioural semantics)

to invoke next. In SAWSDL, behavioural semantics are added to the operation element;

in MicroWSMO, they are added to the input or output class. The client can now reason

about which operation can be executed at a particulate point in time (at a particular state in

the application) [93].

157

The WSMO-Lite RDFS ontology is listed in Listing 4-24:

Listing 4-24 WSMO-Lite Ontology (Notation 3)

Listing 4-25 demonstrates a specific WSMO-Lite example. It is based on a telecoms example from

[91]. The example defines a telecommunications video on demand service. The classes and

properties of the informational model (ontology) are initially setup. The pricing information (the

non-functional data) is then outlined. Lastly, the functional semantics are detailed – in this case a

categorisation hierarchy is used (as opposed to preconditions and effects).

Listing 4-25 WSMO-Lite Example

158

Listing 4-26 details how SAWSDL would refer to the WSMO-Lite example of Listing 4-25. Part (a)

refers to the Information model concept (and the lowering transformation stylesheet). Part (b) refers

to the functional semantics by pointing to the classification category created by Listing 4-25. Lastly,

part (c) refers to the non-functional data (the price) of the service.

Listing 4-26 (a) SAWSDL Information model references

Listing 4-26 (a) SAWSDL Functional semantics reference

Listing 4-26 (c) SAWSDL Non-functional semantics reference

4.5.2.6 SA-REST

An alternative approach to the hRESTS/MicroWSMO approach is SA-REST (Semantic Annotations

for REST). SA-REST is a W3C submission since April, 2010. In the submission, the authors state

that SA-REST “can be used to annotate RESTful API descriptions” [94].

SA-REST is a poshformat. Poshformats are a superset of Microformats and differ from microformats

in that poshformats may not have gone through the rigorous community process that microformats

go through. SA-REST “define three basic properties that can be used to non-intrusively annotate

HTML/XHTML documents, typically to embed ontological meta-data” [94]. SA-REST uses the

(X)HTML class and title attributes to specify the property and its associated value.

The three properties SA-REST define are [94]:

• domain-rel - identifies the domain description of a complete resource. From an SA-

REST perspective, domain-rel is considered a block level property i.e. other SA_REST

159

properties are allowed within the (X)HTML element that is annotated with the domain-rel

property. Listing 4-27 is an example (X)HTML fragment using domain-rel.

Listing 4-27 domain-rel property example

• sem-rel – captures the semantics of a link and is only used on the <a> tag. From an SA-

REST perspective, sem-rel is considered an element level property i.e. it is an SA-REST

property that should not contain other SA_REST properties. sem-rel is often used for

referring to external annotations of third-party documents e.g. schemas. Listing 4-28 is an

example (X)HTML fragment using sem-rel.

Listing 4-28 sem-rel property example

• sem-class – an element level property that identifies the semantics of a single entity

within a resource. Listing 4-29 is an example (X)HTML fragment using sem-class.

Listing 4-29 sem-class property example

Of relevance to this thesis is SA-RESTS’s ability to annotate RESTful API descriptions with a

service description (supporting tool automation, similar to hRESTS) and semantic metadata

160

(enabling advanced tool support, similar to MicroWSMO). SA-REST defines a service model which

is based on the hRESTS service model [94] i.e. the elements in the SA-REST namespace resemble

those in the hRESTS namespace e.g. service and operation. SA-REST refers to semantic concepts

via (the URI values of) the title attribute on the domain-rel, sem-rel and sem-class properties. Thus,

in effect, SA-REST is an alternative to the hRESTS/MicroWSMO offering.

However, there are no specific tools available for SA-REST annotation. In addition, to serialise your

SA-REST-annotated (X)HTML page to RDF, one requires RDF-in-attributes (RDFa) [95]. RDFa is

covered next.

4.5.2.7 RDFa

RDFa, a W3C Recommendation, is a way to express RDF within XHTML [96]. RDFa shares some

use cases with microformats. Microformats specify both a syntax for embedding structured data into

(X)HTML documents (e.g. class and rel attributes in hRESTS and MicroWSMO respectively) and a

vocabulary of specific terms for each microformat (e.g. service, operation etc.. in hRESTS and

model, lifting and lowering in MicroWSMO). RDFa on the other hand, specifies only a syntax i.e.

what XHTML attributes to use and relies on vocabularies of terms independently specified by others.

RDFa allows terms from multiple independently-developed vocabularies to be freely intermixed and

can be parsed without knowledge of the specific vocabulary being used.

RDFa uses certain existing XHTML attributes (Table 4-2) and also defines some extra attributes

(Table 4-3) [97]:

Table 4-2 Existing XHTML attributes used by RDFa

161

Table 4-3 New XHTML RDFa attributes

In RDFa, a subject is generally indicated using about, and predicates are represented using one of

property, rel, or rev. Objects which are URI references are represented using href, resource or src,

while objects that are literals are represented either with content or the content of the element in

question (with an optional datatype expressed using datatype) [97].

Listing 4-30 is XHTML (Listing 4-20) annotated with SA-REST/RDFa.

Listing 4-30 XHTML annotated with RDFa

162

Note that in Listing 4-30 that it is the SA-REST namespace that is used as opposed to the XHTML

attributes in the SA-REST specification. This is the flexibility of RDFa – one can refer to

independently created vocabularies. Listing 4-31 is the RDF, serialised as N3, extracted from Listing

4-30 using the W3C’s RDFa Distiller tool at http://www.w3.org/2007/08/pyRdfa/.

Listing 4-31 RDF extracted from Listing 4-30 (N3 notation)

4.6 Summary

In this chapter, the technologies underpinning the Semantic Web were detailed. The Semantic Web’s

data model (RDF), its abstract graph model and its various serialisation formats were discussed. The

technologies that actually add the semantics, namely RDFS and ontologies were then covered.

Lastly, the Semantic Web Services stacks relevant to this thesis were explained. The technologies in

the stacks will be central to the automated solution provided by the architecture. The architecture is

the subject of the next section.

163

Chapter 5

StoRHm

5.1 Introduction
In the previous chapters, the background technologies relevant to this thesis, namely XML Web

Services, the REST architectural style and the Semantic Web were outlined. In this chapter, the

architecture of StoRHm is presented. Initially, an overview is presented; the purpose of which is to

link the research objectives presented in the Introduction chapter with the architecture of StoRHm.

Following from that, the architectural evolution of StoRHm is presented in which StoRHm’s

evolution into two distinct architectures is outlined. Lastly, the Requirements, Architecture and

Design of both StoRHm v1 and v2 are explained in detail.

5.2 Architecture overview
The research objectives stated in the Introduction chapter are:

1) Can XML WS ‘POST tunnelling’ be addressed?

164

2) Is it possible for an enterprise to gradually migrate from XML WS to RESTful WS?

3) Can the architecture ensure that:

a) Messages are immediately visible?

b) There is minimal impact on the client?

c) Semantic Web intelligence is availed of to automate the mapping?

These objectives lead to the architecture shown in Fig. 5-1. Fig. 5-1 contrasts abstractly the

architectures of a normal WS invocation (Fig. 5-1 (a)) with a WS invocation with StoRHm in place

(Fig. 5-1 (b)). The StoRHm elements are highlighted in blue.

Figure 5-1 (a) XML WS Architecture

Figure 5-1 (b) StoRHm Architecture

Addressing the research objectives in turn:

1. POST Tunnelling - As can be seen from the architectural diagram above, the adapter is located

on the client side. The adapter translates XML WS requests to corresponding RESTful HTTP

format and hence satisfies objective (1). The alternative was of course to locate the adapter on

the server side, as in [8]. However, this would mean that the messages on the network would

still be SOAP/POX based; ‘POST tunnelling” would still exist and thus objective (1) would

not be satisfied. For failing this objective (and the objectives outlined in 3a, 3b and 3c – see

later), the server side approach was rejected.

165

2. Gradual migration - Clients can be migrated gradually from SOAP/POX WS to RESTful WS

as the client-side adapter ensures that the clients interface is unaffected by a back-end server

migration. The clients can therefore be migrated as and when it suits the enterprise [7]. Thus,

objective (2) is satisfied.

3. (a) As StoRHm is client-based, the messages are immediately visible and thus objective (3a) is

satisfied. As the server side approach in [8] only transforms the messages when they reach

the server, it fails this objective.

3. (b) StoRHm takes into account the interface-specific nature of the client XML WS invocations

and thus impact on the client is minimal, thereby satisfying this objective. The framework

outlined in [8] requires client code compilation, failing the objective.

3. (c) As Semantic Web technologies are used to automate the mapping stage of the architecture,

 this objective is satisfied. The framework outlined in [8] does not use Semantic Web

 technologies and thus fails this objective.

5.3 Project lifecycle
There are two versions of the StoRHm architecture and both versions consist of a static configuration

element followed by a dynamic runtime element. Figure 5-2 charts the timelines of the two versions

of StoRHm:

Figure 5-2 Timeline of Architectures

StoRHm v1 (version 1)
StoRHm maps XML Web Service messages (both SOAP and POX) to RESTful HTTP format

[138][141][142][143][144][145]. In StoRHm v1, the configuration element is manual. The function

of the configuration element is to create a mapping specification that enables the runtime protocol

166

adapter to transform the messages.

StoRHm v2 (version 2)
The StoRHm architecture has evolved naturally into two distinct versions, namely v1 and v2. The

major issue with the architecture used by StoRHm v1 is that the configuration element is heavily

reliant on the user. This results in an architecture that requires significant user input. StoRHm v2

addresses this issue by integrating Semantic Web technologies to add intelligence to the

configuration element. Thus, what was previously a user-intensive process is now an automated,

semantically informed architecture. The critical difference is that StoRHm v2 leverages the Semantic

Web to automate the configuration element [139][140]. In addition, v2 integrates the SOAP and

POX solutions into a “one-stop-shop”.

The relationship between StoRHm v1 and v2 is shown in Fig. 5-3:

Figure 5-3 Relationship of the two versions

5.4 StoRHm v1
In this section, the Requirements, Architecture and Design of StoRHm v1 is explained in detail.

5.4.1 StoRHm v1 requirements
The requirements of StoRHm are the subject of this section. The requirements outlined at this point

are generic for all versions of StoRHm. Fig. 5-4 represents the use case diagram for StoRHm.

167

Figure 5-4 StoRHm Use Case Diagram

Web Service interoperability

The overriding goal of StoRHm is to enable existing XML Web Service clients to interact with a

RESTful Web Service that is semantically equivalent to the original XML Web Service (Fig. 5-5). In

Fig. 5-5, one can see a diagram representing the transformation from a specific interface (i.e.

SOAP/POX) to a uniform interface (i.e. RESTful). It is based on an example from [26]. At the top of

Fig. 5-5, PhoneDirectoryService represents the XML Web service with associated operations. The

lower part of Fig. 5-5 is a representation of its RESTful equivalent. The arrow represents the

mapping that will be carried out by the architecture.

Figure 5-5 XML Web Service to RESTful Interface Mapping [26]

168

Based on Fig. 5-5, the mappings are shown in Table 5-1:

Table 5-1 Specific Interface mapped to Uniform Interface

As can be seen from Table 5-1, the operation getPhoneNumber is mapped to HTTP GET on the URI

/phoneDirectory{surname}/{firstName}. The parameters are in the URI i.e. {surname} and

{firstName}. The updatePhoneNumber mapping follows a similar pattern. However, as per proper

HTTP semantics, PUT is the verb used when updating. The addPhoneNumber operation, maps to

POST on a collection resource /phoneDirectory. In these situations, the server will expect its data in

the entity body of the message and the server will decide upon the URI to be created based on some

server-side algorithm. The deletePhoneNumber and deleteAllNumbers operations map logically to

HTTP DELETE. However, depending on whether the URI represents a collection resource

/phoneDirectory or an individual resource /phoneDirectory/{phoneNumber} determines whether the

server will delete all the phone numbers or just one. A DELETE message to the collection resource

/phoneDirectory deletes all the phone numbers i.e. it is the semantic equivalent of the

d e l e t e A l l N u m b e r s operation. A DELETE message to the individual resource

/phoneDirectory/{phoneNumber} results in just one phone number being deleted; the phone number

passed in the URI parameter {phoneNumber}. This is the equivalent of the deletePhoneNumber

operation. The GET messages operate in the same fashion. The GET on the collection resource

/phoneDirectory is the equivalent of getAllNumbers.

StoRHm must facilitate these mappings. There are two elements to be considered here: the user’s

configuration of the mapping and the subsequent translation of XML messages as defined by that

mapping. StoRHm should provide tool support for the former and should fully automate the latter.

169

Migration Enabler

StoRHm must enable the seamless migration of clients from XML Web Services to RESTful HTTP

Web Services. This requirement means that the server can be migrated without breaking the existing

client base.

Enable the Web infrastructure

XML Web Services produce opaque messages disabling advanced Web infrastructure features such

as caching. Fielding highlights the importance of HTTP GET and its role in caching: “The most

frequent form of request semantics is retrieving a representation of a resource (e.g. the ‘GET’

method in HTTP), which can often be cached for later reuse” [112]. Thus, the messages that

StoRHm produces must be visible to Web intermediaries, thereby enabling the Web infrastructure.

Minimal client impact

The impact on the client must be minimal. Thus, no re-compilation of the client should be necessary

for the client to avail of StoRHm.

5.4.2 StoRHm v1 architecture
Figure 5-6 outlines the architecture of a Web Service application that makes use of this architecture.

The StoRHm elements are highlighted with a coloured background. The architecture consists of two

elements: a configuration wizard and a runtime protocol adapter. The function of the configuration

wizard is to create a mapping file that enables the runtime protocol adapter to transform the

messages.

170

Figure 5-6 StoRHm v1 Architecture

5.4.3 StoRHm v1 Design
In this section, the design of StoRHm v1 is covered in detail. StoRHm v1 is capable of mapping both

SOAP and POX Web Service requests to RESTful HTTP format. Despite being architecturally

similar, their designs are different. As a result, separate sections are required. To this end,

subsections 5.4.3.1 and 5.4.3.2 refer to POX and subsections 5.4.3.3 and 5.4.3.4 refer to SOAP. The

principal differences result from the fact that SOAP-based Web services use WSDL to describe

themselves whereas POX services use customised XML Schemas. In addition, SOAP messages

returning to the client must have a SOAP envelope present; this is not required by POX clients.

5.4.3.1 StoRHm v1 (POX) Configuration Wizard
The function of the Configuration Wizard is to setup the Mapping file which the runtime Adapter

later uses when transforming the messages.

171

GUI Design

The wizard is an event-driven Java GUI based application i.e. it extends JFrame and implements

ActionListener. Fig. 5-7 outlines the StoRHm v1 (POX) wizard GUI interface. The GUI interface is

broken up into three sections; a top, a middle and a bottom section. Each section corresponds to at

least one Java JPanel. The top section (in yellow), details the input required from the user regarding

the Schema, the optional WADL filename and the Root URI to be used on all the RESTful URI’s.

The middle section (in brown) outlines the Web Services and XPath expressions parsed from the

Schema. The middle panel also outlines the RESTful URI that will be appended to the Root URI; the

QoS checkboxes, the HTTP verb and MIME type drop down listboxes. Lastly, the middle panel also

contains the Insert buttons that enable the user to insert the XPath expressions into the RESTful URI.

The final section is the bottom section, which contains the OK and Cancel buttons.

Figure 5-7 StoRHm v1 (POX) Configuration Wizard GUI Layout

Layout Managers

Fig. 5-8 details the layout managers used to organise the GUI interface. The top section (in yellow),

is controlled overall by a 2-row, 1-column GridLayout manager. A FlowLayout manager controls

each row within the top section. The top Schema row contains two sub-panels: one has a GridLayout

of 2 rows, one column (the URI/File radio buttons); the other panel has 2 rows and 2 columns (the

Parse and Browse buttons and the WADL checkbox). The second FlowLayout row is the WADL

and Root URI section. The middle section, in brown, is managed by a GridLayout with 1 row

172

consisting of 7 columns. This row matches the brown row in Fig. 5-7. Lastly, the final section on the

container is a FlowLayout for the OK and Cancel buttons.

Figure 5-8 StoRHm v1 (POX) GUI Layout Managers

Example

Fig. 5-9 shows the initial screen of the wizard.

Figure 5-9 Sample StoRHm v1 (POX) Configuration Wizard

173

Sequence Diagrams

The design of the algorithm used is shown in the sequence diagrams of Fig. 5-10. Fig. 5-10 (a)

represents the situation where the user selected the WADL checkbox whereas in Fig. 5-10 (b) the

WADL checkbox is not chosen.

Figure 5-10 (a) StoRHm v1 (POX) Configuration Wizard sequence diagram (with WADL)

174

Figure 5-10 (b) StoRHm v1 (POX) Configuration Wizard sequence diagram (without WADL)

Algorithm

The configuration wizard is designed to take the following input: a POX schema and optionally a

WADL (Web Application Description Language) file [84]. The user can access these files using both

the HTTP and FILE protocols. When the user presses the “Parse” button, the Schema file is parsed.

As the Schema is enterprise specific (and not a standard such as SOAP), the wizard is informed via a

configuration file as to the XPath expressions to use when parsing the Schema. In addition, the

configuration file informs the wizard of the XPath expressions to populate into the “Elements” drop-

down listbox. This information is instance document-specific and saves the user time when entering

data. Thus, when the Schema is parsed, the Web Services encountered are populated into the “Web

Services” listboxes and the XPath expressions required by the runtime adapter are populated into the

“Elements” area (see Fig. 5-9). If the user has not selected the WADL checkbox, then the “HTTP

Verbs” and “MIME Types” (Fig. 5-9) listboxes are populated from the configuration file also.

If the user has selected the WADL checkbox, then the WADL file is parsed and the “RESTful URI”,

“HTTP Verbs” and “MIME Types” sections are populated based on the WADL file. For example,

175

each specific resource (URI) will support certain verbs and certain media types. By populating these

areas based on the WADL file this means that it is impossible to send an incorrect verb or MIME

type to that URI.

The user then matches the Web Service with the required XPath expression(s) and, using the

“Insert” buttons, builds the RESTful URIs. If WADL is being used then the Insert button will

append to the RESTful URIs. Note that there is no need to use an XPath expression element for

certain operations e.g. if one is issuing a POST to the Root URI, a “/” in the RESTful URI column

suffices. The user selects the QoS checkbox buttons to indicate the QoS required. Lastly, the user

matches the HTTP verbs and response type with the Web Service (if WADL is selected then this will

already be done). The response type is “text/xml” by default. At this point the user presses OK and

the mapping file is created.

Package/Class Diagrams

The package and class diagrams representing this design are shown in Fig. 5-11 and Fig. 5-12.

Figure 5-11 StoRHm v1 (POX) Configuration Wizard package diagram

176

Figure 5-12 StoRHm v1 (POX) Configuration Wizard class Diagram

Design decisions

The Mapping file is implemented as a Comma Separated Value (CSV) file and is created by the

configuration wizard (initially a database was used but the CSV file was more efficient in tests and as

a result it was decided to use the CSV file). Fig. 5-13 shows a sample CSV file. The columns

correspond to:

• Web Service name

• SOAP operation – this is not applicable (N/A) for POX configurations

• HTTP verb to use

• MIME Type

• URI to use (containing the XML XPath expressions to use inserted in curly braces)

• QoS features to apply

Fig. 5-13 is a sample MappingFile created from a POX Web Service. Note that the “SOAP

Operation” column is not used (“N/A”). This indicates that this column is not applicable to a POX

service.

177

Figure 5-13 StoRHm v1 (POX) CSV file

5.4.3.2 StoRHm v1 (POX) Protocol Adapter
The POX to RESTful HTTP runtime protocol adapter design is illustrated in Fig. 5-14.

Figure 5-14 StoRHm v1 (POX) Protocol Adapter design

Adapters wrap heterogeneous applications (e.g. different interfaces, protocols and/or data formats) so

that they appear as homogeneous and thus easier to integrate [116][118]. One must bear in mind that

the work presented in this thesis relates to transforming SOAP/POX message invocations over

HTTP. Thus, the source and target protocols and data formats are equivalent (HTTP and XML

respectively). However, the adapters in StoRHm address the heterogeneous usage of HTTP.

178

The POX protocol adapter is based on the RESTlet framework. RESTlet is a Java API for

developing RESTful applications. The adapter extends the Resource base class and overrides the

acceptRepresentation method (which handles POST requests). In addition to the adapter, the POX

client is also RESTlet based. The classes in the RESTlet API reflect the influence of the REST

architectural style e.g. Components, Connectors, Resources and Representations. In Fig. 5-14, the

blue boxes are Components e.g. clients and servers. The small yellow boxes are connectors i.e.

software elements that “manage network communication for a component” [3].

Sequence Diagram

The design of the algorithm used is shown in the sequence diagram of Fig. 5-15.

Figure 5-15 StoRHm v1 (POX) Protocol Adapter sequence diagram

Algorithm

The POX client configuration file is modified to point at the local POX adapter. The POX client

application creates a client connector through which it issues its POST request. The POST request

arrives at the server connector of the POX adapter where the Web Service name, which is appended

to the adapter URI by the client, is parsed from the request URI and used to access the specific Web

179

Service entries in the mapping file. Informed by the mapping file, the adapter transforms the request

into RESTful HTTP format. The adapter then creates a client connector to the RESTful server and

issues the RESTful HTTP request. The RESTful Server connector receives the request, processes it

and returns the response to the adapter from where it is returned to the POX client.

This means that the POX client is abstracted from the mappings i.e. from the point of view of the

POX client, it issues a POX request and gets back a POX response. The fact that the POX request

has been transformed into a visible RESTful HTTP request is transparent to the POX client. The

mapping file plus protocol adapter must be located on the client as one of the requirements is that the

benefits of RESTful HTTP e.g. caching is to be availed of. This is only possible in situations where

the HTTP message is RESTful as it leaves the client machine. Note that this architecture also avoids

the scenario associated with possible bottlenecks in a centralized system.

RESTful Web Services, which are hosted on an origin/target server, can return any MIME type;

however, as the original client is a POX client (based on XML), the RESTful Web Services must

return XML for requests that pass through the adapter. Note that it is the target server that marks its

responses as cacheable and for how long. However, intermediaries such as caches can inspect the

request messages to see if they have an up-to-date copy and if so, return it without the need to

forward on the request to the target server [5].

Quality of Service

QoS features are supported: security and message reliability. However, as the adapter is concerned

with generating RESTful HTTP requests, all the adapter needs to know is whether or not a particular

QoS feature is required and then implement that feature in HTTP. For this purpose, a flag in the

CSV file is used.

As regards security, the CSV file informs the adapter of a particular Web Service needing security

and consequently the adapter opens up a secure connection using HTTPS.

The CSV file also informs the adapter of a particular Web Service requiring message reliability. As

regards message reliability, the adapter follows the best practice approach outlined by Gregorio,

which remodels POST as PUT [58]. This takes advantage of the idempotence of PUT, whereas

POST is not idempotent. Idempotence means that it does not matter how many times a command is

executed; the result is always the same. For example, setting a value to 5 will have the same effect

regardless of the number of times it is executed. Therefore, whenever a message sent using an

idempotent verb gets lost, the message is just re-sent.

POST is only used when a client (the adapter in this instance) does not know the full URI to PUT to.

With POST, the client (adapter) uses a known top-level generic “collection” URI. The server, upon

180

receipt of the POST message to a collection resource, assigns the actual URI that the client (adapter)

can subsequently send PUT messages to [45]. Thus, when the adapter outlined in this research

receives a POX request where reliability is required, the adapter POSTs to a collection resource with

no data in the entity body. The server generates and sends back the URI to be used by the adapter.

The adapter then issues a PUT with the data from the POX request inside the entity body [58].

For example, to create an order, the adapter would save the POX order data and POST to, for

example, a “/orders” collection URI (with no order data in the entity body of the message). This

collection URI “/orders” refers to all the orders. Upon receiving this POST message, the server

would generate and return (to the adapter) a unique URI to refer to the new order: for example,

“/orders/57676”. This is the URI that the adapter can subsequently send PUT messages to (with the

POX data in the entity body of the message).

If either the POST or PUT messages are lost, the adapter re-sends the lost message. In the case of the

POST message getting lost, the server re-generates another URI for the adapter to use. This is not an

issue as the generated URI’s are logical and not physical i.e. the URI expresses what resource is

desired and not a static document [111]. For example, contrast the logical URI http://www.parts-

depot/parts/000000 with the physical URI http://www.parts-depot/parts/000000.html. The logical

URI abstracts away the underlying implementation from the clients, whereas the physical URI refers

to a physical HTML page. The logical URI approach enables the server’s underlying implementation

to be changed without impacting the clients [5]. Once the adapter receives a successful response (to

the PUT message), the adapter returns the response to the (POX) client.

Package/Class Diagrams

The package and class diagrams representing this design are outlined in Figures 5-16 and 5-17.

181

Figure 5-16 StoRHm v1 (POX) Protocol Adapter package diagram

Figure 5-17 StoRHm v1 (POX) Protocol Adapter class diagram

Design decisions
As stated, the protocol adapter is implemented using the RESTlet framework and is deployed on the

client side. The URI consisting of the protocol adapter address with the Web Service name appended

182

is inserted into the POX client configuration file. This ensures that future POX requests are

redirected to the protocol adapter where the Web Service name is parsed from the URI and used as a

key to the relevant entries in the CSV file.

5.4.3.3 StoRHm v1 (SOAP) Configuration Wizard
As with the POX artefact, the function of the Configuration Wizard is to setup the Mapping file

which the runtime Adapter later uses when transforming the messages. Similarly, the wizard is an

event-driven Java GUI based application i.e. it extends JFrame and implements ActionListener.

GUI Design

Fig. 5-18 outlines the StoRHm v1 (SOAP) configuration wizard GUI interface. Similar to the POX

wizard interface, there are three sections; a top, a middle and a bottom section. Each section

corresponds to at least one Java JPanel. The top section (in yellow), details the input required from

the user regarding the WSDL file, the WSDL Schema, the optional WADL filename and the Root

URI to be used on all the RESTful URI’s. The middle section (in brown) outlines the Web Service

operations parsed from the WSDL file. As SOAP is a well-defined message format, XPath

expressions can be used for parsing SOAP message [107]. The middle panel also outlines the

RESTful URI that will be appended to the Root URI; the QoS checkboxes, the HTTP verb and

MIME type drop down listboxes. Lastly, the middle panel also contains the Build buttons that enable

the user to insert the WSDL operation parameter names into the RESTful URI. The final section is

the bottom section, which contains the OK and Cancel buttons.

Figure 5-18 StoRHm v1 (SOAP) Configuration Wizard GUI Layout

183

Layout Managers

Fig. 5-19 details the layout managers used to organise the GUI interface. The top section (in yellow),

is controlled overall by a 4-row, 1-column GridLayout manager. A FlowLayout manager controls

each row within the top section. The top WSDL row contains three sub-panels: one has a GridLayout

of 2-rows, 1-column (WSDL v1 and v2 radio buttons); another has a GridLayout of 2-rows, 1-

column (the URI/File radio buttons) and the other panel has 2 rows and 2 columns (the Parse and

Browse buttons and the WADL checkbox). The second FlowLayout row is for the WSDL Schema.

The third row in the top section is for WADL and the last row is for the Root URI and the read-only

HTTP WS Name (which is parsed from the WSDL file). The middle section (in brown) is managed

by a GridLayout with 1 row that has 6 columns. This row matches the brown row in Fig. 5-18. The

final section on the GUI is a FlowLayout for the OK and Cancel buttons.

Figure 5-19 StoRHm v1 (SOAP) GUI Layout Managers

Example

Fig. 5-20 shows the initial screen of the wizard.

184

Figure 5-20 Sample StoRHm v1 (SOAP) Configuration Wizard

Sequence Diagrams

The design of the algorithm used is shown in the sequence diagrams of Fig. 5-21 and Fig. 5-22. Fig.

5-21 represents the situation where the user selects the WADL checkbox whereas in Fig. 5-22 the

WADL checkbox is not chosen.

185

Figure 5-21 StoRHm v1 (SOAP) Configuration Wizard sequence diagram (with WADL)

186

Figure 5-22 StoRHm v1 (SOAP) Configuration Wizard sequence diagram (without
WADL)

Algorithm

The configuration wizard takes as input: a WSDL file, the WSDL schema (Netbeans splits them into

two files) and the optional WADL file [84]. The user can access these files using both the HTTP and

FILE protocols. When the user presses the “Parse” button, the WSDL file and its associated schema

are parsed. The Web Service parsed from the WSDL file is checked to ensure that it has a HTTP

binding. If so, the Web Service name is populated into the “HTTP Web Service Name” field. The

operations supported by the Web Service are populated into each of the “Specific Interface” drop

down listboxes. If the user has not selected the WADL checkbox, then the “HTTP Verbs” and

“MIME Types” dropdown listboxes are populated from a configuration file. The user can click the

“Build” button and a wizard (detailed in Chapter 6) enables the user to build a parameterised URI

based on the WSDL operation parameter names. This feature enables the insertion of XPath

187

expressions into the RESTful URI that the protocol adapter can use when parsing the SOAP message

at runtime.

As with the POX configuration wizard, if the user has selected the WADL checkbox, then the

WADL file is parsed and the “RESTful URI”, “HTTP Verbs” and “MIME Types” sections are

populated based on the WADL file. For example, each specific resource (URI) will support certain

verbs and certain media types. By populating these areas based on the WADL file this means that it

is impossible to send an incorrect verb or MIME type to that URI.

The user then creates a mapping between the operations, the RESTful URIs and the HTTP verb. The

user also selects the QoS checkboxes buttons to indicate the QoS required. Lastly, the user selects the

response type required (if WADL is selected then this will already be done). The response type is

“text/xml” by default. At this point the user presses OK and the mapping file is created.

Package/Class Diagrams

The package and class diagrams representing this design are shown in Fig. 5-23 and Fig. 5-24.

Figure 5-23 StoRHm v1 (SOAP) Configuration Wizard package diagram

188

Figure 5-24 StoRHm v1 (SOAP) Configuration Wizard class diagram

Design decisions

The Mapping file is implemented as a Comma Separated Value (CSV) file and is created by the

configuration wizard. Fig. 5-25 shows a sample CSV file. The CSV file is identical to the POX

configuration CSV file detailed earlier (Fig. 5-13) except that the SOAP Operation column is now

populated. The columns correspond to:

• Web Service name

• SOAP operation

• HTTP verb

• MIME Type

• URI to use (containing the XML XPath expressions to use inserted in curly braces)

• QoS features to apply

189

Figure 5-25 StoRHm v1 (SOAP) CSV file

5.4.3.4 StoRHm v1 (SOAP) Protocol Adapter
The runtime protocol adapter design is illustrated in Fig. 5-26.

Figure 5-26 StoRHm v1 (SOAP) Protocol Adapter design

The design is based on the both servlets and Netbeans native SOAP WS infrastructure. In this

instance, the backend RESTful Server hosts both SOAP and RESTful Web Services. The SOAP WS

are developed initially so that the Netbeans infrastructure can generate a WSDL automatically. Once

the WSDL is generated, Netbeans wizards can generate the SOAP client code automatically. The

backend RESTful WS services are generated using Netbeans wizards and are the target of

transformed SOAP client requests.

Sequence Diagram

The design of the algorithm used is shown in the sequence diagram of Fig. 5-27.

190

Figure 5-27 StoRHm v1 (SOAP) Protocol Adapter sequence diagram

Algorithm

The SOAP client WSDL file is modified to point at the adapter. The WS name is appended to this

URI also. The client code, which is automatically generated by Netbeans in this version of the

architecture, is executed. The POST request arrives at the StoRHm v1 adapter where the Web

Service name is parsed from the request URI. The SOAP operation is also parsed from the incoming

SOAP request. Both the Web Service name and SOAP operation and then used as a key to the

relevant entries in the mapping file. Informed by the mapping file, the adapter transforms the request

into RESTful HTTP format. The adapter then issues the RESTful HTTP request. The RESTful

Server receives the request, processes it and returns the response to the adapter. The adapter wraps

the response in SOAP metadata and returns it to the SOAP client.

The same advantages that hold for the POX architecture apply here also: the client is abstracted from

the mappings; the mapping file plus protocol adapter must be located on the client so as to avail of

Web infrastructure efficiencies and avoid the issues associated with bottlenecks in a centralized

system. In addition, as the original client is SOAP based and therefore XML based, the RESTful WS

requests emanating from the adapter will always request XML as the MIME type. However, this

191

does not mean that the RESTful WS in this architecture cannot return other media types. This is one

of the advantages of RESTful WS – their flexibility in dealing with various client types.

Quality of Service
QoS features are supported as per the POX artefact i.e. the CSV file informs the adapter of the QoS

required, not SOAP headers. However, all responses going back to the client must be wrapped in a

SOAP envelope in order for the SOAP client to understand the response.

Package/Class Diagrams

The package and class diagrams representing this design are outlined in Figures 5-28 and 5-29.

Figure 5-28 StoRHm v1 (SOAP) Protocol Adapter package diagram

192

Figure 5-29 StoRHm v1 (SOAP) Protocol Adapter class diagram

Design decisions

The protocol adapter is implemented as a servlet i.e. the adapter extends HttpServlet and overrides

doPost. The adapter is deployed on the client side. The URI consisting of the protocol adapter

address with the Web Service name appended is inserted into the soap:address element in the WSDL

file. The SOAP requests are thus redirected to the protocol adapter where the Web Service name is

parsed from the URI.

5.5 StoRHm v2
In this section, the Requirements, Architecture and Design of StoRHm v2 is explained in detail.

5.5.1 StoRHm v2 requirements
The requirements for v2 are the same as in v1 (section 5.4.1) with the additional requirement of

Semantic Web intelligence being used to automate the configuration stage.

5.5.2 StoRHm v2 architecture
StoRHm v2 is architecturally similar in many respects to the architecture of StoRHm v1. However,

where v2 is different has a significant impact. As outlined earlier, the architectures are split into two

distinct phases: the initial configuration wizard that produces the mapping file and the runtime

adapter engine which uses this mapping file to transform the messages.

193

StoRHm v2’s architecture (Fig. 5-30) is similar to that of the StoRHm v1 architecture outlined in

Fig. 5-6. The difference, which is highlighted in red, notes the use of Semantic Web technologies to

automate the configuration element.

Figure 5-30 StoRHm v2 Architecture

5.5.3 StoRHm v2 Design
The critical and only difference architecturally between the two versions of StoRHm is that version 2

is semantically informed and thus automation of the mapping is possible. This is due to the fact that

semantically annotating disparate elements to point to the same real world concept enables

automated matching [128]. Obviously this has an impact on the design of the Configuration Wizard.

The design of the Protocol Adapter was influenced by a desire to move to an integrated technology

solution. Sections 5.5.3.1 and 5.5.3.2 outline the design of the configuration wizard and protocol

adapter respectively in StoRHm v2.

5.5.3.1 StoRHm v2 Configuration Wizard
The introduction of the Semantic Web technologies to automate the configuration element was the

primary reason for the evolution of StoRHm to a second version. As per StoRHm v1, the function of

the Configuration Wizard is to setup the Mapping file for subsequent use by the runtime Adapter

when transforming XML Web Service messages. Similarly, the wizard is an event-driven Java GUI

based application.

194

GUI Design

Fig. 5-31 outlines the StoRHm v2 configuration wizard GUI interface. There are three (colour-

coded) sections. Each section corresponds to at least one Java JPanel. The top section (in yellow), is

where the radio buttons reside, enabling the user to specify whether this is a SOAP or POX

configuration. The middle section (in brown) details the input required from the user regarding the

semantically annotated files i.e. the SAWSDL, MicroWSMO and Ontology filenames. The final

section is the bottom section, which contains the OK and Cancel buttons.

Fig. 5-31 shows the screen layout used.

Figure 5-31 StoRHm v2 Configuration Wizard GUI Layout

Layout Managers

Fig. 5-32 details the layout managers used to organise the GUI interface. The JFrame container is

organised overall as a BoxLayout on the y-axis. The screen is then divided into a 4-row, 1-column

GridLayout (yellow portion of Fig. 5-32). FlowLayout managers control all rows on the grid. The

first row is for the SOAP/POX radio buttons; the second row is for the SAWSDL file; the next row is

for the MicroWSMO file and the last row is for the ontology. The final section on the GUI (after the

grid) is a FlowLayout for the OK and Cancel buttons.

Figure 5-32 StoRHm v2 GUI Layout Managers

195

Example

Fig. 5-33 shows the initial screen of the wizard. Part (a) is when POX is selected; part (b) is when

SOAP is selected.

Figure 5-33 (a) StoRHm v2 Configuration Wizard (POX)

Figure 5-33 (b) StoRHm v2 Configuration Wizard (SOAP)

Sequence Diagrams

The design of the algorithm used is shown in the sequence diagrams of Fig. 5-34. Fig. 5-34 (a)

reflects when the user has selected POX and Fig. 5-34 (b) reflects when the user has selected SOAP:

196

Figure 5-34 (a) StoRHm v2 (POX) Configuration Wizard Sequence Diagram

Figure 5-34 (b) StoRHm v2 (SOAP) Configuration Wizard Sequence Diagram

197

Algorithm

The configuration wizard takes the following semantically annotated input:

• a SAWSDL file representing the SOAP/POX WS description

• a MicroWSMO file representing the equivalent RESTful WS description

• the shared/common ontology outlining the QoS required

The flow diagram as per Fig. 5-35 outlines the algorithm when the user clicks OK.

Figure 5-35 StoRHm v2 Configuration Wizard flow diagram

 This is explained as follows:

• the semantically annotated operations and parameters are parsed from the SAWSDL file

• iterate through the SAWSDL operations:

o is there a semantic match with an operation in the MicroWSMO file?

 N: alert the user

198

 Y: loop for the operation parameters; is there a semantic match on all the

parameters, regardless of order?

• N: alert the user

• Y: that operation matches, parse the URI and verb from the

MicroWSMO file; build the parameterized URI using the element

names from the SAWSDL file (as this reflects the structure of the

incoming message to the adapter)

 does the operation exist in the ontology?

• N: alert the user

• Y: determine the QoS (if any) for that operation; save the mapping (in

memory)

• if no error occurred, create the Mapping file.

The requirement to integrate both POX and SOAP configuration elements is achieved by the user

selecting their request message format (SOAP or POX). This will determine whether of not the

SOAP operation column in the mapping file is populated. Note that the “v1.1” and “v2.0” options

refer to SAWSDL v1.1 and 2.0 respectively.

Package/Class Diagrams

The package and class diagrams representing this design are shown in Fig. 5-36 and Fig. 5-37.

199

Figure 5-36 StoRHm v2 Configuration Wizard package diagram

Figure 5-37 StoRHm v2 Configuration Wizard class diagram

200

Design decisions

As per StoRHm v1.

5.5.3.2 StoRHm v2 Protocol Adapter
The design of the StoRHm v2 protocol adapter (Fig. 5-38) is similar in many respects to the StoRHm

v1 (POX) adapter (see Fig. 5-14). These similarities result from the design decision to use the

RESTlet framework. However, the desire to design a solution that integrated both SOAP and POX

into one application artefact is a noteworthy difference. The integrated adapter responds to SOAP

requests via the URI “/StoRHm_Adapter” and POX requests via the URI “/POX_Adapter”. The

client in StoRHm v2 is RESTlet based. The client is also integrated i.e. whether the client issues

SOAP or POX request depends on configuration file settings.

Figure 5-38 StoRHm v2 Protocol Adapter design

Sequence Diagrams

The design of the algorithm used is shown in the sequence diagram of Fig. 5-39. Fig. 5-39 (a)

reflects the sequence when a SOAP message arrives at the adapter; Fig. 5-39 (b) reflects the

sequence when a POX message arrives at the adapter. Point 5 in the event flow is the only difference

i.e. where the RESTful response is wrapped in SOAP metadata for SOAP clients.

201

Figure 5-39 (a) StoRHm v2 Protocol Adapter (SOAP) sequence diagram

Figure 5-39 (b) StoRHm v2 Protocol Adapter (POX) sequence diagram

202

The algorithms used are as outlined previously in StoRHm_v1. This includes QoS.

Package/Class Diagrams

The package and class diagrams representing the design are outlined in Figures 5-40 and 5-41. Note

that the design is similar to the POX design in StoRHm_v1 i.e. full use of RESTlet technology.

Figure 5-40 StoRHm v2 Protocol Adapter package diagram

Figure 5-41 StoRHm v2 Protocol Adapter class diagram

203

Design decisions

As stated previously, the adapter is designed using the RESTlet framework and integrates both the

SOAP and POX adapters.

5.6 Summary
This chapter outlined the StoRHm architecture underpinning the research contributions of this thesis.

The research questions that led to the architecture were initially restated. Given that StoRHm has two

distinct architectures, a project lifecycle outlining timelines and rationale for each version was

presented. Both versions of the StoRHm architecture were then discussed. Each version supports a

configuration element that generates a mapping file and a runtime adapter that, informed by the

mapping file, transforms the incoming request message to RESTful format. It was noted that

StoRHm v1 contains a manual, user-intensive configuration element. StoRHm v2 is a semantically-

informed version of StoRHm v1. The configuration element of StoRHm v2 avails of semantic

technologies to automate the mappings. The next chapter covers the implementation, test cases and

evaluation of StoRHm.

204

Chapter 6

Implementation and Evaluation

6.1 Introduction
Chapter 5 outlined the architecture central to this thesis. This chapter will examine the

implementation instances, test cases, performance and evaluation criteria used as part of this

research. Table 6-1 lists the software artefacts:

Table 6-1 Software Artefacts

These artefacts total 10,790 lines of code approximately (excluding PhoneDirClient and

PhoneDirServer). The breakdown is as follows: StoRHm_v1 (POX): 2855 lines of code;

205

StoRHm_v1 (SOAP): 3365 lines of code and StoRHm_v2: 4570 lines of code.

6.2 StoRHm v1 implementation
As outlined in Chapter 5, StoRHm v1 consists of two elements: a configuration wizard and a runtime

protocol adapter. The implementation instances are now discussed. As stated previously, StoRHm v1

is capable of mapping both SOAP and POX Web Service requests to RESTful HTTP format. Despite

being architecturally similar, their implementations are different. As in Chapter 5, in the interests of

clarity, separate sections are required. To this end, subsections 6.2.1 and 6.2.2 refer to POX and

subsections 6.2.3 and 6.2.4 refer to SOAP. The principal difference with regard to the protocol

adapter is the fact that when implementing the SOAP adapter, the RESTlet framework was in its

early stages. This was not the case when implementing the POX adapter some months later.

6.2.1 StoRHm v1 (POX) Configuration Wizard

The configuration function is supported by a wizard as shown in Figure 6-1.

Figure 6-1 POX to RESTful HTTP Configuration Wizard

206

The structure of the GUI is a front-end for the CSV with some support. XML Schema informs the

POX side of the mapping. The wizard prompts the user for the name of the Schema file. The file

name can be URI based or file based. Using a configuration file, the wizard populates the Web

Service names (column 1) and the Elements combo boxes (column 2). The Element combo boxes

contain XPath expressions which are based on the element names and their structure in the Schema.

The HTTP verb and MIME type columns (the last two columns in Fig. 6-1) are populated from

configuration files. The user then selects a (POX) Web service and builds the semantically equivalent

RESTful Web Service by using the “Insert” button. This builds up a RESTful URI with XPath

expressions which are later used to parse the parameters from incoming POX requests.

The user selects the HTTP verb to use from the HTTP verb drop down combo box. The MIME Type

drop down enables users to select different response types from the RESTful Web services.

However, as the client is a POX client, this setting will always be XML. The user selects the QoS

requirements for that RESTful HTTP service by selecting the relevant QoS checkbox(s) (column 5).

The user then selects OK and the CSV file is populated. The CSV file is subsequently used by the

protocol adapter, when transforming the POX request to RESTful HTTP format.

WADL, a description language for HTTP-based Web applications can be used to support the

RESTful HTTP side of the mapping [84]. However, it is an optional feature as many RESTful HTTP

services use HTML (with/without microformats) to describe their interface [86]. As opposed to

building the URI manually, the WADL checkbox at the top right of Fig. 6-1 can be selected. If the

WADL checkbox is selected, the WADL file is parsed enabling automatic population of the Root

URI. The RESTful URI’s are parsed sequentially from the WADL file into the text fields in the

RESTful URI column (column 4). Depending on the URI being parsed from the WADL file, the

verbs supported by that URI are populated into the “HTTP verb” column and the MIME Types

supported by that URI are populated into the “MIME Type” column. This means that the last two

columns (HTTP verb and MIME Type) are populated from the WADL file and are URI-dependent

e.g. if a URI does not support POST then POST will not appear in the drop down listbox. This will

help prevent a URI from receiving a request for an unsupported verb/MIME type.

The WADL process is best explained with the aid of an example. Listing 6-1 is a sample WADL file

reflecting a RESTful Banking Web Service.

207

Listing 6-1 Sample WADL file

This Web Service is hosted at “http://127.0.0.1:3050/RESTServer” and it supports the following

URI’s:

• “/BankServices” which supports the verbs POST, DELETE and GET. The response

representation from each verb is the media type “text/xml” i.e. XML.

• “/BankServices/{branchCode}/{accountNo}” where {branchCode} and {accountNo} are

string placeholders for incoming requests. This URI supports DELETE, GET and PUT and

the response representation from each verb is also XML.

Knowing the URI’s, the verbs they support and the returned representation enables the semi-

automation of the RESTful side of the mapping (as outlined earlier). This leads to the automatic

population of certain fields, namely, the RESTful URI, the Root URI, the HTTP verb and MIME

208

type. Figure 6-2 reflects the screen display upon selecting the WADL checkbox from Figure 6-1.

Note that the SOAP/POX elements still have to be manually input.

Figure 6-2 Configuration Wizard with WADL selected

6.2.2 StoRHm v1 (POX) Protocol Adapter
The protocol adapter is implemented using the RESTlet framework and deployed on the client. The

RESTlet framework is a simple yet powerful Java-based API for developing RESTful applications.

RESTlet enables the development of protocol-specific clients and servers (HTTP for the purposes of

this thesis). The adapter, which acts as both a server (to the POX client) and a client (to the RESTful

WS), is setup to listen on port 3010 at URI “http://127.0.0.1/POXGateway”. Note that this setup is

shown in Fig. 5-14. The client-side configuration file is modified to re-direct POX service

invocations via the adapter. This means that there is no re-compilation of the POX client necessary

i.e. the impact on the POX client is minimal.

The POX client is a RESTlet based HTTP client. The client executes a POX request as normal and

this request arrives at the adapter. The adapter parses the Web service name from the incoming URI.

The Web Service name is then used to index the CSV file. The adapter, using the other entries for

that row in the CSV file, maps the POX request to a RESTful HTTP request. This may involve the

extracting of data from the POX request and inserting that data into the RESTful URI.

This process can be seen from Fig. 6-3:

(1) - The incoming URI (from the POX client) is pointing at the adapter, namely “POXGateway”.

The Web Service name, namely “ServiceView” is appended to the URI.

209

(2) - The adapter parses “ServiceView” from the URI and uses the Web Service name to index the

CSV file. The CSV file informs the adapter that the resultant HTTP request is a GET with a

response type of “text/xml”. The second column in the CSV row is set to “N/A” for all POX

requests. This column is the SOAP operation and consequently is only populated and required by

SOAP requests. There are no QoS features with this Web Service i.e. no Security or Reliability.

(3) - Lastly, the CSV provides a “RESTful URI” column that enables the adapter to construct the

URI for the HTTP message. This column contains the XPath expressions that are used on the POX

request to elicit the values to use in the subsequent HTTP message. For example,

“{/Request/ServiceView/BRANCH_CODE}” is an XPath expression that when applied to the original

POX request results in the value “123456” being extracted. This value is inserted into the URI in the

XPath expression’s location. Thus the BRANCH_CODE of “123456” and the

ACCOUNT_NUMBER of “12345678” are extracted from the POX request and inserted into the

RESTful URI request. Note that the mapping creates a relationship between the data encoded in the

POX request and the resource structure of the RESTful URI, i.e. the data in the POX request is

encoded in the URI.

Note: The POX request in Fig. 6-3 refers to port 3011 (as opposed to 3010). This was done so that samples

messages could be viewed. An HTTP monitor was inserted between the POX client and the adapter. The

monitor listened on port 3011 and re-directed the request to port 3010 (the POX adapter). The monitor was

also inserted between the POX Adapter and the RESTful WS. The monitor listened on port 3051 and re-

directed the request to port 3050 (the RESTful WS server). This pattern was used throughout the test period.

210

Figure 6-3 Adapter mapping a POX message to RESTful format

6.2.3 StoRHm v1 (SOAP) Configuration Wizard
The configuration function is supported by a wizard as shown in Fig. 6-4. The structure of the GUI is

a front-end for the CSV with some support. WSDL informs the SOAP side of the mapping. Versions

1.1 and 2.0 of WSDL are supported. The wizard prompts the user for the names of the WSDL and

schema files. The file names can be URI based or file based. As the target mapping is from SOAP

over HTTP to RESTful HTTP, the wizard ensures that the Web service has a HTTP binding. The

wizard obtains the Web service name and operations supported by parsing the WSDL file. The

operations arguments are retrieved from the schema and are used to create signatures for the Specific

Interface column (column 1 in Fig. 6-4). The user can build the URI using the “Build URI” window

211

(Fig. 6-5). In Fig. 6-5, the arguments of the WSDL operation are populated into the drop down

listbox as an aid to the user in building the URI.

The user selects the QoS requirements for that RESTful HTTP service by selecting the relevant

checkbox (3rd column in Fig. 6-4). The Uniform Interface and MIME type columns (5th and 6th

columns respectively in Fig. 6-4) are populated from configuration files. The user then selects OK

and the CSV file is populated.

The CSV file is subsequently used by the protocol adapter when transforming the SOAP request to

RESTful HTTP format. As with the POX to RESTful HTTP configuration wizard, WADL is an

optional feature. So rather than the “HTTP Verb” and “MIME Type” columns being populated from

configuration files, the WADL checkbox can be selected and the WADL facility provided by

NetbeansTM used to populate those columns.

Figure 6-4 StoRHm v1 Configuration Wizard

212

Figure 6-5 Building the URI Wizard

6.2.4 StoRHm v1 (SOAP) Protocol Adapter
The protocol adapter of StoRHm_v1 is implemented as a servlet and is deployed on the client. The

adapter, which acts as both a server (to the SOAP client) and a client (to the RESTful WS), is setup

to listen on port 8080 at URI “http://127.0.0.1/Gateway”. The “location” attribute of the

“service/port/address” element of the client-side WSDL file is modified to re-direct SOAP service

invocations via the adapter. There is no re-compilation of the SOAP client necessary. However, The

Web Services Reference must be re-created for this WSDL change to take effect. The StoRHm_v1

client utilises the Netbeans infrastructure to call the Web Service. This means that the developer is

abstracted from the client call and much of the code generation is automated. The client executes a

SOAP request as normal and this request arrives at the adapter. The adapter parses the Web service

name from the incoming URI. The Web Service name is then used to index the CSV file. The

adapter, using the other entries for that row in the CSV file, maps the SOAP request to a RESTful

HTTP request. This may involve the extracting of data from the SOAP request and inserting that data

into the RESTful URI.

This process can be seen from Fig. 6-6:

(1) - The incoming URI (from the SOAP client) is pointing at the adapter, namely “Gateway”. The

Web Service “PartsInventory” is appended to the URI.

(2) - The adapter parses “PartsInventory” from the URI and the SOAP operation “getPartNumber”

from the SOAP request. The adapter then uses both the Web Service name and SOAP operation

name to index the CSV file. The CSV file informs the adapter that the resultant HTTP request is a

213

GET with a response type of “text/xml”. There are no QoS features with this Web Service i.e. no

Security or Reliability.

(3) - Lastly, the CSV provides a “RESTful URI” column that enables the adapter to construct the

URI for the HTTP message. This column contains the XPath expressions that are used on the SOAP

request to elicit the values to use in the subsequent HTTP message. For example, “{/partNo}” is an

XPath expression that when applied to the original SOAP request results in the value “200” being

extracted. This value is inserted into the URI in the XPath expression’s location. Thus the partNo of

200 is extracted from the SOAP request and inserted into the RESTful URI request.

Figure 6-6 Adapter mapping a SOAP message to RESTful format

214

6.4 StoRHm v2 implementation
As with StoRHm v1, there are configuration and protocol adapter elements. However, the

implementation of both in StoRHm v2 is quite different. The core requirement differentiating

StoRHm v2 is the integration of the Semantic Web in order to automate the configuration element.

Thus, the configuration wizard of StoRHm v2 reflects Semantic Web intelligence. With regards to

the protocol adapter, StoRHm v2 integrates both SOAP and POX into one instance whereas the

protocol adapter of StoRHm v1 resulted in two separate instances (one for SOAP and one for POX).

6.4.1 Configuration Wizard
A desktop-based wizard (Fig. 6-7) supports the configuration function. The structure of the GUI is a

front-end for the CSV with some support. The wizard provides two radio buttons at the top, named

POX and SOAP respectively. Depending on which the user selects, the user will be prompted for a

Schema (POX) or a SAWSDL file (SOAP). The MicroWSMO and ontology files are common to

both SOAP and POX. The file names can be URI based or file based.

The Semantic Web is a promising approach for Web Service selection [106] because RDF triples can

link concepts defined in different vocabularies thereby establishing relationships between

vocabularies [104]. As a result, the SAWSDL file, representing the SOAP/POX Web Service; the

MicroWSMO file, representing the RESTful Web service and the ontology, stating the QoS

supported by the Web Service are all semantically annotated a priori by Core dashboard [81],

SWEET [13] and Protege [98] respectively.

The wizard obtains the model references of the operations supported and their arguments, by parsing

the SAWSDL file. The model references represent the semantic concepts. For example, Listing 6-2 is

a sample SAWSDL segment outlining a SOAP Banking Web Service:

Listing 6-2 SAWSDL example (segment)

215

Note the semantic annotations of the operation itself :

"http://www.leitrimmills.ie/ontologies/BankService#ViewService" (line 50) and its input parameters:

"http://www.leitrimmills.ie/ontologies/BankService#BranchCode" (lines 33) and

"http://www.leitrimmills.ie/ontologies/BankService#AccountNo" (lines 36). Listing 6-3 shows the

MicroWSMO (segment) equivalent of Listing 6-2:

Listing 6-3 MicroWSMO example (segment)

Note that the semantic concept for the operation is the same (line 13) as in the SAWSDL file (Listing

6-2). The semantic annotations match for the inputs to the service also (lines 18 and 23). These

matching semantic concepts (i.e. same URIRef’s) are located in the MicroWSMO file in order to

ascertain the URI (line 12 of Listing 6-3) and HTTP verb (line 9 of Listing 6-3) used by the

equivalent RESTful Web Service.

The ontology is used to specify the QoS required and consequently, the service is located in the

ontology to determine whether Security and/or Reliability are required. Listing 6-4 is the ontology

for the service described in Listing 6-2 and 6-3. The ViewService concept is outlined between lines

73-77. The URIRef “http://www.leitrimmills.ie/ontologies/BankService#ViewService” (line 73)

denotes the semantic concept. This is the same semantic concept identified on line 50 of Listing 6-2

(SAWSDL file) and on line 13 of Listing 6-3 (MicroWSMO file). The ontology states on line 75-76

that this service does not support Security or Reliability. The branch code and account number

concepts of the ontology are outlined on lines 81 and 83 of Listing 6-4 respectively. The full URIRef

for the branch code is “http://www.leitrimmills.ie/ontologies/BankService#branchCode” (line 79).

216

This matches with line 33 of Listing 6-2 (SAWSDL) and line 18 of Listing 6-3 (MicroWSMO). The

URIRef for the account number is “http://www.leitrimmills.ie/ontologies/BankService#accountNo”.

This matches with line 36 of Listing 6-2 and line 23 of Listing 6-3. Once the QoS for the service has

been ascertained, the CSV file can be populated for that service.

Listing 6-4 Ontology example (segment)

The CSV file is then populated as follows: Web Service Name and SOAP Operation from the

SAWSDL/Schema file; RESTful URI and HTTP verb from the MicroWSMO file and QoS from the

ontology. However, if any of the SAWSDL/Schema concepts are not located in either the

MicroWSMO and/or ontology files, an error is reported to the user and the configuration process

exits without creating the CSV file.

Lifting and lowering schemas are used to mediate data between services but as we are completely

replacing the SOAP request with a RESTful request, there is no need for mediation and thus no need

to use lifting and lowering schemas.

217

Figure 6-7 (a) StoRHm v2 Configuration Wizard - SOAP

Figure 6-7 (b) StoRHm v2 Configuration Wizard - POX

Fig. 6-7 (a) shows the configuration wizard based on the SOAP radio button being selected (note the

SAWSDL input prompt). Fig. 6-7 (b) shows the configuration wizard based on the POX radio button

being selected (note the Schema input prompt).

6.4.2 Protocol Adapter
The StoRHm_v2 adapter is an integrated adapter based on the RESTlet framework. As the

StoRHm_v1 adapter is servlet based and the POX to RESTful HTTP adapter is RESTlet based,

change was unavoidable. A decision was made to proceed with the RESTlet approach. The reasons

for this were as follows:

a) Familiarity with the RESTlet pattern was limited when developing the original StoRHm_v1

218

adapter (which was the very first adapter)

b) RESTlet provides excellent granularity of control within the code over the URL patterns i.e.

there is no need for editing of an external web.xml file as with the servlet pattern

c) After changing the WSDL file to point the SOAP client at the adapter, in order to get the

client to “dynamically” read the WSDL file, it was necessary to delete and re-create the Web

Service Reference in Netbeans. This is not the case when the client is implemented using

RESTlet.

This has little effect on migrating the POX adapter (of StoRHm v1) as it was already based on

RESTlet. Changes were required when integrating the SOAP adapter (of StoRHm_v1), as it was

servlet based.

As the StoRHm_v2 adapter is an integrated solution, it can handle both SOAP and POX requests. It

achieves this by setting up two separate URI’s; one for POX requests (“/POXAdapter”) and one for

SOAP requests (“/StoRHm_Adapter”). Both URI’s are on port 3010. There are two separate Java

classes responding to these URI’s. Their operation follows the pattern outlined previously:

• extract the Web Service name from the URI.

• use the Web Service name (and SOAP operation name if a SOAP request) to index the CSV

file.

• the adapter now has the HTTP verb to use; the RESTful URI; the content type to request and

the QoS required.

• if the URI retrieved from the CSV file is for a top-level collection i.e. there are no

placeholders in the URI, then use that URI in the subsequent RESTful HTTP request. If there

are placeholders in the CSV URI, the request is parsed to elicit these values and the data is

inserted into the URI in the locations of the placeholders.

Once the HTTP request is built, the adapter issues the request. The RESTful Web Service is executed

and returns its response to the adapter. The adapter returns this response to the original client. If the

original client was a SOAP client then the adapter wraps the response message in SOAP metadata

before returning it.

6.5 Testing
In this section, the test environment is outlined and sample messages using the adapter are shown.

The performance of the adapter is also analysed. The sample messages are locally based tests (over

the LAN) but the performance tests are based on a distributed environment (over a LAN initially and

219

subsequently over the Internet).

6.5.1 Test Environment
A test environment has been implemented both in a controlled LAN environment and in an Internet

based environment. The client and server machines in the LAN environment are Dell Optiplex 780

desktop machines running Windows 7 with 4GB RAM and Intel Core2 Duo CPU processors. One of

the Dell machines hosts the client and adapter software while the other machine hosts the server

software. Glassfish is the application server used by the server. In the Internet environment, the client

is as outlined above and the server is a Dell Dimension 8400 running Windows XP with 3GB RAM.

The server machine is connected to the Internet via a 3Mb/sec Asymmetric Digital Subscriber Line

(ADSL) line. Figure 6-8 (a) and (b) reflect both the LAN and Internet-based setup respectively.

Figure 6-8 (a) LAN-based Test environment

Figure 6-8 (b) Internet-based Test environment

220

The IDE is NetBeans v6.8 which has integrated JAX-WS and Jersey 1.0 (JAX-RS reference

implementation) libraries. The configuration wizards use the “?wsdl” and “application.wadl”

facilities provided by Netbeans. The RESTlet framework was used by the adapters for responding to

SOAP/POX requests and for issuing subsequent RESTful HTTP messages to the backend RESTful

server. The RESTful server was also developed using RESTlet. An HTTP monitor, TCPMon [99]

was inserted between the Web service client, the adapter and the Web services server so as to

monitor the messages on the network. Subsections 6.5.2 and 6.5.3 detail POX and SOAP examples

respectively. Each of the examples work with both versions of StoRHm.

6.5.2 POX example
The POX client is developed normally i.e. to communicate with a POX web service. The POX web

service in this instance is called “ServiceView” and it’s equivalent RESTful Web Service (GET

/RESTServer/BankServices/{branchCode}/{accountNo}) was also developed. The wizard in Figure

6-1 was executed and the CSV file created. The client-side configuration file, namely

StoRHm_Client.xml, which the client dynamically reads, was modified to point to the protocol

adapter. At this point, the RESTful WS server and the protocol adapter are up and running and the

client configuration file has been modified.

The client executes its POX request, which is directed to the adapter. Using the CSV file the adapter

transforms the POX message into a RESTful HTTP request. If the URI in the CSV file has

placeholders for POX elements then those elements are extracted from the POX message and are

inserted into the URI. The RESTful HTTP request is then issued to the updated URI. Once the

RESTful HTTP request returns, the reply is returned to the POX client.

Figure 6-9 shows the client POX request being mapped to RESTful HTTP. Note that the POST verb

has now been mapped to a GET and thus if the message is routed through a cache, the cache can now

inspect the message and check if it has an up-to-date representation of the resource.

Figure 6-9 also shows the HTTP Accept header which informs the RESTful service of the content

type the client understands (text/xml in the example). This is referred to as “Content Negotiation” and

enables RESTful Web Services greater flexibility with regard to the clients they can interact with

than their POX counterparts i.e. the RESTful services can serve other representation types e.g. JSON.

However, as the client is POX, the response type will always be XML.

The Accept header has changed from the POX request to the RESTful request because the user

selected text/xml specifically when creating the mapping. However, had the user selected “Use POX

221

Header” from the MIME Type drop down combo box during the configuration stage, the Accept

header on the RESTful request would be identical to the original POX request.

The “Content-Type” header on the POX request is not applicable in the RESTful HTTP request

because this is a GET request i.e. there is no entity body and therefore no “content”.

Figure 6-9 POX to RESTful HTTP Transformation

Figure 6-10 shows the RESTful Web Service response, which passes through the adapter where it is

returned to the POX client.

222

Figure 6-10 RESTful response

6.5.3 SOAP example
The SOAP client is developed normally i.e. to communicate with a SOAP web service. The SOAP

web service is called “PartsInventory” and it supports several operations one of which is

getPartNumber. An equivalent RESTful Web Service was developed. The wizard in Fig. 6-4 was

executed and the CSV file created. The web service WSDL file (which the client dynamically reads)

was modified to point to the protocol adapter. At this point, the RESTful WS server and the protocol

adapter are up and running and the client WSDL file has been modified.

The client executes its SOAP request which is directed to the adapter. Using the CSV file the adapter

transforms the SOAP message into a RESTful HTTP request. If the URI in the CSV file has

placeholders for SOAP elements then those elements are extracted from the SOAP message and are

inserted into the URI. The RESTful HTTP request is then issued to the updated URI. Once the

RESTful HTTP request returns, the reply is wrapped in SOAP metadata extracted from the original

SOAP request and returned to the SOAP client. Fig. 6-11 shows the client SOAP request being

mapped to RESTful HTTP.

223

Figure 6-11 SOAP to RESTful HTTP Transformation

Fig. 6-12 shows the RESTful Web Service response being wrapped with SOAP elements. The

RESTful Web Service response from the server passes through the adapter where it is wrapped in

SOAP and returned to the SOAP client.

224

Figure 6-12 RESTful HTTP to SOAP Transformation

6.6 Evaluation
Our hypothesis was that XML based Web Services could be represented RESTfully when using

HTTP. This was especially important for retrieval-type Web Services as they would map to HTTP

GET and thus Web intermediaries such as caches would be enabled. We also stated our intention to

build a seamless migration tool to facilitate enterprises wishing to migrate from POX Web Services

to RESTful HTTP Web Services. Therefore StoRHm is evaluated based on the following criteria:

• Configuration Wizard

o Operations that affect one resource and operations that affect more than one resource

o URI length restrictions

• Protocol Adapter

225

o Performance implications

o Message visibility

• Ease of Migration

6.6.1 Configuration Wizards
This subsection relates to the following areas: an overview of the support in the wizards; the XML

operations supported (SOAP or POX) and a discussion on the limits imposed on a URI.

6.6.1.1 XML operations supported

Given the interface-specific nature of XML operations, the operations are categorized into the

following areas: Create, Read, Update and Delete (CRUD) requests. These do not equate to POST,

GET, PUT and DELETE respectively, as PUT can also create and POST can append [45]. The XML

operations are categorized as follows:

XML operations that affect one resource:

• Read: Support is available to insert all simple data types from the WSDL/SAWSDL/POX

schema into the URI and as complex types are a hierarchy of simple types, these simple type

values must make their way into the URI. If a SOAP client, the XML response returned from

the RESTful Web Service is wrapped in a SOAP envelope so that the SOAP client will

understand it.

• Delete: Same as Read above.

• Create: Support exists to map the XML payload into the URI. However, there is a

difference when forwarding the request. The operation to be executed is located inside the

XML request message. This is not needed in a RESTful implementation where the URI,

coupled with the verb, will identify the Web Service to be executed. Currently the

implementation passes on the XML payload as is. Thus we have imposed a constraint that the

RESTful Web Service is developed based on existing XML payloads. In order to remove the

unnecessary XML Web Service operation (outer element in SOAP messages) before passing

on the XML payload, an XSLT transformation will be required (see Future Work section). As

with Read/Delete above, if a SOAP client, the RESTful response is wrapped in SOAP

metadata.

• Update: Same as Create above.

226

XML operations that affect more than one resource:

To improve efficiency in distributed systems, coarse-grained operations are preferred to fine grained

operations. This pattern is known as the “Remote Facade” pattern [100]. Thus, instead of the client

making two or more fine-grained operation calls returning many data items, the client makes one

coarse-grained operation call which returns all the data at once. For example, if a SOAP bookstore

operation requested information about a user and a book at the same time, both identifiers would be

passed in the request. This would map to two GET requests on two different URI’s (the book

resource and the user resource). The returned data from the fine-grained resources would need to be

integrated into a coarse grained response. To handle complex requests that map logically to more

than one URI, we propose to leave the POST in place to carry the data but RESTify the URI i.e. we

constrain the RESTful WS to implement the logic as in the SOAP model. This means that the data is

passed on untouched via POST to a RESTful Web Service URI. This usage of POST is often ”the

easiest way to express complex operations that span multiple resources” [45].

6.6.1.2 URI Size limit

The HTTP specification does not put a limit on URI length but servers do e.g. Apache imposes an

8Kb limit [45]. As GET and DELETE have no entity bodies to carry data, the arguments to be passed

are encoded in the URI. If a requirement arises where a large amount of data must be passed, the URI

(for a GET or DELETE) may become too long and lead to malformed URIs [101]. In this scenario, it

is suggested to leave the POST in place to carry the data but RESTify the URI. This is a non-

controversial use of POST [45]. Note however, that a 9-month study was conducted in 2004 to gather

statistics on publicly available Web Services [130]. It was noted that 92% of SOAP messages were

smaller than 2KB [130].

However, we believe that the URI is more efficient in representing data than XML, simply because

the URI contains no XML metadata i.e. no XML start and end tags involved. Even if one chooses to

use HTTP parameters (which roughly involves the same number of characters as an XML start tag),

there is still the gain of not having any XML end tags. For example, to encapsulate a person’s name

in XML requires the start tag <name> followed by the end tag </name>. In a parameterized URI

this would be encoded as ?name=. Thus, there is the saving on the XML end tag (</name> in this

example).

In the Introduction chapter, the goal of seamlessly enabling SOAP client’s access to RESTful WS

was outlined. The implication here is that the server side has already been migrated i.e. the SOAP

WS and their RESTful equivalents already exist and therefore the issue of the URI size limit will

already have been addressed. Thus, whether the mapping is from a specific SOAP operation to GET,

227

where the URI is capable of accommodating the data; or to POST, where the URI is unable to

accommodate the data, will already have been decided. The objective of the configuration wizards

presented in this thesis, was of addressing XML client-side migration. The URI size limit issue is of

direct relevance to our Future Work where the server-side migration from SOAP WS to their

RESTful counterparts will be researched.

6.6.2 Protocol Adapter
While performance is not central to the research in this thesis, it is an important consideration for

distributed technologies. Therefore, to measure the time impact of the adapter was necessary. One of

the standard measurements taken is the “round-trip method invocation time” which is the time

difference between the client invoking the remote method and the remote method returning its results

[102].

In this section, we present performance tests comparing the round-trip method invocation times (in

msecs) of a normal XML Web Service request with that of the same Web Service request routed via

the adapter to the equivalent RESTful Web Service. The StoRHm v2 adapter is the adapter used here

as it is the most recent and is an integrated solution. Note that the adapter-based figures represent a

worst-case scenario i.e. a full round trip on each occasion with no efficiencies such as caching

implemented. Two test environments were used: initially, a 1Gbit/sec LAN and subsequently the

Internet. The LAN based tests are POX based whereas the Internet based tests are both SOAP and

POX based i.e. the Internet based tests are a superset of the LAN based tests. The subsequent

statistics are informed by the Internet results.

In addition, the requirement that the transformed messages are visible (and therefore RESTful) is

also evaluated.

6.6.2.1 Software artefacts
The following software artefacts were designed and developed:

Client: A generic client, namely StoRHm_Client, was developed. StoRHm_Client is dynamically

informed by a configuration file, namely StoRHm_Client.xml. This configuration file enables the

dynamic re-configuration of the client test data e.g. what type of request (SOAP or POX) to generate

and the number of tests to perform. Listing 6-5 shows the StoRHm_Client.xml set to generate 100

POX requests that will be routed via the adapter:

228

Listing 6-5 StoRHm_Client.xml

RESTful Server: A RESTlet-based backend RESTful Web Server, namely RESTful_WS_Server,

responding to two URI’s on port 3050 was developed. The URI’s are:

• “/RESTServer/BankServices/” and

• “/RESTServer/BankServices/{branchCode}/{accountNo}

The two URI’s are handled by two different Java classes. The “/{branchCode}/{accountNo}” are

placeholders for actual values passed in the URI. For example, if the URI

“/RESTServer/BankServices/930010/12344321” is used in a HTTP request (to port 3050) then the

Java class assigned to that URI is executed. The branchCode variable takes on the value 930010 and

the accountNo variable takes on the value 12344321. The method executed in the class depends on

the HTTP verb used in the request:

• POST results in “acceptRepresentation” method being executed

• GET results in “represent” method being executed

• DELETE results in “removeRepresentations” method being executed

• PUT results in “storeRepresentation” method being executed

POX Server: A RESTlet-based backend POX Web Server, namely POXServer, responding to one

URI “/POXServer” on port 3000 was developed. This server overrides the acceptRepresentation

method i.e. it handles POST requests. The server parses the XML document using non-standard

XPath expressions. The server returns a standard XML response document to the client.

SOAP Server: A JAX-WS based SOAP Web Server, namely StoRHm_Web_Services, responding to

one URI “/StoRHm_Web_Services” on port 8080 was developed. This server utilises the Netbeans

and JAX-WS annotations e.g. @WebService before a class to specify that this class is a Web Service

229

and @WebMethod before a method to specify that this is an operation hosted by the Web Service.

The server returns a standard XML response document to the client.

6.6.2.2 LAN performance – StoRHm v2 adapter
The XML Web Services used were called ServiceView (Listing 6-6a) and ServiceAdd (Listing 6-6b).

Both are POX requests and the files sizes are identical (except for the Web Service name). When

routed via the adapter, these requests translated into HTTP GET and POST requests respectively. In

order to isolate the adapter, backend database activity was removed and identical test XML data

(Listing 6-6c) returned.

Listing 6-6 (a) POX ServiceView.xml

Listing 6-6 (b) POX ServiceAdd.xml

Listing 6-6 (c) Test data returned

LAN testing indicates that the adapter imposes a 48% performance penalty when mapping to a GET

and a 96% penalty when leaving the POST in place. To better understand these figures, three suites

of tests were carried out:

230

a) the difference between HTTP GET and POST.

b) examples where the adapter replaces the client POST request with a GET

c) examples where the adapter leaves the POST in place

Examining these in turn:

a) HTTP GET versus POST

As stated previously, there is no database activity on the server and both responses contain identical

test data. The difference is that the POX client POSTs an XML document and the RESTful client

GETs an equivalent URI i.e. there is no XML entity body in a RESTful GET.

POST – Using the POX Web Service ServiceView, 100 tests were carried out in the environment

outlined in section 6.5.1. To achieve this, the StoRHm_Client configuration file

(StoRHm_Client.xml) was modified to generate ServiceView POX requests, point at the POX server

(POXServer) and set the number of requests to 100. The client was executed and the average round-

trip method invocation time for the 100 Web Service executions was recorded. The average figure

was 9.7 msec.

GET – A separate RESTful HTTP client, namely RESTFUL_WS_Client, was developed to generate

GET requests to the RESTful Web Service. The URI used by the client was the equivalent RESTful

URI to the ServiceView requests i.e. /RESTServer/BankServices/123456/12345678. The client loops

for 100 Web Service executions and the average round-trip method invocation time was recorded.

The average figure was 6.6 msec. Thus, in this example, the GET was 47% faster.

Fig. 6-13 demonstrates the comparison.

Figure 6-13 LAN: GET versus POST performance

231

b) POST replaced with a GET by the adapter

The POX request ServiceView was applicable in this scenario also. StoRHm_Client.xml was

modified so that the same POX requests would now first travel to the adapter. In this instance, the

adapter, informed by the CSV file setup earlier, converts the requests from POST to GET, maps the

XML to URI format and sends them to the URI in the CSV file. The same tests were repeated 100

times and a new average round-trip method invocation time recorded. This new average figure was

14.4 msecs. Thus, in this example, the adapter imposes a 48% penalty when mapping to a GET.

Fig. 6-14 shows the comparison.

Figure 6-14 LAN: ServiceView performance

c) POST left untouched by the adapter

The POX request ServiceAdd was used in this scenario. As the message size is the same as

ServiceView, the average round-trip method invocation time for ServiceView is applicable.

StoRHm_Client.xml was modified so that the same POX requests would now travel via the adapter.

Whenever the URI in the CSV file is a top-level resource i.e. there are no XPath expressions in the

URI path, the adapter does not parse the request in an attempt to insert values into the URI. As the

CSV verb in this example is POST, the CSV URI is a collection resource. Thus, the URI from the

CSV file is used as is and there is no time expended on building up a new URI based on the contents

of the incoming request. The adapter leaves the POST in place and copies the entity body of the POX

client request into the client adapter request to the RESTful server. The same request was repeated

232

100 times and a new average round-trip method invocation time recorded. This new average figure

was 19 msecs. Thus, the adapter imposes a 96% cost to the average round-trip invocation time.

Fig. 6-15 demonstrates the time penalty imposed by the adapter.

Figure 6-15 LAN: ServiceAdd performance

The tests outlined above, demonstrate via specific Web Service examples, the performance

implications of introducing the adapter into a LAN infrastructure. These LAN-based tests are

encapsulated in Table 6-2:

Table 6-2 (a) LAN Performance Tests – GET versus POST

Table 6-2 (b) LAN Performance Tests – ServiceView versus ServiceAdd

233

As can be seen from Table 6-2, the adapter imposes a significant penalty in a LAN environment. It

was suspected that the penalty was excessive because any impact in a (high speed) LAN will impact

negatively, relatively speaking. To test this hypothesis, it was decided that a suite of tests based on

the Internet was required. It was also decided that the LAN based request files were very simple and

that more realistic request files would be appropriate (see Appendix Listings 1-4). In addition, the

Internet based tests form a more complete set of test cases because:

• they incorporate both SOAP and POX requests.

• a more complete set of HTTP verbs are tested i.e. GET, PUT, POST and DELETE.

6.6.2.3 Internet performance – StoRHm v2 adapter
The POX, SOAP and RESTful HTTP servers were deployed on a server on the Internet and the

adapter resides on the local machine.

Internet based POX results

The four new requests: ServiceView, ServiceAdd, ServiceDelete and ServiceUpdate were executed

one hundred times each. The new requests ServiceDelete and ServiceUpdate, map to the HTTP

verbs DELETE and PUT respectively. As regards the extra HTTP verbs to be tested, PUT follows

the POST model i.e. the adapter just copies the entity body of the Web Service request into the entity

body of the RESTful request; DELETE follows the GET model i.e. parsing of the request is required

in order to insert data values into the URI.

Table 6-3 outlines these results:

Table 6-3 POX Internet Performance Tests

234

As the second last column in Table 6-3 demonstrates, the adapter adds between 1-3% to the RTT if

POST or PUT is the target verb. In both situations, the adapter performs no parsing and the entity

body contains the XML message request. The adapter saves 18% on the average RTT if the request

is ServiceView (which is mapped to GET) and 22% if the request is ServiceDelete (which is mapped

to DELETE). This is explained by the fact that the original distributed POST request is now a local

POST request to the adapter, followed by a more lightweight GET or DELETE distributed request to

the RESTful HTTP server. Neither GET nor DELETE has an entity body in their requests and the

lack of an entity body results in a smaller message and a faster RTT. For example, Appendix Listing

10 is the RESTful GET of Appendix Listing 1.

Analysis of Internet based POX results

Table 6-3 also outlines statistics gathered. To gather these statistics, each POX Web Service was

directly accessed (no adapter) 100 times and the average, standard deviation, standard error, low and

high values (with 95% confidence) recorded. The tests were then repeated 100 times with the client

accessing the RESTful Web Services via the adapter and the results recorded again. To determine if

the adapter was statistically significant in the results (with 95% confidence), we require 2 sets of

hypotheses: one for situations where the adapter maps the POST to POST/PUT

(ServiceAdd/ServiceUpdate) and another for situations where the adapter maps to GET/DELETE

(ServiceView/ServiceDelete).

For the situation where the adapter maps to POST/PUT, the following null and alternative

hypotheses are formulated (note that WA = “with Adapter” and NA = “No Adapter”) :

H0 : µWA = µNA

H1 : µWA > µNA

In this instance, a one-tailed test is appropriate and at the 95% confidence level, the t-table value is

1.645. The rows applicable in Table 6-3 are highlighted in blue (ServiceAdd/ServiceUpdate).

ServiceAdd and ServiceUpdate have test statistic values of 0.7 and 1.25 respectively. As both values

are less than 1.645, they fall within the acceptable region; thus, the null hypothesis is accepted i.e.

there is no significant difference between the average times taken to issue these POX requests

directly to the POX Server and the average times taken to route these requests via the adapter to their

RESTful Web Service equivalents.

For the situation where the adapter maps to GET/DELETE, the following null and alternative

hypotheses are formulated:

H0 : µWA = µNA

235

H1 : µWA < µNA

Again a one-tailed test is appropriate and at the 95% significance level, the t-table value is -1.645.

The rows applicable in Table 6-3 are highlighted in brown (ServiceView/ServiceDelete). ServiceView

and ServiceDelete have test statistic values of -9.02 and -9.94 respectively. In this instance, as both

values are less than -1.645, they fall outside the acceptable region and the null hypothesis is rejected.

The alternative hypothesis is therefore accepted i.e. the average time taken to route these POX

requests via the adapter to their RESTful Web Service equivalents is significantly shorter than the

average time taken to issue these requests directly to the POX Server.

Internet based SOAP results

A complete new suite of tests to evaluate SOAP performance was created. These files are listed in

the Appendix (Listings 5-8). They were closely related to the POX tests in that the only difference

between the requests is that the SOAP requests contain surrounding SOAP metadata. Each request

was performed 100 times with/without the adapter and an average RTT calculated. Table 6-4 outlines

these results:

Table 6-4 SOAP Internet Performance Tests

As Table 6-4 shows, the adapter adds 4-8% to the RTT regardless of the target HTTP verb. The

pattern of these figures is different from the POX figures. This is explained by the fact that while the

architecture of a request routed via the adapter for both SOAP and POX requests is similar

i.e. client (RESTlet) adapter (RESTlet) RESTful WS (RESTlet), the architecture of the

236

tunnelled request is different.

In the POX architecture, the POX client request (a RESTlet) is directed to a POX WS (also a

RESTlet). In the SOAP architecture, the SOAP client request (a RESTlet) is directed to a SOAP WS

(implemented with Netbeans infrastructure). Thus the backend SOAP and POX servers are

implemented differently. Note that one of the criticisms of the WS-* stack is its complexity and to

address this, there is considerable tool support. Therefore to develop SOAP WS using the tool

(Netbeans in this instance) is the correct process to follow. There is no such support for POX.

As Table 6-4 demonstrates, even though the adapter maps ServiceView and ServiceDelete (with

XML entity bodies) to a more lightweight GET and DELETE requests (with the data in the URI)

respectively, the response times are still longer. The conclusion is therefore, that the SOAP

infrastructure implemented in Netbeans is more efficient than the RESTlet implementation.

Analysis of SOAP Internet based results

As with the POX statistics, each SOAP Web Service was directly accessed (no adapter) 100 times

and the average, standard deviation, standard error, low and high values (with 95% confidence)

recorded. The tests were then repeated 100 times with the client accessing the RESTful Web

Services via the adapter and the results recorded again. In this scenario, we require only one

hypothesis i.e. either the adapter is or is not present (note that WA = “with Adapter” and NA = “No

Adapter”):

H0 : µWA = µNA

H1 : µWA > µNA

A one-tailed test is appropriate and at the 95% significance level, the t-table value is 1.645. All rows

are applicable in Table 6-4. ServiceView, ServiceAdd, ServiceDelete and ServiceUpdate have test

statistic values of 3.45, 2.23, 3.39 and 2.67 respectively. As all values are greater than 1.645, they

fall outside the acceptable region and therefore the null hypothesis is rejected. The alternative

hypothesis is therefore accepted i.e. the average time taken to route these SOAP requests via the

adapter to their RESTful Web Service equivalents is significantly longer than the average time taken

to issue these requests directly to the SOAP Server.

Edge case example

The example SOAP and POX files used thus far (Listings 1-8 in the Appendix) were relatively small

(1643 bytes) and required the adapter to perform very little parsing when mapping a POST to a GET

237

or DELETE i.e. to elicit the branch code and the account number required the adapter to evaluate 2

XPath expressions. An internet-based test was conducted on a large request file (9882 bytes, see

Appendix: Listing 9), which requires the adapter to perform a significant amount of parsing (75

XPath expressions to be evaluated). The algorithm for parsing is the same regardless of whether the

request is POX or SOAP (the adapter relies upon the XPath expressions in the CSV file to parse the

incoming request) and consequently only one set of tests was necessary. Table 6-5 outlines the

results:

Table 6-5 Adapter statistics when significant Parsing required

As Table 6-5 outlines, the adapter adds 49% to the RTT. This is due to the significant increase in the

amount of parsing required.

Analysis of Detailed Parsing results

In this example, to determine if the adapter was statistically significant in the results (with 95%

confidence), the following null and alternative hypotheses are formulated (note that WA = “with

Adapter” and NA = “No Adapter”:

H0 : µWA = µNA

H1 : µWA > µNA

In this instance, a one-tailed test is appropriate and at the 95% confidence level, the t-table value is

1.645. The test statistic value from Table 6-5 is 10.42 and as it is greater than 1.645, it falls outside

the acceptable region and therefore the null hypothesis is rejected. The alternative hypothesis is

therefore accepted i.e. the average time taken to route these requests via the adapter is significantly

longer than the average time taken to issue these requests directly to the server.

238

6.6.2.4 Message Visibility
This section pertains to both the POX and StoRHm adapters. The new messages are now visible to

Web intermediaries. This is important as XML Web Service implementations currently have to find

alternative ways to cache their messages [9][10][129]. As Vinoski states: “the uniform-interface

constraint helps enable visibility into client-server interactions, making it easier for developers to

apply critical distributed systems concepts such as proxying, caching, intermediation and

monitoring” [12].

6.6.3 Ease of Migration
Both adapters would suit enterprises that are considering migrating from SOAP/POX to RESTful

HTTP Web Services or where a takeover/amalgamation of an enterprise has taken place and

RESTful HTTP is deemed the way forward. In both scenarios, while the server would migrate from

SOAP/POX to RESTful HTTP Web Services immediately, a wholesale replacement of the clients

can be avoided by adopting StoRHm i.e. no re-compilation of the clients is required as, from the

clients perspective, the interface is still the same. These clients can migrate when convenient.

Therefore, any enterprise wishing to migrate their Web Services from SOAP/POX to RESTful HTTP

can do so gradually, without impacting existing clients, by adopting StoRHm. More importantly,

their messages are now visible to Web intermediaries.

6.7 Summary
This chapter focused on the implementation, testing and evaluation of StoRHm. The implementation

instances were presented. The configuration wizard and protocol adapters of StoRHm v1 (both

SOAP and POX) and StoRHm v2 were detailed. Test cases were outlined and on-the-wire messages

were presented showing the adapter transforming the incoming opaque SOAP/POX messages to

visible RESTful HTTP format were shown. The configuration wizards were evaluated on the XML

operations supported and the URI length restrictions. The protocol adapters were evaluated on

message visibility. In addition, the StoRHm v2 protocol adapter was evaluated on its performance

impact in both a LAN and Internet setting. Statistics were presented based on the Internet

performance metrics. Lastly, StoRHm was evaluated based on how well it eases enterprise migration.

239

Chapter 7

Conclusion
This chapter summarises the thesis. Section 7.1 provides an overview of the research theme of this

thesis. Section 7.2 provides a summary of the principal contributions of the research and Section 7.3

provides some possible ways this work can be extended in the future.

7.1 Thesis Summary
The research work detailed in this thesis focused on an architecture that maps XML-based Web

Services to RESTful HTTP format. This architecture leverages Semantic Web technologies to

provide intelligent automation.

The thesis began by presenting a background to all the underpinning technologies relevant to this

thesis: XML-based Web Services, REST and the Semantic Web. The literature was critically

examined in order to establish areas where valid research questions remained. These questions

centred on mapping an XML Web Service invocation to RESTful HTTP format. The contributions

of this research, motivated by these research questions, are discussed in Section 7.2

240

The dissertation clearly defined the contribution made by the research work. The focus of research in

this thesis was in mapping from one Web Service paradigm to another. An architecture, namely

StoRHm, consisting of both a configuration wizard and a runtime adapter was presented. The

configuration wizard creates a mapping file that informs the adapter when transforming a message.

StoRHm v2 is a semantically-informed version of StoRHm v1. Testing was performed to

demonstrate the ability of StoRHm to deliver on its requirements, especially message visibility.

7.2 Research Conclusions
A number of research contributions were described in the Introduction of this thesis. As part of the

conclusion of the research, this section will detail how each of these contributions was achieved

using the architecture. The contribution areas are: enabling the Web infrastructure, seamless Web

Service migration, novel Web Services caching, novel Web Services interoperability, novel use of

Semantic Web Services stacks and SWEET editing tool contribution.

Web Infrastructure enabler

One of the key drivers for this research was to map SOAP and POX Web Services to RESTful HTTP

format. Both SOAP and POX Web Services issue POST requests to a gateway URI, with the request

to be executed encapsulated inside the XML entity body of the message. As the request is opaque,

this disables Web intermediaries.

This thesis has proposed, built and demonstrated a client-side architecture that transforms opaque

XML Web Service invocations to visible RESTful HTTP format. All of the REST constraints are

supported: unique id’s (URIs), Hypermedia (links within the response documents), Uniform Interface

(GET, PUT, POST and DELETE), Multiple Representations (XML only because the client is SOAP)

and stateless communication (no server state is relied upon). SOAP and POX requests are

transformed into RESTful HTTP requests by the adapter on the client. Thus, the requests that leave

the client are immediately visible, thereby enabling the inherent efficiencies of Web intermediaries.

The constraints imposed by the adapter element are that the RESTful Web Services which respond to

PUT/POST should expect the SOAP/POX payload untouched. Also, complex SOAP/POX requests

that map to more than one logical URI will be passed on as a POST with the payload untouched.

241

Migration enabler

Enterprises wishing to migrate from SOAP/POX Web Services to RESTful Web Services are

confronted with a situation than when the RESTful server replaces the backend SOAP/POX server,

all the clients must be replaced at the same time. As Vinoski states: “enterprises are quite concerned

with avoiding technology changes that require wholesale replacement -- they prefer approaches that

allow them to gradually shift from one technology to another.” [7].

The architecture presented in this thesis offers enterprises an alternative approach to wholesale

replacement and is ideally suited to enable enterprises to gradually migrate from SOAP/POX Web

Services to RESTful HTTP Web Services without impacting existing clients. This is confirmed by

Vinoski: “Your approach of using a service-specific gateway could potentially provide a way for

servers to migrate from SOAP/WS-* to REST without breaking existing clients, allowing those clients

to migrate when convenient” [7]. The architecture enables SOAP/POX clients to migrate when

convenient because their interface remains the same, even when the RESTful server replaces the

backend SOAP/POX server. The SOAP/POX clients interact with the adapter, which transforms the

request into RESTful format before forwarding it on to the RESTful server. The response, in the case

of SOAP clients, is wrapped in SOAP before returning to the client.

Novel approach to XML Web Service caching

Traditional approaches to SOAP/POX Web Services caching involve either local [9] or server-side

[10] datastores. The architecture in this thesis enables “XML Web Service” caching by leveraging

the proven Web infrastructure. This is possible because the messages are visible on leaving the

client. The architecture implements a transparent solution due to the fact that the client interface

remains untouched.

Novel Web Services interoperability

This thesis presents an architecture that, via use of Semantic Web technologies, implements an

intelligent, automated client-side SOAP/POX to RESTful HTTP mapping. The architecture is client-

side thereby ensuring on-the-wire message visibility. As the existing SOAP/POX application-

specific interfaces are taken into account in the architecture, client impact is minimal.

Semantic Web Services

During the research examination of literature in Semantic Web Services, it became evident that the

242

Semantic layer is used for integration, mediation and composability within and across the SOAP and

RESTful stacks. In the literature however, when a RESTful WS follows a SOAP WS, it is always the

output of the SOAP WS that is lifted to the Semantic layer; from where it is lowered to the RESTful

WS input format.

The model presented in this thesis, uses the Semantic layer to transform the SOAP input message as

opposed to the SOAP output message. Consequently, the SOAP WS is never executed.

In addition, the architecture presented here integrate POX WS. Although SAWSDL caters for both

WSDL and XML Schema, the research conducted as part of this thesis indicates that all the research

efforts have been with regard to SOAP and RESTful WS.

SWEET contribution

SWEET is a lightweight, online, Semantic Web Service annotation tool for adding semantics to

RESTful WS descriptions. As mentioned in the Introduction (Section 1.3), a core issue was

encountered and reported. This issue was subsequently fixed.

7.3 Future Work
The research presented in this thesis can be progressed in a number of ways. The following is a list

of recommendations for future work:

• One of the constraints imposed by the architecture is that, in situations where the target HTTP

verb to be used is PUT or POST, the entity body of the request is sent on untouched.

Typically, the outer element of the SOAP Body element contains the operation to be executed

e.g. the WSDL wrapped document-literal pattern enforces this. However, this “operation”

element is not needed by RESTful HTTP implementations as the “operation” is identified by

the URI coupled with the verb. In order to address this, research is required on XSLT

transformations to cater for scenarios as described above, where the XML content to be

passed on differ from the XML content received.

• The other constraint imposed by the architecture is that, in use cases where complex

SOAP/POX requests map to multiple URIs, the POST is left in place and the entity body is

passed on untouched. This results in one coarse-grained call replacing several fine-grained

calls. As outlined in section 6.6.1.1, this pattern is known as the “Remote Facade” pattern

[100]. An extension to the current architecture could be implemented to generate these fine-

grained calls and then measure the performance of the multiple fine-grained calls against the

current coarse-grained call.

243

• This thesis is not centred on performance and consequently the performance tests carried out

are indicative rather than extensive. Exploring the performance of the architecture could be

extended. This would include: round-trip time (RTT) of different request file sizes; the

performance impact of message reliability and/or security; and the effect of multiple similar

requests with efficiencies such as caching and Conditional GET in place.

• The architecture enables SOAP/POX clients access to pre-existing RESTful HTTP Web

Services. The adapter is a client-side migration enabler. Research could be conducted to

extend the framework to focus on the server i.e. provide a server-side migration enabler from

SOAP/POX to RESTful HTTP. Should an enterprise wish to migrate from SOAP/POX WS

to RESTful HTTP WS, this new extension would be executed first to migrate the server.

With the server migrated, the current framework would then be used to enable the enterprise

to gradually migrate the clients.

244

References

[1] S. Vinoski, “An Overview of Middleware”, proceedings of European

International Conference on Reliable Software Technologies, 2004.

[2] W. Vogels, “Web Services Are Not Distributed Objects”, IEEE

Internet Computing, Vol. 7, Issue. 6, pp. 59-66, 2003.

[3] R. Fielding, “Architectural Styles and the Design of Network-based

Software Architectures”, PhD thesis, University of Irvine, California,

2000, available at

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[4] S. Tilkov, Software Engineering Radio interview recorded at OOP ’08,

available at http://www.se-radio.net/2008/05/episode-98-stefan-tilkov-

on-rest/

[5] R. L. Costello, “REST (Representational State Transfer)”, available at

http://www.xfront.com/files/tutorials.html

[6] P. Alexander (VP Cisco Worldwide Field Marketing), “The Internet in

Business: How the Internet and Internet Applications are changing

business processes and enabling new business models”, keynote

address at International Conference on Internet Technology and

Applications, Wrexham, 2009.

[7] S. Vinoski, Verivue and Senior Member of IEEE, private

communication.

[8] J. Briggs, “Playing Together Nicely: Getting REST and SOAP to Share

Each Other’s Toys”, available at

http://onjava.com/pub/a/onjava/2006/02/15/jython-soap-interface-to-

rest.html

245

[9] Microsoft Research , “Caching XML Web Services for Mobility”,

Queue magazine 2003.

[10] D. Andersen, K.Devaram and VP. Ranganath, “LYE: a high-

performance caching SOAP implementation”, in Proceedings of the

International Conference on Parallel Processing, 2004.

[11] S. Vinoski, “Serendipitous Reuse”, IEEE Internet Computing, Vol. 12,

Issue 1, pp 84-87, 2008.

[12] S. Vinoski, “Demystifying RESTful Data Coupling”, IEEE Internet

Computing, Vol. 12, Issue 2, pp 87-90, 2008.

[13] M. Maleshkova, C. Pedrinaci and J. Domingue, “Semantic annotation

of Web APIs with SWEET”, in 6th Workshop on Scripting and

Development for the Semantic Web at Extended Semantic Web

Conference, 2010.

[14] World Wide Web Consortium (W3C),

http://www.w3.org/TR/ws-gloss/

[15] E. Newcomer and G. Lomow, “Understanding SOA with Web

Services”, Addison-Wesley, 2005.

[16] S. Graham, D. Davis, S. Simeonov, G. Daniels, P.

Brittenham, Y. Nakamurs, P. Fremantle, D. Konig and C. Zentner,

“Building Web Services with Java”, Sams Publishing, 2005.

[17] World Wide Web Consortium (W3C),

http://www.w3.org/2003/Talks/0521-hh-wsa/soa.png

[18] M. P. Papazoglou. “Web Services: Principles and Technology”,

 Prentice Hall, 2008.

[19] Web Services Interoperability Organisation, http://www.ws-i.org/

[20] Web Services Interoperability Organisation, Basic Profile v1.1

http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-

10.html#SOAP_encodingStyle_Attribute

[21] R. Butek (IBM Developer Works), “Which style of WSDL should I

use?”, available at

http://www.ibm.com/developerworks/webservices/library/ws-

whichwsdl/

[22] A. T. Manes (Burton Group consultant), “The "wrapped"

document/literal convention” available at

246

http://atmanes.blogspot.com/2005/03/wrapped-documentliteral-

convention.html

[23] G. Flurry (IBM Developer Works), “Create Wrapped Document-

Literal WSDL in WebSphere Studio Application Developer”, available

at

http://www.ibm.com/developerworks/websphere/library/techarticles/05

05_flurry/0505_flurry.html

[24] SOAP 1.2 Specification Part 2 Adjuncts (Second Edition),

http://www.w3.org/TR/2007/REC-soap12-part2-20070427/

[25] S. Tilkov (principal consultant at innoQ), communication via the REST

discussion group at http://tech.groups.yahoo.com/group/rest-discuss/

[26] S. Tilkov (principal consultant at innoQ), presentation at Devoxx ’08,

available at

http://wiki.parleys.com/display/PARLEYS/Home#;talk=31817742

[27] T. Takase, S. Makino, S. Kawanaka , K. Ueno, C. Ferris and A. Ryman,

“Definition Languages for RESTful Web Services: WADL vs WSDL

2.0.”, IBM DeveloperWorks White Paper, available at

http://www.ibm.com/developerworks/library/specification/ws-

wadlwsdl/index.html#download

[28] A. Khalifa and S. Minocha, “Accessing SAP Systems Using WebShere

Studion Application Developer – Part 1”, IBM WebSphere Developer

Technical Journal, available at

http://www.ibm.com/developerworks/websphere/techjournal/0304_min

ocha/minocha.html

[29] SOAP 1.1 specification, available at

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[30] M. Baker and M. Nottingham, RFC 3902: “The

‘application/soap+xml’ media type”, available at

http://www.ietf.org/rfc/rfc3902.txt

[31] A. Vedamuthu and D. Roth, “Understanding Web Services Policy”,

Microsoft Developer Network, available at

http://msdn.microsoft.com/en-us/library/ms996497.aspx

[32] Web Services Description Language (WSDL) Version 2.0

specification,

http://www.w3.org/TR/wsdl20/

247

[33] Web Services Description Language (WSDL) Version 1.1

specification,

http://www.w3.org/TR/wsdl

[34] Netbeans IDE v6.8, http://netbeans.org/community/releases/68/

[35] WSDL 1.1 versus WSDL 2.0 image,

http://en.wikipedia.org/wiki/Web_Services_Description_Language

[36] Web Services Description Language (WSDL) Version 2.0 Adjuncts,

http://dev.w3.org/2002/ws/desc/wsdl20/wsdl20-adjuncts.html

[37] WSDL 2.0 Primer,

http://www.w3.org/TR/2007/PR-wsdl20-primer-20070523

[38] Olaf Zimmermann (IBM Research), Software Engineering Radio

interview at OOPSLA ’07, available at http://www.se-

radio.net/2008/02/episode-85-web-services-with-olaf-zimmermann/

[39] S. Tilkov, “UDDI R.I.P”, available at

http://www.innoq.com/blog/st/2010/03/uddi_rip.html

[40] A. Ngu, M.Carlson, Q. Sheng and H.Paik “Semantic-Based Mashup of

Composite Applications”, IEEE Transactions on Services Computing,

Vol. 2, No. 1 pp2-15, 2010.

[41] C. O’hEigeartaigh, “Deploying WS-Security”, keynote address at

IEEE European Conference on Web Services (ECOWS), Dublin, 2008.

[42] “REST and POX”, Microsoft Developer Network article, available at

http://msdn.microsoft.com/en-us/library/aa395208.aspx

[43] S. Vinoski, “Putting the ‘Web’ into Web Services”,

IEEE Internet Computing Vol. 6, Issue 4, pp 90-92, 2002.

[44] S. Allamaraju. “RESTful Web Services Cookbook”, O’Reilly 2010.

[45] S. Ruby and L. Richardson, “RESTful Web Services”, O’Reilly 2007.

[46] Internet Assigned Numbers Authority (IANA) Multipurpose Internet

Mail Extensions (MIME) Media Types

http://www.iana.org/assignments/media-types/

[47] Flickr, www.flickr.com

[48] S. Vinoski (Senior member of IEEE), “REST, Reuse and Serendipity”

presentation at QCon 2008, available at

http://www.slideshare.net/QConLondon2008/rest-reuse-and-

serendipity.

[49] S. Vinoski, “RESTful Web Services Development Checklist”,

248

IEEE Internet Computing Vol. 12, Issue 6, 2008.

[50] P. Lacey (Burton Group consultant), “REST Easy” presentation,

available at http://i.bnet.com/whitepapers/burton_RESTEasy.ppt

[51] Hypertext Transfer Protocol specification 1.1, RFC 2616,

available at http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[52] S. Tilkov (principal consultant at innoQ), “A Brief Introduction to

REST”, available at http://www.infoq.com/articles/rest-introduction

[53] N. Gray, “Web Server Programming”, Wiley Publishing, 2003.

[54] The Coyote HTTP/1.1 connector

http://tomcat.apache.org/tomcat-4.1-doc/config/coyote.html

[55] S. Tilkov (principal consultant at innoQ), “Addressing Doubts about

REST”, available at http://www.infoq.com/articles/tilkov-rest-doubts

[56] M. Nottingham, “Post Once Exactly” Internet draft, available at

 http://tools.ietf.org/html/draft-nottingham-http-poe-00.

[57] B. de hOra, “HTTPLR“ Internet Draft, available at

 http://dehora.net/doc/httplr/draft-httplr-01.html

[58] J. Gregorio, “RESTify DayTrader”, available at

http://bitworking.org/news/201/RESTify-DayTrader

[59] Roy Fielding (author of REST), communication via the REST

discussion group on Yahoo, http://tech.groups.yahoo.com/group/rest-

discuss/

[60] R. Tomayko , “How I explained REST to my Wife”, available at

http://tomayko.com/writings/rest-to-my-wife

[61] T. Berners-Lee, “Universal Resource Identifiers – Axioms of Web

Architecture” 1996, available at

http://www.w3.org/DesignIssues/Axioms.html.

[62] Architecture of the World Wide Web, W3C Recommendation 2004,

available at http://www.w3.org/TR/webarch/

[63] T. Berners-Lee, “Cool URIs don’t change” 1998, available at

http://www.w3.org/Provider/Style/URI

[64] T. Berners-Lee, R. Fielding and L. Masinter, “Uniform Resource

Identifiers (URI): Generic Syntax” 1998, available at

http://tools.ietf.org/html/rfc2396

[65] G. Zheng and A.Bouguettaya “Service Mining on the Web”, IEEE

Transactions on Services Computing, Vol. 2, No. 1 pp65-78, 2009.

249

 [66] T. Berners-Lee, J. Hendler and Ora Lassila, “The semantic Web”,

Scientific American, vol. 284, no. 5, pp.34-43, 2001.

[67] J. Hebeler, M. Fisher, R. Blace, A. Perez-Lopez, “Semantic Web

Programming”, Wiley publishing, 2009.

[68] Resource Description Framework Specification,

http://www.w3.org/RDF/

[69] Resource Description Framework Primer,

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

[70] RDF/XML Specification,

http://www.w3.org/TR/rdf-syntax-grammar/

[71] XML Schema Datatypes.

http://www.w3.org/TR/xmlschema-2/

[72] Turtle – Terse RDF Triple Language,

http://www.w3.org/TeamSubmission/turtle/

[73] T. Segaran, C. Evans and J. Taylor, “Programming the Semantic

Web”, O’Reilly publishing, 2009.

[74] RDF Schema, http://www.w3.org/TR/rdf-schema/

[75] W3C Web Ontology Language

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

[76] W3C OWL Web Ontology Language Overview

http://www.w3.org/TR/owl-features/

[77] J. Hendler, Software Engineering Radio interview 2008, available at

http://www.se-radio.net/2008/11/episode-116-the-semantic-web-with-

jim-hendler/

[78] SPARQL Protocol and RDF Query Language (SPARQL),

http://www.w3.org/TR/rdf-sparql-query/.

[79] W3C SPARQL Query Results XML Format,

http://www.w3.org/TR/rdf-sparql-XMLres/

[80] J. Kopecky, T. Vitvar and D. Fensel, MicroWSMO and hRESTS,

available at http://sweet.kmi.open.ac.uk/pub/microWSMO.pdf

[81] SOA4All Dashboard tool suite,

http://coconut.tie.nl:8080/dashboard/#1304859734132

[82] Semantic Annotations for WSDL and XML Schema.

http://www.w3.org/TR/sawsdl/

[83] Jon Lathem, Karthik Gomadam and Amit Sheth.

250

“SA-REST and (S)mashups: Adding Semantics to RESTful Services”,

in Proceedings of International Conference on Semantic Computing,

2007.

[84] WADL W3C submission, http://www.w3.org/Submission/wadl/, 2009.

[85] Jacek Kopecky, Karthik Gomadam and Tomas Vitvar.

“hRESTS: and HTML microformat for describing RESTful Web

Services”, in Proceedings of IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology,

2008.

[86] Microformats. http://microformats.org/wiki/introduction

[87] hCard microformat specification, http://microformats.org/wiki/hcard.

[88] hCalendar microformat specification,

http://microformats.org/wiki/hcalendar.

[89] Poshformat, http://microformats.org/wiki/poshformats

[90] Gleaning Resource Descriptions from Dialects of Languages

specification, http://www.w3.org/TR/grddl/.

[91] Jacek Kopecky, Tomas Vitvar and Dieter Fensel.

“WSMO-Lite: Lightweight Semantic Descriptions for Services on the

Web”, in Proceedings of International Conference on Web Services,

2007.

[92] Web Services Modelling Ontology (WSMO), http://www.wsmo.org/

[93] Semantic Universe, http://www.semanticuniverse.com/articles-

lightweight-semantic-extensions-soa.html

[94] Semantic Annotations for REST submission,

http://www.w3.org/Submission/SA-REST/.

[95] RDF-in-attributes specification, http://www.w3.org/TR/rdfa-syntax/.

[96] RDF in Attributes Primer, http://www.w3.org/TR/xhtml-rdfa-primer/.

[97] RDFa in XHTML: Syntax and Processing,

http://www.w3.org/TR/rdfa-syntax/

[98] Protégé, http://protege.stanford.edu/

[99] TCPMon, http://ws.apache.org/commons/tcpmon/

[100] Martin Fowler, “Patterns of Enterprise Application Architecture”,

Addison-Wesley, 2003.

[101] C. Pautasso, O. Zimmermann, F. Leymann, “RESTful Web Services

vs. ‘Big’ Web Services: Making the Right Architectural Decision” in

251

Proceedings of the 17th World Wide Web Conference, pp 805-814,

2008.

[102] M. Juric, B. Kezmah, M. Hericko, I. Rozman and I Vezocnik,

“Java RMI, RMI Tunneling and Web Services Comparison and

Performance Analysis”,

SIGPLAN Not., vol. 39, no. 5, pp. 58–65, 2004.

[103] K. Page, D. De Roure and K. Martinez, “REST and Linked Data: a

match made for domain driven development”,

2nd International Workshop on RESTful Design (WS-REST) 2011.

[104] C. Bizer, T. Heath and T. Berners-Lee, “Linked Data – The Story So

Far”, International Journal on Semantic Web and Information

Systems, Volume 5, Issue 3, 2009.

[105] S. Staab, “The Emerging Web of Linked Data”, IEEE Intelligent

Systems journal, Volume 24, Issue 5, pp 87-92, 2009.

[106] A. Paliwal, B. Shafiq, J. Vaidya, H. Ziong and N. Adam,

“Semantics Based Automated Service Discovery”, accepted for

publication in the IEEE Transactions on Services Computing.

[107] M. Kuehnhausen, V. Frost, “Framework for Analyzing SOAP

Messages in Web Service Environments”, International Journal of

Web Services Practices, Vol. 5, No. 1, pp. 1-9, 2010.

[108] N.A. Sultan, “The Evolving Model for Software Delivery: The Case of

Web and Semantic Services”, International Journal of Web Services

Practices, Vol. 3, No. 1-2, pp. 57-65, 2008.

[109] J. Kopecky, T. Vitvar, C. Bournez and J. Farrell, “SAWSDL: Semantic

Annotations for WSDL and XML Schema”, IEEE Internet

Computing, Vol. 11, No. 6, pp60-67, 2007.

[110] V. Dabhi, H. Prajapati, V. Doshi and K. Chokski, “Developing

Enterprise Solution with Web Services Integration”, International

Journal of Web Services Practices, Vol. 4, No. 1, pp. 11-17, 2009.

[111] H. Artail, K. Fawaz and A. Ghandour, “A proxy-based architecture for

dynamic discovery and invocation of Web Services from mobile

devices”, accepted for publication in the IEEE Transactions on

Services Computing.

252

[112] R. Fielding and R. Taylor, “Principled Design of the Modern Web

Architecture”, ACM Transactions on Internet Technology, Vol. 2, No.

2, pp. 115-150, 2002.

[113] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi and S.

Weerawarana, “Unraveling the Web Services Web”, IEEE Internet

Computing, Vol. 6, Issue. 2, pp86-93, 2002.

[114] P. Louridas, “SOAP and Web Services”, IEEE Internet Computing,

Vol. 23, Issue. 6, pp62-67, 2006.

[115] M. Hepp, “Semantic Web and Semantic Web Services: father and son

or indivisible twins?”, IEEE Internet Computing, Vol. 10, Issue. 2,

pp85-88, 2006.

[116] W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F. Casati and

R. Saint-Paul, “Mismatch Patterns and Adaptation Aspects: A

Foundation for Rapid Development of Web Service Adapters”, IEEE

Transactions on Services Computing, Volume 2, No. 2, pp 94-107,

2009.

[117] G. Alonso, F. Casati, H. Kuno and V. Machiraju, “Web Services –

Concepts, Architectures and Application”, Springer-Verlag, 2004.

[118] B. Benatallah, F. Casati, D. Grigori, H. R. Motahari-Nezhad, and F.

Toumani, “Developing Adapters for Web Services Integration”,

Advanced Information Systems Engineering, Lecture Notes in

Computer Science, Springer, Volume 3520/2005, pp 415-429, 2005.

[119] A. Gokhale, B. Kumar and A. Sahuguet, “Reinventing the wheel?

CORBA vs. Web Services”, in Proceedings of International World

Wide Web Conference, 2002.

[120] R. Fatoohi, V. Gunwani, Q. Wang and C. ZHeng, “Performance

evaluation of middleware bridging technologies”, IEEE International

Symposium on Performance Analysis of Systems and Software, pp34-

39, 2000.

[121] U. Lampe, S. Schulte, M. Siebenhaar, D. Schuller and R. Steinmetz,

“Adaptive Matchmaking for RESTful Services based on hREST and

MicroWSMO”, in Proceedings of the 5th International Workshop on

Enhanced Web Services Technologies, pp10-17, 2010.

[122] J. Mangler, E. Schikuta and C. Witzany, “Quo Vadis Interface

Definition Language? Towards a Interface Definition Language for

253

RESTful Services”, in Proceedings of IEEE International Conference

on Service-Oriented Computing and Applications, pp1-4, 2009.

[123] R. Khare and Richard N. Taylor, “Extending the Representational State

Transfer (REST) Style for Decentralised Systems”, in Proceedings of

26th International Conference on Software Engineering, pp428-437,

2004.

[124] R. T. Fielding, E. Whitehead, K. Anderson, G. Bolcer, P. Oreizy and

R. N. Taylor, “Web-based development of complex information

products”, Communications of the ACM 41,8, pp84-92, Aug. 1998.

[125] A. Marinos, A. Razavi, S. Moschoviannis and P. Krause, “RETRO: A

Consistent and Recoverable RESTful Transaction Model”, in

Proceedings of IEEE International Conference on Web Services,

pp181-188, 2009.

[126] “JSR-311: JAX-RS: Java API for RESTful Web Services”, Java

Community Process, Sun Microsystems, 2007.

[127] S. Vinoski, “WS-Nonexistent Standards”, IEEE Internet Computing,

Vol. 8, Issue. 6, pp94-94, 2004.

[128] T. Moser and S. Biffl, “Semantic Integration of Software and Systems

Engineering Environments”, accepted for publication in the IEEE

Transactions on Systems, Man and Cybernetics.

[129] H. Artail and S. Saab, “A Distributed System for Consuming Web

Services and Caching their responses in MANETs”, IEEE

Transactions on Services Computing, Vol.2 No. 1, pp17-33, 2009.

[130] S. Kim and M. Rosu, “A Survey of Public Web Services”, Springer

LNCS, Volume 3182/2004, pp96-105, 2004.

[131] D. Guinard and S. Karnouskos, “Interacting with the SOA-Based

Internet of Things: Discovery, Query, Selection and On-Demand

Provisioning of Web Services”, IEEE Transactions on Services

Computing, Volume 3 no. 3, pp223-235, 2010.

[132] M. Crasso, A. Zunino and M. Campo, “Easy Web Service Discovery:

A Query-by-Example Approach”, Science of Computer Programming,

Volume 71,No. 2, pp144-164, 2008.

[133] H. Wang, J. Huang, Y. Xu and J. Xie, “Web Services: Problems and

Future Directions”, Journal of Web Semantics, Volume 11 No. 3,

pp309-320, 2004.

254

[134] D. Guinard, V. Trifa, T. Pham and O. Liechti, “Towards Physical

Mashups in the Web of Things”, in Proceedings of IEEE Sixth

International Conference of Networked Sensing Systems, pp196-199,

2009.

[135] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos and K. Kim,

“TinyREST – A Protocol for Integrating Sensor Networks into the

Internet”, in Proceedings of Workshop REALWSN, 2005.

[136] J. M. Dodero and E.Ghiglione, “REST based Web Access to Learning

Design Services”, IEEE Transactions on Learning Technologies,

Volume 1, No. 3, pp190-195, 2008.

[137] M. zur Muehlen, J.V. Nickerson and K.D. Swenson, “Developing Web

Services Choreography Standards – The Case of REST versus SOAP”,

Decision Support Systems, Volume 40, No.1, pp9-29, 2005.

[138] S. Kennedy, O. Molloy, R. Stewart and P. Jacob, “StoRHm: A protocol

adapter for mapping SOAP based Web Services to RESTful HTTP

format”, Electronic Commerce Research Journal, Volume 11, Issue 3,

pp245-269, 2011.

[139] S. Kennedy, O. Molloy, R. Stewart, P. Jacob and G. Daglioglu,

“StoRHm: A semantically automated protocol adapter for mapping

SOAP based Web Services to RESTful HTTP format”, in proceedings

of 4th International Conference on Internet Technologies and

Applications, Wrexham, 2011.

[140] S. Kennedy, O. Molloy and R. Stewart, “Leveraging the Semantic Web

to automate the mapping of SOAP Web Services to RESTful HTTP

format”, in proceedings of 6th International Conference in Networking

and Electronic Commerce Research, Italy, 2010.

[141] S. Kennedy, O. Molloy and R. Stewart, “An adapter for mapping Plain

Old XML (POX) Web Services to RESTful HTTP”, in proceedings of

International Conference on e-Society, Portugal, 2010.

[142] S. Kennedy, O. Molloy, R. Stewart and P. Jacob, “StoRHm: A novel

framework for RESTifying SOAP based Web Services”, in

proceedings of 5th International Conference in Networking and

Electronic Commerce Research, Italy, 2009.

255

[143] S. Kennedy and O. Molloy, “A novel approach to mapping Web

Services to REST”, in proceedings of 3rd International Conference on

Internet Technologies and Applications, Wrexham, 2009.

[144] S. Kennedy and O. Molloy, “A framework for transitioning Enterprise

Web Services from XML-RPC to REST”, in proceedings of 3rd

International Conference on Information Resources Management,

UAE, 2009.

[145] S. Kennedy, O. Molloy and I. Richardson, “eCommerce Web Services:

REST or WS-*”, in proceedings of 4th International Conference in

Networking and Electronic Commerce Research, Italy, 2008.

[146] N. A. Nordbotten, “XML and Web Services Security Standards”, IEEE

Communications Surveys and Tiutorials, Vol. 11, No. 3, pp 4-21, 2009.

[147] L. DeLooze, “Providing Web Service Security in a Federated

Environment”, IEEE Security and Privacy, Vol. 5 Issue 1, pp73-75,

2007.

[148] M. Naedele, “Standards for XML and Web Services Security”,

Computer, Vol. 36 Issue 4, pp96-98, 2003.

[149] J. Viega and J. Epstein “Why Applying Standards To Web Services Is

Not Enough”, IEEE Security and Privacy, Vol. 4 Issue 4, pp25-31,

2006.

[150] A. Bouguettaya, S. Nepal, W. Sherchan, X. Zhou, J. Wu, S.Chen, D.

Liu, L. Li, H. Wang and X. Liu “End-to-End Service Support for

Mashups”, IEEE Transactions on Services Computing, Vol. 3 No. 3,

pp250-263, 2010.

[151] B. Medjahed, A. Bouguettaya and A.K. Elmagarmid “Composing Web

Services on the Semantic Web”, VLDB Journal, Vol. 12 No. 4, pp333-

351, 2003.

[152] A. Segev and Q.Z. Sheng “Bootstrapping Ontologies for Web

Services”, IEEE Transactions on Services Computing, Vol. 3, No. 99

pp1-13, 2010.

[153] A. Segev and E.Toch “Context-Based Matching and Ranking of Web

Services for Composition”, IEEE Transactions on Services Computing,

Vol. 2, No. 3 pp210-222, 2009.

256

[154] R. Battle and E.Benson “Bridging the Semantic Web with

Representational State Transfer (REST)”, Journal of Web Semantics,

Vol. 6, No. 1 pp61-69, 2008.

[155] J. Kopecky and T.Vitvar “WSMO-LITE: Lowering the Semantic Web

Services barrier with modular and light-weight annotations”, in

proceedings of IEEE International Conference of Semantic Computing,

pp238-244, 2008.

[156] T. Khdour and M. Fasli “A Semantic-based Web Service Registry

Filtering Mechanism”, in proceedings of IEEE International

Conference on Advanced Information Networking and Applications

Workshops, pp373-378, 2010.

[157] Sample POX file from industry (financial institution).

257

Appendix

Listing 1 – POX Internet-based ServiceView Request
<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Transaction>ServiceView</Transaction>
 <ServiceView>
 <BRANCH_CODE>123456</BRANCH_CODE>
 <ACCOUNT_NUMBER>12345678</ACCOUNT_NUMBER>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ServiceView>
</Request>

258

Listing 2 – POX Internet-based ServiceAdd Request
<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Transaction>ServiceAdd</Transaction>
 <ServiceAdd>
 <BRANCH_CODE>123456</BRANCH_CODE>
 <ACCOUNT_NUMBER>12345678</ACCOUNT_NUMBER>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ServiceAdd>
</Request>

259

Listing 3 – POX Internet-based ServiceDelete Request
<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Transaction>ServiceDelete</Transaction>
 <ServiceDelete>
 <BRANCH_CODE>123456</BRANCH_CODE>
 <ACCOUNT_NUMBER>12345678</ACCOUNT_NUMBER>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ServiceDelete>
</Request>

260

Listing 4 – POX Internet-based ServiceUpdate Request
<?xml version="1.0" encoding="UTF-8"?>
<Request>
 <Transaction>ServiceUpdate</Transaction>
 <ServiceUpdate>
 <BRANCH_CODE>123456</BRANCH_CODE>
 <ACCOUNT_NUMBER>12345678</ACCOUNT_NUMBER>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ServiceUpdate>
</Request>

261

Listing 5 – SOAP Internet-based ServiceView Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
 <ns2:ServiceView xmlns:ns2="http://BankServicePkg/">
 <branchCode>123456</branchCode>
 <accountNo>12345678</accountNo>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ns2:ServiceView>
</S:Body>
</S:Envelope>

262

Listing 6 – SOAP Internet-based ServiceAdd Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
 <ns2:ServiceAdd xmlns:ns2="http://BankServicePkg/">
 <branchCode>123456</branchCode>
 <accountNo>12345678</accountNo>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ns2:ServiceAdd>
</S:Body>
</S:Envelope>

263

Listing 7 – SOAP Internet-based ServiceDelete Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
 <ns2:ServiceDelete xmlns:ns2="http://BankServicePkg/">
 <branchCode>123456</branchCode>
 <accountNo>12345678</accountNo>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ns2:ServiceDelete>
</S:Body>
</S:Envelope>

264

Listing 8 – SOAP Internet-based ServiceUpdate Request

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
 <ns2:ServiceUpdate xmlns:ns2="http://BankServicePkg/">
 <branchCode>123456</branchCode>
 <accountNo>12345678</accountNo>
 <CUSTOMER_TITLE>Mr.</CUSTOMER_TITLE>
 <CUSTOMER_FIRSTNAME>Joseph</CUSTOMER_FIRSTNAME>
 <CUSTOMER_MIDDLE_INITIAL>P</CUSTOMER_MIDDLE_INITIAL>
 <CUSTOMER_SURNAME>Bloggs</CUSTOMER_SURNAME>
 <CUSTOMER_ADDRESS_LINE1>10 Main Street</CUSTOMER_ADDRESS_LINE1>
 <CUSTOMER_ADDRESS_LINE2>Athlone</CUSTOMER_ADDRESS_LINE2>
 <CUSTOMER_ADDRESS_LINE3>Co. Westmeath</CUSTOMER_ADDRESS_LINE3>
 <CUSTOMER_ADDRESS_LINE4>Ireland</CUSTOMER_ADDRESS_LINE4>
 <CUSTOMER_TYPE>Personal</CUSTOMER_TYPE>
 <CUSTOMER_RATING>4</CUSTOMER_RATING>
 <COMMENT_LINE1>This is a comment with regard to the above
customer...</COMMENT_LINE1>
 <COMMENT_LINE2>This is a comment with regard to the above
customer...</COMMENT_LINE2>
 <COMMENT_LINE3>This is a comment with regard to the above
customer...</COMMENT_LINE3>
 <COMMENT_LINE4>This is a comment with regard to the above
customer...</COMMENT_LINE4>
 <COMMENT_LINE5>This is a comment with regard to the above
customer...</COMMENT_LINE5>
 <COMMENT_LINE6>This is a comment with regard to the above
customer...</COMMENT_LINE6>
 <COMMENT_LINE7>This is a comment with regard to the above
customer...</COMMENT_LINE7>
 <COMMENT_LINE8>This is a comment with regard to the above
customer...</COMMENT_LINE8>
 <COMMENT_LINE9>This is a comment with regard to the above
customer...</COMMENT_LINE9>
 <COMMENT_LINE10>This is a comment with regard to the above
customer...</COMMENT_LINE10>
 </ns2:ServiceUpdate>
</S:Body>
</S:Envelope>

265

Listing 9 – POX request that involves significant parsing

<?xml version="1.0" encoding="UTF-8"?>

<Request>

<Transaction>ServiceViewDetailedParse</Transaction>

<ServiceView>

<BRANCH_CODE>123456</BRANCH_CODE>

<ACCOUNT_NUMBER>12345678</ACCOUNT_NUMBER>

<CUST_NAME1>11

1111111111111111111111</CUST_NAME1>

<CUST_NAME2>11

1111111111111111111111</CUST_NAME2>

<CUST_NAME3>11

1111111111111111111111</CUST_NAME3>

<CUST_NAME4>11

1111111111111111111111</CUST_NAME4>

<CUST_NAME5>11

1111111111111111111111</CUST_NAME5>

<CUST_NAME6>11

1111111111111111111111</CUST_NAME6>

<CUST_NAME7>11

1111111111111111111111</CUST_NAME7>

<CUST_NAME8>11

1111111111111111111111</CUST_NAME8>

<CUST_NAME9>11

1111111111111111111111</CUST_NAME9>

<CUST_NAME10>111

11111111111111111111111</CUST_NAME10>

<CUST_NAME11>111

11111111111111111111111</CUST_NAME11>

<CUST_NAME12>111

11111111111111111111111</CUST_NAME12>

<CUST_NAME13>111

11111111111111111111111</CUST_NAME13>

<CUST_NAME14>111

11111111111111111111111</CUST_NAME14>

<CUST_NAME15>111

11111111111111111111111</CUST_NAME15>

<CUST_NAME16>111

11111111111111111111111</CUST_NAME16>

<CUST_NAME17>111

11111111111111111111111</CUST_NAME17>

<CUST_NAME18>111

11111111111111111111111</CUST_NAME18>

<CUST_ADDRESS1>222

266

2222222222222222222222222</CUST_ADDRESS1>

<CUST_ADDRESS2>222

2222222222222222222222222</CUST_ADDRESS2>

<CUST_ADDRESS3>222

2222222222222222222222222</CUST_ADDRESS3>

<CUST_ADDRESS4>222

2222222222222222222222222</CUST_ADDRESS4>

<CUST_ADDRESS5>222

2222222222222222222222222</CUST_ADDRESS5>

<CUST_ADDRESS6>222

2222222222222222222222222</CUST_ADDRESS6>

<CUST_ADDRESS7>222

2222222222222222222222222</CUST_ADDRESS7>

<CUST_ADDRESS8>222

2222222222222222222222222</CUST_ADDRESS8>

<CUST_ADDRESS9>222

2222222222222222222222222</CUST_ADDRESS9>

<CUST_ADDRESS10>22

22222222222222222222222222</CUST_ADDRESS10>

<CUST_ADDRESS11>22

22222222222222222222222222</CUST_ADDRESS11>

<CUST_ADDRESS12>22

22222222222222222222222222</CUST_ADDRESS12>

<CUST_ADDRESS13>22

22222222222222222222222222</CUST_ADDRESS13>

<CUST_ADDRESS14>22

22222222222222222222222222</CUST_ADDRESS14>

<CUST_ADDRESS15>22

22222222222222222222222222</CUST_ADDRESS15>

<CUST_ADDRESS16>22

22222222222222222222222222</CUST_ADDRESS16>

<CUST_ADDRESS17>22

22222222222222222222222222</CUST_ADDRESS17>

<CUST_ADDRESS18>22

22222222222222222222222222</CUST_ADDRESS18>

<CUST_TYPE1>33

3333333333333333333333</CUST_TYPE1>

<CUST_TYPE2>33

3333333333333333333333</CUST_TYPE2>

<CUST_TYPE3>33

3333333333333333333333</CUST_TYPE3>

<CUST_TYPE4>33

3333333333333333333333</CUST_TYPE4>

<CUST_TYPE5>33

3333333333333333333333</CUST_TYPE5>

<CUST_TYPE6>33

3333333333333333333333</CUST_TYPE6>

267

<CUST_TYPE7>33

3333333333333333333333</CUST_TYPE7>

<CUST_TYPE8>33

3333333333333333333333</CUST_TYPE8>

<CUST_TYPE9>33

3333333333333333333333</CUST_TYPE9>

<CUST_TYPE10>333

33333333333333333333333</CUST_TYPE10>

<CUST_TYPE11>333

33333333333333333333333</CUST_TYPE11>

<CUST_TYPE12>333

33333333333333333333333</CUST_TYPE12>

<CUST_TYPE13>333

33333333333333333333333</CUST_TYPE13>

<CUST_TYPE14>333

33333333333333333333333</CUST_TYPE14>

<CUST_TYPE15>333

33333333333333333333333</CUST_TYPE15>

<CUST_TYPE16>333

33333333333333333333333</CUST_TYPE16>

<CUST_TYPE17>333

33333333333333333333333</CUST_TYPE17>

<CUST_TYPE18>333

33333333333333333333333</CUST_TYPE18>

<CUST_RATING1>44

444444444444444444444444</CUST_RATING1>

<CUST_RATING2>44

444444444444444444444444</CUST_RATING2>

<CUST_RATING3>44

444444444444444444444444</CUST_RATING3>

<CUST_RATING4>44

444444444444444444444444</CUST_RATING4>

<CUST_RATING5>44

444444444444444444444444</CUST_RATING5>

<CUST_RATING6>44

444444444444444444444444</CUST_RATING6>

<CUST_RATING7>44

444444444444444444444444</CUST_RATING7>

<CUST_RATING8>44

444444444444444444444444</CUST_RATING8>

<CUST_RATING9>44

444444444444444444444444</CUST_RATING9>

<CUST_RATING10>444

4444444444444444444444444</CUST_RATING10>

<CUST_RATING11>444

4444444444444444444444444</CUST_RATING11>

<CUST_RATING12>444

268

4444444444444444444444444</CUST_RATING12>

<CUST_RATING13>444

4444444444444444444444444</CUST_RATING13>

<CUST_RATING14>444

4444444444444444444444444</CUST_RATING14>

<CUST_RATING15>444

4444444444444444444444444</CUST_RATING15>

<CUST_RATING16>444

4444444444444444444444444</CUST_RATING16>

<CUST_RATING17>444

4444444444444444444444444</CUST_RATING17>

<CUST_RATING18>444

4444444444444444444444444</CUST_RATING18>

<BALANCE1>BALANCE444

44444444444444444444</BALANCE1>

</ServiceView>

</Request>

269

Listing 10 – GET equivalent of Listing 1

"http://109.76.98.126:3050/RESTServer/BankServices/123456/12345678/Mr./Jo
seph/P/Bloggs/10 Main Street/Athlone/Co.
Westmeath/Ireland/Personal/4/This is a comment with regard to the above
customer.../This is a comment with regard to the above customer.../This
is a comment with regard to the above customer.../This is a comment with
regard to the above customer.../This is a comment with regard to the
above customer.../This is a comment with regard to the above
customer.../This is a comment with regard to the above customer.../This
is a comment with regard to the above customer.../This is a comment with
regard to the above customer.../This is a comment with regard to the
above customer...".

