Skip to main content
Log in

Comparison between the agency and wholesale model under the e-book duopoly market

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

This paper provides a comprehensive comparison between the agency and wholesale model under the electronic book market duopoly. A model comprised of two retailers and a publisher was established to run the comparison in terms of price, profit, and welfare. We found that although better e-reader offerings may seem favorable in terms of e-book pricing, the actual effect on e-books is limited or even negligible. High wholesale price leads to higher retail prices of e-books and e-readers under the wholesale model than the agency model. Generally speaking, the total profits of e-books returned to the retailers under the wholesale model are lower than those returned under the agency model; conversely, the publisher obtains higher profits under the wholesale model than the agency model despite its power over e-book pricing. We also found that consumers are more likely to derive greater surplus under the wholesale model when the difference in available e-books is relatively narrow. If the wholesale price is low, however, the consumer surplus under the wholesale model is higher than that under the agency model across the board. Further, when the difference in e-books is very small, the total social welfare is minimized under the wholesale model compared to the agency model; low wholesale price but poor substitutability (or high wholesale price with relatively high substitutability) yield favorable social welfare under the wholesale model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abhishek, V., Jerath, K., & Zhang, Z. J. (2015). Agency selling or reselling? Channel structures in electronic retailing. Management Science, 62(8), 2259–2280.

    Article  Google Scholar 

  2. Adner, R., Chen, J., & Zhu, F. (2016). Frenemies in platform markets: The case of Apple’s iPad vs. Amazon’s Kindle. Harvard Business School Technology and Operations Mgt. Unit, Working Paper (15-087).

  3. Armstrong, M. (1996). Multiproduct nonlinear pricing. Econometrica: Journal of the Econometric Society, 64(1), 51–75.

    Article  Google Scholar 

  4. Balasubramanian, S., Bhattacharya, S., & Krishnan, V. V. (2015). Pricing information goods: A strategic analysis of the selling and pay-per-use mechanisms. Marketing Science, 34(2), 218–234.

    Article  Google Scholar 

  5. Bhargava, H. K., & Choudhary, V. (2008). Research note-when is versioning optimal for information goods? Management Science, 54(5), 1029–1035.

    Article  Google Scholar 

  6. De los Santos, B., & Wildenbeest, M. R. (2014). E-book pricing and vertical restraints. Available at SSRN 2506509.

  7. Dewan, R., Jing, B., & Seidmann, A. (2003). Product customization and price competition on the Internet. Management Science, 49(8), 1055–1070.

    Article  Google Scholar 

  8. Fan, M., Kumar, S., & Whinston, A. B. (2007). Selling or advertising: Strategies for providing digital media online. Journal of Management Information Systems, 24(3), 143–166.

    Article  Google Scholar 

  9. Gaudin, G., & White, A. (2014). On the antitrust economics of the electronic books industry. Available at SSRN 2352495.

  10. Ghosh, B., & Balachander, S. (2007). Competitive bundling and counter-bundling with generalist and specialist firms: Research note 1. Management Science, 53(1), 159–168.

    Article  Google Scholar 

  11. Hao, L., & Fan, M. (2014). An analysis of pricing models in the electronic book market. MIS Quarterly, 38(4), 1017–1032.

    Article  Google Scholar 

  12. Hotelling, H. (1990). Stability in competition. Collected Economics Articles of Harold Hotelling, 39(153), 50–63.

    Article  Google Scholar 

  13. Ingene, C. A., & Parry, M. E. (1995). Channel coordination when retailers compete. Marketing Science, 14(4), 360–377.

    Article  Google Scholar 

  14. Jing, B. (2007). Network externalities and market segmentation in a monopoly. Economics Letters, 95(1), 7–13.

    Article  Google Scholar 

  15. Johnson, J. P. (2013). The agency and wholesale models in electronic content markets. Available at SSRN 2126808.

  16. Lang, K. R., & Vragov, R. (2005). A pricing mechanism for digital content distribution over computer networks. Journal of Management Information Systems, 22(2), 121–139.

    Article  Google Scholar 

  17. Li, Y. M. (2010). Pricing digital content distribution over heterogeneous channels. Decision Support Systems, 50(1), 243–257.

    Article  Google Scholar 

  18. Li, X., Li, Y., & Cai, X. (2013). Double marginalization and coordination in the supply chain with uncertain supply. European Journal of Operational Research, 226(2), 228–236.

    Article  Google Scholar 

  19. Li, Y., Lin, Z., Xu, L., & Swain, A. (2015). “Do the electronic books reinforce the dynamics of book supply chain market?” A theoretical analysis. European Journal of Operational Research, 245(2), 591–601.

    Article  Google Scholar 

  20. Mantena, R., Sankaranarayanan, R., & Viswanathan, S. (2010). Platform-based information goods: The economics of exclusivity. Decision Support Systems, 50(1), 79–92.

    Article  Google Scholar 

  21. McGuire, T. W., & Staelin, R. (1983). An industry equilibrium analysis of downstream vertical integration. Marketing Science, 2(2), 161–191.

    Article  Google Scholar 

  22. Miller, C. C., Bosman, J. (2011). E-books outsell print books at Amazon. The New York Times (May 19).

  23. Prasad, A., Venkatesh, R., & Mahajan, V. (2010). Optimal bundling of technological products with network externality. Management Science, 56(12), 2224–2236.

    Article  Google Scholar 

  24. Reimers, I., & Waldfogel, J. (2014). Throwing the books at them: Amazon’s puzzling long run pricing strategy. Available at SSRN 2442747.

  25. Rusmevichientong, P., Van Roy, B., & Glynn, P. W. (2006). A nonparametric approach to multiproduct pricing. Operations Research, 54(1), 82–98.

    Article  Google Scholar 

  26. Shelegia, S. (2012). Multiproduct pricing in oligopoly. International Journal of Industrial Organization, 30(2), 231–242.

    Article  Google Scholar 

  27. Spengler, J. J. (1950). Vertical integration and antitrust policy. The Journal of Political Economy58(4), 347–352.

    Article  Google Scholar 

  28. Sundararajan, A. (2004). Nonlinear pricing of information goods. Management Science, 50(12), 1660–1673.

    Article  Google Scholar 

  29. Yu, A., Hu, Y., & Fan, M. (2011). Pricing strategies for tied digital contents and devices. Decision Support Systems, 51(3), 405–412.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers, Associate Editor and the Editor for very detailed and helpful comments and suggestions on this work, and the support from the National Natural Science Foundation of China (Project Nos. 71271012, 71671011 and 71332003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Yao.

Appendix

Appendix

Proof of Proposition 1

To maximize the profits of two retailers, we solve \(p_{1}^{W}\), \(p_{1R}^{W}\), \(p_{2}^{W}\), \(p_{2R}^{W}\) from \(\frac{{\partial \pi_{1}^{W} }}{{\partial p_{1} }} = 0\), \(\frac{{\partial \pi_{1}^{W} }}{{\partial p_{1R} }} = 0\), \(\frac{{\partial \pi_{2}^{W} }}{{\partial p_{2} }} = 0\), \(\frac{{\partial \pi_{2}^{W} }}{{\partial p_{2R} }} = 0\). And we exam both the hesse matrices of \(\pi_{1}^{W}\) and \(\pi_{2}^{W}\) are \(\left( {\begin{array}{*{20}c} { - 2} & { - \frac{1}{2t}} \\ { - \frac{1}{2t}} & { - \frac{1}{t}} \\ \end{array} } \right)\) and this matrix is negative. So, we obtain

$$\begin{aligned} p_{1}^{W} & = \frac{{\left( {1 + 2h + 2w} \right)}}{{2\left( {2 - \alpha } \right)}}{ + }\frac{{\left( {c_{2R} - c_{1R} + v_{d} } \right)}}{{2\left( {3t\alpha + 6t - 1} \right)}}, \\ p_{2}^{W} & = \frac{{\left( {1 + 2h + 2w} \right)}}{{2\left( {2 - \alpha } \right)}} - \frac{{\left( {c_{2R} - c_{1R} + v_{d} } \right)}}{{2\left( {3t\alpha + 6t - 1} \right)}}, \\ p_{1R}^{W} & = \frac{{\left( {2 - \alpha } \right)\left( {c_{1R} + c_{2R} + 2t} \right) + 2w - 2w\alpha - 1 - 2h}}{{2\left( {2 - \alpha } \right)}} - \frac{{t\left( {2 + \alpha } \right)\left( {c_{2R} - c_{1R} - 2v_{d} } \right) + v_{d} }}{{2\left( {3t\alpha + 6t - 1} \right)}}, \\ p_{2R}^{W} & = \frac{{\left( {2 - \alpha } \right)\left( {c_{1R} + c_{2R} + 2t} \right){ + }2w - 2w\alpha - 1 - 2h}}{{2\left( {2 - \alpha } \right)}} + \frac{{t\left( {\alpha + 2} \right)\left( {c_{2R} - c_{1R} - 2v_{d} } \right) + v_{d} }}{{2\left( {3t\alpha + 6t - 1} \right)}}. \\ \end{aligned}$$

Then, we put them into the profit functions and obtain the profits of publisher, retailer 1 by e-book 1, retailer 1 by e-reader 1, retailer 2 by e-book 2 and retailer 2 by e-reader 2:

$$\begin{aligned} \pi_{p}^{W} & = \frac{{\left( {c - w_{A} } \right)\left( {1 + 2h + 2w\left( {\alpha - 1} \right)} \right)}}{ - 2 + \alpha }, \quad \pi_{1B}^{W} = \frac{{\left[ {\left( {1 - 3t\left( {2 + \alpha } \right)} \right)\left( {2w_{A} - 2w\alpha - 2h - 1} \right) - \left( {\alpha - 2} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right]^{2} }}{{4\left( { - 2 + \alpha } \right)^{2} \left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}, \\ \pi_{1R}^{W} & = \frac{{\left( { - 1 + 3t\left( {2 + \alpha } \right) + \left( {2 + \alpha } \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right)\left[ {\left( {1 - 3t\left( {2 + \alpha } \right)} \right)\left( {\left( {\alpha - 2} \right)\left( {c_{1R} - c_{2R} - v_{d} - 2t} \right) - 1 - 2h + 2w - 2w\alpha } \right) + t\left( {\alpha^{2} - 4} \right)\left( {c_{1R} - c_{2R} - v_{d} } \right)} \right]}}{{4\left( { - 2 + \alpha } \right)\left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}, \\ \pi_{2B}^{W} & \quad = \frac{{\left[ {\left( {1 - 3t\left( {2 + \alpha } \right)} \right)\left( {2w - 2w\alpha - 2h - 1} \right) + \left( {\alpha - 2} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right]^{2} }}{{4\left( { - 2 + \alpha } \right)^{2} \left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}, \\ \pi_{2R}^{W} & \quad = \frac{{\left( { - 1 + 3t\left( {2 + \alpha } \right) + \left( {2 + \alpha } \right)\left( {c_{1R} - c_{2R} - v_{d} } \right)} \right)\left[ {\left( {1 - 3t\left( {2 + \alpha } \right)} \right)\left( {\left( { - 2 + \alpha } \right)\left( {c_{2R} - c_{1R} - 2t + v_{d} } \right) - 2h - 1 + 2w - 2w\alpha } \right) + t\left( {\alpha^{2} - 4} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right]}}{{4\left( { - 2 + \alpha } \right)\left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}. \\ \end{aligned}$$

Substituting \(p_{2R}^{W} - p_{1R}^{W} = \frac{{t\left( {\alpha + 2} \right)\left( {c_{2R} - c_{1R} - 2v_{d} } \right) + v_{d} }}{3t\alpha + 6t - 1}\) into the first equation in Eq. (3), according to \(0 \le x_{1}^{*} \le 1\), we get \(\frac{1}{\alpha + 2} - 3t \le M = c_{2R} - c_{1R} + v_{d} \le 3t - \frac{1}{\alpha + 2}\). Here we assume t is sufficiently large to ensure that \(0 < x_{1}^{*} < 1\).

Proof of Proposition 2

To maximize the profits of two retailers, we solve \(p_{1}^{A}\), \(p_{1R}^{A}\), \(p_{2}^{A}\), \(p_{2R}^{A}\) from \(\frac{{\partial \pi_{P}^{A} }}{{\partial p_{1} }} = 0\), \(\frac{{\partial \pi_{P}^{A} }}{{\partial p_{2} }} = 0\), \(\frac{{\partial \pi_{1}^{A} }}{{\partial p_{1R} }} = 0\), \(\frac{{\partial \pi_{2}^{A} }}{{\partial p_{2R} }} = 0\). And we exam both the Hessian matrices of \(\pi_{P}^{A}\), \(\pi_{1}^{A}\) and \(\pi_{2}^{A}\) are \(\left( {\begin{array}{*{20}c} { - 2r} & {2\alpha r} \\ {2\alpha r} & { - 2r} \\ \end{array} } \right)\), \(\left( { - \frac{1}{t}} \right)\) and \(\left( { - \frac{1}{t}} \right)\) and these matrices are all negative. So, we obtain

$$\begin{aligned} p_{1}^{A} & = \frac{{2c\left( {1 - \alpha } \right) + r\left( {2h + 1} \right)}}{{4r\left( {1 - \alpha } \right)}} + \frac{{\left( {v_{d} + c_{2R} - c_{1R} } \right)}}{{2\left[ {6t\left( {1 + \alpha } \right) - 1 + r} \right]}}, \\ p_{2}^{A} & = \frac{{2c\left( {1 - \alpha } \right) + r\left( {1 + 2h} \right)}}{{4r\left( {1 - \alpha } \right)}} - \frac{{v_{d} + c_{2R} - c_{1R} }}{{2\left( {6t\left( {1 + \alpha } \right) - 1 + r} \right)}}, \\ p_{1R}^{A} & = \frac{{\left( {r - 1} \right)\left( {r\left( {2h + 1} \right) - 2c\left( {\alpha - 1} \right)} \right) - 2r\left( {\alpha - 1} \right)\left( {c_{2R} + c_{1R} + 2t} \right)}}{{4r\left( {1 - \alpha } \right)}} \\&\quad + \frac{{v_{d} }}{2} - \frac{{t\left( {\alpha + 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)}}{{\left( {6t\left( {1 + \alpha } \right) - 1 + r} \right)}}, \\ p_{2R}^{A} & = \frac{{\left( {r - 1} \right)\left( {r\left( {2h + 1} \right) - 2c\left( {\alpha - 1} \right)} \right) - 2r\left( {\alpha - 1} \right)\left( {c_{1R} + c_{2R} + 2t} \right)}}{{4r\left( {1 - \alpha } \right)}} \\&\quad - \frac{{v_{d} }}{2} + \frac{{t\left( {\alpha + 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)}}{{\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)}}. \\ \end{aligned}$$

Then, we put them into the profit functions and obtain the profits of publisher, retailer 1 by e-book 1, retailer 1 by e-reader 1, retailer 2 by e-book 2 and retailer 2 by e-reader 2:

$$\begin{aligned} \pi_{1B}^{A} & = \frac{{\left( {r - 1} \right)\left[ {\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)\left[ {r\left( {2h + 1} \right) - 2c\left( {\alpha - 1} \right)} \right] - 2r\left( {\alpha - 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right]M_{1} }}{{16r^{2} \left( { - 1 + \alpha } \right)\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)^{2} }}, \\ \pi_{1R}^{A} & = - \frac{{\left( {\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right) + 2\left( {1 + \alpha } \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right)\left\{ {\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)N + 4rt\left( {\alpha^{2} - 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right\}}}{{8r\left( { - 1 + \alpha } \right)\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)^{2} }}, \\ \pi_{2B}^{A} & = \frac{{\left( {r - 1} \right)\left[ {\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)\left( {r\left( {2h + 1} \right) - 2c\left( {\alpha - 1} \right)} \right) + 2r\left( {\alpha - 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right]M_{2} }}{{16r^{2} \left( { - 1 + \alpha } \right)\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)^{2} }}, \\ \pi_{2R}^{A} & = - \frac{{\left( {r - 1 + 6t\left( {1 + \alpha } \right) + 2\left( {1 + \alpha } \right)\left( {c_{1R} - c_{2R} - v_{d} } \right)} \right)\left\{ {\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)N + 4rt\left( {\alpha^{2} - 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right\}}}{{8r\left( { - 1 + \alpha } \right)\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)^{2} }}, \\ \end{aligned}$$

where

$$\begin{aligned} M_{1} & = \left[ {\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)\left( {r\left( {2h + 1} \right) + 2c\left( {\alpha - 1} \right)} \right) + 2r\left( {1 + \alpha } \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right], \\ M_{2} & = \left[ {\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)\left( {r\left( {2h + 1} \right) + 2c\left( {\alpha - 1} \right)} \right) - 2r\left( {1 + \alpha } \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)} \right], \\ N & = \left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)\left[ {\left( {r - 1} \right)\left( {r\left( {2h + 1} \right) - 2c\left( {\alpha - 1} \right)} \right) + 2r\left( {\alpha - 1} \right)\left( {c_{1R} - c_{2R} - v_{d} - 2t} \right)} \right], \\ \pi_{p}^{A} & = \frac{{\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)^{2} \left[ {r\left( {2h + 1} \right) + 2c\left( {\alpha - 1} \right)} \right]^{2} - 4r^{2} \left( {\alpha^{2} - 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} }}{{8r\left( {1 - \alpha } \right)\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)^{2} }}. \\ \end{aligned}$$

Proof of Proposition 3

Let \(\Delta_{B}^{P} = p_{1}^{W} { + }p_{2}^{W} - p_{1}^{A} - p_{2}^{A} = - \frac{{r\left( {4w\left( { - 1 + \alpha } \right) + \alpha + 2h\alpha } \right) + 2c\left( {2 - 3\alpha + \alpha^{2} } \right)}}{{2r\left( { - 2 + \alpha } \right)\left( { - 1 + \alpha } \right)}} > 0\), we obtain \(w > \frac{{\alpha r\left( {1 + 2h} \right) + 2c\left( {1 - \alpha } \right)\left( {2 - \alpha } \right)}}{{4r\left( {1 - \alpha } \right)}}\).

In addition, it’s worth noting that by \(\frac{{\partial \Delta_{B}^{P} }}{\partial \alpha } = \frac{2w}{{\left( {\alpha - 2} \right)^{2} }} - \frac{1 + 2h}{2}\frac{{2 - \alpha^{2} }}{{\left( {\alpha - 1} \right)^{2} \left( {\alpha - 2} \right)^{2} }} = \frac{{2w\left( {\alpha - 1} \right)^{2} - \left( {1/2 + h} \right)\left( {2 - \alpha^{2} } \right)}}{{\left( {\alpha - 1} \right)^{2} \left( {\alpha - 2} \right)^{2} }}\), we can find \(\Delta_{B}^{P}\) is increasing in α in \(\left( {0,\frac{{4w - \sqrt {4w\left( {1{ + }2h} \right) + 2\left( {1 + 2h} \right)^{2} } }}{4w + 1 + 2h}} \right)\) while decreasing in \(\left[ {\frac{{4w - \sqrt {4w\left( {1{ + }2h} \right) + 2\left( {1 + 2h} \right)^{2} } }}{4w + 1 + 2h},1} \right)\). And when α = 0, we have \(\Delta_{B}^{P} = \frac{rw - c}{r}\). Since the royalty rate generally is less than r, we suggest that \(\frac{rw - c}{r} > 0\). When \(\alpha \to 1\), we can suggest \(\Delta_{B}^{P} \to - \infty\). According to Zero-point Theorem, we consider there must be a unique solution \(\alpha^{*} > \frac{{4w - \sqrt {4w\left( {1{ + }2h} \right) + 2\left( {1 + 2h} \right)^{2} } }}{4w + 1 + 2h}\) to make \(\Delta_{B}^{P} |_{{\alpha = \alpha^{*} }} { = 0}\) holds. By solving \(\Delta_{B}^{P} \ge 0\) in α, we also get \(\frac{{6c - 4rw - r\left( {1 + 2h} \right) - \sqrt \Delta }}{4c} < \alpha < \frac{{6c - 4rw - r\left( {1 + 2h} \right) + \sqrt \Delta }}{4c}\), where \(\Delta = \left( {4rw - 6c + r\left( {1 + 2h} \right)} \right)^{2} { + }32c\left( {rw - c} \right)\). In conclusion, we find \(0 < \alpha < \alpha^{*} = \frac{{6c - 4rw - r\left( {1 + 2h} \right) + \sqrt \Delta }}{4c} < 1\).

Proof of Proposition 4

Let \(\Delta_{R}^{P} = p_{1R}^{W} { + }p_{2R}^{W} - p_{1R}^{A} - p_{2R}^{A} = \frac{{r\left( {\left( {1 + 2h} \right)r\left( {\alpha - 2} \right) + 4w\left( {\alpha - 1} \right)^{2} + \alpha + 2h\alpha } \right) - 2c\left( {r - 1} \right)\left( {2 - 3\alpha + \alpha^{2} } \right)}}{{2r\left( {\alpha - 2} \right)\left( {\alpha - 1} \right)}} \ge 0\), we obtain \(w > \frac{{r^{2} \left( {1 + 2h} \right)\left( {2 - \alpha } \right) - 2c\left( {1 - r} \right)\left( {\alpha - 1} \right)\left( {\alpha - 2} \right) - \alpha r\left( {1 + 2h} \right)}}{{4r\left( {\alpha - 1} \right)^{2} }}\).

Proof of Corollary 1

For α, we have

$$\begin{aligned} \frac{{\partial \Delta_{R}^{P} }}{\partial \alpha } & = - \frac{{r\left( {1 + 2h} \right)}}{{2\left( {\alpha - 1} \right)^{2} }} - \frac{2w}{{\left( {\alpha - 2} \right)^{2} }} + \frac{1 + 2h}{2}\frac{{2 - \alpha^{2} }}{{\left( {\alpha - 1} \right)^{2} \left( {\alpha - 2} \right)^{2} }} \\ & = \frac{{ - \left( {\frac{{\left( {1 + 2h} \right)\left( {1 + r} \right)}}{2} + 2w} \right)\alpha^{2} + \left[ {2r\left( {1 + 2h} \right) + 4w} \right]\alpha - \left( {1 + 2h} \right)\left( {2r - 1} \right) - 2w}}{{\left( {\alpha - 1} \right)^{2} \left( {\alpha - 2} \right)^{2} }} \\ \end{aligned}$$

and we find \(\Delta_{R}^{P}\) is decreasing in α in \(\left( {0,\frac{{4w + 2r\left( {1{ + }2h} \right) - \sqrt {4w\left( {1{ + }2h} \right)\left( {1 - r} \right) + 2\left( {1 + 2h} \right)^{2} \left( {1 - r} \right)} }}{{4w + \left( {1{ + }2h} \right)\left( {1 + r} \right)}}} \right)\) while increasing in \(\left[ {\frac{{4w + 2r\left( {1{ + }2h} \right) - \sqrt {4w\left( {1{ + }2h} \right)\left( {1 - r} \right) + 2\left( {1 + 2h} \right)^{2} \left( {1 - r} \right)} }}{{4w + \left( {1{ + }2h} \right)\left( {1 + r} \right)}},1} \right)\) (The other root \(\frac{{4w + 2r\left( {1{ + }2h} \right) + \sqrt {4w\left( {1{ + }2h} \right)\left( {1 - r} \right) + 2\left( {1 + 2h} \right)^{2} \left( {1 - r} \right)} }}{{4w + \left( {1{ + }2h} \right)\left( {1 + r} \right)}} > 1\) because \(4w + 2r\left( {1{ + }2h} \right) < 4w + \left( {1{ + }2h} \right)\left( {1 + r} \right)\), therefore, we abandon it). Further, when \(\alpha = 0\),\(\Delta_{R}^{P} = w + \frac{{c\left( {1 - r} \right)}}{r} - \frac{{r\left( {1 + 2h} \right)}}{2} > 0\). When \(\alpha \to 1\), \(\Delta_{R}^{P} \to + \infty\). By solving \(\Delta_{R}^{P} \le 0\) in α, we also get \(\frac{{6c\left( {r - 1} \right) + r\left( {\left( {1 + r} \right)\left( {2h{ + }1} \right) - 8w} \right) + \sqrt \Delta }}{{4c\left( {r - 1} \right) - 8rw}} \le \alpha \le \frac{{6c\left( {r - 1} \right) + r\left( {\left( {1 + r} \right)\left( {2h{ + }1} \right) - 8w} \right) - \sqrt \Delta }}{{4c\left( {r - 1} \right) - 8rw}}\), where \(\Delta = \left[ {\left( {1 + 2h} \right)\left( {3 - r} \right)r - 2c\left( {1 - r} \right)} \right]^{2} - 8\left( {1 + 2h} \right)r^{2} \left( {1 - r} \right)\left( {1 + 2h + 2w} \right)\). However, we find \(\frac{\partial \Delta }{\partial r} = 2\left( {1 + 2h} \right)r\left( {\left( {1 + 2h} \right)\left( {1 + r} \right)\left( {1 + 2r} \right) + 8\left( {3r - 2} \right)w} \right) - 8c^{2} \left( {1 - r} \right) - 4c\left( {1 + 2h} \right)\left( {3 + r\left( {3r - 8} \right)} \right) > 0\) and \(\frac{\partial \Delta }{\partial w} = 16\left( {1 + 2h} \right)\left( {r - 1} \right)r^{2} < 0\) in general hold. So, as long as r is not too high and w is not too low, such as \(r \le 0.7\) and \(w \ge 10\), whether the e-book difference between the two retailers is big or not, e-reader price under the wholesale model is higher than under the agency model because of \(\Delta < 0\). Otherwise, when \(\hbox{max} \left\{ {0,\frac{{6c\left( {r - 1} \right) + r\left( {\left( {1 + r} \right)\left( {2h{ + }1} \right) - 8w} \right) + \sqrt \Delta }}{{4c\left( {r - 1} \right) - 8rw}}} \right\} \le \alpha \le \frac{{6c\left( {r - 1} \right) + r\left( {\left( {1 + r} \right)\left( {2h{ + }1} \right) - 8w} \right) - \sqrt \Delta }}{{4c\left( {r - 1} \right) - 8rw}}\), where \(\Delta = \left[ {\left( {1 + 2h} \right)\left( {3 - r} \right)r - 2c\left( {1 - r} \right)} \right]^{2} - 8\left( {1 + 2h} \right)r^{2} \left( {1 - r} \right)\left( {1 + 2h + 2w} \right)\), then \(\Delta_{R}^{P} \le 0\) holds.

Proof of Proposition 5

We get

$$\begin{aligned} \Delta_{B}^{\pi } & = \pi_{1B}^{A} { + }\pi_{2B}^{A} - \pi_{1B}^{W} - \pi_{2B}^{W} = \frac{{\left( {1 + 2h} \right)^{2} \left( {r - 1} \right)}}{{8\left( {\alpha - 1} \right)}} - \frac{{\left( {1 + 2h + 2w\left( {\alpha - 1} \right)} \right)^{2} }}{{2\left( {\alpha - 2} \right)^{2} }} \\ & \quad - \frac{{c^{2} \left( {r - 1} \right)\left( {\alpha - 1} \right)}}{{2r^{2} }} + \frac{{\left( {1 - r} \right)\left( {\alpha + 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} }}{{2\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)^{2} }} - \frac{{\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} }}{{2\left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}. \\ \end{aligned}$$

Generally speaking, since t is quite larger than other variables, we can omit \(\frac{{\left( {1 - r} \right)\left( {\alpha + 1} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} }}{{2\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)^{2} }} - \frac{{\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} }}{{2\left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}\) with a negligible effect on \(\Delta_{B}^{\pi }\). As a result, we suggest that \(\Delta_{B}^{\pi } { = }\frac{{\left( {1 + 2h} \right)^{2} \left( {r - 1} \right)}}{{8\left( {\alpha - 1} \right)}} - \frac{{\left( {1 + 2h + 2w\left( {\alpha - 1} \right)} \right)^{2} }}{{2\left( {\alpha - 2} \right)^{2} }} - \frac{{c^{2} \left( {r - 1} \right)\left( {\alpha - 1} \right)}}{{2r^{2} }}\). By solving \(\Delta_{B}^{\pi } > 0\), we obtain \(r^{2} \left[ {\frac{{\left( {1 + 2h} \right)^{2} }}{{4\left( {\alpha - 1} \right)^{2} }} - \frac{{\left( {1 + 2h{ + }2\left( {\alpha - 1} \right)w_{A} } \right)^{2} }}{{\left( {r - 1} \right)\left( {\alpha - 1} \right)\left( {\alpha - 2} \right)^{2} }}} \right] > c^{2}\).

Proof of Corollary 2

Let \(\Delta_{B}^{\pi } = 0\), we get \(w^{1} = \frac{1 + 2h + K}{{2\left( {1 - \alpha } \right)}}\), \(w^{2} = \hbox{max} \left\{ {0,\frac{{1{ + }2h - K}}{{2\left( {1 - \alpha } \right)}}} \right\}\), where \(K = \left( {2 - \alpha } \right)\sqrt {\frac{1 - r}{1 - \alpha }} \sqrt {\frac{{\left( {1 + 2h} \right)^{2} }}{4} - \frac{{c^{2} \left( {1 - \alpha } \right)^{2} }}{{r^{2} }}}\). Obviously, we need \(\frac{{\left( {1 + 2h} \right)^{2} }}{4} - \frac{{c^{2} \left( {1 - \alpha } \right)^{2} }}{{r^{2} }} > 0\) (i.e., \(\frac{1 + 2h}{2} > \frac{{c\left( {1 - \alpha } \right)}}{r}\)). Thus, there must be w make agency model generates more profit in \(\left( {\hbox{max} \left\{ {0,\frac{{1{ + }2h - K}}{{2\left( {1 - \alpha } \right)}}} \right\},} \right.\left. {\frac{{1{ + }2h + K}}{{2\left( {1 - \alpha } \right)}}} \right)\) with \(\frac{1 + 2h}{2} > \frac{{c\left( {1 - \alpha } \right)}}{r}\). However, if \(\frac{1 + 2h}{2} < \frac{{c\left( {1 - \alpha } \right)}}{r}\), there is no possibility that e-book profit under the agency model is higher than under the wholesale model.

Proof of Proposition 6

We get

$$\begin{aligned} \Delta_{R}^{\pi } & = \pi_{1}^{A} 2 { + }\pi_{2}^{A} 2 - \pi_{1}^{W} 2 - \pi_{2}^{W} 2 = \frac{{c\left( {r - 1} \right)}}{2r} - w - \frac{{\left( {1 + 2h + 2w} \right)}}{{2\left( {\alpha - 2} \right)}} - \frac{{\left( {1 + 2h} \right)\left( {r - 1} \right)}}{{4\left( { - 1 + \alpha } \right)}} \\ & \quad + \frac{{\left( {1 - r} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} \left( {r - 1 + 3t\left( {1 + \alpha } \right)} \right)}}{{9t\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)^{2} }} + \frac{{\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} \left( {2 - 3t\left( {2 + \alpha } \right)} \right)}}{{18t\left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}. \\ \end{aligned}$$

Generally speaking, since t is quite larger than other variables, we can omit \(\frac{{\left( {1 - r} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} \left( {r - 1 + 3t\left( {1 + \alpha } \right)} \right)}}{{9t\left( {r - 1 + 6t\left( {1 + \alpha } \right)} \right)^{2} }} + \frac{{\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} \left( {2 - 3t\left( {2 + \alpha } \right)} \right)}}{{18t\left( {1 - 3t\left( {2 + \alpha } \right)} \right)^{2} }}\) with a negligible effect on \(\Delta_{R}^{\pi }\). As a result, we suggest that \(\Delta_{R}^{\pi } { = }\frac{{c\left( {r - 1} \right)}}{2r} + \frac{{\left( {1 + 2h + 2w\left( {\alpha - 1} \right)} \right)}}{{2\left( {2 - \alpha } \right)}} - \frac{{\left( {1 + 2h} \right)\left( {r - 1} \right)}}{{4\left( {\alpha - 1} \right)}}\). By solving \(\Delta_{R}^{\pi } < 0\), we obtain \(\frac{r}{r - 1}\left[ {\frac{{1 + 2h + 2\left( {\alpha - 1} \right)w}}{{\left( {\alpha - 2} \right)}} + \frac{{\left( {1 + 2h} \right)\left( {r - 1} \right)}}{{2\left( {\alpha - 1} \right)}}} \right] > c\).

Proof of Proposition 7

We get

$$\begin{aligned} \Delta_{P}^{\pi } & = \pi_{P}^{A} - \pi_{P}^{W} = \frac{{4w\left( {1 - \alpha } \right)\left( {w - c} \right) - \left( {1 + 2h} \right)\left( {2w - c\alpha } \right)}}{{2\left( {2 - \alpha } \right)}} \\ & \quad + \frac{{r\left( {1 + 2h} \right)^{2} }}{{8\left( {1 - \alpha } \right)}} + \frac{{c^{2} \left( {1 - \alpha } \right)}}{2r} + \frac{{r\left( {2 - r} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} }}{{12t\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)^{2} }}. \\ \end{aligned}$$

Generally speaking, since t is quite larger than other variables, we can omit \(\frac{{r\left( {2 - r} \right)\left( {c_{2R} - c_{1R} + v_{d} } \right)^{2} }}{{12t\left( { - 1 + r + 6t\left( {1 + \alpha } \right)} \right)^{2} }}\) with a negligible effect on \(\Delta_{P}^{\pi }\). As a result, we suggest that \(\Delta_{B}^{\pi } { = }\frac{{4w\left( {1 - \alpha } \right)\left( {w - c} \right) - \left( {1 + 2h} \right)\left( {2w - c\alpha } \right)}}{{2\left( {2 - \alpha } \right)}} + \frac{{r\left( {1 + 2h} \right)^{2} }}{{8\left( {1 - \alpha } \right)}} + \frac{{c^{2} \left( {1 - \alpha } \right)}}{2r}\). By solving \(\Delta_{B}^{\pi } < 0\), we obtain \(w^{1} = \frac{{r\left( {1 + 2h + 2c\left( {1 - \alpha } \right)} \right) - \sqrt \Delta }}{{4r\left( {1 - \alpha } \right)}} < w < w^{2} = \frac{{r\left( {1 + 2h + 2c\left( {1 - \alpha } \right)} \right) + \sqrt \Delta }}{{4r\left( {1 - \alpha } \right)}}\), where \(\Delta = \left( {1 + 2h} \right)^{2} r^{2} \left( {1 + r\left( {\alpha - 2} \right)} \right) + 4c\left( {1 + 2h} \right)r^{2} \left( {\alpha - 1} \right)^{2} + 4c^{2} r\left( {\alpha - 1} \right)^{2} \left( {r + \alpha - 2} \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Yao, Z. Comparison between the agency and wholesale model under the e-book duopoly market. Electron Commer Res 18, 313–337 (2018). https://doi.org/10.1007/s10660-017-9256-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-017-9256-9

Keywords

Navigation