Skip to main content
Log in

A choice of selling format in the online marketplace with cross-sales supply chain: Platform selling or traditional reselling?

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

In the online retail market, how to work with upstream suppliers is a key issue for downstream online retailers (e-retailers). Online retailers can choose between functioning either as the “two-sided platforms” (e.g., Taobao.com or eBay.com) allowing suppliers to sell directly to customers by paying a revenue-sharing fee, or as the “resellers” (e.g., Wal-mart.com or JingDong.com) that purchase products from suppliers, and then resell them to customers. Given the rapid growth of e-commerce over past few years, this choice, which is the focus of this article, has become an important practice-based decision. We develop a game-theoretic model for a cross-sales supply chain in which two suppliers deal with two common online retailers. As Stackelberg leaders, online retailers can operate either as a two-sided platform (serving both suppliers and customers) or as a reseller (ordering from suppliers and selling competing products on its own platform). Each supplier adopts either an exclusive-sales strategy, selling products through an exclusive e-retailer, or a cross-sales strategy, selling products through two e-retailers. We analyze the optimal decisions for both e-retailers and suppliers in competing supply chains and describe the system equilibrium for the online marketplace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Available at http://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales.

  2. Available at http://www.199it.com/archives/760352.html.

  3. Available at http://www.ec.com.cn/article/dssz/zhjg/201807/30337_1.html.

References

  1. Ai, X. Z., Chen, J., & Ma, J. H. (2012). Contracting with demand uncertainty under supply chain competition. Annals of Operations Research, 201(1), 17–38.

    Article  Google Scholar 

  2. Abhishek, V., Jerath, K., & Zhang, Z. A. (2016). Agency selling or reselling? Channel structures in electronic retailing. Management Science, 62(8), 2259–2280.

    Article  Google Scholar 

  3. Cai, G. S., Dai, Y., & Zhao, S. X. (2012). Exclusive channels and revenue sharing in a complementary goods market. Management Science, 31(1), 172–187.

    Google Scholar 

  4. Chen, L., Nan, G., & Li, M. (2018). Wholesale pricing or agency pricing on online retail platforms: The effects of customer loyalty. International Journal of Electronic Commerce, 22(4), 576–608.

    Article  Google Scholar 

  5. Coughlan, A. T. (1985). Competition and cooperation in marketing channel choice: Theory and application. Marketing Science, 4(1), 110–129.

    Article  Google Scholar 

  6. Feng, Q., & Lu, L. X. (2013). Supply chain contracting under competition: Bilateral bargaining vs. Stackelberg. Production and Operations Management, 22(3), 661–675.

    Article  Google Scholar 

  7. Gupta, S., & Loulou, R. (1998). Process innovation, product differentiation, and channel structure: Strategic incentives in a duopoly. Marketing Science, 17(3), 301–316.

    Article  Google Scholar 

  8. Gupta, S. (2008). Research note—Channel structure with knowledge spillovers. Marketing Science, 27(2), 247–267.

    Article  Google Scholar 

  9. Ha, A. Y., & Tong, S. (2008). Contracting and information sharing under supply chain competition. Management Science, 54(4), 701–715.

    Article  Google Scholar 

  10. Ha, A. Y., & Tong, S. (2011). Sharing demand information in competing supply chains with production diseconomies. Management Science, 57(3), 566–581.

    Article  Google Scholar 

  11. Ha, A. Y., Tian, Q., & Tong, S. (2017). Information sharing in competing supply chains with production cost reduction. Manufacturing & Service Operations Management, 19(2), 246–262.

    Article  Google Scholar 

  12. Hagiu, A., & Wright, J. (2015). Marketplace or reseller? Management Science, 61(1), 184–203.

    Article  Google Scholar 

  13. Hao, L., Guo, H., & Easley, R. A. (2017). A mobile platform’s in-app advertising contract under agency pricing for app sales. Production and Operations Management, 26(2), 189–202.

    Article  Google Scholar 

  14. Ingene, C. A., & Parry, M. E. (2007). Bilateral monopoly, identical competitors/distributors, and game theoretic analyses of distribution channels. Journal of Academy of Marketing Sciences, 35(4), 586–602.

    Article  Google Scholar 

  15. Jiang, B., Jerath, K., & Srinivasan, K. (2011). Firm Strategies in the “Mid-Tail” of platform based retailing. Marketing Science, 30(5), 757–775.

    Article  Google Scholar 

  16. Jin, Y., Hu, Q., Kim, S. W., & Zhou, S. X. (2018). Supplier development and integration in competitive supply chains. Production and Operations management. https://doi.org/10.1111/poms.12984.

    Article  Google Scholar 

  17. Kwark, Y., Chen, J., & Raghunathan, S. (2017). Platform or wholesale? A strategic tool for online retailers to benefit from third-party information. MIS Quarterly, 41(3), 763–785.

    Article  Google Scholar 

  18. Lee, H. C. B., Cruz, J. M., & Shankar, R. (2018). Corporate social responsibility (CSR) issues in supply chain competition: Should greenwashing be regulated? Decision Science. https://doi.org/10.1111/deci.1230.

    Article  Google Scholar 

  19. Li, B. X., Zhou, Y. W., Li, J. Z., & Zhou, S. P. (2013). Contract choice game of supply chain competition at both manufacturer and retailer levels. International Journal of Production Economics, 143(1), 188–197.

    Article  Google Scholar 

  20. Li, X., Chen, J., & Ai, X. (2019). Contract design in a cross-sales supply chain with demand information asymmetry. European Journal of Operational Research, 275(3), 939–956.

    Article  Google Scholar 

  21. Lin, Y. T., & Parlakturk, A. K. (2014). Vertical integration under competition: Forward, backward, or integration? Production and Operations management, 23(1), 19–35.

    Article  Google Scholar 

  22. McGuire, T., & Staelin, R. (1983). An industry equilibrium analysis of downstream vertical integration. Marketing Science, 2(2), 161–191.

    Article  Google Scholar 

  23. Moorthy, K. S. (1988). Strategic decentralization in channels. Marketing Science, 7(3), 335–355.

    Article  Google Scholar 

  24. Tian, L., Vakharia, A. J., Tan, Y., & Xu, Y. (2018). Marketplace, reseller, or hybrid: Strategic analysis of an emerging e-commerce model. Production and Operations Management, 27(8), 1595–1610.

    Article  Google Scholar 

  25. Trivedi, M. (1998). Distribution channels: An extension of exclusive e-retailer ship. Management Science, 44(7), 896–909.

    Article  Google Scholar 

  26. Shen, Y., Willems, S. P., & Dai, Y. (2018). Channel selection and contracting in the presence of a retail platform. Production and Operations Management. https://doi.org/10.1111/poms.12977.

    Article  Google Scholar 

  27. Wu, C. Q., & Mallik, S. (2010). Cross-sales in supply chains: An equilibrium analysis. International Journal of Production Economics, 126(2), 158–167.

    Article  Google Scholar 

  28. Wu, X. L., & Zhou, Y. (2017). The optimal reverse channel choice under supply chain competition. European Journal of Operational Research, 259(1), 63–66.

    Article  Google Scholar 

  29. Zhu, W., & He, Y. J. (2017). Green product design in supply chains under competition. European Journal of Operational Research, 258(1), 165–180.

    Article  Google Scholar 

  30. Zhang, J., Cao, Q., & He, X. (2019). Contract and product quality in platform selling. European Journal of Operational Research, 272(3), 928–944.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants Nos. 71372140, 71531003 and 71432003), the Humanities and Social Science Planning Youth Fund of the Ministry of Education of China (Grants Nos. 16YJC630057)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of demand function for Eq. (2)

First, use the first order conditions (FOCs) of the the utility function of the consumer Eq. (1):

$${{\partial U} \mathord{\left/ {\vphantom {{\partial U} {\partial q_{ij} }}} \right. \kern-0pt} {\partial q_{ij} }} = a_{ij} - q_{ij} - b(q_{3 - i,j} + q_{i,3 - j} + q_{3 - i,3 - j} ) - p_{ij} = 0$$

we can find the optimal values of \(q_{ij}\):

$$q_{11} = a_{11} - bq_{12} - bq_{21} - bq_{22} - p_{11} ,$$
(11)
$$q_{12} = a_{12} - bq_{11} - bq_{21} - bq_{22} - p_{12} ,$$
(12)
$$q_{21} = a_{21} - bq_{12} - bq_{11} - bq_{22} - p_{21} ,\,{\text{and}}$$
(13)
$$q_{22} = a_{22} - bq_{12} - bq_{21} - bq_{11} - p_{22} .$$
(14)

Then, solving Eqs. (11)–(14), we can get:

$$q_{ij} = (a - ab - p_{ij} - 2bp_{ij} + bp_{i,3 - j} + bp_{3 - i,j} + bp_{3 - i,3 - j} )/( - 3b^{2} + 2b + 1).$$
(15)

Simplifying (15), we can get:

$$q_{ij} = A_{ij} - \beta p_{ij} + \theta \sum\limits_{mn \ne ij} {p_{mn} } ,\,{\text{and}}\,A_{ij} = a/(1 + 3b),\beta = (1 + 2b)/[(1 - b)(1 + 3b)],\theta = b/[(1 - b)(1 + 3b)].$$

Proof of Lemma 1–3

First, we insert the (inverse) demand Eq. (2) into the retailers’ profit functions (4). That gives us the following updated retailers’ profit functions:

$$R_{j}^{EDD} = (p_{ij} - w_{ij}^{{}} )(a_{ij} - ba_{3 - i,3 - j} - p_{ij} + bp_{3 - i,3 - j} )/(1 - b^{2} ),\quad i,j = \{ 1,2\}$$
(16)

Then use the first order conditions (FOCs) of the profit functions (16) to find the optimal values of \(p_{ij}\), and it can easily be proven that the FOCs guarantee optimality.

$$p_{ij}^{{}} = w_{ij} /2 - b/2 + bp_{3 - i,3 - j} /2 + 1/2\quad i,j = \{ 1,2\}$$
(17)

Second, inserting Eq. (17) into the suppliers’ profit functions (3) and using the first order conditions (FOCs), we can find the optimal values of \(w_{ij}\):

$$w_{11}^{EDD} { = }w_{22}^{EDD} { = }2(1 - b)/(4 - 3b)$$
(5)

It can easily be proven that the FOCs guarantee optimality.

Third, inserting Eq. (5) into Eq. (17), we can derive the optimal values of \(p_{ij}\):

$$p_{11}^{EDD} = p_{22}^{EDD} = 3(1 - b)/(4 - 3b)$$
(6)

The Proof of Lemma 1 is completed.□

The Proof of Lemmas 2 and 3 is similar to the Proof of Lemma 3.

Proof of Proposition 1

$$\begin{aligned} \frac{{p_{11}^{EDD} }}{{p_{11}^{EDP} }} & = \frac{3(1 - b)/(4 - 3b)}{{3(1 - b)(2 + b)/(8 - 3b^{2} )}} = \frac{{(8 - 3b^{2} )}}{(2 + b)(4 - 3b)} = \frac{{8 - 3b^{2} }}{{8 - 3b^{2} - 2b}} > 1, \\ \frac{{p_{11}^{EDP} }}{{p_{11}^{EPD} }} & = \frac{{3(1 - b)(2 + b)/(8 - 3b^{2} )}}{{(1 - b)(4 + 3b)/(8 - 3b^{2} )}} = \frac{3(2 + b)}{(4 + 3b)} > 1,\,{\text{and}} \\ \frac{{p_{22}^{EDP} }}{{p_{11}^{EPP} }} & = \frac{{(1 - b)(4 + 3b)/(8 - 3b^{2} )}}{(1 - b)/(2 - b)} = \frac{(4 + 3b)(2 - b)}{{(8 - 3b^{2} )}} = \frac{{8 - 3b^{2} + 2b}}{{8 - 3b^{2} }} > 1. \\ \end{aligned}$$

Then, we can derive that \(p_{11}^{EDD} > p_{11}^{EDP} > p_{11}^{EPD} (p_{22}^{EDP} ) > p_{11}^{EPP}\).

The proof of Proposition 1 is completed.□

Proof of Proposition 2

(i) \(S_{i}^{EDD} /S_{i}^{EPP} { = }\frac{(1 - r)(1 - b)}{{(1 + b)(2 - b)^{2} }}/\frac{2(1 - b)}{{(1 + b)(4 - 3b)^{2} }} = \frac{{(1 - r)(4 - 3b)^{2} }}{{2(2 - b)^{2} }}\), and we can get

  • if \(r = r_{1} = (8 - 16b + 7b^{2} )/(3b - 4)^{2}\), then \(S_{i}^{EDD} { = }S_{i}^{EPP}\);

  • if \(r > r_{1} = (8 - 16b + 7b^{2} )/(3b - 4)^{2}\), then \(S_{i}^{EDD} > S_{i}^{EPP}\);

  • if \(r < r_{1} = (8 - 16b + 7b^{2} )/(3b - 4)^{2}\), then \(S_{i}^{EDD} > S_{i}^{EPP}\)

  • \(R_{i}^{EDD} /R_{i}^{EPP} { = }\frac{r(1 - b)}{{(1 + b)(2 - b)^{2} }}/\frac{(1 - b)}{{(1 + b)(4 - 3b)^{2} }} = \frac{{r(4 - 3b)^{2} }}{{(2 - b)^{2} }}\), and we can get

  • if \(r = r_{2} = (2 - b)^{2} /(4 - 3b)^{2}\), then \(R_{j}^{EDD} { = }R_{j}^{EPP}\);

  • if \(r < r_{2} = (2 - b)^{2} /(4 - 3b)^{2}\), then \(R_{j}^{EDD} > R_{j}^{EPP}\);

  • if \(r > r_{2} = (2 - b)^{2} /(4 - 3b)^{2}\), then \(R_{j}^{EDD} < R_{j}^{EPP}\).

Therefore, \(S_{i}^{EDD} \le S_{i}^{EPP} , \quad R_{j}^{EDD} \le R_{j}^{EPP} , \quad for \, i,j = \{ 1,2\} ; \, if \, r_{2} (b) \le r \le r_{1} (b).\)

Similarly, we can derive

(ii) \(S_{1}^{EDD} \le S_{1}^{EPD} , \quad R_{1}^{EDD} \le R_{1}^{EPD} , \quad if\, r_{4} (b) \le r \le r_{3} (b).\)

(iii) \(S_{2}^{EPD} \le S_{2}^{EPP} ,\quad R_{2}^{EPD} \le R_{2}^{EPP} ,\quad if\, r_{6} (b) \le r \le r_{5} (b).\)

The Proof of Proposition 2 is completed.□

Proof of Corollary 1

$$\begin{aligned} r_{3}^{{}} - r_{1}^{{}} & = (128 - 192b^{2} + 63b^{4} )/((4 - 3b)^{2} (4 + 3b)^{2} ) - (8 - 16b + 7b^{2} )/(3b - 4)^{2} > 0, \\ r_{5}^{{}} - r_{3}^{{}} & = (32 - 32b^{2} + 7b^{4} )^{2} /(8 - 3b^{2} )^{2} - (128 - 192b^{2} + 63b^{4} )/((4 - 3b)^{2} (4 + 3b)^{2} ) > 0, \\ r_{6}^{{}} - r_{4}^{{}} & = (2 - b)^{2} (2 + b)^{2} /(8 - 3b^{2} )^{2} - (8 - 3b^{2} )^{2} /((4 - 3b)^{2} (4 + 3b)^{2} ) > 0, \\ r_{4}^{{}} - r_{2}^{{}} & = (8 - 3b^{2} )^{2} /((4 - 3b)^{2} (4 + 3b)^{2} ) - (2 - b)^{2} /(4 - 3b)^{2} > 0. \\ \end{aligned}$$

And by the expression of \(r_{1} ,r_{2} ,r_{3} ,r_{4} ,r_{5} ,r_{6}\), we can attain

  • If \(0 < b < 0.4226\), then \(r_{1} (b) > r_{2} (b)\); otherwise, \(r_{1} (b) \le r_{2} (b)\).

  • If \(0 < b < 0.7506\), then \(r_{3} (b) > r_{4} (b)\); otherwise, \(r_{3} (b) \le r_{4} (b)\).

  • If \(0 < b < 0.9194\), then \(r_{5} (b) > r_{6} (b)\); otherwise, \(r_{5} (b) \le r_{6} (b)\).

  • If \(0 < b < 0.5021\), then \(r_{1} (b) > r_{4} (b)\); otherwise, \(r_{1} (b) \le r_{4} (b)\).

  • If \(0 < b < 0.5144\), then \(r_{1} (b) > r_{6} (b)\); otherwise, \(r_{1} (b) \le r_{6} (b)\).

  • If \(0 < b < 0.6074\), then \(r_{3} (b) > r_{2} (b)\); otherwise, \(r_{3} (b) \le r_{2} (b)\).

  • If \(0 < b < 0.7899\), then \(r_{3} (b) > r_{6} (b)\); otherwise, \(r_{3} (b) \le r_{6} (b)\).

  • If \(0 < b < 0.6518\), then \(r_{5} (b) > r_{2} (b)\); otherwise, \(r_{5} (b) \le r_{2} (b)\).

  • If \(0 < b < 0.8312\), then \(r_{5} (b) > r_{4} (b)\); otherwise, \(r_{5} (b) \le r_{4} (b)\).

Therefore, if \(b \in (0,0.4026)\), then \(r_{6} (b) \le r_{4} (b) \le r_{2} (b) \le r_{1} (b) \le r_{3} (b) \le r_{5} (b)\). Based on the above results, we can derive the first Corollary 1.

The Proof of Corollary 1 is completed.□

Proof of Theorem 1

From Corollary 1, we can derive that:

  1. (1)

    If \(b \in (0,0.4226 )\), then \(S_{i}^{EDD} < S_{i}^{EPP}\), \(S_{2}^{EDD} < S_{2}^{EDP}\), and \(S_{1}^{EDP} < S_{1}^{EPP}\); \(R_{1}^{EDD} < R_{1}^{EPP}\), \(R_{1}^{EDD} < R_{1}^{EDP}\), and \(R_{1}^{EDP} < R_{1}^{EPP}\); \(R_{2}^{EDD} < R_{2}^{EPP}\), \(R_{2}^{EDD} < R_{2}^{EDP}\), and \(R_{2}^{EDP} < R_{2}^{EPP}\).

  2. (2)

    If \(b \in (0,0.9194 )\), then \(S_{i}^{EDD} > S_{i}^{EPP}\), \(S_{2}^{EDD} > S_{2}^{EDP}\), and \(S_{1}^{EDP} > S_{1}^{EPP}\); \(R_{1}^{EDD} > R_{1}^{EPP}\), \(R_{1}^{EDD} > R_{1}^{EDP}\), and \(R_{1}^{EDP} > R_{1}^{EPP}\); \(R_{2}^{EDD} > R_{2}^{EPP}\), \(R_{2}^{EDD} > R_{2}^{EDP}\), and \(R_{2}^{EDP} > R_{2}^{EPP}\).

Therefore, we can derive that

  1. (i)

    for any given \(b \in (0,0.2037)\), there exist \(r_{1}^{{}}\) and \(r_{2}^{{}}\) such that a platform selling format is the unique Nash equilibrium for all supply chain members, as long as \(r_{2}^{{}} < r < r_{1}^{{}}\).

  2. (ii)

    for any given \(b \in (0.9194,1)\), there exists \(r_{5}^{{}}\) and \(r_{6}^{{}}\) such that a reselling format is the unique Nash equilibrium for all supply chain members, as long as \(r_{5}^{{}} < r < r_{6}^{{}}\).

The Proof of Theorem 1 is completed.□

Proof of Lemmas 4–7

For the case CDD, take the first derivative of Eq. (8) w.r.t. \(p_{11}^{{}}\) and \(p_{12}^{{}}\):

$$\frac{{\partial R_{1}^{CDD} }}{{\partial p_{11}^{CDD} }} = a - \beta (2p_{11} - w_{11} ) + \theta (p_{21} - w_{21} ) + \theta (p_{12} + \, p_{21} + \, p_{22} ) = 0,\,{\text{and}}$$
(16)
$$\frac{{\partial R_{2}^{CDD} }}{{\partial p_{12}^{CDD} }} = a - \beta (2p_{12} - w_{12} ) + \theta (p_{22} - w_{22} ) + \theta (p_{11} + \, p_{21} + \, p_{22} ) = 0.$$
(17)

The Hessian matrix is:

$$H = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} R_{1}^{CDD} }}{{\partial p_{11}^{CDD2} }}} & {\frac{{\partial^{2} R_{1}^{CDD} }}{{\partial p_{11}^{CDD} \partial p_{21}^{CDD} }}} \\ {\frac{{\partial^{2} R_{1}^{CDD} }}{{\partial p_{21}^{CDD} \partial p_{11}^{CDD} }}} & {\frac{{\partial^{2} R_{1}^{CDD} }}{{\partial p_{21}^{CDD2} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2\beta } & \theta \\ \theta & { - 2\beta } \\ \end{array} } \right],\quad {\text{and}}\,{\text{then}}\,\left| H \right| > 0.$$

With (16) and (17), we have:

$$p_{11} = (a - w_{11} - ab + bp_{12} + 2bp_{21} + bp_{22} + 2bw_{11} - bw_{21} )/(2b + 2),\,{\text{and}}$$
(18)
$$p_{12} = (a - w_{12} - ab + bp_{11} + 2bp_{22} + bp_{21} + 2bw_{12} - bw_{22} )/(2b + 2),$$
(19)

Inserting Eqs. (18) and (19) into the suppliers’ profit functions (7) and using the first order conditions (FOCs), we can get the optimal values of \(w_{ij}^{CDD}\),which is shown as Eq. (10). Putting Eq. (10) into Eqs. (18) and (19), and then solving them, we can attain the optimal values of \(p_{ij}^{CDD}\) shown as Eq. (9).

The Hessian matrix is following as:

$$\begin{aligned} H & = \left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} S_{1}^{CDD} }}{{\partial w_{11}^{CDD2} }}} & {\frac{{\partial^{2} S_{1}^{CDD} }}{{\partial w_{11}^{CDD} \partial w_{21}^{CDD} }}} \\ {\frac{{\partial^{2} S_{1}^{CDD} }}{{\partial w_{21}^{CDD} \partial w_{11}^{CDD} }}} & {\frac{{\partial^{2} S_{1}^{CDD} }}{{\partial w_{21}^{CDD2} }}} \\ \end{array} } \right],\,{\text{and}} \\ \left| H \right| & = (3311b^{6} + 10736b^{5} + 14204b^{4} + 9856b^{3} \\ & \quad + 3792b^{2} + 768b + 64)/[64(1 + 2b)^{4} (1 + 2b - 3b^{2} )] > 0. \\ \end{aligned}$$

The Proof of Lemma 4 is completed.□

The Proof of Lemma 57 is similar to the Proof of Lemma 4.

Proof of Proposition 3

From \(p_{11}^{CDD}\) and \(p_{11}^{CDD}\)’s expression, we can get

  • If \(0 < b < (\sqrt {20 - 4r + r^{2} } + r)/(10 - 2r)\), and then \(\frac{{p_{11}^{CDD} }}{{p_{11}^{CDP} }} = \frac{3(1 - b)}{2(2 - b)}/\frac{{4 + (11 + r)b - 2b^{2} - (r + 13)b^{3} }}{{2(2 + 8b + (1 - r + 6)b^{2} - (1 + r)b^{3} )}} > 1\);

  • if \((\sqrt {20 - 4r + r^{2} } + r)/(10 - 2r) \le b < 1\), and then \(\frac{{p_{11}^{CDD} }}{{p_{11}^{CDP} }} = \frac{3(1 - b)}{2(2 - b)}/\frac{{4 + (11 + r)b - 2b^{2} - (r + 13)b^{3} }}{{2(2 + 8b + (1 - r + 6)b^{2} - (1 + r)b^{3} )}} \le 1\);

In addition,

$$\begin{aligned} \frac{{p_{11}^{CDP} }}{{p_{11}^{C(DP)(DP)} }} & = \frac{{\left( {1 - b} \right)\left( {15b + br + b^{2} r + 13b^{2} + 4} \right)\left( {30b - 2b^{2} r - 2b^{3} r + 24b^{2} - 6b^{3} + 8} \right)}}{{\left( { - \, 17b^{3} + 13b + 4} \right)\left( {16b - 2b^{2} r - 2b^{3} r + 14b^{2} - 2b^{3} + 4} \right)}} > 1, \\ \frac{{p_{11}^{C(DP)(DP)} }}{{p_{11}^{C(PD)(PD)} }} & = \frac{{\left( {22b + br + b^{2} r + 20b^{2} + 6} \right)}}{{\left( {4 - \, 17b^{3} + 17b} \right)}} > 1, \\ \frac{{p_{11}^{C(DP)(DP)} }}{{p_{11}^{CPD} }} & = \frac{{\left( { - \, 17b^{3} + 13b + 4} \right)\left( {16b - 2b^{2} r - 2b^{3} r + 14b^{2} - 2b^{3} + 4} \right)}}{{\left( { - { 9}b^{3} + 7b + 2} \right)\left( {30b - 2b^{2} r - 2b^{3} r + 24b^{2} - 6b^{3} + 8} \right)}} > 1, \\ \frac{{p_{11}^{CPD} }}{{p_{11}^{CPP} }} & = \frac{{\left( { 9b^{3} + 9b + 2} \right)}}{{\left( {8b - b^{2} r - b^{3} r + 7b^{2} - 6b^{3} + 2} \right)}} > 1. \\ \end{aligned}$$

Then, we can derive Proposition 3.

The proof of Proposition 3 is completed.□

Proof of Proposition 4

Let r7 be the threshold of \(G_{1}^{CPP} = G_{1}^{C(DP)(DP)}\), yielding,

$$r_{ 7} (b){ = }\frac{{\sqrt {\Delta_{ 1} } - 44b^{ 6} + 123b^{ 5} + 183b^{ 4} + 32b^{ 3} - 28b^{ 2} - 8b}}{{9b^{ 6} + 4b^{ 5} + 3b^{ 4} + 12b^{ 3} + 4b^{ 2} }}.$$

Let r8 be the threshold of \(G_{1}^{CDD} = G_{1}^{C(DP)(DP)}\), yielding,

$$r_{ 8} (b){ = }\frac{{ - 6b^{ 5} { + }52b^{ 4} { + }79b^{ 3} { + }28b^{ 2} - 3b - 2}}{{2b^{ 5} + 4b^{ 4} + 5b^{ 3} + 4b^{ 2} + b}},$$

where

$$\begin{aligned} \Delta_{ 1} & = 5491b^{ 1 2} - 13294b^{ 1 1} - 15045b^{ 1 0} + 31620b^{ 9} { + }31482b^{ 8} - 16372b^{ 7} \\ & \quad - 27526b^{ 6} - 8616b^{ 5} + 1064b^{ 4} + 960b^{ 3} + 128b^{ 2} \\ \end{aligned}$$

The rectangular area \(\{ (b,r )\left| {(0 < b < 1,0 < r < 1)} \right.\}\) is divided into four regions (IV, V, VI and VII) by three curves: \(G_{1}^{CDD} (b,r) = G_{1}^{CPP} (b,r)\), \(G_{1}^{CDD} (b,r) = G_{1}^{C(DP)(DP)} (b,r)\) and \(G_{1}^{CPP} (b,r) = G_{1}^{C(DP)(DP)} (b,r)\). then, we can get,

  • If \((b,r) \in IV\), and then \(G_{1}^{CDD} (b,r) < G_{1}^{C(DP)(DP)} (b,r) < G_{1}^{CPP} (b,r)\);

  • If \((b,r) \in V\), and then \(G_{1}^{CDD} (b,r) < G_{1}^{CPP} (b,r) < G_{1}^{C(DP)(DP)} (b,r)\);

  • If \((b,r) \in VI\), and then \(G_{1}^{CPP} (b,r) < G_{1}^{CDD} (b,r) < G_{1}^{C(DP)(DP)} (b,r)\);

  • If \((b,r) \in VII\), and then \(G_{1}^{CPP} (b,r) < G_{1}^{C(DP)(DP)} (b,r) < G_{1}^{CDD} (b,r)\).

Therefore, we can derive Proposition 4.

The proof of Proposition 4 is completed.□

Proof of Proposition 5

$$G_{1}^{CDD} - G_{1}^{CPP} = \frac{{3(1 - b^{2} )}}{{2(1 + 3b)(2 - b)^{2} }} - \frac{{(1 - b^{2} )}}{2(1 + 3b)} = \frac{{(1 - b^{2} )[3 - 2(2 - b)^{2} ]}}{{2(1 + 3b)(2 - b)^{2} }},$$

Then, we can get that when \(0 < b < 0.2679\), there exists \(G_{1}^{CDD} < G_{1}^{CPP}\).

The proof of Proposition 5 is completed.□

Proof of Proposition 6

$$G_{1}^{CDD} - G_{1}^{CPD} = \frac{{3(1 - b^{2} )}}{{2(1 + 3b)(2 - b)^{2} }} - \frac{{(1 + 3b)(2 + 3b)(2 + 5b)(1 - b^{2} )}}{{2(2 + 8b + (1 - r + 6)b^{2} - (1 + r)b^{3} )^{2} }}$$

Let r9 be the threshold of \(G_{1}^{CPD} = G_{1}^{CDD}\), yielding,

$$r_{ 9} = \frac{{\sqrt {b(16 - 5\Delta_{ 2} )} + (3b^{2} - 2)\sqrt {\Delta_{ 2} } - 2b^{3} + 14b^{2} + 4}}{{2b^{2} (1 + b)}},\quad \Delta_{ 2} = 4(15b^{2} + 16b + 4)/3.$$

In addition,

  • when \(0 < b < 0. 7 6 2 4\), there exists \(0 > r_{ 9} (b)\);

  • when \(0. 7 6 2 4< b < 0. 9 5 7 4\), there exists \(1 > r > r_{ 9} (b)\).

Therefore, when one e-retailer in the cross-sales supply chain is using a traditional reselling format, if (i) \(0 < b < 0. 7 6 2 4\), or (ii) \(0. 7 6 2 4< b < 0. 9 5 7 4\) and \(1 > r > r_{ 9} (b)\), the other e-retailer is incentivized to move from a traditional reselling format to a platform selling format,

$${\text{where}}\,r_{ 9} = \frac{{\sqrt {b(16 - 5\Delta_{ 2} )} + (3b^{2} - 2)\sqrt {\Delta_{ 2} } - 2b^{3} + 14b^{2} + 4}}{{2b^{2} (1 + b)}},\quad \Delta_{ 2} = 4(15b^{2} + 16b + 4)/3.$$

The proof of Proposition 6 is completed.□

Proof of Proposition 7

$$G_{1}^{CPP} - G_{1}^{CDP} = \frac{{(1 - b^{2} )}}{2(1 + 3b)} - \frac{{(1 - r)^{2} (1 + 3b)(1 - b^{2} )b^{2} }}{{(2 + 8b + (1 - r + 6)b^{2} - (1 + r)b^{3} )^{2} }} > 0,$$

Then, when one e-retailer in the cross-sales supply chain is using a platform selling format, the other e-retailer is incentivized to move from a traditional reselling format to a platform selling format, as \(G_{1}^{CDP} < G_{1}^{CPP}\).

The proof of Proposition 7 is completed.□

Proof of Theorem 2

The rectangular area \(\{ (b,r )\left| {(0 < b < 1,0 < r < 1)} \right.\}\) is divided into four regions (I, II and III) by two curves: \(G_{1}^{CDD} (b,r) = G_{1}^{CPP} (b,r)\), \(G_{1}^{CDD} (b,r) = G_{1}^{CDP} (b,r)\) and \(G_{1}^{CPP} (b,r) = G_{1}^{CDP} (b,r)\).

Then, we can get if \((b,r) \in I\) (i.e. \(0 < b < 0.2679\)), then \(G_{1}^{CDD} (b,r) < G_{1}^{CDP} (b,r) < G_{1}^{CPP} (b,r);\)

  • If \((b,r) \in II\), (i.e. \(02679 < b < 0. 7 6 2 4\), or \(0. 7 6 2 4< b < 0. 9 5 7 4\) and \(1 > r > r_{ 9} (b)\)),

  • then \(G_{1}^{CDD} (b,r) < G_{1}^{CPP} (b,r) < G_{1}^{CDP} (b,r)\);

  • If \((b,r) \in III\),(i.e. \(0. 9 5 7 4< b < 1\), or \(0. 7 6 2 4< b < 0. 9 5 7 4\) and \(0 < r < r_{ 9} (b)\)),

  • then \(G_{1}^{CDD} (b,r) < G_{1}^{C(DP)(DP)} (b,r),G_{1}^{CPP} (b,r) < G_{1}^{C(DP)(DP)} (b,r)\).

In the other words, under a cross-sales supply chain, b can be found such that platform selling is the unique Nash equilibrium for all groups as \(0 < b < 0.2679\).

The proof of Theorem 2 is completed.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ai, X. A choice of selling format in the online marketplace with cross-sales supply chain: Platform selling or traditional reselling?. Electron Commer Res 21, 393–422 (2021). https://doi.org/10.1007/s10660-019-09370-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-019-09370-7

Keywords

Navigation