Skip to main content
Log in

“Product + logistics” bundling sale and co-delivery in cross-border e-commerce

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

When customers purchase products via cross-border e-commerce, they care about both the product quality and the logistics service quality. Actually, retailers are selling “product + logistics” to customers, although their contracted logistics service provider (LSP) might not be preferred by customers. In practice, it is observed that a retailer selling high-quality products tends to contract with multiple LSPs to ensure higher customer volumes and the overall high quality of “product + logistics”. However, interestingly, we find that the LSP’s profits might be negatively affected by serving two competing retailers, and preferences of the LSP and the retailer selling high-quality products through logistical cooperation result in two “prisoner’s dilemma” regions. We also identify the size of the system’s profit pie and the allocation rules among the competing LSPs and retailers. We show that it is possible to observe competing retailers’ co-delivery, which benefits both the LSP and the retailer selling high-quality products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Source: https://www.businesswire.com/news/home/20181005005532/en/Global-Cross-Border-E-Commerce-Logistics-Market-2018-2022-Increasing.

  2. Source: http://www.iimedia.cn/60608.html (in Chinese).

  3. Source: https://www.nielsen.com/cn/en/insights/news/2018/5-things-we-can-learn-from-chinas-e-commerce-explosion.print.html.

  4. Source: https://www.prnewswire.com/news-releases/netease-kaola-ranked-chinas-no1-cross-border-import-retail-e-commerce-platform-for-sixth-consecutive-time-300705308.html.

  5. Source: https://www.prnewswire.com/news-releases/netease-forms-strategic-partnership-with-sinotrans-to-strengthen-cross-border-e-commerce-service-300021702.html.

  6. Source: https://www.prnewswire.com/news-releases/global-third-party-logistics-industry-report-2017-with-focus-on-the-chinese-industry-2016-2020---research-and-markets-300421302.html.

  7. Source: https://www.retailcustomerexperience.com/news/survey-customers-want-more-delivery-options-and-greater-delivery-transparency/.

  8. Source: https://techcrunch.com/2018/06/28/amazon-launches-a-last-mile-delivery-program-powered-by-entrepreneurs/.

  9. Source: https://gs.amazon.cn/japan/seller-stories/shanshui.html (in Chinese).

  10. Source: https://www.fungglobalretailtech.com/news/walmart-fast-track-china-expansion-jd-ahead-singles-day/.

  11. Technically, this assumption requires Δ ∈ (0, 3 m, 3θm). That is, \(\bar{\Delta } \in 3m - 3\theta m\).

References

  1. Adner, R., Chen, J. Q., & Zhu, F. (2016). Frenemies in platform markets: The case of Apple’s iPad vs. Amazon’s kindle. Harvard Business School Technology and Operations Mgt. Unit Working Paper No. 15-087.

  2. Agatz, N., Fleischmann, M., & Nunen, J. (2008). E-fulfillment and multi-channel distribution—A review. European Journal of Operational Research,187, 339–356.

    Article  Google Scholar 

  3. Barsh, J., Crawford, B., & Grosso, C. (2000). How e-tailing can rise from the ashes. McKinsey Quarterly,3, 98–109.

    Google Scholar 

  4. Cao, J., So, K. C., & Yin, S. Y. (2016). Impact of an “online-to-store” channel on demand allocation, pricing and profitability. European Journal of Operational,248, 234–245.

    Article  Google Scholar 

  5. Chakravarti, D., Krish, R., Paul, P., & Srivastava, J. (2002). Partitioned presentation of multi-component bundle prices: Evaluation, choice and underlying processing effects. Journal of Consumer Psychology,12(3), 215–230.

    Article  Google Scholar 

  6. Chen, B., & Chen, J. (2017). When to introduce an online channel, and offer money back guarantees and personalized pricing? European Journal of Operational Research,257(2), 614–624.

    Article  Google Scholar 

  7. Cho, J., Ozment, J., & Sink, H. (2008). Logistics capability, logistics outsourcing and firm performance in an e-commerce market. International Journal of Physical Distribution and Logistics Management,38(5), 336–359.

    Article  Google Scholar 

  8. Dahana, W. D., Shin, S. J., & Katsumata, S. (2018). Influence of individual characteristics on whether and how much customers engage in showrooming behavior. Electronic Commerce Research,18(4), 665–692.

    Article  Google Scholar 

  9. Delfmann, W., Albers, S., & Gehring, M. (2002). The impact of electronic commerce on logistics service providers. International Journal of Physical Distribution and Logistics Management,32(3), 203–222.

    Article  Google Scholar 

  10. Geng, S., Li, W., & Qu, X. (2017). Design for the pricing strategy of return-freight insurance based on online product reviews. Electronic Commerce Research and Applications,25, 16–28.

    Article  Google Scholar 

  11. Greenleaf, E., Johnson, E. J., Morwitz, V., & Shalev, E. (2009). The price does not include additional taxes, fees, and surcharges: A review of research on partitioned pricing. Journal of Consumer Psychology,26(1), 105–124.

    Article  Google Scholar 

  12. Gujo, O., & Schwind, M. (2007). Bid formation in a combinatorial auction for logistics services. Berlin: Springer.

    Google Scholar 

  13. Huang, G. Q., & Xu, S. X. (2013). Truthful multi-unit transportation procurement auctions for logistics e-marketplaces. Transportation Research Part B: Methodological,47, 127–148.

    Article  Google Scholar 

  14. Jin, M., & Wu, S. D. (2006). Supplier coalitions in on-line reverse auctions: Validity requirements and profit distribution scheme. International Journal of Production Economics,100(2), 183–194.

    Article  Google Scholar 

  15. Lai, G., Liu, H., & Xiao, W. (2018). “Fulfilled by amazon”: A strategic perspective of competition at the E-commerce platform. Working paper. Available at SSRN 3270958.

  16. Lantz, B., & Hjort, K. (2013). Real e-customer behavioral responses to free delivery and free returns. Electronic Commerce Research,13(2), 183–198.

    Article  Google Scholar 

  17. Lim, G. G., Kang, J. Y., Lee, J. K., & Lee, D. C. (2011). Rule-based personalized comparison shopping including delivery cost. Electronic Commerce Research and Applications,10, 637–649.

    Article  Google Scholar 

  18. Michalak, T., Tyrowicz, J., McBurney, P., & Wooldridge, M. (2009). Exogenous coalition formation in the e-marketplace based on geographical proximity. Electronic Commerce Research and Applications,8, 203–223.

    Article  Google Scholar 

  19. Özener, O. Ö., & Ergun, Ö. (2008). Allocating costs in a collaborative transportation procurement network. Transportation Science,42(2), 146–165.

    Article  Google Scholar 

  20. Özener, O. Ö., Ergun, Ö., & Savelsbergh, M. (2011). Lane-exchange mechanisms for truckload carrier collaboration. Transportation Science,45(1), 1–17.

    Article  Google Scholar 

  21. Peng, L., Liao, Q., Wang, X., & He, X. (2016). Factors affecting female user information adoption: an empirical investigation on fashion shopping guide websites. Electronic Commerce Research,16(2), 145–169.

    Article  Google Scholar 

  22. Ramanathan, R. (2010). The moderating roles of risk and efficiency on the relationship between logistics performance and customer loyalty in e-commerce. Transportation Research Part E: Logistics and Transportation Review,46, 950–962.

    Article  Google Scholar 

  23. Shang, W. X., & Liu, L. M. (2011). Promised delivery time and capacity games in time-based competition. Management Science,57(3), 599–610.

    Article  Google Scholar 

  24. Song, B., & Li, M. Z. F. (2018). Dynamic pricing with service unbundling. Production and Operations Management, 27(3), 1334–1354.

    Article  Google Scholar 

  25. Song, J. Z., Yin, Y. H., & Huang, Y. F. (2017). A coordination mechanism for optimizing the contingent-free shipping threshold in online retailing. Electronic Commerce Research and Applications,26, 73–80.

    Article  Google Scholar 

  26. Song, J., & Regan, A. C. (2003). An auction based collaborative carrier network. University of California Transportation Center Working Papers 43.

  27. Song, Y., Maher, T. E., Nicholson, J. D., & Gurney, N. P. (2000). Strategic alliances in logistics outsourcing. Asia Pacific Journal of Marketing and Logistics,12(4), 3–21.

    Article  Google Scholar 

  28. Stank, T., & Daugherty, P. (1997). The impact of operating environment on the formation of cooperative logistics relationships. Transportation Research Part E: Logistics and Transportation Review,33(1), 53–65.

    Article  Google Scholar 

  29. Wang, Y., & Sang, D. (2005). Multi-agent framework for third party logistics in e-commerce. Expert Systems with Applications,29(2), 431–436.

    Article  Google Scholar 

  30. Wang, F., Zhuo, X., Niu, B., & He, J. (2017). Who canvasses for cargos? Incentive analysis and channel structure in a shipping supply chain. Transportation Research Part B: Methodological,97, 78–101.

    Article  Google Scholar 

  31. Xiao, B., & Benbasat, I. (2011). Product-related deception in e-commerce: A theoretical perspective. MIS Quality,35(1), 169–195.

    Article  Google Scholar 

  32. Xing, Y., Grant, D. B., Mckinnon, A. C., & Fernie, J. (2011). The interface between retailers and logistics service providers in the online market. European Journal of Marketing,45(3), 334–357.

    Article  Google Scholar 

  33. Xu, J., Feng, Y., & He, W. (2017). Procurement auctions with ex post cooperation between capacity constrained bidders. European Journal of Operational Research,260, 1164–1174.

    Article  Google Scholar 

  34. Yao, Y. L., & Zhang, J. (2012). Pricing for shipping services of online retailers: Analytical and empirical approaches. Decision Support Systems,53, 368–380.

    Article  Google Scholar 

  35. Zhang, Z., Nan, G., & Li, M. (2016). Duopoly pricing strategy for information products with premium service: Free product or bundling. Journal of Management Information Systems,33(1), 260–295.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors and reviewers for their helpful comments. The first author’s work was supported by NSFC Excellent Young Scientists Fund (No. 71822202), NSFC (No. 71571194), Chang Jiang Scholars Program (Niu Baozhuang 2017), GDUPS (Niu Baozhuang 2017). Carman Lee is supported by ITF Project (No. K-45-35-ZM25). The corresponding author Lei Chen’s work was supported by the Joint Supervision Scheme with the Chinese Mainland, Taiwan, and Macao Universities from HKPolyU and RGC of Hong Kong (No. G-SB0T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

  1. (a)

    Comparing the logistics fees and product prices in the two models, we have \(t_{A}^{D} - t_{A}^{B} = \frac{m\theta }{1 + r} - \frac{5m - \Delta }{{5\left( {1 + r} \right)}} = \frac{{\Delta + 5m\left( {\theta - 1} \right)}}{{5\left( {1 + r} \right)}}\). Note that \(0 < \Delta < 3m\left( {1 - \theta } \right)\), \(t_{A}^{D} - t_{A}^{B} < \frac{{2m\left( {\theta - 1} \right)}}{{5\left( {1 + r} \right)}} < 0\)

    $$\begin{aligned} t_{B}^{D} - t_{B}^{B} & = \frac{m\theta }{1 + r} - \frac{5m + \Delta }{{5\left( {1 + r} \right)}} = \frac{{ - \Delta + 5m\left( {\theta - 1} \right)}}{{5\left( {1 + r} \right)}} < 0 \\ p_{A}^{D} - p_{A}^{B} & = \frac{{3m\left( {1 - \theta } \right) - \Delta }}{{3\left( {1 + r} \right)}} - \frac{5m - \Delta }{{5\left( {1 + r} \right)}} = \frac{ - 2\Delta - 15m\theta }{{15\left( {1 + r} \right)}} < 0 \\ p_{B}^{D} - p_{B}^{B} & = \frac{{3m\left( {1 - \theta } \right) + \Delta }}{{3\left( {1 + r} \right)}} - \frac{5m + \Delta }{{5\left( {1 + r} \right)}} = \frac{2\Delta - 15m\theta }{{15\left( {1 + r} \right)}}. \\ \end{aligned}$$

    Calculating \(2\Delta - 15m\theta = 0\), we have \(\Delta_{1} = \frac{15m\theta }{2}\). Then we show that, \(p_{B}^{D} > p_{B}^{B}\) if \(\Delta > \Delta_{1} ;\, p_{B}^{D} < p_{B}^{B}\) otherwise.

  2. (b)

    Comparing the demand of four participants in the two models, we have the demand of RA,\(q_{AA}^{D} - q_{AA}^{B} = \left( {\frac{1}{2} - \frac{\Delta }{{6m\left( {1 - \theta } \right)}}} \right) - \left( {\frac{1}{2} - \frac{\Delta }{10m}} \right) = \frac{{\Delta \left( {3\theta + 2} \right)}}{{30m\left( {\theta - 1} \right)}} < 0\) the demand of RB,\(q_{BA}^{D} + q_{BB}^{D} - q_{BB}^{B} = \left( {\frac{\Delta }{{6m\left( {1 - \theta } \right)}} + \frac{1}{2}} \right) - \left( {\frac{1}{2} + \frac{\Delta }{10m}} \right) = - \frac{{\Delta \left( {3\theta + 2} \right)}}{{30m\left( {\theta - 1} \right)}} > 0\) the demand of LA, \(q_{BA}^{D} + q_{AA}^{D} - q_{AA}^{B} = \left( {\frac{\Delta }{{6m\left( {1 - \theta } \right)}} + \frac{1}{2} - \frac{\Delta }{{6m\left( {1 - \theta } \right)}}} \right) - \left( {\frac{1}{2} - \frac{\Delta }{10m}} \right) = \frac{\Delta }{10m} > 0\) the demand of LB,\(q_{BB}^{D} - q_{BB}^{B} = \frac{1}{2} - \left( {\frac{1}{2} + \frac{\Delta }{10m}} \right) = - \frac{\Delta }{10m} < 0\)

  3. (c)

    Conducting a sensitivity analysis of price difference with respect to θ and Δ, we have

    $$\begin{aligned} \frac{{\partial \left( {p_{A}^{D} - p_{A}^{B} } \right)}}{\partial \theta } & = - \frac{m}{1 + r} < 0,\quad \frac{{\partial \left( {p_{A}^{D} - p_{A}^{B} } \right)}}{\partial \Delta } = - \frac{2}{{15\left( {1 + r} \right)}} < 0 \\ \frac{{\partial \left( {p_{B}^{D} - p_{B}^{B} } \right)}}{\partial \theta } & = - \frac{m}{1 + r} < 0,\quad \frac{{\partial \left( {p_{B}^{D} - p_{B}^{B} } \right)}}{\partial \Delta } = \frac{2}{{15\left( {1 + r} \right)}} > 0 \\ \frac{{\partial \left( {t_{A}^{D} - t_{A}^{B} } \right)}}{\partial \theta } & = \frac{m}{1 + r} > 0,\quad \frac{{\partial \left( {t_{A}^{D} - t_{A}^{B} } \right)}}{\partial \Delta } = \frac{1}{{5\left( {1 + r} \right)}} > 0 \\ \frac{{\partial \left( {t_{B}^{D} - t_{B}^{B} } \right)}}{\partial \theta } & = \frac{m}{1 + r} > 0,\quad \frac{{\partial \left( {t_{B}^{D} - t_{B}^{B} } \right)}}{\partial \Delta } = - \frac{1}{{5\left( {1 + r} \right)}} < 0 \\ \end{aligned}$$

Proof of Lemma 2

In the dual-LSP model, RB makes profits from customer group BA and customer group BB. While in the base model, RB makes profits from customer group BB.

  1. (a)

    Comparing the customer groups’ marginal profit and conducting a sensitivity analysis with respect to Δ, we have

    $$\begin{aligned} \left( { p_{B}^{D} + t_{i}^{D} } \right) - \left( {p_{B}^{B} + t_{B}^{B} } \right) & = - \frac{\Delta + 15m}{{15\left( {1 + r} \right)}} < 0 \\ \frac{{\partial \left[ {\left( {p_{B}^{D} + t_{i}^{D} } \right) - \left( {p_{B}^{B} + t_{B}^{B} } \right)} \right]}}{\partial \Delta } & = - \frac{1}{{15\left( {1 + r} \right)}} < 0 \\ \end{aligned}$$
  2. (b)

    Comparing the proportion of RB in the customer groups’ marginal profit, we have

    $$\frac{{p_{B}^{D} }}{{p_{B}^{D} + t_{i}^{D} }} - \frac{{p_{B}^{B} }}{{p_{B}^{B} + t_{B}^{B} }} = \frac{1}{2} - \frac{3m\theta }{3m + \Delta }\left\{ {\begin{array}{ll} { > 0,} \hfill & {\quad if \theta \in \left( {0,\frac{1}{2}} \right)\quad and\quad \Delta \in \left( {0,\bar{\Delta }} \right);\,\theta \in \left( {\frac{1}{2},\frac{2}{3}} \right)\quad and\quad \Delta \in \left( {3m\left( { - 1 + 2\theta } \right),\bar{\Delta }} \right)} \hfill \\ { < 0,} \hfill & {\quad otherwise} \hfill \\ \end{array} } \right.$$
  3. (c)

    Conducting a sensitivity analysis of the difference between pB’s proportion with respect to θ and Δ, we have

    $$\begin{aligned} \frac{{\partial \left( {\frac{{p_{B}^{D} }}{{p_{B}^{D} + t_{i}^{D} }} - \frac{{p_{B}^{B} }}{{p_{B}^{B} + t_{B}^{B} }}} \right)}}{\partial \theta } & = - \frac{3m}{3m + \Delta } < 0 \\ \frac{{\partial \left( {\frac{{p_{B}^{D} }}{{p_{B}^{D} + t_{i}^{D} }} - \frac{{p_{B}^{B} }}{{p_{B}^{B} + t_{B}^{B} }}} \right)}}{\partial \Delta } & = \frac{3m\theta }{{\left( {3m + \Delta } \right)^{2} }} > 0 \\ \end{aligned}$$

Proof of Proposition 1

We next examine the total profit pie of RB’s customer groups and the conditions under which RB can earn a larger share of the pie.

  1. (a)

    Comparing the total profit pie of RB’s customer groups in the two models, we have

    $$\begin{aligned} \left( {\pi_{BA}^{D} + \pi_{BB}^{D} } \right) - \pi_{BB}^{B} & = \left( {\pi_{{R_{B} }}^{D} + \pi_{{L_{B} }}^{D} + t_{A}^{D} q_{BA}^{D} } \right) - \left( {\pi_{{R_{B} }}^{B} + \pi_{{L_{B} }}^{B} } \right) \\ & = \left( {\frac{{\left[ {\Delta + 3m\left( {1 - \theta } \right)} \right]^{2} }}{{18m\left( {1 - \theta } \right)\left( {1 + r} \right)}} + \frac{m\theta }{{2\left( {1 + r} \right)}} + \frac{m\theta }{1 + r}.\frac{\Delta }{{6m\left( {1 - \theta } \right)}}} \right) \\ & \quad - \left( {\frac{{\left( {5m + \Delta } \right)^{2} }}{{50m\left( {1 + r} \right)}} + \frac{{\left( {5m + \Delta } \right)^{2} }}{{50m\left( {1 + r} \right)}}} \right) \\ & = \frac{{225m^{2} \left( { - 1 + \theta } \right) + 15m\Delta \left( { - 2 + 7\theta } \right) + \Delta^{2} \left( {7 + 18\theta } \right)}}{{450m\left( {1 + r} \right)\left( {1 - \theta } \right)}} < 0 \\ \end{aligned}$$

    for \(0 < \theta < 1 and 0 < \Delta < 3m - 3m\theta\)

  2. (b)

    Comparing the proportion of RB in the total profit pie of RB’s customer groups, we have

    $$\frac{{\pi_{{R_{B} }}^{D} }}{{\pi_{BA}^{D} + \pi_{BB}^{D} }} - \frac{{\pi_{{R_{B} }}^{B} }}{{\pi_{BB}^{B} }} = \frac{1}{2} - \frac{3m\theta }{3m + \Delta }\left\{ {\begin{array}{ll} { > 0,} \hfill & {\quad if\,\, \theta \in \left( {0,\frac{1}{2}} \right) \quad and \quad \Delta \in \left( {0,\bar{\Delta }} \right);} \hfill \\ {\theta \in \left( {\frac{1}{2},\frac{2}{3}} \right) \quad and\quad \Delta \in \left( {3m\left( { - 1 + 2\theta } \right),\bar{\Delta }} \right)} \hfill & {} \hfill \\ { < 0,} \hfill & {\quad otherwise} \hfill \\ \end{array} } \right.$$

Proof of Lemma 3

  1. (a)

    We use \(\frac{{{\text{q}}_{{\text{BA}}}^{{\text{D}}} }}{{{\text{q}}_{{\text{AA}}}^{{\text{D}}} }}\) to characterize the transfer effect in the dual-LSP model. Conducting a sensitivity analysis of the transfer effect with respect to θ and Δ, we have

    $$\begin{aligned} \frac{{\partial \left( {\frac{{q_{BA}^{D} }}{{q_{AA}^{D} }}} \right)}}{\partial \theta } & = \frac{{\partial \left( {\frac{\Delta }{{3m\left( {1 - \theta } \right) - \Delta }}} \right)}}{\partial \theta } = \frac{3m\Delta }{{\left[ {3m\left( {1 - \theta } \right) - \Delta } \right]^{2} }} > 0 \\ \frac{{\partial \left( {\frac{{q_{BA}^{D} }}{{q_{AA}^{D} }}} \right)}}{\partial \Delta } & = \frac{{3m\left( {1 - \theta } \right)}}{{\left[ {3m\left( {1 - \theta } \right) - \Delta } \right]^{2} }} > 0 \\ \end{aligned}$$
  2. (b)

    In the dual-LSP model, LA makes profits from customer group AA and customer group BA. While in the base model, LA makes profits from customer group AA. Comparing the customer groups’ marginal profit and conducting a sensitivity analysis with respect to θ and Δ, we have

    $$\begin{aligned} \frac{{\partial \left[ {\left( {p_{A}^{D} + t_{A}^{D} } \right) - \left( {p_{A}^{B} + t_{A}^{B} } \right)} \right]}}{\partial \Delta } & = \frac{{\partial \left[ {\frac{ - 15m + \Delta }{{15\left( {1 + r} \right)}}} \right]}}{\partial \Delta } = \frac{1}{{15\left( {1 + r} \right)}} > 0 \\ \frac{{\partial \left[ {\left( {p_{B}^{D} + t_{A}^{D} } \right) - \left( {p_{A}^{B} + t_{A}^{B} } \right)} \right]}}{\partial \Delta } & = \frac{{\partial \left[ {\frac{ - 15m + 11\Delta }{{15\left( {1 + r} \right)}}} \right]}}{\partial \Delta } = \frac{11}{{15\left( {1 + r} \right)}} > 0 \\ \end{aligned}$$
  3. (c)

    Conducting a sensitivity analysis of the difference between tA’s proportion with respect to θ and Δ, we have

    $$\begin{aligned} \frac{{\partial \left( {\frac{{t_{A}^{D} }}{{p_{A}^{D} + t_{A}^{D} }} - \frac{{t_{A}^{B} }}{{p_{A}^{B} + t_{A}^{B} }}} \right)}}{\partial \theta } & = \frac{{\partial \left( { - \frac{1}{2} + \frac{3m\theta }{3m - \Delta }} \right)}}{\partial \theta } = \frac{3m}{3m - \Delta } > 0 \\ \frac{{\partial \left( {\frac{{t_{A}^{D} }}{{p_{B}^{D} + t_{A}^{D} }} - \frac{{t_{A}^{B} }}{{p_{A}^{B} + t_{A}^{B} }}} \right)}}{\partial \theta } & = \frac{{\partial \left( { - \frac{1}{2} + \frac{3m\theta }{3m + \Delta }} \right)}}{\partial \theta } = \frac{3m}{3m + \Delta } > 0 \\ \frac{{\partial \left( {\frac{{t_{A}^{D} }}{{p_{A}^{D} + t_{A}^{D} }} - \frac{{t_{A}^{B} }}{{p_{A}^{B} + t_{A}^{B} }}} \right)}}{\partial \Delta } & = \frac{{\partial \left( { - \frac{1}{2} + \frac{3m\theta }{3m - \Delta }} \right)}}{\partial \Delta } = \frac{3m\theta }{{\left( {3m - \Delta } \right)^{2} }} > 0 \\ \frac{{\partial \left( {\frac{{t_{A}^{D} }}{{p_{B}^{D} + t_{A}^{D} }} - \frac{{t_{A}^{B} }}{{p_{A}^{B} + t_{A}^{B} }}} \right)}}{\partial \Delta } & = \frac{{\partial \left( { - \frac{1}{2} + \frac{3m\theta }{3m + \Delta }} \right)}}{\partial \Delta } = - \frac{3m\theta }{{\left( {3m + \Delta } \right)^{2} }} < 0 \\ \end{aligned}$$

Proof of Proposition 2

We next examine the total profit pie of LA’s customer groups and the conditions under which LA can earn a larger share of the pie.

  1. (a)

    Comparing the total profit pie of LA’s customer groups in the two models, we have

    $$\begin{aligned} \left( {\pi_{AA}^{D} + \pi_{BA}^{D} } \right) - \pi_{AA}^{B} & = \left( {\pi_{{R_{A} }}^{D} + \pi_{{L_{A} }}^{D} + p_{B}^{D} q_{BA}^{D} } \right) - \left( {\pi_{{R_{A} }}^{B} + \pi_{{L_{A} }}^{B} } \right) \\ & = \frac{{ - 225m^{2} \left( { - 1 + \theta } \right) + 105m\Delta \left( { - 1 + \theta } \right) - 2\Delta^{2} \left( {16 + 9\theta } \right)}}{{450m\left( {1 + r} \right)\left( { - 1 + \theta } \right)}} \\ & \quad \left\{ {\begin{array}{l} { > 0, \quad if \theta \in \left( {0,\frac{{ - 49 + 5\sqrt {217} }}{36}} \right)\quad and\quad \Delta \in \left( {\frac{{15m\left[ { - 7\left( {1 - \theta } \right) + \sqrt {\left( {1 - \theta } \right)\left( {177 + 23\theta } \right)} } \right]}}{{4\left( {16 + 9\theta } \right)}},\bar{\Delta }} \right)} \\ { < 0,\quad otherwise} \\ \end{array} } \right. \\ \end{aligned}$$
  2. (b)

    Comparing the proportion of LA in the total profit pie of LA’s customer groups, we have

    $$\begin{aligned} \frac{{\pi_{{L_{A} }}^{D} }}{{\pi_{AA}^{D} + \pi_{BA}^{D} }} - \frac{{\pi_{{L_{A} }}^{B} }}{{\pi_{AA}^{B} }} & = \frac{{2\Delta^{2} + 3m\Delta \left( { - 1 + \theta } \right) + 9m^{2} \left( { - 1 + \theta } \right)\left( { - 1 + 2\theta } \right)}}{{2\left( { - 2\Delta^{2} + 9m^{2} \left( { - 1 + \theta } \right) - 3m\Delta \left( { - 1 + \theta } \right)} \right)}} \\ & \quad \left\{ {\begin{array}{l} { > 0, \quad if\quad \theta \in \left( {\frac{7}{15},\frac{1}{2}} \right) \quad and\quad \Delta \in \left( {\frac{{3m\left[ {\left( {1 - \theta } \right) - \sqrt {\left( {1 - \theta } \right)\left( { - 7 + 15\theta } \right)} } \right]}}{4},\quad \frac{{3m\left[ {\left( {1 - \theta } \right) + \sqrt {\left( {1 - \theta } \right)\left( { - 7 + 15\theta } \right)} } \right]}}{4}} \right);} \hfill \\ {\theta \in \left( {\frac{1}{2},\frac{2}{3}} \right) \quad and\quad \Delta \in \left( {0,\frac{{3m\left[ {\left( {1 - \theta } \right) + \sqrt {\left( {1 - \theta } \right)\left( { - 7 + 15\theta } \right)} } \right]}}{4}} \right)} \hfill \\ {\theta \in \left( {\frac{2}{3},1} \right)\quad and\quad \Delta \in \left( {0,\bar{\Delta }} \right)} \hfill \\ { < 0,\quad otherwise} \hfill \\ \end{array} } \right. \\ \end{aligned}$$

Proof of Corollary 1

We next examine the conditions under which RB and LA have incentives to cooperate with each other.

  1. (a)

    Comparing the profits of RB in the two models, we have

    $$\begin{aligned} \pi_{{R_{B} }}^{D} - \pi_{{R_{B} }}^{B} & = - \frac{{ - 60m\Delta \left( { - 1 + \theta } \right) + 225m^{2} \left( { - 1 + \theta } \right)\theta + \Delta^{2} \left( {16 + 9\theta } \right)}}{{450m\left( {1 + r} \right)\left( { - 1 + \theta } \right)}} \\ & \quad \left\{ {\begin{array}{ll} > 0, &\quad if \theta \in \left( {0,\frac{{ - 26 + 10\sqrt {10} }}{9}} \right) \quad and\quad \Delta \in \left( {\frac{{15m\left[ { - 2\left( {1 - \theta } \right) + \left( {2 + 3\theta } \right)\sqrt {1 - \theta } } \right]}}{16 + 9\theta },\bar{\Delta }} \right) \\ < 0, &\quad otherwise \\ \end{array} } \right. \\ \end{aligned}$$
  2. (b)

    Comparing the profits of LA in the two models, we have

    $$\left\{ {\begin{array}{ll} > 0,&\quad if \theta \in \left( {\frac{4}{9},1} \right)\quad and \quad \Delta \in \left( {5m\left( {1 - \sqrt \theta } \right),\bar{\Delta }} \right) \\ < 0, &\quad otherwise \\ \end{array} } \right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., Wang, J., Lee, C.K.M. et al. “Product + logistics” bundling sale and co-delivery in cross-border e-commerce. Electron Commer Res 19, 915–941 (2019). https://doi.org/10.1007/s10660-019-09379-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-019-09379-y

Keywords

Navigation