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Abstract Software repositories hold applications that are often categorized to improve the 

effectiveness of various maintenance tasks. Properly categorized applications allow stakeholders 

to identify requirements related to their applications and predict maintenance problems in software 

projects. Manual categorization is expensive, tedious, and laborious – this is why automatic 

categorization approaches are gaining widespread importance. Unfortunately, for different legal 

and organizational reasons, the applications’ source code is often not available, thus making it 

difficult to automatically categorize these applications. In this paper, we propose a novel approach 

in which we use Application Programming Interface (API) calls from third-party libraries for 

automatic categorization of software applications that use these API calls. Our approach is general 

since it enables different categorization algorithms to be applied to repositories that contain both 

source code and bytecode of applications, since API calls can be extracted from both the source 

code and byte-code.  We compare our approach to a state-of-the-art approach that uses machine 

learning algorithms for software categorization, and conduct experiments on two large Java 

repositories: an open-source repository containing 3,286 projects and a closed-source repository 

with 745 applications, where the source code was not available.  Our contribution is twofold: we 

propose a new approach that makes it possible to categorize software projects without any source 

code using a small number of API calls as attributes, and furthermore we carried out a 

comprehensive empirical evaluation of automatic categorization approaches. 

Keywords Closed-source · Open-source · Software categorization · Machine learning. 

1 Introduction 

Different software repositories have mushroomed in the past decade with many of them containing 
massive amounts of source code and different software artifacts. To facilitate browsing and 
searching of these repositories, software systems are placed into categories (e.g., text editors, 
financial, or databases). Since many stakeholders are engaged in maintaining software, these 
stakeholders benefit from properly categorized software repositories for two reasons.  First, 
grouping applications with similar features allows stakeholders to decide what features they should 
implement in their own applications that belong to same groups or categories (Kawaguchi et al. 
2006; Dumitru et al. 2011). Second, stakeholders can determine what problems or bugs are 
common to many applications in the same category, and in turn predict what problems or bugs other 
applications from the same category are likely to encounter (Weiss et al. 2007; Zimmermann et al. 
2009); this type of prediction could be used as a quality assurance technique to recognize typical 
bad smells or mistakes in the code that should be avoided during programming.  

Automatic categorization of software applications in repositories is increasingly gaining 
acceptance since it reduces the manual effort significantly (Di Lucca et al. 2002; Ugurel et al. 2002; 
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Kawaguchi et al. 2003; Bruno et al. 2005; Kawaguchi et al. 2006; Sandhu et al. 2007; Tian et al. 
2009; Dumitru et al. 2011).  Currently, software applications are categorized by applying text 
classification approaches; terms (i.e., words in identifiers and comments) are extracted from the 
source code of applications and these terms serve as the attributes used as input to a machine 
learning algorithm that places applications into categories. Even though automatic categorization 
approaches do not achieve perfect precision, they still enable stakeholders to quickly benefit from 
categorized applications when solving software maintenance tasks. 

1.1 Categorization in Maintenance 

Different software maintenance tasks rely on knowing groups of similar software, even if the 
programmers need similar artifacts other than source code.  For example, commercial software 
development firms use similar software to help build new products that are based on existing 
products – e.g., by including features which are commonly requested, or to reuse software designs 
that have worked successfully in the past (Kang et al. 1990; Frakes et al. 1998; Dumitru et al. 2011).  
Categorization is also useful for preparing for similar software bugs (Weiss et al. 2007; 
Zimmermann et al. 2009), and in knowing which teams in a global development environment have 
the expertise to build a particular kind of software (Bugde et al. 2008).  In these cases, the manual 
categorization as done on repositories such as SourceForge is impractical because the software 
repository already exists.  Likewise, even approximate solutions are useful because the penalty for 
incorrect categorization is often low.  For example, programmers are adept at separating relevant 
results from irrelevant results when searching for software (Sim et al. 2011). 

Unfortunately, existing approaches are untenable in a commercial environment.  The reason is 
that these approaches rely on source code, but the source code is not available.  For example, 
consulting companies such as Accenture, IBM, and HP Global Services, do not own the source 
code that they produce – their clients do1. Moreover, companies have a lot of legacy applications 
that are deployed on production environments and the source code is not available because it is lost. 

Another case when source code may not be usable is when consultants build mission-critical 
software for different industries.  Programmers in financial and biopharmaceutical companies often 
work in “clean-rooms,” where the source code is written and kept on company's premises in 
physically secured environments (Grechanik et al. 2010; Jones 2010). External consultants from 
outsourcing companies such as Accenture, IBM, and HP Global Services come to the clean-room of 
the client company to write client’s applications. Actions of these consultants are tightly monitored; 
electronic connections to outside of the company’s network, phone calls, USB keys, and cameras 
are strictly forbidden. Once the applications are built, their executables are often released to 
consulting companies for testing. Clean-room development effectively negates the opportunity for 
consulting companies to accumulate knowledge about applications they build, and more 
importantly to use this knowledge for different software maintenance tasks. 

1.2 Our Solution 

Our idea is to use external Application Programming Interface (API) calls from third-party 
libraries and packages that are invoked in software applications (e.g., the Java Development Kit 
(JDK)) as a set of attributes for categorization.  Using API calls as attributes is based on the fact that 
programmers typically build software using API calls from well-defined and widely used libraries 
(Poshyvanyk and Grechanik 2009; Grechanik et al. 2010; McMillan et al. 2011; McMillan et al. 
2011).  APIs are already grouped in packages and libraries based on their functionalities by the 
programmers who built those APIs. That fact that the APIs are grouped makes APIs ideal for use in 
machine learning approaches to categorize applications.  For example, a music player application is 
more likely than a text editor to use a sound output library, and finding APIs from this library in the 
music player application enables us to put it in a proper category.  Moreover, APIs are common to 
many software programs and invocations of the API calls can be extracted from the executable form 
of applications because the API calls exist in external packages and libraries. In addition, using API 
calls results in fewer attributes when compared to approaches that use all words from the source 
code to categorize applications, thus potentially improving the performance of categorization 
approaches. A key question is how selecting APIs for categorizing applications compares with 
approaches that rely on selecting all words in the source code of applications? 

 
                                                 
 
1Accenture policy 69 states that source code constitutes confidential information because it is information or material, 
not generally available to the public, that is generated, collected or used by the Company and that relates to its 
business, research and development activities, clients, or employees. 
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In this paper, we investigate this question by empirically studying large sets of Java applications 
from different repositories and applying different machine learning algorithms with different 
settings to obtain the answer by analyzing the results using statistical methods; we used the 
categories defined by the repositories, where these categories describe functionalities (domain 
categories).  To address this, we defined the following research questions: 

 RQ1: Which machine learning algorithm is most effective for software categorization? 

 RQ2: Which level of granularity of API-based is more effective for software categoriza-
tion? 

 RQ3: Are the API methods, classes or packages as effective attributes as source code for 
software categorization? 

 RQ4: Which kernel type is most effective for software categorization using Support 
Vector Machines? 

To our knowledge, this is the first time that different machine learning approaches were 
thoroughly evaluated for software categorization on large sets of software applications.  All of our 
case study data is available online2.  Our contributions are summarized the following: 

 A new approach to software categorization based on the APIs used by the applications.  We 
extracted the API information in three forms: as the API packages that contain calls used by 
applications, as the API classes, and as the terms in the API methods.  We found that using 
API packages results, on average, in F-Measure that is 82.34% better than using API classes; 
and API methods results in F-Measure that is 6.83% better than using API packages.  Our 
approach is the first one that is able to categorize applications both in open-source and 
closed-source software repositories. 

 We have built our approach and tested it on two software repositories: 745 Java closed-
source applications from Sharejar 3 , and 3,286 Java open-source applications from 
SourceForge4. We categorized software applications using five different machine-learning 
algorithms and four types of attributes, and show that Support Vector Machines (SVM) is the 
best-performing algorithm for categorization over these repositories. Despite SVM was also 
reported as the best performing algorithm in previous work using single labels (Ugurel et al. 
2002), we used a transformation process to allow the SVM to deal with multiple categories. 
Additionally, we compared four types of kernel functions used with SVM and the results 
show that the linear kernel has the best performance. 

 To demonstrate how competitive our approach is, we compared it with the closest baseline 
approach by Ugurel et al. (Ugurel et al. 2002) that has previously been tested on 330 
applications from SourceForge and 1,353 projects from IBiblio5. As mentioned before, 
programmers typically build software using API calls from well-defined and widely used 
libraries, and these API are grouped based on their functionalities. Thus, this grouping can be 
used to categorize software applications. Additionally, API calls can be extracted from 
bytecode of closed-source applications. Our results show that our approach is a good 
alternative to this competitive approach in that it reaches comparable rates of true and false 
positives while using significantly fewer attributes as the names of API packages or methods 
whose calls are made in applications. Although source code contains in many cases sensitive 
information in the client API names, our approach does not compromise any of this since we 
are relying on publicly available API calls (packages, classes and methods). 

2 Background 

In general, categorization is the task of assigning a finite set of categories to software artifacts 
such as software applications, bug reports, commits logs. Typical applications of categorization in 
software maintenance tasks are: 

 Domain analysis and software reuse: domain analysis is related to identifying and 
structuring information for reuse (Prieto-Diaz 1990). Software categories represent the 

                                                 
 
2 http://www.cs.wm.edu/semeru/catml_ese/ (verified on 05/07/2012) 

3 http://sharejar.com/ (verified on 05/07/2012) 
4 http://sourceforge.net/ (verified on 05/07/2012) 
5 http://www.ibiblio.org/ (verified on 05/07/2012) 
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dominant groups of features in software projects of the same domain (Kelly et al. 2011), 
therefore categories are used as labels for code retrieval and reuse in software 
repositories,  and to analyze concepts of applications with similar features. 

 Bug prediction:  bugs or types of bugs describe design and implementation problems in 
software applications, and predicting these bugs is usually based on analysis of change 
requests, bug reports, and bad smells recognition (Antoniol et al. 2008; Menzies and 
Marcus 2008). Thus, bug types assigned to software applications could be considered as 
categories that can be assigned to new applications (during implementation), as a non-
human-based-execution testing technique. Moreover, because bugs are common to many 
applications in the same domain category, the bugs discovered in each application could 
be used as attributes that permit distinguish applications by domain categories. A possible 
application of software categorization is using bugs reported on applications belonging to 
the same category to describe the kind of problems that represents the applications in the 
same category. 

 Quality prediction: source-code metrics or the results of evaluating software applications 
with a quality model can be used to determine what quality attributes are common to 
many applications with similar features. Thus, a possible application of software 
categorization is to identify the quality attributes that describe software applications by 
category domain. 

The automatic categorization process can be outlined as follows. First, a set of attributes is 
selected that characterize the software applications. These attributes may contain all words in an 
application (not including language keywords) or only the names of API packages/classes/methods 
whose calls are made in the application, as we have done in our approach. Second, a machine-
learning algorithm uses the attributes, applications, and categories to build a model and then 
generate predictions, which are the algorithm’s mapping of applications to a category. That is, the 
job of an automatic categorization tool is to compute a function that maps applications to 
categories. 

The intuition behind the reason of why automatic categorization works is that certain attributes 
occur more often in applications belonging to one category than another category.  For example, 
applications in the category Email contain terms such as “replyto” and “mailbox,” whereas 
applications in the category Databases have terms such as “sql.”  Machine learning algorithms 
rely on the specificity of these attributes to certain categories.  The accuracy of these algorithms 
worsens if the attributes are distributed arbitrarily across applications that belong to different 
categories.  The intuition behind our idea is that the APIs used by applications are less likely to be 
distributed arbitrarily than the terms, because programmers often choose the terms (i.e., the names 
of identifiers) arbitrarily, whereas the set of APIs is predefined.  

 
 

2.1 Overview of Software Categorization Approaches 

In this paper, we implement a multi-label approach for software categorization, whereas previous 
approaches have been implemented with single-label algorithms. Single-label categorization can 
be binary if the set of available categories is composed of two mutually exclusive categories or 
multi-class if the set of available categories is composed of m mutually exclusive categories.  

Table 1. Approaches for software categorization 

Approach Categories Relationship between categories 
Fuzzy 

categorization 

Binary One of two Mutually exclusive No 

Multi-class One of n Mutually exclusive No 

Multi-label 

(Non-hierarchical) 
m of n Non hierarchical order No 

Hierarchical m of  n Hierarchical order No 

Ranking m of  n Non hierarchical order Yes 
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Multi-class problems are usually resolved by dividing the original problem into binary 
classification sub-problems. Two typical strategies are one-against-all and one-against-one (Hsu 
and Lin 2002; Lorena and De Carvalho 2004). In the one-against-all approach, the multi-class 
problem is solved building n binary classifiers (n is the number of categories), each one aimed to 
classify a category versus the remaining categories. For each category, a classifier is trained with 
all the applications in that category as positive examples and the rest of the applications as 
negatives. The classifier that produces the highest output usually predicts the category of a new 
application.  In the one-against-one approach, n(n-1)/2 binary classifiers are trained, each one 
aimed to categorize between two different categories. To predict the class of a new application, a 
majority voting strategy must be implemented. 

 Multi-label categorization has three approaches. The first one is a non-hierarchical approach, 
which consists in categorizing each application as belonging to m of n categories and there is not a 
hierarchical order between them. The second one is a hierarchical approach in which exists a 
hierarchical order between categories; for example the category “Role-Playing” in SourceForge 
belongs to “Card Games” category and its root-category is “Games/Entertainment”. And the third 
approach is called ranking or fuzzy categorization, in which each application is classified as 
belonging to m of n categories by using a membership vector.  Table 1 summarizes software 
categorization approaches; in Table 1, the second column is related to the number of categories 
that can be assigned to an application, the third column is related to the kind of relationship that 
exists between the categories, and the last column describes if the approach supports fuzzy 
categorization. 

Multi-label problems are usually resolved by transforming them into one or more single-label 
ones. According to de Carvalho et al. (de Carvalho and Freitas 2009), the methods for multi-label 
problems can be divided into two main approaches: algorithm dependent and algorithm 
independent. The first approach is also called adaptation and consists of using machine learning 
algorithms specifically designed for multi-label problems such as MMP (Crammer and Singer 
2003), ML-KNN (Zhang and Zhou 2005), or BP-MLL (Zhang and Zhou 2006). The second 
approach consists of transforming the multi-label dataset to obtain single-label datasets and then 
perform the categorization process using an ensemble of binary classifiers (that is the reason to 
call this approach “algorithm independent"). These transformations are applied to the categories or 
the applications. For example, if an application called FooZip belongs to categories backup, 
system and compression, then the new transformed category would be backup-system-
compression; in this case, the transformation consists in creating a new category from multi-label 
categories.  

2.2 Attribute Selection 

The accuracy of the classification depends on the attributes that are chosen to represent 
applications, and it is important to select attributes that distinguish the applications in each 
category (Guyon and Elisseeff 2003). For example, APIs that come from a music library are likely 
to occur in application that processes music than in other types of applications. In this paper, we 
use Expected Entropy Loss (EEL) to determine which attributes to use for categorization.  Related 
approaches for categorization have used EEL, and we describe it further in Section 3 ((Di Lucca et 
al. 2002; Ugurel et al. 2002; Bruno et al. 2005; Kawaguchi et al. 2006; Antoniol et al. 2008; 
Menzies and Marcus 2008; Hindle et al. 2009)).   

3 Our Approach 

Since a plethora of automatic categorization approaches use the same categorization process, this 
paper builds upon the work by Ugurel et al. (Ugurel et al. 2002) that serves as the implementation 
baseline of this process.  Ugurel et al. used only one type of attribute and one machine-learning 
algorithm to categorize a small number of applications (330 from SourceForge and 1,353 from 
IBiblio).  Our approach builds on this work by evaluating multiple types of attributes and 
algorithms.  Another important difference from previous studies is that our approach can be 
applied to closed-source repositories, whereas all previous approaches to software categorization 
were applicable to open-source repositories only. To define the specifics of our approach that set it 
apart from other competitive approaches, we must answer the following three design questions 
(DQ). 
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DQ1: What is an application and what is a category? 
An application is a collection of software artifacts that include source code files and/or 
executables, and this collection is defined as the latest release of a project from a software 
repository.  A category is a grouping of applications based on the functionality the applications 
provide (e.g., Games or Email). For example, SourceForge contains thousands of projects that 
are organized into many categories, and we use these projects in our experiments in this paper.  
 

DQ2: Which attributes do we use for categorization? 
Different approaches to software categorization use words from comments and identifiers as 
attributes that are extracted from the source code of those applications. We consider only single 
words as attributes and not combinations of single words such as bigrams, since previous 
empirical results showed that single words outperform combinations of words for software 
categorization (Ugurel et al. 2002). 

Words from comments and identifiers cannot be used as attributes if only executable 
applications are available (as in closed repositories), since it is not possible to extract descriptive 
names of identifiers and comments without having access to the source code. This oftentimes 
practical scenario motivates us to select three more types of attributes from applications: API 
packages, API classes, and terms in the names of API methods, whose API calls are invoked in 
applications.  In this paper, we use these three types of API-based attributes for closed- and open-
source applications, and words from comments and identifiers in open-source applications, with 
different classification algorithms. 

The three API-based attributes are both based on the API calls that applications use but refer to 
different levels of granularity.  API packages are one such level of granularity.  For example, an 
application that processes music files may use the package javax.sound.midi. We refer to 
API packages as simply packages. API classes are grouped in these packages and represent more 
fine-grained details about the utilized functionality.  For example, a music player may use the class 
MidiDevice from javax.sound.midi. We refer to API classes as classes. API methods are 
the methods implemented in these classes and provide more-fine grained details about the 
functionality than classes. For example, a music player may invoke getDeviceInfo and 
getMicroSecondPosition methods of javax.sound.midi.MidiDevice class. We 
refer to API methods as methods. In this study we extracted the terms in the methods splitting the 
method names and then we used the terms as the attributes for software categorization. One 
important advantage to using packages, classes and methods as attributes is that they can be 
extracted from Java byte code – it is not mandatory to have the source code. The API packages, 
classes, and methods we detect in applications are from the Java SDK6.  In spite of the fact that 
different applications call different third-party APIs, using machine learning methods to classify 
software applications with several third-party APIs can lead to model-overfitting (Alpaydin 2010) 
because some APIs could be very specific for a few applications, or model-underfitting (Alpaydin 
2010) because some APIs are used by a lot of applications for a purpose not related to their 
domain (for example using a library for logging). Features provided by JDK are used by every 
application written in Java and those features are used by similar applications (Grechanik et al. 
2010). Therefore, using the JDK provides us with an API that implements several features that are 
related to application domains, and we expect our results to generalize to other software 
repositories of Java applications. 

Since we use Expected Entropy Loss (EEL) by Ugurel et al. (Ugurel et al. 2002) as attributes 
selection approach, we briefly describe this approach here for reproducibility of our results. EEL is 
almost a decade old algorithm that is shown to be highly effective for selecting the most relevant 
attributes of systems in software repositories (Ugurel et al. 2002). In EEL, words are selected from 
source code, and we adapt EEL as our attribute in this paper. 

EEL works by ranking software system’s attributes based on how well each attribute describes 
each category. The likelihood that an attribute is in a given category is referred to as that 
attribute’s entropy for that category.  For example, the package javax.sound.midi is likely to 
be specific to applications in the category Music, whereas javax.swing may be both in 
applications in Music and Email.  The entropy of javax.sound.midi would be high for the 
category Music, relative to javax.swing. In this paper, we adapt EEL’s definition and 
formulas for software categorization using API call information. 

                                                 
 
6 http://www.oracle.com/technetwork/java/javase/downloads/ (verified on 05/07/2012) 
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We provide the following formulas for the reproducibility of our approach. Entropy e(X) is a 
measure of the uncertainty associated with an event and is expressed in terms of a discrete set of 
probabilities Pr(X) over an event Xxi  , where X is the event space: 

 

Let C be the event indicating whether an application is a member of the specified category 
(e.g., if the application is related to the category). Let a denote the event that the software system 
contains the specified attribute, 

  (2) 

 

(3) 

(4) 

Pr(C) is the probability, for each category, that an application will be in that category, and Pr(a) is 
the probability, for each attribute, that an application will contain that attribute. 
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The prior entropy represents the overall distribution of applications into a category and is 
calculated as follows: 
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The posterior entropy represents the probability of a given attribute for a given category: 
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Each attribute has an EEL value for each category.  Attributes with higher value of EEL for a 

category are more discriminatory and provide more information for the categorization.  The 
attributes with the highest EEL for each category are used to train categorization algorithms 
 

DQ3: What machine learning algorithm do we use? 
There are two types of machine learning technique: supervised and unsupervised.  In supervised 
machine learning, a training set of pre-categorized applications is used to build a mapping 
between the attributes of the applications and the categories. Then this mapping is used to predict 
the categories to which uncategorized applications belong.  On the other hand, unsupervised 
learning (also called clustering) generates categories (e.g., clusters) based on the latent structure 
(patterns, regularities, similarities, etc.) in the items being categorized.  In this paper, we use 
supervised algorithms because we have a pre-defined set of categories.  We analyzed Support 
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Vector Machines, Naïve Bayes, Decision Tree, RIPPER, and IBK in our experiments, and 
describe these algorithms further in Section 3. Support Vector Machines, Decision Trees and 
Naïve Bayes have been used previously for software categorization in  (Ugurel et al. 2002), 
(Kawaguchi et al. 2003), and (Sandhu et al. 2007), respectively. RIPPER and IBK have not been 
used for software categorization; however they have been widely used in text categorization 
(Sebastiani 2002). We chose to test these five algorithms because they represent different ways 
that are commonly used to resolve a categorization problem using machine learning techniques. 
(Sebastiani 2002). 

Decision Trees (DT) uses a “divide and conquer” strategy to split the problem space into 
subsets. A DT is modeled like a tree in which the root and the nodes are questions, and the arcs 
between nodes are possible answers to the questions. The leaves of the tree are the categories.  
DTs are able to deal with categorical inputs and multi-class problems. Thus, in a categorization 
problem, the inputs for DT are the attributes of one application and the output is a category. 
Kawaguchi et al. (Kawaguchi et al. 2003) used DTs for software categorization. 

Naïve Bayes (NB) classifiers assume that all the attributes are independent and that each 
contributes equally to the categorization. A category is assigned to a project by combining the 
contribution of each feature. This combination is achieved by estimating the posterior probabilities 
of each category by using Bayes’ Theorem. Prior probabilities are estimated with training data.  
This kind of classifier is able to deal with categorical inputs and multi-class problems.  Thus, in a 
categorization problem, the inputs for NB are the attributes and the output is the probability 
distribution of the project on the categories. NB was used for software categorization by Sandhu et 
al. (Sandhu et al. 2007). 

Support Vector Machines (SVM) split the problem space into two possible sets by finding a 
hyper-plane that maximizes the distance with the closest item of each subset. The function that 
splits the hyper-plane is known as the kernel function. If the data is linearly separable a linear kernel 
function is used with the SVM, in other case non-linear functions such as polynomials, radial-basis 
(RBF), and sigmoid should be used (Alpaydin 2010- Chapter 13 ). SVMs are binary classifiers, 
but can be used for multi-class classification using one-against-one or one-against-all strategies 
(Section 2.2).  In this paper, we arrange multiple SVM classifiers in a one-against-one strategy and 
use a label transformation to allow multi-label classification. In the one-against-one approach, 
each classifier is trained to recognize two classes (Hsu and Lin 2002). We generate the predictions 
by a vote of the predictions from the classifiers (Ugurel et al. 2002). 

IBK is an instance-based classifier that uses the k nearest neighbors to assign a category to a 
project (Aha et al. 1991). IBK is a lazy classifier because it does not induce a categorization model 
from training data. The categorization process is achieved by comparing the new instance with all 
the instances in the datasets. Thus, the category for the new instance is selected from the 
categories of the k most similar instances.  In a categorization problem, the inputs for IBK are the 
features and the output is a category. Hindle et al. (Hindle et al. 2009) used IBK for classification 
of large commits in software repositories. 

RIPPER is a classifier based on propositional rules (Cohen 1995). Ripper builds a rule set by 
adding rules to an empty rule set until all positive instances in the dataset are covered. Rules are 
formed adding conditions to the antecedent of a rule until no negative examples are covered. 
Hindle et al. (Hindle et al. 2009) used RIPPER to classify large commits for mining software 
repositories. 

4 Case Study Design 

In Section 5, we consider four types of attributes (terms, methods, classes, and packages) and use 
EEL to select a subset of those attributes for categorization.  We outlined five different machine-
learning algorithms for generating predictions.  In this section, we discuss the design of a case study 
to evaluate different configurations of our approach. 
 

4.1 Settings of the Case Study 

The settings of the case study include the applications we want to categorize and the 
implementation (configuration) details behind the machine learning algorithms.  While 
implementing our approach, we used the same implementations of machine learning algorithms as 
in (Ugurel et al. 2002) to allow direct comparison of these algorithms with our techniques. 
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4.1.1 Software Repositories 

We downloaded 8,310 Java applications from SourceForge (open source), and these applications 
are spread across the 22 categories in Table 2.  We also downloaded 745 Java applications from 
Sharejar (closed source), and these applications were created for mobile phones and include only 
the compiled Java byte-code.  The Sharejar categories are listed in Table 3. 

In general, projects may belong to one or more categories in the same repository.  All 
categories from both repositories do not include any sub-categories.   Also, in SourceForge, we 
selected only categories with at least 100 applications in order to limit the number of categories; 
we did not consider applications that are not in these top categories in our case study. In Sharejar, 
we considered all categories, and there were no uncategorized applications. In total, we consider 
3,286 of the applications from SourceForge and all 745 applications from Sharejar.  The 
SourceForge applications are distributed into the categories as follows: 2,521 applications have 
one category, 645 with two categories, 103 with three categories, 16 with four categories, and 1 
with five categories; distribution of Sharejar applications by number of categories is 477 with one 
category, 131 with two categories, and 137 with three categories. 

4.1.2 Selection of Attributes 

We implemented our approach using JClassInfo7 to extract the method, package and class attribute 
sets from the byte-code of the Sharejar applications. For the SourceForge repository, we 
implemented our approach using PMD8 to extract the API packages, classes, and terms directly 
from the applications’ source code.   

Once we had the terms and methods from each project, we split them using well-known naming 
conventions, such as camel case and underscores (Dit et al. 2011). For example getSocket is 
split into terms get and socket, and send_reply is split into terms send and reply. Each 
term, method, package or class is considered as an attribute, then, it was necessary to select the 
attributes to be used for categorization.  We used EEL to rank attributes for each category from the 
training set (see Section III).  In keeping with the case study design from (Ugurel et al. 2002), we 

                                                 
 
7 http://jclassinfo.sourceforge.net/ (verified on 05/07/2012) 

8 http://pmd.sourceforge.net/ (verified on 05/07/2012) 

Figure 1. Attribute Selection Model
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then selected the attributes that best distinguish each category with the following procedure. First, 
we excluded attributes that occurred in only one project.  Second, we excluded attributes that 
occurred in less than 7.5% of the projects in a category.  The intuition behind this threshold is that 
terms are unlikely to represent the meaning of a category if only a few applications in that category 
contain the term.  We chose 7.5% because Ugurel et al. found good results using that threshold.  
Finally, we choose the top 100 remaining attributes for each category according to the attributes’ 
EEL for the category. Table 4 lists the number of attributes that we used in the categorization; some 
attributes are common between the categories, therefore, there is a reduction of the set of the top-
attributes to the set of attributes we used in the categorization. 

4.1.3 Machine Learning Algorithms 

We used the WEKA9 implementation of five machine learning algorithms for our approach.  For 
SVM, we used the WEKA Libsvm wrapper 10 . In all the cases, we used WEKA’s default 
parameters, which were the same as were used in (Ugurel et al. 2002), except for IBK algorithm in 

                                                 
 
9 http://weka.sourceforge.net/ (verified on 05/07/2012) 

10 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (on 05/07/2012) 

Table 2. SourceForge projects and categories  

Category Count Category Count 

1. Bio-Informatics  323 12. Indexing  329 

2. Chat  504 13. Internet  1061 

3. Communication 699 14. Interpreters  303 

4. Compilers  309 15. Mathematics 373 

5. Database  988 16. Networking  360 

6. Education  775 17. Office  522 

7. Email  366 18. Scientific  326 

8. Frameworks 1115 19. Security 349 

9. Front-Ends 584 20. Testing  904 

10. Games  607 21. Visualization 456 

11. Graphics  313 22. Web 534 

Table 3. Sharejar projects and categories 

Category Count Category Count 

1. Chat & SMS  320 8. Music  50 

2. Dictionaries 30 9. Science  20 

3. Education  90 10. Utilities  190 

4. Free Time  120 11. Emulators  30 

5. Internet  180 12. Programming  10 

6. Localization  20 13. Sports  40 

7. Messengers  50   
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Table 4. Attributes selected for software categorization. The top-attributes 
column lists the sum of attributes with the top values of expected entropy 

loss (EEL) in each category 
 

Dataset Attribute type Total of Top-
attributes 

Attributes used in 
categorization 

SourceForge Packages 2,030 176 

SourceForge Classes 2,082 183 

SourceForge Methods 2,200 473 

SourceForge Terms 2,200 1,720 

Sharejar Packages 505 65 

Sharejar Classes 1,300 799 

Sharejar Methods 1,300 641 

which we use several values for k (3, 5, 7 and 9). 

4.2 Research Questions 

Our goal was to determine how we can best categorize software based on the APIs used in each 
application.  Therefore, we addressed the following research questions (RQ) in our case study: 

RQ1: Which machine learning algorithm is most effective for software categorization? 

RQ2: Which level of granularity of API-based attribute  (API methods, API classes, or API 
packages), is more effective for software categorization? 

RQ3: Are the API methods, classes or packages as effective attributes as words (e.g., 
identifiers, comments) from source code for software categorization? 

RQ4
11: Which kernel type is most effective for software categorization using Support Vector 

Machines? 

The rationale behind RQ1 was to compare different machine learning approaches on large 
application sets and obtain quantitative measurements of how well they categorize applications, 
including the SVM with a linear kernel used in (Ugurel et al. 2002). We also wanted to know how 
different types of attributes affect the accuracy of our approach.  Specifically, we extracted three 
types of data based on the APIs used in applications, and in RQ2 we wanted to study which of 
these types has better accuracy.  Similarly, the purpose of RQ3 was to compare our approach, 
where attributes are API methods, classes and packages, to competitive approaches that use words 
extracted from source code as attributes. For RQ3, we compared the aggregate data for all five 
different machine learning algorithms. For RQ2 and RQ3 we used the results of the five algorithms 
(including the results of IBK using k=3,5,7,9) to generalize the results with each attribute. We 
assumed that some attributes provide better performance than others and it is consistent for all the 
algorithms12.  Finally, we wanted to compare different kernel types as the purpose of RQ4. These 
kernels are the linear, quadratic, radial-basis (RBF), and sigmoid. Table 5 shows the 
configurations of our approach that we use to answer each research question. 

To respond to our research questions, we compared the algorithms’ accuracy by using a 5-fold 
cross validation and the metrics described in the next section.  In 5-fold validation, the dataset is 
randomly broken into five sections.  One section is used to test the machine-learning algorithm and 
trained against the other four fifths. There are five iterations, and each section is used as the testing 

                                                 
 
11 This research question was added once we analyzed the results of the study and found that SVM was the top 

performing ML algorithms across a range of parameters and settings 
12 By “consistency” we mean that all algorithms have the best performance for the same attribute set. 
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set once.  We chose 5-fold validation instead of 10-fold validation because recent studies have 
shown no statistical difference in the results from reduced iterations in validation (Feng et al. 2008). 

 

4.3 Metrics and Statistical Analyses 

4.3.1 Accuracy Metrics 

The output of the machine learning algorithms is a set of predictions about the mapping of 
applications to categories.  We evaluated these predictions using four metrics: precision (PRC), 
true positive rate or recall (REC), the F-score (F), and false positive rate (FPR). These metrics 
have been widely used as accuracy measures for machine learning (Újházi et al. 2010), including 
the case study by Ugurel et al. (Ugurel et al. 2002).  We included the F-Measure in our study 
because it has been widely used in the machine learning and information retrieval fields as a 
metric that combines PRC and REC. The formulas for these metrics are as follows:  

TNFP

FP
FPR

RECPRC

RECPRC
F

FNTP

TP
REC

FPTP

TP
PRC











 ;

*
2;;  

(15) 

 

where TP is the number of true positives (applications correctly categorized), FP is the number of 
false positives (applications incorrectly categorized), TN is the number of true negatives 
(applications correctly identified as not belonging to the category), and FN is the number of false 
negatives (applications identified as not belonging to the category, that should have been). These 
metrics measure the following proportions. 

 PRC measures the proportion of true positives over the number of instances categorized 
as positive. 

 REC measures the proportion of true positives over the total number of positive instances.  

 F-Measure, or simply F, is the harmonic mean of PRC and REC. It provides a way to 
combine precision and recall in a unique metric. 

 FPR measures the proportion of false positives over the total number of negative 
instances.  

We conducted a 5-fold cross validation study using different configurations of type of 
attribute, repository, and machine learning algorithms.  For every category in a repository, we 
calculated the PRC, REC, and FPR of the predictions for that category for a given configuration 
(Table 5).   

Table 5. Experiments settings.  The last eight columns are the machine-learning algorithms.  
The rows are types of attribute from SourceForge or Sharejar.  The cells indicate the research 

questions (RQ) that each configuration helps to answer. 
 

Repository Attribute SVM DT NB JRIP IBK3 IBK5 IBK7 IBK9 

Sharejar Classes 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 

Sharejar Packages 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 

Sharejar Methods 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 

SourceForge Classes 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 1, 2, 4 

SourceForge Packages 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 

SourceForge Methods 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4 

SourceForge Terms 1, 3, 4 1, 3, 4 1, 3, 4 1, 3, 4 1, 3, 4 1, 3, 4 1, 3, 4 1, 3, 4 
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4.3.2 Testing Statistical Significance 

Our goal in our research questions was to compare the TPR, FPR and PRC of different algorithms 
using different types of attributes.  Figures 2 and 3 show that TPR, FPR and PRC are not drawn 
from normal distributions, therefore, we cannot use parametric tests such as ANOVA to compare 
multiple classifiers, or t-test to compare two classifiers.  Recent work in evaluating machine 
learning algorithms has suggested the Wilcoxon Signed-Ranks test and the Friedman’s test with 
Nemenyi’s post-hoc procedure to establish statistical significance without assuming that the 
samples are drawn from normal distributions (Demsar 2006). The Wilcoxon Rank test is a non-
parametric test for comparing the performance of two classifiers over N datasets. The Friedman’s 
test is a non-parametric test for comparing the performance of k classifiers over N datasets; if the 
null hypothesis is rejected using the Friedman’s test for multiple classifiers, then the Nemenyi’s test 
is used as a post-hoc procedure to compare pairs of classifiers. In our case we used the Bonferroni 
correction with the Friedman’s test for controlling the family-wise error in multiple hypothesis 
testing (Demsar 2006).  Moreover, we used the p  non-parametric13 effect size estimator suggested 
by Grissom and Kim (Grissom and Kim 2012), to measure the size effect of the difference in 
pairwise comparisons for the samples in the research questions; it is an estimate of the probability 
that a value randomly drawn from one sample will be greater than a value randomly drawn from 
other sample. The estimator p  is defined as 


pa,b 

U

nanb

 
(16) 

 
where U is the Mann-Whitney Statistic, and nanb is the product of the two sample sizes. Therefore, 
for RQ1, RQ2, and RQ4 we used the Friedman’s test, and for RQ3 we used the Wilcoxon Rank test; 
for all the research questions we used the statistic p  as effect size estimator. 
 

                                                 
 
13 We did not use typical effect size estimators such as Cohen’s d, because we do not assume that the samples are 

drawn from normal distributions. 

Figure 2. Performance metrics for each algorithm over all types of attributes in the categories of 
both repositories.  The thick solid line is the median.  The diamond is the mean and the box is the 
Interquartile Range (IQR). The thin line extends from Q1-1.5IQR to Q3+1.5IQR 
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5 Case Study Results 

5.1 RQ1 – Machine-learning Algorithms 

Our approach relies on a supervised machine-learning algorithm to extract a categorization model 
from the attributes and assign each application to one or more categories. Related work has studied 
only one supervised algorithm for software categorization, that is, SVM (Ugurel et al. 2002).  In 
this paper, we contrast the results from five algorithms: SVM, DT, NB, RIPPER, and IBK with 
several values for k (3, 5, 7, and 9)14. 

Figure 2 shows a statistical summary of the PRC, REC, F-Measure and FPR for our run of 
each algorithm.  Each boxplot represents the distribution of a metric for one algorithm for each 
category in both SourceForge and Sharejar, on all sets of attributes.  We observe that the average 
values and medians of SVM outperform the other algorithms. Moreover, 75% of the values 
achieved with SVM (for each metric) outperform the Interquartile Range of the other algorithms15.  
We applied the Friedman’s test to test the statistical significance of the difference in these results 
of each classifier. When testing the four metrics at a 5% confidence level, we found that p-values 
(two-tailed) are less than 0.000116. Therefore, we reject the null hypothesis that there is no 
significant difference of the values of TPR, PRC, F-Measure, and FPR.  

                                                 
 
14 For the k parameter in the IBK algorithm we used odd values to avoid tied votes. 
15 In Figures 2.a, 2.b, 2.c the values of SVM above the first quartile are higher than the third quartile of the other 
algorithms. In Figure 2.d the values of SVM below the third quartile are lower than the first quartile of the other 

algorithms 
16 The Qcritical and Qobserved values are provided in our online appendix. 

Table 6. Null hypotheses and p-values for RQ1 using the Nemenyi’s test, and non-
parametric effect sizes p  (based on Mann-Whitney’s test). Each cell lists a null hypothesis 

that formulates that there is not significant difference between the values of a metric 
achieved with SVM and the values of the same metric achieved with other machine-
learning algorithm. For example H0

1 formulates that there is no significant difference 
between the precision of SVM and DT. The Bonferroni corrected significance level (for 

Nemenyi’s test) was 0,0018. 
 P-values and effect sizes 

Comparison PRC REC F-MEASURE FPR 

DT vs. SVM H0
1, p< 0,0001,

p=0,8930 

H0
8
, p < 0,0001,

p=0,9734 

H0
15

, p < 0,0001,

p=0,9445 

H0
22

, p < 0,0001,

p=0,2625 

NB vs. SVM H0
2
, p< 0,0001,

p=0,9107 

H0
9
, p < 0,0001,

p=0,9787 

H0
16, p < 0,0001,

p=0,9361 

H0
23

, p < 0,0001,

p=0,2358 

JRip vs. SVM H0
3
, p< 0,0001,

p=0,9072 

H0
10

, p < 0,0001,

p=0,9393 

H0
17, p < 0,0001,

p=0,9630 

H0
24

, p < 0,0001,

p=0,2734 

IBK3 vs. SVM H0
4
, p< 0,0001,

p=0,9109 

H0
11, p < 0,0001,

p=0,9717 

H0
18, p < 0,0001,

p=0,9507 

H0
25, p < 0,0001,

p=0,2647 

IBK5 vs. SVM H0
5
, p< 0,0001,

p=0,9152 

H0
12, p < 0,0001,

p=0,9703 

H0
19, p < 0,0001,

p=0,9531 

H0
26, p < 0,0001,

p=0,2611 

IBK7 vs. SVM H0
6
, p< 0,0001,

p=0,9151 

H0
13, p < 0,0001,

p=0,8048 

H0
20, p < 0,0001,

p=0,9520 

H0
27, p < 0,0001,

p=0,2691 

IBK9 vs. SVM  H0
7 p< 0,0001,

p=0,9117 

H0
14, p < 0,0001,

p=0,9738 

H0
21

, p < 0,0001,

p=0,9540 

H0
28

, p < 0,0001,

p=0,2742 
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Table 6 lists the null hypotheses we used for the Nemenyi’s post-hoc test on the difference 
between specific pairs of algorithms17. The p-values obtained and the effect sizes are also listed in 
Table 6. For all the hypotheses we found p-values lower than the significance level suggested by 
the Bonferroni correction (0.0018). For PRC, REC, and F-Measure, we found that the differences 
between the values reported by LIBSVM and the others algorithms are higher than 0.9; for FPR 
the effect size is small, with probabilities lower than 0.3.  It means that there are significant 
differences between the performance measures of SVM compared to DT, NB, JRip, and IBK. 
Therefore, we reject all the null hypotheses (H0

1 to H0
28), meaning that the mean TPR, FPR, and 

PRC given by SVM are statistically significantly higher than the results from DT, NB, JRip, or 
IBK.  However, for FPR, we found that there are small differences between using LIBSVM or the 
other algorithms. 

We ran the same procedure using Sharejar and SourceForge as independent samples. In both 
cases the average, median and IQR of SVM outperforms the other algorithms in the four metrics.  
For Sharejar the average values of metrics achieved with Libsvm are 40.04% (PRC), 
43.62%(REC), 40.24%(F-Measure), and 6.11%(FPR); for SourceForge the average values are 
54.45%(PRC), 60.56%(REC), 55.31% (F), and 2.18%(FPR).  Although SVM provides the highest 

                                                 
 
17 We do not show any comparison of between DT, NB, JR,IP, and IBK because those algorithms performed less well 
than SVM 

Table 7. Null hypotheses and p-values for RQ2 using the Nemenyi’s test, and non-parametric 
effect sizes p  (based on Mann-Whitney’s test). Each cell lists a null hypothesis that 

formulates that there is not significant difference between the values of a metric achieved with 
a dataset type and the values of the same metric achieved with other dataset type. For example 

H0
29 formulates that there is no significant difference between the precision of Methods and 
Classes. The Bonferroni corrected significance level (for Nemenyi’s test) was 0,0167. 

 
 P-values and effect sizes 

Comparison PRC REC F-MEASURE FPR 

Methods vs. Classes H0
29, p< 0,0001,

p=0,6993 

H0
32

, p< 0,0001,

p=0,6182 

H0
35

, p< 0,0001, 

p=0,6300 

H0
38

, p=0.087,

p=0,5290 

Methods vs. Packages H0
30

, p< 0,0001,

p=0,5777 

H0
33

, p=0.022,

p=0,5533 

H0
36, p= 0,009, 

p=0,5349 

H0
39

, p< 0,0001,

p=0,5637 

Classes vs. Packages H0
31

, p< 0,0001,

p=0,4052 

H0
34

, p< 0,0001,

p=0,4358 

H0
37, p< 0,0001, 

p=0,4088 

H0
40

, p< 0,0001,

p=0,5460 

Table 8. Null hypotheses and p-values for RQ2 using the Nemenyi’s test, and non-
parametric effect sizes p  (based on Mann-Whitney’s test) on Sharejar results. The 

Bonferroni corrected significance level (for Nemenyi’s test) was 0,0167. 
 

 P-values and effect sizes 

Comparison PRC REC F-MEASURE FPR 

Methods vs. Classes H0
29, p< 0,0001,

p=0,6587 

H0
32

, p=0.556,

p=0,4456 

H0
35

, p< 0,0001, 

p=0,5465 

H0
38

, p< 0,0001,

p=0,5978 

Methods vs. Packages H0
30

, p< 0,0001,

p=0,7126 

H0
33

, p=0.155,

p=0,4858 

H0
36, p< 0,0001, 

p=0,6146 

H0
39

, p< 0,0001,

p=0,5934 

Classes vs. Packages 
H0

31
, p< 0,0001,

p=0,5826 

H0
34

, p=0.044,

p=0,5311 

H0
37, p=0.038, 

p=0,5618 

H0
40

, p=0.239,

p=0,4912 
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average values of performance, using SVM to categorize software applications in Sharejar provide 
PRC and REC that are below the 50%; for SourceForge the average values are higher than 50%. 
These values cannot be considered as outstanding performance measures for software 
categorization; using a random binary classifier (with the same probability for each class) could 
provide the same results without using a training procedure.  

The results of the Nemenyi’s tests using Sharejar and SourceForge as independent samples are 
similar to using a sample composed of Sharejar and SourceForge measures. We reject all the null 
hypotheses, meaning that the mean PRC, REC, F-Measure, and FPR given by SVM are 
statistically significantly higher than the results from DT, NB, JRip, or IBK.  

 

 

5.2 RQ2 – API-based Attributes of Applications 

The quality of the results can be strongly affected by the attributes, which are used as input to the 
machine-learning algorithm.  In this paper we propose three types of attributes that have never 
been tested before for software categorization: API methods, classes, and packages.  This section 
compares the quality of categorization when using each of these types of attribute.  We did this 
comparison using Decision Trees, Naïve Bayes, Support Vector Machines, IBK (with k =3,5,7,9), 
and RIPPER to minimize a threat to validity faced when using only one algorithm.  

We used API methods, classes, and packages as the input to each of the machine learning 
algorithms, and computed the PRC, REC, F-Measure, and FPR in each category of both 
repositories.  In our experiment, we grouped the results from several different machine learning 
algorithms.  These are the results shown in Figure 3 and discussed below.  An alternative approach 
would have been to examine the results for just one machine learning algorithm.  The alternative 
design would have the advantage of focusing closely on a single algorithm, and could increase the 
usefulness of the results for that algorithm.  While this advantage is important, we felt that it was 
outweighed by the need to maximize the generality of our results, since we aim to study how the 
attributes can be used for different categorization tasks. 

A statistical summary of the results is presented in Figure 3.  Each boxplot represents one type 
of attribute.  We observe that the average PRC for packages is 17.82%, for classes is 13.03% and 
for methods is 21.97%.  Methods is the API-based attribute with highest precision and classes is 
the lowest one; the average value of PRC for packages presents a roughly 37% improvement over 
classes, and for methods presents a roughly 23% improvement over packages.  For REC, the 
average value for packages is 20.57%, for classes is 17.32%, and for methods is 27.21%. API 
methods presents a roughly 32% improvement over packages, and packages presents a roughly 
20% improvement over classes. For F-Measure, we observe that the average value for packages is 
17.23%, for classes is 12.68% and for methods is 19.03%. API methods provide a 10% 
improvement of accuracy over packages and a 50% accuracy improvement on classes.  For FPR, 
we observe that the average value for packages is 4.74%, for classes is 4.98% and for methods is 
7.62%.  Thus, packages have the lowest FPR and methods the highest one.  These values mean 
that about 27% of the predictions placed applications correctly into a category (TPR) using API 

Therefore, we answer RQ1 by concluding that SVM is the most-effective machine-
learning algorithm for categorization of the applications in both repositories we used as 
datasets in our evaluation.   

Figure 3. Performance metrics for methods, classes and packages over five algorithms in all 
categories of both repositories. 
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methods, about 5% of predictions placed an application in wrong categories (FPR) using API 
packages, and 21.97% of the positive predictions were correct (PRC) using methods. 

Therefore, there is a difference between performance measures for the three API-based 
attributes, and the Friedman’s test shows that the difference in averages is statistically significant. 
When testing the four metrics at a 5% confidence level, we found that p-values (two-tailed) are 
less than 0.0001. These values suggest us to reject the null hypothesis stating that there is no 
significant difference between PRC, REC, F-Measure and FPR for packages, classes and methods. 
Then, according to the procedure proposed in (Demsar 2006), we applied Nemenyi’s post-hoc test 
on the difference between specific pairs of API-based attributes. Table 7 lists the null hypotheses 
we used for the Nemenyi’s post-hoc test. For the case of using Sharejar and SourceForge data we 
found that p-values for the comparison of REC of API methods vs. API packages, and FPR of API 
methods vs. API classes, are lower than the Bonferroni corrected significance level (0.0167). 
Lowest values of effect sizes are between API classes and API packages, and we found that 
probabilities of randomly selecting highest values between the samples in the hypotheses (H0

29 - 
H0

40) are not higher than 0.7. Therefore, all the hypotheses for RQ2 are rejected except for H0
33 and 

H0
38. 
We applied the same procedure for Sharejar and SourceForge datasets and the results for the 

tests are in Tables 8 and 9. According to Nemenyi’s tests in the three cases (Sharejar+SourceForge, 
Sharejar, SourceForge) there is no significant difference between REC of methods and packages. In 
SourceForge there is no significant difference between PRC of packages and methods, but there is 
significant difference in FPR values; packages outperform FPR of methods and classes, and 
methods have the highest FPR. As in the case of using both dataset as a whole, we also found that 
highest differences are between API methods and API classes; and lowest values of effect sizes are 
between API classes and API packages. 

In Sharejar there is no significant difference between the REC of API-based attributes, however 
there is significant difference in PRC of the three attributes, and API methods have the highest 
average with the lowest variance. For FPR, classes and packages belong to the same group and are 
significantly different from methods. Thus, In the case of samples including Sharejar and 
SourceForge results, methods and packages outperformed REC and PRC of classes, and methods 
outperformed REC and PRC of packages. Again, lowest values of effect sizes are between API 
classes and API packages; and highest values between API methods and API classes. 
 

 
 
 

Although there is no significant difference between REC and PRC of methods and packages, 
API packages are more effective attributes in SourceForge because they provide the lower 
values of FPR. The terms in the names of API methods in Sharejar provide the best 
precision value, but packages have the highest REC with a lower FPR than methods. 
However, comparing API classes and API packages in SourceForge we found the lowest 
effect sizes; it means that API classes could provide same PRC and REC than API 
packages. In Sharejar the probabilities of differences between API classes and API 
packages are higher than 0.5; therefore API packages in Sharejar could provide better 
performance than API classes. 

Table 9. Null hypotheses and p-values for RQ2 using the Nemenyi’s test, and non-
parametric effect sizes p  (based on Mann-Whitney’s test)  on SourceForge results. The 

Bonferroni corrected significance level (for Nemenyi’s test) was 0,0167. 
 

 P-values and effect sizes 

Comparison PRC REC F-MEASURE FPR 

Methods vs. Classes H0
29, p< 0,0001,

p=0,7293 

H0
32

, p< 0,0001,

p=0,7238 

H0
35

, p< 0,0001, 

p=0,7093 

H0
38

, p< 0,0001,

p=0,4717 

Methods vs. Packages H0
30

, p=0.915,

p=0,5774 

H0
33

, p=0.074,

p=0,5774 

H0
36, p=0.183, 

p=0,4795 

H0
39

, p=0.003,

p=0,5485 

Classes vs. Packages H0
31

, p< 0,0001,

p=0,3294 

H0
34

, p< 0,0001,

p=0,3294 

H0
37, p< 0,0001, 

p=0,2905 

H0
40

, p< 0,0001,

p=0,5874 
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5.3 RQ3 – API-based and Text-based Attributes 

Case studies by other researchers studied the use of source code terms, and various combinations 
of these terms (e.g., bigrams, phrases, etc.), as attributes (Ugurel et al. 2002; Kawaguchi et al. 
2006).  These studies found that single words were the most-effective terms to use as attributes.  
This paper builds on this previous work by comparing the use of terms against the use of API-
based attributes.  Specifically, we compare packages and methods to single words from source 
code because we found them to be the API-based attributes with best REC and PRC values (see 
Section 5.2). For RQ3, we compare methods versus terms, and packages versus terms using the 
Wilcoxon rank test. The rationale for this is that the Wilcoxon rank test is suggested to compare 
two samples over N datasets (Demsar 2006).  

 

Figure 4. Performance metrics for terms, methods and packages over five algorithms in all 
categories of both repositories. 

Table 10. Null hypotheses and p-values for RQ3 using the Wilcoxon Rank test, and non-
parametric effect sizes p  (based on Mann-Whitney’s test). Each cell lists a null hypothesis 

that formulates that there is not significant difference between the values of a metric achieved 
with a dataset type and the values of the same metric achieved with other dataset type. For 

example H0
41 formulates that there is no significant difference between the precision of 

Methods and Terms.  
 

 P-values 

Comparison PRC REC F-MEASURE FPR 

Methods vs. Terms 
H0

41, p=0,583,
p=0,4881 

H0
43

, p=0,303,
p=0,4928 

H0
45

, p= 0,060, 
p=0,5301 

H0
47

, p=0,131,
p=0,4928 

Packages vs. Terms 
H0

42
, p=0,853,

p=0,4925 

H0
44

, p<0.0001,

p=0,5815 

H0
46, p= 0,446, 

p=0,5195 

H0
48

, p=0,699,

p=0,5815 

API methods and packages are more effective attributes than API classes for 
categorization of the applications in both repositories we used as a dataset. However, methods 
have highest values of REC and PRC, and packages and classes have the lowest FPR values.  
Our result is somewhat surprising, in that one may expect fine-grain attributes, such as methods, 
to always be more telling than course-grain ones, such as classes.  While methods do in fact 
outperform classes and packages, using API packages outperforms classes.  This means that the 
programmers must use API classes in a variety of their projects, but select specific methods for 
the goals of each category.  Along this vein of thought, programmers would tend to include 
packages only when those are needed in a category. 
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Figure 4 shows the PRC, REC, F-Measure, and FPR for all five machine learning algorithms 
using the packages, methods and terms as attributes.  These attributes come only from the 
applications in SourceForge because it was only possible to extract the terms from those 
applications – we had only byte-code for applications from Sharejar, which is quite typical for 
large development companies that do not own the source code that they develop.  Using packages, 
the average PRC is 17.29%, REC is 19.16%, F-Measure is 16.12%, and FPR is 4.45%. Using 
methods, the PRC is 17.09%, REC is 29.40%, F-Measure is 15.69%, and FPR is 5.90%. Using 
terms, the PRC is 17.48%, TPR is 23.31%, F is 17.00%, and FPR is 4.85%. 

Table 10 lists the null hypotheses and p-values of the Wilcoxon Rank test for RQ3. The null 
hypotheses state that there is no significant difference between two samples. We only found 
significant difference with a p-value < 0.0001 and it was for REC of packages and terms, however, 
we did not find significant difference for PRC. For the comparison between methods and terms, in 
the four metrics we found values that suggest no significant difference.  
 

 

5.4 RQ4 – Kernel Types 

The baseline approach proposed in (Ugurel et al. 2002) uses a linear kernel function with a cost 
parameter equals to 100.  For RQ4 we want to evaluate what kernel function is the best model to 
separate the categories in order to improve the categorization performance, Thus, we compared the 
performance of linear kernel function with quadratic, RBF, and sigmoid kernel functions using the 
default parameters in WEKA and the same cost parameter proposed in (Ugurel et al. 2002). Figure 
5 shows a statistical summary of the PRC, REC, F-Measure, and FPR for our run of SVM with 
different kernel types.  Each boxplot represents a metric for one kernel for each category in both 
SourceForge and Sharejar, on all sets of attributes.  We observe that the averages values of PRC 
are 50.00% for the linear kernel, 43.06% for the quadratic, 54.96% for the RBF, and 56.32% for 
the Sigmoid. In this case the sigmoid kernel function has the highest average value of PRC, 
however, the RBK kernel shows a similar distribution. The average REC values are 55.37% for 
linear, 24.83% for quadratic, 46.12% for RBF, and 41.70% for sigmoid. The average REC of the 
linear kernel outperforms the other types of kernels and the REC values of the linear kernel are 

According to the p-values of the Wilcoxon Rank tests, we cannot reject the null 
hypothesis that there is no statistically significant difference between the PRC, REC, F-
Measure, and FPR when using methods or terms. Moreover, we can reject the null 
hypothesis that there is no statistically significant difference between the REC when 
using packages or terms, but we cannot reject the null hypothesis that there is no 
statistically significant difference between the PRC, F-Measure and TPR when using 
packages or terms.  Therefore, we conclude that packages and methods are good 
alternatives to terms in the case when the terms are not available. 

 

Figure 5. Performance metrics for terms, classes, methods and packages over four kernel types in 
all categories of both repositories. 
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more grouped around the mean (the variance is the lowest for the four types of kernels). The F-
Measure confirms the results of PRC and REC with the linear kernel providing the highest 
accuracy and the quadratic kernel the lowest accuracy.  The average values of FPR are 3.39% for 
the linear kernel, 6.36% for the quadratic, 6.01% for the RBF, and 6.36% for the sigmoid; the 
linear kernel has the lowest FPR value with the lowest variance.  Thus, we applied the Friedman’s 
test to validate if the differences between the distributions of the performance measures are 
statistically significant.  For PRC we got a p-value of 0.003 and for the other metrics p-values less 
than 0.0001. These values lead us to reject the null hypothesis stating that there is no significant 
difference between TPR, FPR, and PRC of the four types of kernels. 

After the Friedman’s test, we applied the Nemenyi’s post-hoc test on the difference between 
specific pairs of kernel types to validate if there are significant differences between the linear 
kernel and the other. We choose the linear kernel as the baseline for the test, because it performs 
better that the other kernels for TPR and FPR.  Table 11 lists the null hypotheses we used for the 
Nemenyi’s post-hoc test, and the p-values. We cannot reject H0

50, H0
51, and H0

58 because their p-
values are greater than the Bonferroni corrected significance level (0.0083). Although there are 
significant differences between the performance of the linear kernel and the other, using the REC 
and F as performance measures, there is no significant difference between the distributions of the 
FPR values obtained with the linear and quadratic kernels. Using PRC as performance measure, 
we cannot reject H0

49, but we reject H0
50 and H0

51; this means that there are no significant 
differences between the linear kernel and the RBF and Sigmoid kernels.  Effect sizes for REC and 
F-Measure suggest that the highest differences are between Linear and Quadratic Kernels, and 
Linear and RBF Kernels; for FPR, the effect sizes between Linear and RBF, and Linear and 
Sigmoid are lower than 0.5. Therefore, we consider that Sigmoid could provide as good results as 
Linear Kernel. 

 

 
 

6 Discussion and Future Work 

SVM is a widely used algorithm and has been reported to outperform machine-learning classifiers 
in several domains such as text categorization (Leopold and Kindermann 2002), developer 
recommendation (Anvik et al. 2006; Anvik and Murphy 2011), and software categorization 
(Ugurel et al. 2002; McMillan et al. 2011). We confirmed this by using a one-against-all approach 

Therefore, we can conclude that the linear kernel is the most-effective kernel for 
categorization of the applications in both repositories we used as datasets in our 
evaluation with average values of 50.00% (PRC), 55.37% (REC),  50.68% (F-Measure), 
and 3.39% (FPR). 

Table 11. Null hypotheses and p-values for RQ4 using the Nemenyi’s test, , and non-
parametric effect sizes p  (based on Mann-Whitney’s test). Each cell lists a null 

hypothesis that formulates that there is not significant difference between the values of 
a metric achieved with two different kernel types. For example H0

49 formulates that 
there is no significant difference between the precision of Linear and Quadratic kernels. 

The Bonferroni corrected significance level (for Nemenyi’s test) was 0,0083. 
 

 P-values 

Comparison PRC REC F-MEASURE FPR 

Quadratic vs. Linear H0
49, p=0.007,

p=0,5622 

H0
52

, p< 0,0001,

p=0,8601 

H0
55

, p< 0,0001, 

p=0,7933 

H0
58

, p=0.215,

p=0,6226 

Sigmoid vs. Linear H0
50

, p=0.543,

p=0,4637 

H0
53

, p< 0,0001,

p=0,6205 

H0
56, p< 0,0001, 

p=0,5641 

H0
59

, p< 0,0001,

p=0,4429 

RBF vs. Linear H0
51

, p=0.382,

p=0,4754 

H0
54

, p< 0,0001,

p=0,6955 

H0
57, p< 0,0001, 

p=0,6268 

H0
60

, p< 0,0001,

p=0,4322 
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to learn a multi-label model from the SourceForge and Sharejar datasets. This configuration 
provides better results for multi-class and multi-label problems than the other algorithms (NB, DT, 
JRip, IBK) because using a binary SVM classifier for each category allows the model to build 
better hyperplanes that maximizes the margin used to distinguish the categories.  

6.1 Attributes and Classifier Accuracy 

We found in SourceForge that using packages and methods as attributes provide better PRC and 
REC than classes, and terms outperformed packages and methods.  Measuring the accuracy with 
the F-Measure we also found that classes achieved the lowest values, terms achieved the highest 
values, and packages and methods are good alternatives to terms. Tables 12 and 13 list the F-
Measure values of linear SVM for each category and each attribute in SourceForge and Sharejar. It 
is clear that there is a difference between classes and the other types of attributes for each 
category; the values of terms, packages and methods outperform the values of classes for each 
category.  One explanation for this result is that the packages and methods are more specific to the 
categories than classes, and that terms are more specific than packages.  It means that some 
attributes should appear only in the applications that are grouped in a category, or these attributes 
should not appear across several categories because they do not provide enough information to the 
classifier to distinguish between the categories. To explore this, we computed the number of 
attributes with top values of EEL that are overlapped in the categories and plotted the average 
values in Figure 6.   

Table 12. F-measure of linear SVM for each category and each attribute type in 
SourceForge 

 

F-Measure 
Category 

Terms Methods Classes Packages 

1. Bioinformatics 0.743 0.722 0.272 0.743 

2. Chat 0.745 0.743 0.169 0.742 

3. Communications 0.605 0.589 0.149 0.601 

4. Compilers 0.706 0.698 0.329 0.712 

5. Database 0.693 0.648 0.213 0.689 

6. Education 0.633 0.620 0.178 0.633 

7. Email 0.746 0.718 0.168 0.746 

8. Frameworks 0.724 0.724 0.304 0.727 

9. Front-ends 0.712 0.704 0.241 0.702 

10. Games 0.730 0.715 0.189 0.728 

11. Graphics 0.603 0.604 0.217 0.607 

12. Indexing/Search 0.733 0.721 0.214 0.732 

13. Internet 0.608 0.599 0.163 0.604 

14. Interpreters 0.638 0.628 0.198 0.635 

15. Mathematics 0.655 0.653 0.238 0.658 

16. Networking 0.568 0.560 0.124 0.567 

17. Office/Business 0.594 0.595 0.271 0.598 

18. Scientific 0.658 0.644 0.196 0.654 

19. Security 0.627 0.607 0.188 0.622 

20. Testing 0.733 0.714 0.170 0.730 

21. Visualization 0.607 0.603 0.324 0.605 

22. WWW/HTTP 0.698 0.684 0.172 0.696 
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For SourceForge, terms extracted from source code is the attribute with the lowest number of 
attributes shared between categories and classes is the one with the highest number of overlapped 
attributes; thus identifiers in methods and variables are specific to categories with a few terms that 
are common to the categories, and classes are less specific. For example, the Email category has 
an average of 3.71 overlapped terms with other categories, such as hashcode, locally, 
traffic, etched, crif, and timezone. The hashcode term is also a top EEL attribute 
in Networking, Office/Business, and Security categories; locally is also in 
Post-Office, Office/Business, and Networking; etched is also in 
Database, Frameworks, Games, Internet, and Networking; crif is also in 
Communications, Frameworks, and Security.  The Office /Business category has 
an average of 75.29 classes shared with other categories; the classes 
javax::swing::plaf::basic::BasicTableUI::Handler, com::sun::java:: 
util::jar::pack::ClassReader,com::sun::org::apache::xalan::interna
l::xsltc::compiler::IdKeyPattern, and sun::misc::ServiceConfigura-
tionError are overlapped with the other 21 categories. For packages the situation is similar to 
classes, the average number of overlapped attributes for each category is slightly lower than 
classes in most of the categories; however the accuracy of packages outperforms classes. We 
conjecture that the accuracy difference is due to the fact that the variety of overlapped packages is 
lower than classes (e.g., the number of unique packages overlapped with other categories is 83, 
and the number of unique classes overlapped with other categories is 87). 

For Sharejar, linear SVM with methods provided the highest values of accuracy for each 
category, and packages provided the lowest values. Thus, identifiers extracted from methods, and 
classes are more specific than packages for categories in Sharejar applications. Again, to explain 
these results we computed the average number of overlapped top-100 EEL attributes by category 
(Figure 6). Packages with top EEL values are more overlapped than the other attributes, and 
classes are the attributes with the lowest overlapping. For example the localization category has an 
average of 36.67 overlapped packages such as, javax.microedition.rms, 
javax.microedition. midlet, javax.microedition.io, javax.microedit 
ion.lcdui; 21 of 46 packages are overlapped with the other 12 categories, and 8 packages are 
overlapped with 11 categories. The reason is that importing these packages provides access to 
features (midlets, foundation profiles, CLDC)18 that are required or mandatory to implement J2ME 
applications. Therefore, the extensions of the J2ME API have the packages that could provide the 

                                                 
 
18 http://www.oracle.com/technetwork/java/javame/javamobile/documentation/index.html (verified on 05/07/2012) 

 

 

Figure 6. Averages values of overlapped top-100 EEL attributes in categories of both repositories 
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information to the classifiers to distinguish between the Sharejar categories. However, these 
packages were designed to provide low level functions in most of the cases or are related to 
specific deployment environments (e.g., com.motorola.io, com.siemens.mp.io), and using these 
packages is not enough to describe application domains. For methods and classes, the overlap is 
lower, and classes and terms extracted from methods are more specific for the categories. 
However, we conjecture that the APIs’ design at methods and class levels are not as good as those 
in JDK to be pertinent descriptors of application domains. 

 

6.2 Expected Entropy Loss and Term-based/API-based attributes 

According to EEL definition (Section 3), attributes with higher values of EEL are more 
discriminatory and provide more information for the categorization. Therefore, the higher the 
values of EEL in the attributes selected to train the classifiers, the higher the accuracy of the 
categorization because the classifiers are able to better distinguish among different categories. We 
explored this relation, using the distribution of top attributes in both repositories. Figures 7 and 8 
show average values of EEL of the top-100 attributes in both SourceForge and Sharejar. 
Additionally, Figures 9 and 10 show the distribution of EEL values for top-100 attributes.  In some 
categories the number of top terms is less than 100, because the number of packages or classes in 
the category is less than 100. The distributions of EEL values for top attributes, in both 
repositories, are skewed to the left and not unimodal. This confirms that some attributes are more 
descriptive for some categories and many others are commonly shared by some categories. The 
multi-modal behavior is more evident in the case of terms (SourceForge) and methods (Sharejar). 
API methods are the attributes in Sharejar with the highest average value of EEL and lowest 
variance for every category (Figure 8). Top identifiers in terms (SourceForge) also have the 
highest average of EEL and the lowest variance for each category (Figure 7); however, average 
values for SourceForge are lower than Sharejar. This is because the number of applications and 
categories in Sharejar are lower than in SourceForge, and Sharejar applications use APIs with 
features related to mobile devices. API calls in Sharejar are more specific that API calls in 
SourceForge. 

 
  

Table 13. F-Measure of linear SVM for each category and each attribute type in 
Sharejar 

 

F-Measure 
Category 

Methods Classes Packages 

1. Chat & SMS  0.597 0.592 0.539 

2. Dictionaries 0.354 0.354 0.089 

3. Education  0.405 0.400 0.299 

4. Free Time  0.420 0.423 0.310 

5. Internet  0.485 0.479 0.406 

6. Localization  0.507 0.522 0.462 

7. Messengers  0.346 0.341 0.250 

8. Music  0.598 0.554 0.490 

9. Science  0.409 0.409 0.188 

10. Utilities  0.487 0.482 0.365 

11. Emulators  0.370 0.374 0.330 

12. Programming  0.323 0.323 0.200 

13. Sports  0.458 0.458 0.297 
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Figure 7. Average EEL of the 100 attributes with the highest EEL values in all 
categories of SourceForge. 

 

Figure 8. Average EEL of the 100 attributes with the highest EEL values in all 
categories of Sharejar. 
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Figure 9. Histogram of EEL for top attributes in SourceForge 
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Figure 10. Histogram of EEL for top attributes in Sharejar  
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Figure 9 shows multi-modal distributions for the top EEL values in SourceForge. The distribution 
of methods has EEL values that are lower than EEL values of terms, and terms in SourceForge are 
the best option for categorization because they provide more information and are more related to 
categories. The percentage of attributes, in the terms dataset, with EEL higher or equals than 0.5 is 
higher than in the other datasets (Terms = 12%, API packages = 7%, API classes = 8%, API 
classes = 0%). Top attributes in classes and packages have similar distributions, and effect sizes 
for PRC, REC and F-Measure are lower than 0.35 (Table 9). However, the effect size for FPR is 
close to 0.6, and we guess that the small differences (e.g., number of attributes with EEL equal to 
0.45, 0.5, 0,55) between the distributions for the top EEL values in classes and packages, 
contributes to this effect size.  

Figure 10 shows a clear difference between packages and classes in Sharejar. API classes have 
higher EEL values than API packages, and according to effect sizes (Table 8) the probabilities of 
getting PRC, REC, and F-Measure values using API classes, are greater than the performance 
values obtained with API packages. Therefore, classes in Sharejar could provide better 
performance than packages. This case differs from SourceForge results, and the reason is that the 
packages in Sharejar are not enough to describe features of categories, meanwhile the diversity of 
classes provide more information to the categorization (Table 4, Section 4.1.2).  

 

6.3 Applications and Future work 

The best results were achieved using SVM with a linear kernel on API-terms of the 
SourceForge datasets 19 . Our API-based categorization provided REC and FPR values that 
outperform the best values reported by Ugurel et al. (Ugurel et al. 2002). Figure 11 depicts the 
distribution of REC and FPR of our API-based results on SourceForge dataset, and the distribution 
of REC and FPR values of the single words-based approach (SW) reported in (Ugurel et al. 2002). 
API-classes provided the worst average values, however, the average and medians of the other 
API-based approaches (terms, methods, and packages) outperform SW, using a higher number of 
applications and categories. This leads us to believe that our API-based categorization could be 
used as a model to recommend the categories that could be assigned to software applications. For 
example, a developer uploading a new system to SourceForge can use the list of categories 
provided by our approach as a recommendation list that is based on the knowledge extracted from 
previous selections of other developers; then, according to the agreement of the developer with the 
recommendations, the final selection could be used as new knowledge in a further training of the 
classifier. If the developer agrees with the list, the model will be reinforced, it not new knowledge 
will provide more information to the classifier to avoid the overfitting of the model. 

Our results shed additional light on how categorizing software applications can be useful for 
software maintenance. Di Lucca et al. use automatic classification of software maintenance 
requests to route them to specialized maintenance teams (Di Lucca et al. 2002). With our 
approach, these requests can be mapped to application categories, and then similar requests and 
solutions can be located in these categories enabling stakeholders to address maintenance requests 
faster and within budget (Weiss et al. 2007). Additionally, extending the work of Anvik and 
Murphy (Anvik and Murphy 2011), where implementation expertise of developers is inferred from 
bug reports, our approach can complement this work by classifying expertise of developers by 
categories of applications with which they deal. 

Future work should be dedicated to explore better methods for automatic categorization that 
improve our results. In spite the fact that our results outperform the best values reported by Ugurel 
et al. (Ugurel et al. 2002), REC and PRC values are not higher than 60% on average. A possible 
explanation for these rather low values is that several attributes are shared across different 
categories (Sections 6.1 and 6.2) and our approach to categorize multi-label datasets using single–
label classifiers is not able to identify the relationships in those attributes. A single-label classifier 
learns how a subset of attributes allows identifying a category from the rest, but does not identify 
how those attributes are used to identify other categories. According to (Ji et al. 2008), there are 
shared spaces between attributes in different categories that exhibit semantic correlation; therefore, 
it is essential to exploit the correlation information between categories to provide high 
performance values in categorization processes using multi-label classifiers. 

                                                 
 
19 0.671 (Average PREC), 0.671 (Average REC), 0.671 (Average F‐measure), 0.024 (Average FPR) 
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We used multi-class algorithms to categorize multi-label datasets; we transformed the multi-
label datasets into multi-class ones creating new categories. This process does not take into 
account the correlation between the categories loosing information that is useful for categorization 
of multi-label datasets. We guess that using multi-label algorithms could increase the TPR and 
PRC in our results. Therefore our future work consists in comparing multi-label algorithms with 
SVM using different techniques for attributes selection and the same approach for extracting 
attribute in closed-source repositories. Additionally, topic-modeling techniques has been used in 
several researches related to maintenance tasks; one additional research question that we want to 
address as future work is whether topics extracted with LDA can be more effective for selecting 
descriptive attributes as compared to EEL. 

 

 7 Threats to Validity 

Certain threats to validity affect the results of our case study and our ability to generalize these 
results.  Internal threats include the attributes we use for categorization.  The terms that 
programmers write in source code may be arbitrary, and the existence of a term in a project may 
be coincidental.  The API classes and packages are less likely to occur coincidentally, because 
APIs provide functionality that the programmer wanted to use.  In this case, the TPR, FPR, and 
PRC we report from the terms could be too high or low as compared to classes or packages.  We 
minimize this threat by using 5-fold cross validation. 

Another internal threat to validity is the set of categories we use.  For SourceForge, our 
approach considers only top-level categories with more than 100 applications (see Section 4.1).  
We do not explore why these categories are the largest, and our results could be affected by certain 
“popular” categories: applications may be more likely to occur in these categories purely by 
chance.  We minimized this threat by including all the categories from Sharejar, although we 
compute the TPR, FPR and PRC separately.  That is, an application from Sharejar cannot be 
placed into a category from SourceForge. 

One external threat to validity is our choice of repositories.  Further work is needed to 
reproduce our case study on other datasets, and we cannot guarantee that our results will apply to 
all possible software repositories.  We minimized this threat in two ways: First, we used two 
different repositories.  Second, we duplicated the case study design from previous work (Ugurel et 
al. 2002), and found comparable results.  The fact that both repositories are in Java also introduces 

 

 

Figure 11. Boxplot of performance metrics (REC and FPR) of API-based categorization and 
Single Words-based categorization 
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a threat to validity.  We use API packages, classes and methods, but other programming languages 
may not have a similar hierarchical organization of APIs. 

Finally, there is a threat that applications are incorrectly assigned to categories in subject 
repositories. It means that a training set may be compromised, and it is very difficult to determine 
it with any certainty. For example, registration process of new applications in SourceForge 
includes the process of manually categorizing the projects using the Trove Software Map20(TSM). 
The TSM has categories that allow developers to categorize applications using domain topics, 
programming language, operating systems, among others. However, the topics predefined in TSM 
do not represent all the possible domains, and in some cases developers select categories that do 
not describe as the features provided by the applications. If this is the case, then all approaches 
introduce a similar level of imprecision, and a relative comparison of these approaches may still be 
valid. 

 

8 Related Work  

Machine learning has previously been used to categorize software systems.  Kawaguchi et al. 
(Kawaguchi et al. 2003) use a Decision Tree on 41  software systems from SourceForge that were 
categorized manually by developers into six groups (board game, compiler, database, editor, video 
conversion, and xterm) . Their model uses 3-gram representations of filenames as attributes. 
Although, we could not compare our approach to the Decision Tree based model proposed in 
(Kawaguchi et al. 2003) because we extract terms and API calls from applications, we use the 
same Decision Tree algorithm with our attributes selection strategy. Sandhu et al. (Sandhu et al. 
2007) propose an unsupervised approach using Naïve Bayes classification and a hybrid model of 
Naïve Bayes with LSA; the model categorize 63 components belonging to six categories or 
domains that were defined manually. Therefore we cannot compare our model to the one proposed 
in (Sandhu et al. 2007) because ours is supervised and we use 4,031 applications (745 from 
Sharejar and 3,286 from SourceForge) that are categorized in a predefined list of categories. 

The work by Ugurel et al. is the most similar to ours in that we use supervised machine 
learning techniques (Ugurel et al. 2002). We have replicated Ugurel’s study in this paper and 
compared our approach to it on a large repository of open-source projects.  Ugurel et al. uses a 
SVM implementation for programming language and application topic classification of open-
source systems using single labels. Their model includes feature selection with EEL and 
categorization with SVM.  We expanded this work by evaluating multiple machine learning 
algorithms and types of attributes with multiple categories. 

MUDABlue is an information retrieval technique for software categorization (Kawaguchi et al. 
2006). MUDABlue uses Latent Semantic Indexing (LSI) and clustering for automatic software 
categorization of 41 programs selected from SourceForge. MUDABlue uses identifiers as features. 
Unlike our approach, MUDABlue automatically generates categories based on these features 
instead of placing projects into existing categories.  Therefore, we could not directly compare our 
approach to MUDABlue. 

LACT is another system that relies on information retrieval to categorize software (Tian et al. 
2009).  LACT uses Latent Dirichlet Allocation (LDA) over the same dataset as Kawaguchi et al. in 
order to infer topics to which applications belong. Like MUDABlue, LACT automatically generates 
categories for projects, meaning that we could not compare our approach to LACT. 

Kelly et al. (Kelly et al. 2011) use topic modeling techniques (LDA) to semi-automatically 
identify common topics from the source code of software applications. Like LACT, Kelly et al. use 
topics clustering to identify commonalities and variability across the applications, and topics are 
extracted as collections of frequent words in the clusters. 

Bruno et al. (Bruno et al. 2005) propose an approach for locating web services.  Their approach 
takes a natural language query and uses SVM to match the query to related web services.  Also, 
Bruno et al. find relationships among web services via automatic categorization.  Their approach 
uses words as attributes. These words come from any documentation of the web service.  In 
principle, our approach is similar in that we test SVM and words for categorization, though we also 
perform a case study with many machine-learning algorithms with APIs as attributes. 

                                                 
 
20 http://sourceforge.net/apps/trac/sourceforge/wiki/Software%20Map%20and%20Trove (verified on 05/07/2012) 
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Categorization has previously been used with other software artifacts in order to achieve some 
tasks related to software maintenance and evolution. Menzies et al. (Menzies and Marcus 2008) 
present an automated method named SEVERIS, for assigning severity levels to defect reports. 
SEVERIS extracts words from issues reports and selects most relevant by using a measure of 
information gain (InfoGain). SEVERIS build rules set between the terms and the severity levels 
(categories) in order to assign the severity of new reports, which is different from our approach in 
that we aim to categorize whole applications. 

Antoniol et al. (Antoniol et al. 2008) use machine learning classifiers in order to categorize 
descriptions of “issues” posted in bug tracking systems. The objective of categorization is to 
classify issues into types of activities (e.g., bug fixing, feature enhancement, etc.). Issues are 
modeled using words as attributes. Antoniol et al. use three different machine learning algorithms: 
logistic regression, Naïve Bayes and Decision Trees.  Unlike our approach, their technique focuses 
on categorizing issues in applications. 

Hindle et al. (Hindle et al. 2009) propose to use machine learning for categorizing commits 
(e.g., from CVS) into categories of maintenance tasks (e.g., corrective, adaptive, etc.). The words in 
the commit messages are used as sets of attributes. Hindle et al. use seven classifiers for the 
categorization: J.48, Naïve Bayes, SMO, KStar, IBK, JRip and ZeroR.  They performed an 
evaluation of these algorithms, but unlike this paper, only used one type of attribute.   

Schuler et al. (Schuler et al. 2007) proposed a dynamic birthmark generation technique for 
software applications. The birthmark is built as a set of short call sequences received by API 
objects. The approach could be considered as a type of categorization, because applications with the 
same birthmark are likely to share a common origin. Thus a birthmark is a label (category) that 
identifies intrinsic properties of executable files that are hard to modify but easy to validate. Like 
our approach, their technique uses an API-based approach, collecting sequences of method calls 
from the Java Platform Standard API on jar files. However, dynamic birthmark generation 
technique requires executing application, which would be prohibitive in the context of our problem 
setting. 

  Our work is related to Exemplar, a search engine that locates relevant applications (Grechanik 
et al. 2010) in that Exemplar matches query keywords to words in the documentation of API calls.  
Although, Exemplar does not categorize software, it also explores the idea that applications contain 
functional abstractions in a form of API calls whose semantics are defined precisely. Based on this, 
Exemplar is a code search engine that identifies API calls in software applications and uses the 
documentation of the APIs to retrieve relevant applications.  Similarly, Structural Semantic 
Indexing (SSI) is a technique for computing the similarity between source code based on API calls, 
however, it is used to locate source code using queries, not to categorize software (Bajracharya et 
al. 2010). As in the case of Exemplar and our study, SSI is based on the heuristic that source code 
entities (classes, methods, etc.) that use APIs in similar ways, are semantically related because they 
do similar things. 

9 Conclusions  

We present an approach for categorizing software applications in the context of maintenance 
tasks.  We extracted the APIs used by applications as attributes for categorization.  Our technique 
differs from previous approaches in that we do not rely on words extracted from the source code of 
applications, meaning that we can support software maintenance tasks over both open- and closed-
source repositories. We built and tested our ideas with five different machine-learning algorithms 
(SVM, Naïve Bayes, Decision Tree, JRIP, and IBK) and two software repositories, and compared 
our approach to the closest competing technique.  We found that using API methods and packages 
provided as good accuracy as using terms, even though the number of API packages and methods 
is smaller than the number of terms. One key advantage to using API packages, classes, and 
methods as attributes is that these attributes are more stable than terms across many programs.  
Recent work has found that APIs are more likely to represent domain concepts in applications than 
terms (Ratiu and Deissenboeck 2006; Ratiu and Deissenboeck 2007).  Hence, APIs are likely to be 
high-quality attributes for categorization, even if terms are not.  

 Also, we found that our approach is applicable to repositories where the terms in the source 
code are not available.  Ours is the first study that thoroughly evaluated different machine learning 
algorithms and types of attributes for the purposes of software categorization.  The average 
accuracy (F-measure, precision, recall) of the best configuration of our technique is around 60%, 
suggesting that developers can use it to obtain a list of possible domain categories, which software 
applications could be assigned to, even when the source code is not available. Knowing these 
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categories could be used to predicting problems and quality attributes, or extracting related bugs or 
features.  
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