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Abstract Modern software is often developed over many years with hundreds
of thousands of commits. Commit metadata is a rich source of time-based
characteristics, including the commit’s time of day and the commit frequency
and seniority of its author. The “bugginess” of a commit is also a critical
property of that commit. In this paper, we investigate the correlation between
a commit’s time-based characteristics and its “bugginess”; such results can
be useful for software developers and software engineering researchers. For
instance, developers or code reviewers might be well-advised to thoroughly
verify commits that are more likely to be buggy.

In this paper, we study the correlation between a commit’s bugginess and
the time of day of the commit, the day of week of the commit, the commit
frequency and seniority of the commit authors, and whether or not the develop-
ers have marked a commit as a “stable” commit. We survey three widely-used
open source projects: the Linux kernel, PostgreSQL, and the Xorg server.

Our main findings include: (1) commits between midnight and 4 AM (re-
ferred to as late-night commits) are significantly buggier and commits between
8 AM and noon are less buggy, implying that developers may want to double-
check their own late-night commits; (2) daily-committing developers produce
less-buggy commits, indicating that we may want to promote the practice
of daily-committing developers reviewing other developers’ commits; (3) the
bugginess of commits versus day-of-week varies for different software projects;
and (4) stable commits are significantly less buggy than commits in general.

This submission extends a previous publication on the same subject. A paragraph at the
end of Section 1 explains the relationship of this work with our previous work.
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1 Introduction

Software users demand high software reliability. However, as software complex-
ity increases, bug counts and rates inevitably rise, which undermine software
reliability. The modern software development paradigm further complicates
the situation: many modern software projects, including the Linux kernel,
PostgreSQL, the Xorg server, Eclipse, and Apache, are developed by tens
to thousands of developers, over decades, in a distributed manner. The soft-
ware often receives tens of thousands or hundreds of thousands of commits
(Section 3). Developers with different programming experience, time commit-
ments, working hours, programming styles, and from diverse cultures across
the world, work on the same software project at different times and in differ-
ent time zones. They join and leave projects at their own pace over periods
of decades. Code developed in the modern paradigm can therefore have differ-
ent characteristics from older, more homogeneously-developed projects; these
characteristics can best be measured by going beyond the code itself and into
the developers’ time-based characteristics related to the code.

Time-based software characteristics provide a rich and unique source of
information for us to understand software and its bugs. As an example, it
would be helpful to know if a commit’s timestamp (including features such as
time of day, day of week, etc.) affects the quality of that commit—are commits
after midnight buggier than other commits? Such correlations may be useful
for predicting what commits are more likely to be buggy so that we can budget
more testing effort on these commits, following prior studies [9,10,12,14,13,
17,18,20,22,31,32]. These prior studies predict buggy locations based on code
complexity, code locations, the amount of in-house testing, historical data,
socio-technical networks, etc. A second question is: are developers who work
on a project for a longer period of time (referred to as developers’ seniority),
or who commit more frequently, more or less likely to write buggy commits?

Contributions In this paper, we study time-based characteristics of modern
software development to understand the correlation between these character-
istics and the bugginess of commits to the software—the likelihood that a
particular commit is later fixed, as determined by the fixing author. Specifi-
cally, we study the latest versions of the Linux kernel, PostgreSQL, and the
Xorg server, which have 222,332, 31,098, and 10,835 commits, respectively. We
study the correlation between a commit’s bugginess and the time of day of the
commit, the day of week of the commit, the commit frequency and seniority of
the commit authors, and whether or not the developers have chosen to apply a
commit to a maintenance-only “stable” branch. In addition, we study several
other commit characteristics, such as comment-only fixes and bug lifetimes.
To the best of our knowledge, we are the first to study the correlation between
the commit time of day and the commit correctness.
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To study the correlation between commit time and commit bugginess, we
start from bug-fizing commits, commits that fix software bugs, and then mine
the version control history to discover when the corresponding bugs were intro-
duced [25]. Our methodology enables us to observe circumstances where bugs
are more likely to be introduced. Note that we simply use “bug” to denote
code that is later changed, even though such code may objectively be correct;
we expand on this discussion later, in Section 2.

It is difficult to find bug-fixing commits in the sea of software commits.
Prior work [25] defines a bug-fixing commit to be a commit whose commit
message contains a bug ID that links to a bug report in a bug database. While
this approach works for some projects, e.g., Mozilla, it does not work for
software whose commit messages rarely contain links to bug reports, e.g., the
Linux kernel. We have observed that only 2.3% of the bug-fixing commits in the
Linux kernel are linked to a bug report. We address this problem by applying
heuristics that scan commit messages; they do not rely on any links between
bug commits and bug reports to extract bug-fixing commits. Our heuristics
have a precision of 75%-87% in identifying bug-fixing commits (Section 3).

We summarize our major findings below (§ denotes the section where the
finding and its implications are discussed):

— Finding 1 (§3.1): About a quarter (20.3-25.5%) of all the commits in the
Linux kernel, PostgreSQL, and the Xorg server are “buggy”: we observed
further developer activities to fix them.

— Finding 2 (§3.2): Commits that are first checked into a developer’s local
repository around midnight (between 0:00-4:00 AM) are more likely to be
incorrect than average, while commits in the morning (8:00 AM-noon) are
more likely to be correct.

— Finding 3 (§3.3): For some projects, developers who commit to the reposi-
tory on a daily basis write less-buggy commits than an “average” developer.

— Finding 4 (§3.6): In contrast to a prior finding that Friday commits are
buggier [25], our results on the Linux kernel PostgreSQL, and the Xorg
server show that the bugginess differences of commits that are checked in
on different days of the week are small and inconsistent across projects. Our
results imply that bugginess prediction based on day-of-week needs to be
calibrated on a per-project basis.

— Finding 5 (§3.7): For the Linux kernel, commits that the developers la-
bel as “stable” commits are significantly less buggy than general commits
to the Linux kernel repository. Stable commits are simpler and more well-
tested than general commits. This finding verifies one’s intuition that being
selective about commits does, in fact, reduce the bugginess rate for those
commits, and that the extra effort required to maintain a stable branch is
not wasted.

Previous version of this paper This article extends our previous conference
publication [8]. The novel contributions of this article include an examination
of the bugginess of the Linux kernel commits that developers mark “stable”; a
new benchmark, the Xorg server, which happens to share numerous committers
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with the Linux kernel; and a study of the commit bugginess characteristics of
the authors who commit to both the Linux kernel and Xorg.

2 Experimental Methods

Our overall goal is to investigate the properties of “buggy”, or bug-introducing,
commits. We define a bug-introducing commit to be any commit for which
there exists a later bug-fizing commit which purports to fix the bug. A single
bug-fixing commit may fix bugs introduced in multiple bug-introducing com-
mits. Despite our terminology, a bug-introducing commit is not necessarily
bad code; it is possible that the later fix is adaptive or perfective, updating
the code to work with changes in third-party code, or reflecting a change in
requirements.

2.1 Core Methods

Following Sliwerski et al [25], our methodology has three steps: 1) enumer-
ating bug-fixing commits; 2) identifying the lines changed in each bug-fixing
commit; and 3) finding the commits that were responsible for the previous
(buggy) version of each of the changed lines. We describe each of these steps
in more detail. First, to detect a bug-fixing commit ¢, we searched the commit
messages for the keyword “fix” (as do [23]). In our experience, most devel-
opers indicate that a change is a fix by including the keyword “fix” in the
commit message. Section 3 explains how we verified this intuition; our results
show that the precision of this heuristic for identifying bug-fixing commits is
75%-87%. Next, we computed diffs for each file changed in ¢, omitting com-
ments, and recorded the line numbers L. that ¢ changed. Finally, we searched
the repository metadata (as implemented by the “git blame” command) to
identify the bug-introducing commits, ¢/, which changed the lines L.. In this
step, we used git blame’s -w option, which ignores whitespace in attributing
responsibility for a code change, thus addressing some inaccuracies that exist
in other version control systems such as CVS and Subversion, as discussed by
Kim et al [16].

Example Figure 1 presents an example of a bug-fixing commit. Commits con-
sist of a commit id, which is a hash of the commit’s contents, represented as
a hexadecimal number!; an author, identified by a name/email address pair;
a commit message, which contains the keyword “fix”; and a diff, showing the
lines the commit modified.

First, we find the commit in Figure 1 by searching the commit logs for the
keyword “fix”, which is indeed a substring of the commit message, “I fixed a
bug!”. Next, we observe that the commit modifies line 100 of an (unidentified)

1 Following common practice, we drop trailing digits of the commit id: our commits have
ids with unique first-8-digits.
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Commit: 2cdc03fe ...

Author: Alice <alice@project .com>
Message: I fixed a bug!

@@ —-100,1 +100,1 @@

— if (i <= 128) {

+ if (i < 128) {

Fig. 1 An example bug-fixing commit

fice718c ... 100 if (i <= 128) {

Fig. 2 git blame output for the bug-fixing commit

Commit: f4ce718c ...
Author: Bob <bob@project.com>
Message: I hope this works.
@@ -100,0 +100,5 @@
if (i <= 128) {
do_ascii(i);
else {
do_unicode (i);
}

+++++

Fig. 3 Associated bug-introducing commit for the example

file—in this case, the original author used less-than-or-equal (<=) instead of
strictly-less-than (<), and the bug-fixing commit changes the comparison op-
erator to the presumably-correct one. Finally, we perform a “git blame” on
this commit, which shows the commit responsible for the previous version of
line 100. Figure 2 presents plausible “git blame” output, which shows that
the source of the bug fixed in Figure 1 is the commit whose id begins with
f4ce718c, as shown in Figure 3. We flag this commit as a bug-introducing com-
mit and store both the bug-introducing commit f4ce718c and its bug-fixing
commit 2cdcO3fe in our database, along with an association between these
two commits. If a bug was introduced by multiple commits, then all of these
bug-introducing commits are stored in our database.

Any change in ¢ that removes or modifies an existing line of code is easy
to attribute to a previous commit ¢/, since the affected line of code existed in
¢’. However, a change in ¢ that adds a new line of code has no corresponding
change in any previous revision, since that line did not previously exist. In that
case, we attribute responsibility to the commit that introduced the line just
before the new line. This heuristic does not work for bug-introducing changes
in newly-introduced files. Fortunately, our data show that such changes are
extremely rare, so ignoring them should not affect the validity of our study.
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2.2 Data Collected

Executing the above algorithm gives us data about the bug-fixing and bug-
introducing commits in each repository, as well as about the authors of these
commits. We record the following data for each commit: author (as a name/e-
mail pair); the author’s adjusted local commit time (we describe our adjust-
ments below); number of lines changed; and number of times the commit in-
troduced a bug later corrected (which is derived data; we record it to simplify
later database queries). We also record a relation connecting bug-introducing
commits and bug-fixing commits. For the Linux kernel repository, we mark
some commits as stable commits, and maintain a relation between stable and
mainline commits. For each author, we record the name, email(s) and com-
mit frequency classification (defined below). We define a bug’s lifetime to be
the time from the earliest commit that introduced the bug to the bug-fixing
commit.

We compute each author’s commit frequency classification, based on the
frequency of an author’s commits, and author seniority at commit time for
each patch, based on the elapsed time between that author’s first observed
commit and the commit time.

The author commit frequency classification describes an author’s most-
common interval between two consecutive commits: daily, weekly, monthly,
other (less than 20 commits and more than 1 commit), and single (only 1
commit). For the author commit frequency classification, we count consecutive
commits within 30 minutes of each other as one commit.

Author seniority reports the amount of time since an author’s first commit
to a project. To study the correlation between commit bugginess and author
seniority, we calculate the author’s seniority at the time of the commit. For
example, author X’s first commit to the Linux kernel was on March 28, 2009,
so that commit is by an author with 0 days of seniority. Then, the second
commit was on April 13, 2009, so it is by an author with 16 days of seniority.
We bin the commits by author seniority and present the percentage of buggy
commits for each author seniority bin.

Stable commits There are two types of the Linux kernel releases: mainline
releases (numbered like 2.6.39 or 3.1), and stable revisions of mainline releases
(numbered like 2.6.39.y or 3.1.y). Commits towards stable revisions, or stable
commits, must: “be obviously correct and tested”; contain fewer than 100 lines
of changes; only fix one problem; and exist in the main kernel repository. The
documentation? also lists several other properties, which are unimportant for
this paper.

The provenance of stable commits is as follows. Developers nominate com-
mits for the stable branch, and the stable branch committee “cherry picks”
acceptable commits from the main kernel repository. Git treats “cherry picked”
commits as new commits; they do not contain any link to the original commit,

2 http://lxr.linux.no/#linux+v3.1.6/Documentation/stable_kernel_rules.txt
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and may contain modifications of that commit. We infer links by textually
matching the commit message summary of a stable commit s with the closest
match ¢ in the main repository, and record the inferred link between s and ¢ in
our database. Note that a main branch commit ¢ can be associated with more
than one stable commit. We found, on average, that stable commits belong to
2 branches: a short-term branch and a long-term branch.

Time zone adjustments All PostgreSQL commits prior to September 18, 2010
(when the project switched to the Git version control system) and all Xorg
commits prior to June 6, 2006 contain timestamps only in UTC (Coordinated
Universal Time), meaning that no local time zone information was recorded. To
enable us to reason about time-of-day effects for committers, who work in local
time zones, we used publicly-available information (such as the PostgreSQL
contributor-information page, which lists locations for frequent contributors,
as well as time zones included in mailing list messages) to deduce time zones
for all 34 PostgreSQL committers. We then converted the time for each commit
(which was in UTC for CVS commits, and in local times for Git commits) into
a local time for the committer, using the Python time zone utilities. We also
deduced time zones for the 67 Xorg authors, using the same technique. We
assume that each committer is indeed in the time zone we have estimated for
that committer; we discuss this threat to validity in greater detail below.

Developer overlap between projects This experiment was prompted by our ob-
servation that our view of developer seniority only captures a very limited
notion of experience; most programmers do not start by contributing to the
Linux kernel! To broaden our notion of developer seniority, we decided to ex-
plore developers’ contributions to multiple projects, and found that the Xorg
server and the Linux kernel shared a nontrivial number of committers. Post-
greSQL did not share any committers with either the Xorg server or the Linux
kernel.

Understanding similarities and differences in the characteristics of devel-
opers’ commits across projects has a number of implications. First, it can
lead to a better understanding of the benefits and drawbacks of the different
development processes employed by various open-source communities (com-
munity norms affect the behaviour of the same people in different contexts).
In addition, it enables the comparison of characteristics between different
projects with overlapping authors; fixing problems that occur across a num-
ber of projects can simultaneously improve software quality for all involved
projects.

2.3 Threats to Validity

We discuss several threats to validity and how we address them, including gen-
eral threats to construct validity and external validity, and specific threats to
our particular methodology, including repository threats, recall and precision
threats, and author identification threats.
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General threats Construct validity requires that we correctly identify bug-
fixing and bug-introducing commits. To assess threats to construct validity,
we determine our confusion matrix by randomly sampling 200 commits from
the Linux kernel, PostgreSQL, and Xorg, and manually verifying whether or
not they are indeed fixes. False positives and false negatives affect precision
and recall. We found that our precision (proportion of reported bug-fixing
commits that do fix bugs) was 87% for the Linux kernel, 86% for PostgreSQL,
and 75% for Xorg, while our recall (proportion of bug-fixing commits that
we identify) was 73% for the Linux kernel, 71% for PostgreSQL, and 64% for
Xorg. Section 3.8 elaborates on our evaluation of precision and recall in greater
detail.

While we believe that the commits from the software that we examined
well represent commits in open source software, we do not intend to claim
external validity and draw any general conclusions about all software. Like
any other characteristic study, our findings should be considered together with
our evaluation methodology.

Given sufficiently many p-value computations, some values will pass the
threshold for statistical significance solely by chance. False discovery poses
a threat to validity when researchers mine through a large body of results to
select (cherry-pick) interesting data points. For the most part, we do not select
particular points to discuss; instead, we include all data points that we collect,
along with relevant p-values. The sole exception occurs in our identification of
trends among the time-of-day results in Section 3.2. Thus, for those results, we
carry out a Benjamini-Hochberg correction [1], which limits the false discovery
rate to 0.05.

Repository data threats We expect our methodology to properly account for
developers in different time zones. Git records each developer’s local time (and
time zone) with a commit, thereby avoiding potential imprecisions in our time-
of-day results. This works well for the Linux kernel repository, which is a native
Git repository as of 2005. (Older Linux kernel repository information does not
accurately record time-of-day information for commits.) In that repository,
the local time might be inaccurate if a developer commits from a server in
a different time zone; however, because Git was designed to work best when
developers commit to local workstations, we expect that most of the 8000
Linux kernel contributors will commit locally on a machine with accurate
local time. The accuracy of the commit times for the PostgreSQL and Xorg
server repositories depends on the accuracy of our time adjustment algorithm
for the part of the history that was originally a CVS history. We believe that
committers do not often change time zones® and that they usually work from
their home time zone, but the validity of our adjustment does depend on the
validity our assumptions about home time zones. We present all of our results
in the local time of the committer, when relevant.

3 We were able to identify one move of a committer from Ontario, Canada to California,
and incorporated that move into our adjustments, but did not find evidence of many such
moves in our set of PostgreSQL contributors.
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We ignore Git merge commits (which only account for 6.25% of all com-
mits) when computing diffs and searching for bug-fixing commits. Merge com-
mits record metadata about integration between different maintainers’ trees.
We chose to exclude merge commits for two reasons: 1) a merge commit does
not introduce any novel changes to the code; and 2) a diff between a merge
commit and its predecessor includes all changes that occurred since the initial
branching point for that merge. This would double-count a commit: once for
the original commit and once for the merge commit. Note that PostgreSQL
does not use merge commits.

Because the PostgreSQL and Xorg server repositories were converted from
CVS to Git, the accuracy of the conversion is another potential threat to va-
lidity. In particular, CVS does not have a notion of atomic multi-file commits,
while Git does, and our methodology relies on the existence of such commits.
The PostgreSQL conversion used the standard cvs2git tool, with customiza-
tions for their particular repository [11]. The existence of these customizations
lead us to believe that the conversion was performed with care, mitigating
threats to validity from repository corruption. In addition, note that the con-
version to Git obviates the need to mine transactions from CVS histories, as
in [33].

Threats due to imperfect recall Our methodology cannot identify all buggy or
bug-fixing commits in the repository histories; we have estimated our recall
at 73% for the Linux kernel, 71% for PostgreSQL, and 64% for Xorg. Because
our methodology only identifies the sample of bugs that have later been cor-
rected, it will omit recently-introduced bugs, as well as longer-running bugs
that have not yet been corrected. We estimate the impact of that phenomenon
by characterizing bug lifetimes in Section 3.9.

Although our analysis omits some bug-introducing and bug-fixing com-
mits, we do not believe that this omission affects our validity. Recall that we
compare various characteristics (including time-of-day, commit frequency, de-
veloper experience, weekday, and whether a commit is marked “stable”) to
commit bugginess. We believe that there should not be important differences
in these characteristics with respect to fixed and unfixed bugs, nor between
fixes labelled “fix” and fixes without that label. In other words, we believe
that our sample is representative of bug-introducing and bug-fixing commits
for these software projects.

Bird et al. [2] identified bias in bug-fixing commits that are linked with bug
reports in bug databases. They found that commits linked with bug reports
are more likely to be written by more experienced developers. Despite our
belief that our sample is unbiased, we acknowledge that it is possible that
some of our results may also be subject to similar bias. For instance, more-
experienced developers might touch less of the codebase to fix a given bug than
less-experienced developers. It would therefore be beneficial to study whether
the false negatives have significantly different characteristics from the rest of
the commits.
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Threats to commit characteristics The next family of threats concerns com-
mit characteristics, including the attributed time and author information for
a commit. For Linux and Xorg, the attributed time is the time at which
the initial author submits the change to his or her local repository. Commit
characteristic-related threats therefore do not apply to the Linux kernel or
Xorg repositories, as these communities use the merge functionality of Git to
preserve commit metadata for each contribution, whether from a core member
or from an external contributor. The implications of Git merges on our data
are that 1) the commit time reflects the initial author’s commit decision, and
2) the attributed author of a commit actually wrote the commit.

For PostgreSQL, we only have the time at which a committer applies a
change to the central repository. We believe that commit characteristics are
also meaningful for PostgreSQL, even though it does not use Git merges.
The lifecycle of a PostgreSQL patch begins with its posting to the pgsql-
hackers mailing list, along with optional submission to a CommitFest to ensure
timely community review. The PostgreSQL community thoroughly reviews
patches (including patches by committers) before committing them to the
main repository; the project documentation suggests that contributors should
plan for 3 iterations before acceptance?. Finally, once a PostgreSQL committer
agrees that the patch is suitable, based on detailed community reviews, he
pushes the patch to the main PostgreSQL repository.

Most PostgreSQL patches are committed by someone other than the au-
thor of the patch, as the set of PostgreSQL committers is much smaller than
the set of PostgreSQL patch authors. Non-committer patches add uncertainty
about when a patch was originally written, and confound our data about patch
authors: although Git can record both the author and committer of a patch,
the PostgreSQL community is currently requiring that the “author” field of a
patch always equal its “committer” field. We would have to mine the pgsql-
hackers mailing list to match patches to their original authors (and initial
submission times). Nevertheless, we believe that the commit timestamp is still
meaningful for PostgreSQL, since the committer is taking final responsibility
for the patch by committing it?.

For all projects, developers work on a patch over a possibly discontiguous
time interval, yet the final commit only indicates the endpoint of that interval.
The bug database may contain more information about the starting point of
the interval (e.g. it records when a bug is assigned to a developer), but still
does not capture any information about the work patterns of the developer
within the interval. Some Git repositories, including some Linux kernel sub-
repositories, do contain more information about intermediate local commits
by developers, which can help understand the evolution of a commit. There
may be correlations between a patch’s evolution and its code quality, and we
intend to investigate these issues in future work.

4 http://wiki.postgresql.org/wiki/Submitting_a_Patch

5 Stephen Frost, a PostgreSQL commiter, writes “We depend on the committers to do final
review and commit, but they are a very finite resource.” in a presentation about PostgreSQL
patch reviewing, found at http://www.pgcon.org/2011/schedule/events/368.en.html.
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Finally, we discuss threats to our author classification. Some Linux kernel
and Xorg authors commit from several email addresses and with variations in
their names. To clean our author data, we first merge authors with different
names but the same email addresses. Then, we merge authors who share the
same full name. This is not an issue for PostgreSQL: when they converted
their repository to Git, they also normalized all author email addresses, so
that each author has a single email address.

Our author seniority only counts the participation of an author to one or
two projects; a highly-experienced developer may be classified as a junior de-
veloper for one of our projects due to a short history of observed contributions
in these projects. Therefore, the author seniority in this paper should be in-
terpreted as the author’s seniority with the target project. We believe that it
is appropriate to characterize authors by their participation in a single project
when analyzing the quality of their contributions to that project.

3 Results

In this section, we present the results obtained from carrying out our method-
ology, and discuss some implications of our results. Most of our results in-
vestigate the effect of an independent variable (e.g., time-of-day, developer
commit frequency classifications, developer seniority, and day-of-week) on the
likelihood of a commit to be a bug-introducing commit, or bugginess (Sec-
tion 3.2—Section 3.6). Section 3.6 describes the relationship we found between
the day of the week and bugginess, which allows us to compare our results to
those of Sliwerski et al [25].

We also examined whether developers could identify a subclass of commits
as being lower risk than usual (potentially enabling them to leverage the results
on bugginess rates at different times of day). Section 3.7 shows that the answer
is yes: commits identified by Linux developers as “stable” commits are indeed
less buggy than general Linux commits.

Finally, Section 3.8 explains how we validate our results, including an anal-
ysis of the precision and recall of our methodology, as well as an evaluation
of the significance of the hour as a determining factor for commit bugginess.
Section 3.9 addresses a particular facet of our recall results: because our repos-
itory snapshot cannot see bugs which have not yet been fixed, our bug lifetimes
estimate how long it takes before a bug should show up in our counts.

3.1 Project Characteristics

We chose three large open-source software repositories for our investigations:
Linus Torvalds’s mainline Linux kernel, PostgreSQL and Xorg server. Table 1
summarizes the characteristics of our repositories. The row “lines of code”
refers to the current size of the code in the repository. The row “# bug-
introducing” shows that 20.3-25.6% of the commits are buggy, which is slightly
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lower than the previously reported figure of nearly 40% for a commercial
switching system [23]. Note that the PostgreSQL repository was carefully con-
verted from CVS using cvs2git in September 2010, and recall that we discussed
the quirks of the PostgreSQL repository in Section 2. The Xorg project man-
ually converted the repository for the Xorg server from CVS to git in July
2006.

Linux kernel PostgreSQL Xorg server
First commit April 16, 2005 July 9, 1996 | November 19, 1999
Cloned September 9, 2011 | September 14, 2011 September 9, 2011
Lines of code over 5 million over 750,000 over 550,000
Number of authors 7,434 34 331
Number of commits 263,780 32,499 10,835
# bug-introducing 67,423 (25.6%) 7,911 (24.3%) 2,200 (20.3%)
# bug-fixing 71,219 6,945 2,489

Table 1 Characteristics of the Linux kernel, PostgreSQL, and Xorg server repositories.

3.2 Time-of-day

Figure 4 presents our results correlating the time-of-day of a commit with
its bugginess®. The graphs compare the time-of-day of each commit, in the
committer’s local time on a 24-hour clock, to the percentage of bug-introducing
commits.

The solid horizontal line indicates the overall percentage of buggy commits
in each project; circles below the line indicate that commits at that hour were
less likely to be buggy, while circles above the line indicate hours with more-
buggy commits.

We computed p-values for the bugginess percentages, which we list in the
Appendix and summarize in Figure 4. Our p-value calculations are with re-
spect to the null hypothesis that a data point (bugginess per hour) has the
same bugginess probability as the overall bugginess for the project. To com-
pute our (one-sided) p-values, we modelled our observations of the bugginess
using a binomial distribution; commits correspond to trials, bugginess of these
commits to outcomes of the trials. For instance, we report a bugginess rate
of 12.6% for Xorg commits at 8AM with a p-value of 0.0035. There are 24
bug-introducing commits out of 191 total commits to Xorg at 8AM, while
the overall bugginess for Xorg is 20.3%. The p-value of 0.0035 represents the
probability of there being at most 24 bug-introducing commits, assuming that
each of the 191 commits had a 20.3% chance of being buggy.

To limit the false discovery rate, we applied a Benjamini-Hochberg correc-
tion with @ = 0.05. All but 5 of our p-values below 0.05 remain below the
adjusted cutoff. Solid black circles indicate a corrected p-value allowing re-

6 Table 6 in the Appendix presents a complete set of p-values evaluating the statistical
significance of the per-hour commit bugginess for the Linux kernel, PostgreSQL, and Xorg.
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jection of the null hypothesis; grey black circles indicate a raw p-value below
0.05; and hollow circles indicate higher p-values.

We have also included bolded horizontal line segments, which indicate the
average bugginess over a number of hours; the number above the line segment
is the p-value for that group of hours. Because we have cherry-picked these
segments, the Benjamini-Hochberg correction is useful here; all line segments
that we report also pass with a = 0.05. We applied the correction individually
to the set of 3-hour and 4-hour intervals for each benchmark, following the
Benjamini-Hochberg procedure as described in [1].

Results For all three projects, we can observe two overall trends: taken as
a group (as depicted by the bolded horizontal line segments), commits be-
tween midnight and 4AM are buggier than average (max p-value 4e-3 for a
4-hour period), while commits between 8AM and noon are less buggy than
average (max p-value 7e-3). The bugginess over the four-hour period for the
midnight to 4AM commits (in brackets, for all commits) is 29.37% (overall av-
erage 25.6%), 26.51% (24.3%), and 24.13% (20.3%) for Linux, PostgreSQL, and
Xorg, respectively. The average bugginess between 8AM and noon is 22.56%
(25.6%), 19.82% (24.3%), and 18.04% (20.3%). The Figure presents these av-
erage bugginess values using bolded horizontal line segments (max p-value
4e-3 for the midnight to 4AM commits). We have drawn these horizontal line
segments at the weighted mean bugginess across the segment’s time interval.
For the 8AM to noon commits, we have also included bolded horizontal line
segments for PostgreSQL and Xorg (p-values le-9 and 7e-3 respectively); for
the Linux kernel, each hour is individually less buggy than average, with max
p-value 6.13e-7.

Beyond the macro trends above, we can observe some project-specific ten-
dencies. In the Linux kernel, the bugginess is above average betetween 9PM
and midnight (p-value 2e-11); and below average for groups of hours between
5AM and 8AM, 7TAM and 11AM, and 10AM and 1PM (max p-value 5e-12).
For PostgreSQL, the bugginess is above average between 6PM and 10PM (p-
value le-5). Finally, for the Xorg server, bugginess is above average between
10PM and 2AM (p-value le-3).

Figure 4 also shows the total number of commits per hour. The smallest
value, for any hour, is 45 for Xorg (and an order of magnitude higher for the
Linux kernel).

We also investigated correlations between the time-of-day and the num-
ber of bug-fixing commits, rather than the bug-introducing commits that we
showed above. The proportion of total commits that are bug-fixing commits
stayed almost constant, independent of the hour; the graphs (not shown) have
exactly the same shape as that of the bars in Figure 4. This suggests that the
fact that a commit is bug-fixing is independent of its commit time.

Discussion Code does not spontaneously improve if left to “mature” for 4
hours; our results do not indicate causation, but instead demonstrate a corre-
lation between code committed early in the morning and increased bugginess.
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We do not speculate about the cause of this correlation; however, the results
in Section 3.5 imply that this correlation holds for both senior and junior
developers. Our results do suggest that developers, being aware of such a cor-
relation, may want to double-check code, or solicit reviews, before performing
late-night commits (midnight—4:00 AM). It may also be beneficial for version
control systems or IDEs to warn developers about the perils of late-night com-
mits. Our p-values indicate that our observed bugginess differences between
late-night /early-morning and all other commits are statistically significant.
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3.3 Developer Characteristics

We next present our findings with respect to developers’ commit frequency
and seniority. Developers’ commit frequency summarizes the frequency of a
developer’s contributions to a project, while developer seniority tracks how
long a developer has contributed to a particular project.

3.8.1 Commit Frequency Classification

As we described in Section 2.2, one of the ways that we classify develop-
ers is according to frequency, i.e. most-common interval between consecutive
commits—daily, weekly, monthly, other, or single. For the Xorg server, the
most important classification is daily versus non-daily, and we present results
based on that classification. Almost all (28/34) of PostgreSQL’s committers
are daily, so we do not present PostgreSQL commit frequency results.

We computed the bugginess rates for each of these classes of developers and
plot author classification versus bug-introduction percentage in Figure 5(a)”.
The graph also presents the number of commits by each class. Note that the
Linux kernel has 850 daily authors, who account for the overwhelming major-
ity of commits; 238 weekly; 288 monthly; 3562 other (fewer than 20 commits
and more than 1 commit); and 3664 single-commit authors. Figure 5(b) shows
the results for the Xorg server. Because the vast majority of Xorg commit-
ters are daily committers, we only show the results for daily versus non-daily
committers.

Our results show that the Linux kernel developers who commit changes
daily produce the largest number of commits and the smallest number of bug-
introducing commits, followed by the single-commit authors (whose patches
would presumably be simple or closely-reviewed). Weekly and monthly com-
mitters produce slightly more bug-introducing commits than average. For the
Xorg server, non-daily committers have a bugginess rate of 16.6%, which is
below the mean bugginess rate (p-value 0.001).

7 Table 8 in the Appendix presents p-values evaluating the statistical significance of the
per-class commit bugginess for the Linux kernel and Xorg.
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of commits versus author classification. The solid horizontal line across an entire subfigure
indicates the percentage of buggy commits in that project.

3.3.2 Developer Seniority

Figure 6 compares author seniority at time of commit to the bugginess of the
commit®. It also presents the total number of commits by author seniority. Our
results show that for the Linux kernel, Postgres and Xorg, bugginess generally
decreases with increased author seniority. For the Linux kernel, authors with
at least 1,440 days of seniority tend to produce commits that are less buggy
than average, while the similar point for PostgreSQL occurs at 3,360 days. The
Xorg server data shows a spike at the right. Around 2,880 days of seniority,
there is a large (statistically significant) spike in buggy commits; this spike is
supported by 33 commits at that point.

We manually investigated the spike at day 2,880 of Figure 6(c). Keith
Packard, a major contributor to the Xorg server, committed major enhance-
ments to the XRandR functionality of Xorg in February and March of 2008.

8 See Table 9 in the Appendix for p-values for the Linux kernel, PostgreSQL and Xorg.
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RandR stands for Resize and Rotate, which often involves the use of trans-
formation matrices. A number of subsequent commits modify the February—
March 2008 enhancements. Those commits 1) modify RandR to not use fized-
point arithmetic and 2) modify the file xfixes.c, among other changes. Even
though their messages contain the word “fix”, these subsequent commits are
not actually bug-fixing. They are instead false positives. Together, these two
sources of false positives account for 12 false positive reports out of 33 total
commits. Manually excluding them would result in a bugginess rate of 8/33,
or 24%, which is much closer to the average bugginess rate.

Discussion Our data shows that, in general, the more senior the developers
are, the less likely that their commits are buggy. Without further data, this
correlation does not prove that the developer seniority caused more senior
programmers’ commits to be less buggy. While we believe the above causation
to hold, other interpretations are possible; perhaps more senior developers
wrote more complex code, whose bugs are harder to discover and less likely to
be reported. Nonetheless, our results show that, given the fact that a commit
is from a more senior developer, one can be more confident that the commit
is less likely to be buggy. Such a correlation could be exploited to help predict
buggy code locations.

One can observe a decline in the total number of commits with seniority.
We believe that this is due to our sliding scale for author seniority. Consider an
author who has committed for 5 years. His or her commits do not show up in a
single circle at the 1800-day mark; instead, they are distributed throughout the
5 years of the commits, so that a commit on the author’s second birthday gets
reported as a commit at day 700. One would therefore expect more commits
from “junior” developers, since all developers go through a junior phase, while
only a small number of developers reach the more senior phase.

We also calculated author seniority based on the first commit to any project
for the Linux kernel and Xorg server. We found that this change did not affect
the graphs in any significant way.

In addition, we studied developer experience: the number of lines committed
by an author since her first commit to a project (figures not shown). We found
no clear correlation between developer experience and commit bugginess for
the Linux kernel or Xorg. Commits by more experienced developers in Post-
greSQL are less likely to be buggy. Previous work reported no clear correlation
between developer experience and commit bugginess for some projects [24],
and inverse correlation for some other projects [19,24]. Our study, on a dis-
joint set of projects, confirms the observation that the correlation between
developer experience and commit bugginess is project-dependent (details in
Section 4). Our results show that commits by senior developers are less likely
to be buggy for the Linux kernel, Xorg, and PostgreSQL, which indicates that
developer seniority can be a better feature for predicting buggy commits than
developer experience (at least for our three studied projects).
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3.4 Overlapping Developers

Table 2 summarizes our findings about bugginess rate from developers who
commit to both the Linux kernel and Xorg server. The null hypothesis used
for calculating the p-values is, the buggy rate for a developer type is the same
as the overall buggy rate for the project. Commits to Linux from developers
working on both projects exhibit no statistically significant difference in buggi-
ness compared to developers working on the Linux kernel alone. For Xorg, we
found a statistically significant difference: developers working on both projects
commit to Xorg at a higher bugginess rate than developers working only on
Xorg. There were no overlapping developers between PostgreSQL and the
other projects.

Developer Type | % buggy commits Total commits | p-values
Linux Overlapping 25.1% 19,462 0.0833
Pure 25.6% 244,316 —
Xorg Overlapping 21.2% 8,324 0.0179
Pure 17.2% 2,511 4.61E-05

Table 2 Commit count and buggy commit percentage for joint Linux and Xorg developers

Commit Overlapping Linux-only | Xorg-only
frequency developers ‘ developers | developers
Daily 55 731 22
‘Weekly 4 229 2
Monthly 9 330 0
Other 73 3,023 79
Single 0 2,980 87

Table 3 Commit frequency distributions for the Linux kernel and Xorg developers.

Table 3 shows these authors divided according to their commit frequencies.
These frequencies count commits across both projects, e.g. a daily committer
commits daily to either the Linux kernel or Xorg. We found that 42.6% of the
Xorg developers work on both projects, and these developers mainly fall into
the daily or other category. (Recall that “other” committers have between 2
and 19 commits.)

Discussion We found that developers who committed to both the Linux kernel
and Xorg committed bugs to the Linux kernel at about the same rate as pure
Linux kernel committers. Perhaps kernel code is either complex or unique,
and additional seniority does not add any benefit. For commits to the Xorg
server, developers working purely on Xorg committed significantly fewer bugs
than developers working on both. Because so many Xorg committers also
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commit to the Linux kernel, we can deduce that the developers working on
both projects must therefore commit significantly more bugs than average
to Xorg server. It is possible that developers working both repositories write
lower-level code, e.g., drivers, which historically contain more bugs than other
software components [6,27].

We attempted to investigate the overlap between the Linux kernel and
Xorg server with the FreeBSD kernel. However, we found a lack of overlap
between these projects. Only 4 authors commit to both the Linux kernel and
the FreeBSD kernel, and only 3 authors commit to both Xorg and the FreeBSD
kernel.
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Fig. 7 Percentage of buggy commits (circles/diamonds) and total number of commits
(light/dark bars) versus time-of-day for junior and senior Linux kernel developers, respec-
tively. Circles and light bars denote junior developers, while diamonds and dark bars denote
senior developers. Solid circles and diamonds indicate p-value < 0.05, while hollow circles
and diamonds indicate p-value > 0.05. Dashed and solid horizontal lines indicate the average
bugginess percentage for junior and senior developers, respectively.

3.5 Combined Time-of-day and Seniority

Figure 7 combines data from Section 3.2 and 3.3.2 and correlates time-of-day
with commit bugginess for senior and junior developers, plotted separately, for
the Linux kernel®. We used a cutoff of 2 years to separate senior and junior
developers; this cutoff divides the number of commits into two approximately-
equal groups. Horizontal lines in the figure represent overall bugginess.

9 Table 7 in the Appendix presents p-values evaluating the statistical significance of the
combined seniority-and-hour commit bugginess for the Linux kernel and Xorg.
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We can see that junior developers tend to do more commits between mid-
night and 2 AM than senior developers, who do more commits between 8 AM
and 4 PM. However, there is a common trend for both: late night commits
(especially between midnight and 2 AM) are more buggy and early morning
commits (between 8 AM and noon) are less buggy.

Discussion This result suggests that the correlation between time-of-day ver-
sus bugginess is independent of seniority for the Linux kernel developers; it
occurs for both senior and junior developers. It also shows that senior devel-
opers are much less likely to commit a bug; the average bugginess for senior
Linux kernel developers is around 21%, versus 30% for junior developers.

3.6 Day-of-week

Our next experiment attempted to replicate the results in [25], and correlates
the day of the week of a commit with its bugginess. Figure 8 compares the
day of the week with the bugginess of the commits on that day (bars), and
also displays the total number of commits per day (circles)!®. Here, the solid
horizontal line presents the overall bugginess of all commits to each project.

Our results, which use a disjoint set of repositories from those in [25],
found about the same bugginess and number of introductions for each day of
the week in the Linux kernel repository, with the lowest significant bugginess
on Sunday and highest on Monday; for the PostgreSQL repository, we found a
slight decrease in bugginess on Tuesday, and a noticeable increase on Sunday.
These results are statistically significant with a p-value less than 0.05. For
the Xorg server, no days are (statistically significantly) worse or better than
average. Note that, for the Linux kernel, Saturday and Sunday each have
about half as many commits as the other days of the week (commits peak on
Tuesday and steadily decrease through Friday). Although Saturday commits
to the Linux kernel are more likely to be buggy, the p-value for Saturday
commits is 0.065, so that result is not statistically significant. For PostgreSQL
and Xorg, commits fluctuate through the days of the week and decrease to
about 70% of the weekday volume on the weekend.

Discussion We found that, across projects, no specific day of the week is
particularly prone to bugginess, which does not agree with results from a prior
study of bugs in Mozilla and Eclipse [25]. We did find that bugginess per day-
of-week varied in a project-specific way, implying that bugginess prediction
based on day-of-week needs to be calibrated on a per-project basis.

10 Table 10 in the Appendix presents p-values evaluating the statistical significance of the
per-day commit bugginess for the Linux kernel.
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3.7 Stable Commits

Linux developers designate certain supposedly low-risk commits as stable com-
mits. Our bugginess data enables us to empirically verify whether these com-
mits are indeed lower-risk than arbitrary commits. Table 4 summarizes our
findings on stable commits for the Linux kernel. We observe, with very high
confidence, that stable commits are significantly less buggy than non-stable
commits.

Discussion Stable commits are subject to a more rigid set of guidelines than
the rest of the commits. We would expect these guidelines to lead to a lower
bugginess rate, and our results show that the guidelines are indeed effective.
Developers of error-prone portions of software could leverage this finding by
aiming to mimic the properties of stable commits (when appropriate): they
might benefit from committing smaller patches and reviewing them carefully.
Alternatively, developers could choose to work on lower-risk commits at high-
bugginess times of day.

Type Percentage of buggy | Total commits p-values
commits ‘

Stable commits 20.1% 10,518 | 1.43E-40

Non-stable commits 25.8% 253,262 0.00421

Table 4 Linux kernel stable commits.

3.8 Validation

We estimated the precision and recall of our technique for identifying bug-
fixing commits on both projects. As our algorithm for identifying the associ-
ated bug-introducing commits was a straightforward application of git blame,
we did not systematically verify its performance. (A brief manual inspection of
bug-introducing commits did not reveal any anomalies.) For both projects, we
randomly sampled 200 commits and manually verified the results. Table 5(a)
and 5(b) summarize our findings.

We evaluated the precision—the proportion of identified bug-fixing com-
mits which do indeed fix bugs—and found that, the precision of this heuristic
for identifying bug-fixing commits is 87% for the Linux kernel, 86% for Post-
greSQL, and 75% for Xorg. Misclassifications included: 1) a commit message
which fixed a merge commit was classified as a fix; 2) apparently garbled com-
mit messages which included the keyword “fix” for no good reason; 3) changes
which were reverted (in the alleged “fix”) but then re-added in a later version;
4) poor uses of version control systems which included many different changes
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Predicted Predicted
‘ Fix —Fix ‘ Fix -Fix
Fix 48 18 Fix 30 12

Actual ool 7 o7

(a) Linux kernel

Actual ool 5 1p3

(b) PostgreSQL

Predicted
| Fix —Fix
Fix 30 17

Actual ool 10 143

(c) Xorg

Table 5 Confusion matrices.

in a single commit, including a fix as a small part of the commit; and 5) refac-
toring changes, which moved or renamed functions; these could arguably be
considered to be fixes to a buggy initial design.

Our recall—the proportion of bug-fixing commits in the entire sample that
our technique identifies—is 73% for the Linux kernel, 71% for PostgreSQL,
and 64% for Xorg. We could improve the precision and recall by using more
advanced techniques for identifying bug-fixing commits, such as those by Tian
et al. and by Wu et al [28,30].

3.9 Bug Lifetimes

The recall numbers that we report in Section 3.8 only include bugs that have
been fixed by a later commit. Some bugs in the repository will not have been
fixed yet simply because they are too new. We define bug lifetime as the
amount of time elapsed between the bug-introducing commit and its bug-fixing
commit. Estimating bug lifetimes thus addresses a threat to the computed
recall: it gives us confidence that any sufficiently-old bug will have likely been
fixed.

Figure 9 shows bug lifetimes for the Linux kernel and PostgreSQL, grouped
in 120 day intervals. We found the average bug lifetime for the Linux kernel is
1.38 years with a standard deviation of 1.35 years. The average bug lifetime for
PostgreSQL is 3.07 years with a standard deviation of 3.19 years. Finally, the
average bug lifetime for Xorg server is 2.36 years with a standard deviation of
2.15 years. Note that the distribution of bug lifetimes is similar for all projects;
many bugs are fixed within a 120 day period and the overall lifetime appears
to decrease exponentially. We found that the sources of PostgreSQL’s high-
lifetime bugs included race conditions, incorrect calculations and rare corner
cases.
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4 Related Work

We survey related work that studied the following commit characteristics in
the context of commit bugginess: day of week; developer experience and dis-
tributed software development; and bug lifetime.

Day of Week of Commits The most closely related work to ours, Sliwerski
et al [25], studied the day of the week of commits for two totally different
projects, Eclipse and Mozilla, and found that the commits on Fridays are bug-
giest. This paper differs from the work of Sliwerski et al in the following three
key aspects. Firstly, we investigated how the commits’ time of day correlates
with the bugginess of commits, which has not been studied before, to the best
of our knowledge. Secondly, we studied developer characteristics, including
correlations between commit bugginess and developers’ commit frequency, as
well as developers’ experience, which the previous work did not consider. Fi-
nally, we used different data collection techniques. Specifically, we did not rely
on the link between a commit and a bug report to extract bug-fixing commits,
which enabled us to study software for which such links are not maintained
or not well maintained by the developers. For example, we found that only
2.3% of the Linux kernel’s bug-fixing commits are linked to a bug report, by
manually examining a random sample of our bug-fixing commits. While using
links between bug reports and bug commits may increase the precision of ex-
tracting bug-fixing commits, our results demonstrate that high precision can
be obtained without using such links: the precision of our bug-fixing commit
extraction techniques are 87% for the Linux kernel, 86% for PostgreSQL, and
75% for Xorg.

Developer Experience and Distributed Software Development Mockus and Weiss
studied the correlation between developer experience and code bugginess at
the maintenance request (MR) level and found that changes by more experi-
enced developers are less likely to be buggy [19]. Rahman and Devanbu [24]
studied the correlation at a finer granularity: groups of continuous lines in a
commit (referred to as hunks). They found that greater experience was cor-
related with more-buggy code for Gimp and Nautilus, but that there was no
clear correlation between developer experience and code bugginess for Apache
and Evolution. We examined code at a different granularity level—code com-
mits, and found no clear correlation between developer experience and commit
bugginess for the Linux kernel or Xorg, while commits by more experienced
developers in PostgreSQL are less likely to be buggy. Our study, on a disjoint
set of projects, confirms this observation that the correlation between devel-
oper experience and commit bugginess is project dependent. While one MR
can involve changes to multiple files by multiple authors, a single commit has
one author; so is a hunk. Other previous work studied the correlation between
the number of authors and their weight of authorship with code quality [5,29].
Our present work goes beyond previous studies, as we investigate other time-
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based characteristics such as commit time and author commit classification,
as well as how they correlate with developer experience.

Several previous studies sought to understand how distributed software
development affects code quality [3,4,21,26] in open source and commercial
software. While the three projects we studied are open-source and developed
in a distributed fashion, the goal of this paper differs from those studies—
we aim to understand the correlation between code bugginess and time-based
characteristics of commits, e.g., commits’ time of day, commits’ day of week,
developers’ experience, and developers’ commit frequencies, etc.

Bug Lifetime Engler et al [7] examined the bug lifetime of the Linux kernel
in 2001. Our study on the bug lifetime complements theirs by analyzing re-
cent commits to the Linux kernel from 2005-2010. Kim and Whitehead [15]
examined the bug lifetimes in PostgreSQL. Neither of the two previous studies
investigated other time-based characteristics such as commit time and author
experience.

5 Conclusions and Future Work

We have analyzed over 80,000 bug-fixing commits in the Linux kernel, Post-
greSQL, and the Xorg server (three large and widely-used open-source soft-
ware projects) to study the correlation between commit correctness with sev-
eral time-based characteristics, such as the time-of-day of commits, the day-
of-week of commits, developer seniority, developers’ commit frequency, and
whether a commit was marked “stable”. We presented several interesting find-
ings, including: (1) late-night commits (between midnight and 4:00 AM) are
collectively buggier than average, while morning commits (8:00 AM-noon) are
collectively less buggy, suggesting that developers may want to double-check
late-night commits before committing, and that it may be beneficial for the
version control system to warn the developers of late-night commits to improve
software reliability; (2) the bugginess of commits per day-of-week varies across
different software projects, implying that the bugginess prediction based on
the day-of-week of commit metric needs to vary on a project-by-project ba-
sis; (3) developers who commit to a project on a daily basis write fewer buggy
commits for that project, indicating that we may want to promote the practice
of daily committing developers code-reviewing other developers’ commits; and
(4) commits marked “stable” are indeed less buggy than average. We believe
such results are valuable to the software engineering community and software
developers.

In the future, we would like to study commit times with respect to indi-
vidual developers to understand, for example, whether a developer’s commits
outside of his/her normal committing hours are buggier than average for that
developer. In addition, we plan to study more software projects written in dif-
ferent programming languages to further understand how social characteristics
affect commit correctness. As there may be interesting correlations between a
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commit’s evolution and its code quality, we intend to study such correlations
in the future.
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Appendix

Hour Linux kernel PostgreSQL Xorg server
0 8.67E-20 0.218 0.0875
1 3.12E-20 0.00306 0.0319
2 1.70E-21 0.00272 0.163
3 0.261 0.0153 0.260
4 0.251 0.0340 0.291
5 0.150 0.0944 0.373
6 0.0201 0.405 0.297
7 3.40E-18 0.408 0.205
8 1.32E-23 0.0511 0.00355
9 5.42E-25 6.39E-6 0.139

10 4.41E-12 0.00294 0.104
11 5.90E-7 0.00132 0.314
12 1.75E-4 3.64E-4 0.0677
13 0.192 0.174 0.129
14 0.150 0.166 0.311
15 0.336 0.334 0.398
16 0.475 7.37E-5 0.106
17 0.0765 0.0312 0.514
18 0.503 0.00187 0.207
19 0.379 0.00133 0.485
20 0.0728 0.00169 0.396
21 2.34E-8 0.343 0.408
22 0.00206 0.00479 0.150
23 4.00E-4 0.100 0.0327

Table 6 Bugginess p-values, per hour, for the Linux kernel, PostgreSQL, and Xorg.

Hour Junior Senior Junior Senior
Linux kernel | Linux kernel Xorg Xorg
0 1.66E-37 1.59E-02 0.44 0.045
1 5.68E-35 4.35E-02 0.083 0.13
2 2.33E-33 2.93E-02 0.17 0.37
3 4.93E-07 3.31E-06 0.33 0.36
4 5.77E-03 8.21E-02 0.33 0.44
5 3.89E-05 1.79E-09 0.39 0.57
6 4.45E-02 1.80E-07 0.30 0.10
7 3.08E-01 2.75E-26 0.35 0.029
8 3.85E-01 1.24E-44 0.11 0.0096
9 2.55E-02 8.32E-45 0.36 0.15
10 2.73E-04 1.04E-33 0.38 0.10
11 4.74E-10 1.76E-30 0.15 0.0511
12 1.27E-05 7.39E-27 0.48 0.019
13 2.66E-19 1.95E-09 0.28 0.18
14 2.52E-12 9.38E-22 0.19 0.49
15 2.57E-25 3.75E-22 0.10 0.25
16 3.20E-27 4.18E-23 0.13 0.27
17 6.58E-24 6.37E-12 0.059 0.042
18 5.78E-09 5.83E-10 0.016 | 7.36E-05
19 9.70E-07 1.23E-06 0.12 0.15
20 2.43E-09 7.13E-06 0.13 0.25
21 1.11E-21 2.49E-03 0.37 0.24
22 2.62E-14 6.53E-04 0.26 0.23
23 1.14E-14 1.56E-03 0.03 0.26

Table 7 Bugginess p-values by hour and seniority for the Linux kernel and Xorg.

Classification | Linux kernel Xorg
Daily 4.78E-20 0.182
Weekly 7.34E-48
Monthly 7.69E-52
Other 0.0104
Single 0.0144
Non-daily 0.00195

Table 8 Bugginess p-values, by classification, for the Linux kernel and Xorg.
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Seniority in days Linux kernel | PostgreSQL Xorg
120 1.82E-122 3.18E-6 | 4.03E-7
240 6.18E-67 6.47E-8 | 5.81E-4
360 5.43E-41 2.89E-10 0.0130
480 4.08-20 2.85E-5 0.241
600 1.04E-21 1.03E-9 | 2.31E-4
720 1.40E-9 1.28E-9 0.425
840 2.89E-10 5.12E-8 | 1.36E-4
960 0.208 1.32E-15 0.0399

1080 0.0522 1.13E-6 0.0406
1200 3.06E-6 0.00552 0.388
1320 4.55E-17 0.0182 0.357
1440 2.32E-39 0.230 | 1.23E-4
1560 8.50E-60 7.33E-5 0.0645
1680 5.23E-86 0.0155 0.0135
1800 5.54E-143 0.166 0.280
1920 1.29E-164 1.69E-11 0.431
2040 1.90E-264 0.0509 | 1.88E-5
2160 5.37E-4 0.299
2280 0.358 | 3.57E-5
2400 0.0915 0.133
2520 0.0278 0.327
2640 0.0574 0.313
2760 0.157 0.193
2880 0.397 | 5.03E-7
3000 1.13E-6 0.214
3120 0.0111 0.0767
3240 0.0434 0.472
3360 1.62E-10 0.506
3480 5.17E-4 0.0172
3600 7.61E-8 0.369
3720 4.71E-8 | 0.00163
3840 2.41E-15 0.0211
3960 1.51E-19 | 6.63E-6
4080 5.84E-18 | 0.00134
4200 3.28E-28 0.403
4320 8.60E-15

4440 2.24E-14

4560 8.44E-9

4680 1.85E-8

4800 0.0501

4920 1.71E-6

5040 2.58E-12

5160 0.0118

5280 0.250

Table 9 Bugginess p-values by seniority for the Linux kernel, PostgreSQL, and Xorg.

Day | Linux kernel | PostgreSQL | Xorg

Mon
Tues
‘Wed
Thurs
Fri
Sat
Sun

0.018
0.40
0.34
0.19

0.093

0.020

0.0042

0.16 0.34
0.014 0.15
0.17 0.26
0.19 0.32
0.31 0.32
0.41 0.15
2.5E-07 0.26

Table 10 Bugginess p-values by day for the Linux kernel, PostgreSQL, and Xorg.



