
Noname manuscript No.
(will be inserted by the editor)

Empirical study on the maintainability of Web applications:
Model-driven Engineering vs Code-centric

Y. Martínez · C. Cachero · S. Meliá

Received: date / Accepted: date

Abstract BACKGROUND: Model-driven Engineering (MDE) approaches are often
acknowledged to improve the maintainability of the resulting applications. However,
there is a scarcity of empirical evidence that backs their claimed benefits and limita-
tions with respect to code-centric approaches.
OBJECTIVE: To compare the performance and satisfaction of junior software main-
tainers while executing maintainability tasks on Web applications with two di↵erent
development approaches, one being OOH4RIA, a model-driven approach, and the
other being a code-centric approach based on Visual Studio .NET and the Agile Uni-
fied Process.
METHOD: We have conducted a quasi-experiment with 27 graduated students from
the University of Alicante. They were aleatory divided into two groups, and each
group was assigned to a di↵erent Web application on which they performed a set of
maintainability tasks.
RESULTS: Maintaining Web applications with OOH4RIA clearly improves the per-
formance of subjects. It also tips the satisfaction balance in favor of OOH4RIA, al-
though not significantly.
CONCLUSIONS: Model-driven development methods seem to improve both the de-
velopers’ objective performance and subjective opinions on ease of use and utility of
the method. Further experimentation is needed to be able to generalize the results to
di↵erent populations, methods, languages and tools, di↵erent domains and di↵erent
application sizes.

Y. Martínez
Universidad Máximo Gómez Báez de Ciego de Ávila, Cuba
E-mail: yulkeidi@gmail.com

C. Cachero
DLSI. Universidad de Alicante, Spain
E-mail: ccachero@dlsi.ua.es

S. Meliá
DLSI. Universidad de Alicante, Spain
E-mail: santi@dlsi.ua.es



2 Y. Martínez et al.

Keywords Maintainability, Satisfaction, Quasi-experiment, MDE

1 Introduction

Model-driven Engineering (MDE) is a software development paradigm that heavily
relies on models and model transformations for the development, maintenance and
evolution of software [42] [50] [44]. The MDE community claims several advan-
tages over traditional development (code-centric) approaches, among which (a) short
and long term productivity gains, (b) improved project communication and (c) im-
proved quality of the resulting application are specially relevant [34] [22] [24]. The
reason for such claims is that current MDE approaches o↵er high-level abstractions
that capture some of the most salient characteristics of modern applications. Such ab-
stractions speed up the definition of models that can be used to generate applications
for di↵erent implementation environments.

In particular, software maintenance is one of the areas in which MDE claims
to be able to make a greater impact in terms of both reliability and e�ciency [6].
Software maintenance is defined in the IEEE 1219 Standard [28] as “the modification
of a software product after being delivered to correct faults, improve performance or
other attributes, or to adapt the product to a modified environment”. More concisely,
the ISO/IEC 9126 standard [1] states that maintainability is “the capability of the
software product to be modified”1. Software maintenance is important because: (a) it
consumes between 45% and 60% of the overall life cycle costs and, (b) the inability
to change software quickly and reliably means that business opportunities may be
lost [43].

However, practitioners still lack a body of practical evidence that soundly backs
the maintainability advantages claimed by the MDE community [24,45]. This con-
trasts with other disciplines and even other areas of Software Engineering (SE) in
which empirical evidence is common [62]. Without empirical evidence, there is a
danger for resources to be wasted and for software tools to fail to develop appropri-
ately [25]. Such evidence can be provided in the shape of empirical studies, which
are crucial to the evaluation of processes and human-based activities. The empir-
ical studies can be classified into surveys, experiments (be them true experiments
or quasi-experiments), case studies and postmortem analyses [61]. Experimentation,
specifically, provides a systematic, disciplined, quantifiable and controlled way of
evaluating human-based activities.

In an e↵ort to increase the empirical evidence regarding the impact of MDE ap-
proaches on maintainability, this paper presents a quasi-experiment in which two
groups of junior developers have been asked to perform a set of maintainability tasks
on two Web applications with two di↵erent approaches: one code-centric and one
model-driven.

The paper is structured as follows: Section 2 characterizes the maintainability
concept. Both the maintainability characterization and the empirical evidence found

1 Although this standard is now superseded by ISO/IEC 25010 [29], the publication of the latter took
place one month after the experiment went through its data gathering phase. For this reason, this paper
sticks to the ISO 9126 definitions and characterizations.



Title Suppressed Due to Excessive Length 3

in literature set the context for the definition of the experimental design (context,
planning, operation and data collection mechanisms) in Section 3. Section 4 presents
the data analysis and an interpretation of results that takes into account the identi-
fied threats to validity. Section 5 presents the existing empirical evidence regarding
how maintainability is impacted by the adoption of MDE methods, and discusses
the relationship and results of this experiment with respect to a previous one by the
same authors. Last, Section 6 concludes the paper and presents some further lines of
research.

2 Maintainability concepts

Maintainability tasks can be subclassified into four di↵erent types [11]:

– Corrections: Corrective maintainability refers to the capability to detect errors,
diagnose the problems and fix them.

– Improvements: Perfective maintainability refers to the capability to extend the
software according to new requirements or enhancements.

– Adaptations: Adaptive maintainability refers to the capability to modify the soft-
ware in order to cope with the e↵ects of environmental changes.

– Preventions: Preventive maintainability refers to the capability to support internal
reengineering processes without adverse impact.

Out of them, corrections and improvements are the two most common types of
maintainability tasks in software development [45], and therefore the two types of
tasks that most heavily influence the global maintainability of software applications.

Furthermore, regardless of the type of maintainability task, the ISO/IEC 9126
standard [1] establishes that five di↵erent sub-characteristics must be taken into ac-
count in order to assess the maintainability of software applications:

– Analysability: Capability of the software product to be diagnosed for deficiencies
or causes of failure in the software, or for the parts to be modified to be identified.

– Changeability: Capability of the software product to enable the application of a
specified modification.

– Stability: Capability of the software product to avoid unexpected e↵ects from
modifications of the software.

– Testability: Capability of the software product to enable modified software to be
validated.

– Compliance: Capability of the software product to meet the standards or conven-
tions relating to maintainability.

3 Description of the Experiment

In February 2011, a quasi-experiment was conducted at the University of Alicante. A
quasi-experiment is a type of controlled experiment in which individuals or teams (the
study units) engage in one or more tasks for the sake of comparing di↵erent processes,
methods, techniques, languages or tools (the treatments) [30]. In quasi-experiments



4 Y. Martínez et al.

subjects are not randomly chosen but rather selected on the basis of certain criteria. In
our study, we have selected the subjects that decided to enroll for a Master’s degree.
Many authors have written about the importance of providing and correctly reporting
empirical evidence in SE [17,32,31]. Quasi-experiments, although su↵ering from a
lower internal validity than true experiments, are widely used and deemed useful in
the Empirical SE field, since they allow investigations of cause-e↵ect relations in
settings such as ours, in which randomization is too costly [30].

3.1 Goals and Context Definition

Following the GQM template [53], this empirical study is aimed at analyzing OOH4RIA
and .NET (which, in this paper, stands for the combination of the C# language, the
.NET framework and the Visual Studio IDE) for the purpose of evaluating model-
driven against code-centric changeability practices with respect to their performance
and satisfaction from the point of view of junior developers. The context of the study is
graduate students enrolled for the “Master in Web Applications Development” at the
University of Alicante, where both a code-centric Web development process (based
on C#, the .NET framework and the Visual Studio IDE) and a model-driven Web
development process (based on the OOH4RIA method and the OOH4RIA IDE) are
taught.

The description and rationale behind this selection of tools and languages will be
explained in section 3.1.4. We are conscious that the selection of specific tools and
languages diminishes the external validity of the study, that is, the generalizability of
the results. Such a selection was necessary, nevertheless, in order to provide a real
working environment, and thereby increase the construct validity of the experiment.
This issue will be further discussed in Section 4.6.

The focus on changeability is due to the fact that, specially in MDE environ-
ments, not all the maintainability sub-characteristics are equally critical. Provided
that the chosen MDE approach is mature enough (such as is the case of OOH4RIA),
we can safely assume testability and compliance: in an automated code generation
environment these issues are borne in mind during the code generation process. Also,
OOH4RIA provides many clues about possible errors and side e↵ects -a facility that
is not available for .NET-, which may the comparability of any kind of analyzability
or stability measures.

The design of the experiment is based on a well-known framework for experi-
mentation in SE research [61]. Also, a laboratory package has been compiled for the
sake of replicability [37].

The research questions addressed in this study have been formulated as follows:
– RQ1: How does the changeability performance (objective e�ciency and objec-

tive e↵ectiveness) of OOH4RIA compare with respect to the changeability per-
formance of .NET?

– RQ2: How does the changeability satisfaction (perceived usefulness and per-
ceived ease of use) of OOH4RIA compare with respect to the changeability sat-
isfaction of .NET?
All the questions have been devised to be answered by quantitative means.



Title Suppressed Due to Excessive Length 5

3.1.1 Subjects

The experimental subjects of our study were 30 students enrolled for the “Master in
Web Applications Development” at the University of Alicante during the year 2010-
2011. Two students out of those 30 abandoned the master before the experiment took
place, and another one did not attend the course the day in which the experiment was
scheduled for justified reasons. Since the abandonment of the experiment had nothing
to do with the experiment, we can assume that the results of the experiments have not
been compromised. The final sample comprised 26 men and 1 woman, of whom 20
had more than 2 years of experience developing Web applications. The mean age
of the participants was 25.6 years old and all of them were Computer Engineering
graduates of the University of Alicante.

Regarding the subjects’ level of knowledge with respect to the di↵erent technolo-
gies and methods used during the experiment, a pretest questionnaire showed that
the subjects had no previous practical knowledge of MDE, although 15 of them were
aware of the existence of the paradigm. This notwithstanding, 22 knew UML (the
standard on which the OOH4RIA method is based), and, from them, 3 considered
that they had a high-level of knowledge of UML. It should also be noted that 20 of
the subjects had previously programmed with .NET during their degree course, al-
though only 3 had applied it in industry. By the time the experiment took place, the
subjects had received additional training both in .NET and OOH4RIA. It consisted in
30 hours of programming in C# using Visual Studio 2010 and 30 hours of modeling
with UML and the OOH4RIA tool.

3.1.2 Sensitivity analysis of the design

Since our sample size was fixed, and came determined by the number of students
enrolled fir the master degree, we decided to conduct a sensitivity analysis before
going on with the experiment. The objective of this analysis was to make sure that
the analyses had enough power as to limit the risk of a Type II error (accepting the
null hypothesis when it is in fact false). Cohen [13] suggests that the power of an
analysis should be greater or equal to 0.7 to be of use. This means a maximum of a
30% chance of failing to detect an e↵ect that is actually there.

A sensitivity analysis of all these parameters (alpha=0.05, desired power=0.70,
total sample size=27) yielded a detectable e↵ect size for the method variable of 0.25.
This means that this experiment is able to detect significant di↵erences between the
two methods 70% of the times as long as the method used accounts for at least 25%
of the overall (e↵ect+error) variability. This value is consistent with the work of Co-
hen [13] and the results reported in literature so far (see Section 5). Detecting sig-
nificant di↵erences with lower e↵ect sizes are of little interest in our context, given
the great investment needed to change a development method inside an organization,
while much larger e↵ects are, according to our related work research, not likely to be
found. This calculation was done with the statistical tool G*power 3.1.5 [18].



6 Y. Martínez et al.

3.1.3 Application

Subjects were randomly assigned to either one of the following two applications:

– A Petstore application (an adaptation of an example used in [55]). This applica-
tion is a virtual store of pets (Petstore) in which a client (Client) can carry out
many purchase orders (Orders). The client can add to her purchase as many order
lines (OrderLines) as she needs. A pet (Article) can be associated to many order
lines. Pets can be classified into categories (Category), e.g. Bird, and subcate-
gories (Subcategory), e.g. Predator.

– A Mediaplayer application (used in [19,20]). This application is a music repro-
ducer that allows a User (User) to manage a group of songs (Song), and to define
lists of reproduction (Playlist). The application allows to organize each song ac-
cording to di↵erent criteria (gender, year, etc.). Also, each song, besides the URL
location, may contain information on the record company, cover, letter, duration,
etc. The application also stores the artists (Artist) and the albums (Album) to
which such song belongs.

For both applications, subjects performed a set of maintainability tasks 2 on the
server side. Both applications share the application type (data-intensive) and the com-
plexity, both in terms of code (for the .NET treatment) and in terms of conceptual
constructs (for the MDE treatment). Regarding coding, lines of code are generally
preferred over functional points to measure complexity. This is due to the higher re-
liability of the measure, since it does not involve human judgement [61]. Regarding
modeling, classes, attributes, operations and relationships are the most common set
of measures used to evaluate complexity.

The characterization of the applications’ complexity is as follows:

– Petstore: 3101 LOC, 6 classes, 31 attributes, 30 operations and 5 association re-
lationships.

– Mediaplayer: 2709 LOC, 5 classes, 24 attributes, 26 operations and 6 association
relationships.

3.1.4 Implementation environment

The implementation environment had to be able to successfully deal with the kind of
important challenges posed by modern Web applications. These challenges include
architecture, functionality and user interfaces. To face these new necessities, a num-
ber of technologies have been proposed, fostering the adoption of server-side and
client-side languages for the Web. Within this plethora of proposals, some technolo-
gies have been largely adopted by practitioners.

Among them, C# [56] is defined as a simple, modern, object-oriented, and type-
safe programming language derived from C and C++, developed especially for the
.NET platform. The .NET runtime components, frameworks, and languages are all
tied together under the Visual Studio environment [23]. In our experiment we have

2 For the sake of simplicity, in this article the term task and the term modification are used as synonims.



Title Suppressed Due to Excessive Length 7

chosen C# and Visual Studio .NET as representatives of a modern programming en-
vironment for the Web that is currently being used by a large community of software
practitioners.

With respect to the MDE paradigm, there are two tool mainstreams:

– Some proposals opt to apply the UML profiling mechanism to extend the di↵erent
UML elements. They define constraints and add tag values that introduce domain-
specific semantics. In this category, there is a large set of code generation tools.
However, to the best of our knowledge, only two of these tools can generate both
an NHibernate-based object-oriented business logic and the persistence layers -a
requirement for the two systems used in the experiment-. These are Modelio [4]
and Visual Paradigm [2]. Both of them are commercial, and they do not provide
academic licenses.

– A second set of proposals, which has been gaining momentum over recent years
due to the increasing complexity of Web applications [58], defines Domain-Specific
Languages (DSLs). These DSLs require the definition of a metamodel or a gram-
mar to establish the abstract syntax and a graphical or textual language to rep-
resent its concrete syntax. Specifically, we will only focus on DSLs of the MDE
discipline that recommends define the abstract syntax using metamodels based on
the standard MOF. Thus, the DSL developer can freely dispose of a large set of
tools that permits him to represent the model and to generate other models using
model-to-model or to generate code with model-to-text transformation languages.
Among the commercial MDE tools in this second set we can cite Integranova [3]
and RadarC [27]. Also, several proposals have been developed in universities,
such as OOH4RIA [39], OOHDM [57], RUX [33], WebML [10], UWE [54] and
OOWS [59].

Given the fact that none of the above mentioned MDE proposals is standard or
even widely adopted, and due to the lack of academic licenses for any of the com-
mercial tools, we have opted to use OOH4RIA as a representative of a modern MDE
environment. The OOH4RIA approach extends the OOH method [9] and proposes
a complete development process based on a set of models and transformations that
allow to go from conceptual models to code. OOH4RIA is also equipped with an
Implementation Development Environment (IDE) [40] that o↵ers support for both
the design activities and the automatic code generation process. This IDE is based
on the Eclipse Modeling Project [21], an open source software whose main purpose
is to provide a highly integrated platform tool [8]. OOH4RIA is free of charge for
universities, and it is taught as part of the Master’s degree in which the experiment
took place.

Summarizing, the following implementation environment was set up:

– Development framework: .NET framework, Silverlight 4.0 and NHibernate (Object-
Relational Mapping).

– Coding IDE: Visual Studio 2010.
– Modelling tool: OOH4RIA.
– Code Generation tool: OOH4RIA.
– Languages: C# and XML Mapping (ORM mapping of NHibernate).



8 Y. Martínez et al.

– Other tools: The set of questionnaires filled-in by each developer, which were
published online.

3.2 Experiment Planning

As we have mentioned previously, and due the fact that the subjects were not ran-
domly chosen but rather selected on the basis of their attendance to a Master’s degree,
our study belongs to the quasi-experiment category.

The subjects were randomly assigned to either one of the two available applica-
tions, and they were asked to perform ten maintainability tasks, five with the code-
centric approach and five with the model-driven approach. Some of the tasks were
corrective and some were perfective. For each task type they started with a new
project that they downloaded from the replication package [37]. There was no time
limit, although the expected time to fulfill the 10 tasks -based on a previous pilot test-
was around two hours. The order in which each subject applied each method (.NET
and OOH4RIA) was randomized to avoid order e↵ects. Such randomization can be
seen in Table 1.

Table 1 Experiment cross-tabulated design

Subject Corrections Improvements Application

S1-S6 OOH4RIA .NET Petstore
S7-S13 .NET OOH4RIA Petstore
S14-S20 OOH4RIA .NET MediaPlayer
S20-S27 .NET OOH4RIA MediaPlayer

The subjects were supervised by two instructors in order to control the interac-
tion bias. After each group of tasks, the students were asked to rate their experience
regarding the method used.

3.2.1 Variables

Given the research questions presented in Section 3.1, we have defined the following
Independent (experimentally manipulated) Variables (IV) or factors:

– Meth: Method, a categorical variable with two levels: .NET and OOH4RIA. It is
important to note that, in this experiment, when we refer to method, we are in fact
talking about a compound variable (method*tool), due to the coupling of these
two variables in our experimental settings.

– App: Application, a categorical variable with two possible values: Petstore and
Mediaplayer

We can characterize Meth as a fixed factor (since it includes the two methods we
are interested in testing), while App can be regarded as a random factor (since these



Title Suppressed Due to Excessive Length 9

two applications are just two examples of the application population). The resulting
design is a two-way mixed model ANOVA design.

The dependent (measurable) variables (DV) have been defined based on a well-
known Method Adoption Model [47], which is rooted in sound evidence from related
fields [48], and has been further refined in [38]. This model is presented in Fig. 1.
According to this model, the performance of developers is determined by their actual
-objective- e↵ectiveness and e�ciency while using the method. Satisfaction, in turn,
is determined by their perceived usefulness and their perceived ease of use while
using the method. The definition of these variables as they are to be understood in the
context of our study is as follows:

– Actual E↵ectiveness (AE↵v). It represents the number of tasks both syntactically
and semantically correct carried out by the subjects. Semantically correct tasks
not only preserve the executability of the program (correct syntax) but they also
fulfill the modification requirement. In our study the corresponding variable has
been defined as a ratio scale whose value ranges from 0 (the subject did not carry
out any task correctly) to 5 (all five tasks were successfully completed with the
assigned method).

– Actual E�ciency (AE↵c). It represents the tasks carried out per hour. In our study
it is defined as a ratio scale. The derived measure associated is calculated as AE↵v
divided by time.

– Perceived Usefulness (PU). It represents the extent to which a developer believes
that using the method will enhance her job performance. In our study, it has been
measured through four measures:

– Perceived E↵ectiveness (PE↵v): A ratio variable, measured through a 5-point
questionnaire item, representing the subjective percentage of tasks that the
subject thinks she correctly addressed.

– Perceived Certainty (PCert): An interval variable, measured through a 5-point
questionnaire item, representing the subjective certainty of the subject with
respect to the correction of the proposed tasks.

– Perceived Stability (PStab): An interval variable, measured through a 5-point
questionnaire item, representing the subjective opinion of the subjects with
respect to the proposed tasks not having any collateral or unexpected e↵ect in
the application (e.g. the introduction of new errors).

– Perceived Ease of Use (PEU). It represents the degree to which a developer be-
lieves that using a particular method will be free of e↵ort. Again, in our study we
have divided this concept into:

– Perceived E�ciency (PE↵c): An interval variable, measured through a 7-point
questionnaire item, representing the subjective e�ciency of the subject while
carrying out the maintainability tasks.

– Perceived Complexity (PCompl): An interval variable, measured through a
7-point questionnaire item, representing the subjective di�culty of carrying
out the maintainability tasks.

– Perceived Learnability (PLearn): An interval variable, measured through a 7-
point questionnaire item, representing the subjective opinion of the subjects



10 Y. Martínez et al.

with respect to how easy it is to learn how to perform maintainability tasks
with the method.

– Perceived Satisfaction (PS): An interval variable, based on a semantic-di↵erential
Likert scale made up of 11 7-point items.

This model also establishes the influences among variables. Such influences are
represented in Figure 1 as arrows. Particularly, this model states that it is the subjec-
tive experience of developers what determines their intention to adopt a given method,
and, eventually, their actual behavior (be it adopting or rejecting the method).

Fig. 1 Theoretical Method Adoption Model components and their associated experimental variables
(adapted from [47])

In this figure, the variables (clouds), the measures (hexagons) associated with
each variable (arrows labelled make) and the positive influences between variables
(arrows labeled some +) actually put to test by our experiment have been stressed with
solid colors and lines. The parts of the model that have been left out of our experiment
are marked with shaded colors and dashed lines. In particular, the model states that
AE↵v positively a↵ects PU, and AE↵c positively a↵ects PEU. Additionally, PEU
positively a↵ects PU.

3.2.2 Hypotheses

These model dimensions and measures have been used to define the following null
and alternative hypotheses, which are based on the research questions presented in
Section 3.1.

– Actual E↵ectiveness Hypothesis (HAE↵v, RQ1).
– HAE f f v0: AE↵v(OOH4RIA) = AE↵v(.NET). The e↵ectiveness of junior

software developers while carrying out maintainability tasks with OOH4RIA
and with .NET do not significantly di↵er. This fact holds regardless of the
application being developed.



Title Suppressed Due to Excessive Length 11

– HAE f f vA: AE↵v(OOH4RIA) <> AE↵v(.NET).
– Actual E�ciency Hypothesis (HAE↵c, RQ1).

– HAE f f c0: AE↵c(OOH4RIA) = AE↵c(.NET). The e�ciency of junior soft-
ware developers while carrying out maintainability tasks with OOH4RIA and
with .NET do not significantly di↵er. This fact holds regardless of the appli-
cation being developed.

– HAE f f cA: AE↵c(OOH4RIA) <> AE↵c(.NET).
– Perceived E�ciency Hypothesis (HPE↵c, RQ2).

– HPE f f c0: PE↵c(OOH4RIA)= PE↵c(.NET). Performing maintainability tasks
with the OOH4RIA method and environment make subjects feel as e�cient/ine�cient
as performing maintainability tasks with .NET. This fact holds regardless of
the application being developed.

– HPE f f cA: PE↵c(OOH4RIA) <> PE↵c(.NET).
– Perceived Complexity (HPCompl, RQ2).

– HPCompl0: PCompl(OOH4RIA) = PCompl(.NET). Subjects feel that per-
forming maintainability tasks with OOH4RIA is as complex as performing
them with .NET. This fact holds regardless of the application being devel-
oped.

– HPComplA: PCompl(OOH4RIA) <> PCompl(.NET)3.
– Perceived Learnability (HPLearn, RQ2).

– HPLearn0: PLearn(OOH4RIA) = PLearn(.NET). Subjects feel that learning
how to carry out maintainability tasks with OOH4RIA is as easy/di�cult as
learning to carry them out with .NET. This fact holds regardless of the appli-
cation being developed.

– HPLearnA: PLearn(OOH4RIA) <> PLearn(.NET).
– Perceived Satisfaction (HPSatisf, RQ2).

– HPS atis f0: PSatisf(OOH4RIA) = PSatisf(.NET). Subject feels that using
OOH4RIA to carry out maintainability tasks is as satisfying as using .NET.
This fact holds regardless of the application being developed.

– HPS atis fA: PSatisf(OOH4RIA) <> PSatisf(.NET).
– Perceived Ease of Use Hypothesis (HPEU, RQ2).

– HPEU0: PEU-Mean(OOH4RIA) = PEU-Mean(.NET). Using OOH4RIA to
carry out maintainability tasks is regarded by subjects, generally speaking,
as easy/di�cult as using .NET. This fact holds regardless of the application
being developed.

– HPEUA: PEU-Mean(OOH4RIA) <> PEU-Mean(.NET).
– Perceived E↵ectiveness Hypothesis (HPE↵v, RQ2).

– HPE f f v0: PE↵v(OOH4RIA)= PE↵v(.NET). Performing maintainability tasks
with OOH4RIA make subjects feel as e↵ective/ine↵ective as performing main-
tainability tasks with .NET. This fact holds regardless of the application being
developed.

– HPE f f vA: PE↵v(OOH4RIA) <> PE↵v(.NET).
– Perceived Certainty Hypothesis (HPCert, RQ2).

3 In the analyses this scale item has been reversed so that higher ratings correspond to more positive
feelings, that is, to less perceived complexity.



12 Y. Martínez et al.

– HPCert0: PCert(OOH4RIA) = PCert(.NET). Subjects feel as secure/insecure
with the result of carrying out maintainability tasks with OOH4RIA as with
the result of carrying them out with .NET. This fact holds regardless of the
application being developed.

– HPCertA: PCert(OOH4RIA) <> PCert(.NET).
– Perceived Stability Hypothesis (HPStab, RQ2).

– HPS tab0: PStab(OOH4RIA) = PStab(.NET). Subjects feel that the result of
carrying out maintainability tasks with OOH4RIA is as stable as the result
of carrying them out with .NET. This fact holds regardless of the application
being developed.

– HPS tabA: PStab(OOH4RIA) <> PStab(.NET).
– Perceived Usefulness Hypothesis (HPU, RQ2).

– HPU0: PU(OOH4RIA) = PU(.NET). Subjects feel that OOH4RIA is as use-
ful to carry out maintainability tasks as .NET. This fact holds regardless of
the application being developed.

– HPUA: PU(OOH4RIA) <> PU(.NET).

3.2.3 Experiment instrumentation

The materials used in our quasi-experiment, which are included in a replication
package [37], have the following structure:

1. Subject confidential agreement.
2. Subject instruction sheet.
3. Project Booklet. There are two modalities: A (corresponding to the Petstore ap-

plication) and B (Mediaplayer application). No matter the modality, the contents
of the booklet include a) a description of the architecture of the application, b)
a functional description of the application and, c) an URL where the subjects
can download the application. The downloadable files contain both an OOH4RIA
project and a Visual Studio 2010 project.

4. Pre-experiment questionnaire. It includes demographic questions as well as ques-
tions about subjects’ previous experience with Web application development,
Web programming and application modeling.

5. Task sheet. It includes two blocks of tasks: five corrective and five perfective. It
also includes a sheet where subjects self-report the time that it has taken them to
carry out the tasks in that block.

6. Post-experiment questionnaire. Questions to gather the subjective opinions of the
subjects regarding each method: PCert, PE↵c, PStab, PE↵v, PCompl, PLearn and
PSatisf.

To facilitate the comparison, the OOH4RIA and the .NET experiment materials
for both applications and both blocks of tasks have been designed to be as similar as
possible in terms of both the layout of the information and the information content.
Tasks in the two applications were controlled to be equivalent, the only di↵erence
being the particular class on which the task was to be performed.



Title Suppressed Due to Excessive Length 13

3.3 Operation and data collection procedures

The experiment was carried out during one master session, once the subjects had
received all the needed training on both methods. Previous to this session, a pilot
test was run with two subjects who had enrolled for the Master the year before. Also
prior to the session, the students had filled in the pre-experiment questionnaire. This
questionnaire included questions about demographic and previous experience data.

The operation phase of the experiment was defined as follows: Half of the stu-
dents received Modality A - Petstore - and half of them received Modality B - Medi-
aplayer -. In both modalities the user had to perform a set of corrective and perfective
changeability tasks.

The instructors indicated to each subject which block (corrective or perfective)
they were to carry out with .NET, and which one had to be completed with OOH4RIA.

After completing both sets of tasks, the subjects were asked to complete a post-
experiment questionnaire, where they had to subjectively rate their e�ciency and ef-
fectiveness with each method, as well as the perceived certainty, stability, complexity,
learnability and satisfaction of their maintainability work.

To maintain the comparability of the data collected during the experiment, no
feedback was given to the subjects on their performance with the tasks. We also
monitored that no interaction between participants occurred.

The performance-based variables (AE↵c and AE↵v) were calculated manually by
one of the instructors, based on the code and the OOH4RIA projects that the students
handed in. All students completed the assignments, so there are no missing values in
the gathered data. The time to finish each type of task was self-reported through a
form. The subjective variables were recorded with a set of online questionnaires. The
tool used to manage such questionnaires is Qualtrics [5]. For the subjective measures,
some students did leave some of the questions blank. In such cases, we have followed
the strategy of leaving those observations out of the analysis. For this reason, the
degrees of freedom of the subjective hypotheses may slightly vary from hypothesis
to hypothesis.

4 Data analysis and interpretation of results

All the analyses have been performed with the PASW (Predictive Analytics Soft-
Ware) package, v18 [52]. The first step of the analysis has consisted in validating the
theoretical model on which our hypotheses are based.

4.1 Theoretical Model Validation

In order to check whether the subjective measures fitted the theoretical model (see
Fig. 1), we have performed a Principal Component Analysis (PCA).

The first step of such analysis is to determine the number of components (main
variables) underlying the set of measures included in our experiment. The screen



14 Y. Martínez et al.

plot presented in Fig. 2(a) determines that the optimal number of components to be
extracted is two (see the steep slope in Fig. 2(a)).

Component Number
7654321

Ei
ge

nv
al

ue

4

3

2

1

0

Screen Plot

Página 1

(a) Screen Plot of initial solution.

Component 1
1,00,50,0-0,5-1,0

C
om

po
ne

nt
 2

1,0

0,5

0,0

-0,5

-1,0

PEffv

PCert

PStab

PEffc

PSatisf PComplx

PLearn

Component Plot in Rotated Space

Página 1

(b) The scatterplot matrix.

Fig. 2 PCA plots

Then, the rotated component matrix (varimax rotation) has helped us in deter-
mining which measures belong to each component. In the scatterplot matrix of Fig-



Title Suppressed Due to Excessive Length 15

ure 2(b) we can observe how the first component is made up of four measures (PE↵c,
PCompl, PLearn, PSatisf), which correspond to the PEU variable in the theoretical
model (see Fig. 1), while the second component includes PE↵v, PCert and PStab,
which are the measures associated with the PU variable in the theoretical model. All
of them contribute more than 0.45 to the global construct, which, according to Com-
rey [14], is the minimum acceptable weight. Therefore we can conclude that our data
fits well with the measure grouping suggested by the theoretical model.

4.2 Reliability of the measurement instruments

Also prior to the assessment of the hypotheses, we have checked the reliability of the
scales in the context of our experimental settings. We have applied the Cronbach’s
Alpha test, which has revealed the following results:

– For the PSatisf scale (a semantic-di↵erential scale made up of eleven items), all
the items show a correlation higher than 0.3 with the general construct, while the
global Cronbach’s Alpha is 0.89, giving proof of high internal consistency among
the PSatisf items. It is therefore meaningful to calculate the mean, in order to use
it as a global rating of PSatisf.

– For the PU scale (made up of three items: PE↵v, PCert and PStab, see Fig. 1),
although all the items show a correlation higher than 0.3 with the general con-
struct, the Cronbach’s Alpha remains rather low (alpha = 0.676), giving proof
of low internal consistency among the items. This low internal consistency has
prevented us from calculating a global PU value (PU-Mean) by averaging item
scorings (see Table 2).

– For the PEU scale (made up of four items: PSatisf, PCompl, PLearn and PE↵c, see
Fig. 1) the Cronbach’s Alpha shows a moderate degree of reliability (↵ = 0.764),
with all items showing an item-total correlation higher than 0.3. This internal
consistency makes meaningful to calculate a global PEU value (PEU-Mean) by
averaging item scorings (see Table 2).

The remaining subjective measures were single-item scales, so no reliability as-
sessment was possible.

4.3 Descriptive statistics

Table 2 summarizes the means (Mean) and Standard Deviations (SD) for each
variable.

Next, we present the analyses of the di↵erent hypotheses. Given the number of
hypotheses, a summary of the results is presented in Table 3.

Regarding the analyses, it is important to note that, since ANOVA presents a
high degree of robustness with respect to both ordinality and non-normality of the
scale [51], treating the scales associated with the subjective variables as interval mea-
sures does not pose an important threat to the conclusion validity of the study. This is



16 Y. Martínez et al.

Table 2 Descriptive statistics (NA: Not Applicable)

Variables .NET OOH4RIA Petstore Mplayer
Mean SD Mean SD Mean SD Mean SD

AE↵v 3.33 1.11 4.22 0.89 3.92 1.02 3.64 1.16

AE↵c 3.84 2.07 12.34 6.21 9.73 7.34 6.56 4.75

PE↵v 3.74 0.91 4.23 0.87 4.21 1.03 3.81 0.80
PCert 3.33 0.78 3.74 0.81 3.73 0.72 3.36 0.87
PStab 3.26 0.76 3.07 1.0 3.46 0.58 2.89 1.03
PU-Mean NA NA NA NA NA NA NA NA

PE↵c 4.57 1.16 5.37 1.21 5.00 1.33 4.96 1.20
PLearn 4.27 1.37 4.62 1.52 4.84 1.49 4.07 1.33
PCompl 3.96 1.40 4.88 1.42 4.68 1.40 4.18 1.52
PSatisf 4.63 0.96 4.56 0.94 4.69 1.00 4.51 0.88
PEU-Mean 4.35 0.88 4.83 1.05 4.77 1.10 4.43 0.86

also consistent with the general opinion that Likert scales that are defined by means
of su�cient (typically 7 point) symmetric and equidistant Likert items approximate
an interval-level measurement. Furthermore, treating the scale as interval can be ben-
eficial; otherwise, some valuable information (the ’distance’ between opinions) could
be lost [51].

4.4 RQ1: Performance of treatments

As it was depicted in Figure 1, performance is made up of two variables: actual
e�ciency and actual e↵ectiveness.

For the refutation of all the hypotheses related to performance we have applied a
two-way mixed design ANOVA (↵ = 0.05), in which App is a random factor, Meth
is a fixed factor and the di↵erent components of performance (AE↵v and AE↵c) are
the DVs. The fact that the number of observations per cell (Meth*App combination)
is as equal as possible contributes to the robustness of these analyses.

The results of testing the HAE↵v hypothesis (concerning the existence of signif-
icant di↵erences in the actual e↵ectiveness of the two methods) show that the inter-
action Meth*App is not significant (F(1, 25) = 0.016,MS E = 0.015, p > 0.05, ⌘2 =
0.001). We can then safely examine the main e↵ects of the two independent vari-
ables (App and Meth) on these means without needing to qualify the results by the
existence of a significant interaction. For the Meth variable, the subject’s e↵ective-
ness when using OOH4RIA (M = 4.22, S D = 0.89) is significantly greater than
the e↵ectiveness of subjects using .NET code (M = 3.33, S D = 1.11): (F(1, 25) =
11.45,MS E = 10.68, p < 0.05, ⌘2 = 0.314). An e↵ect size (eta squared) of 0.314
means that the factor Meth by itself accounts for 31.4% of the overall (e↵ect+error)
variance. The results also show that subject’s e↵ectiveness is slightly greater with Pet-
store (M = 3.92, S D = 1.02) than with Mediaplayer (M = 3.64, S D = 1.16). How-
ever, this di↵erence is not significant (F(1, 50) = 72.25,MS E = 1.06, p > 0.05, ⌘2 =



Title Suppressed Due to Excessive Length 17

0.036). This means that the di↵erences in E↵ectiveness are significantly a↵ected by
the method used, regardless of the particular application being developed.

We can observe these results graphically in Figure 3 (a). The fact that the par-
ticular application is not significant is reflected in the lines being quite close to each
other. The Meth variable influence is reflected in the slope of the lines. Finally, the
lack of significance of the Meth*App interaction is reflected in the lines being more
or less parallel (all of them showing the same tendency with each method). The same
graphical clues hold for the rest of the graphics.

(a) Actual E↵ectiveness.

Meth
OOH4RIA.NET

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

14,00

12,00

10,00

8,00

6,00

4,00

2,00

Estimated Marginal Means of AEffc (Tasks per Hour)

Mediaplayer
Petstore

App

Página 1

(b) Actual E�ciency.

Fig. 3 Objective measures

Then, we have tested the HAE↵c hypothesis (in tasks per hour).

In this case both the Box’s M and the Levene’s contrast on the AE↵c(.NET) vari-
able were significant. In order to overcome this problem, we have applied a logarith-
mic transformation of the data: we consider the variable LAE↵c now as Ln(AE↵c).
With the transformed variable, all the ANOVA assumptions hold, which allows us to
continue with the analysis.

The results show that the interaction Meth*App is not significant (F(1, 25) =
0.040,MS E = 0.015, p > 0.05). We can then safely examine the main e↵ects
of the two independent variables (App and Meth) on these means without need-
ing to qualify the results by the existence of a significant interaction. For the Meth
variable, the subject’s e�ciency when using OOH4RIA (M = 12.34, S D = 6.21)
is significantly greater than the subject’s e�ciency when acting on the .NET code
(M = 3.84, S D = 2.07): (F(1, 25) = 1197.29,MS E = 18.34, p < 0.05, ⌘2 = 0.658).
The results also show that subject’s e�ciency is significantly di↵erent between Pet-
store (M = 9.73, S D = 7.34) and Mediaplayer (M = 6.56, S D = 4.75): (F(1, 25) =
6.21,MS E = 2.167, p < 0.05, ⌘2 = 0.199). This means that the di↵erences in e�-
ciency are significantly a↵ected both by the method used and by the particular ap-
plication being developed, although the method has a much bigger impact. We can
observe these results graphically in Figure 3 (b).



18 Y. Martínez et al.

4.5 RQ2: Satisfaction of treatments

As presented in Figure 1, satisfaction is made up of two main variables: PU and
PEU.

On the one hand, PU is made up of three measures: perceived certainty, perceived
stability and perceived e�ciency. They make up a three-item scale that, however, ac-
cording to the data gathered in our experiment, has a rather low level of reliability
(see Section 4.2). For this reason, we have finally left out of our experiment the HPU
hypothesis, since we lack a reliable enough instrument to measure such global con-
struct and we have centered on the partial hypotheses HPE↵v, HPCert and HPStab.

PEU, on the other hand, is made up of four di↵erent measures: perceived com-
plexity, perceived learnability, perceived satisfaction and perceived e�ciency. Since
the four items make up a scale with su�cient internal reliability, we can safely as-
sume that all these measures can be used to calculate their mean as the value for
the main variable PEU. Therefore, all five hypotheses (HPE↵c, HPLearn, HPCompl,
HPSatisf and HPEU) can be tested.

Again, for the refutation of all the hypotheses related to both PEU and PU we
have applied a two-way mixed design ANOVA (↵ = 0.05), in which App is a random
factor, Meth is a fixed factor and the di↵erent components of PU are the DVs. The
fact that the number of observations per cell (Meth*App combination) is as equal
as possible contributes to the robustness of these analyses. Prior to the analyses, we
reversed some of the questionnaire items so that higher ranks always corresponded to
more positive feelings (more learnable, less complex, more e�cient, and so on).

Next, we present the data analyses.

4.5.1 Perceived usefulness

The results of testing the HPE↵v hypothesis show that the interaction Meth*App
is not significant (F(1, 20) = 0.275,MS E = 0.078, p > 0.05, ⌘2 = 0.01). We
can then safely examine the main e↵ects of the two IV (App and Meth) on these
means without needing to qualify the results by the existence of a significant in-
teraction. For the Meth variable, the subject’s perceived e↵ectiveness when using
.NET (M = 3.77, S D = 0.92) is slightly lower than the e↵ectiveness of subjects
working over OOH4RIA (M = 4.23, S D = 0.87). This di↵erence is significant:
(F(1, 20) = 8.32,MS E = 2.35, p < 0.05, ⌘2 = 0.29). The results also show that sub-
ject’s perceived e↵ectiveness is slightly greater with Petstore (M = 4.21, S D = 1.03)
than with Mediaplayer (M = 3.81, S D = 0.80), although this di↵erence is not sig-
nificant: (F(1, 20) = 1.83, p > 0.05, ⌘2 = 0.08). This means that the di↵erences in
Perceived E↵ectiveness are significantly a↵ected by the method used regardless of
the application implemented. These results can be graphically observed in Figure 4.

Regarding the HPCert hypothesis (concerning the existence of significant dif-
ferences of subject’s certainty with the result of carrying out maintainability tasks
with the two methods), the Levene’s statistic for the PCert(OOH) variable is signif-
icant, which indicates a violation of the statistical method assumptions. In order to
overcome this problem, we have applied a logarithmic transformation of the data:



Title Suppressed Due to Excessive Length 19

Fig. 4 Perceived E↵ectiveness

we consider the variable LPCert now as Ln(PCert). Again the result of one of the
Levene’s statistics indicates a violation of homogeneity of error variance. For this
reason, another logarithmic transformation has been applied, and now LPCert equals
LnGamma(PCert). With the transformed variable, we can accept the assumption of
homogeneity of variance and continue with the analysis.

The results show that interaction Meth*App is not significant (F(1, 25) = 0.41,MS E =
0.22, p > 0.05, ⌘2 = 0.01). Therefore we can safely examine the main e↵ects of the
two IV (Meth and App) on these means without needing to qualify the results by the
existence of a significant interaction. For the Meth variable, the subject’s perceived
certainty with respect to the correction of the proposed modifications when using
OOH4RIA (M = 3.74, S D = 0.81) is slightly higher than the subject’s perceived cer-
tainty when using .NET (M = 3.33, S D = 0.78): (F(1, 25) = 5.10,MS E = 2.78, p <
0.05, ⌘2 = 0.17). This main e↵ect is significant. Also, the subject’s perceived cer-
tainty is slightly higher with Petstore (M = 3.73, S D = 0.72) than with Mediaplayer
(M = 3.36, S D = 0.87): (F(1, 25) = 2.065,MS E = 1.81, p > 0.05, ⌘2 = 0.07), al-
though this di↵erence is not significant. This means that the di↵erences in perceived
certainty are significantly a↵ected by the method regardless of the application. We
can observe these results graphically in Figure 5 (a).

The results of the HPStab hypothesis (concerning the existence of significant
di↵erences of perceived stability of the subjects with respect to the proposed mod-
ifications not having any collateral or unexpected e↵ect in the application with the
two methods) show that the interaction Meth*App is not significant (F(1, 25) =
0.018,MS E = 0.012, p > 0.05, ⌘2 = 0.001). We can then safely examine the main
e↵ects of the two IV (Meth and App) on these means without needing to qualify the
results by the existence of a significant interaction. For the Meth variable, the subjects
perceived stability of proposed modifications with .NET code (M = 3.26, S D = 0.76)
is slightly superior to the subjects’ perceived stability when using OOH4RIA (M =
3.07, S D = 1.00), although not significantly: (F(1, 25) = 0.67,MS E = 0.457, p >
0.05, ⌘2 = 0.025). The results also show that the perceived stability of subjects is
significantly greater with Petstore (M = 3.46, S D = 0.58) than with Mediaplayer
(M = 2.86, S D = 1.03): (F(1, 25) = 5.55,MS E = 4.36, p < 0.05, ⌘2 = 0.18). This



20 Y. Martínez et al.

Meth
OOH4RIA.NET

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

4

3,8

3,6

3,4

3,2

Estimated Marginal Means of PU-PCert

Mediaplayer
Petstore

App

Página 1

(a) Perceived Certainty. (b) Perceived Stability.

Fig. 5 Certainty and Stability in Perceived Usefulness

means that the di↵erences in perceived stability are significantly a↵ected by the par-
ticular application being developed, regardless of the method used. We can observe
these results graphically in Figure 5 (b).

4.5.2 Perceived ease of use

The results of testing the HPE↵c hypothesis (concerning the existence of signifi-
cant di↵erences of the subjective performance of the subject while carrying out the
maintainability tasks with the two methods) show that the interaction Meth*App
is not significant (F(1, 25) = 0.091,MS E = 0.126, p > 0.05, ⌘2 = 0.003). We
can then safely examine the main e↵ects of the two IV (App and Meth) on these
means without needing to qualify the results by the existence of a significant interac-
tion. For the Meth variable, the subjects’ perceived e�ciency when using OOH4RIA
(M = 5.37, S D = 1.21) is significantly superior to the perceived e�ciency of sub-
jects using .NET (M = 4.57, S D = 1.16): (F(1, 25) = 6.286,MS E = 8.73, p <
0.05, ⌘2 = 0.23). Also, subjects’ perceived e�ciency is slightly higher with Pet-
store (M = 5.00, S D = 1.33) than with Mediaplayer (M = 4.96, S D = 1.20):
(F(1, 25) = 0.060,MS E = 0.091, p > 0.05, ⌘2 = 0.003), although not significantly.
This means that the di↵erences in perceived e�ciency are significantly a↵ected by
the method used, regardless of the particular application being developed. The results
can be graphically seen in Figure 6 (a).

The results of testing the HPLearn hypothesis (concerning the existence of sig-
nificant di↵erences of subjects’ perceived learnability while performing the main-
tainability tasks with the two methods) show that the interaction Meth*App is not
significant (F(1, 23) = 0.916,MS E = 2.133, p > 0.05, ⌘2 = 0.038). We can then
safely examine the main e↵ects of the two IV (Meth and App) on these means with-
out needing to qualify the results by the existence of a significant interaction. For the
Meth variable, the subjects’ perception of the method learnability with OOH4RIA
(M = 4.62, S D = 1.52) is slightly better than the perceived learnability with .NET
code (M = 4.27, S D = 1.37), but this di↵erence is not significant: (F(1, 23) =



Title Suppressed Due to Excessive Length 21

(a) Perceived E�ciency. (b) Perceived Learnability.

Fig. 6 E�ciency and Learnability in Perceived Ease of Use

0.607,MS E = 1.413, p > 0.05, ⌘2 = 0.026). The results also show that the sub-
jects’ learnability is significantly greater with Petstore (M = 4.84, S D = 1.49) than
with Mediaplayer (M = 4.07, S D = 1.33): (F(1, 23) = 4.949,MS E = 8.733, p <
0.05, ⌘2 = 0.177), . This means that di↵erences in perceived learnability are signifi-
cantly a↵ected by the application, but not by the method. We can observe these results
graphically in Figure 6 (b).

The results of testing the HPCompl hypothesis (concerning the existence of sig-
nificant di↵erences of subjects’s perceived level of di�culty of carrying out the main-
tainability tasks with each method) show that the interaction Meth*App is not signif-
icant (F(1, 24) = 0.522,MS E = 1.191, p > 0.05, ⌘2 = 0.021). We can then safely
examine the main e↵ects of the two IV (App and Meth). For the Meth variable, the
subject’s perceived complexity of performing maintainability tasks with OOH4RIA
(M = 4.88, S D = 1.42) is slightly lower (more positive feelings) than the perceived
complexity of performing maintainability tasks over .NET code (M = 3.96, S D =
1.40). This di↵erence is significant: (F(1, 24) = 5.076,MS E = 11.576, p > 0.05, ⌘2 =
0.175). The results also show that the subject’s perceived complexity is slightly lower
with Petstore (M = 4.68, S D = 1.41) than with Mediaplayer (M = 4.18, S D = 1.52),
although not significantly: (F(1, 24) = 2.069,MS E = 3.627, p > 0.05, ⌘2 = 0.079).
This means that the di↵erences in perceived complexity when subjects carry out
maintainability tasks are significantly a↵ected by the method regardless of the ap-
plication being implemented. These results are graphically depicted in Fig. 7 (a).

To test the HSatisf hypothesis, related to the existence of significant di↵erences
of subjects’s perceived satisfaction while performing the maintainability tasks with
the two methods, the Levene’s statistic for the PSatisf(OOH) shows a violation of
homogeneity of variance. To overcome this problem, we have applied a logarithmic
transformation of the data: we consider the variable LPSatisf now as Ln(PSatisf).
With the transformed variable, all the assumptions of the test hold, which allows us
to continue with the analysis.

The results show that the interaction Meth*App is not significant (F(1, 25) =
0.068,MS E = 0.004, p > 0.05, ⌘2 = 0.003), which allows us to safely examine



22 Y. Martínez et al.

(a) Perceived Complexity.

Meth
OOH4RIA.NET

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

4,70

4,60

4,50

4,40

Estimated Marginal Means of PEU-PSatisf

Mediaplayer
Petstore

App

Página 1

(b) Perceived Satisfaction.

Fig. 7 Complexity and Satisfaction in Perceived Ease of Use

the main e↵ects of the two IV (App and Meth). For the Meth variable, the subjects’
perceived satisfaction with OOH4RIA (M = 4.56, S D = 0.94) is slightly lower than
the perceived satisfaction with .NET code (M = 4.63, S D = 0.96), although not
significantly: (F(1, 25) = 0.053,MS E = 0.003, p > 0.05, ⌘2 = 0.002). The results
also show that the subjects’ perceived satisfaction is slightly superior with Petstore
(M = 4.69, S D = 1.00) than with Mediaplayer (M = 4.51, S D = 0.89), although,
again, not significantly: (F(1, 25) = 0.433,MS E = 0.016, p > 0.05, ⌘2 = 0.017).
This means that the di↵erences in perceived satisfaction are not significantly a↵ected
neither by the method nor by the application. These results can be graphically seen
in Fig. 7 (b).

Last but not least, to test the HPEU hypothesis (concerning the existence of sig-
nificant di↵erences in the global ease of use of the methods while performing main-
tainability tasks), the Levene’s statistic for the PEU(OOH) is significant, indicating a
violation of the statistical method’s assumption. In order to overcome this problem,
we have applied a logarithmic transformation of the data: we consider the variable
LPEU now as Ln(PEU). Now all the assumptions hold, which allows us to continue
with the analysis.

The results of the two-way ANOVA analysis show that the interaction among vari-
ables (Meth*App) is not significant (F(1, 25) = 0.106,MS E = 0.005, p > 0.05, ⌘2 =
0.004). For the Meth variable, subject’s perceived global ease of use with OOH4RIA
(M = 4.83, S D = 1.05) is slightly superior to the perceived ease of use with .NET
code (M = 4.35, S D = 0.88), although not significantly: (F(1, 25) = 2.696,MS E =
0.14, p > 0.05, , ⌘2 = 0.097). The results also show the subjects’s perceived ease of
use is slightly superior with Petstore (M = 4.77, S D = 1.10) than with Mediaplayer
(M = 4.43, S D = 0.86), although, again, not significantly (F(1, 25) = 1.206,MS E =
0.055, p > 0.05, ⌘2 = 0.046). This means that the di↵erences in perceived global
ease of use are not significantly a↵ected neither by the method nor by the particular
application being developed. These results can be graphically seen in Figure 8.

A summary of all these results can be seen in Table 3.



Title Suppressed Due to Excessive Length 23

Meth
OOH4RIA.NET

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

5,20

5,00

4,80

4,60

4,40

4,20

Estimated Marginal Means of PEU-Mean

Mediaplayer
Petstore

App

Página 1

Fig. 8 Perceived Ease of Use

Table 3 Data Analysis Results: Summary (OOH: Significant and better for OOH4RIA, Pet: Significant
and better for Petstore, N: Not significant, NA: Not applicable)

Variables Meth*App Meth App Meth*App ⌘2 Meth ⌘2 App ⌘2

AE↵v N OOH N <0.001 0.314 0.036

AE↵c N OOH Pet <0.001 0.658 0.199

PU-PE↵v N OOH N 0.01 0.29 0.084
PU-PCert N OOH N 0.01 0.17 0.076
PU-PStab N N Pet <0.001 0.025 0.18
PU-Mean NA NA NA NA NA NA

PEU-PE↵c N OOH N 0.003 0.23 0.003
PEU-PLearn N N Pet 0.038 0.026 0.177
PEU-PCompl N OOH N 0.021 0.175 0.079
PEU-PSatisf N N N 0.03 0.002 0.017
PEU-Mean N N N 0.004 0.097 0.046

4.6 Threats to Validity

The analysis of the threats to validity evaluates under which conditions our experi-
ment is applicable and o↵ers benefits, and when it might fail [15]. It therefore serves
to qualify the experiment results.

Threats to Conclusion Validity refer to issues that a↵ect the ability to draw the
correct statistical conclusion about relationships between the treatment and the out-
come of the experiment. In our experiment we have performed a sensitivity analysis
that assures a power of 0.7 for e↵ect sizes greater than 0.25. The main assumptions
of the statistical tests have been checked, and data has been transformed if neces-
sary to fulfill them. The consideration of five and seven-point Likert items as interval
variables is a matter of controversy. However, the use of ANOVAs, which present a
high degree of robustness with respect to both ordinality and non-normality of the
scale [51], significantly reduces this threat. Also,the reliability of measures involving
scales has been tested, and hypotheses where the scale did not show a high enough
degree of reliability have been left out of the study.



24 Y. Martínez et al.

Threats to Internal Validity are concerned with the possibility of hidden factors
-not controlled by the researcher- that may be influencing the results. In that case, it
would not be possible to conclude that the treatment is the reason for the detected
di↵erences in outcome. In our experiment all the subjects enrolled for the master de-
gree had to participate in the experiment (so no selection bias beyond that inherent
to quasi-experiments was present). The subjects applied the treatments with di↵er-
ent tasks, which diminishes the history risk. Two instructors supervised the whole
process in order to diminish the interaction bias. However, students self-reported the
time it took them to finish the tasks, which may have introduced a bias. The level
of subjectivity involved in the manual correction of tasks by one of the instructors
was controlled by executing the code handed in by the subjects, and making sure
that it run as expected. The fact that they applied the treatments on two di↵erent ap-
plications also poses a threat to internal validity that has been controlled by using
applications of similar complexity, i.e. similar number of conceptual constructs (for
the MDE treatment) and, at the same time, similar number of code lines (for the .NET
treatment).

Threats to Construct Validity refer to the generalization of the result to the con-
cept or theory behind the experiment. In this paper we have based the experiment on a
widely-accepted theoretical model. A PCA has been performed to check that our data
fitted the variable grouping of the theoretical model. This notwithstanding, the fact
that some of the variables have been measured through a single questionnaire item
may have introduced a measurement bias that can only be overcome with the defini-
tion and validation of standard scales to measure such constructs. To our knowledge
extent such scales are not yet available for researchers. Also, the hypothesis of the
experiment (that is, a higher maintainability of MDE environments) was quite easy
to guess, so students may have felt bound to report less time when using MDE. Any-
way, the experiment observers took special care not to disclose this hypothesis to
the students. Additionally, the experiment su↵ers from a restricted generalizability
across constructs: we have checked a positive outcome between maintainability and
OOH4RIA, but we cannot assure that this does not hamper other quality attributes or
any additional characteristic.

Last but not least, Threats to External Validity are concerned with generaliza-
tion of the results to the industrial practice. The subjects are graduate students (M.Sc.
students), many of them already working in industry as developers, and therefore
representatives of junior developers. However, the sample may not be representative
of the population of junior developers due to the small sample used and the fact that
these subjects are highly motivated to learn new skills. Also, the particular methods
and languages we have used (OOH4RIA, .NET), despite being some of them broadly
used in industry, constitute a limited environment, and results cannot be generalized
to other languages, methods and tools. The applications chosen, although limited in
size, are representatives of the kind of applications that are being developed in in-
dustry, and were in fact simplified versions of two real projects. However, both the
systems and the scope of the maintainability tasks had to be simplified due to time
constraints, so there is a risk that di↵erent results may happen if bigger applications
or di↵erent maintainability tasks had been used to perform the experiment. Therefore,
this experiment needs to be replicated with di↵erent languages, tools, applications,



Title Suppressed Due to Excessive Length 25

application sizes, tasks and MDE approaches. For this purpose, the replication pack-
age of this experiment can be found at [37].

5 Related work

The importance and impact of maintainability on software development is re-
flected in the vast amount of empirical work found in literature. Regarding code-
centric approaches, there are empirical studies which provide evidences about the
impact of the quality of object-oriented implementation over the software maintain-
ability. [16] demonstrates that object-oriented metrics such as size, coupling, cohe-
sion, inheritance, etc. can e↵ectively be used to predict the maintainability of software
systems. The results indicate that size and direct/import coupling metrics are signif-
icant predictors for measuring maintainability of classes while inheritance, cohesion
and indirect/export coupling measures are not.

Other studies are focused on how software development problems and good prac-
tices may a↵ect software maintainability. On the one hand, [12] classifies a set of
problem factors related with software development that may a↵ect the maintainabil-
ity. These include documentation quality problems, programming quality problems,
system requirements problems, personnel resources problems and process manage-
ment problems. Results suggest that improvements in the software development pro-
cess can help to reduce the level of severity of the problems related with documen-
tation quality and process management, which in turn may enhance software main-
tainability. On the other side, [7] estimates the impact of the development activities
with a more practical perspective on the software maintainability. This research indi-
cates that the software complexity is a key intermediate variable that links design and
development decisions to their downstream e↵ects on software maintenance. Interest-
ingly, the experiment results indicate that the use of an MDE method in development
is associated with increased software complexity and reduced software development
e↵ort. These results suggest an important link between software development prac-
tices and maintenance performance.

Also, according to a systematic mapping of the empirical evidence of the impact
of MDE on the di↵erent ISO quality characteristics [36], the empirical assessment
of maintainability activities while using MDE methods has been gaining momentum
during the last years. However, the empirical evidence regarding this topic is still
scarce: out of the 599 publications included in the study, only 14 (that is, barely a
2.34%) focused on maintainability. The available evidence states that, in academic
settings, it takes around 37% less time to evaluate the impact of a change with an
MDE method than directly over the code [41]. In industry, evidence has been gathered
on how the use of MDE causes defect reductions, reduced need for code inspections,
and produces maintenance gains, although such evidence is anecdotal [46]. In [26],
based on the results of an online survey, the authors report how the majority of re-
spondents (between 58 and 66%) considered the use of MDE on their projects to be
beneficial in terms of personal and team productivity, maintainability and portability.
Organizationally, the benefits of MDE have been defined in terms of communication



26 Y. Martínez et al.

and control: according to the same survey, almost 75% of respondents agreed that
using MDE made them faster at implementing new requirements, while nearly two
thirds of respondents reported that their use of MDE helped in the understanding and
communication of organizational knowledge among stakeholders.

Last but not least, a recent empirical study [35] compared an MDE method,
WebML [10], and a code-centric method (based on PHP), with respect to the perfor-
mance and satisfaction of junior software developers while executing analyzability,
corrective and perfective maintainability tasks on Web applications. The experiment
presented in this paper is a follow-up of the WebML empirical study. Both studies
provide interesting results on the impact of MDE approaches on the maintainability
of Web applications. Also, in the experiment presented in this paper we have main-
tained the paradigms (model-driven vs code-centric). However, we have changed the
methods (now OOH4RIA and .NET). Also, in this study we have centered on change-
ability -leaving out analyzability-, and we have designed more tasks that provide a
finer-grained measure for the maintainability sub-characteristic. Besides, we have
measured much more extensively the developer’s perceptions, based on an underly-
ing theoretical model. Last but not least, whereas the WebML experiment is mainly
focused on the use of the navigational model for obtaining the client-side of a Web
application, this work is centered on the definition of the domain model to generate
the server-side, that is, the business logic and the persistence layer of a Web appli-
cation. Comparing the results regarding the productivity of the changeability and the
satisfaction of each MDE approach versus the code-centric approach, we can ob-
serve how both WebML and OOH4RIA significantly improve the actual e�ciency of
the changeability tasks (3.21 and 317 times, respectively) with respect to the code-
centric approach. However, while OOH4RIA also improves the e↵ectiveness of the
changeability by up to 27%, the impact of WebML over e↵ectiveness was not found
significant. With regard to the results on the satisfaction of use of these approaches,
the WebML study showed a slight preference of subjects towards tackling maintain-
ability tasks directly over the source code. This result is consistent with the results of
the OOH4RIA experiment.

6 Conclusions

This study compares a model-driven approach, OOH4RIA, and a code-driven ap-
proach, based on Visual Studio and .NET. The study concludes that the use of OOH4RIA
-as compared to .NET- greatly improves the actual performance (AE↵v and, even
more, AE↵c) of subjects carrying out maintainability tasks. The study of the satisfaction-
related variables (PEU and PU), however, throws mixed results: while PU-PE↵v, PU-
PCert, PEU-PE↵c and PEU-PCompl do reveal significant di↵erences among methods
(all in favor of OOH4RIA), PU-PStab, PEU-PLearn, PEU-PSatisf and global PEU
don’t reveal significant di↵erences between the two methods.

The significant di↵erences all agree with previous results (see section 5). These
results already suggested that, in an experimental setting such as ours, the MDE ap-
proach would outrank the code-centric approach both in terms of e�ciency (actual
and perceived), e↵ectiveness (actual and perceived). Also, in these four variables the



Title Suppressed Due to Excessive Length 27

Meth variable shows the greater e↵ect size. The significant di↵erences for PCert are
also consistent with our a-priori thoughts. Models provide higher-level abstractions
that are assumed to improve the understandability of the domain, including the un-
derstandability of the maintainability changes.

However, we also expected significant di↵erences in the variables that actually
did not attain significance. Users found OOH4RIA solution to be slightly less sta-
ble (meaning that they fear that more unnoticed errors may have been introduced),
although the di↵erence was not significant. This happens even though OOH4RIA in-
cludes a checking mechanism that is aimed at helping developers to avoid the intro-
duction of unnoticed errors (a mechanism that was not available for the .NET treat-
ment). We believe that this may be due to the perceived loss of control with MDE
approaches that subjects have reported in a related study [38]. Also, subjects believe
that OOH4RIA is slightly more learnable and less complex than .NET (although,
again, not significantly). We expected that, having all of them a much higher expe-
rience with .NET than with OOH4RIA, they would find .NET to be more learnable
and less complex. We can partly explain this fact by the subjects’ knowledge of UML,
which apparently was strong enough so as not to feel discomfort with the OOH4RIA
approach. Also, the use of models -whose higher level of abstraction is supposed to
simplify the maintenance tasks- seems to counterbalance the additional complexity
that is likely to be perceived when the developer is faced with a new method. Also,
the fact that the subjects were junior developers attending a master where they were
being exposed to many di↵erent tools and techniques, may have had an impact on
such perception of complexity. Last but not least, the subjects reported a PSatisf level
slightly lower for OOH4RIA than for .NET (although, again, not significantly). We
expected subjects to be significantly more satisfied with OOH4RIA, given the ex-
pected gains in e�ciency and e↵ectiveness. Again, based on self-reported opinions
disclosed in a previous experiment [38], we believe that this lower level of satisfac-
tion (despite the increased objective and subjective productivity gains) may be due to
code-centric practices being more consistent with the existing values, needs and past
experiences of subjects, which suggests the convenience to introduce this variable in
future replications of the experiment.

Since it is well known that it is subjective opinions (and not objective behavior)
what better determines the intention to adopt new technologies and methods [49], it is
not far-fetched to think that the discrete satisfaction results reflected in our data (with
4 variables being significant and 3 variables not being significant) may be at the root
of the low adoption rates of the MDE paradigm beyond university courses [60]. Ac-
tually checking whether this hypothesis is true requires from further experimentation.

Another important contribution of this article is the validation, through a PCA, of
the structure of the theoretical model. Our analysis shows that the number of compo-
nents and the assignment of measures to model variables is consistent with the data
gathered in our context, and therefore increases the confidence in the goodness of fit
of the chosen theoretical model to the context of method adoption.

Our results augment the repository of empirical data comparing maintainabil-
ity performance and satisfaction of MDE methods with respect to traditional code-
centric approaches. Further experimentation is needed to be able to generalize the re-
sults to a di↵erent population, di↵erent methods and languages, di↵erent application



28 Y. Martínez et al.

types, di↵erent maintainability tasks or di↵erent application sizes. In this sense, we
have prepared a replica, and we plan to run a meta-analysis that includes the results
from the WebML experiment, the experiment reported in this paper and the results
from that replica. Also, extensive work needs to be done in the matter of defining
reliable measures. Last but not least, more data is needed to perform a much more
extensive validation of the theoretical model. In this paper we have just checked the
soundness of the groupings of the measures under the PEU and PU variables. How-
ever, we have left out some constructs of interest (namely, the intention to use the
method and how it relates to the actual use of the method once the subjects go back
to their daily activities), and we have not checked the causal relationships inferred
from that model.

Acknowledgements This paper has been co-supported by the DLSI, the Spanish Ministry of Education,
and the University of Alicante under contracts TIN2010-15789 (SONRIA) and GRE10-23 (DISEMRIA).
The authors wish to thank their students for taking the time to participate in this empirical study. In ad-
dition, we would also like to thank Jose Javier Martínez and Juan Antonio Osuna who contributed to the
development of the OOH4RIA Tool. Special thanks to Dania Suárez and Milton García for their help.

References

1. ISO/IEC 9126-1, Software engineering - Product quality - Part 1: Quality model (2001)
2. Visual Paradigm for UML 8.0 Community Edition. http://www.visual-paradigm.com/ (Last update

August 16, 2010) (2005)
3. Integranova M.E.S (Integranova Software Solutions). http://www.slideshare.net/mhoubraken/catalogo-

integranova-esp-mayo-2011 (2011)
4. Modelio open source modeling environment v2.2. http://www.modelio.org (2011)
5. Qualtrics online survey software. http://www.qualtrics.com/ (2012)
6. Ameller, D., Franch Gutiérrez, J., Cabot Sagrera, J.: Dealing with non-functional requirements in

model-driven development. Tech. rep., Departament d’Enginyeria de Serveis i Sistemes d’Informació
(2010)

7. Banker, R.D., Davis, G.B., Slaughter, S.A.: Software development practices, software complexity, and
software maintenance performance: A field study. Management Science 44(4), 433–450 (1998)

8. Budinsky, F.: Eclipse modeling framework: a developer’s guide. Prentice Hall Ptr (2004)
9. Cachero, C., Poels, G., Calero, C.: Towards a Quality-Aware Web Engineering Process. In: Proceed-

ings of the 12th International Workshop on Exploring Modeling Methods in Systems Analysis and
Design (EMMSAD’2007), pp. 7–16. Citeseer (2007)

10. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive Web applications. Internet
Computing, IEEE 6(4), 20–30 (2002)

11. Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., Tan, W.G.: Types of software evolution and software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice 13(1), 3–30
(2001)

12. Chen, J.C., Huang, S.J.: An empirical analysis of the impact of software development problem factors
on software maintainability. Journal of Systems and Software 82(6), 981–992 (2009)

13. Cohen, J.: Statistical power analysis for the behavioral sciences. Lawrence Erlbaum (1988)
14. Comrey, A.L.: A First Course in Factor Analysis. LawreAcademic Pressnce Erlbaum (1973)
15. Cook, T.D., Campbell, D.T., Day, A.: Quasi-experimentation: Design & analysis issues for field set-

tings. Houghton Mi✏in Boston (1979)
16. Dagpinar, M., Jahnke, J.H.: Predicting maintainability with object-oriented metrics-an empirical com-

parison. In: Proceedings of the 10th Working Conference on Reverse Engineering (WCRE), pp. 155–
164 (2003)

17. Dyba, T., Kitchenham, B.A., Jorgensen, M.: Evidence-based software engineering for practitioners.
Software, IEEE 22(1), 58–65 (2005)



Title Suppressed Due to Excessive Length 29

18. Faul, F., Erdfelder, E., Lang, A.G., Buchner, A.: G*power 3: A flexible statistical power analysis
program for the social, behavioral, and biomedical sciences. Behavior Research Methods 39, 175–
191 (2007)

19. Fu, X., Shi, W., Akkerman, A., Karamcheti, V.: Cans: composable, adaptive network services infras-
tructure. In: Proceedings of the 3rd conference on USENIX Symposium on Internet Technologies and
Systems-Volume 3, pp. 12–12. USENIX Association (2001)

20. Glitho, R.H., Khendek, F., De Marco, A.: Creating value added services in internet telephony: an
overview and a case study on a high-level service creation environment. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on 33(4), 446–457 (2003)

21. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Addison-
Wesley Professional (2009)

22. Gustavsson, H., Lings, B., Lundell, B., Mattsson, A., Beekveld, M.: Integrating proprietary and open-
source tool chains through horizontal interchange of XMI models. In: Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on, pp. 521–522. IEEE (2007)

23. Hanselman, S., Verma, D.: Visual Studio 2010 SP1 for Web Developers. MSDN Magazine-Louisville
(2011)

24. Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model size, complexity and e↵ort in a
large scale, distributed model driven development process. In: Software Engineering and Advanced
Applications, 2009. SEAA’09. 35th Euromicro Conference on, pp. 113–120. IEEE (2009)

25. Hutchinson, J., Whittle, J., Rouncefield, M.: Empirical assessment of mde in industry. Interpretation
A Journal Of Bible And Theology pp. 471–480 (2011). <m:note/>

26. Hutchinson, J., Whittle, J., Rouncefield, M., Kristo↵ersen, S.: Empirical assessment of MDE in in-
dustry. In: Proceeding of the 33rd International Conference on Software Engineering, pp. 471–480.
ACM, ACM (2011)

27. Icinetic TIC S.L.: RADARC (Rapid Application Development Architecture). http://www.radarc.net/
(2012)

28. IEEE Std.1219-1998: IEEE Standard for Software Maintance (1998)
29. ISO/IEC FCD 25010: Systems and software engineering – Systems and software Quality Require-

ments and Evaluation (SQuaRE) – System and software quality models (2011)
30. Kampenes, V., Dyba, T., Hannay, J., Ksjoberg, D.: A systematic review of quasi-experiments in soft-

ware engineering. Softw. Technol. 51, 71–82 (2009)
31. Kitchenham, B., Al-Khilidar, H., Babar, M., Berry, M., Cox, K., Keung, J., Kurniawati, F., Staples,

M., Zhang, H., Zhu, L.: Evaluating guidelines for reporting empirical software engineering studies.
Empirical Software Engineering 13(1), 97–121 (2008)

32. Kitchenham, B., Budgen, D., Brereton, P., Turner, M., Charters, S., Linkman, S.: Large-scale software
engineering questions-expert opinion or empirical evidence? Software, IET 1(5), 161–171 (2007)

33. Linaje, M., Preciado, J., Sánchez-Figueroa, F.: A method for model based design of rich internet
application interactive user interfaces. Web Engineering pp. 226–241 (2007)

34. López, E., González, M., López, M., Iduñate, E.: Proceso de Desarrollo de Software Mediante Her-
ramientas MDA. Revista Iberoamericana de Sistemas, Cibernética e Informática 3(2), 6–10 (2006)

35. Martinez, Y., Cachero, C., Matera, M., Abrahao, S., Luján, S.: Impact of MDE Approaches on
the Maintainability of Web Applications: An Experimental Evaluation. In: Conceptual Modeling-
Er 2011: 30th International Conference on Conceptual Modeling, Brussels, Belgium, October 31-
November 3, 2011. Proceedings, vol. 6998, pp. 233–246. Springer-Verlag New York Inc, Springer-
Verlag New York Inc (2011)

36. Martinez, Y., Cachero, C., Meliá, S.: Evidencia empírica sobre mejoras en productividad y calidad
mediante el uso de aproximaciones MDD: un mapeo sistemático de la literatura. (2011)

37. Martnnez, Y., Cachero, C., Meliá, S.: Experiment replication package.
http://artemisa.dlsi.ua.es/ooh4ria/labPackages/Maintainability2012.rar (2012)

38. Martnnez, Y., Cachero, C., Meliá, S.: Mdd vs. traditional software deveopment: A practitioner’s sub-
jective perspective. Softw. Technol. (2012). URL http://dx.doi.org/10.1016/j.infsoft.
2012.07.004

39. Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A model-driven development for GWT-based Rich Internet
Applications with OOH4RIA. In: Web Engineering, 2008. ICWE’08. Eighth International Conference
on, pp. 13–23. IEEE (2008)

40. Meliá, S., Martínez, J.J., Mira, S., Osuna, J., Gómez, J.: An Eclipse Plug-in for Model-Driven Devel-
opment of Rich Internet Applications. Web Engineering pp. 514–517 (2010)



30 Y. Martínez et al.

41. Mellegå rd, N., Staron, M.: Improving E�ciency of Change Impact Assessment Using Graphical
Requirement Specifications: An Experiment. Product-Focused Software Process Improvement pp.
336–350 (2010)

42. Mellor, S.J., Clark, T., Futagami, T.: Model-driven development: guest editors’ introduction. IEEE
software 20(5), 14–18 (2003)

43. Mens, T., Guéhéneuc, Y., Fernández-Ramil, J., D’Hondt, M.: Guest editors’ introduction: software
evolution. Software, IEEE 27(4), 22–25 (2010)

44. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes in Theoretical Com-
puter Science 152, 125–142 (2006)

45. Mohagheghi, P., Conradi, R.: An empirical study of software change: origin, acceptance rate, and
functionality vs. quality attributes. In: Empirical Software Engineering, 2004. ISESE’04. Proceedings.
2004 International Symposium on, pp. 7–16. IEEE (2004)

46. Mohagheghi, P., Dehlen, V.: Where is the proof? - A review of experiences from applying MDE
in industry. In: European Conference on Model Driven Architecture–Foundations and Applications
(ECMDA 2008), pp. 432–443. Springer (2008)

47. Moody, D.: The method evaluation model: a theoretical model for validating information systems
design methods. In: Proceedings of the 11th European Conference on Information Systems, pp. 16–
21. Naples, Italy, June (2003)

48. Moody, D.L.: Dealing with Complexity: A Practical Method for Representing Large Entity Relation-
ship Models (PhD Thesis). Melbourne, Australia: Department Of Information Systems, University of
Melbourne (2001)

49. Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of adopting an
information technology innovation. Information systems research 2(3), 192–222 (1991)

50. Muñoz, J., Pelechano, V.: MDA vs Factorías de Software. Actas del II Taller sobre Desarrollo de
Software Dirigido por Modelos, MDA y Aplicaciones (DSDM 2005) p. 1 (2005)

51. Norman, G.: Likert scales, levels of measurement and the laws of statistics. Advances in health
sciences education 15(5), 625–632 (2010)

52. Norusis, M.J., et al.: PASW Statistics 18 guide to data analysis. Prentice Hall Press (2010)
53. Perry, D.E., Porter, A.A., Votta, L.G.: Empirical studies of software engineering: a roadmap. In:

Proceedings of the conference on The future of Software engineering, pp. 345–355. ACM (2000)
54. Preciado, J.C., Linaje, M., Morales-Chaparro, R., Sanchez-Figueroa, F., Zhang, G., Kroiß, C., Koch,

N.: Designing rich internet applications combining uwe and rux-method. In: Web Engineering, 2008.
ICWE’08. Eighth International Conference on, pp. 148–154. IEEE (2008)

55. SUN Microsystems: Java Pet Store Sample Application, Blueprints Online (2010). URL http://
java.sun.com/reference/blueprints/index.html

56. Turtschi, A.: C#. NET Web developer’s guide. Syngress Media Incorporated (2002)
57. Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the interface of rich internet applications.

In: Web Conference, 2007. LA-WEB 2007. Latin American, pp. 144–153. IEEE (2007)
58. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigós, I., Gómez, J., Kappel, G.,

Knapp, A., Matera, M., Others: MDWEnet: A practical approach to achieving interoperability of
model-driven Web engineering methods. In: Workshop Proc. of 7th Int. Conf. on Web Engineering
(ICWE’07), Italy. Citeseer (2007)

59. Valverde, F., Pastor, O.: Facing the Technological Challenges of Web 2.0: A RIA Model-Driven En-
gineering Approach. Web Information Systems Engineering-WISE 2009 pp. 131–144 (2009)

60. Walderhaug, S., Mikalsen, M., Benc, I., Erlend, S.: Factors a↵ecting developers’ use of MDSD in
the Healthcare Domain: Evaluation from the MPOWER Project. In: From Code Centric to Model
Centric Software Engineering: Practices, Implications and ROI. Workshop at European Conference
on Model-Driven Architecture (2008)

61. Wohlin, C., Runeson, P., Höst, M.: Experimentation in software engineering: an introduction. Springer
Netherlands (2000)

62. Zelkowitz, M.V.: An update to experimental models for validating computer technology. Journal of
Systems and Software 82(3), 373–376 (2009)



Title Suppressed Due to Excessive Length 31

Appendix A: Post-experiment questionnaire

Perceived Usefulness

Please, rate your degree of agreement with the following sentences while performing the maintain-
ability tasks:

1 2 3 4 5
PU-PE↵v:
Using OOH4RIA increases the number of maintainability tasks that I can correctly accomplish
PU-PCert:
Using OOH4RIA increases my certainty about the correction of the modifications that I perform
PU-PStab:
Using OOH4RIA reduces the collateral or unexpected e↵ects of the modifications that I perform

PU-PE↵v:
Using .NET increases the number of maintainability tasks that I can correctly accomplish
PU-PCert:
Using .NET increases my certainty about the correction of the modifications that I perform
PU-PStab:
Using .NET reduces the collateral or unexpected e↵ects of the modifications that I perform

Perceived Ease of Use

Please, rate your degree of agreement with the following sentences while performing the maintain-
ability tasks:

1 2 3 4 5 6 7
PEU-PE↵c:
Using OOH4RIA enables me to accomplish maintainability tasks more quickly
PEU-PCompl:
Using OOH4RIA makes it easier for me to carry out a maintainability task
PEU-PLearn:
Using OOH4RIA requires me a lot of training to perform a maintainability task

PEU-PE↵c:
Using .NET enables me to accomplish maintainability tasks more quickly
PEU-PCompl:
Using .NET makes it easier for me to carry out a maintainability task
PEU-PLearn:
Using .NET requires me a lot of training to perform a maintainability task



32 Y. Martínez et al.

In general, I feel that OOH4RIA is...

PEU-PSatisf 1 2 3 4 5 6 7
(1) Di�cult to use .. Easy to use (7)

(1) Tiring .. Not tiring (7)
(1) Stranger .. Family(7)
(1) Useless .. Useful (7)

(1) Demanding .. Simple (7)
(1) Ine�cient .. E�cient (7)

(1) Boring .. Fun (7)
(1) Unreliable .. Reliable (7)
(1) Stressful .. Relaxing (7)

(1) Unpleasant to use .. Pleasant to use (7)
(1) Unacceptable .. Acceptable (7)

In general, I feel that .NET is...

PEU-PSatisf 1 2 3 4 5 6 7
(1) Di�cult to use .. Easy to use (7)

(1) Tiring .. Not tiring (7)
(1) Stranger .. Family(7)
(1) Useless .. Useful (7)

(1) Demanding .. Simple (7)
(1) Ine�cient .. E�cient (7)

(1) Boring .. Fun (7)
(1) Unreliable .. Reliable (7)
(1) Stressful .. Relaxing (7)

(1) Unpleasant to use .. Pleasant to use (7)
(1) Unacceptable .. Acceptable (7)


