Empirical Software Engineering
Automatic Identifier Inconsistency Detection Using Code Dictionary

Manuscript Number:
Full Title:

Article Type:
Keywords:

Corresponding Author:

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author:
First Author Secondary Information:

Order of Authors:

Order of Authors Secondary Information:

--Manuscript Draft--

EMSE-D-14-00036R3

Automatic Identifier Inconsistency Detection Using Code Dictionary
Research Papers

inconsistent identifiers; code dictionary; source code

Suntae Kim, Ph. D.
Chonbuk National University
Junju Si, KOREA, REPUBLIC OF

Chonbuk National University

Suntae Kim, Ph. D.

Suntae Kim, Ph. D.

Dongsun Kim, Ph. D.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response to Reviewer Comments

Letter in Response to Reviewers’ Comments

Prepared by
Suntae Kimi,
Dongsun Kimf

iDepartment of Software Engineering
Chonbuk National University, South Korea

tFaculty of Science, Technology and Communication,
Computer Science and Communications Research Unit,
University of Luxembourg
Luxembourg

December 29, 2014

Dear Editor and Anonymous Reviewers,

Thank you for your letter dated December 10, 2014, regarding our paper #EMSE-D-14-00036R2
entitled “Automatic Identifier Inconsistency Detection Using Code Dictionary”. We would
also like to thank the anonymous reviewers and appreciate their helpful and constructive reviews.

In the revised version of our manuscript, we have incorporated all the comments and suggestions
of the three reviewers as best as we can. This letter includes both the reviewer comments and our
responses to these comments. In these responses, we have explained changes made to the
manuscript on the basis of the reviewers’ suggestions. We have also mentioned the locations in
our revised manuscript where the changes have been made to help the reviewers locate these
revisions. Wherever possible, we have provided an excerpt of the revised part.

Sincerely yours,

The Authors

b

2
=
=N
=
=1
7]
@
=
=
=
@
=
@

= We revised the style and example issues according to the reviewer comments. Please see the
following responses.

= For the Reviewer 1’s comments, we revised all the style issues in Abstract, Section 1, 2, 3, and 4 as
suggested. For the Reviewer 3’s comments, we tried to convince why we used the examples and how
our evaluation process confirmed that the examples are valid. Note that 16 human subjects reviewed the
detection results and these are some of examples shown in the paper.

Reviewer #1°s Comments:

= We appreciate the constructive suggestions and comments.

I would suggest a few minor improvements before publication:

= This example in Table 2 is removed from the row (“inc = increase”) as the reviewer pointed out.

= All these typos and grammar errors are fixed accordingly.

Reviewer #2°s Comments:

= We appreciate the suggestions and comments to improve this paper.

Reviewer #3’s Comments:

= We stated our sincere responses for each comment. These responses may convince the reviewer.

= Our focus is clearly different from what the reviewer assumed. First, if the two identifiers,
“makeObject” and “createObject”, are used in different programs, they have no problem with
understanding or using the programs for developers. However, they would easily lead to a confusion if
they are used in a single program; what if those identifiers are used in a single method, class, or
package? This is also confirmed by the interview results described in Section 4.3.4 and several real
examples throughout the paper. It is obvious that developers are trying to avoid the use of inconsistent
identifiers. Although a program writer might define her/his own concept for each synonym (e.g.,
“make*” and “create*”), several program readers may misunderstand the concepts. Thus, this paper
focuses on detecting inconsistent identifiers containing synonyms and grammar errors throughout a
project.

particular, new developers may need more time to understand the difference of two words and it may
decline productivity. For this case, we already added real examples in Footnote 2 and 3.

[Footnote 2] http://www.dlib.vt.edu/projects/MarianJava/edu/vt/marian/server/status.java

[Footnote 3] https://github.com/tangmatt/word-scramble/blob/master/system/Status.java

= These are the same issues with the abovementioned problems. Although some developers are using

those words (“get” and “fetch”) in a certain way, there is no clear consensus that “get” should be used
in this way and “fetch” in that way. Even if the author of the program defined his/her own way to use
words in identifiers, it is still vulnerable for (new) program readers to be confused by the two similar
synonyms.

= The word-POS inconsistency is defined for detecting the violation of Java naming convention. As
described in Section 4.3.4, developers often point out that the naming convention violation may impose
a maintenance burden if several developers as a team work together on writing the program. Suppose
that each developer uses words to name identifiers in different ways. Then, these developers may not
clearly understand the identifiers created by other developers. Consequently, this can be a disaster for a
newly coming developer. In addition, to follow the convention, “DrawApplet” should be revised as
“DrawerApplet”.

https://www.google.com/url?q=https%3A%2F%2Flucene.apache.org%2Fcore%2F4_3_0%2Fcore%2Forg%2Fapache%2Flucene%2Findex%2FBaseCompositeReader.html%23readerIndex%2528int%2529&sa=D&sntz=1&usg=AFQjCNFavE_m8olSePH08e4lnrTLiTJBKg
https://www.google.com/url?q=https%3A%2F%2Flucene.apache.org%2Fcore%2F4_3_0%2Fcore%2Forg%2Fapache%2Flucene%2Findex%2FBaseCompositeReader.html%23readerIndex%2528int%2529&sa=D&sntz=1&usg=AFQjCNFavE_m8olSePH08e4lnrTLiTJBKg

= Basically, this is detected since it is a naming convention violation. It is obvious that readers can get
the idea of this method if she/he reads the API document. However, it would be better if it is intuitively
understandable. In addition, it is easy to find out the meaning of the identifier of a method if the method
is already used in a program since it can provide additional context information. On the other hand, this
is not applicable when newly using the method. Thus, it is important to avoid the use of inconsistent
identifiers as well as naming convention violation.

= First, this is “syntactical inconsistency” rather than “semantic inconsistency”.

e startsWith() (method, JMeter) - ‘starts’ is syntactically similar to start(starts is used 1 times;
start is used 45 times)”.

Thus, our approach does not consider the meaning of both identifiers (or words) here. Rather, the
approach detected those identifiers since they can be syntactically too close (i.e., too similar spelling).
This can be an issue when refactoring the source code or commencing “find and replace”.

= All examples shown in this paper are reviewed and confirmed by real developers throughout our
evaluation process as described in Section 4. These developers stated that the identifiers detected by our
approach were inconsistent and may impose additional maintenance burdens later. This implies that the
examples can show the motivation of this paper and the effectiveness of our approach.

= Note that the manual evaluation of inconsistent identifiers costs a lot. Our approach detected 3,826
inconsistent identifiers out of 55,526 identifiers in the seven projects. Even reviewing this number of
identifiers may impose too much burden to each human subject. Evaluating more than that can make
fatigue problems and inaccurate results. This is why we selected one subject (JUnit) for computing the
recall value in Section 4.3.2.

= Basically, our approach and its evaluation were not designed to compute the number of accesses to
the source code. Although counting the number would be helpful to understand the developers’
behavior, this is not our focus in this study. We could figure out that the human subjects frequently
accessed the source code throughout the interview described in Section 4.3.4. In addition, counting the
accesses may need to build another plug-in to capture the developers’ code browsing behaviors. This
could impose another cost in the evaluation process.

= Computing ROC and its AUC may lead to a fatigue problem. Suppose that each developer should
manually evaluate and review more than 50,000 identifiers to figure out whether each identifier is
inconsistently used or not; this makes the human subjects quickly tired and may affect the correctness
of inconsistency evaluation. Since ROC and AUC require recall values, this process is necessary.
However, it takes too much cost and time to let the developers focus on reviewing 50K identifiers. This
is also described in Section 4.3.1 as follows:

In order to evaluate the validity of our approach, we applied a traditional precision and
recall measure [31] instead of measures such as the area-under-ROC curve [40] with
the following reasons. First, it is almost impossible to manually find true-negative
identifiers for the 7 projects’ source code. Second, we have defined the thresholds in
the preliminary study, and changing the thresholds means that all manual evaluation
processes should be conducted from the start to obtain a new confusion matrix. Third,
we considered that the precision and recall measure is sufficient to explain the
efficiency of our approach, since true-negative detections are not considered for the
precision measure.

= In fact, our approach implicitly uses another context information in a different way: domain words
and idioms collected from several popular Java projects. The Reviewer #2’s comment in the previous
review results is about the context information for method identifiers such as parameter names. As

stated in Section 4.4, we consider this issue another independent topic and are preparing another study
for this topic.

NOTE: The page numbers that I use refer to the "66 page" pdf that [received. Thus, for example, pages
43, 44 and 45 that I use refer to pages 22,23 and 24 of the actual manuscript.

Title Page

Noname manuscript No.
(will be inserted by the editor)

Automatic Identifier Inconsistency Detection Using Code
Dictionary

Suntae Kim - Dongsun Kim*

Received: date / Accepted: date

Abstract Inconsistent identifiers make it difficult for developers to understand source code.
In particular, large software systems written by several developers can be vulnerable to iden-
tifier inconsistency. Unfortunately, it is not easy to detect inconsistent identifiers that are
already used in source code. Although several techniques have been proposed to address this
issue, many of these techniques can result in false alarms since such techniques do not accept
domain words and idiom identifiers that are widely used in programming practice. This paper
proposes an approach to detecting inconsistent identifiers based on a custom code dictionary.
It first automatically builds a Code Dictionary from the existing API documents of popular
Java projects by using an Natural Language Processing (NLP) parser. This dictionary records
domain words with dominant part-of-speech (POS) and idiom identifiers. This set of domain
words and idioms can improve the accuracy when detecting inconsistencies by reducing false
alarms. The approach then takes a target program and detects inconsistent identifiers of the
program by leveraging the Code Dictionary. We provide CodeAmigo, a GUI-based tool sup-
port for our approach. We evaluated our approach on seven Java based open-/proprietary-
source projects. The results of the evaluations show that the approach can detect inconsis-

S. Kim

Dept. of Software Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si,
Jeollabuk-do 561-756 Republic of Korea

Tel.: +82-63-270-4788

Fax: +82-63-270-4767

E-mail: stkim@jbnu.ac.kr

D. Kim(Corresponding Author)

Faculty of Science, Technology and Communication, Computer Science and Communications Research Unit,
Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 4 rue Alphonse We-
icker, L-2721, Luxembourg

Tel.: +352 46 66 44 5573

Fax: +352 46 66 44 5356

E-mail: dongsun.kim@uni.lu

2 Suntae Kim, Dongsun Kim*

tent identifiers with 85.4% precision and 83.59% recall values. In addition, we conducted an
interview with developers who used our approach, and the interview confirmed that inconsis-
tent identifiers frequently and inevitably occur in most software projects. The interviewees
then stated that our approach can help to better detect inconsistent identifiers that would have
been missed through manual detection.

Keywords inconsistent identifiers - code dictionary - source code

1 Introduction

The use of consistent identifiers (such as class/variable/method names) is one of the key
aspects for understanding source code. Developers heavily rely on identifiers, which cover
about 70% of the source code elements, to understand programs [1]. However, inconsistent
identifiers can impede program comprehension [2] and can thus hinder software maintenance,
which is a very expensive activity in software development. Inconsistent identifiers can also
negatively impact automated tools that were designed to help program understanding and
maintenance such as automated code summarization techniques, feature location techniques,
etc.

For example, suppose that developers have made the two methods makeObject ()
and createObject () I Readers of the identifiers might be confused due to similarity
between the meaning of the words make and create regardless of the developers’ intentions.
In addition, this issue can arise in the use of terms states and status which have similar
letter sequences but have different meanings>3. These inconsistencies may cause potential
maintenance problems or defects in a program.

In the software industry, a large number of practitioners strongly emphasize the need
for identifier consistency. For example, Martin [3] proposed for programmers to use a single
word per concept and to have consistency throughout the entire project. He also stated that
“a consistent lexicon is a great boon to the programmers who must use your code” [3]. He
pointed out code readers often rely on names in the source code to understand programs. Un-
fortunately, most programs suffer from inconsistent identifiers since contemporary software
projects are mostly developed by a large group of developers. In addition, a long revision
history can lead to inconsistency as well [4]. As new developers take over legacy programs,
they often make use of identifiers that are inconsistent with those in the preexisting code.

Several techniques have been developed to detect inconsistent identifiers. One stream
of research has presented techniques that can map identifiers into their intended concepts
through manual or automatic mechanisms to find inconsistent identifiers [1,2,5,6]. However,
these mechanisms focus only on semantic inconsistency without considering diverse POS
usages of each word. Another stream has established a set of vocabulary or ontology derived
from source code. While these techniques proactively help a developer to write a code with

! http://g00.gl/p6Gzmd and http:/g00.gl/7cCV8n
2 http://www.dlib.vt.edu/projects/MarianJava/edu/vt/marian/server/status.java
3 https://github.com/tangmatt/word-scramble/blob/master/system/Status.java

Automatic Identifier Inconsistency Detection Using Code Dictionary 3

consistent identifiers [7-12], they do not detect inconsistent use of identifiers within the actual
source code of a single project.

This paper presents an approach that detects inconsistent identifiers based on a custom
Code Dictionary that has been enhanced through our previous work [13]. This approach
discovers inconsistent code names using natural language processing. In order to improve
the precision of the detection, we first build a Code Dictionary by scanning the application
programming interface (API) documents of 14 popular Java projects. This dictionary defines
the domain words according to their POS and idiom words in order to understand how words
are used in programming. Such techniques help to avoid false alarms. Based on the Code
Dictionary, our approach then takes the source code of a program as an input, scans all the
identifiers, and discover inconsistent identifiers. In this paper, three types of inconsistencies
are detected: semantic, syntactic, and POS inconsistencies. These respectively represent 1)
two different words that indicate the same concept, 2) two words that have similar letter
sequences, and 3) a word used as an inconsistent POS. This paper also introduces the three
types of inconsistencies by revising concepts and definitions presented by existing work.

To evaluate our approach, we first carried out a preliminary sensitivity analysis of the
thresholds in order to detect more inconsistent identifiers. Then, we applied it to seven
open/proprietary source projects to detect inconsistent identifiers. The approach detected
3,826 inconsistencies* from 55,526 identifiers collected from the projects. To evaluate the
precision and recall of detection results, we conducted a user study involving 16 developers.
The result of our study shows that our approach detected inconsistent identifiers with a preci-
sion of 85.4% and a recall of 83.59%. Also, we carried out a semi-structured interview with
developers in order to investigate the usefulness of our approach. They stated that there are
many inconsistent identifiers and that these make programs difficult to understand. However,
inconsistency is also difficult to detect manually. Therefore, our approach might be useful for
identifying inconsistent identifiers to make a program easier to understand.

Our contributions can be summarized as follows:

1. Inconsistency detection based on a Code Dictionary: We present a novel approach
for automatic inconsistent identifier detection that leverages the Code Dictionary which
defines the domain words and idioms in order to reduce false alarms.

2. Empirical evaluation: We present the results of an empirical evaluation by applying our
approach to seven open/proprietary source projects.

All materials used in this paper and for the results of the detailed experiment are publicly
available at our project website’.

The remainder of the paper is organized as follows: Section 2 presents the background on
Java naming convention and on identifier inconsistency. Section 3 introduces our approach for
detection of inconsistent identifiers in source code. Section 4 presents the preliminary study
and the three-step evaluation of the proposed approach. After discussing a set of related work
in Section 5, we conclude this paper and also discuss future work in Section 6.

4 Note that an identifier can include multiple inconsistencies. The total number of unique identifiers con-
taining at least one inconsistency is 1,952.

3 https://sites.google.com/site/detectinginconsistency/

4 Suntae Kim, Dongsun Kim*

2 Background

This section presents Java naming conventions that provide guidance on how to name iden-
tifiers, and then formulates several types of inconsistencies frequently discovered in source
code.

2.1 Java Naming Convention

A naming convention defines a specific way to determine identifiers in programs. These con-
ventions are useful when several developers work collaboratively to write a program while
attempting to maintain consistency in the identifiers since this can make the source code
easier to understand. The Java naming convention published by Sun Microsystems (acquired
by Oracle) [14] introduces common naming guidelines of Java identifiers. According to these
guidelines, all identifiers should be descriptive and should observe the following grammatical
rules, depending on the types:

Classes and Interfaces should be nouns (a noun phrase) starting with a capital letter.
Methods should be verbs (a verb phrase) and should start with a lowercase.

Attributes and Parameters should be a noun phrase with a lowercase first letter.
Constants should be a noun phrase with all letters as upper cases separated by under-
scores.

In addition, composite identifiers should be written in a camel case (mixed with upper
and lower cases). For example, a class identifier WhitespaceTokenizer is a noun phrase of
two words: Whitespace and Tokenizer. The method identifier getElementForView() can be
split into get, Element, For and View, which compose a verb phrase with a prepositional
phrase.

Note that programmers in particular tend to extensively rely on naming conventions for
identifiers in order to write more readable source code in Java programs [15]. This implies
that the use of consistent words in program identifiers is important for software maintenance.
Suppose that a new developer comes in to collaborate on a software project. To understand
how it works, she/he needs to read a part of the source code. Reading the method and the
attribute names usually helps to gain an understanding. On the other hand, what if different
words are used in parameter names that indicate the same concept? What if a single word is
used for many different concepts? This makes the program difficult to read.

2.2 Three Types of Inconsistent Identifiers

This section formulates three inconsistency types: semantic, syntactic, and POS, based on
the concepts presented by previous work. First, the semantic inconsistency indicates the use
of diverse synonyms in multiple identifiers. For example, for the class names, LdapServer

Automatic Identifier Inconsistency Detection Using Code Dictionary 5

and LdapService recoded in Issue [DIRSERVER-1140]°, Server and Service are
different words, but they imply a similar meaning regardless of the programmer’s intention.
The issue submitter (and patch creator as well) stated that this inconsistency was propagated
to another plug-in (ApacheDS plug-ins for Studio) via a resource file (server.xml)
and in the documentation as well. Even if a writer distinguishes the two words based on their
definition consistently throughout the project [16], program readers may not precisely catch
the slight difference between the words and this can eventually result in a misunderstanding.
Similar issues are observed in a wide range of programs, such as in a pair of Real and
Scala described in Issue [Math-707]”. In addition, this inconsistency is common in many
software projects in which many developers are involved [17].

The semantic inconsistency includes the concept synonyms as defined in [1,2]. Addition-
ally, it sets constraints for the two words which should be of the same POS. This constraint
originates from the definition of a synonym, which is that, “synonyms belong to the same
part of speech.” 8. In addition, dictionaries such as Oxford °, Collins Cobuild !°, Dictio-
nary.com !' and WordNet [18] classify synonyms in terms of the POS. When searching for
synonyms, adding the POS constraints in the definition contributes to an effective reduction
in the search space from all possible POSes to one specific POS. In WordNet, for example,
the word use in WordNet has 17 synonyms as a noun, and 8 synonyms as a verb. The POS
constraints reduce the search space from 25 to 8 if the POS is recognized as a verb.

The following definitions formulate the semantic inconsistency:

Definition 1 A word set W is defined as a collection of any finite sequence of the English
alphabet.

Definition 2 C is a set of concepts.

Definition 3 An identifier set ID is defined as a collection of any finite token sequence of
w € W and literals (digits DIGIT and special characters SC). For example, id € ID can be
(titat3...ty) wheret; € T = WUDIGIT USC. Its index function is defined as f; : IDX N — T.
Definition 4 A tagging function f; is defined as f; : ID x N — POS where POS is a set of
{noun, adjective, verb, adverb, preposition, conjunction, non-word terminal}. For example,

fi(“setToken”, 1) = f;(r; =“set”) = verb.

Definition 5 A concept map'? D is defined by amap D : W x POS — 2€.

6 Apache Directory Project: https://issues.apache.org/jira/browse/DIRSERVER-1140
7 Apache Commons Math: https:/issues.apache.org/jira/browse/MATH-707
8 Synonyms Definition:http:/en.wikipedia.org/wiki/Synonym

9 Oxford Dictionary, http://www.oxforddictionaries.com/

Collins Cobuild Dictionary:http://www.collinsdictionary.com/dictionary/english
Dictionary.com:http://dictionary.reference.com/

To define this map, any English dictionary can be used. In this paper, we used WordNet [18] as described
in Section 3.2.2.

6 Suntae Kim, Dongsun Kim*

Definition 6 (Semantic Inconsistency) Two identifiers, id, and id,, have semantic incon-
sistency if Iw; = fi(idy,i), wa = fi(ida, j), and D(wy,tag) = D(wy,tag) where tag € POS
and wy # wy.

Second, syntactic inconsistency occurs when multiple identifiers use words with a sim-
ilar letter sequence. The identifier pairs getUserStates () and getUserStatus (),
ApplicationConfiguration and ApplicationConfiguratorlS, memcache and
memcached'?, are examples of this inconsistency. Code readers might be confused by a pair
of words that seem identical due to having 1) similar length, 2) small edit distance, and 3)
long sequences. Haber & Schinder [19] and Monk & Hulme [20] performed research that
concludes that readers are more susceptible to confusion if words have the similar shapes,
including word-length, especially for long words. Writing source code is similar to general
writing, especially for writing words. This is also applicable to source code [3]. Syntactic in-
consistency is caused by typos and inconsistent use of singular/plural forms in naming meth-
ods. In addition, syntactically inconsistent identifiers are commonly generated by unfaithful
naming of variables (e.g., argl, arg2, paraml and param?).

Syntactic inconsistency may result in maintenance problems, where code readers can
misunderstand, particularly when syntactically inconsistent words are discovered in the dic-
tionary (e.g., states and status) because their meanings are clearly different. In addi-
tion, when automatically renaming words using “find and replace”, the mechanism would not
work properly, since spell checkers may not work when these identifiers could have a valid
in spelling. Code generation is another example, e.g., Issue [Bug 108384]" of Eclipse de-
scribes how similar names used in a program can lead to duplicate identifiers when generating
another program based on the source code.

We defined syntactic inconsistency as follows:

Definition 7 (Syntactic Inconsistency) Two identifiers, id| and id,, are syntactically incon-

. . L .. L(w),L

sistent if Iwy = f;(idy,i), wo = fi(iz, j), and C(wy,w2) = (‘L(Wl)T‘Z)(Civz()v\v-]k)l')-g)‘%;}(wlM) >K.K
is closeness threshold and DIST computes an edit distance between two words and is defined
as DIST : W x W — Z. L counts the number of letters in a word and is defined as L: W — N.

C(w1,wy) is not defined if DIST (w1, w;) = 0.

The above definition implies that human developers can become more confused if two
long words have a small edit distance and similar word length [19,20]. Note that this defini-
tion does not include the exception where noun words have the same root after stemming, for
example, accent and accents.

Third, POS inconsistency implies that identifiers use homonyms or violate naming con-
ventions. There are two sub-types of POS inconsistencies: 1) Word-POS inconsistency and 2)
Phrase-POS inconsistency. Word-POS inconsistency happens when the same word is used for
different POSes in multiple identifiers. For example, the word short in the method identifier

13 https://bugs.eclipse.org/bugs/show_bug.cgi?id=369942
14 https://github.com/Chassis/memcache/issues/2
15 https://bugs.eclipse.org/bugs/show_bug.cgi?id=108384

Automatic Identifier Inconsistency Detection Using Code Dictionary 7

getShortType() and in the class identifier ShortName is respectively used as a noun denoting
a short data type and as an adjective.

Caprile and Tonella [21] observed that developers tend to consistently use a single POS
of a word throughout a project even when the word can have diverse POSes. For example,
the word free can be used as a verb, adjective, and adverb in natural language while only the
use as a verb of the word was observed in a specific software project. One of the real cases
for this inconsistency is shown in an issue report' that indicates that the word refurn in a
variable name returnString can be confusing since return is often used in a method
identifier as a verb. Consequently, the corresponding patch!” changes returnString to
resultString.

Definition 8 (Word-POS Inconsistency) Two identifiers, id, and id,, are Word-POS incon-
sistent if 3w = f;(idy,i) = fi(idy, j) and f;(idy,i) # fi(ida,).

Phrase-POS inconsistency occurs when identifiers violate the grammatical rules of a Java
naming convention. For example, when Aborted and Restrict are used as class identifiers,
these are inconsistent with the naming convention since they are an adjective and a verb,
respectively. Similarly, when directory() and newParallel() are used as method identifiers,
they violate Phrase-POS consistency since they should be verb phrases.

This convention is shown in the discussion of another issue report'®, where developers
indicate they prefer to conform to POS conventions. For example, between getFirst ()
and first (), more developers in the discussion chose the former since the verb prefix can
clarify the meaning of the method.

Definition 9 (Identifier Type & Phrase-POS Rules) Vi € ID, type function fi,p, : ID —
TY PE defines i’s identifier type where TY PE = {class,method,attribute}. Rpps : TY PE —
POS defines Phrase-POS rules and fpps : ID — POS determines the Phrase-POS of an iden-
tifier.

Definition 10 (Phrase-POS Inconsistency) An identifier i € ID is Phrase-POS inconsistent
if fpos (i) # Rpos(fiype(i))-

2.3 Challenges

To detect the aforementioned inconsistencies, the following issues should be addressed.
2.3.1 POS Usage

Since the inconsistency detection that is described in Section 2.2 depends on the POS usage,

the method becomes inaccurate if we cannot extract the POS information from the identi-
fiers. Most contemporary NLP parsers [22] [23] can identify the POS usage of the words

16 hitps://github.com/scrom/Experiments/issues/32
17 https://github.com/scrom/Experiments/commit/04dfbf78 1862698 18379¢b20e4c87¢755407687
18 https://github.com/morrisonlevi/Ardent/issues/17

8 Suntae Kim, Dongsun Kim*

used in a sentence. However, the method can become confused since several words in the
source code are used in different POS when compared to POS usage in natural languages.
Thus, identifying the POS usage of words used in programs is necessary for inconsistency
detection.

2.3.2 Domain Words

In natural languages, some words can be used as different POSes, but computer programs
tend to use a word as a single POS [21]. For example, the word ‘file’ is frequently used as
a noun or as a verb in natural languages. However, it is mostly used as a noun denoting a
notion for data storage in the computer domain. Similarly, words such as ‘default’, ‘value’,
and ’input’ are generally used as a noun, even they are often used as several different POSes
in natural languages. If we can figure out the dominant POS of each word in advance, then
the detection of inconsistent identifiers can improve.

2.3.3 Idiom Identifiers

Some inconsistent identifiers can be accepted as an exception even if they violate the gram-
matical rules of the naming conventions. For example, the method identifiers size(), length()
and intVal() used in the Java Development Kit (JDK) or in popular projects do not observe
the grammatical rules but their use is widely accepted in Java programs.

In addition, several words are commonly abbreviated in the computer science domain.
For example, ‘spec’, ‘alloc’, ‘doc’ are used instead of ‘specification’, ’allocation’ and ‘doc-
ument’. However, NLP parsers cannot recognize whether they are abbreviated words or not.
This decreases the accuracy of the parsed results.

We define the idiom identifiers for each type of inconsistency. For semantic inconsistency,
although word wy has a conflict with word wy (i.e., D(w1,tag) = D(wa,tag) for an arbitrary
tag), wi is not detected as an inconsistency if wy is defined as an idiom. Similarly, words
with syntactic inconsistency can be also accepted. With respect to a POS inconsistency, we
can skip the consistency check if an identifier is included in the idiom set.

2.3.4 Tool Support

It might be difficult for developers to navigate and examine a list of inconsistent identifiers
without GUI-support if there is a large number of inconsistencies. A tool support can alleviate
this burden, and this tool should be integrated into existing development environment so that
developers can easily find and correct inconsistent identifiers.

3 Approach

This section presents our approach for detecting identifier inconsistency. Figure 1 shows the
overview of our approach. This approach has two phases: 1) building a code dictionary, and

Automatic Identifier Inconsistency Detection Using Code Dictionary 9

L]
Phase 1: Building) Phase 2: Detecting
a Code Dictionary | Inconsistent Identifiers
ﬁ | ﬁ
'
Java/Library API | | Application
Documents] Source Code |
!
!

Building
Code Dictionary

(2 Detecting
Domain Word POS
(9 Extracting Idiom
Identifiers
Adding Abbr.,
Prop. and Conj. >

Detecting
Inconsistent
Identifiers

Parsing API Docs

(D

Tokenizing &
POS Tagging

(2 Detecting
Inconsistent Identifiers
Filtering

Inconsistent
Identifiers

Code -
Dictionary

Models
- Class

- Attribute
- Method

- Idioms
- Domain Word
- Abbreviated Words

L User Feedback

Fig. 1: Overview of our approach to inconsistent identifier detection.

2) detecting inconsistent identifiers. In the first phase, this approach analyzes the API docu-
ments that are trusted by the users and collects the words that are necessary to build a Code
Dictionary. This dictionary extracts the domain words with dominant POSes, idioms, and
abbreviated words from the trusted API documents. The second phase scans a program and
finds the inconsistent identifiers. The Code Dictionary built in the first phase can reduce the
frequency of false alarms by filtering out domain words and idioms from the set of detected
identifiers. The remainder of this section explains the details of our approach.

3.1 Phase 1: Building a Code Dictionary

Our approach first creates a Code Dictionary since common English dictionaries may not
sufficiently deal with identifiers in programs. For example, there exist many idioms and
domain-specific words in the source code of programs, such as file and rollback. Ordinary
NLP parsers often result in confusion during POS tagging. The Code Dictionary is basically
a customized dictionary that maps a word to its POS using exceptional rules. The dictionary is
used to filter out wrong parsing results from the NLP parser in order to increase the precision
of detections. In this phase, this approach first parses the API documents of programs trusted
by a user and collects code identifiers from the documents. Then, it discovers the POSes of
the words used in the collected identifiers. Based on the POS discovery results, the approach

10 Suntae Kim, Dongsun Kim*

collects the idioms, domain, and abbreviated words to build a Code Dictionary. Note that this
dictionary is built once and can be reused several times.

To build a Code Dictionary, the user can designate his/her own trusted documents. Basi-
cally, this approach collects class, method, and attribute identifiers from 14 API documents,
as shown in Table 1. The user can add other API documents or remove existing documents
in order to customize the Code Dictionary.

3.1.1 Parsing API Documents and Recognizing POSes

This approach leverages an NLP parser!® to parse an identifier as a sentence. The result of
the parsing is used to collect the POS information of each word in the identifier. The POS
information is important since it helps in the detection of domain words, as described in
Section 2.3.2.

Our approach first collects the code identifiers in the API documents. The identifiers are
tokenized according to the rule of the camel case, also using an underscore as a separator.
For the method identifiers, a period is inserted at the end of the last term to make a complete
sentence since the method identifiers constitute a verb phrase, which is a complete sentence
without a subject. This often helps the NLP parsers to recognize the POSes of words with
greater precision. For example, the identifier of the getWordSet() method is converted into
the phrase, ‘get Word Set.”. Then, the NLP parser analyzes POSes of each word and phrases
within the sentence, resulting in ‘[(VP (VB get) (NP(NNP Word)(NNP Set)(..)))]’, where VP,
VB, NP and NN denote a verb phrase, verb, noun phrase and noun respectively. These tags
are used according to the Penn Treebank Project [28].

3.1.2 Identifying Domain Words

The process used to identify domain words and their major POSes consists of two filters:
a W-Occurrence Filter and a POS Ratio Filter. In the first filter, words occurring less than
T(WO) in the trusted API documents are filtered out from all the candidate words, where
T(WO) is the threshold of the occurrence of a word. This is because domain words are used
more frequently than other non-domain words in code identifiers. The second step determines
the major POS of each domain word. If any POS out of all POSes available for a word
accounts for more than T (PR), the POS is regarded to be the dominant POS, as described in
Section 2.3.2, where T (PR) indicates the threshold ratio used to decide the dominant POS of
a word. If a word passes these two filters, the word is then collected as a domain word in the
Code Dictionary. We have defined the two thresholds, 7(WO) and T (PR), by conducting a
preliminary study before the full evaluation (see Section 4).

19 Although there are some of the researches on POS-tagging of source code elements [9, 24,25], they are
not publicly available or also used natural language parser such as Minipar [26], Stanford Log-linear Part-
Of-Speech Tagger [27]. In this paper, we have adopted Stanford Parser [22] because it is highly accurate
for parsing natural language sentences and broadly used for NLP. In addition, it is publicly available, well-
documented and stable.

Automatic Identifier Inconsistency Detection Using Code Dictionary 11

Table 1: Java/Library API documents for building a code dictionary.

Library Version | Description

Java Development Kit 1.7.0 |Java standard development kit

Apache Ant 1.8.3 |Java library and command-line tool for building java project

Apache POI 3.9 | APIs for manipulating various file formats based upon Mi-
crosoft

Apache Commons-Lang 3.3.1 |Collections of extra methods for standard Java libraries

Apache Commons-Logging 1.1.1 |Bridge library between different logging implementations

Apache Commons-Collections 4.4 |Enhanced library of Java collections framework

Apache JMeter 2.9 |Java application for load test and measure performance

Java Mail 1.4.5 |Framework to build mail and messaging applications

JDOM 2.0.5 |Library for accessing, manipulating, and outputting XML data

JUnit 4.10 |Framework to write repeatable unit tests

Apache Log4J 1.2.17 |Logging framework library for Java

QuaQua 1.2.17 | User Interface library for Java Swing applications

StanfordParser 3.2.0 |Library that works out the grammatical structure of sentence

Joda-time 2.2 |Java date and time API

.
. g o
- - - H wn
wordl(nn-147, vb-1, adj-1) - g wordl(nn-147, vb-1, adj-1) — 98% z 9 word1(nn)
word2(nn-273, vb-436) g E word2(nn-273, vb-436) — 61% 3 o
word3(nn-49, vb-21, adv-8) % . =
. Bl 1 F
W0)=150 T(PO)=0.95_ "~

Fig. 2: Domain word identification. nn, vb, adj, and adv denote a noun, verb, adjective and
adverb, respectively.

Figure 2 shows an example of how domain words are collected. Suppose that wordl,
word2, and word3 are extracted from the API documents (see Table 1) and are tagged by the
NLP parser. Also, all words are initially classified according to the POS usages. Assume that
T(WO)=150and T(PR) = 0.95. Through the first W-Occurrence Filter, word3 is filtered out
because all occurrences of the word are less than T(WO). Then, POS Ratio Filter eliminates
word?2 because the highest POS ratio does not occupy the threshold T'(PR). Only words that
passed the two filters are stored in the Code Dictionary.

12 Suntae Kim, Dongsun Kim*

Framework-1 Framework-14 SUM
ComponentHelper(1) ComponentHelper(0) [ComponentHelper(3)
Class DirectoryScanner(3) | * " | DirectoryScanner(0) | DirectoryScanner(3) 3 Class: =
. L S E ComponentHelper 2 Attribute:
debug(2) debug(1) debug(7) =1 ce '-; debug
Attribute | target(2) ... | target(0) target(4) % Attribute: Method: 8 o
task(_l?) task(1) task(3) = debug getlD = Method:
— — 5 || target indexOf z i -
2ellD(2) 2ellD(2) 2elD(25) g || fareet maex g indexOf
Method |indexOf(2) ... | indexOf(2) indexOf(17) o o -
getVersion(1) getVersion(1) getVersion(8)

Fig. 3: Idioms identification from API Documents.

3.1.3 Extracting Idioms

In a manner similar to domain word extraction, our approach uses two subsequent filters to
extract idioms. The F-Occurrence Filter checks if the identifier occurs in at least T (FO fmw)
different API documents, where T (F Ofy,,) denotes the minimum threshold for occurrences
within the frameworks. In addition, the filter includes occurrence constraints for the classes,
attributes and methods, for which each threshold is indicated as T(FO,s), T(FOgu;) and
T (F Oy) respectively. The second filter, Phrase-POS filter, figures out whether the identifier
violates Java naming conventions. If it violates the conventions, the identifier is collected as
an idiom into the Code Dictionary.

Figure 3 shows an example for extracting idioms from the API documents in Table 1,
where T(FO) =2,T(FOc5) =3,T(FOuy) =4 and T (F Oy) = 15. The DirectoryScan-
ner class identifier cannot pass the F-Occurrence Filter because it is only discovered in
Framework-1 even though its occurrence is over the T (FO,;s) threshold. While the Compo-
nentHelper class identifier can pass the F-Occurrence Filter, it cannot pass the Phrase-POS
Filter because it does not violate Java naming convention for the class identifier. The debug
attribute, for example, passes all filters and can be identified as an idiom due to its occur-
rence throughout the frameworks and violation of Java naming convention for attributes. In
terms of the methods, indexOf{) is identified as an idiom because it is discovered in more
than two frameworks with over 15 instances, and it violates the Java naming conventions.
In reality, the method is commonly used and accepted in Java programs even though it is a
violation of naming conventions. Through the preliminary study, we defined the thresholds
for the evaluation.

3.1.4 Collecting Abbreviations

In addition to domain words and idiom identifiers, developers tend to use abbreviations in-
stead fully writing out long words. For example, they normally use ‘spec’, ‘alloc’, and ‘doc’,
instead of ‘specification’, ’allocation’ and ‘document’. However, most NLP parsers cannot
recognize whether words are abbreviations or not. This decreases the precision of the parsing
results.

Automatic Identifier Inconsistency Detection Using Code Dictionary 13

Table 2: List of Abbreviated Words and Examples

Abbreviated Word ‘ Full Word ‘ Example ‘ Framework
val value get_val(), insert_val() JDK
dir directory getSrcDir(), getBaseDir () Ant
calc calculate calcSize() POI

concat concatenate concatSystemClassPath() Ant

del delete delFile() Ant

exec execute exec() JDK

execSQL() Ant

gen generate genTile() QuaQua

genKeyPair() JDK

init initialize initAll() POI

initCause() JDK

lib library addLib(), exitAntLib() Ant
inc increase incValue() StanfordParser

spec specification getKeySpec(), getParameterSpec() JDK

alloc allocate allocShapeld() POI

doc document getDoc() JDK

loadDoc() POI

To assist the NLP parsers, our approach takes a mapping from abbreviated identifiers to
the original words. We initially identified all words not discovered in WordNet, and then we
eliminated acronyms such as HTTP, FTP and XML because these are intuitive for developers.
We then parsed these as nouns by the NLP parser. After that, we obtained the 13 abbrevia-
tions, and identified the full word for each abbreviation as shown in Table 2. These words
were validated by the subjects during the manual evaluation. Although there are several tech-
niques [8, 16] that can recover the original words from abbreviated code identifiers, our
approach uses a manual approach since it is simple and effective for our purpose. Automatic
abbreviation recovery remains a task for future work.

3.2 Phase 2: Detecting Inconsistent Identifiers

This section describes the second phase of our approach, which is how to detect inconsistent
identifiers by using the Code Dictionary. In this phase, our approach first scans the identifiers
in the source code and figures out the POS of each of the words in an identifier. Then, it de-
tects inconsistencies based on the Code Dictionary and detection rules defined in Section 2.2.

3.2.1 POS Tagging

Similar to that of the first phase, our approach uses an NLP parser to figure out the POS of
each word in the identifiers. One difference is that the identifiers are collected from the target

14 Suntae Kim, Dongsun Kim*

program instead of the API documents. In addition, all abbreviated words are replaced by the
full original words according to the mapping in the Code Dictionary.

3.2.2 Detecting Semantic Inconsistency

Semantic inconsistencies occur when more than two different words have a similar meaning
and are both used as the same POS. This leads to confusion when reading a program, and
such cases have been formally defined in Definition 6.

To detect semantic inconsistencies, our approach uses WordNet [18] to first collect se-
mantically similar words for a given word used in an identifier. WordNet is a lexical dictio-
nary that provides root words, senses, and synonyms of a word. This is widely used when
identifying relationships between words [10,29].

Algorithm 1 describes how our approach identifies semantically similar words. For each
POS usage of a word w (Line 2), WordNet gives a set of synonyms for the given word when
used as a POS (Line 3). If the synonym is observed within the target program (Line 4), sim-
ilarity and reverse similarity are computed (Line 5 and 6). This similarity value represents
how much the synonym syn; is tightly coupled with the word w when used as a given POS
pos;. The reverse similarity is defined in the opposite manner. Then, if both similarity val-
ues are larger than the similarity threshold 7 (SEM)?° predefined by the user (Line 7), the
synonyms are collected as semantically similar words (Line 8).

For example, suppose that there are the verb ‘get’, ‘acquire’, and ‘grow’ and these are
used in the target program. The verb ‘get’ has 30 senses. Among them, ‘acquire’ is the first
synonym meaning, which means to ‘come into the possession of something concrete or ab-
stract’, and ‘grow’ is the 12th synonym meaning ‘come to have or undergo a change of phys-
ical features’. According to the algorithm, the semantic similarity of ‘acquire’ and ‘grow’ to
‘get’ is 1 — (1/30) = 0.96 and 1 — (12/30) = 0.6 respectively. Therefore, we only consider
‘acquire’ to be a synonym of ‘get’.

Among the semantically similar words, the most frequently used word is considered to
be the base word, and the others are regarded as semantically inconsistent words. Then, the
identifiers containing the inconsistent words are detected as semantic inconsistencies.

Note that several previous techniques [1, 2] have tried to search for synonyms without
considering the POS from WordNet. However, those are not successful since their results
include too many unreliable and irrelevant synonyms. On the other hand, our approach uses
a word and its POS together to search for more reliable and relevant synonyms, improving
the accuracy of inconsistency detection.

3.2.3 Detecting Syntactic Inconsistency

Syntactically inconsistent identifiers have similar letter sequences, as defined in Definition 7.
These identifiers often cause confusion when trying to understand the source code of a pro-
gram. In addition, they can lead to incorrect refactorings since some refactorings are sensitive
to spelling.

20 Decision of this threshold is carried out in the preliminary study.

Automatic Identifier Inconsistency Detection Using Code Dictionary 15

Algorithm 1: Collecting semantic similar words.

Input : W: a set of words used in the project.

Input : w: target word (w € W).

Input : STR: similarity threshold.

Input : POS(w): a set of POSes (only observed in the project) for w.

Input : syn(w, pos;): a set of synonyms for w when used as pos;. This set is provided by
WordNet [18].

Input : synidx(syny,w, pos;): the rank of syny in the sense list of w when used as pos;. The rank is
provided by WordNet.

Output: SSW: a set of semantically similar words.

1 let SSW <0,

2 foreach pos; € POS(w) do

3 foreach syn; € syn(w, pos;) do

4 if syn;y C W then

5 semsim < 1 — synidx(syny,w, pos;)/|syn(w, pos;)|;
6

7

8

9

rsemsim <= 1 — synidx(w, syny, pos;) [|syn(syng, pos;)|;
if semsim > STR and rsemsim > STR then
‘ let SSW < syny;
end
10 end
11 end
12 end

To detect syntactically similar identifiers, our approach first identifies the syntactically
similar words. The syntactical similarity is dependent on the edit distance of two words. The
approach leverages the Levenshtein Distance Algorithm [30] used to compute DIST (wy,w»)
in Definition 7. This algorithm measures the distance between two words by counting the
alphabetic differences and dividing them with the number of letters. For example, the distance
between kitten and sitting is three (kitten — sitten — sittin — sitting).

This approach used the distance to compute a determinant value, C(w;,w,) in Defi-
nition 7. If the value is larger than the threshold T (SYN), the two words are considered
to be syntactically similar. For the above example where T (SYN) = 4, C(kitten, sitting) =
m = 1.17. Thus, kitten and sitting are not syntactically similar. On the other hand, cre-
dential and credental shown in Section 2.2 are syntactically similar since C(credential , credental)) =
W = 5. The threshold 7' (SYN) is computed in the evaluation section.

Our approach takes an arbitrary pair of identifiers and determines whether the identi-
fiers have syntactic inconsistencies. Once the two identifiers include any pair of syntactically
similar words, they are syntactically inconsistent according to Definition 7. The approach
designates the identifier less frequently used in the target program as an inconsistent identi-
fier.

One exception is for noun words that have the same root word in WordNet [18] because
these are often used on purpose. For example, ‘String accent’ and ‘String[] accents’ are syn-
tactically similar words. However, a developer can use a plural form on purpose for this case.

16 Suntae Kim, Dongsun Kim*

‘/i\‘ Identifier is
N a single word?

[Yes] [No]

/(1) @) N
POSs= getPOS(Wm@ PPOS = getPhrasePOS(phrase)
POSs
C‘fgl‘;‘f}s Class? PPOS = NP or SINV?
[No] : [Yes] Class? [Yes] [No]
[No] [Yes]
Method? Nl |, Method?
POS ’ ’ [Yes] NI/ pos
Inconsistent Term Inconsistent Term
= vl
contains [No] PPOS =VP? es]
verb? [No]

>0

Fig. 4: POS-inconsistent identifiers detection.

This exception can improve the accuracy of our approach since it can filter out unnecessarily
detected identifiers.

3.2.4 Detecting POS Inconsistency

There are two types of POS inconsistencies: Word and Phrase-POS inconsistencies. Word-
POS inconsistent identifiers have an identical word that is used with different POSes as de-
fined in Definition 8. For phrase-POS inconsistency, our approach detects the identifiers that
violate the grammatical rules of Java naming conventions according to Definition 10.

In particular, for word inconsistency, only less frequent POSes are regarded to be incon-
sistent. The identifiers that contain the dominant POS words are not detected as inconsisten-
cies. For example, when 90% of the instances of abort use it as a verb, the remaining cases
are the inconsistent ones.

Phrase-POS inconsistent identifiers are detected by comparing the POS of an identifier
to the grammatical rules of the Java naming conventions. Figure 4 shows an algorithm that
can be used to detect phrase-POS inconsistent identifiers. There are two cases where the
number of words consisting of an identifier should be considered. If the target identifier is a
single word (see the flow (1)), our approach checks if a specific POS exists in WordNet. For
example, if a single word is used as a class identifier and the word can be a noun according
to WordNet, then it is considered to ba a valid identifier. If not, the approach detects the
identifier as inconsistent.

Our proposed approach first parses composite identifiers by using an NLP parser to get
their phrase-POS (PPOS). Then, it detects inconsistency by comparing the PPOS to the gram-
matical rules (see the flow (2)). For example, if the class identifier is not a noun phrase, it
violates naming conventions, which leads to a phrase-POS inconsistency.

Automatic Identifier Inconsistency Detection Using Code Dictionary 17

S Java - P java - Eclipse Platform = o =)
Fle Edit Source Refactor Navigate Search Project Bad smel Run Window Help
e NGB B0 BE A oA e Quick Access B | By Resource [GTm)
% Package b 3¢ = O 1) ScpFromMess... 33 7% =0
=B = return; o
> i ant)f b d ==
B B oy s+ i o) ¢
. 3 JHotDraw7 781 [hitps } ’
5 jmeter Ltrean.urite(read);
g junit ! —
- lucene String serverRespense - stream.toString("UTF-8");
B 3f (serverResponse.charat(@) == 'C’
2 omek 47 e parseAndFetchFile(serverResponse, startfile, out, in):
. 12 Sweetome3D-4.1-src } else if (serverResponse.charAt(8) -= 'D') {
startFile = parseAndCreateDirectory(serverResponse,
startfile); o
L Problems @ Javadoc [2) Declaration =3 Progress | @ ODetector View &3 =0
| Type Identifier Inconstency T.. Description Rate Reason ~
¥ MET curveTo POS-PHR “curveTo' is used as NP, 2nd composed of [(NP (NP (NN ¢ 10
¥ MET curveTo POS-PHR ‘curveTo' s used as NP, and composed of [(NP (NP (NN ¢ 10
¥ MET editCut SEM ‘it is semantically similar to slash(cut s used 3 times, sla 0833
¥ MET editcut SEM ‘et is semantically similar to slashicut is used 3 times, sla 0833
4 as Cutaction Sem ‘et is semantically similar to slashicut is used 3 times, sla 0833
9 Ve cyanFieldFocusLost POS-PHR “cyanFieldFocusLost: is used as NP, and composed of [(NP. 10
¥ FLD I5_STROKE_DASH_FACTOR sEm “dash’ is semantically similar to styledash is used 5 times, 0.807
4 FD STROKE_DASH_PHASE sEm “dash’ is semantically similar to styledash is used 5 times, 0.807
¥ FLD dashPhase SEM ‘dash’ is semantically similar to style(dash is used 5 times, 0.807
¥ FLD DASH Sem “dash’ is semantically similar to styletdash is used 5 times, 0.807
¥ FLD dashPhase SEM ‘dash’ is semantically similar to styletdash is used 5 times, 0.807
¥ FLD degree SEM ‘degree’ is semantically similar to level(degree is used 1 1 0973
9 MET direction POS-PHR ‘direction’ should be used s verb here. But, its possible P 10
i MET direction POS-PHR 'direction’ should be used as verb here. But, its possible P. 10
@ Ve discardallEdits sem “discard: s semantically similar to dispose(discard s used 1 0.968
@ mET icrinciresraterhannar bne LR ‘dicclncureStaterhanna ic icerd ac ND_and eompnncad of 10 2
< il '
— . Totally 975 inconsistent names are detected. (POS-PHR:509, POS-WORD:62, SEM:379, SYN:25) DB and Excel Export | |] [Load From Database

Fig. 5: Snapshot of CodeAmigo.

3.2.5 Filtering and User Feedback

After detecting the three types of inconsistent identifiers, our approach filters out inconsistent
identifiers that contain domain words and idioms recorded in the Code Dictionary in order
to reduce false alarms. For domain words, our approach checks whether an identifier has a
domain word with the corresponding POS specified in the Code Dictionary.

A user of our method can provide feedback if any detection is incorrect. In case of seman-
tic or syntactic inconsistency, the user can suggest exceptions to the rules in order to accept
the detected inconsistency. For POS inconsistency, POS rules can be updated, or specific
identifiers can be ignored.

3.3 CodeAmigo: Tool Support

We developed an Eclipse based tool named CodeAmigo [13]. It provides a graphical interface
for developers to be able to use our approach easily. The tool takes a project and scans all of
the source code files in the project in order to generate a report, as shown in Figure 5. This
report lists all of the inconsistent identifiers that were detected by our approach and describes
the potential causes.

18 Suntae Kim, Dongsun Kim*

4 Evaluation

This section describes the results from an experiment that was designed to evaluate our ap-
proach, as presented in Section 3. This experiment consists of a preliminary study and the
subsequent inconsistent identifier detection. The preliminary study was conducted to find out
appropriate threshold values for our approach. We then performed the second experiment
using these threshold values. This experiment uses our approach to detect inconsistent iden-
tifiers.

We first collected seven popular software projects written in Java. Six of these were open
source projects and one was our tool support project CodeAmigo, as shown in Table 7. Apache
Lucene is an open source project that can be used to build a search engine. Apache Ant,
Apache JMeter and JUnit are support tools used to build Java-based applications. JHotDraw
and Sweet Home 3D are GUI-based tools used to support graphic editing and virtual furniture
placement, respectively.

To check the validity of the inconsistent identifiers detected by our approach, we asked
16 developer and measured the precision and recalls [31]. In addition, we conducted an in-
terview for six of these participants in order to find out the effectiveness of our approach.
The remainder of this section shows the results for the inconsistent identifiers that were de-
tected by our approach in Section 4.2 and further presents quantitative and qualitative results
obtained from the experiment in Section 4.3.

4.1 Preliminary Study: Deciding Threshold Values

To effectively build a Code Dictionary and detect inconsistent identifiers, appropriate thresh-
old values should be identified. Thus, we first conducted a sensitivity analysis for the thresh-
old values defined in Section 3.

4.1.1 Threshold values for a Code Dictionary

We first examined two threshold values for 7(WO) and T (PR), which are necessary to iden-
tify domain words. As described in Section 3.1.2, these values are used in the W-Occurrence
Filter and POS-Ratio Filter, respectively. To figure out appropriate thresholds, we varied
these two values as independent variables and applied the values to the training set listed
in Table 1. For T(WO), we used three different values: 80, 100, and 120 while 7 (PR) was
varied by 0.8, 0.9, and 0.95. Then, we manually checked whether the domain words are cor-
rectly identified for each combination of two thresholds. The results are shown in Table 3.
#Detection in Table 3 represents the number of detected domain words after applying two
filters shown in Figure 2 with threshold values of T(WO) and T (PR). Precision is the ratio
of true positive domain words out of all detected words after manual checking.

Since it is necessary to consider T(WO) and T (PR) together to find appropriate thresh-
olds of the W-Occurrence Filter and POS-Ratio Filter, we defined Equation 1 as a selection

Automatic Identifier Inconsistency Detection Using Code Dictionary 19

Table 3: Sensitivity analysis results for different threshold values to detect domain word POS.
The first two columns show different values for T(WO) and T (PR) as independent variables.
The next three columns are the results (dependent variables) when applying each combination
of two thresholds to the training set listed in Table 1. #Detection is the number of detected
domain words with respect to each combination of T(WO) and T (PR) while Precision is the
ratio of true positive domain words after manual checking. The underlined numbers are the
maximum values for each column while the wavy underlined are the minimum values. After
applying Equation 1, T(WO) = 100 and T (PR) = 0.8 are selected as threshold values for the
main experiments described in Section 4.2.

T(WO) T(PR) #Detection Precision Selection F.
80 0.8 238 87.4% 0.0
80 0.9 223 88.8% 14.0
80 0.95 189 90.5% 20.1
100 0.8 191 92.1% 319
100 0.9 179 92.7% 29.3
100 0.95 152 94.1% 18.0
120 0.8 152 95.4% 215
120 0.9 144 95.8% 15.7
120 0.95 126 96.0% 0.0

Table 4: Sensitivity analysis results for different threshold values used to identify idioms.

T(Fomer)
T(FOpmw) =2 5 10 15
T(FOus) =2 Det. Pre. Det. Pre. Det. Pre.
2 130 87.7% 88 93.2% 61 96.7%
T(FOu) 3 122 86.9% 80 92.5% 53 96.2%
120 86.7% 78 92.3% 51 96.1%

factor. This equation computes an incorporated value based on the number of detected do-
main words and its precision. In this equation, min(«) and max(x) indicate that the minimum
and maximum values of #Detection and Precision columns in Table 3 (col[«] is a set of val-
ues in a specific column in Table 3). Using this equation, we selected T(WO) = 100 and
T (PR) = 0.8, respectively, as their selection factor was the highest value (=31.9).

Precision — min(col|Precision]) #Detection — min(col[#Detection])

Selection.F = X
erection max(col|Precision]) — min(col[Precision]) = max(col[#Detection]) — min(col [#Detection))

€]

We carried out another sensitivity analysis of threshold values for extracting idioms de-
scribed in Section 3.1.3. Similar to the above analysis, we examined several combinations
of T(FOymw),T(FOcis), T(FOu;) and T (F Oyt). Basically, every threshold values must be

20 Suntae Kim, Dongsun Kim*

Table 5: Sensitivity analysis results for different threshold values to detect semantic incon-
sistency.

Ant T(DOM)
0.8 0.9 0.95
T(SEM) Det. Pre. Det. Pre. Det. Pre.
0.8 514 70.2% 223 79.1% 124 73.8%
0.9 401 67.7% 161 83.9% 84 79.3%
0.95 378 75.8% 113 83.3% 46 69.6%

larger than one because the a single identifier must be discovered at least two times to de-
cide if it is an idiom within the frameworks, classes, attributes, and methods. We counted the
number of idiom detections and computed their precision values by manually examining the
correctness of the detections. The results are shown in Table 4.

We observed that T(FO,) does not affect to the results in the case of T(FO fuy) > 2,
implying that any class identifiers do not have the same name throughout all of the frame-
works listed in Table 1. In addition, In case of T(FO) > 3, T(FOg;) cannot affect the
results. Thus, 7(FO) was set to 2 in order to have T(FOg;) affect the idiom detec-
tion. Higher values of T(FO,,;) can increase the precision. The decrease in precision for
T (F Opmer), in accordance with T (F Oy), is caused by filtering out the correct idioms due to
T(FOyg;). This is attributed to the precision of the NLP parser. According to Equation 1, we
obtained the following threshold values: T'(F O gyy) = 2, T(FOy5) =2, T(FOguy) = 3, and
T(FOper) = 10.

4.1.2 Deciding threshold values for inconsistent identifier detection

The threshold values used to detect inconsistent identifiers, which are described in Section 3,
include T (SEM) for deciding semantically similar words; 7 (SYN) for deciding syntactically
similar words; and T'(DOM) for a base word. T (DOM) is intended for use in determining the
dominant word for searching non-dominant words used as inconsistent identifiers. In order
to find the appropriate threshold values, we preliminarily detected the inconsistent identi-
fiers within Apache Ant and Apache Lucene by controlling the threshold values. We have
obtained results as shown in Table 5, and the results for Apache Lucene that are similar to
that of Apache Anr are omitted. Based on Equation 1, we decided that T (SEM) and T (DOM)
should be both 0.9. For T(SYN), we decided as T(SYN) = 3 because our approach may
not effectively detect syntactically inconsistent identifiers when T'(SYN) >= 3.5, as shown
in Table 6.

4.2 Inconsistent Identifiers Detected by Our Approach

Table 8 shows the result of the inconsistency detection by our approach, where POS-PHR,
POS-WORD, SEM and SYN represent phrase-POS, word-POS, semantic, and syntactic in-

Automatic Identifier Inconsistency Detection Using Code Dictionary 21

Table 6: Sensitivity analysis results for different threshold values to detect syntactic incon-
sistency.

T(DOM)
0.8 0.9
T(SYN) Detection Precision Detection Precision
3 10 80.0% 6 66.6%
35 6 66.6% 1 100%
4 6 66.6% 1 100%
5 3 100% 1 100%

Table 7: The subjects used in the evaluation. CLS, MET, and ATTR represent the number of
class, method, and attribute identifiers, respectively.

Subject Version SLOC CLS MET ATTR All
Apache Lucene [32] 3.03 104,287 1,279 10,218 5,526 17,023
Apache Ant [33] 3.0.3 45,835 659 4,550 2,288 7,497
Apache JMeter [34] 2.9 90,714 1,104 8,710 5,346 15,160
JUnit [35] 4.0 6,588 186 986 205 1,337
JHotDraw [36] 7.0.6 32,179 405 3,620 894 4,919
Sweet Home 3D [37] 4.10 82,439 618 4,933 3,485 9,036

CodeAmigo 1.0 6,191 46 348 160 554
Total 368,233 4,297 33,365 17,904 55,526

Table 8: The number of inconsistent identifiers detected by our approach.

Subject POS- | POS- SEM |syN '# of d.etecte.d #.Of de.tected % o'f inc?nsistent
PHR | WORD inconsistencies || identifiers identifiers
Lucene 665 83 32 10 790 358 2.10%
Ant 599 108 135 6 848 483 6.44%
JMeter 528 80 180 | 13 801 379 2.50%
JUnit 148 6 35 0 189 123 9.20%
JHotDraw 509 62 130 | 25 726 323 6.57%
S.Home3D || 238 118 77 5 438 256 2.83%
CodeAmigo|| 30 1 3 0 34 30 5.42%
Total 2,717 | 461 592 | 59 3,826 1,952 3.52%
% 71.0%| 12.0% |15.5% |1.5% 100%

consistent identifiers, respectively. Total indicates the total number of inconsistent identifiers
of each project and type. Note that # of detected identifiers is the unique number of identifiers
detected as inconsistencies and one single identifier can have several different inconsisten-
cies. The % of inconsistent identifiers is the ratio of the inconsistent identifiers.

22 Suntae Kim, Dongsun Kim*

The phrase-POS inconsistency accounts for 71% of the total number of inconsistent iden-
tifiers while word-POS, semantic, and syntactic inconsistencies account for 12%, 15.5%, and
1.5%, respectively. This implies that Phrase-POS is the most frequently occurring incon-
sistency where identifiers violate the grammatical rules of Java naming conventions. Incon-
sistent POS usage (POS-WORD) and synonyms (SEM) are frequent inconsistency types as
well, and syntactically inconsistent identifiers (SYN) accounts for the least number of incon-
sistencies.

More inconsistent identifiers are detected for Ant, JUnit and JHotDraw than other sub-
jects. This is due to those subjects using more noun phrases instead of verb phrases for their
method identifiers (e.g., componentToRGB).

The Code Dictionary plays a role in filtering idioms and violations of the POS of domains
at the end of detection of the inconsistent identifiers. Such a process can eliminate false
alarms and can improve the precision of the detections. Figure 6 shows the intermediate
states of the detections for Ant, Lucene and JMeter. The idioms from the Code Dictionary
are used as an Idiom Filter in order to eliminate the detected inconsistent identifiers when
the identifier is discovered to be an idiom (see Table 14). For example, the method identifier
intValue() is detected as a POS-PHR inconsistency because the method identifier should be
composed of a verb or a verb phrase. However, since intValue() is an idiom, it should not
be detected as an inconsistent identifier. Thus, it is filtered out by the Idiom Filter. After the
Idiom Filter is run, the Domain Word POS Filter checks to see if the words and their POS
that caused a detection exist in the Domain Word POS, as shown in Table 13. This filter has
an effect that reduces the invalid NLP parsing. For example, the word path in the method
identifier mapPath() of the Ant project is parsed as a verb. However, it is invalid parsing.
Since the word path is stored in the Domain Word POS as a noun, the detection is invalid,
and then it should be filtered out. In particular, the Domain Word POS filter is effective in
reducing false alarms for the POS-WORD and SEM.

The following present actual examples of inconsistent identifiers that were detected by
our approach. More details are available in our project web site®!.

Phrase-POS Inconsistency:

e outStreams (method, Ant) - ‘outStreams’ is used as a FRAG, and is composed
of [(FRAG (ADVP (RB out)) (NP (NNP Streams)) (. .))]. The methods should be
named as a verb phrase.

e readerIndex (method, Lucene) - ‘readerIndex’ is used as an NP, and is com-
posed of [(NP (NP (NN reader)) (NP (NNP Index)) (. .))]. The methods should be
named as a verb phrase.

e Fail (class, JUnit) - ‘Fail’ should be used as a noun here. But its possible POSes
include [verb].

Word-POS Inconsistency:

21 https://sites.google.com/site/detectinginconsistency/

Automatic Identifier Inconsistency Detection Using Code Dictionary

23

Before Code Dic. Filters

After Idiom Filter

After Dom. W.POS Filter

POS_PHR | 657 POS_PHR |(-54) 603 |[>| POS PHR | (-4) 599
POS WORD| 159 POS_WORD |(-16) 143 POS_WORD | (-35) 108
Apache| SEM | 164 SEM | (-3) 16l|| o SEM |(-26) 135
Ant SYN 10 SYN © 10 § SYN 4) 6
= 5
Sum 990 || & Ssum | (-73) 917|| B Sum (-69) 848
POS PHR | 724 || B || POS PHR |(-59) 665 g POS_PHR | (0) 665
ipache | FOS_WORD| 156 ; POS_WORD|(-20) 136 || & |[POS_WORD|(-53) 83
(¢=}
e SEM 61 || & SEM | (4) 57| 9 SEM (-25) 32
SYN 1 SYN 0 11| & SYN 1) 10
Sum 952 Sum [(-83) 869 || = Sum (-79) 790
-
POS_PHR | 687 POS_PHR |(-157)530|| & | POS PHR | (-2) 528
POS WORD| 157 POS_WORD | (-22) 135 POS WORD|(-55) 80
ﬁ';whe SEM | 233 ||(code SEM | (0) 233||(Code SEM | (-53) 180
eter SYN 17 ||| Pie SYN ©) 17 ||| P SYN (4) 13
Sum 1,094 sum |179)915 || | sum [¢114)801

Fig. 6: Filtering intermediate inconsistent identifiers by using the code dictionary.

e outStreams (method, Ant) - *out’ is generally used as a noun (120/123, 0.975), but
here it is used as an adverb (1/123, 0.008).

o CCMCreateTask (class, Ant) - ‘create’ is generally used as a verb (341/357, 0.955),
but here it is used as a noun (16/357, 0.044).

e DrawApplet (class, JHotDraw) - ‘draw’ is generally used as a verb (148/155, 0.954),
but here it is used as a noun (7/155, 0.045).

Semantic Inconsistency:

e Specification and spec (Ant) - ‘spec’ is semantically similar to specification
(spec is used 7 times, specification is used 37 times).

e Selector and Chooser (Sweet Home3D) - ‘selector’ is semantically similar to
chooser(selector is used 1 times, chooser is used 8 times).

e fetch and get (JMeter) - ‘fetch’ is semantically similar to get (fetch is used 2
times; get is used 2224 times).

Syntactic Inconsistency:

e startsWith () (method, JMeter) - ‘starts’ is syntactically similar to start(starts
is used 1 times; start is used 45 times)”.

e getPreserveOPermissions () (method, Ant) - ‘preserve(Q’ is sytacti-
cally similar to preserve (preserve0 is used 1 times; preserve is used 14 times).

24 Suntae Kim, Dongsun Kim*

4.3 Analysis of Inconsistency Detection

To validate our approach, we establish four research questions (RQs) as follows:

1. RQI1: How precise are the inconsistencies detected by our approach?

2. RQ2: How comprehensive are the detection results?

3. RQ3: How much does Code Dictionary contribute to reduce false positives?
4. RQ4: How useful are the detection results for developers?

The followings describe the experiment setting and the analysis of the results.

4.3.1 RQI: How precise are the inconsistencies detected by our approach?

Although our approach attempted to thoroughly detect identifier inconsistencies, as described
in Section 3, the detection results can be subjective since different developers may have a dif-
ferent sense of inconsistency. This subjectivity is a common issue in NLP-related work [38].
In addition, the parser [22] used in our approach is intended to parse natural language in-
stead of source code identifiers, even though the parser has a high precision??. Hence, it is
necessary to evaluate the results of the detection with human subjects.

To answer RQ1, we gathered 16 volunteer practitioners with 3 to 15 years of develop-
ment experience as human subjects for our experiment. They are currently mainly developing
Java-based software systems such as package solutions and enterprise applications, as shown
in Table 9. We developed a web-based system [39] that presents all our detection results for
the seven projects, and stores all subjects’ validation results to facilitate this experiment. This
system provides the name, type, and reason of each inconsistent identifier. We had a three-
hour workshop to distribute CodeAmigo with the seven projects, introduce each project and
their major features, and explain the web-based system for evaluation. Then, we asked the
subjects whether the detection results by our approach were correct or not. During the work-
shop, the subjects validated inconsistent identifiers and checked the actual source code where
the inconsistent identifiers were used. After the workshop, we requested the subjects to com-
plete the evaluation within a week. During the one-week evaluation, all subjects could access
the source code of each of the detection results whenever they wanted to see the contextual
information such as the parameters of the method identifiers and type information for the
field identifiers.

In order to evaluate the validity of our approach, we applied a traditional precision and
recall measure [31] instead of measures such as the area-under-ROC curve [40] with the
following reasons. First, it is almost impossible to manually find true-negative identifiers for
the 7 projects’ source code. Second, we have defined the thresholds in the preliminary study,
and changing the thresholds means that all manual evaluation processes should be conducted
from the start to obtain a new confusion matrix. Third, we considered that the precision
and recall measure is sufficient to explain the efficiency of our approach, since true-negative
detections are not considered for the precision measure.

22 The Stanford parser [22] has 86% parsing precision for a sentence consisting of 40 English words.

Automatic Identifier Inconsistency Detection Using Code Dictionary 25

Table 9: Work experience and expertise of human subjects.

Work Experiences Expertise
1 -5 years 6 package solutions [§
5 - 10 years 3 enterprise applications 3
11 - 15 years 7 mobile applications 5
Total 16 middlewares 2

The results obtained from the human subjects were used to measure the precision of the
detection results of our approach according to the following equation [31]:

|(Hia N Dja)|

|Did
where D, is the set of inconsistent identifiers detected through our approach and Hj, is the set
of identifiers marked as a correct detection by the human subjects. Note that (H;y N\ D;y) = Hiy
since H;, is a proper subset of D;,.

(€3

Precision =

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%
30.0%
20.0%
10.0%
0.0% JUnit JHotDraw ~ S.Home3D Lucene IMeter Ant CodeAmigo Average
®Precision 91.7% 87.6% 68.4% 94.4% 84.9% 83.3% 76.2% 85.4%

Fig. 7: Precision result for each project shown in Table 7. These results are calculated by
Equation 2.

Figure 7 shows the precision results for the projects. The average precision for the seven
projects is of 85.4% with a minimum precision of 68.4% for “Sweet Home3D” and a max-

26 Suntae Kim, Dongsun Kim*

90.0%
88.0%
86.0%
84.0%
82.0%
80.0%
78.0%
76.0%
74.0%
72.0%
70.0% POS-PHR POS-WORD Precision
5 Precision 87.9% 82.8% 76.5% 81.5% 85.4%

Fig. 8: Precision of each inconsistency types.

imum precision of 94.4% for “Lucene”. This implies that at least 8 out of the 10 identifiers
are actually inconsistent once they are detected by our approach.

Among the subjects, Lucene showed the highest precision. This is supposedly possible
since it has many identifiers composed of natural words (e.g., documents and parse), and
even the technical terms in the project are quite similar to those of natural language. This
could increase the precision of the NLP parsing.

On the other hand, Sweet Home3D showed the lowest precision. One of the main reasons
for its low precision is that the NLP parser did not correctly tag the POS of the most common
words, such as furniture, plan, and piece, in the project.

In addition, JHotDraw, JMeter and Ant were less precise compared to Lucene because
they include diverse terms for GUI specific words such as Panel and Frame, which can often
result in incorrect POS tagging.

When it comes to inspecting the results of each inconsistency type, the phrase POS incon-
sistency (POS-PHR) has the highest precision (87.9%), as shown in Figure 8. This indicates
that our approach can detect naming rule violations with precision. On the other hand, seman-
tic inconsistencies (SEM) have the lowest precision at 76.5%. This low precision indicates
that the human subjects often regarded for the words that were detected semantically similar
were not exactly the same. However, this is still positive since it implies that approximately
7 out of 10 semantically inconsistent identifiers detected through our approach were correct.

Additionally, we examined the correlation between development experience and preci-
sion. By using linear regression, we computed correlation of all 16 developers with respect

Automatic Identifier Inconsistency Detection Using Code Dictionary 27

to the precision value of each developer. As a result, the correlation value was -0.419. How-
ever, this is not conclusive since R? was 0.175. Therefore, there was no significant correlation
between them.

4.3.2 RQ2: How complete are our detections?

In addition to the precision, it is important to find out whether our approach can completely
detected inconsistent identifiers in a program with few number of missing inconsistencies
(i.e., recall [31]). Note that the entire set of inconsistent identifiers is necessary in order to
compute a recall value. However, it is difficult to find every inconsistent identifier in the
project by employing human developers. Thus, we observed to what extent our approach
could detect inconsistent identifiers that were missed by human subjects instead of computing
the traditional recall value.

We conducted two experiments where the subjects 1) manually detected the inconsistent
identifiers from scratch and 2) where they manually detected them with the assistance of
our tool. Six subjects participated in this set of experiments, and they had 10-15 years of
experience in Java development. We ran a small workshop to introduce them to our exper-
iment, and we distributed work-sheets containing all of the identifiers and their types (e.g.,
class or method), all words, and all identifiers that include each word. The reason for which
we provided additional materials for the experiment is that manually collecting all cases of
word usages throughout the project is tedious and time-consuming work. In addition, we
provided Eclipse with the seven projects without showing CodeAmigo. The experiment was
conducted for three hours, and after the experiment, we carried out a semi-structured inter-
view. We selected the JUnit as an experiment project because the number of its identifiers is
relatively small compared to other projects listed in Table 7. The JUnit project contains the
941 identifiers and the 665 unique words consisting of the identifiers.

For the first experiment, we showed the source code of JUnit and designated all identifiers
in the code by highlighting their type (e.g., class, method, and attribute). The participants
examined the identifiers and marked whether or not they were inconsistent. The objective
of this experiment was to figure out how many inconsistent identifiers the participants could
detect manually. This may reflect how effectively developers can detect inconsistency during
real development.

The second experiment was conducted to observe how well our approach could enhance
inconsistency in the detection. We provided the detection results of our approach after the first
experiment. Then, we asked the participants to check the validity of their detection results in
the first experiment and of any missing identifier as well.

Equation 3 shows how we computed the recall of our approach. D;; is the set of identifiers
that were detected by our approach, and M, is the set of identifiers that are manually detected
by the participants in the above experiments. In addition, we computed the F-measure by
using Equation 4.

|(Dig "Mig)|

Recall =
[Miq]

3

28 Suntae Kim, Dongsun Kim*

F-measure — 2 - Precision - Recall @)
" Precision+ Recall

Figure 9 shows the results of the above mentioned experiment. For this figure, we com-
puted the average of each measure for every individual participant. In the case of the purely
manual detection, the recall, precision, and the F-measure values were 55.80%, 64.43%,
and 59.80%, respectively. Note that our approach detected 123 inconsistent identifiers (D;4)
as shown in Table 8. The participants detected 143.25 inconsistent identifiers (M;;) and
|(Dig N M;q)| was 79.25 on average.

After providing the detection result of our approach, we observed how the participants
changed their detection results. As a result, they added more inconsistent identifiers when
they accepted detection results of our approach, which is shown in the second row of Figure 9.
They detected 24 (16.7%) additional inconsistent identifiers on average, which leads to a
30% increment in |(D;s N M;4)|. Based on this result, we observed an improvement for each
measure; 6.34% for recall, 19.51% for precision, and 11.34% for F-measure, respectively.

Recall | Precision | F-Measure Detections

Manual | 55.80%| 64.43% | 59.80% | D_ 123 143.25 M

ouamalt | 62.14%| 83.94% | 71.14% | D123 167.25 M
ur Approach
Improvement | 6.34% | 19.51% | 11.34% 24(30%) 24(16.7%)

Fig. 9: Recall and F-Measure for pure manual detection and manual detection supported by
our approach.

Recall | Precision| F-Measure Detections

Manual = 40 07041 91.06% | 62.92% | D 123 2330 M
(Union)
M. 1 (Uni
o oy | 48.07%| 91.06% | 62.92% | D123 233 M
Manual o o o
(Intersection) | 2:61%| 66.67% | 7257% | 1D 12382) 1030 M
Manual
(Intersection) + | 83.59%| 86.99% | 85.26% D 123 128 M
Our Approach

Fig. 10: Recall and F-Measure for intersection/union set of manual detection.

Automatic Identifier Inconsistency Detection Using Code Dictionary 29

2000 - = without CodeDic
1800 - 1720 1625 ™ with CodeDic
1600 -
1400 -
1200 -
1000 -
800 -
600 -
-16.7%
400 - -59.0%
200 - 8334
0 B
& S oy N & > o
& ¥ ® & & % 2
v ¥ N g.@& oo&ys“

Fig. 11: Code Dictionary’s contribution for reducing false positives.

We conducted an additional analysis to simulate a real development environment since
inconsistency can be subjective for each of the human subjects. Developers normally have a
formal/informal meeting to discuss the validity of their detections. Thus, we further investi-
gated their detections with respect to two cases. First, if we assumed that all detections for
every participant were correct, then they detected 233, as shown in Figure 10 (Union), and
the results were 48.07% for recall and 91.06% for precision. In this case, our approach could
not improve their detections.

On the other hand, if we assumed that the correct detections are just those where all par-
ticipants commonly agreed, then the recall and precision of our approach were 79.61% and
66.67%, respectively, as shown in Figure 10 (Intersection). In addition, the values improved
to 83.59% for recall and 86.55% for precision when our approach helped them during the
tasks. Note that our approach could give advices on 25 more inconsistent identifiers (from 82
to 107).

4.3.3 RQ3: How much does Code Dictionary contribute to reduce false positives?

To answer this RQ, we compared inconsistent identifiers detected by our approach with-
/without Code Dictionary. Note that the detection results with Code Dictionary is a subset
of detection results without Code Dictionary since it may filter out false positives. Figure 11
shows the results; Code Dictionary reduced 43.7% of potential false positives on average.

The considerable number of inappropriate NLP parsing was filtered out by Code Dictio-
nary containing the POS of domain words, idioms, and mapping between abbreviations and
its original words. First, the POS of domain words could filter out diverse parsing errors in
analyzing identifiers. The representative samples are summarized as below:

30

Suntae Kim, Dongsun Kim*

header (method identifier in Ant) is parsed as ‘(S (VP (VB header)) (. .))’, which is a
wrong parsing result. However, it is filtered out because the word header is stored as a
noun in Code Dictionary (see Appendix A).

setupPage (method identifier in Sweet Home3D) is parsed as ‘(S (NP (NN setup)) (VP
(VBZ Page)) (. .))’. The word page is stored as a noun, so that the identifier has been
filtered out.

tolmage (method identifier in JHotDraw) is parsed as ‘(S (VP (TO to)(VP (VB Image)))(.
.))’. The word Image is incorrectly parsed. However, our approach could filter out the
identifier by using Code Dictionary that classifies the word Image as a noun.

offset (attribute identifier in JMeter) is parsed as ‘(S (VP (VB offset)))’. Code Dictionary
records the word offset as a noun.

fileSize (method identifier in Ant) is parsed as ‘(S (VP (VB file)(NP (NN Size)))(. .))’.
Code Dictionary classifies the word file as a noun in the storage.

Second, the idioms of Code Dictionary could filter out diverse false positives as below:

actionPerformed (method identifier in JHotDraw and JMeter) is parsed as ‘(S (NP (NN
action)) (VP (VBD Performed))(. .))’. However, the identifier is being commonly used
in source code written in Java regardless of the right or wrong NLP parsing. Thus, it is
filtered out by Code Dictionary (see Appendix A).

available (method identifier in Ant and JHotDraw) is parsed as ‘(FRAG (ADJP (JJ avail-
able))(. .))’. The word available is also incorrectly parsed by the NLP parser, so that it
could have been detected as an inconsistent identifier by CodeAmigo without Code Dic-
tionary support. Code Dictionary could filter out the identifier because it is recorded as
an idiom.

indexOf (method identifier in JHotDraw) is filtered out because it is an idiom.

Third, Code Dictionary also maintains mapping between a word and its abbreviation. In

some cases, replacing an abbreviation into its original word has an influence on appropriate
NLP parsing. The representative cases are presented as below:

o initSegmentName (method identifier in Lucene) is parsed as ‘(S (NP (NNP init)(NNP

Segment)) (VP (VB Name))(. .))’. The NLP parser analyzed init as a noun when init was
not recovered into the original word initialize. After recovering it into the original, the
identifier is parsed as ‘(S (VP (VB initialize (S (NP (NNP Segment)(VB (VB Name)))(.
)))))’. Although all words were not correctly parsed, the word initialize has been cor-
rectly parsed after recovering it.

specFile (attribute identifier in Ant) is parsed as ‘(NP (JJ spec) (NNP File))’. After re-
placing the word spec into specification, the NLP parser correctly analyzed it as ‘(NP
(NNP specification) (NNP File))’.

In addition to this, the mapping information in Code Dictionary could recover diverse

identifiers such as initLookAndFeel (method identifier in Sweet Home3D), dirListing (at-
tribute identifier in Ant), closeDir (method identifier in Lucene), and checkJarSpec (method
identifier in Ant).

As a result, Code Dictionary could bridge the gap between source code analysis and

natural language analysis by using domain words POS, idioms, and abbreviations generally

Automatic Identifier Inconsistency Detection Using Code Dictionary 31

used in writing source code. Thus, it can help inconsistency detection by reducing diverse
false positives caused by NLP parsing errors.

4.3.4 RQ4: How frequently do developers discover inconsistent identifiers and how useful
are our detections?

We performed a semi-structured interview with questionnaires for all participants to further
elaborate our findings from Section 4.3.2. This interview investigated the necessity for this
approach and asked several that were prepared questions as follows:

Questions on the Necessity of the Detection of Inconsistent Identifiers

e How often do you encounter an inconsistency of identifiers?: Most of the participants
stated that they often see inconsistent identifiers in their source code as shown in Fig-
ure 12(a). Also, they emphasized that these are more frequently discovered as the scale
of the project becomes larger. The extent of the discovery is different depending on the
role of the projects. When they have any responsibility to assure the quality of the source
code, they more frequently discovered inconsistent identifiers.

o What do you do when you see inconsistent identifiers?: Most of the subjects did not cor-
rect the identifiers if they were not in charge of the source code (see Figure 12(b)). Even if
they are the authors of the source code, they did not change it unless they were in charge
of maintenance of the source code. If the code belongs to others, they do not modify it
because they do not want to make controversial issues that could result from the mod-
ification. Eventually, the responsibility for understanding and maintaining inconsistent
identifiers is delegated to software maintainers. This implies that it can be difficult to cor-
rect inconsistencies once they have happened since software maintainers have most of the
responsibility to change identifiers and these often cannot be corrected if the maintain-
ers miss the inconsistent identifiers. The Efc. section in the figure includes ‘sometimes
modify the inconsistent identifiers regardless ownership’.

e Why do you think such inconsistency happens?: All participants agreed that inconsis-
tency occurs as a result of human factors. Expressions for concepts that can vary depend-
ing on time, background knowledge, and so on. These can be different, even for a single
person, depending on the time, meaning that inconsistency is inevitable. Although they
maintain a glossary in the project, it is not observed as well. Some of the organizations
build term management systems, also known as meta-data management system. How-
ever, all words cannot be maintained in the system and developers also feel inconvenient
because they should register a term whenever they want to write a new term in the source
code.

Questions on the Usefulness of our Approach

32

Suntae Kim, Dongsun Kim*

8
7 10
6 3
5
1 6
3 4
2 -
1 0 | -
0 Don't do Always Modify Ifit's Etc.
Very Often Often Sometimes ~ Rarely Never anything modify mine
(a) Perception of Inconsistency (b) Treatment of Inconsistency
10 9
8
8 7
6 6
5
4 4
2 3
2
0 1
very useful useful So-So Useless I don't 0 -
know Implementation Verification Maintenance
(c) Usefulness of Our Approach (d) Support for Software Lifecycle

Fig. 12: Analysis of the semi-structured interview.

e How useful is our approach for detecting inconsistent identifiers?: The participants stated

that our approach is useful, as shown in Figure 12(c) and the results are acceptable. In
addition, regardless of post-action after detecting inconsistent identifiers, they said that
inspecting the inconsistency of identifiers was valuable in order to check the current
quality of the entire source code. Although they did not think that inconsistent identifiers
are not a severe issue when seeing the list of them at the first time, statistical information
and reasons for each inconsistency from our approach made them realize it as a severe
issue. Also, their feedback says that our tool CodeAmigo integrated with Eclipse provides
good accessibility for software developers who spend their time writing source code.
When is our approach useful during the software life cycle?: They said that it is particu-
larly useful during inspection, peer review of the source code, and code auditing during
implementation (see Figure 12(d)). Since our approach provides statistical usage results
for all words in the source code, it enables the reviewer to judge the right choice of words.
Although the subjects did not want to correct programs that belong to other developers,
they stated that they will try to correct inconsistent identifiers detected using our approach
during the review and auditing phases. Consequently, we could understand that our tool
is more applicable to the review and code auditing phase in the software life cycle.

e Have you ever used the tool checking inconsistent identifiers?: Most of the subjects had

not used such a tool that could check for inconsistent identifiers. Some of them had used
CheckStyle [41] to check whether their source code adhered to a set of coding standards,
or FindBug [42] to inspect the source code for potential defects. In addition, in-house
term management systems that they built could manage terms used in the source code

Automatic Identifier Inconsistency Detection Using Code Dictionary 33

while only managing domain-specific words in their application domains without man-
aging various terms of the general computer domain. They feel that registering new words
was too cumbersome when writing source code. Thus, they stated that our approach is
suitable for the purpose of detecting inconsistent identifiers that they had never used be-
fore.

After interviewing the practitioners with the prepared questions, we freely discussed re-
curring issues related to inconsistency in the source code and to possible solutions for such
issues. The following give a summary of our free discussion:

e Relationships between Understandability and Inconsistency: Understandability indicates
how well readers can understand the source code and the intention of an identifier written
by the original authors. Inconsistency is one of the causes that prevents understandability.
Thus, it is important to remove inconsistent identifiers even though it is not the only es-
sential activity that can improve understandability. They insisted that it must be integrated
with checking for the code conventions.

o Other types of Inconsistencies: They did not suggest any new type of inconsistency for
the identifiers. Instead, they proposed inconsistency in the code section management.
For example, a developer writes a class with attributes in the upper part of a class while
another developer places the attributes at the bottom of the class. Improving this in line
with improving understandability of the source code. In addition, they suggested there
could be critical inconsistency between the design model or the design documents and
the source code. These might be important research issues.

4.4 Threats to Validity

Construct Validity: The identifier inconsistency may not have a strong correlation to soft-
ware maintenance since there are many other aspects that influence software maintainability.
To justify this issue, we collected and summarized several real examples from several issue
tracking systems for open-source projects throughout Sections 1 and 2. These examples can
show that identifier inconsistency may affect software maintenance

Contextual information can alleviate inconsistency issues. For example, differentiating
the full signature of the methods “retrieveUserId (String database) and
searchUserID (String query)” can be easier than for a simplified signature
“retrieveUserId() and searchUserID ()”. However, the contextual information
may not be helpful in some cases, as shown in Issue HBASE-58423; filter (Text rowKey),
filter (Text rowKey, Text colKey, byte[] data),and filterNotNull
(SortedMap<Text, byte[]> columns). Evaluating the impact of the contextual
information with inconsistency detection remains as a future task.

Content Validity: Four types of identifier inconsistencies defined in Section 2.2 might
not completely identify all areas of inconsistency. There can be several different type of
inconsistencies. For example, we can define “behavior inconsistency” as that which indicates

23 https://issues.apache.org/jira/browse/HBASE-584

34 Suntae Kim, Dongsun Kim*

that the method or class names may be inconsistent with the behavior of the corresponding
method or class.

Internal Validity: Different developers might identify inconsistent identifiers differently
due to their different understanding of programs. To manage such cases, we analyzed the
detection results from several developers through intersection and union sets as shown in
Section 4.3.2. In addition, different threshold values for our approach might show different
detection results. To alleviate this problem, we have conducted a sensitivity analysis to define
the threshold values through a preliminary study using Apache Ant, as shown in Section 4.1.

When the participants verified the detection results on our web-site, we asked them to
uncheck a box if our detection was not valid. We supposed that there were more valid de-
tections than invalid ones, and such a design is intended to facilitate faster validation due
to the massive amount of manual checking (3,826 detections). The participants agreed with
our experimental method for the same reason. Although this method (“checked” by default)
might be biased, the opposite method (“unchecked” by default) can be biased as well.

External Validity: Our approach may show different results depending on our subjects
or for closed-source projects. Such programs may have significantly different naming con-
ventions. For example, those programs can frequently use domain-specific words that can be
detected as inconsistencies through our approach. In addition, different developers may have
different criteria to identify inconsistencies. Thus, the result of our study shown in Section 4
can be different if different subjects participated in the study.

5 Related Work

This section presents prior work that targeted the detection of inconsistent identifiers in
source code from two different perspectives. We first introduce existing concepts that handle
inconsistent identifiers with respect to Semantic, Syntactic and POS inconsistencies. Then,
technical comparisons between the previous approaches and ours are presented in turn. In the
last section, we compare detections from the previous tool and CodeAmigo.

5.1 Inconsistency of Source Code Identifiers

Several previous studies handle inconsistencies of source code identifiers. Deiffenbsck and
Pizka [1] formally defined the inconsistency of source code identifiers. They divided incon-
sistencies into homonyms where an identifier is mapped to two concepts, and synonyms where
more than two identifiers are mapped to a single concept. For example, the Fi1e identifier
can be mapped into the two concepts FileName and FileHandle so that it can defined
as a homonym. On the other hand, account number and number indicate an account
number together, which is a synonym. Their synonym is conceptually the same with our se-
mantic inconsistency. However, we added POS-constraints into the inconsistency to improve

Automatic Identifier Inconsistency Detection Using Code Dictionary 35

the preciseness when searching for appropriate synonyms, which was motivated by the use
of general natural language dictionaries, such as Oxford >* and Collins Cobuild 2.

In addition, the word-POS inconsistency is in line with the concept of a homonym [1].
This is because different POSes for a word indicate different concepts (meanings). These are
limited to a word discovered in the natural language dictionary. Such a definition is inspired
by Caprile and Tonella’s observation [21], developers tend to consistently use a single POS
of a word throughout a project even though the word has diverse POSes.

Deiflenbock and Pizka [1], and Lawrie et al. [2] defined the term inconsistency as a
mapping of a single term to more than two concepts. However, the different POSes of a
word indicate different concepts (meaning or senses). For example, the word sleep as a noun
generally indicates the state while it often represents a execution behavior as a verb. Thus,
we defined a word-POS inconsistency. Note that word-POS inconsistency is limited to words
in the natural language dictionary.

Abebe et al. introduced an Odd Grammatical Structure as one of the lexicon bad smells [5].
They checked if a specific POS existed in a class, method or attribute identifiers to detect a
lexicon bad smell. For example, Compute as a class identifier is a lexicon bad smell be-
cause the class identifier contains a verb without any nouns. However, their missing parts in
defining the grammatical rules of the identifiers when naming identifiers is that ‘class names
are generally a noun as well as a noun phrase’(see [43]). This indicates that checking if the
entire identifier observes the phrase-POS rule is also valuable for developers because many
identifiers are composed of more than two words. A phrase-POS inconsistency of our ap-
proach is similar to Abebe ef al.’s odd grammatical structure [5], but it focuses more on the
grammatical constraints of the entire identifier.

Hughes stressed the importance of spell checking in source code [6]. Eclipse, as the one
of the most popular editing tools, also embeds a Spell Checker feature as a default, and it
contains a language dictionary for support. The dictionary can be changed into others, such
as SCOWL?, as a custom word dictionary for the spell checker. Such spell checkers however
do not work when two misspelled words are discovered in the dictionary (e.g., states and
status). Since the syntactic inconsistency presented in the paper handles similar character
sequences of two words, it can detect structural-inconsistent identifiers, including misspelled-
words regardless of the existence in the dictionary. It also detects words that might be con-
fused due to their similar letter sequences.

5.2 Detecting Inconsistent Identifiers

In order to handle inconsistent identifiers, diverse guidelines have been introduced by in-
dustry and academia. In industry, Sun Microsystems (acquired by Oracle) suggested nam-
ing conventions to guide identifier naming by using grammatical rules [14]. Also, various

24 Oxford Dictionary, http://www.oxforddictionaries.com/
25 Collins Cobuild Dictionary:http://www.collinsdictionary.com/dictionary/english
26 SCOWL.: http://wordlist.aspell.net/

36 Suntae Kim, Dongsun Kim*

industrial practitioners have placed an emphasis on careful naming of the source code el-
ements [3, 17,44]. Most of them stated that identifiers in a program should be used in a
consistent manner.

In academia, Lawrie et al. [15] tried to analyze the trends for code identifiers by estab-
lishing a model for measuring the quality of the identifiers, and then mining 186 programs
over three decades. Their statistical findings indicate that 1) modern programs contain higher
quality identifiers, 2) the quality of open and proprietary source identifiers is different, and 3)
a programming language does not largely affect the quality of the identifiers. Additionally,
they mentioned that Java uses relatively high quality identifiers, compared to other program-
ming languages, thanks to an early encouragement of coding and naming conventions.

Deifenbock and Pizka [1] formally defined the inconsistencies of source code identifiers,
as mentioned above. While it is valuable to introduce this issue at first, it has shortcomings
in that developers should manually map the identifiers to the concepts. In order to handle
the shortcoming of Deifenbick and Pizka’s approach, Lawrie et al. [2] used the patterns of
a letter sequence of identifiers and WordNet [18]. They figured out that an identifier exists
in the other identifiers, which is a way of detecting a homonym. For example, the identifier
FileName and FileHandle have File as a part of the identifiers. In addition, they au-
tomatically searched synonyms in WordNet. Although they applied WordNet to find seman-
tically similar words, they did not analyze the POS of each word that composed an identifier.
This makes the scope of the synonyms very diverse, which must decrease the precision when
detecting synonyms.

Abebe et al. [5] proposed Lexicon Bad Smell indicating inappropriate identifiers in terms
of the lexicon, and they presented a tool support LBSDetector in order to automatically detect
improper identifiers. Among the lexicon bad smells, the Odd grammatical structure smell is
similar to the Phrase-POS inconsistency, which indicates issues, such as when class iden-
tifiers do not contain a noun, attributes that contain verbs, and methods that do not start
with a verb. However, such a method can cause false alarms. For example, 1ength () and
size (), as method identifiers, and debug and warn, as attribute identifiers, are detected
as odd grammatical structure bad smell. In our approach, we have followed the Java nam-
ing convention without defining new grammatical rules, as introduced in Section 2. Also,
we built a Code Dictionary that stores idiom identifiers, such as 1ength () and size (),
which commonly violate Java naming conventions but are acceptable.

Abebe and Tonella [9] and Falleri et al. [10] built an ontology containing concepts and
their relationships by using source code identifiers. They first separated the words from the
identifiers, composed a sentence according to their rules, parsed the sentence with a natural
language parser, and defined them as knowledge. Using such knowledge, the developer names
the identifier. This approach is similar to our approach in terms of using an NLP parser, but
they are not intended to detect inconsistent identifiers.

Abebe and Tonella [11] then introduced an automated approach that exploits ontological
concepts and relations extracted from the source code in order to suggest identifiers on the
fly. The purpose of their approach is to help developers name identifiers by automatically
suggesting related concepts such as auto-completion. While this approach may be helpful
when developing the system, it can be hardly used by software maintainers or reviewers for

Automatic Identifier Inconsistency Detection Using Code Dictionary 37

verification because it is not intended to support scanning all identifiers and detecting an
inconsistent use of the terms and their relations throughout the project. Their tool has not
been developed, yet it is described in the paper, which is not available to use.

Some researchers have tried to extract vocabulary from the source code [7, 8]. Lawrie et
al. [8] suggested an approach to normalizing vocabulary from source code in order to mitigate
an expression gap between software artifacts written in a natural language and source code
written in a programming language. They separated an identifier into several possible soft-
words and computed the similarity between the soft-words and the natural language words
in external dictionaries based on the wild-card expansion algorithm [15]. This is valuable
to map diverse acronyms and abbreviations in the source code into concepts that natural
language can apply for Information Retrieval techniques [31] when mining source code.

Delorey et al. [7] also proposed an approach that builds a corpus from source code by
defining four levels to denote identical words. They classified the words according to the
same letter sequence as POS, and analyzed the frequency of the occurrence of the word in
the JDK 1.5 source code. Their concept for ‘word” and POS are mapped into an identifier and
a type of an identifier (e.g., class, method or field) respectively. It has a limitation in handling
a word as a constituent of an identifier.

For method identifiers, Host and Ostvold [12] investigated verb usage in the source code
and built a pattern for a verb starting with the verb (e.g., contains—x«). The pattern can
include ‘returns int/string’, ‘create string/custom objects’, ‘throws exceptions’, etc. They ex-
tracted it from the source code and defined it as a pattern of a specific verb of a method, and
then they indicate a violation of the pattern as a naming bug. While it may contribute to con-
sistent use of a verb of a method throughout Java based applications, it is not applicable for
detection of inconsistent identifiers in a single project. Also, it only focuses on the method
identifiers without considering other source code elements.

Arnaoudova et al. [45] defined a new term Linguistic Anti-Patterns to identify recur-
ring poor practices in naming and choosing identifiers. They categorized the anti-pattern into
six sub-groups: three for the methods and the other three for the attributes. For example,
the methods that started with the verb ger (e.g., get ImageData) and not just returned an
attribute value were classified into the ‘do more than it says’ group, which is one of the cate-
gories for the linguistic anti-patterns. This is in the line with Host and Ostvold’ research, and
it is valuable for the detection of the consistent use of the terms throughout the project.

Table 10 summarizes prior studies in terms of the software life-cycle support, the types of
inconsistency and tool supports after carefully selecting research that contributes to detecting
or alleviating inconsistent identifiers. Since POS are not considered for searching synonyms,
researches for SEM has been evaluated with ‘+’. Deiffenbdck and Pizka [1] and Lawrie et
al. [2] evaluated with ‘4’ for POS-WORD, as homonyms in their research were related to
Word-POS Inconsistency. Abebe and Tonella [11] presented an approach that can be used
when writing code which supports automatic suggestion of appropriate words, thus we eval-
uated it as ‘+’ for SEM and SYN. However, the tool has not been fully developed yet. Spell
Checkers can contribute to an alleviation of SYN and can be used during code review and
code writing. Our approach covers relatively diverse inconsistencies as compared to others.

38 Suntae Kim, Dongsun Kim*

Table 10: Comparison with previous work (++: well-supported, +: supported, o: not sup-
ported).

Research Life-cycle Support |SEM|SYN |POS-WORD | POS-PHR | Tool Support
Deifenbock and Pizka [1] Code Review + o + o ++
Lawrie et al. [2] Code Review + o + o ++
Abebe et al. [5] Code Review o o o + ++
Abebe and Tonella [11] Code Writing + + o o o
Spell Checkers [6] Code Review/Writing | o + o o ++
Our Approach Code Review ++ | ++ ++ ++ ++

5.3 Comparing the Previous Tool with Our Approach

This section presents comparison between our approach and an existing technique. Among
the previously introduced techniques, we selected LBSDetector developed by Abebe et al. [5]
because it is publicly available?’ and provides a similar feature with phrase-POS inconsisten-
cies of this paper: Odd Grammatical Structure bad smells. Rules for detecting the bad smells
include:

e Class identifiers should contain at least one noun and should not contain verbs,
e Method identifiers should start with a verb, and
e Attribute identifiers should not contain verbs.

By using LBSDetector, we extracted bad smells for odd grammatical structure in JUnit.
Then, we compared the results with manual detection results by human subjects (see Sec-
tion 4.3.2) and those of our approach shown in Section 4. In particular, only phrase-POS
inconsistencies detected by our approach were used since the inconsistencies are conceptu-
ally compatible with odd grammatical structure defined in LBSDetector [5].

Initially, LBSDetector found 426 identifiers as bad smells for odd grammatical structure
while our approach detected 148 identifiers for phrase-POS inconsistency. We removed re-
dundant identifiers to compare them with inconsistencies detected by human subjects. As a
result, 303 and 123 identifiers were obtained for each approach. Then, we conducted pair-
wise comparison between the results by human subjects and each approach with respect to
precision, recall, and F-measure as shown in Table 11.

Table 11: Precision, Recall & F-Measure of our approach and LBSDetector

Tools Precision Recall F-Measure
CodeAmigo 0.73 (90/123) 0.67 (90/133) 0.70
LBSDetector 0.34 (106/303) 0.79 (106/133) 0.48

27 Lexicon BadSmell Wiki: http:/selab.fbk.edu/LexiconBadSmellWiki

Automatic Identifier Inconsistency Detection Using Code Dictionary 39

The precision of our approach was higher than LBSDetector. Note that our approach
figures out the POS of an identifier as a whole by parsing it while LBSDetector only finds
out whether a specific POS is used in an identifier. The different ways of POS interpreta-
tion might lead to the different precision. The recall of LBSDetector was higher than that of
our approach. This might be caused by less strict detection rules of LBSDetector than our
approach.

Human (133)

(HNL)-C
(24)

(90) (106)
82

CodeAmigo (123)

Fig. 13: Detection results by our approach, LBSDetector, and human subjects for JUnit.
“Phrase-POS inconsistency” of our approach and “odd Grammar structure bad smells” of
LBSD detectors were considered since these are only compatible inconsistency concepts be-
tween two approaches.

We examined the detection results to figure out the intersection and disjoint sets between
three different detection sources. The result of examination is shown in Figure 13. In the fig-
ure, we focused on the disjoint sets (i.e., the area A and B) of CodeAmigo and LBSDetector
detection results in the Human set. In the A area, four method identifiers, forValue, optional-
lyValidateStatic, or and allOf, were detected by human subjects and CodeAmigo together as
phrase-POS inconsistency while LBSDetector could not detect them. In addition, four class
identifiers, Assume, Ignore, Assert, Each, were not detected by LBSDetector. This might be
caused by missing information of WordNet and wrong NLP parsing by Minipar [26], which
is used in LBSDetector.

For the area B, CodeAmigo could not detect three identifiers Protectable, comparator,
and errors due to WordNet’s missing information. Ten identifiers were not detected by our
approach (e.g., RunWith and defaultComputer) due to the Stanford parser’s errors. In addi-
tion, CodeAmigo could not detect 11 custom naming conventions (e.g., attributes starting
with f- that JUnit denotes it as a field) but LBSDetector could. For example, the attribute
identifiers fUnassigned, fExpected, fActual were only detected by LBSDetector.

There were 33 false positives of our approach (see the C area in Figure 13) such as
testStarted(), testFailed(), fireTestRunStarted(), and formatClassAndValue(), each of which

40 Suntae Kim, Dongsun Kim*

Table 12: Comparison of CodeAmigo with LBSDetector (C-CodeAmigo, L-LBSDetector, /-
Intersection, Lu-Lucene, JM-JMeter, JHD-JHotDraw, SH3D-Sweet Home 3D, Avg-Average)

Lu Ant JM JHD SH3D C Avg

C 307 363 239 223 138 26 216
L 1,711 2,511 3,633 2,116 1,970 404 2,057.5

1 157 277 82 112 58 11 116.1
1/C 51.1% 76.3% 34.3% 50.2% 42.0% 42.3% 49.4%

I/L 9.2% 11.0% 2.3% 2.3% 2.9% 2.7% 5.6%

are caused by wrong NLP Parsing. LBSDetector detected 197 false positives (the D area). For
example, class identifiers such as Rule, TestClass, TestSuite, and method identifiers including
getlncludedCategory(), hasltem(), compact().

These false positives of both approaches were mostly caused by wrong NLP parsing. This
indicates that template-based preprocessing of an identifier is necessary before applying an
NLP parser to identifiers [9]. In addition, some of false positives such as setUp() and main()
were found in idioms of Code Dictionary. The gap of the false positives can be understood
as the phrase-POS inconsistency was more helpful than odd grammatical structure to reduce
false positive but less rigid rules can detect violations of custom naming conventions.

We also compared inconsistency results of odd grammatical structure bad smells detected
by LBSDetector and phrase-POS inconsistencies detected by our approach for six remaining
projects and summarized the results in Table 12. All redundant identifiers had been removed.
49.4% of inconsistency results by CodeAmigo were also discovered in those of LBSDe-
tector on average while 5.6% of inconsistencies by LBSDetector were found in those of
CodeAmigo. This implies that LBSDetector resulted in a higher number of false positives.

6 Conclusion

In this paper, we have presented an approach, based on a Code Dictionary, which detects in-
consistent identifiers. This approach first builds a code dictionary containing domain words
with dominant POS information and idioms that are frequently discovered in the popular open
source projects. The approach then detects semantic, syntactic, and POS inconsistent iden-
tifiers. The code dictionary helps filter out false alarms, and the evaluation results indicated
that our approach accurately detected inconsistent identifiers. 8 out of 10 identifiers detected
by our approach were found to be correctly identified, according to the human subjects. In
addition, an interview with six developers confirmed that our approach was helpful for au-
tomatically finding inconsistent identifiers. By using this approach, developers can identify
inconsistent identifiers, and can therefore improve software maintainability. For future work,
we are planning to survey diverse types of inconsistencies in the source code in order to im-
prove software maintenance.

Automatic Identifier Inconsistency Detection Using Code Dictionary 41

Acknowledgements.
This paper was supported by research funds of Chonbuk National University in 2014.

References

11.

12.

13.

15.

16.

17.

19.

20.

21.

. F. Deifenbick and M. Pizka. Concise and Consistent Naming. In Proceedings of International Workshop
on Program Comprehension(IWPC), pages 261-282, St. Louis, MO, USA, 2005.

. D. Lawrie, H. Field, and D. Binkley. Syntactic Identifier Conciseness and Consistency. In Proceedings
of IEEE International Workshop on Source Code Analysis and Manipulation(SCAM), pages 139-148,
Philadelphia, Pennsylvania, USA, 2006.

. R.C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall; 1 edition, 2008.

. Y. Higo and S. Kusumoto. How Often Do Unintended Inconsistencies Happen?-Deriving Modification
Pattern and Detecting Overlooked Code Fragments-. In Proceedings of the 28th International Conference
on Software Maintenance, pages 222 — 231, Trento, Italy, 2012.

. S.F. Abebe, S. Haiduc, P. Tonella, and A. Marcus. Lexicon Bad Smells in Software. In Proceedings of
Working Conference on Reverse Engineering, pages 95-99, Antwerp Belgium, 2008.

. E. Hughes. Checking Spelling in Source Code. IEEE Software, ACM SIGPLAN Notices, 39(12):32-38,
2004.

. D.P. Delorey, C.D. Kutson, and M. Davies. Mining Programming Language Vocabularies from Source
Code. In Proceedings of the 21st Conference of the Psychology of Programming Group(PPIG), London,
United Kingdom, 2009.

. D. Lawire, D. Binkley, and C. Morrel. Normalizaing Source Code Vocabulary. In Proceedings of the 17th
Working Conference on Reverse Engineering, pages 3—12, Boston, USA, 2010.

. S.L. Abebe and P. Tonella. Natural Language Parsing of Program Element Names for Concept Extraction.
In Proceedings of International Conference on Program Comprehension(ICPC), pages 156-159, Minho,
Portugal, 2010.

. J. Falleri, M. Lafourcade, C. Nebut, V. Prince, and M. Dao. Automatic Extraction of a WordNet-like

Identifier Network from Software. In Proceedings of International Conference on Program Comprehen-

sion(ICPC), pages 4—13, Minho, Portugal, 2010.

S. Abebe and P. Tonella. Automated identifier completion and replacement. In Proceedings of the Euro-

pean Conference on Software Maintenance and Reengineering (CSMR), pages 263 — 272, Genova, Italy,

2013.

E. W. Host and B.M. Ostvold. Debugging Method Names. Proceedings of the 23rd European Conference

on Object-Oriented Programming, Lecture Notes in Computer Science, 5653(1):294-317, 2009.

S. Lee, S. Kim, J. Kim, and S. Park. Detecting Inconsistent Names of Source Code Using NLP. Computer

Applications for Database, Education, and Ubiquitous Computing Communications in Computer and

Information Science, 352(1):111-115, 2012.

. Code Conventions for the Java Programming Language: Why Have Code Conventions, Sun Microsys-

tems,1999. http://www.oracle.com/technetwork/java/index-135089.html.

D. Lawrie, H. Feild, and D. Binkley. Quantifying identifier quality: an analysis of trends. Empirical

Software Engineering, 12(4):359-388, 2007.

N. Madani, L. Guerroju, M.D. Penta, Y. Gueheneuc, and G. Antoniol. Recognizing Words from Source

Code Identifiers using Speech Recognition Techniques. In Proceedings of 14th European Conference on

Software Maintenance and Reengineering(CSMR), pages 68—77, Madrid, Spain, 2010.

P. Goodliffe. Code Craft: The Practice of Writing Excellent Code. No Starch Press, 2006.

. WordNet: A lexical database for English, Home page,2014. http://wordnet.princeton.edu/.

R.N. Haber and R.M. Schindler. Errors in proofreading: Evidence of Syntactic Control of Letter Process-

ing? Journal of Experimental Psychology: Human Perception and Performance, 7(1):573-579, 1981.

A.F. Monk and C. Hulme. Errors in proofreading: Evidence for the Use of Word Shape in Word Recog-

nition. Memory & Cognition, 11(1):16-23, 1983.

B. Caprile and P. Tonella. Nomen Est Omen: Analyzing the Language of Funtion Identifiers. In Proceed-

ings of Working Conference on Reverse Engineering, pages 112—122, Altanta, Georgia, 1999.

42

Suntae Kim, Dongsun Kim*

22.

23.
24.

25.
26.

. K Toutanova, D. Klein, C. Manning, and Yoram Singer. Feature-Rich Part-of-Speech Tagging with a

28.
29.

30.

31.

39.
40.

41,
42.
43,
44.
45,

The Stanford Parser: A statistical parser, Home page,2014. http://nlp.stanford.edu/software/lex-
parser.shtml.

Apache OpenNLP Homepage,2014. http://opennlp.apache.org/.

D. Binkley, M. Hearn, and D. Lawrie. Improving Identifier Informativeness using Part of Speech Infor-
mation. In Proceedings of the S8th Working Conference on Mining Software Repositories, pages 203 —
2006, New York, NY, 2011.

S. Guapa, S. Malik, L. Pollock, and K. Vijay-Shanker. Part-of-Speech Tagging of Program Identifiers for
Improved Text-Based Software Engineering Tools. In Proceedings of 21st International Conference on
Program Comprehension (ICPC), pages 3 — 12, San Francisco, CA, 2013.

MINIPAR Homepage,2014. http://webdocs.cs.ualberta.ca/ lindek/minipar.htm.

Cyclic Dependency Network. In Proceedings of HLT-NAACL, pages 252 — 259, 2003.

The Penn Treebank Project, 2013. http://www.cis.upenn.edu/ treebank/.

A. Budanitsky and G. Hirst. Evaluating WordNet-based Measures of Lexical Semantic Relatedness.
Computational Linguistics, 32(1):13—47, 2006.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics
Doklady, 10(8):707-710, 1966.

W.B. Frakes and R. Baeza-Yates. Information Retrival : Data Structures and Algorithms. Englewood
Cliffs, J.J.: Prentice-Hall, 1992.

. Apache Lucene Homegage,2013. http://lucene.apache.org/core/.

. Apache Ant Homepage,2013. http://ant.apache.org/.

. Apache JMeter Homepage,2013. http://jmeter.apache.org/.

. JUnit Homepage,2013. http://www.junit.org/.

. JHotDraw 7 Homepage,2013. http://www.randelshofer.ch/oop/jhotdraw/.

. Sweet Home 3D Homepage,2013. http://sourceforge.net/projects/sweethome3d.

. D. Klein and C.D. Manning. Accurate Unlexicalized Parsing. In Proceedings of the Meeting of the

Association for Computational Linguistics, pages 423-430, Sapporo, Japan, 2003.

Code Amigo Validation WebPage,2014. http://54.250.194.210/.

D.M. Powers. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness &
Correlation. Journal of Machine Learning Technologies, 1(1):37-63, 2011.

Eclipse-CS Check Style Homepage,2013. http://eclipse-cs.sourceforge.net/.

Find Bugs in Java Programs Homepage,2013. http://findbugs.sourceforge.net/.

Joshua Bloch. Effective Java Programming Language Guide. Sun Microsystems, 2001.

J. Bolch. Effective Java (2nd Edition). Addison-Wesley; 2 edition, 2008.

V. Arnaoudova, M.D. Penta, G. Antoniol, and Y. Gueheneuc. A New Family of Software Anti-Patterns:
Linguistic Anti-Patterns. In Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), pages 187 — 196, Genova, Italy, 2013.

Automatic Identifier Inconsistency Detection Using Code Dictionary

43

Appendix A. List of Domain Word POSes and Idioms

44 Suntae Kim, Dongsun Kim*

Table 13: Domain words with the dominant POS information extracted from the API docu-
ment of projects with the parameter Tyyp = 100 and Tpg = 0.8 (Strikeeunt indicates a word
evaluated as invalid in the preliminary study. The precision is computed as 176/191 =0.921).

Word POS | Frequency Word POS | Frequency Word | POS | Frequency Word | POS | Frequency
abstract | noun 189 entry noun 147 manager |noun 146 selection |noun 207
-aceessible |noun 226 error noun 299 map |[noun 189 separator | noun 110
action |noun 322 event noun 299 max noun 197 server |noun 120
add verb 712 exception |noun 557 menu | noun 248 service |noun 138
annotation |noun 318 factory |noun 359 message |noun 204 set verb 4946
annotations | noun 185 field noun 244 method |noun 131 sheet |noun 147
array noun 206 file noun 689 mode |noun 173 size |noun 401
attribute | noun 243 fill noun 91 model |noun 250 slide |noun 96
auto noun 138 filter noun 223 mouse | noun 123 source |noun 156
background | noun 124 first noun 116 names |noun 121 spacing |noun 119
bar noun 172 flag noun 138 ao noun 99 split |noun 89
base noun 110 flags noun 106 node |noun 195 spem [noun 124
basie noun 227 focus noun 143 num |noun 146 st noun 222
bean noun 230 font noun 212 number |noun 228 state |noun 140
block noun 123 format |noun 299 object |noun 302 stream | noun 328
border |[noun 445 frame noun 143 offset |noun 142 string | noun 397
bottom |noun 122 get verb 8146 output |noun 206 style |noun 181
box noun 162 e noun 119 page |noun 151 supperted | noun 95
button |noun 224 grapumatieal | noun 134 paint | verb 190 system |noun 148
byte noun 101 group noun 130 pane |[noun 293 tab noun 145
cell noun 461 gui noun 124 panel |noun 101 table |[noun 303
change |noun 138 handler |noun 291 parameter | noun 111 tag noun 284
char noun 138 header |noun 235 parser |noun 112 target |noun 105
character |noun 105 helper |noun 179 part |noun 108 task |noun 117
chart noun 138 hssf noun 113 path [noun 295 test noun 168
child noun 144 html noun 118 pattern |noun 105 text noun 774
chooser |noun 124 http noun 124 policy |noun 159 thread |noun 147
class noun 383 icon noun 236 position |noun 113 time |noun 229
code noun 122 id noun 424 properties | noun 181 title |noun 113
color noun 408 image noun 218 property |noun 531 tool |noun 102
column |noun 228 impl noun 96 quaqua |noun 238 top noun 135
command |noun 125 index noun 308 reader |noun 145 tree noun 366
component |noun 236 info noun 251 record |noun 398 type |[noun 942
content | noun 182 input noun 253 ref noun 117 ui noun 464
context |noun 259 int noun 135 reference | noun 98 anknews |noun 97
control [noun 106 internal |noun 124 relations | noun 118 url noun 122
core noun 219 is verb 1699 remove | verb 333 use noun 129
eount [noun 261 item noun 114 report | noun 111 user |noun 120
create verb 809 java noun 141 request |noun 100 value |noun 525
data noun 491 key noun 428 resource |noun 183 version |noun 137
date noun 160 label noun 144 result |noun 141 vertieal |noun 102
default |noun 599 layout noun 154 right |[noun 192 view |noun 151
display |noun 92 length noun 120 root |noun 112 vk noun 188
document |noun 224 line noun 252 row noun 323 width [noun 166
editor |noun 134 list noun 302 sample |noun 94 window |noun 120
element |noun 265 listener | noun 504 sampler |noun 107 word |noun 160
end noun 167 location | noun 117 scroll [noun 137 xml noun 249
engine |noun 125 log noun 92 seleeted | noun 102

Automatic Identifier Inconsistency Detection Using Code Dictionary 45

Table 14: Idiom identifiers extracted from the API document of projects listed in
where T(FO) =2, T(FOps) =2, T(FOuy) =2, and T(F Oper) = 10.

Table 1,

Identifier Type Identifier Type Identifier Type
abs Met intValue Met pow Met
actionPerformed Met || itemStateChanged | Met || preferredLayoutSize | Met
ALL Attr keyPressed Met previous Met
ANY Attr keyReleased Met propertyChange Met
available Met keySet Met random Met
BOOLEAN Attr lastIndexOf Met readDouble Met
copyOfRange Met layoutContainer Met || reflectionHashCode | Met
debug Attr length Met requestFoeus Met
DEBUG Attr LONG Attr setup Met
decrement Met longValue Met shortValue Met
DEFLATED Attr lookup Met stateChanged Met
DELETE Attr main Met substring Met
element Met markSupported Met text Met
elements Met max Met || treeNodesChanged | Met
entrySet Met || maximumLayoutSize | Met || treeNodesInserted | Met
error Met min Met || treeNodesRemoved | Met
FALSE Attr || minimumLayoutSize | Met || treeStructureChanged | Met
fatal Met mouseClicked Met validIndex Met
first Met mouseDragged Met valueChanged Met
getlayoutAligamentX | Met mouseEntered Met valueOf Met
getlayoutAlignmenty¥ | Met mouseExited Met values Met
getX Met mouseMoved Met verbose Attr
getY Met mousePressed Met VERBOSE Attr
IGNORE Attr mouseReleased Met WARN Attr
increment Met newlInstance Met warning Met
indexOf Met next Met writeDouble Met
info Met notEmpty Met

