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Abstract

Real-world programs are neither monolithic nor static — they are con-
structed using platform and third party libraries, and both programs and
libraries continuously evolve in response to change pressure. In case of
the Java language, rules defined in the Java Language and Java Virtual
Machine Specifications define when library evolution is safe. These rules
distinguish between three types of compatibility - binary, source and be-
havioural. We claim that some of these rules are counter intuitive and
not well-understood by many developers. We present the results of a
survey where we quizzed developers about their understanding of the var-
ious types of compatibility. 414 developers responded to our survey. We
find that while most programmers are familiar with the rules of source
compatibility, they generally lack knowledge about the rules of binary
and behavioural compatibility. This can be problematic when organisa-
tions switch from integration builds to technologies that require dynamic
linking, such as OSGi. We have assessed the gravity of the problem by
studying how often linkage-related problems are referenced in issue track-
ing systems, and find that they are common.

1 Introduction

Modern programming languages like Java support dynamic linking where a
client program can be executed with libraries that have been compiled sepa-
rately. While the libraries used at runtime are usually also present when the
program is compiled, it is not required that the same versions of these libraries
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are used for compilation. This addresses some important use cases, such as the
deployment of newer versions of a library with improvements such as bug fixes or
better performance. As long as the APIs (application programming interfaces)
defined in these libraries don’t change, this works well. Unfortunately, APIs do
change when libraries evolve [13, 8, 12]. When this happens, programmers are
suddenly confronted with different sets of rules [9]: the rules of source compat-
1bility are used by the compiler when a program is compiled against a library,
while the rules of binary compatibility are used when a program is linked against
a library that has been compiled separately. To make things even more com-
plicated, the Java Language Specification defines binary compatibility strictly
with respect to linking [15, ch. 13]. This does not cover all problems that can
occur when the respective program is executed with a particular library in the
classpath. This leads to a third type of compatibility, behavioural compatibility.

To illustrate the different types of compatibility, consider the following ex-
amples in listing 1 and 2. Both examples consist of a class Main that is compiled
with the first version of a class Foo in a library 1ib-1.0.jar, and then executed
with another version of Foo in a library 1ib-2.0. jar.

// 1ib-1.0.jar
package lib.specialiseReturnTypel;
public class Foo {
public static java.util.Collection getColl() {
return new java.util.ArrayList();
}
}
// 1ib-2.0. jar
package lib.specialiseReturnTypel;
public class Foo {
public static java.util.List getColl() {
return new java.util.ArrayList();
}
}
// client program
package specialiseReturnTypel;
import lib.specialiseReturnTypel.Foo;
public class Main {
public static void main(String[] args) {
java.util.Collection coll = Foo.getColl();
System.out.println(coll);

Listing 1: Specialising the return type of a method

These two examples demonstrate that the different types of compatibility
are inconsistent and not intuitive. In the first example, the return type of a
used method is specialised. While this is usually source compatible!, it is not

IThe exception is when the method is overridden
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binary compatible as the linker does not use subtype reasoning when a method
reference is resolved. In this case, a NoSuchMethodError is thrown. In other
words, the only required correction is recompilation of the program with version
2.0 of the library. No source code modification is needed.

// 1ib-1.0.jar
package lib.exceptions2;
public class Foo {
public static void foo() {}
}
// 14b-2.0. jar
package lib.exceptions2;
import java.io.IOException;
public class Foo {
public static void foo() throws IOException {
throw new IOException();
}
¥
// client program
package exceptions2;
public class Main {
public static void main(String[] args) {
lib.exceptions2.Foo.foo();

}

Listing 2: Adding a checked exception to a method

The second example shows that while information about the exceptions
thrown is present in the byte code as part of the signature |20, ch. 4.3.4], and
can even be queried through the reflection API, this information is not part of
the descriptor [20, ch. 4.3.3] used for linking. I.e., the uncaught checked excep-
tion is not detected through static analysis during linking, but only at runtime
when the exception is actually thrown when foo () is invoked, and the program
exits with an error. This is therefore an example of behavioural incompatibility,
although it would be more intuitive if this was binary incompatible.

The mismatch between the different notions of compatibility has increased as
the Java language has evolved. The development of Java language was driven by
programmer productivity, while preserving binary compatibility [10]. Features
like nested and inner classes, generic types and auto boxing / unboxing have
added simplicity and expressiveness to the language with minimal or no changes
to the byte code format. In case of generic types, this has lead to erasure. But
even changing a field type from a primitive type to its wrapper type or vice versa
breaks binary compatibility (listing 3), even though this problem can easily
be solved by recompilation as the compiler applies auto boxing or unboxing,
respectively.

// 1ib-1.0.jar
package lib.primwrapil;
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public class Foo {
public static int MAGIC = 42;
}
// 1ib-2.0. jar
package lib.primwrapil;
public class Foo {
public static Integer MAGIC = new Integer(42);
}
// client program
package primwrapl;
import lib.primwrapl.Foo;
public class Main {
public static void main(String[] args) {
int i = Foo.MAGIC;
System.out.println(i);

Listing 3: Wrapping a primitive field

It is reasonable to ask here why this matters. In many cases, a project is
built (compiled and unit tested) against the very libraries it uses at runtime,
and widely used build and continuous integration tools facilitate this approach.
This circumvents the problem. However, if libraries are individually upgraded,
problems start to occur. The JLS envisages this approach: “Development tools
for the Java programming language should support automatic recompilation as
necessary whenever source code is available. Particular implementations may
also store the source and binary of types in a versioning database and implement
a ClassLoader that uses integrity mechanisms of the database to prevent linkage
errors by providing binary-compatible versions of types to clients” [15, ch. 13].
While preserving binary compatibility is a major objective for the JRE [10], this
is not the case for many other libraries. In our previous work [12] we have shown
that binary compatibility is often broken when open source libraries evolve. In
particular, this applies to popular libraries such as ANT, ANTLR, Hibernate
and Lucene. The major reason that this matter is, however, the popularity of
OSGi [25] — a framework that heavily relies on dynamic linking to support a
flexible lifecycle for components in long-running, high-availability applications.
The problem might be further accelerated when modularity support is added to
the Java platform (project Jigsaw), although it is not clear at this point whether
Jigsaw will support dynamic modules [4].

The rest of this paper is organised as follows. In section 2, we discuss the
design of the survey we conducted to find out what developers know about the
different types of compatibility. We analyse the responses in section 3. In section
4, we try to assess the size of the problem in practice by analysing issue tracking
systems for references to errors caused by linkage related problems. In section
5 we discuss several treats to validity. We finish the paper with a conclusion,
including a discussion of related and future work.



2 Survey Design

The survey is based on a set of Java library evolution puzzlers we have developed
for training?, in a style inspired by [5]. The full survey contains 7 questions about
the background of the respondent, and 25 puzzlers — 21 standard puzzlers with
2 questions each, and 4 constant inlining puzzlers with 1 question per puzzler
— a total of 46 technical questions. A few days after the survey had opened we
realised that many respondents only answered the first few questions, and then
abandoned the survey. We therefore created a second, shorter survey with the
same set of 7 background questions, 9 standard and 4 constant inlining puzzlers,
a total of 22 technical questions. The question in the short survey are a subset
of the questions in the full survey.

2.1 Respondent Background Questions

We have asked respondents the following set of background questions to assess
their level of relevant experience.

1. Which programming languages do you regularly use? Choices were: Java,
C, C++, Python, Ruby, ObjectiveC, C#, JavaScript, other JVM-based
languages (Scala, Groovy, etc), other.

2. How many years of Java programming experience do you have? Choices
were: less than 1 year, 1-3 years, 4-10 years, more than 10 years.

3. How would you rank your Java expertise? Choices were: novice, some
experience, knowledgeable, expert, guru.

4. Are you familiar with the following Java concepts? Only answer this ques-
tion if you chose novice as an answer to the previous question. Choices
were: interfaces, inheritance, the difference between source code and byte
code, the difference between errors, checked and runtime exceptions, wrap-
per types (boxing/unboxing), generic parameter types, the classpath.

5. Which of the following technologies have you used? Choices were: Spring,
OSGi, OSGi extensions (Eclipse plugins, Spring DM, etc), WebStart,
J2EE application servers, ASM, BCEL or other byte code analysis tools,
AspectJ or other AOP tools, Antlr or other parser generators, Ant, Maven
or other build tools, Jenkins, Hudson or other continuous integration tools.

6. Have you designed frameworks, libraries or APIs? This was a yes/no
question.

7. What is your main occupation? Choices were: student, academic, industry
research, programmer, project manager.

2http://www.slideshare.net/JensDietrich/presentation-30367644



2.2 Technical Questions Overview

The technical questions are summarised in table 1. Each question in the table
belongs to a category and the question’s puzzler is implemented as a simple
program. Puzzlers are split into packages, the respective package names are
shown in the third table column. Given a package name <pck>, each puzzler
consists of three classes named as follows:

1. a class 1ib.<pck>.Foo packaged in a library 1ib-1.0. jar
2. a (modified) class 1ib.<pck>.Foo packaged in a library 1ib-2.0. jar

3. a class <pck>.Main with a main method that uses 1ib.<pck>.Foo

The code and an ANT script to execute the experiments is available from
the following public code repository:

https://bitbucket.org/jensdietrich/java-library-evolution-puzzlers

The source code for the questions is in the /examples folder and its respec-
tive sub folders for both versions of the library and the client program. The
root folder contains an ANT script that can be used to compile and execute the
respective scenario. The correct answers are defined with respect to the output
of this script, confirmed by cross-referencing the output with the Java Language
Specification [15]. Given a unique package name <pck>, the following command
can then be used to run the compilation and linking script for this puzzler /
question:

ant -Dpackage=pck

There are two types of problems. All problems except the problems in the
constant inlining category are standard puzzlers. For each standard puzzler, we
have asked the following two questions:

1. Can the version of the client program compiled with 1ib-1.0.jar be
executed with 1ib-2.0. jar ? The three possible answers are:
(a) no, an error occurs
(b) yes, but the behaviour of the program changes
(c) yes, and the behaviour of the program does not change
2. Can the client program be compiled and then executed with 1ib-2.0. jar
? The three possible answers are:
(a) no, compilation fails

(b) yes, but the behaviour of the program is different from the program
version compiled and executed with 1ib-1.0. jar



(c) yes, and the behaviour of the program is the same as the program
version compiled and executed with 1ib-1.0. jar

Note that we avoided references to the standard definitions of binary and
source compatibility in the specification documents on purpose, as we can not
assume that the majority of developers is familiar with these documents. We
defined a behaviour change as follows in the survey: “a behaviour change is either
a different console output or a situation where the execution of one program
version throws an exception, but the the execution of the other program version
does not”.

Table 1 uses wildcards in the question ids. The wildcard is replaced by “-
UPGR” (dynamic upgrade) for the first question, and by “RECP” (recompile
and upgrade) for the second question. For the constant inlining category, only
one question is asked. This will be explained below. We refer to these three
question types as UPGR, RECP and INL, respectively.

2.3 Interface Puzzlers

The puzzlers in this category describe problems that occur when methods are
added to or removed from interfaces implemented by a client program. In IF1, a
method is added to the interface that is not actually being used by the class im-
plementing the interface. This is binary compatible, but not source compatible.
To solve the other problems in this category, respondents also had to understand
the @Qverride annotation (IF2, IF3) and Java method lookup (IF4).

2.4 Method Descriptor Puzzlers

The descriptor of a method is the combination of parameters plus the return
type, and this information is used at runtime for linking and method dispatch
[15, ch. 15.12.2]. When refactoring methods, specialising return types and
generalising parameter types is generally safe. This can be seen as special cases
of strengthening post-conditions and weakening pre-conditions, respectively.

However, in both cases the method descriptors are changed, causing binary
incompatibility. More precisely, this results in an instance of NoSuchMethodError
being thrown. SP_RET1 is shown in listing 1. The other questions in this cat-
egory are variants of this question, also including the narrowing of primitive
return types (SP_RET2) and the (unsafe) widening of primitive parameter
types (GEN_PAR3). GEN_PAR2 is a scenario where generalising a parameter
type leads to ambiguity and compilation fails.

2.5 Exception Puzzlers

Exceptions (including checked exceptions) are not part of the descriptor. This
means that changes to the exceptions declared by a method like adding or gen-
eralising are generally binary compatible but often behavioural incompatible.



Table 1: Question Overview

category question id package name short sur-
vey
interfaces IF1-* addtointerface yes
interfaces IF2-* removefrominterfacel no
interfaces IF3-* removefrominterface2 no
interfaces IF4-* removefrominterface3 no

method descriptors SP_RETI-* specialiseReturnTypel yes
method descriptors SP_RET2-* specialiseReturnType2 no
method descriptors SP_RET3-* specialiseReturnType3 no
method descriptors SP_RET4-* specialiseReturnType4 no
method descriptors GEN_PARI1-* generaliseParamTypel yes
method descriptors GEN_PAR2-*  generaliseParamType2 no
method descriptors GEN_PAR3-*  generaliseParamType3 yes

exceptions ADD EXC1-* exceptionsl no
exceptions ADD EXC2-*  exceptions2 yes
exceptions SPEC EXC1- exceptions4 no
*
exceptions REM_ EXC1-  exceptionsh yes
*
exceptions REM EXC2-  exceptions6 no
*
auto (un)boxing BOX1-* primwrapl yes
auto (un)boxing BOX2-* primwrap?2 no
generic param types GENI-* generics] yes
generic param types GEN2-* generics2 yes
constant inlining CON1 constantsl yes
constant inlining CON2 constants2 yes
constant inlining CON3 constants3 yes
constant inlining CON4 constants4 yes
others NEST-* ghost no

This is the case in example ADD EXC2 (listing 2). ADD EXCI is a sim-
ilar scenario using a runtime exception. On the other hand, certain changes
to declared exceptions that seem uncritical like removing a declared exception
can lead to source incompatibilty as the compiler detects that catch blocks be-
come unreachable [15, ch. 14.21]. Question REM EXC1 is based on such a
scenario. Question REM EXC?2 is noteworthy as the behaviour of the current
Java (OpenJDK SE Runtime Environment 1.7.0 45-b18) implementation dif-
fers from the specification due to a bug in the JLS. This bug was reported and
accepted®, and we defined the correct answer for this question with respect to
the behaviour of the Java 7 implementation used.

3Email conversation with Alex Buckley, 11 October 2013
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2.6 Auto (Un)Boxing Puzzlers

Auto boxing / unboxing were introduced in Java 5.0. This feature hides the
differences between object (wrapper) types and their corresponding primitive
types. However, on the byte code level they are still treated as completely
different types. In BOX1 (listing 3), the library declares a public field of type
int that is read by the client to assign a value to a variable declared as int. The
type of this field is then changed to java.lang.Integer. This is not binary
compatible but source compatible as the compiler can apply auto unboxing.
More precisely, this results in an instance of NoSuchFieldError to be thrown.
BOX2 reverses this scenario — the field type is changed from java.lang.Integer
to int. The result is the same.

2.7 Generic Type Puzzlers

Generic types were also introduced in Java 5.0. Erasure [15, ch. 4.6] is used to
achieve binary compatibility so that existing non-generic clients can use generic
code. The questions in this category describe two situations resulting from
this. In the first puzzler (GEN1) the library defines a method List<String>
getList () that returns a list containing ¢‘42’’. This method is then changed
to a method List<Integer> getList() that returns a list containing 42. The
client accesses the list, assigns it to a variable List<String> list and prints
its size to the console. Due to erasure, this is binary compatible, but not source
compatible as the compiler detects that the assignment is illegal. The second
puzzler (GEN2) is very similar, but this time the client loops over the list
and prints its element to the console. This is still binary compatible but fails
with a class cast exception due to the checkcast statements generated by the
compiler when the elements of the list are accessed. This is therefore an example
of behavioural incompatibility.

2.8 Constant Inlining Puzzlers

The structure of the four questions in this category is slightly different. Listing
4 shows the code used in CONI1.

// 1ib-1.0.jar
package lib.constantsi;
public class Foo {
public static final int MAGIC

42;
}
// 1ib-2.0. jar
package lib.constantsi;
public class Foo {
public static final int MAGIC

43;
}

// client program

package constantsi;

import lib.constantsl.x*;
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public class Main {
public static void main(String[] args) {
System.out.println(Foo.MAGIC) ;
}

Listing 4: Constant Inlining

There is only one question for each problem in this group: whether 42 or
43 is printed to the console when the program compiled with version 1.0 of the
library is executed with version 2.0 of this library. CON2 uses strings instead
of integers, CON3 defines an integer constant using an expression instead of a
literal, and in CON4 the wrapper type java.lang.Integer is used instead of
int. It turns out that constants of type int and String are inlined, and that
the compiler uses constant folding to evaluate expressions. This means that 42
is printed when the programs in CON1, CON2 or CON3 are executed. However,
Integer values are not inlined, and 43 is printed in case of CON4.

2.9 Other Puzzlers

NEST is a scenario where the client program uses a static method defined in a
class 1ib.ghost.Foo.Bar. In the first version, Bar is a static nested class within
1ib.ghost.Foo, while in the second version Bar is refactored to a top-level class
within the package lib.ghost.Foo. This is binary incompatible but source
compatible as the byte code represention changes from 1ib/ghost/Foo$Bar to
lib/ghost/Foo/Bar while the source code representation (1ib.ghost.Foo.Bar)
remains the same.

3 Responses

3.1 Access to Raw Survey Data
The raw data exported from SurveyMonkey can be accessed in the following
repository:

https://bitbucket.org/jensdietrich/java-library-evolution-puzzlers

The data is available as a set of Excel files in the /survey/results/rawdata/
folder.

3.2 Overview

The survey was open between 15 November and 31 December 2013. During
this period, 184 respondents started the short version of the survey, while 241
respondents started the full version. We asked respondents doing the full survey
whether they had already completed the short survey. Only 11 respondents
answered yes. Assuming that everybody answered this question correctly, and

10



nobody completed the short survey after the full survey, this gave us 414 unique
respondents. To avoid double counting, we removed all answers for questions
that are in both surveys for responses by people who indicated that they had
completed both surveys.

The number of valid answers for the technical questions ranged from 49
(REM_EXC2-RECP) to 295 (IF1-UPGR and IF1-RECP).

3.3 Background of Respondents

The vast majority of respondents are programmers (figure 1), have 4 or more
years of experience with Java technologies (figure 3) and self-assess their famil-
iarity with Java technology as either knowledgeable or expert (figure 2).

30

W student

M academic
industry research

W programmer

M project manager
not answered

282

Figure 1: Occupation of survey respondents

3.4 Analysis

Of all the answers provided by respondents, only 62% were correct. The per-
centage of correct answers is much better for the RECP questions (76%) than
for the UPGR (51%) and INL (52%) questions. This indicates that respondents
are more familiar with the rules of source compatibility than with the rules of
binary and behavioural compatibility.

Figures 4, 5 and 6 show the total numbers of correct and incorrect answers
for the questions in the UPGR, RECP and INL categories, respectively. The
spikes in the total number of responses represent questions that were part of the
short survey. In general, there are more wrong answers for the questions that
were also part of the short survey. This is due to the fact that more experienced
developers completed the full survey.

The correct answer ratio is particularly low for the first motivational example
discussed in the introduction: only 27% of respondents answered SP_RETI-

11



M novice

W some experience
knowledgable

W expert

W guru
not answered

156

Figure 2: Self-assessed level of Java experience of survey respondents

M less than one

M one to three
four to ten

B more than ten
not answered

184

Figure 3: Years of Java experience of survey respondents

UPGR (listings 1) correctly. Other questions with a high percentage of wrong
answers are GEN PAR1-UPGR (27% correct, generalising a parameter type is
binary incompatible), and GEN2-UPGR (20%). In the case of GEN2-UPGR
(see also section 2.7), many respondents answered that the upgraded library is
binary incompatible. However, it is only behavioural incompatible — no linkage
error is generated, but a runtime exception (ClassCastException) is thrown
when the program is executed.

While most respondents answered the RECP type questions correctly, only
30% got GEN_PAR3-RECP (listing 5) right. This question is inspired by the
classical Java puzzlers [5], where compilation succeeds but the behaviour of the

12
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question id

SPEC_EXC1

-UPGR N
-UPGR I

-UPGR [l

BOX1-UPGR NN

BOX2-UPGR Il

REM_EXC1

REM_EXC2

GEN1-UPGR I
GEN2-UPGR IS

NEST-UPGR

Figure 4: Overview — answers for UPGR (library upgrade) questions

program is changed by the recompilation due to the loss of precision when the

widening conversion from int to float is performed [15, ch. 5.1.2].

// 1ib-1.0.jar
package lib.generaliseParamType3;
public class Foo {

}

public static boolean isEven(int i) {
return i%2==0;

}

// 1ib-2.0. jar
package lib.generaliseParamType3;
public class Foo {

}

public static boolean isEven(float i) {
return i%2==0;

}

// client program
package generaliseParamType3;

import lib.generaliseParamType3.Foo;
public class Main {

public static void main(String[] args) {
int n = Integer.MAX_VALUE;
System.out.println(Foo.isEven(n));

13
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SPEC_EXC1

question id

Figure 5: Overview — answers for RECP (recompilation) questions

Listing 5: Generalising a Parameter Type

Constant inlining is not well understood either, only 53% of respondents
answered the most simple question (CON1), inlining of a constant defined by
an int literal, correctly. This number drops further to 33% for inlining of string
type constants (CON2), and 46% for inlining of constants defined by expres-
sions (inlining through constant folding, CON3). The relatively high number
of correct answers for CON4 is probably misleading. Constants declared us-
ing wrapper types (Integer in this case) are not inlined, and we assume that
many respondents answered this question accidentally correctly as they were
not aware of the concept on inlining in the first place.

Figures 7 and 8 show the dependency of correct answers on years and level of
experience with Java. Not surprisingly, answers improve with increasing experi-
ence, but not to the extent we had expected. Even (self-assessed) expert / guru
users and users with more than 10 years experience of Java technology answered
only 60% of the questions in the UPGR category correctly. Surprisingly, the
number of correct answers from participants with less than one year experience
is slightly higher than the respective number for participants with 1-3 years ex-
perience. We think that this is caused by a few undergraduate students taught
by the authors participating in the study. This particular cohort has some basic
understanding of some of the issues involved.

14
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Figure 6: Overview — answers for constant inlining puzzler questions
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Figure 7: Ratio of correct answers by years of java experience

We further tried to work out the notion of an expert user by combining
answers to the several contextual questions in the beginning of the survey. For
this purpose, we defined a pro respondent profile: a respondent with frame-
work design experience, an expert or guru level of experience, at least four years
of experience with Java technology and knowledge in at least one additional
programming language. As OSGi is the “killer technology” for dynamic library
upgrades, we also defined a second pro-+osgi profile based on the same criteria as
pro plus the requirement that the respondent must have OSGi experience. For

15
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Figure 8: Ratio of correct answers by self-assessed level of experience

both profiles, we still had reasonable numbers of respondents and answers. The
respective results are summarised in table 2. Not surprising, pro and pro+osgi
respondents answered more questions correctly. pro-+osgi respondents do sig-
nificantly better for the questions in the UPGR category — they clearly better
understand binary compatibility. However, overall the results in this category
are still lower than expected.

Table 2: Question Overview

| questions | | all | pro | pro + osgi |
correctness 63% | 74% | 78%
all answer count 5006 | 680 | 474
respondent count | 414 | 38 23
correctness 51% | 62% | 69%
UPGR answer count 2270 | 308 | 217
respondent count | 414 | 38 23
correctness 76% | 88% | 89%
RECP answer count 2263 | 308 | 217
respondent count | 414 | 38 23
correctness 53% | 67% | 7T0%
INL answer count 473 64 40
respondent count | 414 | 38 23

16



4 Impact Analysis

4.1 Introduction

While the survey results demonstrate that many developers have only limited
knowledge about the different kinds of compatibility rules in Java, it is not clear
what impact this has on the quality of systems and developer productivity. In
particular, binary compatibility matters when systems use partial upgrades.
This is the case for OSGi-based technology that is used in many developer
tools and in major application servers. We therefore suspect that the lack of
knowledge on compatibility has an impact on both the quality of products and
the productivity of developers. In our previous work, we found some evidence
that compatibility-related problems are common in real-world systems, and can
break compatibility if libraries are updated [12].

4.2 Methodology

To investigate the gravity of the problems caused by the lack of knowledge
about compatibility rules, we focused on binary compatibility. The reason is
that binary compatibility has a very precise definition in the Java Language
Specification [15, ch. 13], and violating its rules results in certain types of linkage
errors. These errors instantiate subclasses of java.lang.LinkageError. This
makes it easy to search for these problems in issue tracking systems as many
developers copy and paste stack traces and error messages containing the fully
qualified class name of the respective error class.

It is difficult to interpret absolute numbers, i.e., the number of reports for a
particular error, correctly. We therefore decided to assess the number of linkage
errors reported relative to the number of reported errors and exceptions widely
considered as common. We selected two (non linkage) errors and two runtime
exceptions for the baseline?:

1. NullpointerException — this is probably the most frequently encoun-
tered exception in Java, thrown when an application attempts to use null
in a case where an object is required.

2. ClassCastException — thrown to indicate that an application has tried
to cast an object to a subclass of which it is not an instance.

3. StackOverflowError — thrown if an application recurses too deeply, usu-
ally the result of an erroneous termination condition.

4. OutOfMemoryError — thrown if the application runs out of heap space, e.g.
if too many objects have been allocated and cannot be garbage collected.

By using these four classes as a base line, we assume that these errors and
exceptions all represent problems that are frequently encountered by developers.

4All error and exception classes referenced in this section are defined in the java.lang
package.
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In most cases, they result from mistakes made by programmers, as opposed to
integration problems caused by the configuration of classpath settings or build
scripts. We have compared the frequency of problems with references to these
errors and exceptions with the following set of linkage errors:

1. NoSuchMethodError — thrown if an application tries to call a method, and
this method does not exist. This usually indicates an incompatible change
of the name or signature of the method. Many of the puzzlers, including
most questions in the method descriptor category, cause this error to be
thrown.

2. NoSuchFieldError — thrown if an application tries to access a field, and
this field does not exist. This usually indicates an incompatible change of
the name or the type of the field. The puzzlers in the auto (un)boxing
category cause this error to be thrown.

3. InstantiationError — thrown when an application tries to instantiate
an abstract class or interface using the new keyword.

4. IncompatibleClassChangeError — thrown when an incompatible class
change has occurred to some class definition. This is the superclass of
NoSuchMethodError, NoSuchFieldError and InstantiationError.

5. NoClassDefFoundError — thrown if an application tries to load a class,
and this class cannot be found. This might be the result of changing the
name of a class, or moving it into another package.

6. ClassFormatError — thrown when the JVM encounters a malformed class
file. A common reason is that the version of the byte code is not supported
by the JVM used.

We have used the Google search engine to assess the frequency of errors
and exceptions reported. While this methods is not very precise, it is sufficient
for us as we are mainly interested in the number of linkage errors relative to
well-known programming errors and exceptions. We assume that both linkage
errors and the errors and exceptions used for baselining equally suffer from false
positives and false negatives.

We selected three popular open sources hosting sites according to [17]: GitHub,
SourceForge and Google Code. We used the inurl attribute in Google queries
to restrict the search to the issues tracking system of the respective project
hosting services. We also searched the popular Stackoverflow Q&A site. The
queries are listed in table 3, all queries were executed on 14 March 2014.

4.3 Results

Table 4 shows the number of pages with references to the respective errors
and exceptions found. The ratios differ significantly between different hosting
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Table 3: Google queries used

’ site \ query

github java.lang.NoSuchMethodError site:github.com
inurl:issues

sourceforge | java.lang.NoSuchMethodError
site:http://sourceforge.net/p inurl:bugs

google java.lang.NoSuchMethodError

code site:https://code.google.com/p inurl:issues
stackoverflowjava.lang.NoSuchMethodError site:stackoverflow.com

sites. This is sometimes caused by few very acive projects with a large num-
ber of issues. For instance, a large number of NoSuchFieldErrors appears in
Google code issues. One of the Google code projects is google-web-toolkit.
This project alone has 2,500 pages in its issue tracking system referencing
NoSuchFieldError.

Overall, the number of linkage errors referenced is surprisingly high. In par-
ticular, NoSuchMethodError is in the same order of magnitude as NullpointerException,
probably the most commonly encountered exception type in Java. In all issues
tracking systems we investigated, NoSuchMethodError is more often referenced
than both StackOverflowError and OutOfMemoryError. This indicates that
compatibility problems already have a significant impact on the quality of prod-
ucts and the productivity of developers.

Table 4: Errors and exception reported

error or exception type github google source- stack-
issues code forge overflow
issues bugs

NullpointerException 9,450 9,250 7,270 76,300
ClassCastException 2,030 6,450 993 19,600
StackOverflowError 499 3,630 237 51,500
OutOfMemoryFError 1,080 4,790 426 18,000
NoSuchMethodError 1,700 6,580 529 11,500
NoSuchFieldError 553 17,400 108 2,620
InstantiationError 12 45 1 786
IncompatibleClassChangeFirrb39 1,770 51 2,340
NoClassDefFoundError 3,240 2,910 976 54,700
ClassFormatError 58 346 71 1,600
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5 Threats to Validity

5.1 Survey — Selection bias

The aim of this study was to find out what programmers know about compati-
bility. Indeed, most of the respondents are programmers: 282 of 338 respondents
who answered the background question (83.43%). Note that only a very small
number of respondents are students (30 of 338 respondents who answered the
background question, 8.88%). There is some uncertainty as 76 respondents
(18.35%) did not answer the background questions.

We cannot be sure how representative the population is, however, the size
gives us some confidence. We recruited respondents by advertising the survey via
the Java world® portal and several Java user groups. Assuming that experienced
developers are over-represented in these communities, the level of knowledge
about compatibility among average programmers might actually be worse.

5.2 Impact Analysis — Selection Bias

We have only investigated projects hosted on three selected open-source hosting
sites. However, we followed an independent rating [17] to select hosting sites
based on number of projects hosted, and the availability of a public issue tracking
system.

We have only investigated open source systems. It is likely that the same
issues appear in closed source systems, but we do not have access to a sufficiently
large number of such systems to investigate this questions. It is reasonable to
assume that closed source systems suffer from integration problems at least
the same level as open source programs, perhaps even more so as they often
represent more complex end-user products, while many open source products
are single-purpose programs or libraries not intended for use by end users, but
used as building blocks in more complex programs.

5.3 Impact Analysis — False Positives

The use of fully qualified error names makes false positives unlikely. Some false
positives could be caused by answers when respondents were confused with
similarity of Java Linkage Errors and exceptions produced by Java Reflection
API (such as NoSuchMethodException vs NoSuchMethodError). On the other
hand, we believe that the Java Reflection API is used by experienced users who
have strong Java knowledge and thus do not tend to do such basic mistakes.

There is a small change that linkage error class names are referenced in
issues with other causes, for instance for comparison. While this is possible, it
is probably very rare. Also, the other error and exception classes would suffer
from this issue as well at a similar rate, so this will have no significant effect on
relative numbers.

Shttp://www.javaworld.com/article/2074970/java-1library-evolution-puzzlers.html
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5.4 Impact Analysis — False Negatives

Since the queries try to match exact strings, it is possible that we miss results
when class names are not spelled correctly. We assume that only a few people
would type in fully qualified class names when reporting issues, instead, copy
and paste is used. Almost all issues we inspected manually included copies of
stack traces. But even if there was a significant number of false negatives, this
would equally affect the linkage errors and the exceptions and errors used for
benchmarking. Therefore, this would have no significant effect on the relative
numbers.

6 Conclusion, Related and Future Work

We have presented the results of a survey where we asked developers to solve
puzzlers in order to test their knowledge on the different types of compatibility
between programs and the libraries these programs use. We found that while
developers have sound knowledge about the rules of source compatibility used
by the compiler, even experienced developers lack knowledge about the rules of
binary compatibility used by the JVM during linking.

We also demonstrated that errors which occur during linking are very com-
mon. This seems to be consistent with a trend away from building systems
from scratch: more problems occur now at the boundaries between the actual
program and code from libraries used by the program.

The question arises what can be done to improve the situations.

Firstly, better education of programmers is needed. There are several good
resources available to the developer community, including some of the blog posts
and presentations by Alex Buckley [6], Joseph D. Darcy [9, 10|, Ian Robertson
[24] and Jim des Rivieres [11]. We see this paper and the set of puzzlers as part
of the effort.

Secondly, tools are needed to make linking smoother to facilitate library
evolution. Some existing research has started to address this on different levels,
including the generation of adapters to bridge "API gaps" in source code via
refactoring [7, 2, 16] and through byte code manipulation and instrumentation
during class loading [19, 23, 14]. Another possible approach is to change the
linker itself, i.e. to build a smarter JVM with linking rules more closely aligned
to the rules of source compatibility. Such a linker could support specialising re-
turn types, and would enforce the catch or re-throw rule for checked exceptions.
To the best of our knowledge, this has not yet been attempted.

Thirdly, better tools are needed to check assemblies (programs and the li-
braries they transitively depends on) for consistency. These tools could then
be integrated into automated builds. An example is the Maven plugin that
performs static byte-code verification proposed in [18] . Another existing tool
that is fairly popular amongst developers is Clirr. However, we found that

Shttp://sourceforge.net/projects/clirr/
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Clirr has multiple shortcomings with respect to compatibility problems related
to declared exceptions and generic type parameters.

Finally, we notice that compatibility is complex, and that it is important
to shield developers from this complexity to allow them to focus on the actual
programming task. A popular method to address this is the use of semantic
versioning schemes. In the Java technology space, such schemes are used in dif-
ferent technologies, including OSGi and Maven. Semantic versioning schemes
implicitly promise contractual relationships between the providers and the con-
sumers of APIs: if a consumer declares a requirement to use a library or module
with a version within a certain range, then it is inferred that this consumer is
compatible with any library or module that has a version number matching this
range. In reality, this does not always work as version numbers are still assigned
manually, sometimes influenced by non technical considerations such as market-
ing. What is therefore needed is standard tooling that can generate semantic
versions complying with specifications such as the OSGi versioning policy [21] or
the independent Semantic Versioning initiative [22]. Automated semantic ver-
sioning has been investigated by Bauml et al [3]. Bndtools [1] is a Java-based
tool used by the OSGi community that supports semantic versioning.
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