
Noname manuscript No.
(will be inserted by the editor)

An Automatic Method for Assessing the Versions
Affected by a Vulnerability

Viet Hung Nguyen · Stanislav
Dashevskyi · Fabio Massacci

Resubmitted with Revision: 4th September 2015

Abstract Vulnerability data sources are used by academics to build models,
and by industry and governments to assess compliance. Errors in such data
sources are not just threats to validity in scientific studies, but might cause
organizations which rely on old versions of a software to lose compliance. In
this work, we propose an automated method to determine whether there ex-
ists some code evidence that a vulnerability known to occur in the present
version of a software is also present in its past versions. The method scans the
code base and identifies the lines of code that were changed to fix the vulner-
ability. If an earlier version contains some lines from the changed vulnerable
footprint, it is likely that this version is vulnerable. To show the scalability of
the method we performed a large scale experiments on Chrome and Firefox
(spanning 7, 236 vulnerable files and approximately 9, 800 vulnerabilities) on
the National Vulnerability Database (NVD). As an example on the impact of
our method, we show how the elimination of spurious vulnerability claims (i.e.
entries in a vulnerability database) may change the conclusions of studies on
the prevalence of foundational vulnerabilities.

Keywords Software Security · Empirical Validation · Vulnerability Analysis ·
National Vulnerability Database (NVD) · Browsers

V. H. Nguyen
Department of Information Engineering and Computer Science (DISI),
University of Trento, Italy
E-mail: vhnguyen@disi.unitn.it

S. Dashevskyi
Department of Information Engineering and Computer Science (DISI),
University of Trento, Italy
E-mail: stanislav.dashevskyi@unitn.it

F. Massacci (B)
Department of Information Engineering and Computer Science (DISI),
University of Trento, Italy
E-mail: fabio.massacci@unitn.it

2 Viet Hung Nguyen et al.

1 Introduction

Public vulnerability databases such as the National Vulnerability Database
(NVD, web.nvd.nist.gov), the Open Source Vulnerability Database (OSVDB,
www.osvdb.org), and Bugtraq (www.securityfocus.com) have been used by
both academics, (Massacci et al. 2014; Neuhaus et al. 2007), and industry,
(Younan 2013), to study and assess software security. NVD keeps tracts of
tens of thousands of vulnerabilities, which are distinguished by a unique iden-
tifier, called CVE. For each entry, NVD lists its alleged vulnerable software
configurations (or versions).

Besides academic interest, if NVD claims a software vulnerable, the pres-
ence of a vulnerable software in a company’s deployed IT system has a major
impact on a company’s compliance with regulations. For example, the US
Government has mandated the use of NVD to determine the compliance of its
procured software (Quinn et al. 2010). To keep compliance, companies have
to allocate their own resources to fix vulnerabilities of possibly out-of-support
open source software in their products. They might need to upgrade software
with no problems, just because the NVD says so.

Another example, a credit card merchant needs to be compliant with the
Payment Card Industry Data Security Standard (PCI DSS) (Williams et al.
2012) even if it is not a regulation or a law1. One PCI DSS specific requirement
is the following one: “fix all medium- and high-severity vulnerabilities”. If the
merchant has a vulnerable software, as reported by NVD, embedded in its
products, then it might lose PCI DSS compliance. This may lead to fines
raking hundreds of thousands of euros. This problem also affects proprietary
software systems that use open source components and are often operational
for several years. See for example the list2 of open source components used by
SAP, the world leader in proprietary enterprise resource planning products.

Yet, the information about vulnerable software in NVD is not always re-
liable. A folk knowledge, confirmed by our experience, is that NVD applies a
conservative rule: “If version X is vulnerable , then so are all its previous ver-
sions”. Some retro versions of software may therefore be marked as vulnerable
because of this bias. For example, NVD claimed that over 99% of vulnerabil-
ities in Chrome v2–v12 were originated from Chrome v1. Yet, Chrome v12 is
significantly different from Chrome v1 in terms of code base: more than 100%
new components were introduced. If this was true, then all new components
would have been almost vulnerability free. A more likely explanation, sup-
ported by our analysis, could instead be that this conservative rule makes the
NVD an inaccurate representation for past versions of software.

If NVD may be biased, how do we check that an old software version that
a company has embedded in its shipped products is actually vulnerable? If

1 Some states in US (i.e. Nevada and Minnesota) have adopted PCI DSS as a actual law
for some business operating in these states (Williams et al. 2012, Chap.3)

2 http://www.sap.com/corporate-en/about/our-company/policies/sybase/third-party-
legal.html

web.nvd.nist.gov
www.osvdb.org
www.securityfocus.com

An Automatic Method for Assessing the Versions Affected by a Vulnerability 3

the software is open source, the code is available but manually checking it is
simply impossible when the number of vulnerabilities is large.

1.1 Contribution

Our goal is to answer such question. The major contributions of this work are
as follows:

1. We propose an automatic method to empirically assess the reliability of
claims about the vulnerable status of retro software versions, i.e. vulner-
ability claims. We build upon the work by Sliwerski et al. (2005), who
attempted to detect source lines of code that are responsible for generic
bugs. However, there are important differences between generic bugs and
vulnerabilities (Needham 2002): vulnerabilities are mostly discovered and
exploited by people who are not the software’s own developers. Therefore,
users of vulnerable software may need to upgrade to a new version that
might break existing functionalities. In this respect, understanding whether
a version is “really” vulnerable is paramount. As a result, our approach and
Sliwerski et al. (2005) are different in two points:

(a) Our approach could accept false positives (i.e. a version is claimed to
be vulnerable, while it is not), but tries to avoid false negatives (i.e. a
version is claimed to be clean, while it is vulnerable) as much as possible
(the descriptions of potential false negative errors are given in Section 4
and Section 6). In contrast, the approach by (Sliwerski et al. 2005) tried
to minimize false positives.

(b) Our approach focuses on the question: “which versions are truly affected
by which vulnerabilities?”, or “is a vulnerability claim valid?”. This was
not the concern of the approach by (Sliwerski et al. 2005). Therefore,
they could not answer such a question.

2. To show the applicability of the method, we perform a large scale, ex-
periment to assess the validity of the vulnerability claims by NVD for
33 major versions of Chrome and Firefox, covering 7, 236 vulnerable files
and ∼ 9, 800 vulnerabilities claims. The experiment revealed systematic
spurious vulnerability claims (NVD says vulnerable, but there is no code
evidence for the presence of the vulnerability).

3. We also performed a manual validation of the approach in order to identify
potential false negatives that might be present. Out of a random sample of
80 manually assessed vulnerabilities in Firefox, 6 false negatives were due
to a mis-alignment among different repositories (CVS and Mercurial) and
only 1 was found to be an actual false negative (due to a code reversal).
By using a the score confidence interval calculation we can estimate a
possibility of error for our method between 1.3% and 3.9% with a 95%
confidence interval.

4. We show that spurious claims can significantly bias empirical analysis
about foundational/inherited vulnerabilities. For example, NVD data im-

4 Viet Hung Nguyen et al.

plies that most of vulnerabilities originated from the very first version.
Once spurious claims are removed, this is no longer the case.

This work extends our earlier conference paper (Nguyen et al. 2013), where
we have assessed the vulnerable version data of NVD on Chrome on a limited
data set of about one-third of vulnerabilities. In this paper, we extend our
previous work by revising the assessment method and extend the experiment
on both Chrome and Firefox. We run our method on more than 70% of total
vulnerabilities of these browsers.

In the next section (§2) we present the terminology. Then we describe our
research questions (§3) and the details our proposed assessment method (§4).
We describe an application of the proposed method to assess the vulnerability
claims of Chrome and Firefox (§5) and present an independent manual analysis
to assess the validity of the method (§6). Then we show how spurious claims
can impact the analysis of vulnerability studies on those browsers (§7), address
potential threats to validity (§8), and discuss related studies in the field (§9).
Section 10 concludes this work.

2 Terminology

– A software vulnerability is an instance of a mistake in specification, config-
uration, and development such that its execution violates a security policy
(Krsul 1998; Ozment 2007). In this work, we focus on vulnerabilities which
could be classified as security programming bugs.

– A vulnerability entry is an entry reporting security problem(s) in a vul-
nerability data source, e.g., NVD entries (a.k.a CVE) in the NVD data
source.

– A vulnerability claim is a statement by a data source that a particular
software version is vulnerable to a particular vulnerability entry. Fig. 1
shows an example of the claims of the entry cve-2008-7294.

– A commit is a unit of changes in source code, managed by the code base
repository.

– A bug-fix commit is a commit that contains changes to fix a (security) bug.
– A vulnerable code footprint is a set of lines of code (LoCs) which are

changed, or removed to fix a security bug. The intuition to identify such
vulnerable code footprints is to compare the revision where a security bug
is fixed (i.e. bug-fix commit) to its immediately preceding revision. LoCs
that appear in the preceding revision, but not in the bug-fixed revision are
considered vulnerable code footprints3. If the fix was done by just adding
code, then conservatively we consider the entire component as vulnerable.

– A component in a code base is a compilation unit. In C/C++, a component
is a body file (e.g., .c, .cpp file) plus its (optional) header file (e.g., .h,

3 While this is sufficient for non-critical applications, it is possible that we might miss
important information that is not a part of the vulnerable code footprint (See Section 4.4
and Section 6 for a discussion).

An Automatic Method for Assessing the Versions Affected by a Vulnerability 5

A vulnerability claim is a statement by a data source that a particular software
version is affected by a vulnerability.

Fig. 1 The vulnerability claims of the cve-2008-7294, reported in its vulnerable software
and versions feature.

Fig. 2 An example of revision history that contains a security vulnerability and the corre-
sponding fix.

.hpp file). The body file and the header file share the file name, but have
different extension. Example: both media bench.cc and media bench.hh

are treated as a single component media bench.

Fig. 2 shows an example of a software component revision history where a
security vulnerability was found and fixed. We distinguish the following typical
revisions that might be present in such history (given in a reverse order):

– Fixed - is a revision that was created with a bug-fix commit. It might
contain an addition evidence (“Line M”) that corresponds to the lines of
code added for producing a fix.

– Discovered - is a revision before the fixed one, where a security vulnerability
was discovered. It might contain a vulnerability code footprint (deletion
evidence - “Line N”) that corresponds to the lines of code deleted for
producing a fix.

– Originating revision is identified by our vulnerability assessment method,
as the first version where a vulnerability was initially introduced.

6 Viet Hung Nguyen et al.

– Tentative - is a revision that has common lines of code with the Originating
revision, except that is does not contain a deletion evidence.

– Seed - is the earliest Tentative revision.
– Cleanslate - is a revision that has no lines of code in common with any of

consequent revisions. A vulnerability claim about the cleanslate revision is
clearly potentially spurious.

3 Research Questions and Method Overview

In this work, we consider the following research questions:

RQ1 How could we estimate the validity of a vulnerability claim?

RQ2 To what extent do potentially spurious vulnerability claims impact the
conclusions of a vulnerability analysis?

The hard evidence that is showing whether a vulnerability claim is spurious,
i.e. answering RQ1, can be obtained by reproducing (or failing to reproduce)
the exploit in the corresponding software environment. Such verification can
be easily done only for vulnerabilities for which a proof-of-concept exploit is
available. If it does not exist, it must be created by carefully examining the
source code, which requires a significant effort. For instance, the Malware-
Lab(Allodi et al. 2013) was used for exploit kit verification, and included only
few hundreds of vulnerabilities.

The above strategy is not feasible for large-scale verifications for thousands
of claims, since NVD does not reveal enough information for quickly building
exploits. We therefore can benefit from an automatic approach that will help
us to estimate whether a vulnerability claim is spurious by trading off the
precision for scalability.

To address RQ1 we propose a method that automatically identifies the
code evidence of a vulnerability entry in the code base of a particular version.
From this evidence, we could estimate the validity of a vulnerability claim of
this particular vulnerability entry. This limits the application of our method
to software for which code is available.

Table 1 summarizes the claim assessment steps of our method. The method
takes a list of entries of a vulnerability data source and their corresponding
vulnerability claims as input of the first step. The output of each step is piped
to the next consecutive one. The output of the final step, which is also the
output of the method, is the assessment of each vulnerability claim plus its
corresponding code evidence (if any). The method details are elaborated in
Section 4.

The intuition behind our algorithm is the following:

1. If there is no deletion evidence, we consider all revision from the Seed to
the Discovered revision as vulnerable. The Cleanslate is considered as not
vulnerable.

An Automatic Method for Assessing the Versions Affected by a Vulnerability 7

Table 1 Overview of the proposed assessment method.

input Vulnerability entries of a vulnerability data source and their vulnerability claims

Step 1 Link Vulnerability Claim to Bug
Identifier

Establish the trace from vulnerability claims to
responsible security bug identifiers from the ven-
dor.

Step 2 Locate Bug-Fix Commit Locate the security bug identifiers in the source
code repository (change log).

Step 3 Identify Vulnerable Code
Footprint

Identify LoCs that are modified to fix the vul-
nerability fixed by the particular bug-fix com-
mit.

Step 4 Determine the Validity of
Vulnerability Claim

Scan through the code base of every software
version to determine the presence (or absence)
of the vulnerable code footprint.

output The validity of each vulnerability claim plus its code evidence (if any)

2. If there is some deletion evidence, then the algorithm stops at the Tentative
revision and considers the Seed and other intermediate revisions as not
vulnerable. Changed lines would count as the deletion evidence.

In Scenario 1 we have little evidence, therefore we consider every line of
code as the source of a problem. In Scenario 2 we assume that the changed
lines of code were the source of a problem. The approach might have both
false positive (1,2) and false negative (2) errors, but we try to minimize the
latter.

We illustrate the issue with some real examples in Section 6 where we
performed a manual validation of the approach to check its correctness. The
vulnerability sample selected for the manual verification is large enough to
ensure some confidence in the result. To address RQ2 we conduct an experi-
ment to explore the effect of spurious vulnerability claims about the majority
of foundational/inherited vulnerabilities (Ozment et al. 2006). Another study
about the quarterly trends of the foundational vulnerability discovery is re-
ported in (Nguyen 2014). We analyze the difference between the conclusions
made in two different settings. The first setting uses all vulnerability claims by
NVD. The second setting also uses vulnerability claims by NVD, but without
the spurious claims identified by our proposed method.

An important assumption in our approach is the following:

ASS1 The revision system of the repository is incremental, so that the notion
of “preceding revision” is correctly captured by the historical notion of
revisions recorded by the repository.

Two phenomena violate this assumption: massive restructuring of the repos-
itory (e.g. passing from CVS to Mercurial), and the presence of many instances
of code reversions. The false negatives we have identified in our manual analy-
sis belong to these classes. We discuss them in more detail in Section 6, but the
intuition is that in those cases the notion of “preceding revision” as provided
by the repository becomes imprecise. Hence, our algorithm, as any algorithm

8 Viet Hung Nguyen et al.

relying on the repository to identify incremental changes, may be misled and
terminate the search earlier than it is necessary.

4 The Method Details

4.1 Step 1: Link Vulnerability Claim to Bug Identifier

We need to establish a trace from a vulnerability entry (e.g., CVE) to the
code base in order to carry out the assessment. Normally, a vulnerability entry
provides only a general description of a security flaw and its impact. Therefore,
we establish the code trace by passing through the security bug identifiers (IDs)
responsible for a vulnerability entry as reported in the technical bug reports
maintained by the software vendor.

To obtain these security bug IDs, we look at the details of this entry,
which might have references to its responsible security bug IDs. Alternatively,
we can also look at the manufactures’ security advisories, which might report
references to other vulnerability reports as well as references to the responsible
security bug IDs.

Example 1 Fig. 3(a) shows an example where the security bug IDs responsible
for cve-2008-5015 are reported in the references feature of the CVE entry.
It is a URL to the report of a security bug ID 447579 of Firefox. For Firefox,
bug report hyperlinks usually have two forms: https://bugzilla.mozilla.
org/show_bug.cgi?id=n (single bug), or https://bugzilla.mozilla.org/

bug_list.cgi?=n,...,n (bug list). For Chrome, the hyperlink to a bug report is
usually http://code.google.com/p/chromium/issues/detail?id=n, where
n is an integer number indicating the bug ID.

Fig. 3(b) illustrates another example where the CVE and its responsible se-
curity bug are reported by manufactures’ advisory reports, e.g., Mozilla Foun-
dation Security Advisories (MFSA) for Firefox. The figure shows a snapshot of
an MFSA entry: mfsa-2008-51. The References section of this MFSA reports
two hyperlinks: one for a security bug ID (https://bugzilla.mozilla.org/
show_bug.cgi?id=447579), and another one for a CVE (CVE-2008-5015). So
we heuristically assume that this security bug is responsible for that CVE.

4.2 Step 2: Locate Bug-Fix Commit

This step takes the list of vulnerability entries and their responsible security
bug IDs determined in the previous step to locate their corresponding bug-fix
commits in the code base. We are using two popular techniques for locating
bug-fix commits: repository mining and bug-report mining.

An Automatic Method for Assessing the Versions Affected by a Vulnerability 9

(a) Report detail for cve-2008-5015 (b) Report detail for mfsa-2008-51

Fig. 3 Selected features from a CVE (a), and from an MFSA report (b). The security bug
IDs relevant to a CVE are reported either in the references feature of the CVE entry, or by
manufacturers’ advisory reports (e.g., MFSA for Firefox).

– The repository mining technique was introduced by Sliwerski et al. (2005)
and adopted by many other studies in the literature e.g., (Neuhaus et al.
2007; Shin et al. 2011). This technique parses commit logs of the code base
repository for the security bug IDs according to predefined patterns. In our
case, the commit logs mentioning security bug ID(s) are bug-fix commits.

– The bug-report mining technique, adopted by Chowdhury et al. (2011),
parses a security bug report for bug-fix information. Such information in-
cludes links to bug-fix commits (i.e. the identifier of the commits).

Example 2 Fig. 4 depicts two bug-fix commits for Chrome and Firefox. For
each bug-fix commit, we highlight information about the revision ID of the
commit, the list of changed source files, and the ID of the bug fixed by this
commit.

The aforementioned mining techniques complement each other since the
advantage of one technique is the disadvantage of the other one. The repository
mining technique requires access to commit logs which might not be publicly
available. It could locate bug-fix commits for undisclosed bug reports (the
advantage). However, it might skip bug-fix commits which do not mention
explicitly security bug IDs, e.g., when merging from external repositories (the
disadvantage). On the other hand, the bug-report mining technique could parse
the bug report for bug-fix commits even if the bug IDs were not mentioned
in bug-fix commits (the advantage). Yet, it could not locate bug- fix commits
for undisclosed bug reports due to the security policy of software vendors (the
disadvantage).

Occasionally we could not find evidence either in favor or against a vulner-
ability claim. This could happen because 1) the corresponding vulnerability

10 Viet Hung Nguyen et al.

Fig. 4 Examples of bug-
fix commits for Chrome (a)
and Firefox (b).

In Chrome, a bug-fix com-
mit is referring to bug IDs
following patterns BUG=n(,n)
or BUG=http://crbug.com/n,
where n is the bug ID. In
Firefox, bug IDs usually
follow keywords such as
“bug”.

r41106 | inferno@chromium.org | 2010-03-10 02:03:43 +0100

(Wed, 10 Mar 2010) | 10 lines

Changed paths:

 M /branches/249/src/chrome/browser/views/login_view.cc

Merge 40708 - This patch fixes [… text truncated for saving space]

BUG=36772

TEST=Try a hostname url longer than 42 chars to see that

it wraps correctly and wraps to the next line.

(a) A Chrome bug-fix commit

changeset: 127761:88cee54b26e0

author: Justin Lebar <justin.lebar@gmail.com>

date: 2013-01-07 09:44 +0100

files: +|-|*dom/ipc/ProcessPriorityManager.cpp

desc: Bug 827217 - Fix null-pointer crash with webgl.can-

lose-context-in-foreground=false.

(b) A Firefox bug-fix commit

entry does not have any responsible security bug ID (incompleteness of the
data source), or 2) the bug-fix commit for the responsible bug ID cannot be
located (incompleteness of the mining techniques).

In this step, we rely on the consistency of the development process of
software manufactures and make use of the following assumptions:

ASS2 Developers either mention the bug ID(s) responsible for a vulnerability
in the description of the commit that contains the bug fix, or mention
the commit ID that fixes the bug in the bug’s report.

ASS3 A bug-fix commit is fixing a single bug.

By making the above assumptions, we might face with a number of threats
to validity. Indeed, a difficulty faced in Sliwerski et al. (2005) was to introduce
appropriate heuristics to track bugs when these assumptions are violated. An-
toniol et al. (2008) and Bird et al. (2009) discussed biases which violate ASS2:
developers do not mention bug ID(s) in a bug-fix commit; and, developers
mention bug ID(s) in a non-bug-fix commit. The former bias makes some vul-
nerabilities unverifiable. We know they have been fixed but do not know how.
We could consider the entire code base as responsible, but this would be too
large a footprint. The latter bias might introduce more false positives in our
method, but it is still acceptable from a compliance perspective.

When performing an actual experiment one must check whether ASS2 is
reasonably justified by the data. In our analysis, we verified this assumption
in Section 5.2 for both Chrome and Firefox.

Example 3 Bug-fixes for the WebKit module (the HTML renderer) in Chrome
usually do not contain the bug IDs because they are merged from another
repository.

An Automatic Method for Assessing the Versions Affected by a Vulnerability 11

Assumption ASS3 is also important because if a bug-fix commit contains
changes for fixing multiple bugs (i.e. multiple-bug-fix commit), we cannot dis-
tinguish which lines of code (LoCs) were touched to fix which bugs. So we
should consider all changed lines as responsible for each individual vulnera-
bility. This is a gross, albeit conservative, overestimation. If the number of
multiple-bug-fix commit is too high, this will call into question the precision
of the outcome: a large number of spurious claims will eschew detection.

In order to check whether ASS3 is violated, one must check the distribution
of numbers of bugs fixed per bug-fix commit, and check that multiple-bug-fix
commits do not take a significant fraction of the total commits. We have
verified that this threat was not applicable to our experimental data: 99% (for
Chrome) and 91% (for Firefox) of the total bug-fix commits were single bug-fix
(see Fig. 7 in Section 5.2).

4.3 Step 3: Identify Vulnerable Code Footprint

This step takes bug-fix commits and annotates source files in the commits to
determine vulnerable code footprints. Let rfix be the revision ID of a bug-fix
commit. We compare every file f changed in this revision to its immediate pre-
ceding revision4. We employ the diff command supported by the repository
to do the comparison. By parsing the comparison output, we can identify the
vulnerable code footprints. We ignore formatting changes such as empty lines,
or lines which contain only punctuation marks. Such changes occur frequently
in all source files, and therefore they do not characterize changes to fix security
bugs.

Example 4 Fig. 5(a) illustrates an excerpt of diff command applied to revi-
sions r95730 and r95731 of the file url fixer upper.cc. The output is shown
in the Unify Diff format where changes are organized in “hunks”.

Example 4 shows a revision comparison “hunk” that begins with a header
which is surrounded by double at-signs (@@). It contains the start line index
and total number of lines in compared revisions. Added and deleted lines are
respectively preceded by a plus sign and a minus sign. The vulnerable code
footprint in this example is represented by changed and deleted lines(e.g., line
#542). The added lines are not considered because they were added precisely
for fixing a bug.

Next, we identify the origin of vulnerable code footprints i.e. the revision
where the potential bad code is introduced. Such origins are achieved by an-
notating the source file f at immediately preceding revision of the bug-fix
commit. In an annotation of a source file, every individual line is annotated

4 In an SVN repository, the immediately preceding of the revision rfix is rfix − 1. In
some other repository such as Mercurial, the immediately preceding revision is determined
by performing the command parent

12 Viet Hung Nguyen et al.

Fig. 5 Excerpts of the out-
put of the diff command
(a), and of the output of
annotate (b) command.

For every line of code, the
annotate function pro-
vides the original revi-
sion where the vulnerable
code footprint was first in-
serted.

$ svn diff -r 95730 -r 95731 url_fixer_upper.cc

@@ -540,3 +540,6 @@

 bool is_file = true;

+ GURL gurl(trimmed);

+ if (gurl.is_valid() && ...)

+ is_file = false;

 FilePath full_path;

- if (!ValidPathForFile(...) {

+ if (is_file && !ValidPathForFile(...) {

start line index and number of lines
of the left, and the right revisions

added line is preceded by a ‘+’

deleted line is
preceded by a ‘-’

left revision right revision

(a) An excerpt of diff

$ svn annotate -r 95730 url_fixer_upper.cc

...

537: 15 initial.commit PrepareStringForFile...

538: 15 initial.commit

539: 15 initial.commit bool is_file = true;

541: 8536 estade@chromium.org FilePath full_path;

542: 15 initial.commit if (!ValidPathForFile(...)) {

543: 15 initial.commit // Not a path as entered,

...

committed revision committer line contentline index

(b) An excerpt of annotate

with meta-information such as the origin revision, the committed time, and the
author. The annotation is done by the annotate command of the repository

Example 5 Fig. 5(b) shows that the line #542 in the file url_fixer_upper.cc
is the vulnerable code footprint from revision r95730 that has been originally
introduced in revision r15.

4.4 Step 4: Determine the Validity of Vulnerability Claim

This step scans through the code base of all versions claimed to be vulnerable
for the existence of vulnerable code footprints. Such existence is the supported
evidence for the claim that a version is actually vulnerable to a vulnerability.
A special case is present when a CVE was fixed by only adding new code: no
vulnerable code footprint is detected, and we assume conservatively that all
original LoCs of the file where a vulnerability is fixed are all vulnerable code
footprints. If a version contains some LoCs of the file, then it is considered
vulnerable. This solution might not introduce false negatives, but may let
false positives survive. From the compliance perspective, this is acceptable
since the version has been already claimed to be vulnerable.

Example 6 Table 2 shows the the result of processing three distinct vulnerabil-
ity claims for Chrome with our approach. The corresponding CVE entries claim
that different version ranges are affected by the corresponding vulnerabilities.
In case of cve-2011-2822 and cve-2011-4080, the approach identified the
vulnerable code footprints, that showed the earliest versions where a security

An Automatic Method for Assessing the Versions Affected by a Vulnerability 13

Table 2 The example of three Chrome vulnerabilities processed by our approach.

CVE Reported
Versions

Bug ID Bug-fix Commits Footprint Versions w/
Evidence

2011-2822 v1–v13 72492 url fixer upper.cc1

(r95731)
〈r15, 542〉 v1–v13

2011-4080 v1–v8 68115 media bench.cc2

(r70413)
〈r26072, 352〉,
〈r53193, 353〉

v3–v8

2012-1521 v1–v18 117110 – – –

1: chrome/browser/net/url fixer upper.cc 2: media/tools/media bench/media bench.cc

bug was originally introduced (v1 and v3 respectively). For cve-2011-4080
we were unable to find the footprint and determine the appropriate vulner-
able version, because this is in fact a vulnerability in WebKit (a third-party
library used in Chrome). Since the bug-fix commit for that vulnerability is not
present in Chrome repository, our current set up will be unable to locate it.
We consider such vulnerabilities to be unverifiable as well.

Considering the above example, we also use the following assumption:

ASS4 A vulnerability claim about a software version is evidence-supported
if the version code base contains at least a single line from the vulnerable
code footprint of the vulnerability. Otherwise, a vulnerability claim is
spurious.

Changed LoCs are not necessarily vulnerable, albeit they might have helped
to remove the vulnerability. For example, a vulnerability that could lead to
SQL injection attacks could be fixed by inserting a sanitizer around a user’s
input in another module. We will then consider all versions where this sani-
tizer is missing as vulnerable. This is a conservative assumption; for example,
previous versions might have used another module for input and the older
module had proper input sanitization. So we would consider as vulnerable a
version that was not so. This assumption is acceptable in our context: mini-
mizing false negatives, while accepting false positives (vulnerability claims for
software that is not vulnerable).

Example 7 This example illustrates when the strategy “X and previous ver-
sions are vulnerable” was applied. The description of cve-2012-4185 states:

“Buffer overflow in the nsCharTraits::length function in Firefox be-
fore 16.0 allows remote attackers to execute arbitrary code or cause a
denial of service (heap memory corruption) via unspecified vectors.”

By applying the above strategy, all versions from v1.0 – v15.0 are con-
sidered to be vulnerable. The corresponding bug ID for this CVE is 785753.
This bug indicated that it was a global-buffer-overflow in the nsCharTraits::
length function. This bug was fixed by changing the file netwerk/base/src/

nsUnicharStreamLoader.cpp as follows.

14 Viet Hung Nguyen et al.

222: if (NS_FAILED(rv)) {

223: - NS_ASSERTION(0 < capacity - haveRead,

224: - "Decoder returned an error but filled the output buffer! "

225: - "Should not happen.");

226: + if (haveRead >= capacity) {

227: + // Make room for writing the 0xFFFD below (bug 785753).

228: + if (!self->mBuffer.SetCapacity(haveRead + 1, fallible_t())) {

229: + return NS_ERROR_OUT_OF_MEMORY;

230: + }

231: + }

232: self->mBuffer.BeginWriting()[haveRead++] = 0xFFFD;

233: ++consumed;

The plus (+) shows the added lines, and the minus (-) indicates deleted
lines. In this particular case, the buffer overflow vulnerability is happening at
the line #232, but incomplete condition checks (lines #223–#225) are making
this vulnerability actually exploitable. The fix was produced by changing the
incomplete check into a better one (lines #226–#231), however the statement
that may potentially cause a buffer overflow is still there. We scanned through
the code base of Firefox (v15 and downward) to find the deleted lines that
would show in which version the vulnerability was initially introduced. We
found that the deletion evidence appeared in v6.0 for the first time and prop-
agated until v15.0. The line #232, where the actual vulnerability occurs, was
also introduced together with the deletion evidence in v6.0, therefore we can
clearly see that versions from v5.0 and downward are not vulnerable.

We must point out that there is also a possibility of getting false negative
errors in similar scenarios: if the line #232 has been introduced earlier than the
deletion evidence, the approach could get a false negative error. For example,
this vulnerability could be fixed by changing the condition on lines #223–#225
(and not touching the line #232), the approach would not be able to correctly
identify the original version, because a part of the code that is related to a
vulnerability is not a part of the deletion evidence (a fix commit).

Line #232 could possibly lead to even bigger problems in the future if
the developers did not check what happened and how the returned value was
handled. However, this would be a different vulnerability claim (i.e. a different
CVE entry).

In Section 6, we perform a manual validation of the approach in order to
observe the impact of such scenarios on the results and find other potential
weak spots that might also lead to false negatives.

5 Empirical Validation

We apply the proposed method to assess the trustworthiness of vulnerability
claims by NVD on Chrome and Firefox. For Firefox we obtain bug-fix com-
mits by using the repository mining technique because it discovered bug-fix
commits for most security bugs. For Chrome, we also use the repository min-
ing technique for undisclosed security bug reports, and the bug-report mining

An Automatic Method for Assessing the Versions Affected by a Vulnerability 15

Software

Repository

Commit Logs
Commit Log

Parser

Code Tracer

Bug-Fix

Commits

Repository Utility

Code

Footprints

Code Scanner

Vulnerability
Database

Bug

Verification

Data

Data

Synthesizer

Verified Vulnerability
Database

Retro Persistence

Analysis

Data

Preprocessor

Data

Aggregator

Intermediate

Data

In/Output
Dataset

Control
Flow

Data
Flow

Repository

Wraper
Repository

Wraper

Fig. 6 The software infrastructure for assessing the vulnerabilities retro persistence.

technique for security bugs fixed in imported projects (e.g., WebKit). These
security bugs, as discussed, cannot be located by mining the repository as their
bug IDs are not mentioned in the bug-fix commits.

5.1 Software Infrastructure

Fig. 6 presents the software infrastructure used for assessing the retro persis-
tence of vulnerabilities. Rectangles denote data preprocessors (white) and data
aggregators (yellow/gray); cans represent intermediate data repositories; and
stacks of cans indicate input and output data sets. The control and data flows
are respectively solid and dashed arrows. The infrastructure body includes the
following scripts:

– Commit Log Parser. This script takes the commit logs of the source code
repositories, and vulnerability data as inputs to produce the Bug-Fix Com-
mit data set.

– Code Tracer. This script consumes the Bug-Fix Commit data set to produce
the Code Footprint data set, which maintains the links between a security
bug ID to particular LoCs that potentially contribute to the existence of
this bug. For this purpose, this script search for the original version of the
modified LoCs of the source components in Bug-Fix Commit. This is done

16 Viet Hung Nguyen et al.

via the Repository Utility scripts that wrap basic commands provided by
the software repository, such as diff, annotate.

– Code Scanner. This script scans LoCs in Code Footprint in the code bases
of all versions of a software to determine the earliest version affected by
a security bug. This is also done with the aid of the Repository Utility
scripts. The outcome of this script is the Bug Verification Data data set.

– Data Synthesizer. This script aggregates vulnerability data plus the Bug
Verification Data data set to produce the Verified Vulnerability Database
data set. This data set is basically the same as the input Vulnerability
Database plus extra information about the earliest version affected by each
vulnerability. The aggregated data set is then consumed by analysis scripts
to produce desired outputs for answering research questions.

We instantiate the framework described in Fig. 6 for the experiment: the
repository of Chrome is Subversion (SVN); the repository of Firefox was mi-
grated from Concurrent Version System (CVS) to Mercurial (HG) since version
v3.5. Thus we have three different kinds of commit logs: Firefox CVS Commit
Logs, Firefox HG Commit Logs, Chrome SVN Commit Logs. These commit
logs are text files. So the Commit Log Parser script relies on a particular
parsing script for each type of commit logs (i.e. CVS Log Parser, HG Log
Parser, and SVN Log Parser).

We have analyzed approximately 9, 800 vulnerability claims in 7, 232 vul-
nerable files of Chrome and Firefox. We have scanned over 104, 798 revisions of
these vulnerable files for code evidence. Those revisions were extracted from
the repositories of Chrome and Firefox. For this purpose, we made a local
copy of Firefox repository, and extracted file revisions from it. However, we
could not do the similar thing for Chrome. Instead, we had to use the public
repository of Chrome for extracting file revisions during the experiment.

The implementation scripts of the method take approximately 14 days
(i.e. 336 hours) for an automatic process on a 2 x quad-core 2.83GHz Linux
machine with 4GB of RAM.

5.2 Descriptive Statistics

Table 3 presents the numbers of CVEs affecting Chrome and Firefox by April
2013. These CVEs make a total of 9, 800 vulnerability claims of 18 major
versions of Chrome (v1–v18), and 15 major versions of Firefox (v1.0–v12.0).
The overwhelming majority of of them have at least one responsible security
bug ID: 94.8% of Chrome CVEs and 83.3% of Firefox CVEs.

As discussed in Step 2, we investigate the distribution of fixed bugs per bug-
fix commit to understand the unwanted effect of multiple-bug-fix commits that
potentially biases the experiment’s outcomes. Fig. 7 shows these distributions
for Chrome (left) and Firefox (right). In almost all cases for Chrome and in
over 90% of cases for Firefox, a bug-fix commit only contain fixes for one bug.
The developers of both Chrome and Firefox eventually fixed each security bug
individually, and committed the bug-fix to the repository when a bug was

An Automatic Method for Assessing the Versions Affected by a Vulnerability 17

Table 3 Descriptive statistics for vulnerabilities of Chrome and Firefox

Number of CVEs Total

verifiable w/o resp. bugs w/o bug-fix

Chrome 554 (72.1%) 40(5.2%) 174(22.7%) 768
Firefox 681 (77.7%) 146(16.7%) 49(5.6%) 876

Bugs per bug−fix (Chrome)

Number of bugs

R
at

io
 o

f a
ll

bu
g−

fix
 c

om
m

its

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 0.99

0.01 0.00 0.00

1 2 3 4+

(a) Chrome

Bugs per bug−fix (Firefox)

Number of bugs

R
at

io
 o

f a
ll

bu
g−

fix
 c

om
m

its

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.91

0.05 0.02 0.02

1 2 3 4+

(b) Firefox

Fig. 7 The number of security bugs per bug-fix commit in Chrome (a) and in Firefox (b).

Size of vulnerable code footprint per bug
(Chrome)

Number of LoCs

R
at

io
 o

f t
ot

al
 b

ug
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.53

0.13
0.08 0.04 0.02 0.02 0.02 0.01 0.03

0.13

10 20 30 40 50 60 70 80 90 100+

Size of vulnerable code footprint per bug
(Firefox)

Number of LoCs

R
at

io
 o

f t
ot

al
 b

ug
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.38

0.15
0.10 0.06 0.03 0.04 0.03 0.03 0.02

0.18

10 20 30 40 50 60 70 80 90 100+

Vulnerable code footprint is a set of LoC which are changed or removed to fix a security bug.
Small footprints with less than 50 LoCs were the overwhelming majority of security bug-fixes
(over 70%). When the ratio reaches 1% it is equivalent to 6 bugs for Chrome, and 14 bugs for
Firefox. The percentage of footprints whose size is greater than 90 LoCs is the aggregation of a
very long tail of few bugs.

Fig. 8 The size of vulnerable code footprint of individual bugs of Chrome and Firefox.

fixed. This consistent behavior makes the unwanted effect of multiple-bug-fix
commit negligible for the purposes of our experiment.

We further investigate the distribution of sizes of vulnerable code foot-
prints. The intuition behind this investigation is that a small size of vulnerable
code footprint will generate less error in the experimental outcome.

Example 8 Fig. 8 reports the size of vulnerable code footprints of individual
security bugs for Chrome (left) and Firefox (right). In Chrome, 53% of vulner-

18 Viet Hung Nguyen et al.

ability code footprints have 10 LoCs (or less), 27% included between 10 and
50 LoCs. These numbers for Firefox are 38% and 34%.

To put the above data into perspective: on average, the size of vulnerable
components of Chrome and Firefox are 754 and 2, 939 LoCs, respectively. It
means that more than two-third of the fixes affect less than 10% of the lines of
code of a vulnerable component. Firefox has 18% (i.e. 257 over 1431 bugs) of
code footprints with more than 100 LoCs, in contrast Chrome only has 13%
(i.e. 81 over 613 bugs) of such footprints. We cluster footprints whose size
is greater than 90 LoCs to save space, these footprints are distributed in a
very long tail of few bugs. A possible explanation is that the average size of
vulnerable components of Firefox is nearly four times larger than vulnerable
components in Chrome. The small size vulnerable code footprints in Chrome
and Firefox helps to reduce the potential bias in our proposed method.

These preliminary data analysis suggests that ASS2, ASS3, and ASS4
are not a significant threat to the validity of the proposed method in the cases
of Chrome and Firefox.

5.3 Spurious Vulnerability Claims

Table 4 reports the spurious vulnerability claims for individual versions of
Chrome and Firefox. On average, each version of Chrome has about 309 vul-
nerability claims. Of these, approximately 28.6% are unverifiable, and 35.9%
are found spurious by our method. The average number of vulnerability claims
per each version of Firefox is slightly less than Chrome: about 283. In compar-
ison to Chrome, vulnerability claims per each Firefox version are less unveri-
fiable (10.3%), and slightly less spurious (31.5%). The number of unverifiable
vulnerability claims in Chrome v18 is significantly higher than in other ver-
sions (5.7% without responsible bugs, 48.6% without bug- fix commits). This
happens because the number of vulnerability claims reported at the data col-
lection time is small. Out of 19 unverifiable entries, 2 have no responsible bugs,
and 10 are from a separated repository (WebKit).

Table 4 shows that approximately 25% of Chrome and 10% of Firefox
claims are unverifiable. This could be due to some numerous reasons as dis-
cussed in (Antoniol et al. 2008). In our opinion the major explanation is that
Chrome developers made use of external libraries (e.g., WebKit, Java Script
Engine V8). Information about bug fixes in these libraries is not necessarily
reported in Chrome’s repository. To minimize the impact of these phenomena,
we assume that these unverifiable claims are not spurious (to avoid false neg-
ative). We define the error rate (ER) as the ratio of the spurious vulnerability
claims to the total ones.

ER(v) =
|spurious(v)|

|vulnerabilities(v)|
(1)

An Automatic Method for Assessing the Versions Affected by a Vulnerability 19

Table 4 Distribution of vulnerability claims for Chrome and Firefox.

Verifiable
(e.g., vulns. within a code base)

Unverifiable
(e.g., vulns. in third-party

libraries)

Release Total w/ evidence spurious w/o resp. bug w/o bug-fix

Chrome v1 526 34.8% 37.3% 5.9% 22.1%
Chrome v2 512 36.1% 37.3% 3.9% 22.7%
Chrome v3 504 38.7% 34.9% 3.6% 22.8%
Chrome v4 498 43.0% 31.1% 3.4% 22.5%
Chrome v5 455 38.9% 37.8% 1.1% 22.2%
Chrome v6 405 43.0% 31.9% 1.2% 24.0%
Chrome v7 391 42.2% 32.0% 1.3% 24.6%
Chrome v8 371 43.7% 30.5% 1.3% 24.5%
Chrome v9 337 42.7% 29.4% 1.5% 26.4%
Chrome v10 304 40.1% 30.6% 1.3% 28.0%
Chrome v11 273 38.1% 34.1% 1.8% 26.0%
Chrome v12 239 38.1% 34.3% 2.1% 25.5%
Chrome v13 217 36.9% 35.9% 1.8% 25.3%
Chrome v14 177 32.2% 42.9% 2.3% 22.6%
Chrome v15 121 38.0% 33.1% 4.1% 24.8%
Chrome v16 112 26.8% 44.6% 3.6% 25.0%
Chrome v17 88 20.5% 47.7% 4.5% 27.3%
Chrome v18 35 5.7% 40.0% 5.7% 48.6%

Mean(std.dev) 309 (155) 35.5% (9.3%) 35.9%(5.1%) 2.8% (1.5%) 25.8% (5.8%)

Firefox v1.0 454 32.6% 48.9% 12.3% 6.2%
Firefox v1.5 461 38.8% 42.3% 12.6% 6.3%
Firefox v2.0 469 45.6% 41.8% 7.0% 5.5%
Firefox v3.0 388 45.1% 43.8% 4.6% 6.4%
Firefox v3.5 336 53.0% 37.5% 3.0% 6.5%
Firefox v3.6 310 52.3% 37.4% 2.9% 7.4%
Firefox v4.0 253 62.8% 28.1% 0.8% 8.3%
Firefox v5.0 230 67.4% 24.3% 0.0% 8.3%
Firefox v6.0 220 68.2% 24.1% 0.0% 7.7%
Firefox v7.0 210 68.1% 24.3% 0.0% 7.6%
Firefox v8.0 203 66.5% 25.1% 0.5% 7.9%
Firefox v9.0 196 66.8% 25.5% 0.0% 7.7%
Firefox v10.0 176 67.0% 25.0% 0.0% 8.0%
Firefox v11.0 175 70.3% 21.7% 0.0% 8.0%
Firefox v12.0 165 69.7% 21.8% 0.0% 8.5%

Mean(std.dev) 283 (108) 58.3% (12.2%) 31.4% (9.0%) 2.9% (4.3%) 7.4% (0.9%)

where v is a version; |spurious(v)| , and |vulnerabilities(v)| are the number
of spurious, and total vulnerabilities of v. Given our inclusion of unverifiable
vulnerabilities in the total count, the error rate is a lower bound of the actual
value.

Fig. 9 illustrates the evolution of the ER along the number of months since
the release date of individual versions, for Chrome, and Firefox. Circles in the
figure indicate the mean values; and the vertical bars show the standard errors.
The lines interpolate the global trends. For Chrome, Fig. 9(a), the magnitude
of the ER mean is mostly around 0.2 to 0.4. The error bars are quite small

20 Viet Hung Nguyen et al.

●
●●

●●
●●

●●
●●

●●
●

●●

●●
●●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
rr

or
 R

at
e

●
●●

●●
●●

●●
●●

●●
●

●●

●●
●●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

Month since release

● error rate (ER)

(a) Chrome

●●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●●●

●

●●

●

●

●

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
rr

or
 R

at
e

●●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●●●

●

●●

●

●

●

Month since release

● error rate (ER)

(b) Firefox

Version age is the number of months since the release of a particular version. A red (dark) circle
is the average ER of all versions in their particular age. The bars are the standard errors.

Fig. 9 The average error rates (with error bars) of Chrome (a) and Firefox (b) along the
lifetime of individual versions.

in most of the cases, which means that there is less variance among ER of
the individual versions, and the number of spurious vulnerability claims in
Chrome is remarkable. For Firefox, Fig. 9(b), the magnitude of the ER mean
is smaller than Chrome’s, mostly from 0 to 0.2 with a few outliners. The small
error bars presented in most cases also indicate the small variance of ER of
individual Firefox versions.

We only report the trend of the error rates for the first 36 months of
each version because the interval between two consecutive major versions is
quite short for recent versions of Firefox (Wikipedia 2013) and all versions of
Chromes (Chromium Developers 2013).

Clearly the vulnerability claims of Firefox are more reliable than those of
Chrome since the ratio of spurious vulnerability claims for Firefox is smaller
than Chrome’s. Moreover, the error rate of Firefox tends to decrease over time,
whereas the error rate of Chrome tends to move up, so that vulnerability claims
for older versions are less reliable.

The different trends could be potentially explained by the process that gen-
erates vulnerability claims. According to an archive document5, the informa-
tion reported in the “vulnerable version” feature is “obtained from various pub-
lic and private sources. Much of this information is obtained (with permission)
from CERT, Security Focus and ISS/X-Force”. Our private communications
with the NVD team and and software vendors have revealed an inconsistency:
the National Institute of Standards & Technology (NIST) claimed vulnera-
ble versions were taken from software vendors (NIST 2012); whereas, software
vendors claimed they did not know about this information (Mozilla Security
2011). In another conversation, the NVD team said they do not perform any
tests to determine which versions are affected by which CVEs. The vulnerabil-

5 This page has been removed, but can be accessed by URL http://web.archive.org/

web/20021201184650/http://icat.nist.gov/icat_documentation.htm

http://web.archive.org/web/20021201184650/http://icat.nist.gov/icat_documentation.htm
http://web.archive.org/web/20021201184650/http://icat.nist.gov/icat_documentation.htm

An Automatic Method for Assessing the Versions Affected by a Vulnerability 21

ity claims are derived from the CVE description by MITRE (www.mitre.org),
release notes by software vendors, and additional data by third-party security
researchers. Therefore, to ensure completeness, all versions before a version X
are claimed vulnerable to a CVE if its description says something like: “ver-
sion X and before” or “X and ‘previous’ versions”. Apparently, in this case the
NVD analysis team received better information for Firefox than for Chrome.
This may be due by the fact that Firefox has a proper security advisory, while
Chrome has none.

6 Independent manual validation

In this section we present the results of the independent manual validation pro-
cess for our vulnerability assessment approach. Below we describe the process
itself and discuss the results.

We verified only the results obtained from the Firefox repository because
(1) their bug tracking system is publicly available, so it is easier to understand
each particular fix; (2) the whole repository can be downloaded and analyzed
locally; (3) to avoid potential bias by mixing results obtained from different
repositories that are present in Chrome.

We manually verified whether each vulnerability claim from this sample
is spurious and compared the outcome with the results of the automatic ap-
proach. Additionally, we carefully checked whether the approach identified all
key revisions correctly. It has already been shown that the manual inspection
of software repositories can take a long time. For instance, Meneely et al. (Me-
neely et al. 2013) mention that it took them hundreds of man-hours over sev-
eral months to manually collect and check the data on vulnerable-contributing
code commits. We also found out that the manual labor behind the analysis
of source code repositories and bug tracking systems is very time consuming.
It took us around two weeks to manually inspect the selected sample of vul-
nerabilities, notwithstanding that we already had the information about the
approximate location of vulnerable and fixed revisions.

We selected a random sample of 80 vulnerabilities for the manual process-
ing, and divided the results into the following categories:

1. True positives: a vulnerability claim was correctly identified as not spuri-
ous (i.e. the approach marks versions as vulnerable, and they indeed are
vulnerable);

2. False positives: a certain version was identified as vulnerable by the ap-
proach, but the manual inspection showed that it is not vulnerable (we
consider this case as acceptable);

3. True negatives: a vulnerability claim was correctly identified as spurious
(i.e. the approach marks versions as not vulnerable, and they are indeed
not vulnerable).

4. False negatives: a vulnerability claim was incorrectly marked as spurious
(i.e. the approach marks versions as not vulnerable, but the manual in-
spection shows that they are vulnerable).

www.mitre.org

22 Viet Hung Nguyen et al.

We found out 35 true positives, 13 false positives, 29 true negatives, 6
false negatives due to changes in the repository structure, and 1 false negative
due to a code reversal. Both cases violate the assumption that changes are
incremental between revision N, revision N-1, and revision N-2, etc.

Example 9 The found false negative is a realization of the following scenario:

1. A developer takes a revision of the code rev1 and makes some changes to
add new features to the program - a revision rev2 is produced.

2. Along with these new features, a developer introduces a security bug.
3. Later on, the development team decides that a proper security fix requires

reverting all changes made by the developer to the original revision rev1.
A “new” revision rev3, actually equivalent to rev1, will be created.

4. Later on there could be another incorrect change by another developer that
will re-introduce the same code and the same vulnerability. This generates
another “new” revision rev4.

5. To fix the bug the relevant part of the code will be again reverted to its
initial state from rev1, creating yet another revision rev5.

After the third step, the approach will consider the deletion evidence from
rev2, and correctly identify rev2 as the earliest vulnerable revision, and rev3
as the corresponding fix. The revision rev1 will be discarded, because it does
not contain any deletion evidence from rev2.

After the second reversal at step 4, our approach will be able to identify
only rev4 as vulnerable. All earlier revisions, including vulnerable rev2, will
be discarded because there will be no deletion evidence that lasts from rev3
to rev4. If revisions rev2 and rev4 belong to different released versions of
a program, i.e. v1.0 and v2.0, the approach will make a false negative error
by concluding that only v2.0 is vulnerable. This scenario makes inaccurate
the notion of “preceding revision” as reported from the history commands
of the repository. Indeed, from a syntactic view point both rev4 ≈ rev2 are
“preceding revisions” of rev3 ≈ rev1. However, our algorithm will look at the
temporal history as provided by the repository. It is possible to change the
algorithm, so that it will look in the past for the evidence of code reversions,
but it is not clear whether the added complication is worth the effort to cover
such corner cases. We believe such scenario of code reversal is very rare (as it
is an example of truly bad programming) and a longer manual analysis will
likely reveal its “black swan”6 nature.

The Firefox source code repository was migrated from CVS subversion sys-
tem to Mercurial. The migration process caused false negative errors on the
boundary versions of Firefox. For instance, the approach may correctly match
specific revisions to specific versions until Firefox 3.6, but there may be diffi-
culties for versions 3.5 and below. We therefore eliminate from consideration

6 Unexpected and extremely rare events hat can have major impact but can be only
explained in retrospection (Taleb 2010)

An Automatic Method for Assessing the Versions Affected by a Vulnerability 23

the 6 false negatives due to repository migration as they can be eliminated by
a systematic mapping between the revisions in the repositories.

To calculate the error rate of the procedure for false negatives we used
Agresti and Coull’s score confidence interval (Agresti et al. 2012), which re-
quires to solve for p the following formula:

|p̂− p| = z ·
√
p · (1− p)/n,

where p - is the proportion estimate of false negatives; p̂ - is the sample size
proportion of false negatives over the total sample of negatives n; and z = 1.96
is the critical coefficient for a 95% confidence interval.

If we limit the analysis to the population of negatives (TN=29,FN=1) we
have a potential error rate between 8.3% and 13.8% within a 95% confidence
interval. If we compare the overall population of results (Acceptable=73,Not
Acceptable=1) we have margin of error between 1.3% and 3.9%.

Another scenario that we have not found but could potentially be present
takes place when a vulnerability consists of two components: the vulnerable
code itself, and some additional code that makes it exploitable. To fix the
problem, a developer may issue a quick patch that changes only that addi-
tional code, making the vulnerability unexploitable. Later on, another devel-
oper changes the code and occasionally uncovers the path to vulnerability.
Further, this vulnerability will be re-discovered again and fixed. Our approach
will be able to find only the latest “vulnerable - fixed” revision pair, since
there is no deletion evidence that can be tracked in between (this is similar to
the case described in Example 9). If these pairs belong to different versions of
a program, the approach will yield a false negative error.

7 The impact of Spurious Vulnerability Claims

In summary, both the automatic and the manual experiment has provided
evidence for the non-negligible error in the vulnerability claims made by NVD
to retrospective versions of Chrome and Firefox.

This section investigates the potential impact of spurious vulnerability
claims (RQ2) to scientific or compliance analyses based on such data, and
in particular the analysis of foundational vulnerabilities. We specify a num-
ber of hypotheses as they are derived from the literature. We then proceed to
verify them empirically by using two datasets: (1) the original NVD dataset;
(2) the NVD dataset, where the spurious vulnerability claims have been elimi-
nated. For each dataset we run a statistical test to check whether a hypothesis
is supported. If the results are different, then we have highlighted a problem:
the usage of a wrong dataset may lead to a result that might be “statistically
significant” but “practically wrong”.

A foundational vulnerability is a vulnerability which is introduced in the
very first version (i.e. v1.0), but continues to survive in later versions. We
assess the claim suggested by Ozment et al. (2006) for other type of software:

24 Viet Hung Nguyen et al.

NVD
(Chrome)

#v
ul

ne
ra

bi
lit

ie
s

0
10

0
20

0
30

0
40

0
50

0

v2
 (M

ay
'09

)

v3
 (S

ep
'09

)

v4
 (J

an
'10

)

v5
 (M

ay
'10

)

v6
 (S

ep
'10

)

v7
 (O

ct'
10

)

v8
 (D

ec
'10

)

v9
 (F

eb
'11

)

v1
0

(M
ar

'11
)

v1
1

(A
pr

'11
)

v1
2

(Ju
n'1

1)

v1
3

(A
ug

'11
)

v1
4

(S
ep

'11
)

v1
5

(O
ct'

11
)

v1
6

(D
ec

'11
)

v1
7

(F
eb

'12
)

v1
8

(M
ar

'12
)

non−foundational
foundational

NVD without spurious claims
(Chrome)

#v
ul

ne
ra

bi
lit

ie
s

0
10

0
20

0
30

0
40

0
50

0

v2
 (M

ay
'09

)

v3
 (S

ep
'09

)

v4
 (J

an
'10

)

v5
 (M

ay
'10

)

v6
 (S

ep
'10

)

v7
 (O

ct'
10

)

v8
 (D

ec
'10

)

v9
 (F

eb
'11

)

v1
0

(M
ar

'11
)

v1
1

(A
pr

'11
)

v1
2

(Ju
n'1

1)

v1
3

(A
ug

'11
)

v1
4

(S
ep

'11
)

v1
5

(O
ct'

11
)

v1
6

(D
ec

'11
)

v1
7

(F
eb

'12
)

v1
8

(M
ar

'12
)

spurious
non−foundational
foundational

(a) Chrome foundational vulnerabilities

NVD
(Firefox)

#v
ul

ne
ra

bi
lit

ie
s

0
10

0
20

0
30

0
40

0
50

0

v1
.5

 (N
ov

'05
)

v2
.0

 (O
ct'

06
)

v3
.0

 (J
un

'08
)

v3
.5

 (J
un

'09
)

v3
.6

 (J
an

'10
)

v4
.0

 (M
ar

'11
)

v5
.0

 (J
un

'11
)

v6
.0

 (A
ug

'11
)

v7
.0

 (S
ep

'11
)

v8
.0

 (N
ov

'11
)

v9
.0

 (D
ec

'11
)

v1
0.

0
(F

eb
'12

)

v1
1.

0
(M

ar
'12

)

v1
2.

0
(A

pr
'12

)

non−foundational
foundational

NVD without spurious claims
(Firefox)

#v
ul

ne
ra

bi
lit

ie
s

0
10

0
20

0
30

0
40

0
50

0

v1
.5

 (N
ov

'05
)

v2
.0

 (O
ct'

06
)

v3
.0

 (J
un

'08
)

v3
.5

 (J
un

'09
)

v3
.6

 (J
an

'10
)

v4
.0

 (M
ar

'11
)

v5
.0

 (J
un

'11
)

v6
.0

 (A
ug

'11
)

v7
.0

 (S
ep

'11
)

v8
.0

 (N
ov

'11
)

v9
.0

 (D
ec

'11
)

v1
0.

0
(F

eb
'12

)

v1
1.

0
(M

ar
'12

)

v1
2.

0
(A

pr
'12

)

spurious
non−foundational
foundational

(b) Firefox foundational vulnerabilities

The dates in the X axis are the release dates.

Fig. 10 Foundational vulnerabilities by NVD: all vulnerability claims (left) and spurious
vulnerability claims highlighted (right).

“Foundational vulnerabilities are the majority in each version of both Chrome
and Firefox”. The claim could be formulated into the following hypothesis.

H3.1A+ More than 50% vulnerabilities in a version are foundational.

The subscript A+ indicates H3.1A+ is an alternative hypothesis. It means
that if the returned p-value of a statistic test is less than the significance level
0.05, we could reject the null hypothesis and accept the alternative one.

Fig. 10 reports the distributions of foundational vulnerability claims for
Chrome (a) and Firefox (a), reported by both NVD (left) and Verified-NVD
(right). In the unverified source, foundational vulnerability claims are domi-
nant, approximately 99% and 75% per each version in Chrome and Firefox,
respectively. The verified dataset has a much smaller number of vulnerabilities
claims in total, and an even smaller fraction of foundational vulnerabilities.

There is a natural explanation for this phenomenon: modern versions of
software are often completely different from the initial one. In the course of
time the code has changed. Therefore, foundational vulnerabilities are unlikely
to be found in more recent versions. Thus, the claim about the majority of
foundational vulnerabilities is eventually false. Therefore we relax the concept
of foundation vulnerability to inherited vulnerability, as suggested by (Mas-
sacci et al. 2011). An inherited vulnerability of a version X is a vulnerabil-
ity affecting X and its preceding versions. The claim about the majority of

An Automatic Method for Assessing the Versions Affected by a Vulnerability 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

In
he

rit
ed

 v
ul

ne
ra

bi
lit

y
ra

tio

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

v2
 (M

ay
'09

)

v3
 (S

ep
'09

)

v4
 (J

an
'10

)

v5
 (M

ay
'10

)

v6
 (S

ep
'10

)

v7
 (O

ct'
10

)

v8
 (D

ec
'10

)

v9
 (F

eb
'11

)

v1
0

(M
ar

'11
)

v1
1

(A
pr

'11
)

v1
2

(Ju
n'1

1)

v1
3

(A
ug

'11
)

v1
4

(S
ep

'11
)

v1
5

(O
ct'

11
)

v1
6

(D
ec

'11
)

v1
7

(F
eb

'12
)

v1
8

(M
ar

'12
)

● NVD
Verified NVD

Chrome

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

In
he

rit
ed

 v
ul

ne
ra

bi
lit

y
ra

tio ●
●

● ●
●

●

● ● ● ● ● ● ● ●

●
●

● ●
●

●

● ● ● ● ● ● ● ●

v1
.5

 (N
ov

'05
)

v2
.0

 (O
ct'

06
)

v3
.0

 (J
un

'08
)

v3
.5

 (J
un

'09
)

v3
.6

 (J
an

'10
)

v4
.0

 (M
ar

'11
)

v5
.0

 (J
un

'11
)

v6
.0

 (A
ug

'11
)

v7
.0

 (S
ep

'11
)

v8
.0

 (N
ov

'11
)

v9
.0

 (D
ec

'11
)

v1
0.

0
(F

eb
'12

)

v1
1.

0
(M

ar
'12

)

v1
2.

0
(A

pr
'12

)

● NVD
Verified NVD

Firefox

(a) Inherited vulnerabilities from preceding versions

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

In
he

rit
ed

 v
ul

ne
ra

bi
lit

y
ra

tio

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

v2
 (M

ay
'09

)

v3
 (S

ep
'09

)

v4
 (J

an
'10

)

v5
 (M

ay
'10

)

v6
 (S

ep
'10

)

v7
 (O

ct'
10

)

v8
 (D

ec
'10

)

v9
 (F

eb
'11

)

v1
0

(M
ar

'11
)

v1
1

(A
pr

'11
)

v1
2

(Ju
n'1

1)

v1
3

(A
ug

'11
)

v1
4

(S
ep

'11
)

v1
5

(O
ct'

11
)

v1
6

(D
ec

'11
)

v1
7

(F
eb

'12
)

v1
8

(M
ar

'12
)

● NVD(6)
Verified NVD(6)

Chrome

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

In
he

rit
ed

 v
ul

ne
ra

bi
lit

y
ra

tio ●
●

● ●
●

● ●
●

● ● ● ● ● ●

●
●

● ●
●

● ●
●

● ● ● ● ● ●

v1
.5

 (N
ov

'05
)

v2
.0

 (O
ct'

06
)

v3
.0

 (J
un

'08
)

v3
.5

 (J
un

'09
)

v3
.6

 (J
an

'10
)

v4
.0

 (M
ar

'11
)

v5
.0

 (J
un

'11
)

v6
.0

 (A
ug

'11
)

v7
.0

 (S
ep

'11
)

v8
.0

 (N
ov

'11
)

v9
.0

 (D
ec

'11
)

v1
0.

0
(F

eb
'12

)

v1
1.

0
(M

ar
'12

)

v1
2.

0
(A

pr
'12

)

● NVD(6)
Verified NVD(6)

Firefox

(b) Inherited vulnerabilities from preceding versions which are at least 6 month older

Circles and squares denote the ratios of inherited vulnerabilities counted from NVD and Verified-
NVD data sets, respectively. Inherited vulnerabilities seem to be the totality in NVD but most of
them are spurious. Around half of actual vulnerabilities are freshly introduced by developers.

Fig. 11 The ratios of inherited vulnerabilities in Chrome and Firefox.

“foundational” vulnerabilities is relaxed to the claim about the majority of
“inherited” vulnerabilities: “Inherited vulnerabilities are the majority”.

H3.2A+ More than 50% vulnerabilities in version X also exist in version X-1.

H3.3A+ More than 50% vulnerabilities in version X also exist in version Y
which is older than X by at least 6 months.

The hypothesis H3.2A+ follows exactly the definition of inherited vul-
nerabilities from (Massacci et al. 2011). Meanwhile, the hypothesis H3.3A+

considers the short-cycle release policy where software vendors try to ship a
new version in a relative short period (e.g., less than 2 months per version).
Due to this policy, two consecutive versions might not have enough significant
difference in their code base, and therefore the hypothesis H3.2A+ may be
just true by default. We assume that two versions which are different apart by
6 month would have significant changes in their code base.

Fig. 11 reports the ratios of inherited vulnerabilities in individual versions
of Chrome and Firefox. In Fig. 11(a), we count the inherited vulnerabilities
of a version X from all its preceding versions, see H3.2A+. Meanwhile, in
Fig. 11(b), we only count inherited vulnerabilities from preceding versions

26 Viet Hung Nguyen et al.

Table 5 The Wilcoxon signed-rank test results for the majority of foundational and inher-
ited vulnerabilities.

Numbers in parentheses are p-values returned by the Wilcoxon signed-rank test for the corre-
sponding null hypothesis. “Verified-NVD” is the NVD where spurious vulnerability claims iden-
tified by our methods are eliminated. Most statistical claims “supported” by the analysis based
on the NVD are in reality spurious ones.

Alternate hypothesis NVD Verified-NVD

Chrome Firefox Chrome Firefox

H3.1A+ More than 50% vulnerabilities in a ver-
sion are foundational

Accept
(0.01 · 10−2)

Accept
(0.06 · 10−3)

Reject
(1.00)

Reject
(1.00)

H3.2A+ More than 50% vulnerabilities in ver-
sion X also exist in version X-1

Accept
(0.01 · 10−2)

Accept
(0.05 · 10−2)

Accept
(0.03)

Reject
(0.16)

H3.3A+ More than 50% vulnerabilities in ver-
sion X also exist in version Y which is
older than X by at least 6 months

Accept
(0.01 · 10−1)

Accept
(0.05 · 10−2)

Reject
(0.85)

Reject
(0.67)

which are at least 6 months older, see H3.3A+. In this figure, circles and
squares denote the ratios of inherited vulnerabilities counted from NVD and
Verified-NVD data sets, respectively.

From Fig. 11 we can observe a phenomenon in the inherited vulnerabilities
similar to the foundational vulnerabilities in Fig. 10. In the NVD data set, in-
herited vulnerabilities are dominant in both ways of counting. However, they
might be no longer dominant in Verified-NVD data set. There is an anoma-
lous data point in Chrome’s: the initial number of inherited vulnerabilities in
Fig. 11(b) is 0. It is because the interval between Chrome v1.0 and v2.0 was
less than 6 months. By applying the counting method described in H3.3A+,
Chrome v2.0 does not have any inherited vulnerabilities.

We test these hypotheses in two data sets: one for all vulnerability claims
by NVD, and another one for vulnerability claims, excluding ones which are
found spurious by the proposed method. We shortly refer to the former as
NVD data set, and refer to the latter as Verified-NVD data set. We could
use either one-sided t-test or one-sided Wilcoxon signed-rank test. The former
tests on the mean, but requires the ratios to be normally distributed. The
latter does not require normality, but tests on the median instead. We run the
Shapiro-normality test on vulnerability data. It rejects the null hypothesis for
Chrome (i.e. data is not normal, p-value = 0.07·10−6), but not for Firefox (i.e.
data is normal, p-value = 0.95). Therefore, we use the Wilcoxon signed-rank
test to check the hypotheses.

The outcomes of hypothesis tests are reported in Table 5. The reported
p-values are for rejecting the null hypothesis and accepting the alternative
hypothesis when p-value < 0.05. It shows that if we rely on the NVD data
set, all hypotheses are accepted with strong evidence (i.e. p-values are almost
zero). However, if we use the Verified-NVD data set, which is the NVD data set
excluding the spurious vulnerability claims, we obtain the opposite conclusions
in most cases. In other words, one would be badly mislead to use the NVD to
make any inference on the ratio of foundational vulnerabilities (in Chrome and

An Automatic Method for Assessing the Versions Affected by a Vulnerability 27

Firefox). Researchers must check for the existence of spurious vulnerabilities
before drawing conclusion from unverified data sources. See (Nguyen 2014) for
further discussion on the impact on the trends of vulnerability discovery.

8 Threats to Validity

Construct validity may be affected by the means we use to collect and verify
vulnerabilities:

– Bias in bug-to-CVE linking scheme. While collecting data for Firefox, we
employ heuristic rules to link a security bug ID to a CVE based on their
relative positions in an MFSA report (Massacci et al. 2010). We manually
checked many links for the relevant connection. All checked links were
found to be consistent with the result of the automatic algorithm.

– Bias in bug-fix commit data. There are two potential biases on the bug-fix
commit data (Antoniol et al. 2008; Bird et al. 2009): the developers do not
mention the bug ID in a bug-fix commit; and the developers mention a bug
ID in a non-bug-fix commit. To evaluate the impact of the latter bias, we
performed a qualitative analysis on some bug-fix commits and found that
all are actually bug fixes. This confirms the finding in (Bird et al. 2009) for
this type of bias. As for the former bias, we check the completeness of the
bug-fix commits for vulnerabilities. As discussed, about one fourth of vul-
nerabilities are unverifiable (see also Table 3). We conservatively assumed
that these vulnerabilities are not spurious.

– Bias in the history of commits. Branches are usually used for maintenance
(e.g. working on a single bug in isolation), and they are eventually merged
back into the trunk, thus, from the historical perspective, these are changes
to the trunk. Therefore, if branches are properly merged, the history indeed
looks linear. Our algorithm can also be used to analyze branches that are
not merged. One issue in our current implementation that makes history
reconstruction difficult is the migration to a new repository. Indeed, as we
discussed in Section 6, six out of seven false negatives were present due to
Firefox’s migration from CVS to Mercurial.

– Bias in the assessment method. The method assumption ASS4 is syntac-
tical and might not cover all cases of bug fixes since it is extremely hard to
automatically understand the root cause of vulnerabilities. Therefore, the
method classifies an NVD-reported vulnerability of a particular version as
correct while it may be a false-positive. Again it only makes our conclusion
a lower bound of the real errors.

– Bias in the method implementation. It is possible that the implementation
of the assessment method has some bugs, causing bias in the identifica-
tion of vulnerability evidence. To minimize such problem, we employ a
multi-round test-and-fix approach where we ran the program on some vul-
nerabilities, then we manually checked the output, and. fixed found bugs.
We repeated this until no bug was found. Finally, we randomly checked
the output again to ensure that there was no mistake.

28 Viet Hung Nguyen et al.

Internal validity concerns the causal relationship between the collected data
and the conclusion. Our conclusions are based on statistical tests, and we
carefully analyzed the assumptions of the tests. For instance, we did not apply
any tests with normality assumption since the distribution of vulnerabilities (at
least for Chrome) is not normal. We did not create proof-of-concept exploits to
verify vulnerable behaviors due to limited resources, instead we have manually
checked a subset of vulnerabilities (Section 6) - this may lead to errors induced
by human factors and lack of dynamic execution evidence.

External validity is the extent to which our conclusion could be generalized
to other applications. We tested the proposed method on two applications of
the same kind (web browsers) that share a number other common characteris-
tics: these are large, well-maintained open source applications that are written
in C, and are prone to memory corruption vulnerabilities. Some projects with
different characteristics might produce different results.

Additionally, projects’ maintainers have no obligations, and may have no
possibility, to keep their NVD records accurate, so it is fair to expect discrepan-
cies between the actual vulnerable versions and versions stated in correspond-
ing CVE entries. Yet some projects may spend additional effort on making
precise NVD records, and overall precision of NVD data may be significantly
increased in the future.

In general, the proposed method, which is our main contribution, can be
used to replicate the experiment on other types of software.

9 Related Work

Sliwerski et al. (2005) proposed a technique that automatically locates fix-
inducing changes. This technique first locates changes for bug fixes in the
commit log, then determines earlier changes at these locations. These ear-
lier changes are considered as the cause of the later fixes, and are called fix-
inducing. This technique has been employed in several studies (Sliwerski et al.
2005; Zimmermann et al. 2007) to construct bug-fix data sets. However, none
of these studies mention how to address bug fixes for which earlier changes
could not be determined. These bug fixes were ignored and maybe a source of
bias in their work.

Bird et al. (2009) studied the bias in bug-fix data set in the code base.
The authors have gathered a data set linking bugs and fixes in the code base
of five open source projects, and manual checked for biases of bug features
in their data set. They have found strong evidence of systematic bias of bug
features in their data set. In their data set, the linkage between bugs and bug-
fix depended on bug features e.g., bug severity (higher severity bugs have less
chance to link to bug-fixes), and experience of fixers (more experience fixers
are likely to link bugs to bug-fixes). Such bias might be also existed in other
bug-fix data set, and could be a critical problem with any studies relying on
bug features in bug-fix data sets.

An Automatic Method for Assessing the Versions Affected by a Vulnerability 29

Antoniol et al. (2008) showed another kind of bias that bug-fixes data sets
might suffer from. Many issues reported in tracking systems are not actual
bug reports, but feature or improvement requests. Therefore, this might lead
to inaccurate bug counts. However, such bias rarely happens for security bug
reports. Furthermore, Nguyen et al. (2010), in an empirical study about bug-
fix data sets, showed that the properties of the linkage between bugs and fixes
is mostly the results of the software development process, rather than the
used technique. Additionally, the linking bias has a stronger effect than the
bug-report-is-not-a-bug bias.

Meneely et al. (2013) studied the properties of vulnerability-contributing
commits (VCCs) which are similar to the commits containing vulnerability
code footprints. Meneely et al. applied a similar method to identify security
bug-fix commits, but then they used an ad-hoc approach to identify VCCs.
Thus, the identification of VCCs for 68 vulnerabilities of Apache HTTP server
took them hundreds of man-hours over six months. Here, we have to deal with
thousands of vulnerabilities

10 Conclusion

Vulnerability data sources are not only employed in scientific studies, but
also for software compliance assessment. Potential biases in such data sources
can be serious validity threats to scientific studies, and costly and unnecessary
change requests resulting from compliance assessment. To address these issues,
we have proposed a method to identify code evidence for vulnerability claims
and validate it experimentally on Firefox and Chrome code bases.

Method. The method is inspired by the work of Sliwerski et al. (2005) which
aims to identify code inducing fixes for generic bugs, whereas our proposed
method focuses on the evidence of the presence of vulnerabilities. Such objec-
tives result in the significant difference between the two methods: the method
by Sliwerski et al. (2005) tries to reduce false positives, while our proposed
method aims to reduce false negatives, and could accept false positives. The
proposed method takes a list of vulnerabilities and their corresponding secu-
rity bug IDs as input. Then it traces the commits in the source code repository
for the commits that fixed security bugs. From these commits, it determines
the so-called vulnerable code footprints which are changed LoCs to fix security
bugs. Then it looks for the origin revision where vulnerable code footprints
were introduced. Finally it scans the code base of individual versions to deter-
mine the vulnerable status of these versions.

Experiment. We have conducted an experiment applying the proposed method
to assess the retro persistence validity of vulnerability claims by NVD for
Firefox and Chrome. The experiment has assessed 1, 235 out of 1, 644 CVEs
(∼ 75%) in 33 versions of Chrome and Firefox. Performing the analysis takes

30 Viet Hung Nguyen et al.

around 14 days of automatic processing on 104, 798 revisions of 7, 236 vulner-
able files. It is an evidence that the proposed method is not only effective (i.e.
the majority of vulnerabilities have been assessed), but also efficient (i.e. in
comparison with 6 months for 68 vulnerabilities by using an ad-hoc method
(Meneely et al. 2013)).

The experiment showed that there is a significant presence of spurious
vulnerability claims in NVD (30% for Chrome and Firefox). The experiment
also showed that if we only rely on the information about vulnerable software
by NVD, the spurious claims might significantly mislead our conclusions. In
particular, by using an unverified NVD we might wrongly make a “statistically
significant” claim about the prevalence of foundational vulnerabilities. Such
claim would fall when one removes the spurious vulnerability claims identified
by our method.

Limitations. Our method works under the assumptions that i) it is possible
to trace a bug-fix commit in the code base from a vulnerability entry through
the security bulletin or bug tracking system, ii) there is prevalently a single
bug- fix-per-bug commit entry, and iii) a vulnerability gets fixed by removing
LoCs (change is removal and addition) or otherwise by only adding new LoCs.
An underlying assumption is that changes are incremental and the software
repositories keep track of them. These assumptions are mostly satisfied by the
code bases we considered, but may not hold in general. If they do not hold,
our method will conservatively identify less spurious vulnerability claims that
there may actually be.

One important caveat is that our algorithm is purely syntactic in nature.
The code footprint may be actually incorrect as it may mix vulnerability
related changes and other unrelated changes. The syntactic nature makes our
algorithm also sensible to large scale changes (e.g. migration from CVS to
Mercurial) in the repository or code reversions as the notion of “preceding
revision” becomes imprecise. In both cases our method may introduce false
negatives at the boundaries.

Our manual validation of the approach showed that in same cases this
might happen. Out of a random sample of 80 manually assessed vulnerabili-
ties in Firefox, 6 false negatives were due to a mis-alignment among different
repositories (CVS and Mercurial) and only 1 was found to be an actual false
negative (due to a code reversal, i.e,. a piece of code repeatedly eliminated and
re-inserted in a component, so that changes were looping). The former type
of false negatives can be entirely eliminated by an accurate mapping between
repositories, the latter may escape detection. By using a the score confidence
interval calculation we can estimate a possibility of error for our method be-
tween 1.3% and 3.9% with a 95% confidence interval (between 8.3% and 13.8%
if we limit our attention to negative claims). In particular for known repository
restructuring, it is possible to overcome such errors by adapting the algorithm
to such corner cases.

Since our focus is “vulnerabilities as software bugs” we cannot obviously
verify vulnerabilities due to misconfigured applications.

REFERENCES 31

Summary. Our proposed method is the first automatic approach to find code
evidence for vulnerability claims in past versions of a software when it becomes
known that the current version is vulnerable. It accepts false positives (claims
that an old version is vulnerable while it is not) to minimize false negatives
(claims that a version is not vulnerable while it is) while still eliminating several
spurious claims. It is a convenient alternative to manual analysis for an initial
assessment to be followed by in-depth analysis which may be important for
safety- and security-critical applications.

The experiment on Firefox and Chrome not only shows the scalability of
our method, but also confirms the folk knowledge of the application of a very
conservative rule in NVD vulnerability claims: “if version X is vulnerable, then
so are all its previous versions”. Just using the NVD off the shelves to draw
conclusions about trends of vulnerabilities as done in (Roumani et al. 2015;
Shahzad et al. 2012) may be misleading.

For a comprehensive evaluation, it is interesting to replicate our experiment
on other OSS projects, e.g. Linux RedHat, which have code repository for
tracking development, and whose vulnerabilities are also reported by the NVD.

Acknowledgments

This work has been partly supported by the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no. 256980 (NES-
SOS), and agreement no. 285223 (SECONOMICS), and grant agreement no.
317387 (SECENTIS), and the Italian Project MIUR-PRIN-TENACE.

References

Agresti, Alan and Christine A Franklin (2012). Statistics: the art and science
of learning from data. Pearson Higher Ed.

Allodi, Luca, Vadim Kotov, and Fabio Massacci (2013). “MalwareLab: Exper-
imentation with Cybercrime attack tools”. In: Proceedings of the 2013 6th
USENIX Workshop on Cybersecurity Security and Test (CSET’ 13).

Antoniol, Giuliano, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and
Yann-Gaël Guéhéneuc (2008). “Is it a bug or an enhancement? a text-
based approach to classify change requests”. In: Proceedings of the 2008
Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds, pp. 304–318.

Bird, Christian, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bern-
stein, Vladimir Filkov, and Premkumar Devanbu (2009). “Fair and bal-
anced? bias in bug-fix datasets”. In: Proceedings of the 7th European Soft-
ware Engineering Conference. ACM, pp. 121–130.

Chowdhury, Istehad and Mohammad Zulkernine (2011). “Using Complexity,
Coupling, and Cohesion Metrics as Early Predictors of Vulnerabilities”. In:
Journal of System Architecture 57(3), pp. 294–313.

32 REFERENCES

Chromium Developers (2013). Chrome Stable Releases History. http://omahaproxy.
appspot.com/history?channel=stable, visited in April 2013.

Krsul, Ivan Victor (1998). “Software Vulnerability Analysis”. PhD thesis. Pur-
due University.

Massacci, F. and Viet Hung Nguyen (2014). “An Empirical Methodology to
Evaluate Vulnerability Discovery Models”. In: Software Engineering, IEEE
Transactions on 40(12), pp. 1147–1162.

Massacci, Fabio, Stephan Neuhaus, and Viet Hung Nguyen (2011). “After-
Life Vulnerabilities: A Study on Firefox Evolution, its Vulnerabilities and
Fixes”. In: Proceedings of the 2011 Engineering Secure Software and Sys-
tems Conference (ESSoS’11).

Massacci, Fabio and Viet Hung Nguyen (2010). “Which is the Right Source
for Vulnerabilities Studies? An Empirical Analysis on Mozilla Firefox”. In:
Proceedings of the International ACM Workshop on Security Measurement
and Metrics (MetriSec’10).

Meneely, Andrew, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodrguez
Tejeda, Matthew Mokary, and Brian Spates (2013). “When a Patch Goes
Bad: Exploring the Properties of Vulnerability-Contributing Commits”.
In: Proceedings of the 7th International Symposium on Empirical Software
Engineering and Measurement.

Mozilla Security (2011). Missing CVEs in MFSA? Private Communication.
Needham, Ross (2002). “Security and Open Source”. In: Open Source Software

Economics. Available at http://idei.fr/doc/conf/sic/papers_2002/

needham.pdf.
Neuhaus, Stephan, Thomas Zimmermann, Christian Holler, and Andreas Zeller

(2007). “Predicting Vulnerable Software Components”. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security
(CCS’07), pp. 529–540.

Nguyen, Thanh, Bram Adams, and Ahmed E. Hassan (2010). “A Case Study
of Bias in Bug-Fix Datasets”. In: Proceedings of 17th Working Conference
on Reverse Engineering (WCRE’10).

Nguyen, Viet Hung (2014). “Empirical Methods for Evaluating Empirical Vul-
nerability Models”. PhD thesis. University of Trento.

Nguyen, Viet Hung and Fabio Massacci (2013). “The (Un) Reliability of NVD
Vulnerable Versions Data: an Empirical Experiment on Google Chrome
Vulnerabilities”. In: Proceeding of the 8th ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS’13).

NIST (2012). Question on the data source of vulnerable configurations in an
NVD entry. Private Communication.

Ozment, Andy (2007). “Vulnerability Discovery and Software Security”. PhD
thesis. University of Cambridge. Cambridge, UK.

Ozment, Andy and Stuart E. Schechter (2006). “Milk or Wine: Does Software
Security Improve with Age?” In: Proceedings of the 15th USENIX Security
Symposium.

Quinn, Stephen D., Karen A. Scarfone, Matthew Barrett, and Christopher S.
Johnson (2010). SP 800-117. Guide to Adopting and Using the Security

http://omahaproxy.appspot.com/history?channel=stable
http://omahaproxy.appspot.com/history?channel=stable
http://idei.fr/doc/conf/sic/papers_2002/needham.pdf
http://idei.fr/doc/conf/sic/papers_2002/needham.pdf

REFERENCES 33

Content Automation Protocol (SCAP) Version 1.0. Tech. rep. National
Institute of Standards & Technology.

Roumani, Yaman, Joseph K. Nwankpa, and Yazan F. Roumani (2015). “Time
series modeling of vulnerabilities”. In: Computers & Security 51, pp. 32
–40.

Shahzad, Muhammad, Muhammad Zubair Shafiq, and Alex X. Liu (2012). “A
large scale exploratory analysis of software vulnerability life cycles”. In:
Proceedings of the 34th International Conference on Software Engineering.
IEEE Press, pp. 771–781.

Shin, Yonghee, Andrew Meneely, Laurie Williams, and Jason A. Osborne
(2011). “Evaluating Complexity, Code Churn, and Developer Activity Met-
rics as Indicators of Software Vulnerabilities”. In: IEEE Transactions on
Software Engineering 37(6), pp. 772–787.

Sliwerski, Jacek, Thomas Zimmermann, and Andreas Zeller (2005). “When do
Changes Induce Fixes?” In: Proceedings of the 2nd International Working
Conference on Mining Software Repositories MSR(’05), pp. 24–28.

Taleb, Nassim Nicholas (2010). The black swan: the impact of the highly im-
probable. Random House.

Wikipedia (2013). Firefox Release History. http://en.wikipedia.org/wiki/
Firefox_release_history, visited in April 2013.

Williams, Branden R. and Anton A. Chuvakin (2012). PCI Compliance, Thrid
Edition: Understand and Implement Effective PCI Data Security Standard
Compliance. Ed. by Dereck Milroy. 3rd. Syngress, Elsevier.

Younan, Yves (2013). 25 Years of Vulnerabilities:1988-2012. Tech. rep. Source
Fire.

Zimmermann, Thomas, Rahul Premraj, and Andreas Zeller (2007). “Predict-
ing Defects for Eclipse”. In: Proceedings of the 3th International Workshop
on Predictor models in Software Engineering (PROMISE’07). IEEE Com-
puter Society, pp. 9–15.

http://en.wikipedia.org/wiki/Firefox_release_history
http://en.wikipedia.org/wiki/Firefox_release_history

	Introduction
	Contribution

	Terminology
	Research Questions and Method Overview
	The Method Details
	Step 1: Link Vulnerability Claim to Bug Identifier
	Step 2: Locate Bug-Fix Commit
	Step 3: Identify Vulnerable Code Footprint
	Step 4: Determine the Validity of Vulnerability Claim

	Empirical Validation
	Software Infrastructure
	Descriptive Statistics
	Spurious Vulnerability Claims

	Independent manual validation
	The impact of Spurious Vulnerability Claims
	Threats to Validity
	Related Work
	Conclusion

