
Noname manuscript No.
(will be inserted by the editor)

Large-scale Information Retrieval in Software Engineering
- An Experience Report from Industrial Application

Michael Unterkalmsteiner, Tony Gorschek,

Robert Feldt and Niklas Lavesson

the date of receipt and acceptance should be inserted later

Abstract Background: Software Engineering activities are information intensive.
Research proposes Information Retrieval (IR) techniques to support engineers in
their daily tasks, such as establishing and maintaining traceability links, fault iden-
tification, and software maintenance. Objective: We describe an engineering task,
test case selection, and illustrate our problem analysis and solution discovery pro-
cess. The objective of the study is to gain an understanding of to what extent
IR techniques (one potential solution) can be applied to test case selection and
provide decision support in a large-scale, industrial setting. Method: We analyze,
in the context of the studied company, how test case selection is performed and de-
sign a series of experiments evaluating the performance of different IR techniques.
Each experiment provides lessons learned from implementation, execution, and
results, feeding to its successor. Results: The three experiments led to the follow-
ing observations: 1) there is a lack of research on scalable parameter optimization
of IR techniques for software engineering problems; 2) scaling IR techniques to
industry data is challenging, in particular for latent semantic analysis; 3) the IR
context poses constraints on the empirical evaluation of IR techniques, requiring
more research on developing valid statistical approaches. Conclusions: We believe
that our experiences in conducting a series of IR experiments with industry grade
data are valuable for peer researchers so that they can avoid the pitfalls that we
have encountered. Furthermore, we identified challenges that need to be addressed
in order to bridge the gap between laboratory IR experiments and real applications
of IR in the industry.

Keywords Test Case Selection · Information Retrieval ·Data Mining · Experiment

M. Unterkalmsteiner, T. Gorschek, R. Feldt
Department of Software Engineering, Blekinge Institute of Technology E-mail:
{mun,tgo,rfd}@bth.se

N. Lavesson
Department of Computer Science and Engineering, Blekinge Institute of Technology E-mail:
nla@bth.se

ar
X

iv
:2

30
8.

11
75

0v
1 

 [
cs

.S
E

] 
 2

2 
A

ug
 2

02
3



2 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

1 Introduction

The field of Software Engineering thrives on the continuous interchange of knowl-
edge and experience between those who research and those who practice (Wohlin
et al 2012). Research without application is, in the long-term, meaningless and ap-
plication without research leads to stagnation (Ivarsson and Gorschek 2011). This
view requires that research efforts are seeded by concrete problem statements from
industry, and that solutions are evaluated within industrial applications and vali-
dated by practitioners (Gorschek et al 2006). Scientific advances require also that
results are reproducible, which in turn is only possible with disciplined reporting
that covers the necessary details to replicate studies. Shepperd et al (2014) per-
formed a meta-analysis on 600 software defect prediction (SDP) results published
in literature and determined that differences in prediction performance varies with
the research group rather than the studied SDP technique. They suggest that this
researcher bias could be addressed by improving the communication of study de-
signs and details of the used technologies.

On that note, even though we address a different issue than SDP, we report on
experiences in identifying, developing and evaluating a potential solution for our
industrial partner: test case selection (Rothermel and Harrold 1996) decision sup-
port by Information Retrieval techniques (Grossman and Frieder 2004). The main
goal of this paper is to illustrate the path from problem identification to solution
definition and evaluation, and to dissect the taken design decisions that address a
real-world software engineering problem. With complex problem statements it is
sensible to develop new solutions upon existing and validated building blocks. We
identified IR techniques, as they are applied in traceability recovery (Borg et al
2013) in general and feature location (Dit et al 2011b) in particular, as part of a
potential solution and performed a series of experiments with the goal to evaluate
whether the overall approach is feasible. We illustrate the design and evolution
of the experiments, pointing out practical implementation challenges that we en-
countered while adapting IR techniques proposed by research. Even though this
research was driven by eventually developing a workable solution for test case selec-
tion decision support, we focus in this paper on the lessons learned from designing
and executing the experiments. Thereby, we make the following contributions:

– An application of IR techniques to support test case selection in a Software
Product Line context.

– An illustration of three experimental setups, each leading to a set of new re-
search challenges for IR applications on industry-grade data.

The remainder of this paper is structured as follows. In Section 2 we present
the context in which we conducted the research, illustrate the envisioned solution
and discuss related work. Section 3 provides the formal problem definition that
guides the overall design of the experiment. In Section 4 we illustrate the design,
execution, results and lessons learned from each of the three experimental setups.
The paper concludes in Section 5, pointing out avenues for future work.

2 Background and related work

This research is conducted in collaboration with ES (“Embedded Systems”, name
anonymized for confidentiality reasons) and the solution development is driven by



Title Suppressed Due to Excessive Length 3

their particular context and requirements. In this section, we first give an overview
of the case context and problem (Section 2.1). We take then a step back and
analyze the problem with respect to the state of art (Section 2.2) before sketching
a solution in Section 2.3. We discuss related work in Section 2.4.

2.1 Case context

ES, developing both hard- and software for their worldwide marketed products, has
a three-decade history in developing embedded systems, although the particular
applications areas have changed over time.

2.1.1 Variability management and consequences for quality assurance

In autumn 2011, we performed a lightweight process assessment (Pettersson et al
2008) at ES in order to identify improvement opportunities, in particular in the co-
ordination between requirements engineering and software testing. We interviewed
16 employees (line managers, product and project managers, test and technology
leads, and test engineers) and reviewed project documentation, test runs and trou-
ble reports of two recently completed projects. As observed by Thörn (2010) in
small and medium sized companies, we identified also at ES a lack of variability
management in the problem space (requirements analysis, specification and main-
tenance). This has historical reasons, mostly attributed to the strong technical
support for managing variants in the solution space (separate development of a
platform and product specific software). ES generally develops a new product gen-
eration on the basis of their current products, reusing and extending the existing
requirements specifications. This has the advantage that the requirements man-
agement process is lightweight and requires minimal documentation. However, this
can also lead to challenges for impact analysis of new features since relationships
between requirements are not documented (Graaf et al 2003). The interviewed test
engineers at ES also indicated that without variability management, they may se-
lect system test cases that are not applicable for a particular product. This can lead
to a lower efficiency in test execution as information on applicability needs to be
retrieved from the project (project manager or product expert) or by an in-depth
analysis of the particular test case and product. Looking at the test case database
at ES, for a typical product release, 400-1000 system test-cases are selected, run
and evaluated, each consisting of up to 20 manual test steps. An improved test
case selection can therefore reduce rework and time-to-market.

ES initiated different programs to improve their quality assurance efficiency.
They introduced a risk-based strategy in order to focus the testing effort on those
parts of the product carrying a risk to contain faults, optimizing thereby available
time and resources. The risk-based test selection is based upon expert judgments
from technology leads, product experts and test maintainers, but also on historical
data from test runs of similar products. Furthermore, automated integration tests
are run on every version control system commit and before the product is handed
over to the quality assurance (QA) department. A third avenue to achieve a more
precise test case selection, developed at ES, is described next.



4 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

2.1.2 Test case selection based on product configurations

For ES, an important criterion to adopt any test case selection support is to reuse
as many existing resources and artifacts as possible, causing very little additional
up-front investments to the overall development process. The developed approach
leverages on the existing technical infrastructure managing product variants in the
solution space, where a central configuration file determines the activation state
of a feature in the product. The approach consists of:

– a parser that determines the activation state of a feature from the central
configuration file,

– the creation of a mapping between features and test-case modules (containing
a set of related test-cases), verified by product experts.

A product delivered to QA can be analyzed automatically to determine the
activation status of its features. The parser creates a Product Configuration Report
(PCR) that is used by QA engineers to guide the selection of system test cases.
Testers need thereby to map between product features and test modules. In the
current implementation, this solution has the following weak points:

– The feature list in the PCR is incomplete, i.e. some test case modules can not
be mapped to a feature.

– Some test-cases need to be executed for every product. These test cases are
also not mapped to a feature in the PCR.

– The granularity of the feature list in the PCR disallows a mapping to specific
test cases.

– The mapping is static. If the organization of the test case modules changes or
features in the central configuration file change, testers and product experts
need to re-verify the mapping.

Based on these observations we started to explore alternative approaches to
address the test case selection problem.

2.2 Overview of the state of art

As illustrated in Section 2.1.1, ES resides in a Software Product Line (SPL) (Clements
and Northrop 2001) context, where verification and validation is difficult due to
the large number of product combinations that can be created (Perrouin et al
2010). This problem is aggravated when the product is a combination of software
and hardware, since late identification of defects when verifying an embedded sys-
tem is costly (Broy 2006; Ebert and Jones 2009). Model-based testing (MBT)
techniques (Utting et al 2012) have been proposed to address this complex chal-
lenge from an SPL perspective (see Engström and Runeson (2011) for a review
of solution proposals). However, many of these proposals assume that companies
apply variability management (Babar et al 2010) in their product lines, allowing
the derivation of test strategies and the efficient selection of test cases. Chen and
Babar (2011) reviewed the variability management techniques proposed in litera-
ture, showing that the majority is not validated in an industrial context. This is
supported by the observation by Thörn (2010) that companies have control over
variation in the solution space, lack however techniques and methods for vari-
ability management in the product and problem space. With a lack of variability



Title Suppressed Due to Excessive Length 5

Table 1: Candidate artifacts for automated feature identification

Artifact Benefits Liabilities

PFD is a design document
written in natural language
that details of what a cer-
tain functionality consists
of and how it is intended
to be used.

Detailed and accurately
linked to a particular prod-
uct variant.

Exists only for newly in-
troduced features, i.e. is in-
complete w.r.t. the overall
functionality of a product
variant.

PCS contains all available
configuration options and
dependencies among them,
used to configure a product
at build-time

Straightforward identifi-
cation of activated/de-
activated features

Not all tested features
are activated/de-activated
at build-time

Source code Complete w.r.t. identifying
both build-time and run-
time bound functionality.

Lowest possible abstrac-
tion level for representing
features

Version Control data Provides semantic infor-
mation to source code
changes, such as commit
comments, time, scale and
frequency of changes.

Except for commit com-
ments, little use for feature
identification if not used
in combination with source
code.

management in the problem space, as it is the case for our case company, software
product line testing principles (Pohl and Metzger 2006) or test case selection tech-
niques (Lee et al 2012) are not applicable without upfront investment. Since reuse
of existing resources and artifacts is a major criterion for ES to adapt a solution
(see Section 2.1.2), we sought for alternatives.

Test case selection, in the context of regression testing, encompasses the prob-
lem of choosing a subset of test cases, relevant to a change in the system under
test, from a set of existing test cases (Rothermel and Harrold 1996). To address
this engineering problem, various techniques have been developed (see Engström
et al (2010) and Yoo and Harman (2012) for comprehensive reviews). In general,
they can be classified into white and black-box selection techniques. The former
rely upon structural knowledge of the system under test, exploiting, for example,
changes in source code, data and control flow, or execution traces (Yoo and Harman
2012). The latter use other work products, such as design documentation, to per-
form impact analysis (Yoo and Harman 2012). Both white and black-box test case
selection techniques assume some sort of traceability between the changed artifact
and the relevant test cases. Since the lack of variability management excludes the
black-box selection approaches, ES has implemented traceability between prod-
uct configurations and test cases as described in Section 2.1.2, with the observed
drawbacks. Next, we give a motivation and outline for the solution we aim to
implement and evaluate in the remainder of this paper.

2.3 Solution development

We outline the solution development approach by breaking down the test case
selection problem into two objectives.



6 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

The first objective is to identify the to-be-tested features in a particular product
variant that is delivered to QA. Currently, product variants are not managed in
the problem space (e.g. in the requirements specifications) at ES. Hence, other
work products that are created during the project and that are up-to-date when
the product is delivered to QA need to be used instead. Table 1 summarizes those
candidate artifacts that fulfill these criteria.

The second objective is to map system test-cases to identified features. A sys-
tem test-case contains information on the overall objectives of the test, acceptance
criteria, and test steps. By establishing a trace link between a feature in a partic-
ular product variant and the set of relevant test-cases for that feature, test-case
selection can be performed. In ES’s solution, the mapping between the PCR and
test-case modules is performed manually, which leads to the drawbacks illustrated
in Section 2.1.2.

Looking at the available artifacts in Table 1, only the source code artifacts
provide complete information on the functionality in a particular product variant.
On the other hand, the source code information (comments, method and variable
identifiers, and literals) regarding each feature is given at a low abstraction level,
compared to the other work products, i.e. the PCS and the PFD.

Inspired by ES’s semi-automatic solution that uses the PCS and expert judg-
ment for test-case selection, we envision a solution that is applicable on source
code, providing feature existence information, and is not dependent on regular ex-
pert input. In the area of source code mining, in particular textual feature location
techniques based on natural language processing (NLP)1 or information retrieval
(IR) (Grossman and Frieder 2004) seem promising. The goal of feature location is
to support software developers in maintenance tasks by identifying relevant loca-
tions in the source code, e.g. to remove a fault or to extend a feature. The premise
of textual feature location is that comments, identifiers, and literals encode do-
main knowledge, representing features than can be located in the source code by
a set of similar terms (Dit et al 2011b).

The test case selection problem and the two outlined objectives at the begin-
ning of this subsection can be formulated as a feature location problem: Given
a test-case, representing a particular feature, locate the source code that imple-
ments that feature in the given product variant. The test case serves thereby as
query, returning a list of artifacts ranked according to their similarity to the test
case. Note that the specific problem of feature location can be also seen in the
wider context of traceability recovery. The decision whether the given test case is
selected or not, depends on whether the highest ranked artifact has a similarity
score above or below a threshold α. The particular value for α is not known in ad-
vance and must be determined experimentally, with a confidence interval such that
the test engineer can gauge the robustness of the suggestion. Determining α can
be achieved by sampling a set of features for which the following is known: (a) the
test case(s) verifying the feature and (b) the source code implementing the feature.
We call this relationship between feature, test case(s) and source code a feature
chain. Once the value and confidence interval for the threshold α is determined, it
can be used to perform test case selection.

1 Note that the terms NLP and IR are independently used in literature to describe comput-
erized processing of text and there is an overlap on what they comprise (Falessi et al 2013).
In the remainder of the paper we use exclusively the term IR to maintain consistency.



Title Suppressed Due to Excessive Length 7

Note that this solution description is the starting point and not the outcome
of our investigation. We provide a more formal problem definition in Section 3
and illustrate three experimental setups (Section 4) that were designed to study
to what degree IR techniques can be used to support test case selection with
industry grade data.

2.4 Related work

2.4.1 Traceability Recovery

Mapping product features from source code to the respective test cases, as de-
scribed in Section 2.3, is related to traceability (Gotel and Finkelstein 1994) in
general, and to the concept assignment problem (Biggerstaff et al 1993) in par-
ticular. Concept assignment is the process of mapping concepts from the problem
domain (e.g. a requirement or feature expressed in potentially ambiguous and im-
precise natural language) to the solution domain (e.g. an algorithm expressed in
precise and unambiguous numerical computations). Recovering traceability links
between source code and natural language documentation using IR techniques
was pioneered by Antoniol et al (1999, 2000), Maletic and Valluri (1999) and
Maletic and Marcus (2000, 2001). These early studies envisioned the potential of
IR techniques to support software engineers in program comprehension (Maletic
and Valluri 1999; Antoniol et al 1999), requirement tracing and impact analysis,
software reuse and maintenance (Antoniol et al 1999). Following these initial in-
vestigations, comprehensive experiments were conducted, studying particular IR
techniques in depth (e.g. Marcus et al (2004); Zhao et al (2006); De Lucia et al
(2007); Poshyvanyk et al (2012)) or comparing newly proposed techniques to pre-
viously studied ones (e.g. Marcus and Maletic (2003); Poshyvanyk et al (2006);
Cleary et al (2009)). A large part of these studies use small scale data sets, de-
rived from open source applications or public repositories. Furthermore, while a
large body of work w.r.t. traceability recovery has been reviewed by Borg et al
(2013), only a few addressed the recovery of links between source code and test
cases (e.g. De Lucia et al (2006, 2009, 2011)), and have been evaluated only on
student projects (Borg et al 2013).

Besides the study of individual IR techniques and their traceability recovery
performance, investigations into the hybrid techniques show promise. Gethers et al
(2011) combined deterministic and probabilistic IR techniques, exploiting the fact
that they capture different information. While this hybrid traceability recovery ap-
proach outperformed the individual techniques, determining the number of topics
in the probabilistic approach (Steyvers and Griffiths 2007) and finding an optimal
combination of the individual approaches are still research challenges (Gethers
et al 2011). More recently, Qusef et al (2014) combined textual and runtime in-
formation to recover traceability between source code and unit test cases. In their
approach, first the runtime information is used to create a candidate list of traces,
which is then further refined in a second step which analyzes textual information.
While the evaluation of this hybrid technique indicates that it outperforms the
precision of individual techniques (Qusef et al 2014), it requires the collection of a
test execution trace and has been designed for unit-testing, i.e. white-box testing.



8 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

2.4.2 Test case prioritization

While test case selection encompasses the problem of identifying test cases relevant
to a change in the system under test, prioritization aims at ordering test cases such
that defects are detected as early as possible (Yoo and Harman 2012). Islam et al
(2012) recover traceability links between source code and system requirements
with IR techniques and use this information together with code coverage and test
execution cost to identify optimal test orderings. This approach requires structural
knowledge of the system under test, i.e. source code in this particular case. Thomas
et al (2014) propose therefore an approach that relies only upon data originating
from the test cases. They use an IR technique to measure the similarity between
test cases and prioritize them such that dissimilar test cases are run first.

2.4.3 Configuration of IR techniques

Numerous studies proposed and evaluated IR techniques for different software en-
gineering tasks (see the systematic literature reviews by Dit et al (2011b) and
Borg et al (2013)), leading to the need of systematically comparing and evaluating
these techniques. The fundamental idea behind any configuration optimization is
to guide the process by a data-driven parameter selection. For example, Falessi
et al (2013) use IR techniques to detect equivalent requirements and evaluate the
performance of 242 configurations. While they identify an optimal technique, they
point out that the particular parameters are dependent on the underlying data
set, which means that the identification of the optimal technique configuration
requires considerable effort. Lohar et al (2013) propose therefore to use Genetic
Algorithms (Goldberg 1989) to search for the optimal IR technique configuration.
A similar approach was proposed by Panichella et al (2013) to configure proba-
bilistic IR techniques (Latent Dirichlet Allocation (Blei et al 2003)).

2.4.4 Contribution

Traceability recovery supported by IR techniques has seen a lot of research in
many application areas in software engineering (see Section 2.4.1). However, re-
search on traceability recovery with IR techniques between source code and test
cases has been rare (Borg et al 2013), or not designed for black-box system testing
(e.g. Qusef et al (2014)). In this paper we propose to use IR techniques for test
case selection in the context of Software Product Lines. While IR techniques have
been applied for test case prioritization (see Section 2.4.2), their use in test case
selection has received less attention. IR techniques need to be configured in order
to reach optimal performance. Recent studies show that configuring IR techniques
should be driven by experiments since the performance depends on the underlying
data (see Section 2.4.3). We use an industrial data set that is at least by an order of
magnitude larger than in previous studies attempting to configure IR techniques.
We report on the practical implementation of our proposed test selection tech-
niques, the challenges we encountered and the lessons learned in evaluating the
approach experimentally.



Title Suppressed Due to Excessive Length 9

3 Research method

In Section 2.3 we stated the informal hypothesis that textual feature location based
on IR techniques can be used to support test case selection decisions. Therefore,
using the goal-question-metric method (Basili and Caldiera 1995) to specify the
goal (Dyba et al 2005) of this study, we:

Analyze IR techniques, for the purpose of evaluation, with respect to their support

for test case selection, from the point of view of the practitioner, in the context of

industry-grade software development artifacts.

Based on this goal definition, we state the following research questions.

RQ-1 To what extent can state-of-the-art IR techniques be applied in a large-scale
industrial context?

RQ-2 To what extent do the used software development artifacts influence the
performance of IR techniques?

RQ-3 To what extent can the studied IR techniques support test case selection?

We defined the problem in the context of our industrial partner and use their
data to design, implement and evaluate a solution candidate. This approach dif-
fers from previous IR experiments on textual feature location which are mostly
limited to preliminary evaluations in academic contexts (Dit et al 2011b). Hence,
the purpose of RQ1 is to understand the challenges and to identify solutions for
conducting IR experiments on data sets whose characteristics correspond to data
sets from the problem domain. We conduct an experiment that evolves over three
setups and address RQ-1 by reporting on lessons learned and analyzing them w.r.t.
previous IR experiments reported in literature. With RQ-2 we aim to understand
the impact of input data characteristics on the performance of IR techniques. With
IR performance we refer to both the techniques’ efficiency in terms of computa-
tional cost and to the techniques’ effectiveness (the specific effectiveness measures
differ in the experimental setups and are defined there). We address RQ-2 in Ex-
perimental Setup 2 and 3. The purpose of RQ-3 is to compare the studied IR
techniques and to determine whether the approach of using feature location as an
aid to test case selection is feasible. We address RQ-3 in Experimental Setup 3.
The remainder of this section describes the overall design of our experiment.

3.1 Description of objects

The objects of the experiment are software development artifacts belonging to the
implementation (source code, configuration files, user help documentation) and
the system test (natural language test steps) domain.

In the implementation domain, there is a set of features F = {F1, . . . , Fnf},
where nf is the total number of features, that represent the configurable func-
tionality of a family of systems V . The feature vector Ai = [a1, . . . , anf ], where
aj = {0, 1}, identifies a particular variant V (Ai) of the system family V . Fur-
thermore, there is a set of source code files C = {C1, . . . , Cnc}, where nc is the
total number of source code files, each consisting of a set of source code lines
LCj = {L1, . . . , Lnl}, where nl is the total number of lines in that source code file.
Depending on the particular implementation of a feature, there exists a mapping
of feature Fi to either:



10 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Fig. 1: Example of a chain connecting a feature with test case and product artifacts

– C(Fi) ⊂ C, i.e. a subset of the source code files
– LCj(Fi) ⊂ LCj , i.e. a subset of the source code lines
– a combination of the above, i.e. feature Fi is mapped to a subset of the source

code files and a subset of source code lines

Note that C(F ) ̸= C and LCj(F ) ̸= LCj , i.e. there is a subset of source code
files/lines that are not mapped to any configurable feature. Those source code
files/lines are common to every system variant in V .

In the system test domain, there is a set of test cases T = {T1, . . . , Tnt}, where
nt is the total number of test cases. A test case is a natural language document
that contains categorization information (test case name, test module name, test
module information) and test execution information (assumptions, initialization
information, acceptance criteria, test objective, test steps).

3.2 Feature chains

Specific instances of the objects defined in Section 3.1 determine a feature chain,
connecting features, source code and test cases (Figure 1). A feature chain consists
of two links:

1. Feature to test cases: established by senior test engineers, linking a subset of
all features F to a subset of all test-cases T , i.e. T (F1..n ⊂ F ) ⊂ T , where
Fi → T1..m.

2. Feature to product artifacts: established by identifying the impact of the con-
figuration switch activating/deactivating a feature on product artifacts (i.e. file
and/or line addition/removal).

A feature chain Ii = {Fi, C(Fi), LCj(Fi), T (Fi)} connects the artifacts from
the implementation and system test domain. Figure 1 illustrates this concept.
Feature F2 is verified by test case T1. This connection is established by a senior
test engineer. Feature F2 is implemented in source code file C2 and in lines L20

to L30 in file C1. This connection is established by identifying the impact of the
configuration switch activating/deactivating feature F2 on C1, C2, and C3.



Title Suppressed Due to Excessive Length 11

Table 2: Selected independent variables (IV) and values

IV Test case content Term extraction IR Model

Full test case Tokenization VSM
Values Test case except test steps Stop words LSA

Acceptance criteria and objective Stemming

3.3 Independent variables

The potential independent variables, i.e. the variables that can be controlled and
manipulated in the experiment, are numerous. Since the overall architecture of IR
techniques is that of a pipeline, individual components can generally be replaced as
long as input/output constrains are satisfied. Falessi et al (2013) propose a clas-
sification of IR techniques consisting of four main components: IR model, term
extraction, weighting schema, and similarity metric2. For each of these dimen-
sions, it is possible to identify multiple factors that deserve consideration in an
experiment evaluating IR techniques. However, since the main purpose of this
study is to determine the feasibility of IR techniques for test case selection, we
limit the number of independent variables and values to a realizable number (see
Table 2). As it turned out during the execution of the experiment, with increasing
complexity and amount of data on which the IR techniques are applied, we had
to remove values as they were not feasible to manipulate, but also added values
as the data required e.g. additional pre-processing. These decisions are motivated
and documented in the corresponding experimental setup in Section 4. We describe
now the independent variables shown in Table 2 in more detail.

As described in Section 3.1, test cases consist of categorization and execution
information, containing information that is not necessarily connected to the to-
be-tested feature. For example, assumptions, initialization information and test
steps may refer to pre-requisite functionality that is verified by another dedicated
test case. Hence, it is necessary to identify the test case content that is the most
effective, i.e. encode the most information on a feature with the least amount of
noise.

Term extraction refers to pre-processing techniques applied incrementally on
the analyzed texts, where the simplest form, tokenization and stop-word removal,
can be extended by stemming (Falessi et al 2013). Furthermore, techniques exist
that aim specifically to improve IR applied on source code, e.g. by splitting (Enslen
et al 2009; Dit et al 2011a) or expanding identifiers (Hill et al 2008; Lawrie and
Binkley 2011) or a combination of both (Guerrouj et al 2011; Corazza et al 2012).
Even though these techniques seem to improve the performance of IR, they have
been implemented for and validated against only a subset (Java, C, C++) of the
programming languages we encountered in a product (see Section 4.1.3). Therefore,
we decided against adding them as a manipulated variable in our experiment.

An IR model evaluates the semantic similarity between text documents (Fa-
lessi et al 2013). The vector space model (VSM) (Salton et al 1975) and latent
semantic analysis (LSA) (Deerwester et al 1990) both represent documents as
term-frequency vectors and consider the distance between these vectors as se-

2 Grossman and Frieder (2004) provides a broader overview



12 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

mantic dissimilarity. LSA, an extension to the VSM, considers co-occurrence of
terms (Falessi et al 2013) in order to address synonymy (the same meaning -
different terms) and polysemy (different meanings - the same term) (Deerwester
et al 1990). Note that LSA is a parameterized model, increasing the number of
independent variables.

3.4 Validity threats

We use Wohlin et al (2000) to structure this analysis and discuss the threat cat-
egories in the suggested priority for empirical software engineering experiments:
internal, external, construct and conclusion threats. For each category, we discuss
only those threats that apply to the experiment design formulated in this section.

3.4.1 Internal validity

The instrumentation threat refers to the effects caused by the artifacts used for
experiment implementation. The impact of the used artifacts is a central aspect
of the study overall, but in particular of the experimental design and its imple-
mentation in three setups. As such, we are explicitly addressing and discussing
instrumentation and its effect in each setup.

The selection threat refers to the variation of the chosen objects in the ex-
periment. The feature chains are determined by the possibility to establish an
association between a particular feature and the test cases that verify that fea-
ture. As such, the selection of features is biased towards those for which the tasked
test engineers could create such a mapping. We have however no indication that
the non-random selection of features introduced a systematic bias towards product
variants and their artifacts or types of system test cases.

3.4.2 External validity

The interaction of selection/setting and treatment threat refers to the selection of
objects from a population that is not representative for the population to which we
want to generalize. We address this threat by sampling objects from an industry
setting which is the population to which we generalize our results.

3.4.3 Construct validity

Inadequate pre-operational explication of constructs refers to the threat of insuffi-
ciently defining the theoretical constructs of the experiment. We address this threat
by formalizing the relationships of the objects, i.e. the feature chain and its com-
ponents, in the experimental design and using this formalization in the execution
of the three experiments. However, there is a threat that the mapping of test cases
to features, necessary for constructing a feature chain, was biased by the under-
standing and experience of a single tester. We addressed this by involving two test
engineers in this process.

A mono-operation bias exists in an experiment if the limited number of inde-
pendent variables, objects or treatments leads to an incomplete picture of the



Title Suppressed Due to Excessive Length 13

Fig. 2: General experiment procedure (horizontal axis) and changes between the
three experimental setups (vertical axis)

theory. While we aimed at selecting a sensible variation of independent variables,
the choice was eventually limited by the practical constraints of implementing the
experiment on industry grade data sets, that addressed external validity threats.
This is a trade-off between conflicting validity threats one has to consider when
performing applied research Wohlin et al (2000). Other studies focus on a broader
coverage of IR configurations, e.g. Falessi et al (2013) and Biggers et al (2014).

3.4.4 Conclusion validity

There is a moderate threat of low statistical power w.r.t. the conclusions made in
Experimental Setup 3. The cost for establishing an observation (feature chain) con-
siderably limited the number of observations that could be made with reasonable
effort, also from the industry participants.

We address the threat of violated assumptions of statistical tests by an in-depth
analysis of the experimental design and choice of statistical techniques (see Sec-
tion 4.3.5).

While the implementation of corpus creation, term extraction, similarity anal-
ysis and evaluation differed in the three experimental setups (see Figure 2) due
do their varying objectives, we consider the threat of reliability of treatment im-

plementation low. The implementation of the four steps did not change within a
experimental setup and is available in the supplementary material (Unterkalm-
steiner et al 2014) for reference.

4 Experimental setups and evaluation

In this section we illustrate three major experimental setups whose implementa-
tion is guided by the design presented in Section 3. Each setup had a particular
objective and its implementation lead to lessons learned, motivating and shaping
the objectives of the subsequent setup.



14 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

The execution of the experiment follows the general flow shown in Figure 2
in all three setups. In Step 1, we create the corpus for a chain, consisting of the
configured product artifacts and test-cases. In Step 2, the corpus is textually pre-
processed, which removes noise and prepares the data for the subsequent analysis
in Step 3. We perform the evaluation of the IR technique in Step 4. With each
experimental setup, the steps are refined to address issues and lessons learned
from the predecessor. An overview of the differences between the three experimen-
tal setups is shown in Figure 2, while the details are discussed in the respective
subsections.

4.1 Experimental Setup 1: Pilot Experiment

The motivation for preparing a pilot experiment is to get an intuition whether
IR techniques can be used to solve the test case selection problem. Therefore, we
designed an experimental setup that tests the sensitivity of IR. In other words, we
want to determine whether the signal provided by the test cases is strong enough
to differentiate between a feature-activated and a feature-deactivated corpus.

Formally, using the notation introduced in Section 3.1, we have in Experimental
Setup 1 one feature chain I1 that includes feature F1 and test case T1. Therefore, we
have two feature vectors Aa = [1, a2, a3, . . . , afn] and Ad = [0, a2, a3, . . . , afn], re-
sulting in two system variants V (Aa) = {C1, . . . , Ccn} and V (Ad) = {C1, . . . , Ccm}.
We evaluate whether sim(T1, V (Aa)) > sim(T1, V (Ad)), where T1 is the test case
mapped to feature F1. As for independent variables, we manipulate the content of
T1 and the IR model sim (see Table 2). Figure 2 illustrates the configuration of
each step in this setup, further detailed in subsections 4.1.1 - 4.1.4 and in Figure 3.

The overall objectives of the pilot experiment are to:

– increase the understanding of the analyzed data (product artifacts, test cases)
– identify and evaluate IR tools which can be used to implement and execute

the experiments
– provide evidence on whether this approach is generally feasible or not

We discuss in Sections 4.1.4 and 4.1.5 to what extent these objectives have
been achieved.

4.1.1 Step 1 - Corpus creation

The product is configured by a collection of GNU autotools (Calcote 2010) scripts
and built with GNU make (Feldman 1979). In a typical product build, several
hundred software packages are fetched from the version control system server,
configured, compiled and packaged into an image that can be installed onto the
respective camera model.

For the pilot experiment, we selected one feature that is implemented in a
relatively small software package (368 files). On activation, the feature affects 10
source code files (8 modifications and 2 additions). The build system uses filepp3,
a file pre-processor, to apply configuration switches on plain text and HTML files.
By manually invoking filepp on the software package that implements the user
interface, we generated two variants with 10 distinct and 358 shared files.

3 http://www-users.york.ac.uk/~dm26/filepp

http://www-users.york.ac.uk/~dm26/filepp


Title Suppressed Due to Excessive Length 15

Fig. 3: Pilot setup details

4.1.2 Step 2 - Term extraction

We applied the following pre-processing steps on both the source code and test
case variants:

– filtered numeric, punctuation and special characters4

– filtered stop-words; English, and HTML/javascript keywords
– performed word stemming

Stop-word filtering and word stemming were implemented using the generic
data mining tool Rapidminer5, which was also used in the next step.

4.1.3 Step 3 - Similarity analysis

Figure 3 illustrates the pilot setup in more detail, emphasizing the fact that we
are working with two corpora (V (Aa) and V (Ad) with activated and deactivated
feature).

When creating the term-by-document matrix in Step 3, one has to decide
on the document granularity, i.e. on how the corpus is divided into documents.
Commonly, when analyzing similarity in source code, documents are defined as
a method (Marcus et al 2004; Cleary et al 2009), a class (Antoniol et al 2002)
or a file (Marcus and Maletic 2003). We defined a file as a document due to the
heterogeneity of the source code (markup, procedural, object oriented languages).

We applied VSM and LSA on the corpora, resulting in a list of ranked docu-
ments according to their similarity to the test case. Figure 4 shows the results of

4 using GNU sed, http://www.gnu.org/software/sed/
5 http://www.rapidminer.com, version 5

http://www.gnu.org/software/sed/
http://www.rapidminer.com


16 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Fig. 4: Pilot experiment results



Title Suppressed Due to Excessive Length 17

12 runs of the pilot experiment: with the VSM, we varied the test case content
(V1-V3), whereas with LSA, we also varied dimension reduction (V4abc-V6abc).
For each run, we plotted the cosine similarity of the first 30 ranked documents
(for all runs, the similarity values approach values below 0.1 after 30 documents
and showing all documents would render the plots more difficult to read). Fur-
thermore, documents that differ between the two corpora, i.e. that are affected by
activating/deactivating the feature, are marked with an “x”-symbol.

Looking at Figure 4, it can be observed that for all runs, in the feature activated
corpus (solid line), configured documents are ranked first (e.g. 4 in V1, 2 in V4a,
etc). This shows that, for this particular corpus and test case, all IR techniques and
combinations are able to locate the feature in question. However, we are interested
in differences between corpora (solid and dashed lines). These differences are visible
in runs V1-V3 (VSM), i.e. the maximum similarity of the feature activated corpus
is higher than the one of the feature deactivated corpus. Furthermore, the solid line
(activated corpus) is consistently above the dashed line (deactivated corpus). This
indicates that, at least visually, we can differentiate between the two corpora. This
changes in runs V4-V6 (LSA), rendering the visual differentiation more difficult.
We can observe that the maximum similarity in run V4a is higher in the feature
deactivated corpus higher than in the feature activated corpus. Furthermore, in
runs V(456)b and V(456)c the solid line intersects the dashed line at around file
8, indicating that the overall calculated similarity between test case and feature
deactivated corpus is higher than for the feature activated corpus.

These results are promising as they indicate that a differentiation between a
feature activated and deactivated corpus is possible, i.e. that there is a discerning
signal in this particular test case and IR techniques are able to detect that signal.
However, in order to determine which combination of test-case component and IR
technique performs best, we need to define a measure that is able to express the
visually determinable difference as a numerical value, as shown next.

4.1.4 Step 4 - Evaluation

In Section 4.1 we defined an experimental setup with two corpora in order to
test whether IR techniques can differentiate, given a test case, between the two
product variants. This is motivated by our aim for test case selection, which needs
to determine the existence/non-existence of a feature, but not necessarily its exact
location.

However, this also means that the traditional class of performance measures,
e.g. precision and recall, based on a confusion matrix, cannot be used for the
following reason. In a binary classification problem, the confusion matrix contains
four classes: true positives, true negatives, false positives, and false negatives.
Given an arbitrary threshold value for the calculated similarity between document
(source code) and query (test case), one can define a confusion matrix for the
corpus where the feature is activated. However, given a corpus where the feature
is deactivated, the number of true positives and false negatives, i.e. the number
of relevant documents, is by definition zero. In other words, no classification takes
place in the feature deactivated corpus. Hence, measures based on the confusion
matrix are unsuitable in this case.

Therefore, we develop a measure based on similarity and the given ground
truth. Similarity, a direct measure as opposed to the derived precision/recall pair,



18 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

has been used by Falessi et al (2013) to construct a credibility measure. Following
this example, we construct a differential similarity measure,

Dsim = max(simactivated|configured)−max(simdeactivated) (1)

which is the difference of the maximum similarity values of the two corpora. Note
that the maximum similarity for the feature activated corpus is taken from the
artifact that was actually affected by the feature activation, i.e. is configured.
Since the calculated similarity between two documents ranges from 0 to 1, the
range for Dsim is between -1 and 1. 1 indicates a perfect true differentiation, 0 no
differentiation at all, and -1 a perfect false differentiation. A false differentiation
occurs when the IR technique fails to connect the test case to the correct, i.e.
configured, source code artifacts.

It would be possible to construct sophisticated measures, incorporating more
of the distinguishing features of the curves in Figure 4 and the characteristics of
feature locations. For example, one can assume that features are implemented in a
small number of files out of a larger set. Then, the similarity for this small number
of files would be large, followed by a drop-down and a quick convergence to 0 (as it
can be observed in all curves of the feature activated corpus in Figure 4). For the
feature deactivated corpus, one would expect only a small drop-down in similarity
and a rather slow convergence to 0, as it can be observed in V(456)c in Figure 4.
These features of the curves, drop-down and convergence of similarity measures,
could be used to define more accurate differential similarity measures. However,
this approach would be threatened by an over-fitting of the measure definition to
the given data, resulting in a measure that would represent well the current, but
not the future data. Hence, we choose the simple Dsim measure that relies only
on the maximum similarity values.

4.1.5 Discussion and Lessons Learned

We start this section by discussing the results of the evaluation and then elab-
orate on the lessons learned from the implementation of Experimental Setup 1,
addressing RQ-1.

Looking at Figure 4, run V5b, V6c and V6b achieve the largest Dsim value,
indicating that LSA performs better than VSM (V1-V3). In general, we can observe
that the more specific the test case content, the larger the Dsim value, i.e. using
the complete test case is consistently worse (for both VSM and LSA) than using
a subset of the test case. This is an important result as it indicates that test cases
contain noise that can be reduced by a selective removal of test-case content.

In this pilot setup, we test our idea of using IR techniques for test case selection.
The results, illustrated in Figure 4, indicate that for this particular chain and
subset of documents, we can indeed differentiate between a feature activated and
a feature deactivated variant of a product, using the corresponding test case as a
probe. However, further experimentation as described in Section 4.2 is required to
investigate the scalability and generalizability of the approach.

Looking at the number of published studies in the field of feature location (Dit
et al 2011b), or in other areas where IR techniques are applied, e.g. traceabil-
ity research (Borg et al 2013), one would assume that literature provides both
technical and methodological guidance to implement and evaluate IR-based so-
lutions, adapted for the particular problem context. However, very few studies



Title Suppressed Due to Excessive Length 19

provide enough detail to implement their proposed approach. None of the 14 pub-
lications that study textual feature location techniques based on VSM and/or
LSA reviewed by Dit et al (2011b) provides prototype implementations. Few men-
tion existing tools that were used to implement parts of the proposed approaches.
Abadi et al (2008) and Gay et al (2009) use Apache Lucene (The Apache Software
Foundation 2014) as the VSM implementation, and Cleary et al (2009) mention
SVDPACKC (Berry 2014) as an implementation for singular value decomposition
(SVD), a procedure required for LSA. Lormans and van Deursen (2006) use the
Text to Matrix Generator toolbox (Zeimpekis and Gallopoulos 2006), a Matlab
module for text mining.

However, none of these tools lends itself to set up an experimental environ-
ment that allows one to explore data and technologies. Therefore, we implemented
the process in Figure 2 with the off-the-shelf data-mining tool Rapidminer. The
tool provides text processing capabilities and the necessary operators to imple-
ment VSM and LSA models. Furthermore, analyses can be constructed through
the component-based graphical process designer, allowing for quick exploration of
ideas. However, this convenience limits flexibility, e.g. by providing only a limited
number of term weight functions6. Furthermore, the execution time for a single
experiment run in the pilot does not scale to the amount of data in an actual chain.
We implemented therefore the pilot process and the following experimental setups
with shell scripts the statistical software package R (Crawley 2007), available in
the supplementary material (Unterkalmsteiner et al 2014). While there exist efforts
to reduce the barrier for conducting IR experiments, e.g. with TraceLab (Cleland-
Huang et al 2011; Dit et al 2014), researchers require also the flexibility of general
purpose statistical software. For example, Dit et al (2013) piloted their approach
with TraceLab, implemented the final experiment (Panichella et al 2013) however
with R. This mirrors our experience with Rapidminer and R, where the former
provides the ease of use for quick experimental exploration while the latter enables
flexible configuration and batch processing.

The studies reviewed by Dit et al (2011b) and Borg et al (2013) usually describe
process steps, such as corpus creation, indexing, query formulation, and ranking.
However, this information alone is insufficient to re-implement the proposed ap-
proaches as the IR techniques’ behavior is defined by a set of parameters (Thomas
et al 2013), including pre-processing steps, input data, term weights, similarity
metrics and algorithm-specific variations such as the dimensionality reduction fac-
tor k for LSA. Choosing k is a matter of experimenting with the data at hand to
identify the value that provides the best retrieval performance (Deerwester et al
1990). When comparing different algorithms, it is necessary to identify the optimal
parameters in order to provide a “fair” comparison (Hooker 1995). This process is
referred to as parameter tuning (see for example Lavesson and Davidsson (2006)
and Arcuri and Fraser (2011)). Few of the studies reviewed by Dit et al (2011b)
and Borg et al (2013) tune k to their LSA application. Some pick k based on experi-
ences from previous studies (e.g. from Deerwester et al (1990) and Dumais (1992)),
which is however a questionable practice: these early studies use benchmark data-
sets unrelated to the software engineering context. Furthermore, SVD on large,
sparse matrices is a computationally expensive operation. Iterative implementa-

6 Nevertheless, standard functionality can be extended through Rapidminers’ plugin mech-
anism



20 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

tions (e.g. Berry (2014)) using the Lanczos algorithm (Cullum and Willoughby
2002) approximate the singular values, effectively reducing the runtime of LSA by
limiting the number of dimensions. Computational cost should however not be a
hidden driver for parameter selection as it biases the comparison (Hooker 1995).

Few studies motivate, empirically or theoretically, their choice of k. A notable
exception is De Lucia et al (2007) where the performance of LSA is systematically
evaluated. Since the document space in their experiment was small (150), it was
computationally not costly to vary 15 ≤ k ≤ 150. The authors observed that
LSA performance, measured with precision and recall, did not vary much when
k was set between 30%-100% of the document space, attributing this behavior
to the small number of documents used in their experiments, and leading to the
conclusion that k should be a user-configurable parameter in their proposed tool.
Poshyvanyk et al (2006) worked with a larger document space (68,190), varied
k however only between 0.4%-2.2% (k = [300, 500, 750, 1500]), motivating their
decision that larger values for k are impractical to compute. They also observed
that varying k did not significantly influence LSA performance.

However, concluding from these results that an optimal value for k should be
between 30-500 would be wrong. De Lucia et al (2007) observed a decline in per-
formance when k was set to less than 10% of the document space. Poshyvanyk et al
(2006) never reached that percentage due to the computational cost involved in
SVD. Not optimizing model parameters can lead to contradicting conclusions on
which IR technique performs better, as the following example illustrates. Oliveto
et al (2010) compare, among other models, LSA with Latent Dirichlet Allocation
(LDA). While k for LSA is not reported, the number of topics in LDA is var-
ied between 50 and 300. The authors conclude that “the LDA-based traceability
recovery technique provided lower accuracy as compared to other IR-based tech-
niques” (Oliveto et al 2010). Asuncion et al (2010), using the same standardized
data set (EasyClinic7), parameterize LSA with k = 10 and LDA with t = 10, and
conclude that LDA performs better than LSA, i.e. the opposite of Oliveto et al
(2010). These contradicting results, also observed by Grant et al (2013), illustrate
the importance of parameter optimization.

4.2 Experimental Setup 2: Scaling up

While Experimental Setup 1 focused on studying the feasibility of using IR tech-
niques for test case selection, this setup aims at evaluating the scalability of the
approach. Concretely, the objectives are to study its behavior with respect to:

– computational scalability of the 4 steps (corpus creation, term extraction, sim-
ilarity analysis and evaluation), and

– accuracy, i.e. a larger corpus means that the feature location task becomes
more difficult since there are many more irrelevant than relevant documents

In this setup, we apply the piloted approach shown in Section 4.1 on a set of cor-
pora created from the complete product. Formally, we have in Experimental Setup
2 six feature chains I1...6 that include six features F1...6 and six test cases F1...6.
Therefore, we have 12 feature vectors Aa1...6 and Ad1...6 resulting in 12 system

7 http://web.soccerlab.polymtl.ca/tefse09/Challenge.htm

http://web.soccerlab.polymtl.ca/tefse09/Challenge.htm


Title Suppressed Due to Excessive Length 21

variants V (Aa1...6) and V (Ad1...6). We evaluate whether sim(T1...6, V (Aa1...6)) >

sim(T1...6, V (Ad1...6)). As for independent variables, we manipulate the content of
T1...6. The characteristics of this setup are summarized in Figure 2 and detailed
in subsections 4.2.1 - 4.2.4. We report on the lessons learned in Section 4.2.5.

4.2.1 Step 1 - Corpus creation

We selected six features, resulting in chains consisting of between 67,238 and
67,334 files, depending on the particular feature activation state. As in Experimen-
tal Setup 1, we created the different product configurations manually. However,
in contrast to the limited set of files used in Experimental Setup 1, the complete
product contains source code written in various programming languages, and build,
configuration and documentation files. Furthermore, we had to consider more con-
figuration mechanisms. In Experimental Setup 1, the feature activation/deactiva-
tion could be performed with filepp alone since only a subset of the product (the
one configured with filepp) was considered for the corpus. However in this setup,
GNU autotools mechanisms (i.e. depending on configuration, adding or removing
files to the build process) and pre-processor mechanisms from the GNU compiler
tool-chain needed to be considered in addition. In this setup we did not build the
product (this will be explored in Experimental Setup 3 in Section 4.3), but traced
the impact of feature activation/deactivation and implemented it manually in the
product artifacts.

For each feature chain, we randomly selected one test-case from the pool of
test cases identified by the test engineers as relevant for the particular feature. As
in the pilot experiment, we created three test case variants that differed by the
amount of included information.

4.2.2 Step 2 - Term extraction

With the increase in size but also the variety of the corpus, term extraction became
more challenging. We decided to eliminate term stemming as the processing time
for one feature chain amounted to 20 hours. This likely increased the number of
terms in the term-by-document matrix. On the other hand, we added a filter that
removed binary files from the corpus and added a fact extraction process, inspired
by Poshyvanyk and Marcus (2007). We used srcML (Maletic et al 2002) to extract
identifier names, comments and literals from C and C++ source code, reducing
the amount of irrelevant terms in the corpus. Concretely, for the kernels’ source
code files, the term count could be reduced from 237,393 to 195,019 (a reduction
of 18%) with fact extraction.

4.2.3 Step 3 - Similarity analysis

To implement the term-by-document matrix we used an R text-mining pack-
age (Feinerer et al 2008), which provides efficient means to represent highly sparse
matrices. This is required to be able to efficiently process a large corpus in memory.
Furthermore, we improved the computational performance in two ways.

First, we optimized the calculation of similarity values by changing our ini-
tial, iterative, implementation into a vectorized form, exploiting the performance



22 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Table 3: VSM results using the Dsim measure

Variant / Chain 1 2 3 4 5 6

V1 0.120 -0.406 -0.139 -0.490 -0.259 0.004
V2 0.170 -0.355 -0.141 -0.504 -0.244 -0.009
V3 0.228 -0.486 -0.215 -0.517 -0.205 -0.010

advantages of array programming (Iverson 1980). This reduced the similarity cal-
culation using the VSM for one chain (corpus with 60,000 files) from 20 hours to
8 hours.

Second, we changed our implementation of VSM to support parallelization,
allowing us to distribute the workload among several CPUs. We chose to use the
snowfall package (Knaus 2013) for this task as it allows to choose at run-time,
without changing code, whether to run in cluster or in sequential mode, which
is useful for testing the implementation. With the use of a cluster consisting of 8
cores, we could reduce the computation time for one chain from 8 to approximately
1 hour.

4.2.4 Step 4 - Evaluation

We used the Dsim measure, introduced in Section 4.1.4, to evaluate the perfor-
mance of VSM to differentiate between the activated and deactivated corpus using
a test-case. Table 3 shows the results of the 18 experiment runs: 6 chains and 3
test-case variants each. Recall that for a true differentiation, the Dsim measure
ranges between 0 and 1.

Looking at Table 3, the results from chain 1 indicate that a true differentiation
is possible. This confirms the results from Experimental Setup 1, which consisted
of the same feature and test-case, however with a subset of the product artifacts.
On the other hand, the Dsim measure of chains 2-6 indicates that the test-cases
cannot differentiate between the feature activated and deactivated corpus. Looking
at chain 2, shown in Figure 5a, we observe that there is no dissimilarity between
the feature activated and deactivated corpus among the first 70 files. For chains 4
and 5 the curves look similar and are therefore not shown in Figure 5. Common to
these three chains is the low number of files that are affected by a feature activation
(between 2 and 7) and the change is minimal (typically a parameter replacement
in a configuration file). In these cases, IR techniques are unlikely to work for test
case selection as the changes between variants are minimal.

The situation is different for chains 3 and 6. Even though the Dsim measures
in Table 3 indicate no differentiation, Figure 5b indicates a slight, and Figure 5c a
more pronounced difference between activated and deactivated corpus. This sug-
gests that the Dsim measure discards too much information by taking only the
maximum similarity values into consideration.

4.2.5 Discussion and Lessons Learned

We start this section by discussing implementation issues of Experimental Setup
2, and then elaborate on the lessons learned from the results and evaluation,
addressing both RQ-1 and RQ-2.



Title Suppressed Due to Excessive Length 23

(a) Chain 2

(b) Chain 3

(c) Chain 6

Fig. 5: Results on three complete product variants



24 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Table 4: Large scale IR experiments on source code

Publications IR model # Documents # Unique Terms

Poshyvanyk et al (2012) LSA 18,147 17,295
Moreno et al (2013) LSA/VSM 34,375 Not stated
Gay et al (2009) VSM 74,996 Not stated
Poshyvanyk and Marcus (2007) LSA 86,208 56,863
Liu et al (2007) LSA 89,000 56,861

Experimental Setup 2 VSM 67,334 359,954

The main concern in this setup is to scale the implementation of the experiment
from a corpus with a few hundred files to one with 67000 files. After all, we are
interested in studying the behavior of the IR techniques and solutions on a realistic
data set that mirrors the characteristics of the target problem. The application of
IR models (VSM and LSA) is thereby constrained by two factors: memory usage
and computational time.

Since the term-by-document matrix is sparse, there exist efficient means to rep-
resent the matrix in memory, storing only non-zero values. However, this requires
that matrix calculations support this format. Concretely, vectorized multiplication
requires (by definition) that the multiplicands are stored as vectors. This is a re-
quirement that we used in Step 3 (see Section 4.2.3) to our advantage. We created
sub-matrices from the sparse term-by-document matrix that would fit in mem-
ory and distributed the cosine calculation for the VSM model among a cluster.
Looking at the studies discussed in Section 4.1.5, only a few applied IR models on
large corpora. Table 4 compares the average corpus in this study with the largest
corpora identified in the relevant literature. None of these studies analyzes the
implications of the large corpora on memory consumption and applicability of the
proposed approaches in an actual solution that could be used in industry.

The second factor that constrains the applicability of the IR techniques is
computational time. In Section 4.2.3, we have shown how the computational ef-
ficiency for the VSM model was increased by vectorization and parallelization of
matrix multiplications. The LSA model requires a singular value decomposition
of the term-by-document matrix. This operation is expensive with respect to ex-
ecution time and difficult to parallelize for sparse matrices (Berry et al 2006).
We ran a benchmark on a corpus with 35,387 documents and 193,861 terms,
measuring the runtime of the SVD operation with various dimension reductions
(k = 50, 100, 200, 300, 400, 500, 600, 700, 800). We used the irlba package (Baglama
and Reichel 2014), which allows partial SVD calculations in contrast to the stan-
dard SVD implementation in R. Figure 6 shows the measured runtime in hours
versus the number of dimensions. For example, the runtime with k = 300 amounts
to 1 hour and 43 minutes, whereas with k = 800 the SVD computation requires
20 hours and 30 minutes. We fitted a simple quadratic linear regression model to
the data, explaining 99% of the observed variance (see Figure 6), which we could
use to extrapolate the runtime for higher values of k.

In Experimental Setup 1, we varied k as a percentage of the number of doc-
uments in the corpus (80%, 40%, 20%). If we would apply the same strategy in
this setup with 67,000 documents, even with only a 20% reduction (k = 13700),
the SVD runtime would amount to 8,287 hours, or 345 days. This illustrates why



Title Suppressed Due to Excessive Length 25

Fig. 6: SVD runtime and dimensions

determining an optimal k is rather impractical and has been done only in a limited
manner in the past (see discussion in Section 4.1.5). However, experimentation rep-
resents the only way to determine the optimal k for the data at hand (Deerwester
et al 1990). Possible strategies that would make such experimentation possible, in
particular with source code as documents, are to:

– Reduce the number of terms in the corpus with fact extraction from C source
code files (Section 4.2.2). However, this approach requires the implementation
of fact extractors for the (potentially many) programming languages occurring
in the analyzed corpus.

– Exclude irrelevant documents from the corpus: we used every text-based doc-
ument in the product repository as input. However, one could reduce this set
to documents that are used in the product build process, effectively selecting
only relevant documents as input. We explore this strategy in Experimental
Setup 3 (Section 4.3).

– Use of parallel/distributed SVD implementations: we used a serial implemen-
tation which neither exploits multi-core processors nor can be run on a dis-
tributed system. Hence, one could explore solutions that parallelize the SVD
computation, e.g. pbdR (Ostrouchov et al 2012), SLEPc (Hernandez et al 2005)
or gensim (Řeh̊uřek 2011). Note that incremental SVD computations, as sug-
gested by Brand (2006) and Jiang et al (2008), would be of no benefit for
model selection, since we are interested to vary k and typically do not update
the corpus.

Due to the inefficiency of the SVD computation, we decided to exclude LSA
from our further experimentation, motivated by the instability of the VSM results
in this setup and the uncertainty of the overall feasibility of the approach. It
would be unwise to optimize the LSA model for computational efficiency when
the approach, even with the simpler VSM model, turns out to be impractical.

In Section 4.2.4, we argued that the VSM model seems to work on chains
with certain characteristics, even though the Dsim measure does not reflect this.



26 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Fig. 7: Ranking setup

For example, the visual representation of the results of chain 6 in Figure 5c in-
dicates that there is a difference between the activated and deactivated corpus,
even though Dsim (0,004, -0.009, -0.010) does not express this. Dsim discards too
much information, i.e. it does not accurately represent the actual difference be-
tween a feature activated and deactivated corpus. Our first intuition on how to
use IR techniques for test case selection (see discussion on solution development
in Section 2.3) would require to empirically identify a threshold value α for select-
ing/discarding a particular test case. Now however, after sampling more feature
chains with a realistically sized document corpus, it seems unlikely that we can
determine a useful threshold value. Dsim clearly indicates that the difference be-
tween a feature activated and deactivated corpus cannot be measured by maximum
similarity. Hence, a similarity threshold would not work either.

We therefore decided to reshape the original solution description (Section 2.3),
allowing us to define an alternative evaluation metric to Dsim. Instead of using
a test case as query and ranking product artifacts, we calculate an aggregated
similarity of each test case to a product variant. This means that each test case
is ranked with respect to a particular product variant. We can use this rank,
in combination with the test case relevance information provided by a feature
chain, to evaluate 1) the relative performance of IR techniques and 2) the test
case selection performance. This reformulation of the problem leads to a simplified
experimental setup, as illustrated in Figure 7. The main differences to the previous
two setups (Figure 3) are in Step 1 where we create only one feature activated
corpus per chain and in Step 4 where all existing system test cases are ranked
according to their similarity to the feature activated corpus.

4.3 Experimental Setup 3: Ranking

In the previous setups we studied the feasibility and scalability of the approach,
leading to refinements in individual steps, to the removal of the LSA model due to
its computational cost from the experiment, and to a re-formulation of the problem
in order to enable the evaluation. The objectives of this setup are therefore to:

– adapt the experimental setup to the problem reformulation
– choose the correct statistical technique to evaluate and determine the factors

that influence the IR technique performance



Title Suppressed Due to Excessive Length 27

In this setup, we modified the configuration of the experiment in Steps 1 and 4
(see Figure 7 and 2). In Step 4, we calculate the similarity of each test case (1600)
to a product variant and then use this similarity score to rank the test-cases. Since
we know which test cases are relevant for a product variant, we can then evaluate
the IR techniques based on the respective test case rankings.

Formally, we have in Experimental Setup 3 ten feature chains I1...10 that in-
clude ten features F1...10. We have ten feature vectors Aa1...10 resulting in ten
system variants V (Aa1...10). To each feature, one or more test cases are mapped:
in total, 65 test cases are mapped to ten features. We rank all 1600 test cases,
which include the 65 mapped test cases, according to sim(T1...1600, V (Aa1...10))).
As for independent variables, we manipulate the content of test cases T1...1600 and
use two different summary statistics when calculating sim.

The consequence of this problem reformulation, compared to Experimental
Setup 1 and 2, is an increase in computational cost: the similarity of each test
case variant (4,800) to the product variant needs to be calculated (as opposed to
the 3 test case variants in Experimental Setup 2). To make the ranking evaluation
feasible, we employed two strategies to reduce the size of the document corpus and
created two types of corpora:

1. A minimal corpus that contains only the artifacts that are affected by a feature
activation, reducing thereby noise stemming from artifacts that are common
to all product variants. This allows us to pilot the new setup with a relatively
short run-time.

2. An automatic corpus that represents the configured product as accurately as
possible, reducing thereby the number of artifacts to what is actually compos-
ing a deployed product.

We call the first corpus “minimal” for two reasons: a) features are implemented
in a small subset of the total files, hence the corpus is small compared to the second,
“automatic” corpus; b) the difficulty level is minimized by removing noise caused
by not relevant files. We call the second corpus “automatic” since we employ
techniques to create this corpus without manual intervention, in contrast to the
previous experimental setups.

4.3.1 Step 1 - Corpus creation

For the creation of the minimal corpus, we followed the same procedure as in
Experimental Setup 2, i.e. manually tracing the impact of a feature activation
to product artifacts. However, in this setup, we only included artifacts that were
affected by a feature activation, thereby creating a minimal corpus.

The idea for creating an automatic corpus stems from the disadvantages of
manual corpus creation, being inefficient (it must be repeated for every chain),
error-prone, and most importantly, incomplete. With a manual configuration, only
the traced option is considered and all other options are not implemented in the
product artifacts. This means that the artifacts in a manually generated corpus do
not correspond to the artifacts that compose a product that would be eventually
installed and tested on a camera, leading to a larger, less accurate corpus.

For example, Listing 1 shows an excerpt from a Makefile where a configura-
tion option (line 2) determines whether 2 files (line 3) should be built or not.
If CONFIG_A is the traced option, a manual configuration would delete the source



28 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Table 5: Corpora sizes (# of documents / # of terms)

Chain Minimal corpus Automatic corpus Manual corpus (setup 2)

1 10/1,668 11,078/68,619 67,332/347,854
2 3/260 11,078/68,613 67,331/341,098
3 56/3,471 11,078/68,614 67,332/347,853
4 2/150 11,078/68,613 67,334/359,954
5 2/29 11,078/68,613 67,331/341,097
6 29/1,638 11,078/68,611 67,332/347,857
7 61/2,170 11,078/68,608 N/A
8 2/242 11,078/68,611 N/A
9 3/630 11,078/68,613 N/A
10 3/66 11,078/68,612 N/A

files corresponding to line 2. However, independently of whether CONFIG_B in line
6 is activated, the corresponding files in line 7 would be included in a manually
generated corpus.

The same principle holds for preprocessor directives that realize configuration
options. In Listing 2, assume CONFIG_C to be the traced option (line 8). With a
manually generated corpus, the configuration option in line 2 would not be eval-
uated, therefore including the file (line 3) into the corpus, independently whether
the product is actually run on an ARM processor. This increases the size of the
corpus, adds noise and does not reflect the product for which the system test cases
where developed.

We addressed this issue by exploiting the product build system. The basic idea
of our approach is to hook into the build process custom code that performs pre-
processing operations on the files included in the product. As a result, we get the
configured (preprocessed) source code and the compiled product as it is installed
on the camera, including configuration files and documentation. In this way, we
could create a corpus that corresponds to the tested product merely by configuring
and building the product.

Table 5 illustrates the size characteristics of the minimal and automatic corpus
from this setup and the manual corpus from Experimental Setup 2. We reduced
the average size for the automatic corpus by a factor 6 compared to the manual
corpus. The minimal corpus is significantly smaller, which allowed us to pilot the
ranking approach.

Listing 1: Makefile with conditional inclusion of files

1 [...]
2 ifeq ($(CONFIG_A), y)
3 ide -gd_mod -y += ide -disk.o ide -disk_ioctl.o
4 endif
5 [...]
6 ifeq ($(CONFIG_B), y)
7 ide -gd_mod -y += ide -floppy.o ide -floppy_ioctl.o
8 endif
9 [...]

Listing 2: Preprocessor directives with conditional inclusion of files and code

1 [...]
2 #ifdef CONFIG_D



Title Suppressed Due to Excessive Length 29

3 #include <asm/irq.h>
4 #endif
5 [...]
6 void led_classdev_unregister(struct led_classdev *led_cdev)
7 {
8 #ifdef CONFIG_C
9 if (led_cdev ->trigger)

10 led_trigger_set(led_cdev , NULL);
11 #endif
12 [...]
13 }

The second major difference to Experimental Setup 2 was to use all system
test cases (1,600) and rank them instead of analyzing similarity between a product
and the applicable test case(s). As test cases were stored in a database, we could
easily automatize the construction of the 4,800 test case variants.

4.3.2 Step 2 - Term extraction

We applied the same process as in Experimental Setup 2.

4.3.3 Step 3 - Similarity analysis

In Experimental Setup 2, a similarity analysis for one product configuration and
one test case variant required approximately one hour of computational time. With
4,800 test case variants, this would amount to a computation time of 200 days per
chain. However, with the reduced corpus sizes we could compute a chain within
2 (minimal corpus) respectively 17 (automatic corpus) hours, making the ranking
approach feasible.

4.3.4 Step 4 - Evaluation

The evaluation procedure differs considerably from Experimental Setup 2 where we
looked at the difference of a feature activated and deactivated corpus. In this setup,
we have only a feature activated corpus and rank the test cases according to their
similarity to that corpus. To create such a test case ranking, we compute a single
similarity value using a summary statistic of the corpus’ documents similarity to
each test case. As summary statistics we chose maximum and mean similarity.

The independent variables in this setup are the test-case variants and the
summary statistics. For the test case variants we have three levels (see Table 2)
while the summary statistics consist of two levels (maximum and mean). Since we
have two independent variables and use the same data for all factors, we have a
two-way repeated measures design. The dependent variable is the ranking position
of a test-case, i.e. the lower the ranking position the better. In total, we have 65
ground truth instances, i.e. relevant test cases that are ranked between position 1
and 1600.

The evaluation goal in this setup is twofold: (1) we compare the effect of the
independent variables on the ranking performance; (2) we study the ranking per-
formance to understand whether it can support test case selection decisions.



30 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Table 6: Results of randomization tests (100,000 iterations) of hypotheses H01 and
H02

Effect p-value minimal corpus p-value automatic corpus

1. Test case content 0.32022 0.11216
2. Summary statistic 0.07580 0.98244

(1) Comparison of ranking performance We formulate the following null hypotheses:

H01: The test case content does not significantly affect the ranking performance
of the VSM.

H02: The summary statistic does not significantly affect the ranking performance
of the VSM.

Furthermore, we evaluate whether the size of the corpus impacts the ranking
performance and formulate the third null hypothesis as follows:

H03: The corpus type does not significantly affect the ranking performance of the
VSM.

Figure 8 illustrates the ranking results in the form of box plots. The y-axis
shows the ranking position (the numbers indicate minimum, median and maximum
position) of the 65 test cases whereas the different box plots represent the two
factors with two and three levels. Even though in both corpus types a large variance
can be observed, the spread is more pronounced in the automatic corpus. This is
an expected result as the minimal corpus contains less noise than the automatic
corpus. Looking at the minimal corpus in Figure 8a, one can observe that, for
the maximum statistic, the more specific the information in the test case the
smaller is the variation (inter-quartile range, dashed line) in ranking results. This
behavior is reversed for the mean statistic where the inter-quartile range increases
with the specificity of the test case content. Looking at the automatic corpus in
Figure 8b, the impact of statistic and test case content on inter-quartile range is
not analogous to the one observed in the minimal corpus. This is an indication
that the characteristics of the corpus (minimal vs. automatic) affect IR technique
performance, not only by overall absolute values, but also in terms of the impact
of the summary statistic and the test-case input on the ranking.

In order to test the stated hypotheses we used randomization tests (Lud-
brook and Dudley 1998; Edgington and Onghena 2007) provided by the ez pack-
age (Lawrence 2013) for R. Table 6 lists the results of testing H01 and H02, which
we consequently fail to reject at α = 0.05: neither test case content nor sum-
mary statistic significantly affect the test case ranking performance, both on the
minimal and automatic corpus. However, we reject H03 with a p-value < 0.001
(randomization test, 100,000 iterations).

(2) Test case selection decision support Table 7 shows a subset of the results (for
each chain only the test case with the highest rank is shown) in this experimental
setup, both for the minimal and the automatic corpus. The first column indicates
the chain and the number of test cases identified by the test engineers as being
relevant for that feature. The remaining columns refer to the rank (out of 1,600)
with the given test case variant and used summary statistic. For example, in the



Title Suppressed Due to Excessive Length 31

(a) Minimal corpus

(b) Automatic corpus

Fig. 8: Box plots of test case rankings - the dashed line indicates the inter-quartile
range differences

minimal corpus in Table 7, the only test case in Chain 1 was ranked on position
81, using the complete test case and the mean as summary statistic. A lower rank
indicates a better result since a relevant test case would appear higher in the
ranked list of test cases.

Table 7 shows also the mean average precision (MAP) (Liu 2011) of the test
case rankings. MAP allows us to interpret how useful the ranking is for the task
at hand. MAP is calculated by taking the mean of the average precision (AP) over
a set of queries. AP is calculated by averaging the precision at each relevant test



32 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

case. For example, representing correct results as 1 and 0 otherwise, the AP for
the query result 0 1 1 0 0 0 1 is (1/2 + 2/3 + 3/7)/3 = 0.53. The MAP is then
calculated by averaging the AP of a series of query results. A MAP of 0.1 means
that only every tenth ranked item is relevant, whereas with a MAP of 0.5, every
second item is relevant.

Table 7: Test case ranking positions and Mean Average Precision

Chain1 MAX/V1 MAX/V2 MAX/V3 MEAN/V1 MEAN/V2 MEAN/V3

Minimal corpus - test case ranking position

1 (1) 57 142 311 81 327 136
2 (2) 1,416 1,286 955 1,393 1,166 992
3 (5) 111 85 171 41 16 136
4 (1) 2 1 4 2 1 4
5 (1) 656 481 319 656 481 319
6 (1) 37 107 105 4 28 125
7 (34) 4 11 20 92 114 58
8 (10) 891 766 660 912 795 670
9 (7) 221 357 171 168 232 181
10 (3) 29 9 17 20 5 11

MAP 0.1140 0.1913 0.0879 0.1287 0.2032 0.0949

Automatic corpus - test case ranking position

1 (1) 461 524 165 497 630 1,365
2 (2) 174 203 226 301 346 509
3 (5) 67 185 14 229 194 631
4 (1) 46 42 117 820 736 376
5 (1) 888 805 1,112 1,074 793 821
6 (1) 290 359 537 357 182 635
7 (34) 892 1,120 1,229 71 225 38
8 (10) 77 45 123 236 392 200
9 (7) 37 66 109 477 450 347
10 (3) 117 138 172 876 656 354

MAP 0.0116 0.0122 0.0086 0.0058 0.0057 0.0062

1 The number in parentheses indicates the total number of test cases that were mapped to
that particular chain.

In order to better understand the quality of the achieved rankings, we involved
test engineers in the evaluation. Unfortunately, no test history was available for
the studied product and feature chains, not allowing us to compare the achieved
ranking with the selection from test engineers. However, by querying test engineers
we could establish whether test cases associated with a particular feature are
relevant or not. For example, in Chain 1, with the maximum summary statistic
and test case variant 1, the known to be relevant test case was ranked on position 57
(see Table 7, minimal corpus). This means that 56 test cases were ranked above the
relevant one. Our question to the test engineers was whether these higher ranked
test cases were indeed relevant for the particular feature. We chose those chains
for evaluation where the relevant test case was ranked below position 100. These
six chains are indicated in bold typeface in Table 7. Then, for each relevant test
case (65), we selected those test cases which were ranked higher, or, in case the
relevant test case was ranked at position 20 or lower, all top 20 test cases. This
resulted in a set of 295 test cases, for each of which we identified the corresponding



Title Suppressed Due to Excessive Length 33

Table 8: Quality of the ranking results, judged by test are maintainers

Result / Chain 1 3 4 6 7 10 Aggregate

Total test cases 48 29 25 19 141 33 295
True positives 9 12 7 4 48 21 101
False positives 39 17 18 15 93 12 194

Average Precision 0.21 0.61 0.42 0.24 0.10 0.70 0.38

test area maintainers (eight in total). Table 8 shows the true and false positive
rates for each chain. According to the MAP in Table 7, the IR technique with the
mean summary statistic and variant 2 of the test case performed best. Hence, we
chose that test case ranking to calculate the average precision, shown in Table 8.

4.3.5 Discussion and Lessons Learned

We start this section with a discussion of the results from Experimental Setup 3,
addressing RQ-2 and RQ-3, and then elaborate on the lessons learned from this
evaluation, addressing RQ-1.

The first goal of this experimental setup was to study whether the test case
content or summary statistic has an effect on the ranking performance of the VSM.
The results (Table 6) suggest that there is no statistically significant evidence for
such an effect, even though there is a strong significant evidence that the ranking
performance on minimal and automatic corpus differ (see the rejected H03). Look-
ing at the results summarized in Table 6, one can observe in the minimal corpus a
tendency that the summary statistic affects the ranking performance. In the auto-
matic corpus this tendency disappears. Even though this result is not statistically
significant, it illustrates an important point: the characteristics of the data set on
which the IR techniques are evaluated matter, even to the extent where the im-
pact of a factor is reversed. Neglecting this can lead to sub-optimal IR technique
configurations, e.g. when they are evaluated on a data set with characteristics that
differ from the one where the technique is eventually applied for productive use.
The experiments conducted by Falessi et al (2013) illustrate the effect of data set
difficulty on the performance of different IR techniques, confirming our observation
that under different corpus characteristics (minimal vs. automatic), IR techniques
behave differently.

The second goal of this experimental setup was to study to what extent the
ranking provides test case selection decision support. Looking at Table 7, the
minimal corpus, we can observe that for Chains 1, 3, 4, 6, 7 and 10 ranking positions
below 100 were achieved. According to the MAP measure, the combination of V2
(test case except test steps) and the mean summary statistic would provide the best
performance (i.e. every 5th test case is relevant). However, looking at the automatic
corpus, the combination of V2 and the maximum summary statistic would provide
the best performance. Furthermore, the MAP measure in the automatic corpus is
by a factor 10 lower than in the minimal corpus, supporting the above conclusion
that data set difficulty affects IR technique performance. We also evaluated how
useful the best achieved rankings would be for test case selection. Table 8 illustrates
the achieved average precision with the selected best IR technique configuration.
The results suggest that for some feature chains the approach works very well, e.g.



34 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

for Chain 3 and 10 with a MAP > 0.5, which means that every second test case
inspected by the test engineer was relevant. On the other hand, in Chain 7 only
every 10th test case was assessed as relevant. Furthermore, we note that Table 8
shows only the six out of ten feature chains for which we could achieve a ranking
< 100 of one or more known to be relevant test cases. While these result seem
underwhelming, they are comparable w.r.t. the achieved MAP of 0.38 to similar
studies aiming at automatic traceability recovery. Abadi et al (2008) traced code to
documentation and experimented with 17 IR technique configurations, achieving
a MAP between 0.04 and 0.66. Cleary et al (2009) compared 6 concept location
techniques, achieving a MAP between 0.006 and 0.06 (they attribute the low values
to the large data set). Qusef et al (2014) combine IR techniques with dynamic
slicing to identify the classes tested by a test suite, achieving a MAP between 0.83
and 0.93. More recently, Xia et al (2015) associated bug reports with developers,
achieving a MAP of 0.51.

We turn now to the lessons learned from the statistical analysis. When we
perform experiments comparing different IR techniques, we exercise them on the
same set of tasks and determine the techniques’ relative performance by test-
ing whether their location parameter (e.g. mean or median) of some performance
measure differs significantly (Smucker et al 2007). This general IR technique eval-
uation framework guides the selection and configuration of permissible statistical
analyses, leading to the following considerations:

1. Test assumptions: The characteristics of the population distribution from which
the dependent variables are sampled determine whether the assumptions (nor-
mality, independent samples, homogeneity of variance) of parametric tests are
violated. An assumption that is likely to be violated is normality, caused by a
skew to the right of the dependent variable. This is due to the inherent prop-
erties of some IR performance measures, e.g. a ranking cannot be negative.

2. Repeated measures: When comparing IR techniques we apply them on the same
corpus, looking at the effect of different treatments (IR techniques) on the
same subject (corpus). In other words, we have a paired (two IR techniques)
or repeated (more than two IR techniques) measures design.

3. Multiple testing: When many different configurations of IR techniques are com-
pared, we encounter the multiple testing problem (Bender and Lange 2001):
the more statistical tests are performed, the higher the likelihood that a true
null hypothesis is rejected (false positive or Type I error).

Individually, the above considerations can be addressed by choosing statistical
procedures fulfilling the given requirements. For example, if the assumptions of the
parametric tests are violated, one can use non-parametric or distribution-free al-
ternatives (Sheskin 2000). For a repeated measures design, paired difference tests
or repeated measures ANOVA are viable choices (Sheskin 2000). The multiple
testing problem can be addressed by applying adjustments to p-values or, depend-
ing on the particular study design, choosing test procedures that compensate for
multiple comparisons (Bender and Lange 2001).

In the context of evaluating IR techniques, we need to address all of the above
stated considerations simultaneously and select a statistical procedure whose as-
sumptions are not violated, allows for a repeated measures design and provides
means to compensate for multiple testing. It turns out that these combined re-
quirements are difficult to fulfill. If we assume that the normality assumption is



Title Suppressed Due to Excessive Length 35

violated, requiring a non-parametric test, and that we have a repeated measures
design, we can only evaluate designs with at most one factor using Friedman’s two-
way analysis of variance by ranks (Sheskin 2000). This means that factorial designs
to compare IR techniques can not be effectively evaluated with traditional statis-
tical means, without allowing for violations of the test procedure and accepting a
potential loss of statistical power.

For example, Biggers et al (2014) ignore potential normality violations (the de-
pendent variable is a rank based on a similarity measure) and use regular ANOVA
with five factors8. Subsequent analyses of interactions and main effects are per-
formed with Kruskal-Wallis analysis of variance by ranks (Sheskin 2000) (a non-
parametric test) which indicates that the authors were aware of the potential vio-
lations of the parametric test assumptions. Further examples from recent journal
publications illustrate the inherent difficulty to correctly evaluate IR techniques:

– Poshyvanyk et al (2012) use Wilcoxon matched-pairs signed-ranks test (Sheskin
2000), acknowledging a potential violation of normality of their performance
measure and taking advantage of the stronger statistical power of the paired
test; however they do not compensate for multiple testing when evaluating the
effect of stemming on the performance measure (48 tests).

– Thomas et al (2013) use Tukey’s HSD test which is commonly recommended
when all pair-wise comparisons in a data set need to be evaluated (Sheskin
2000). This test compensates for multiple tests, assumes however normality
and homogeneity of variance. Even though the authors tested for the latter,
normality is silently assumed.

– Falessi et al (2013) provide guidelines on the statistical evaluation of IR tech-
niques, motivating the use of inferential statistics (Sheskin 2000) by the need to
“check whether the observed difference could reasonable occur just by chance
due to the random sample used for developing the model” (Falessi et al 2013).
However, in the case-study presented in the same paper (Falessi et al 2013)
they refrain from using inferential statistical tests and rely on descriptive statis-
tics to determine the best IR technique, not following their own best practice
principles9.

We chose to follow the advise by Smucker et al (2007) and used the random-
ization test (Ludbrook and Dudley 1998; Edgington and Onghena 2007; Mittas
and Angelis 2008) to perform our IR technique comparison. The major advantage
of randomization tests is that they do not assume any particular theoretical popu-
lation distribution from which the sample is drawn but rather construct a sample
distribution by permutations of the observed data (Sheskin 2000). This means that
the skewness of our dependent variable (rank) is of no concern. A disadvantage
of randomization tests is their computational cost: we performed the procedure
with 100.000 permutations on 65 observations on two factors (2x3 levels) in 11
hours. This is a considerable cost compared to generally instantaneous results of
traditional statistical tests.

8 Unfortunately it is not possible to determine whether this potential assumption violation
had an impact on the outcome of the analysis since the raw data for this particular part (Part
1) of the case study has not been published by the authors.

9 They use inferential statistics to compare the best IR technique with the optimal combi-
nation of IR techniques, but this comparison is questionable since the preceding selection of
best technique is based on descriptive statistics.



36 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Randomization tests are also applicable to repeated measure designs (Sheskin
2000). However, procedures to address the multiple testing problem in the context
of repeated measure designs are difficult to implement, since comparisons occur
between-subject factors, within-subject factors, or both (Bender and Lange 2001).
Hence, to the best of our knowledge, multiple testing is still an open issue, in
the context of IR technique comparisons with more than two factors and under
the constraints of a repeated measures design and potentially violated normality
assumptions.

5 Conclusions and future work

This paper illustrated the experiences and lessons learned from developing and
evaluating an approach for test case selection decision support based on Informa-
tion Retrieval (IR) techniques. We rooted the solution development in the context
of a large-scale industry experiment which allowed us to evaluate IR techniques
in a realistic environment. The solution development was guided by incremental
refinements of the experimental setup, both testing the scalability and perfor-
mance of IR techniques. In order to provide insight for researchers, we reported
on the design decisions, both in terms of experimental setup and IR technique
implementation. We conclude by providing answers to the initially stated research
questions.

RQ-1 To what extent can state-of-the-art IR techniques be applied in a large-scale in-

dustrial context? We identified a set of open questions that need to be addressed
in order to bridge the gap between laboratory IR experiments and applications of
IR in industry:

– Comparative studies on IR techniques seldom optimize the parameters of all
underlying IR models, leading to potentially unfair evaluations. This can even
go as far as to reporting contradictory results, as we have shown in Sec-
tion 4.1.5, and has been also observed by Grant et al (2013). This poses a
threat to both researchers and practitioners who might adopt IR techniques
based on flawed evaluations. Future work is required on evaluating IR tech-
niques both on standardized data sets but also on large-scale, industry-grade
data.

– Parameter optimization is computationally expensive, particularly when ap-
plied on industry-grade, large data sets. Possible avenues for enabling param-
eter optimization efforts are: (1) investigating means to reduce the number of
terms in a corpus, without affecting the IR models performance. Such tech-
niques would however be very application and data specific, e.g. as the fact ex-
traction and corpus-size reduction techniques illustrated in Sections 4.2.1 and
4.3.1 respectively; (2) using parallel/distributed implementations of the algo-
rithms, e.g. Singular Value Decomposition, that power IR techniques. A third
alternative would be to compare optimized parametric with non-parametric
IR models, such as Hierarchical Dirichlet Processes (Teh et al 2006). If non-
parametric models would show to be consistently equivalent or better than
parametric models, they would be the favorable solution in an industrial envi-
ronment since they would require less customization effort.



Title Suppressed Due to Excessive Length 37

– Determining the superiority of one IR technique over another should be based
upon inferential statistical techniques (Falessi et al 2013). However, as we
have elaborated in Section 4.3.5, developing and evaluating a valid statisti-
cal technique that allows simultaneously for non-normal dependent variables,
a repeated measures design and multiple comparisons, in the context of IR
evaluation, is still an open issue.

RQ-2 To what extent do the used software development artifacts influence the perfor-

mance of IR techniques? We have experimented with different variants of both test
case content, i.e. information within the test case description, and product arti-
facts, in particular the size of the document corpus. We could not determine a
statistical significant performance difference between test case variants. However,
we observed that the size of the corpus influences the performance considerably
(observed in Experimental Setup 2, and shown with statistical significance in Ex-
perimental Setup 3). This confirms the observations by Falessi et al (2013) who
evaluated IR techniques at varying difficulty levels. As a consequence, this means
that IR techniques need to be evaluated on realistic, large dataset that mirror the
difficulty of datasets encountered in real industry applications.

RQ-3 To what extent can the studied IR techniques support test case selection? We
have evaluated the test selection performance on ten feature chains. In four chains,
the feature “signal” in the product artifacts was too weak to induce an actionable
ranking. In the other six feature chains, we tasked test engineers to rate the test
case ranking with respect to their relevance for the corresponding feature. The
results in terms of precision (MAP = 0.38) are comparable to what has been
achieved in similar studies that aimed at automating trace recovery (e.g. Abadi
et al (2008); Cleary et al (2009); Qusef et al (2014); Xia et al (2015)) However,
while our results reflect the state of art, the approach based on IR techniques is
not yet reliable enough to automate the test case selection process in a realistic
industry setting.

In future work, we plan to study the properties of the features chains where the
differentiation between a feature activated and deactivated corpus failed. Knowing
these properties and being able to detect them in the corpus would allow us to
provide suggestions on how to improve source code documentation, e.g. by better
naming conventions using a company-wide glossary. Furthermore, by including
meta-data from the version control system in the corpus, such as commit comments
connected to feature activation/deactivation code, we could improve the test case
rankings.

References

Abadi A, Nisenson M, Simionovici Y (2008) A Traceability Technique for Specifications. In:
Proceedings 16th International Conference on Program Comprehension (ICPC), IEEE,
Amsterdam, The Netherlands, pp 103–112

Antoniol G, Canfora G, De Lucia A, Merlo E (1999) Recovering code to documentation links
in OO systems. In: Proceedings 6th Working Conference on Reverse Engineering (WCRE),
IEEE, Atlanta, USA, pp 136–144



38 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Antoniol G, Canfora G, Casazza G, De Lucia A (2000) Information retrieval models for re-
covering traceability links between code and documentation. In: Proceedings International
Conference on Software Maintenance (ICSM), IEEE, San Jose, USA, pp 40–49

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links
between code and documentation. IEEE Transactions on Software Engineering 28(10):970
– 983

Arcuri A, Fraser G (2011) On Parameter Tuning in Search Based Software Engineering. In:
Proceedings 3rd International Conference on Search Based Software Engineering (SSBSE),
Springer, Szeged, Hungary, pp 33–47

Asuncion H, Asuncion A, Taylor R (2010) Software traceability with topic modeling. In:
Proceedings 32nd International Conference on Software Engineering (ICSE), IEEE, Cape
Town, South Africa, pp 95–104

Babar MA, Lianping Chen, Shull F (2010) Managing Variability in Software Product Lines.
IEEE Software 27(3):89–91, 94

Baglama J, Reichel L (2014) irlba: Fast partial SVD by implicitly-restarted Lanczos bidiago-
nalization. URL http://cran.r-project.org/web/packages/irlba/index.html

Basili V, Caldiera G (1995) Improve software quality by reusing knowledge and experience.
Sloan Management Review 37(1):55–64

Bender R, Lange S (2001) Adjusting for multiple testing - when and how? Journal of Clinical
Epidemiology 54(4):343–349

Berry MW (2014) SVDPACKC. URL http://www.netlib.org/svdpack/
Berry MW, Mehzer D, Philippe B, Sameh A (2006) Parallel Algorithms for the Singular Value

Decomposition. In: Handbook of Parallel Computing and Statistics, 1st edn, CRC Press
Biggers LR, Bocovich C, Capshaw R, Eddy BP, Etzkorn LH, Kraft NA (2014) Configuring la-

tent Dirichlet allocation based feature location. Empirical Software Engineering 19(3):465–
500

Biggerstaff TJ, Mitbander BG, Webster D (1993) The Concept Assignment Problem in Pro-
gram Understanding. In: Proceedings 15th International Conference on Software Engineer-
ing (ICSE), IEEE, Baltimore, USA, pp 482–498

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet Allocation. Journal of Machine Learning
Research 3:993–1022

Borg M, Runeson P, Ardö A (2013) Recovering from a decade: a systematic mapping of
information retrieval approaches to software traceability. Empirical Software Engineering
pp 1–52, in Print

Brand M (2006) Fast low-rank modifications of the thin singular value decomposition. Linear
Algebra and its Applications 415(1):20–30

Broy M (2006) Challenges in Automotive Software Engineering. In: Proceedings 28th Interna-
tional Conference on Software Engineering (ICSE), ACM, Shanghai, China, pp 33–42

Calcote J (2010) Autotools: A Practitioner’s Guide to GNU Autoconf, Automake, and Libtool.
No Starch Press

Chen L, Babar MA (2011) A systematic review of evaluation of variability management ap-
proaches in software product lines. Information and Software Technology 53(4):344–362

Cleary B, Exton C, Buckley J, English M (2009) An empirical analysis of information re-
trieval based concept location techniques in software comprehension. Empirical Software
Engineering 14(1):93–130

Cleland-Huang J, Czauderna A, Dekhtyar A, Gotel O, Hayes JH, Keenan E, Leach G, Maletic
J, Poshyvanyk D, Shin Y, Zisman A, Antoniol G, Berenbach B, Egyed A, Maeder P
(2011) Grand Challenges, Benchmarks, and TraceLab: Developing Infrastructure for the
Software Traceability Research Community. In: Proceedings 6th International Workshop
on Traceability in Emerging Forms of Software Engineering (TEFSE), ACM, Honolulu,
USA, pp 17–23

Clements P, Northrop L (2001) Software Product Lines: Practices and Patterns, 3rd edn.
Addison-Wesley Professional, Boston

Corazza A, Di Martino S, Maggio V (2012) LINSEN: An efficient approach to split identi-
fiers and expand abbreviations. In: Proceedings 28th International Conference on Software
Maintenance (ICSM), IEEE, Trento, Italy, pp 233–242

Crawley MJ (2007) The R Book, 1st edn. John Wiley & Sons
Cullum JK, Willoughby RA (2002) Lanczos Algorithms for Large Symmetric Eigenvalue Com-

putations: Vol. 1: Theory, 2nd edn. SIAM

http://cran.r-project.org/web/packages/irlba/index.html
http://www.netlib.org/svdpack/


Title Suppressed Due to Excessive Length 39

De Lucia A, Fasano F, Oliveto R, Tortora G (2006) Can Information Retrieval Techniques
Effectively Support Traceability Link Recovery? In: Proceedings 14th International Con-
ference on Program Comprehension (ICPC), IEEE, Athens, Greece, pp 307–316

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering traceability links in software
artifact management systems using information retrieval methods. ACM Transactions Soft-
ware Engineering Methodology 16(4)

De Lucia A, Oliveto R, Tortora G (2009) Assessing IR-based traceability recovery tools through
controlled experiments. Empirical Software Engineering 14(1):57–92

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2011) Improving IR-based
Traceability Recovery Using Smoothing Filters. In: Proceedings 19th International Con-
ference on Program Comprehension (ICPC), IEEE, Kingston, Canada, pp 21–30

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by Latent
Semantic Analysis. Journal of the American Society for Information Science 41(6):391–407

Dit B, Guerrouj L, Poshyvanyk D, Antoniol G (2011a) Can Better Identifier Splitting Tech-
niques Help Feature Location? In: Proceedings 19th International Conference on Program
Comprehension (ICPC), IEEE, Kingston, Canada, pp 11–20

Dit B, Revelle M, Gethers M, Poshyvanyk D (2011b) Feature location in source code: a taxon-
omy and survey. Journal of Software Maintenance and Evolution: Research and Practice
25(1):53–95

Dit B, Panichella A, Moritz E, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) Con-
figuring topic models for software engineering tasks in TraceLab. In: Proceedings 7th Inter-
national Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE),
IEEE, San Francisco, USA, pp 105–109

Dit B, Moritz E, Linares-Vásquez M, Poshyvanyk D, Cleland-Huang J (2014) Supporting and
accelerating reproducible empirical research in software evolution and maintenance using
TraceLab Component Library. Empirical Software Engineering pp 1–39

Dumais ST (1992) LSI meets TREC: a status report. In: NIST special publication, National
Institute of Standards and Technology, pp 137–152

Dyba T, Kitchenham B, Jorgensen M (2005) Evidence-based software engineering for practi-
tioners. IEEE Software 22(1):58–65

Ebert C, Jones C (2009) Embedded Software: Facts, Figures, and Future. Computer 42(4):42–
52

Edgington E, Onghena P (2007) Randomization Tests, 4th edn. Chapman and Hall/CRC,
Boca Raton, FL

Engström E, Runeson P (2011) Software product line testing - A systematic mapping study.
Information and Software Technology 53(1):2–13

Engström E, Runeson P, Skoglund M (2010) A systematic review on regression test selection
techniques. Information and Software Technology 52(1):14–30

Enslen E, Hill E, Pollock L, Vijay-Shanker K (2009) Mining source code to automatically split
identifiers for software analysis. In: Proceedings 6th International Working Conference on
Mining Software Repositories (MSR), IEEE, Vancouver, Canada, pp 71–80

Falessi D, Cantone G, Canfora G (2013) Empirical Principles and an Industrial Case Study in
Retrieving Equivalent Requirements via Natural Language Processing Techniques. Trans-
actions on Software Engineering 39(1):18–44

Feinerer I, Hornik K, Meyer D (2008) Text Mining Infrastructure in R. Journal of Statistical
Software 25(5):1–54

Feldman SI (1979) Make - a program for maintaining computer programs. Software: Practice
and Experience 9(4):255–265

Gay G, Haiduc S, Marcus A, Menzies T (2009) On the use of relevance feedback in IR-based
concept location. In: Proceedings 28th International Conference on Software Maintenance
(ICSM), IEEE, Edmonton, Canada, pp 351–360

Gethers M, Oliveto R, Poshyvanyk D, De Lucia A (2011) On integrating orthogonal informa-
tion retrieval methods to improve traceability recovery. In: Proceedings 27th International
Conference on Software Maintenance (ICSM), IEEE, Williamsburg, USA, pp 133–142

Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, 1st
edn. Addison Wesley, Boston, USA

Gorschek T, Wohlin C, Carre P, Larsson S (2006) A Model for Technology Transfer in Practice.
IEEE Software 23(6):88–95

Gotel O, Finkelstein CW (1994) An analysis of the requirements traceability problem. In: Pro-
ceedings 1st International Conference on Requirements Engineering (RE), IEEE, Colorado



40 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Springs, USA, pp 94–101
Graaf B, Lormans M, Toetenel H (2003) Embedded software engineering: the state of the

practice. IEEE Software 20(6):61–69
Grant S, Cordy JR, Skillicorn DB (2013) Using heuristics to estimate an appropriate number of

latent topics in source code analysis. Science of Computer Programming 78(9):1663–1678
Grossman D, Frieder O (2004) Information Retrieval - Algorithms and Heuristics, The Infor-

mation Retrieval Series, vol 15, 2nd edn. Springer, New York, USA
Guerrouj L, Di Penta M, Antoniol G, Guéhéneuc YG (2011) TIDIER: an identifier splitting

approach using speech recognition techniques. Journal of Software Maintenance and Evo-
lution: Research and Practice 25(6):575–599

Hernandez V, Roman JE, Vidal V (2005) SLEPc: A Scalable and Flexible Toolkit for the
Solution of Eigenvalue Problems. ACM Transactions on Mathematical Software 31(3):351–
362

Hill E, Fry ZP, Boyd H, Sridhara G, Novikova Y, Pollock L, Vijay-Shanker K (2008) AMAP:
automatically mining abbreviation expansions in programs to enhance software mainte-
nance tools. In: Proceedings 5th International Working Conference on Mining Software
Repositories (MSR), ACM, Leipzig, Germany, pp 79–88

Hooker JN (1995) Testing heuristics: We have it all wrong. Journal of Heuristics 1(1):33–42
Islam M, Marchetto A, Susi A, Scanniello G (2012) A Multi-Objective Technique to Prioritize

Test Cases Based on Latent Semantic Indexing. In: Proceedings 16th European Conference
on Software Maintenance and Reengineering (CSMR), IEEE, Szeged, Hungary, pp 21–30

Ivarsson M, Gorschek T (2011) A method for evaluating rigor and industrial relevance of
technology evaluations. Empirical Software Engineering 16(3):365–395

Iverson KE (1980) Notation As a Tool of Thought. Communications of the ACM 23(8):444–465
Jiang HY, Nguyen TN, Chen IX, Jaygarl H, Chang CK (2008) Incremental Latent Semantic

Indexing for Automatic Traceability Link Evolution Management. In: Proceedings 23rd
International Conference on Automated Software Engineering (ASE), IEEE, L’Aquila,
Italy, pp 59–68

Knaus J (2013) snowfall: Easier cluster computing (based on snow). URL http://cran.
r-project.org/web/packages/snowfall/index.html

Lavesson N, Davidsson P (2006) Quantifying the Impact of Learning Algorithm Parameter
Tuning. In: Proceedings 21st National Conference on Artificial Intelligence (AAAI), AAAI
Press, Boston, USA, pp 395–400

Lawrence MA (2013) ez: Easy analysis and visualization of factorial experiments. URL http:
//cran.r-project.org/web/packages/ez/index.html

Lawrie D, Binkley D (2011) Expanding identifiers to normalize source code vocabulary. In:
Proceedings 27th IEEE International Conference on Software Maintenance (ICSM), IEEE,
Williamsburg, USA, pp 113–122

Lee J, Kang S, Lee D (2012) A Survey on Software Product Line Testing. In: Proceedings
16th International Software Product Line Conference (SPLC), ACM, Salvador, Brazil, pp
31–40

Liu D, Marcus A, Poshyvanyk D, Rajlich V (2007) Feature Location via Information Retrieval
Based Filtering of a Single Scenario Execution Trace. In: Proceedings 22nd International
Conference on Automated Software Engineering (ASE), ACM, Atlanta, USA, pp 234–243

Liu TY (2011) Learning to Rank for Information Retrieval, 1st edn. Springer
Lohar S, Amornborvornwong S, Zisman A, Cleland-Huang J (2013) Improving Trace Accuracy

Through Data-driven Configuration and Composition of Tracing Features. In: Proceedings
9th Joint Meeting on Foundations of Software Engineering (FSE), ACM, Saint Petersburg,
Russia, pp 378–388

Lormans M, van Deursen A (2006) Can LSI help reconstructing requirements traceability in
design and test? In: Proceedings 10th European Conference on Software Maintenance and
Reengineering (CSMR), IEEE, Bari, Italy, pp 47–56

Ludbrook J, Dudley H (1998) Why Permutation Tests are Superior to t and F Tests in Biomed-
ical Research. The American Statistician 52(2):127–132

Maletic J, Marcus A (2000) Using latent semantic analysis to identify similarities in source
code to support program understanding. In: Proceedings 12th International Conference on
Tools with Artificial Intelligence (ICTAI), IEEE, Vancouver, Canada, pp 46–53

Maletic J, Marcus A (2001) Supporting Program Comprehension Using Semantic and Struc-
tural Information. In: Proceedings 23rd International Conference on Software Engineering
(ICSE), IEEE, Toronto, Canada, pp 103–112

http://cran.r-project.org/web/packages/snowfall/index.html
http://cran.r-project.org/web/packages/snowfall/index.html
http://cran.r-project.org/web/packages/ez/index.html
http://cran.r-project.org/web/packages/ez/index.html


Title Suppressed Due to Excessive Length 41

Maletic J, Valluri N (1999) Automatic software clustering via Latent Semantic Analysis. In:
Proceedings 14th International Conference on Automated Software Engineering (ASE),
IEEE, Cocoa Beach, USA, pp 251–254

Maletic J, Collard M, Marcus A (2002) Source code files as structured documents. In: Pro-
ceedings 10th International Workshop on Program Comprehension (IWPC), IEEE, Paris,
France, pp 289–292

Marcus A, Maletic J (2003) Recovering documentation-to-source-code traceability links us-
ing latent semantic indexing. In: Proceedings 25th International Conference on Software
Engineering (ICSE), IEEE, Portland, USA, pp 125 – 135

Marcus A, Sergeyev A, Rajlich V, Maletic J (2004) An information retrieval approach to
concept location in source code. In: Proceedings 11th Working Conference on Reverse
Engineering (WCRE), IEEE, Delft, The Netherlands, pp 214–223

Mittas N, Angelis L (2008) Comparing cost prediction models by resampling techniques. Jour-
nal of Systems and Software 81(5):616–632

Moreno L, Bandara W, Haiduc S, Marcus A (2013) On the Relationship between the Vocab-
ulary of Bug Reports and Source Code. In: Proceedings 29th International Conference on
Software Maintenance (ICSM), IEEE, Eindhoven, The Netherlands, pp 452–455

Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2010) On the Equivalence of Information
Retrieval Methods for Automated Traceability Link Recovery. In: Proceedings 18th In-
ternational Conference on Program Comprehension (ICPC), IEEE, Braga, Portugal, pp
68–71

Ostrouchov G, Chen WC, Schmidt D, Patel P (2012) Programming with Big Data in R. URL
http://r-pbd.org/

Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How to
Effectively Use Topic Models for Software Engineering Tasks? An Approach Based on Ge-
netic Algorithms. In: Proceedings 35th International Conference on Software Engineering
(ICSE), IEEE, San Francisco, USA, pp 522–531

Perrouin G, Sen S, Klein J, Baudry B, Le Traon Y (2010) Automated and Scalable T-wise Test
Case Generation Strategies for Software Product Lines. In: Proceedings 3rd International
Conference on Software Testing, Verification and Validation (ICST), pp 459–468

Pettersson F, Ivarsson M, Gorschek T, Öhman P (2008) A practitioner’s guide to light weight
software process assessment and improvement planning. The Journal of Systems and Soft-
ware 81(6):972–995

Pohl K, Metzger A (2006) Software Product Line Testing. Communications of the ACM
49(12):78–81

Poshyvanyk D, Marcus A (2007) Combining Formal Concept Analysis with Information Re-
trieval for Concept Location in Source Code. In: Proceedings 15th International Conference
on Program Comprehension (ICPC), IEEE, Banff, Canada, pp 37–48

Poshyvanyk D, Gueheneuc YG, Marcus A, Antoniol G, Rajlich V (2006) Combining Proba-
bilistic Ranking and Latent Semantic Indexing for Feature Identification. In: Proceedings
14th International Conference on Program Comprehension (ICPC), IEEE, Athens, Greece,
pp 137–148

Poshyvanyk D, Gethers M, Marcus A (2012) Concept location using formal concept analysis
and information retrieval. ACM Transactions on Software Engineering and Methodology
21(4)

Qusef A, Bavota G, Oliveto R, De Lucia A, Binkley D (2014) Recovering test-to-code trace-
ability using slicing and textual analysis. Journal of Systems and Software 88:147–168

Rothermel G, Harrold M (1996) Analyzing regression test selection techniques. IEEE Trans-
actions on Software Engineering 22(8):529–551

Salton G, Wong A, Yang CS (1975) A Vector Space Model for Automatic Indexing. Commu-
nications of the ACM 18(11):613–620

Shepperd M, Bowes D, Hall T (2014) Researcher Bias: The Use of Machine Learning in Software
Defect Prediction. IEEE Transactions on Software Engineering 40(6):603–616

Sheskin DJ (2000) Handbook of Parametric and Nonparametric Statistical Procedures, Second
Edition, 2nd edn. Chapman and Hall/CRC, Boca Raton

Smucker MD, Allan J, Carterette B (2007) A comparison of statistical significance tests for in-
formation retrieval evaluation. In: Proceedings 16th Conference on Information and Knowl-
edge Management (CIKM), ACM, Lisbon, Portugal, pp 623–632

Steyvers M, Griffiths T (2007) Probabilistic topic models. In: Handbook of Latent Semantic
Analysis, 1st edn, Psychology Press

http://r-pbd.org/


42 Michael Unterkalmsteiner, Tony Gorschek, Robert Feldt and Niklas Lavesson

Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet Processes. Journal of
the American Statistical Association 101(476):1566–1581

The Apache Software Foundation (2014) Apache Lucene - Apache Lucene Core. URL http:
//lucene.apache.org/core/

Thomas SW, Nagappan M, Blostein D, Hassan AE (2013) The Impact of Classifier Config-
uration and Classifier Combination on Bug Localization. IEEE Transactions on Software
Engineering 39(10):1427–1443

Thomas SW, Hemmati H, Hassan AE, Blostein D (2014) Static test case prioritization using
topic models. Empirical Software Engineering 19(1):182–212

Thörn C (2010) Current state and potential of variability management practices in software-
intensive SMEs: Results from a regional industrial survey. Information and Software Tech-
nology 52(4):411–421

Unterkalmsteiner M, Gorschek T, Feldt R (2014) Supplementary Material to ”Large-scale
Information Retrieval - an experience report from industrial application”. URL http:
//www.bth.se/com/mun.nsf/pages/autotcs-exp

Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-based testing approaches.
Software Testing, Verification and Reliability 22(5):297–312

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation
in software engineering: an introduction. Kluwer Academic Publishers, Norwell

Wohlin C, Aurum A, Angelis L, Phillips L, Dittrich Y, Gorschek T, Grahn H, Henningsson
K, Kagstrom S, Low G, Rovegard P, Tomaszewski P, van Toorn C, Winter J (2012) The
Success Factors Powering Industry-Academia Collaboration. IEEE Software 29(2):67–73

Xia X, Lo D, Wang X, Zhou B (2015) Dual analysis for recommending developers to resolve
bugs. Journal of Software: Evolution and Process In Print

Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: a sur-
vey. Software Testing, Verification and Reliability 22(2):67–120

Zeimpekis D, Gallopoulos E (2006) TMG: A MATLAB Toolbox for Generating Term-
Document Matrices from Text Collections. In: Grouping Multidimensional Data, Springer,
Berlin, Heidelberg, pp 187–210

Zhao W, Zhang L, Liu Y, Sun J, Yang F (2006) SNIAFL: Towards a static noninteractive
approach to feature location. ACMTransactions on Software Engineering and Methodology
15(2):195–226

Řeh̊uřek R (2011) Subspace Tracking for Latent Semantic Analysis. In: Proceedings 33rd
European Conference on Advances in Information Retrieval (ECIR), Springer, Dublin,
Ireland, pp 289–300

http://lucene.apache.org/core/
http://lucene.apache.org/core/
http://www.bth.se/com/mun.nsf/pages/autotcs-exp
http://www.bth.se/com/mun.nsf/pages/autotcs-exp

	Introduction
	Background and related work
	Research method
	Experimental setups and evaluation
	Conclusions and future work

