
Published in Empirical Software Engineering, Springer, 2016.

Automatic Repair of Real Bugs in Java:
A Large-Scale Experiment on the Defects4J Dataset

Matias Martinez · Thomas Durieux ·
Romain Sommerard · Jifeng Xuan ·
Martin Monperrus

Abstract Defects4J is a large, peer-reviewed, structured dataset of real-world Java
bugs. Each bug in Defects4J comes with a test suite and at least one failing test case
that triggers the bug. In this paper, we report on an experiment to explore the effec-
tiveness of automatic test-suite based repair on Defects4J. The result of our experiment
shows that the considered state-of-the-art repair methods can generate patches for 47
out of 224 bugs. However, those patches are only test-suite adequate, which means
that they pass the test suite and may potentially be incorrect beyond the test-suite
satisfaction correctness criterion. We have manually analyzed 84 different patches to
assess their real correctness. In total, 9 real Java bugs can be correctly repaired with
test-suite based repair. This analysis shows that test-suite based repair suffers from
under-specified bugs, for which trivial or incorrect patches still pass the test suite. With
respect to practical applicability, it takes on average 14.8 minutes to find a patch. The
experiment was done on a scientific grid, totaling 17.6 days of computation time. All
the repair systems and experimental results are publicly available on Github in order
to facilitate future research on automatic repair.

Keywords software repair · bugs · defects · patches · fixes

M. Martinez
University of Lugano, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
Tel.: +41 58 666 40 00
E-mail: matias.sebastian.martinez@usi.ch

J. Xuan
State Key Lab of Software Engineering, Wuhan University, 299 Bayi Road, 430072 Wuhan,
China
Tel.: +86 27 6877 6139
E-mail: jxuan@whu.edu.cn

T. Durieux · R.Sommerard · M. Monperrus
INRIA & University Lille 1, 40 Avenue du Halley, 59650 Villeneuve-d’Ascq, France
Tel.: +33 03 59 57 78 00
E-mail: thomas.durieux@inria.fr
E-mail: romain.sommerard@etudiant.univ-lille1.fr
E-mail: martin.monperrus@univ-lille1.fr

ar
X

iv
:1

81
1.

02
42

9v
1

 [
cs

.S
E

]
 4

 N
ov

 2
01

8

2 Martinez, Durieux, Sommerard, Xuan, Monperrus

1 Introduction

Automatic software repair is the process of automatically fixing bugs. Test-suite based
repair, notably introduced by GenProg (Le Goues et al (2012b)), consists in synthesiz-
ing a patch that passes a given test suite, which initially has at least one failing test
case. In this paper, we say that this patch is “test-suite adequate”. In this recent re-
search field, few empirical evaluations have been made to evaluate the practical ability
of current techniques to repair real bugs.

For bugs in the Java programming language, one of the largest evaluations is by
Kim et al (2013), but as discussed in Monperrus (2014), this evaluation suffers from a
number of biases and cannot be considered as a definitive answer to the repairability
of Java bugs. For bugs in the C programming language, according to bibliometrics, the
most visible one is by Le Goues et al (2012a). They reported on an experiment where
they ran the GenProg repair system on 105 bugs in C code. However, Qi et al (2015)
have shown at ISSTA 2015 that this evaluation suffers from a number of important
issues, and call for more research on systematic evaluations of test-suite based repair.

Our motivation is to conduct a novel empirical evaluation in the realm of Java
bugs, in order to better understand the fundamental strengths and weaknesses of current
repair algorithms.

In this paper, we present the results of an experiment consisting of running repair
systems for Java on the bugs of Defects4J. Defects4J is a dataset (Just et al (2014a))
by the University of Washington consisting of 357 real-world Java bugs. It has been
peer-reviewed, is publicly available, and is structured in a way that eases systematic
experiments. Each bug in Defects4J comes with a test suite including both passing and
failing test cases.

For selecting repair systems, our inclusion criteria is that 1) it is publicly available
and 2) it runs on modern Java versions and large software applications. This results in
jGenProg, an implementation of GenProg (Le Goues et al (2012b) for Java; jKali, an
implementation of Kali (Qi et al (2015)) for Java; and Nopol (DeMarco et al (2014);
Xuan et al (2016)).

Our experiment aims to answer to the following Research Questions (RQs):
RQ1. Can the considered repair systems synthesize patches for the bugs of the

Defects4J dataset? Beyond repairing toy programs or seeded bugs, for this research
field to have an impact, one needs to know whether the current repair algorithms and
their implementations work on real bugs of large scale applications.

RQ2. In test-suite based repair, are the generated patches correct, beyond passing
the test suite? By “correct”, we mean that the patch is meaningful, really repairing
the bug, and is not a partial solution that only works for the input data encoded in
the test cases. Indeed, a key concern behind test-suite based repair is whether test
suites are good enough to drive the generation of correct patches, where correct means
acceptable. Since the inception of the field, this question has been raised many times
and is still a hot question: Qi et al (2015)’s recent results show that most of GenProg’s
patches on the now classical GenProg benchmark of 105 bugs are incorrect. We will
answer RQ2 with a manual analysis of patches synthesized for Defects4J.

RQ3. Which bugs in Defects4j are under-specified? A bug is said to be under-
specified if there exists a trivial patch that simply removes functionality. For those
bugs, current repair approaches fail to synthesize a correct patch due to the lack of
test cases. Those bugs are the most challenging bugs: to automatically repair them,
one needs to reason on the expected functionality below what is encoded in the test

Automatic Repair of Real Bugs in Java 3

suite, to take into account a source of information other than the test suite execution.
One outcome of our experiment is to identify those challenging bugs.

RQ4. How long is the execution of each repair system? The answer to this question
also contributes to assess the practical applicability of automatic repair in the field.

Our experiment considers 224 bugs that are spread over 231K lines of code and
12K test cases in total. We ran the experiment for over 17.6 days of computational
time on Grid’5000 (Bolze et al (2006)), a large-scale grid for scientific experiments.

Our contributions are as follows:

– Answer to RQ1. The Defects4J dataset contains bugs that can be automatically
repaired with at least one of the considered systems. jGenProg, jKali, and Nopol
together synthesize test-suite adequate patches for 47 out of 224 bugs with 84
different patches. Some bugs are repaired by all three considered repair approaches
(12/47). These results validate that automatic repair works on real bugs
in large Java programs1. They can be viewed as a baseline for future
usage of Defects4J in automatic repair research.

– Answer to RQ2. Our manual analysis of all 84 generated patches shows that 11/84
are correct, 61/84 are incorrect, and 12/84 require a domain expertise, which we
do not have. The incorrect patches tend to overfit the test cases. This is a novel
piece of empirical evidence on real bugs that either the current test suites are too
weak or the current automatic repair techniques are too dumb. These results
strengthen the findings in Qi et al (2015), on another benchmark, on
another programming language. They show that the overfitting problem
uncovered on the Genprog’s benchmark by Qi et al (2015) is not specific
to the benchmark and its weakness, but is more fundamental.

– Answer to RQ3. Defects4J contains very weakly specified bugs. Correctly repair-
ing those bugs can be considered as the next milestone for the field. This result
calls for radically new automatic repair approach that reasons beyond
the test suite execution, using other sources of information, and for test
suite generation techniques tailored for repair.

– Answers to RQ4. The process of searching for a patch is a matter of minutes for
a single bug. This is an encouraging piece of evidence that this research
will have an impact for practitioners.

For the sake of open science and reproducible research, our code and experimental
data are publicly available on Github (ExperimentalData (2016); AstorCode (2016);
NopolCode (2016)).

The remainder of this paper is organized as follows. Section 2 provides the back-
ground of test-suite based repair and the dataset. Section 3 presents our experimental
protocol. Section 4 details answers to our research questions. Section 5 studies three
generated patches in details. Section 6 discusses our results and Section 7 presents the
related work. Section 8 concludes this paper and proposes future work.

2 Background

In this paper, we consider one kind of automatic repair called test-suite based repair.
We now give the corresponding background and present the dataset that is used in our
experiment.

1 The dataset and the repair system in Kim et al (2013) are not publicly available.

4 Martinez, Durieux, Sommerard, Xuan, Monperrus

Buggy program

Fault localization

Patch
validation

Final patch

Statement ranking
1st Statement

2nd Statement

kth Statement

...

Yes

Next statement

One
statement

No

No patch

No statement left

jGenProg

jKali

Nopol

Fig. 1 Overview of test-suite based repair. Automatic repair takes a buggy program and its
test suite as input; the output is the patch that passes the whole test suite if any.

2.1 Overview of Automatic Repair Techniques

We briefly give an overview of automatic repair. For a survey on the field, we refer the
reader to Monperrus (2015). There are two families of repair techniques: offline repair
consists of generating source code patches, online repair, aka runtime repair, consists
of modifying the system state at runtime to overcome failures. The latter is the direct
descendant of classical fault tolerance. Automatic repair techniques use a variety of
oracles to encode the expected behavior of the program under repair: the notable
oracles are test-suites, pre- and post-conditions, formal behavioral models and runtime
assertions. In the experiment presented in this paper, the considered benchmark makes
us considering offline patch generation using test suites as oracles.

2.2 Test-Suite Based Repair

Test-suite based repair generates a patch according to failing test cases. Different kinds
of techniques can be used, such as genetic programming search in GenProg (Le Goues
et al (2012b)) and SMT based program synthesis in SemFix (Nguyen et al (2013)).
Often, before patch generation, a fault localization method is applied to rank the
statements according to their suspiciousness. The intuition is that the patch generation
technique is more likely to be successful on suspicious statements.

Fig. 1 presents a general overview of test-suite based repair approaches. In a repair
approach, the input is a buggy program as well as its test suite; the output is a patch
that makes the test suite pass, if any. To generate a patch for the buggy program,
the executed statements are ranked to identify the most suspicious statements. Fault
localization is a family of techniques for ranking potential buggy statements (Jones
et al (2002); Abreu et al (2007); Xuan and Monperrus (2014)). Based on the statement
ranking, patch generation tries to modify a suspicious statement. For instance, GenProg
(Le Goues et al (2012b)) adds, removes, and replaces Abstract Syntax Tree (AST)
nodes. Once a patch is found, the whole test suite is executed to validate the patch;

Automatic Repair of Real Bugs in Java 5

Table 1 The Main Descriptive Statistics of Considered Bugs in Defects4J. The Number of
Lines of Code and the Number of Test Cases are Extracted from the Most Recent Version of
Each Project.

Project #Bugs Source KLoC Test KLoC #Test cases
Commons Lang 65 22 6 2,245
JFreeChart 26 96 50 2,205

Commons Math 106 85 19 3,602
Joda-Time 27 28 53 4,130

Total 224 231 128 12,182

if the patch is not validated by the test suite, the repair approach goes on with next
statement and repeats the repair process.

2.3 Defects4J Dataset

Defects4J by Just et al (2014a) is a bug database that consists of 357 real-world bugs
from five widely-used open-source Java projects. Bugs in Defects4J are organized in a
unified structure that abstracts over programs, test cases, and patches.

Defects4J provides research with reproducible software bugs and enables controlled
studies in software testing research (e.g., Noor and Hemmati (2015); Just et al (2014b)).
To our knowledge, Defects4J is the largest open database of well-organized real-world
Java bugs. In our work, we use four out of five projects, i.e., Commons Lang,2 JFreeChart,3

Commons Math,4 and Joda-Time.5 We do not use the Closure Compiler project6 be-
cause the test cases in Closure Compiler are organized in a non-conventional way, using
scripts rather than standard JUnit test cases. This prevents us from running with our
platform and is left for future work. Table 1 presents the main descriptive statistics of
bugs in Defects4J.

The advantages of using Defects4J for a automatic repair experiment are: (realism)
it contains real bugs (as opposed to seeded bugs as in Nguyen et al (2013); Kong et al
(2015)); (scale) bugs are in large software (as opposed to bugs in student programs as
in Smith et al (2015)); (novelty) nobody has ever studied Defects4J for repair.

3 Experimental Protocol

We present an experimental protocol to assess the effectiveness of different automatic
repair approaches on the real-world bugs of Defects4J. The protocol supports the anal-
ysis of several dimensions of automatic repair: test-suite adequacy, patch correctness,
under-specified bugs, performance. We first list the Research Questions (RQs) of our
work; then we describe the experiment design; finally, we present the implementation
details.

2 Apache Commons Lang, http://commons.apache.org/lang.
3 JFreeChart, http://jfree.org/jfreechart/.
4 Apache Commons Math, http://commons.apache.org/math.
5 Joda-Time, http://joda.org/joda-time/.
6 Google Closure Compiler, http://code.google.com/closure/compiler/.

http://commons.apache.org/lang
http://jfree.org/jfreechart/
http://commons.apache.org/math
http://joda.org/joda-time/
http://code.google.com/closure/compiler/

6 Martinez, Durieux, Sommerard, Xuan, Monperrus

3.1 Research Questions

3.1.1 RQ1. Test-suite Adequate Repair

For how many bugs can each system synthesize a patch that is test-suite adequate, i.e.,
it fulfills the test suite?

This is the basic evaluation criterion of automatic test-suite based repair research.
In test-suite based repair, a bug is said to be automatically patchable if the synthesized
patch makes the whole test suite pass. Test-suite adequacy does not convey a notion a
correctness beyond the test suite. To answer this question, we run each repair approach
on each bug and count the number of bugs that are patched according the test suite.

3.1.2 RQ2. Patch Correctness

Which generated patches are semantically correct beyond passing the test suite?
A patch that passes the whole test suite may not be exactly the same as the patch

written by developers. It may be syntactically different yet correct. As shown by Qi
et al (2015) it may also be incorrect. To answer this question, we manually examine
all synthesized patches to identify the correctness.

3.1.3 RQ3. Under-Specified Bugs

Which bugs in Defects4j are not sufficiently specified by the test suite?
In test-suite based repair, the quality of a synthesized patch is highly dependent on

the quality of the test suite. In this paper, we define an “under-specified bug” as a bug
for which the test cases that specify the expected behavior have a low coverage and
weak assertions. Among the incorrect patches identified in RQ2, we identify the bugs
for which the primary reason for incorrectness is the test suite itself (and not the repair
technique). To find such under-specified bugs, we use two pieces of evidence. First, we
closely look at the results of jKali. Since this repair system only removes code or skips
code execution, if it finds a patch, it hints that a functionality is not specified at all.
Second, we complement this by a manual analysis of generated patches.

3.1.4 RQ4. Performance (Execution Time)

How long is the execution time of each repair system?
It is time-consuming to manually repair a bug. Test-suite based repair automates

the process of patch generation. To assess to which extent automatic repair is usable
in practice, we evaluate the execution time of each repair approach.

3.2 Experiment Design

According to the inclusion criteria presented in Section 3.2.1, we select three repair
systems (Section 3.2.2) on the Defects4J dataset (Section 2.3). Since the experiment
requires a large amount of computation, we run it on a grid (Section 3.2.3). We then
manually analyze all the synthesized patches (Section 3.2.4).

Automatic Repair of Real Bugs in Java 7

3.2.1 Inclusion Criteria

For selecting repair systems, we have three inclusion criteria.
Criterion #1 In this experiment, we consider a dataset of bugs in software written

in the Java programming language. We consider repair systems that are able to handle
this programming language. This rules out many systems that repair C code, such as
GenProg (Le Goues et al (2012b)) and Semfix (Nguyen et al (2013)).

Criterion #2 Defects4J contains bugs written in modern Java versions (Java 5, 7
and 8). We consider repair systems that support those versions. This rules out Arcuri’s
pioneering prototype Jaff (Arcuri and Yao (2008)).

Criterion #3 The third inclusion criterion is that the repair system is available,
whether publicly or on demand. This rules out for instance PAR (Kim et al (2013)).

3.2.2 Repair Systems Under Study

As of submission time, there are three repair systems that meet all those criteria: jGen-
Prog (AstorCode (2016); Martinez and Monperrus (2016)), jKali (AstorCode (2016))
and Nopol (NopolCode (2016)).

jGenProg jGenProg is an implementation of GenProg for Java. It implements the Gen-
Prog algorithm (Le Goues et al (2012b)) as follows. It randomly deletes, adds, and re-
places AST nodes in the program. The modification point is steered by spectrum based
fault localization. Pieces of code that are inserted through addition or replacement al-
ways come from the same program, based on the “redundancy hypothesis” (Martinez
et al (2014)). There is a threat that this Java implementation does not reflect the actual
performance of the original GenProg system for C, it is discussed in Section 6.1.2. We
are the authors of jGenProg, and we make it publicly available at Github AstorCode
(2016); Martinez and Monperrus (2016). Our rationale for implementing jGenProg is
that GenProg (which works for C code) is arguably the baseline of this research area,
being the most known and visible patch generation system. jGenProg has 9.5K lines
of Java code.

jKali jKali is an implementation of Kali for Java. Kali (Qi et al (2015)) performs
patch synthesis by only removing or skipping code. Kali is clearly not a “program
repair” technique. However, it is a perfectly appropriate technique to identify weak
test suites and under-specified bugs. We are the authors of jKali and we make it
publicly available (AstorCode (2016)). Our rationale for implementing Kali is that is
an appropriate technique to detect test suite weaknesses, yet the original Kali works
for C.

Nopol Nopol is a repair system for Java (DeMarco et al (2014); Xuan et al (2016))
which targets a specific fault class: conditional bugs. It repairs programs by either mod-
ifying an existing if-condition or adding a precondition (aka. a guard) to any statement
or block in the code. The modified or inserted condition is synthesized via input-output
based code synthesis with SMT solvers (Jha et al (2010)). Nopol is publicly available
(NopolCode (2016)) and has 25K lines of Java code.

8 Martinez, Durieux, Sommerard, Xuan, Monperrus

Open Science We note that we are authors of those three systems. This is both good
and bad. This is good because we know that they are of similar quality. This is bad
because it shows that as of today, although a number of automatic repair contributions
have been made for Java, the current practice is not to share the tools for sake of open
and reproducible science.

3.2.3 Large Scale Execution

We assess three repair approaches on 224 bugs. One repair attempt may take hours to
be completed. Hence, we need a large amount of computation power. Consequently, we
deploy our experiment in Grid’5000, a grid for high performance computing (Bolze et al
(2006)). In our experiment, we manually set the computing nodes in Grid’5000 to the
same hardware architecture. This avoids potential biases of the time cost measurement.
All the experiments are deployed in the Nancy site of Grid’5000 (located in Nancy,
France).

As we shall see later, this experiment is significantly CPU intensive: it takes in total
17.6 days of computation on Grid’5000. This means we had to make careful choices
before coming to valid run of the experiment. In particular, we set the timeout to three
hours per repair attempt, in order to have an upper bound.

For the same reason, although jGenProg is a randomized algorithm, for all but 5
bugs, we run it only once also to keep an acceptable experiment time, this important
threat to validity is discussed in Section 6.1.4. This results in a conservative under-
estimation of GenProg’s effectiveness but remains sound (found patches are actually
test-suite adequate patches). Finally, although our and other’s experience with repair
has shown that multiple patches exist for the same bug, we stop the execution of a
repair attempt after finding the first patch.

3.2.4 Manual Analysis

We manually examine the generated patches. For each patch, one of the authors, called
thereafter an “analyst”, analyzed the patch correctness, readability, and the difficulty
of validating the correctness (as defined below). For sake of cross validation, the an-
alyst then presents the results of the analysis to another co-author, called thereafter
a “reviewer” in a live session. At the end of the live session, when an agreement has
been reached between the analyst and the reviewer, a short explanatory text is written.
Those texts are made publicly available for peer review (ExperimentalData (2016)).
During agreement sessions, analysts and reviewers applied a conservative patch evalu-
ation strategy: when there were a doubt or a disagreement about the correctness of a
patch, is was labeled as “unknown”.

Correctness Analysis The correctness of a patch can be correct, incorrect, or unknown.
The term “correct” denotes that a patch is exactly the same or semantically equivalent
to the patch that is written by developers. We assume that all patches included in the
Defects4J dataset are correct. The equivalence is assessed according to the analyst’s
understanding of the patch. Analyzing one patch requires a period between a couple
of minutes and several hours of work, depending on the complexity of the synthesized
patch. On the one hand, a patch that is identical to the one written by developers is
obviously true; on the other hand, several patches require a domain expertise that none
of the authors has.

Automatic Repair of Real Bugs in Java 9

Note that in the whole history of automatic program repair, this is only the second
time that such a large scale analysis of correctness is being performed (after Qi et al
(2015)). While other published literature has studied aspects of the readability and
usefulness of generated patches (e.g. Fry et al (2012); Tao et al (2014)), it was on a
smaller scale with no clear focus on correctness.

Readability Analysis The readability of the patch can be “easy”, “medium”, or “hard”;
and it results from the analyst opinion on the length and complexity of the patch. This
subjective evaluation concerns: 1) The number of variables involved in the patch: a
patch that refers to one or two variables is much easier to understand than a patch
that refers to 5 variables. 2) The number of logical clauses: in a condition, a patch with
a single conjunction (hence with two logical clauses) is considered easier a patch that
with many sub-conjunctions. 3) The number of method calls: when a patch contains a
method call, one must understand the meaning and the goal of this call to understand
the patch. Hence, the more method calls, the harder the patch to understand.

Difficulty Analysis The difficulty analysis relates to the difficulty of understanding
the problem domain and assessing the correctness. It indicates the effort that the
analyst had to carry out for understanding the essence of the bug, the human patch
and the generated patch. The analysts agree on a subjective difficulty on the scale
“easy”, “medium”, “hard”, or “expert” as follows. “Easy” means that it is enough to
examine the source code of the patch for determining its correctness. “Medium” means
that one has to fully understand the test case. “Hard” means that the analyst has to
dynamically debug the buggy and/or the patched application. By “expert”, we mean
a patch for which it was impossible for us to validate due to the required expertise in
domain knowledge. This happens when the analyst could not understand the bug, or
the developer solution or the synthesized patch.

4 Empirical Results

We present and discuss our answers to the research questions that guide this work.
The total execution of the experiment costs 17.6 days.

4.1 Test-suite Adequate Repair

RQ1. For how many bugs can each system synthesize a patch that fulfills the test
suite?

The three automatic repair approaches in this experiment are able to together find
test-suite adequate patches for 47 bugs of the Defects4J dataset. jGenProg finds a patch
for 27 bugs; jKali identifies a patch for 22 bugs; and Nopol synthesizes a condition that
makes the test suite passing for 35 bugs. Table 2 shows the bug identifiers, for which
at least one patch is found. Each line corresponds to one bug in Defects4J and each
column denotes the effectiveness of one repair approach. For instance, jGenProg and
jKali are able to synthesize a test-suite adequate patch for Bug M2 from Commons
Math.

10 Martinez, Durieux, Sommerard, Xuan, Monperrus

Table 2 Results for 224 Bugs in Defects4J with Three Repair Approaches. In Total, the Three
Repair Approaches can Generate Test-suite Adequate Patches for 47 Bugs (21%).

Project Bug Id jGenProg jKali Nopol

JF
re
eC

ha
rt

C1 Patch Patch –
C3 Patch – Patch
C5 Patch Patch Patch
C7 Patch – –
C13 Patch Patch Patch
C15 Patch Patch –
C21 – – Patch
C25 Patch Patch Patch
C26 – Patch Patch

C
om

m
on

s
L
an

g L39 – – Patch
L44 – – Patch
L46 – – Patch
L51 – – Patch
L53 – – Patch
L55 – – Patch
L58 – – Patch

T
im

e T4 Patch Patch –
T11 Patch Patch Patch
M2 Patch Patch –
M5 Patch – –
M8 Patch Patch –
M28 Patch Patch –
M32 – Patch Patch

Project Bug Id jGenProg jKali Nopol

C
om

m
on

s
M
at
h

M33 – – Patch
M40 Patch Patch Patch
M42 – – Patch
M49 Patch Patch Patch
M50 Patch Patch Patch
M53 Patch – –
M57 – – Patch
M58 – – Patch
M69 – – Patch
M70 Patch – –
M71 Patch – Patch
M73 Patch – Patch
M78 Patch Patch Patch
M80 Patch Patch Patch
M81 Patch Patch Patch
M82 Patch Patch Patch
M84 Patch Patch –
M85 Patch Patch Patch
M87 – – Patch
M88 – – Patch
M95 Patch Patch –
M97 – – Patch
M104 – – Patch
M105 – – Patch

Total 47 (21%) 27 (12%) 22 (9.8%) 35 (15.6%)

As shown in Table 2, some bugs such as T11 can be patched by all systems, others
by only a single one. For instance, only Nopol synthesize a test-suite adequate patch
for bug L39 and only jGenProg for bug M5.

Moreover, Table 2 shows that in project Commons Lang only Nopol generates test-
suite adequate patches while jGenProg and jKali fail to synthesize a single patch. A
possible reason is that the program of Commons Lang is more complex than that of
Commons Math; both jGenProg and jKali cannot handle such a complex search space.

Fig. 2 shows the intersections among the three repair approaches as a Venn diagram,
where each number is a number of patches for which one system is able to generate
a test-suite adequate patch. Nopol can synthesize a patch for 18 bugs that neither
jGenProg nor jKali could handle. All the bugs handled by jKali can also be handled
by jGenProg and Nopol. For 12 bugs, all three repair systems can generate a patch to
pass the test suite. The 2 discarded bugs will be discussed in Section 6.2.

To our knowledge, those results are the very first on automatic repair with the
Defects4J benchmark. Recall that they are done with an open-science ethics, all the
implementations, experimental code, and results are available on Github (Experimen-
talData (2016)). Future research in automatic repair may try to synthesize more test-
suite adequate patches than our work. Our experimental framework can be used to
facilitate future comparisons by other researchers.

Among the incorrect patches identified in RQ2, we identify the bugs for which the
primary reason for incorrectness is the test suite itself (and not the repair technique).

Automatic Repair of Real Bugs in Java 11

12
8 3

20

4

18

jGenProg

jKali Nopol

Unfixed bugs
175

Discarded
bugs 2

Defects4J bugs

Fig. 2 Venn diagram of bugs for which test-suite adequate patches are found.

Answer to RQ1. In Defects4J, at least one of the automatic repair systems under
consideration can generate a test-suite adequate patch for 47 out of 224 bugs. Nopol
can is the most effective (35 bugs). If jKali finds a test-suite adequate patch, so can
jGenProg or Nopol. This experiment sets a record to be beaten by future yet-to-be-
invented repair systems.

4.2 Patch Correctness

RQ2. Which patches are semantically correct beyond passing the test suite?

12
M
artinez,

D
urieux,

Som
m
erard,

X
uan,

M
onperrus

Table 3 Manual Assessment of 84 Patches that are Generated by Three Repair Approaches.

Project Bug id Patch id Approach Correctness Readability Difficulty

JF
re
eC

ha
rt

C1 1 jGenProg Incorrect Easy Easy
C1 2 jKali Incorrect Easy Easy
C3 3 jGenProg Unknown Medium Medium
C3 4 Nopol Incorrect Easy Medium
C5 5 jGenProg Incorrect Easy Medium
C5 6 jKali Incorrect Easy Medium
C5 7 Nopol Correct Easy Medium
C7 8 jGenProg Incorrect Easy Easy
C13 9 jGenProg Incorrect Easy Easy
C13 10 jKali Incorrect Easy Easy
C13 11 Nopol Incorrect Easy Easy
C15 12 jGenProg Incorrect Easy Medium
C15 13 jKali Incorrect Medium Medium
C21 14 Nopol Incorrect Hard Expert
C25 15 jGenProg Incorrect Medium Medium
C25 16 jKali Incorrect Medium Medium
C25 17 Nopol Incorrect Easy Easy
C26 18 jKali Incorrect Easy Medium
C26 19 Nopol Incorrect Easy Medium

C
om

m
on

s
L
an

g L39 20 Nopol Incorrect Easy Medium
L44 21 Nopol Correct Easy Medium
L46 22 Nopol Incorrect Easy Medium
L51 23 Nopol Incorrect Easy Easy
L53 24 Nopol Incorrect Hard Expert
L55 25 Nopol Correct Easy Medium
L58 26 Nopol Correct Easy Medium

T
im

e

T4 80 jGenProg Incorrect Easy Medium
T4 81 jKali Incorrect Easy Medium
T11 82 jGenProg Incorrect Easy Easy
T11 83 jKali Incorrect Easy Easy
T11 84 Nopol Incorrect Medium Medium

C
om

m
on

s
M
at
h

M2 27 jGenProg Incorrect Easy Hard
M2 28 jKali Incorrect Easy Hard
M5 29 jGenProg Correct Easy Easy
M8 30 jGenProg Incorrect Easy Easy
M8 31 jKali Incorrect Easy Easy
M28 32 jGenProg Incorrect Medium Hard
M28 33 jKali Incorrect Easy Hard
M32 34 jKali Incorrect Easy Easy
M32 35 Nopol Unknown Hard Expert
M33 36 Nopol Incorrect Medium Medium
M40 37 jGenProg Incorrect Hard Hard
M40 38 jKali Incorrect Easy Medium

Project Bug id Patch id Approach Correctness Readability Difficulty

C
om

m
on

s
M
at
h

M40 39 Nopol Unknown Hard Expert
M42 40 Nopol Unknown Medium Expert
M49 41 jGenProg Incorrect Easy Medium
M49 42 jKali Incorrect Easy Medium
M49 43 Nopol Incorrect Easy Medium
M50 44 jGenProg Correct Easy Easy
M50 45 jKali Correct Easy Easy
M50 46 Nopol Correct Easy Medium
M53 47 jGenProg Correct Easy Easy
M57 48 Nopol Incorrect Medium Medium
M58 49 Nopol Incorrect Medium Hard
M69 50 Nopol Unknown Medium Expert
M70 51 jGenProg Correct Easy Easy
M71 52 jGenProg Unknown Medium Hard
M71 53 Nopol Incorrect Medium Hard
M73 54 jGenProg Correct Easy Easy
M73 55 Nopol Incorrect Easy Easy
M78 56 jGenProg Unknown Easy Hard
M78 57 jKali Unknown Easy Hard
M78 58 Nopol Incorrect Medium Hard
M80 59 jGenProg Incorrect Hard Medium
M80 60 jKali Unknown Easy Medium
M80 61 Nopol Unknown Easy Medium
M81 62 jGenProg Incorrect Easy Medium
M81 63 jKali Incorrect Easy Medium
M81 64 Nopol Incorrect Easy Medium
M82 65 jGenProg Incorrect Easy Medium
M82 66 jKali Incorrect Easy Medium
M82 67 Nopol Incorrect Easy Medium
M84 68 jGenProg Incorrect Easy Easy
M84 69 jKali Incorrect Easy Easy
M85 70 jGenProg Unknown Easy Easy
M85 71 jKali Unknown Easy Easy
M85 72 Nopol Incorrect Easy Easy
M87 73 Nopol Incorrect Medium Expert
M88 74 Nopol Incorrect Easy Medium
M95 75 jGenProg Incorrect Easy Hard
M95 76 jKali Incorrect Easy Hard
M97 77 Nopol Incorrect Easy Medium
M104 78 Nopol Incorrect Hard Expert
M105 79 Nopol Incorrect Medium Medium

84 Patches for 47 bugs 11 Correct 61 Easy 21 Hard/Expert
5 patches correct from jGenProg, 1 from jKali and 5 from Nopol

Automatic Repair of Real Bugs in Java 13

0	

5	

10	

15	

20	

25	

jG
en

Pr
og
	

N
op

ol
	

jK
al
i	

jG
en

Pr
og
	

N
op

ol
	

jK
al
i	

jG
en

Pr
og
	

N
op

ol
	

jK
al
i	

jG
en

Pr
og
	

N
op

ol
	

jK
al
i	

Math	 Lang	 Chart	 Time	

#	
pa

tc
he

s	

Correct	

Incorrect	

Unknown	

Fig. 3 Bar chart that summarizes the results from the correctness analysis.

We manually evaluate the correctness of generated patches by the three repair
approaches under study. A generated patch is correct if this patch is the same as
the manually-written patch by developers or the patch is semantically equivalent to
the manual patch. A generated patch is incorrect if it actually does not repair the
bug (beyond test-suite adequacy, beyond making the failing test case pass – a kind of
incomplete bug oracle) or if it breaks an expected behavior (beyond keeping the rest
of the test suite passing).

Recall the history of automatic repair research. It has been hypothesized that a
major pitfall of test-suite based repair is that a test suite cannot completely express
the program specifications, so it is hazardous to drive the synthesis of a correct patch
with a test suite (Qi et al (2015); Fry et al (2012)). Previous works have studied the
maintainability of automatic generated patches (Fry et al (2012)) or their aids for
debugging task (Tao et al (2014)). However, only recent work by Qi et al (2015) has
invested resources to manually analyze the correctness previously-generated patches
by test-suite based repair. They found that the vast majority of patches by GenProg
in the GenProg benchmark of C bugs are incorrect.

To answer the question of patch correctness, we have manually analyzed all the
patches generated by Nopol, jGenProg and jKali in our experiment, 84 patches in
total. This represents more than ten full days of work. To our knowledge, only Qi
et al (2015) have performed a similar manual assessment of patches synthesized with
automatic repair.

Table 3 shows the results of this manual analysis. The “bug id” column refers to
the Defects4J identifier, while “Patch id” is an univocal identifier of each patch, for
easily identifying the patch on our empirical result page (ExperimentalData (2016)).
The three main columns give the correctness, readability and difficulty as explained in
Section 3.2.4.

The results in Table 3 may be fallible due to the subjective nature of the assessment.
For mitigating this risk, all patches as well as detailed case studies are publicly available
on Github (ExperimentalData (2016)).

In total, we have analyzed 84 patches. Among these patches, 27, 22, and 35 patches
are synthesized by jGenProg, jKali, and Nopol, respectively.

14 Martinez, Durieux, Sommerard, Xuan, Monperrus

As shown in Table 3, 11 out of 84 analyzed patches are correct and 61 are incorrect.
Meanwhile, for the other 12 patches, it is not possible to clearly validate the correct-
ness, due to the lack of domain expertise (labeled as unknown). Figure 3 graphically
summarizes this analysis. This figure clearly convey the fact that most test-suite ade-
quate patches are actually incorrect because of overfitting. Section 5 will present three
case studies of generated patches via manual analysis.

Among the 11 correct patches, jGenProg, jKali, and Nopol contribute to 5, 1,
and 5 patches, respectively. All the correct patches by jGenProg and jKali come from
Commons Math; 3 correct patches by Nopol come from Commons lang, one comes
from JFreeChart and the other from Commons Math. After the controversy about the
effectiveness of GenProg (Qi et al (2015)), it is notable to see that there are bugs for
which only jGenProg works for real.

Among 84 analyzed patches, 61 patches are identified as easy to read and under-
stand. For the difficulty of patch validation, 21 patches are labeled as hard or expert.
This result shows that it is hard and time consuming to conduct a manual assessment
of patches.

For the incorrect patches, the main reasons are as follows. First, all three ap-
proaches are able to remove some code (pure removal for jKali, replacement for jGen-
Prog, precondition addition for Nopol). The corresponding patches simply exploit some
under-specification and remove the faulty but otherwise not tested behavior. When the
expected behavior seems to be well-specified (according to our understanding of the
domain), the incorrect patches tend to overfit the test data. For instance, if a failing
test case handles a 2× 2 matrix, the patch may use such test data to incorrectly force
the patch to be suitable only for matrices of size of 2× 2.

This goes along the line of Qi et al (2015)’s results and Smith et al (2015)’ find-
ings. Compared to Smith et al (2015), we study real bugs in large programs and not
small ones in student programs. Compared to Qi et al (2015), we study a different
benchmark in a different programming language. To this extent, the key novelty of our
experimental results is that: 1) overfitting also happens for Java software tested with a
state-of-the-art testing infrastructure (as opposed to old-school C programs in Qi et al
(2015)); 1) overfitting also happens with Nopol, a synthesis based technique (and not
only for Genprog and similar techniques). Our results clearly identify overfitting as the
next big challenge of test-suite based automatic repair.

Answer to RQ2. Based on the manual assessment of patch correctness, we find out
that only 11 out of 84 generated patches are semantically correct (beyond passing the
provided test suite). The reason is that the current test suite based repair algorithms
tend to overfit the test case data or to exploit the holes left by insufficiently specified
functionality.

4.3 Under-specified bugs

RQ3. Which bugs in Defects4j are not sufficiently specified by the test suite?
As shown in Section 4.1, the repair system jKali can find test-suite adequate patches

for 22 bugs. Among these generated patches, from our manual evaluation, we find
out that 18 patches are incorrect (other 3 patches are unknown). In each of those
generated patches by jKali, one statement is removed or skipped to eliminate the
failing program behavior, instead of making it correct. This kind of patches shows

Automatic Repair of Real Bugs in Java 15

Table 4 The Most Challenging Bugs of Defects4J Because of Under-specification.

Project Bug ID
Commons Math M2, M8,M28,M32,M40, M49, M78,

M80, M81, M82,M84, M85,M95
JFreeChart C1,C5, C13, C15, C25,C26

Time T4,T11

that the corresponding test suite is too weak with respect to the buggy functionality.
The assertions that specify the expected behavior of the removed statement and the
surrounding code are inexistent or too weak.

One exception among 22 patches by jKali is the patch of Bug M50. As shown in
Section 4.2, the patch of Bug M50 is correct. That is, the statement removal is the
correct patch. Another special case is Bug C5 which is patched by jKali (incorrect)
and by Nopol (correct). The latter approach produces a patch similar to that done
by the developer. A patch (written by developers or automatically generated) that
is test-suite adequate for an under-specified bug could introduce new bugs (studied
previously by Gu et al (2010)) or it could not be completely correct due to a weak test
suite used as the bug oracle (Qi et al (2015)). Table 4 summarizes this finding and list
the under-specified bugs.

This result is important for future research on automatic repair with Defects4J.
First, any repair system that claims to correctly repair one of those bugs should be
validated with a detailed manual analysis of patch correctness, to check whether the
patch is not a variation on the trivial removal solution. Second, those bugs can be
considered as the most challenging ones of Defects4J. To repair them, a repair system
must somehow reason about the expected functionality beyond what is encoded in
the test suite. This is what was actually been done by the human developer. A repair
system that is able to produce a correct patch for those bugs would be a great advance
for the field.
Answer to RQ3. Among the incorrect patches identified in RQ2, there are 21 bugs
for which the primary reason for incorrectness is the test suite itself (and not the repair
technique), they are under-specified bugs. For them, the test suite does not accurately
specify the expected behavior and can be trivially repaired by removing code. To us,
they are the most challenging bugs: to automatically repair them, one needs to reason
on the expected functionality below what is encoded in the test suite for instance by
taking into account a source of information other than test suite execution. Repairing
those bugs can be seen as the next grand challenge for automatic repair.

4.4 Performance

RQ4. How long is the execution time for each repair approach on one bug?
For real applicability in industry, automatic repair approaches must execute fast

enough. By “fast enough”, we mean an acceptable time period, which depends on the
usage scenario of automatic repair and on the hardware. For instance, if automatic
repair is meant to be done in the IDE, repair time should last at most some minutes on
a standard desktop machine. On the contrary, if automatic repair is meant to be done
on a continuous integration server, it is acceptable to last hours on a more powerful
server hardware configuration.

16 Martinez, Durieux, Sommerard, Xuan, Monperrus

Table 5 Time Cost of Patch Generation

Time cost jGenProg jKali Nopol
Min 40 sec 36 sec 31sec

Median 1h 01m 18m 45sec 22m 30sec
Max 1h 16m 1h 27m 1h 54m

Average 55m 50sec 23m 33sec 30m 53sec
Total 8 days 12h 3 days 6h 7 days 3h

The experiments in this paper are run on a grid where most of nodes have com-
parable characteristics. Typically, we use machines with Intel Xeon X3440 Quad-core
processor and 15GB RAM. Table 5 shows the time cost of patch generation in hours for
bugs without timeout. As shown in Table 5, the median time for one bug by jGenProg
is around one hour. The fastest repair attempt yields a patch in 31 seconds (for Nopol).
The median time to synthesize a patch is 6.7 minutes. This means that the execution
time of automatic repair approaches is comparable to the time of manual repair by
developers. It may be even faster, but we don’t know the actual repair time by real
developers for the bug of the dataset.

When a test-adequate patch can be synthesized, it is found within minutes. This
means that most of the time of the 17.6 days of computation for the experiment is
spent on unfixed bugs, which reach the timeout. For jGenProg, it is always the case,
because the search space is extremely large. For jKali, we often completely explore the
search space, and we only reach the timeout in 20 cases. For Nopol, the timeout is
reached in 26 cases, either due to the search space of covered statements or the SMT
synthesis that becomes slow in certain cases. One question is whether a larger timeout
would improve the effectiveness. According to this experiment, the answer is no. The
repairability is quite binary: either a patch is found fast, or the patch cannot be found
at all. This preliminary observation calls for future research.
Answer to RQ4. Both the median value and the average value of repair execution
time are about one hour on machines that represent server machines used nowadays for
continuous integration. Performance is not a problem with respect to practical usage
of automatic repair.

4.5 Other Findings in Defects4J

Our manual analysis of results enables us to uncover two problems in Defects4J. First,
we found that bug #8 from project JFreeChart (C8) is flaky, which depends on the
machine configuration. Second, bug #99 from Commons Math (M99) is identical to
bug M97. Both issues were reported to the authors of Defects4J and will be solved in
future releases of Defects4J.

5 Case Studies

In this section, we present three case studies of generated patches by jGenProg, jKali,
and Nopol, respectively. These case studies are pieces of evidence that: State-of-the-art
automatic repair is able to find correct patches (Sections 5.1 and 5.3), but also fails
with incorrect patches (Section 5.2). It is possible to automatically generate the same
patch as the one written by the developer (Section 5.1).

Automatic Repair of Real Bugs in Java 17

1 double solve(UnivariateRealFunction f,
2 double min, double max, double initial)
3 throws MaxIterationsExceededException,
4 FunctionEvaluationException {
5 // PATCH: return solve(f, min, max);
6 return solve(min, max);
7 }

Fig. 4 Code snippet of Bug M70. The manually-written patch and the patch by jGenProg
are the same, which is shown in the PATCH comment at Line 5, which adds a parameter to the
method call.

5.1 Case Study of M70, Bug that is Only Repaired by jGenProg

In this section, we study Bug M70, which is repaired by jGenProg, but cannot be
repaired by jKali and Nopol.

Bug M70 in Commons Math is about univariate real function analysis. Fig. 4
presents the buggy method of Bug M70. This buggy method contains only one state-
ment, a method call to an overloaded method. In order to perform the correct calcu-
lation, the call has to be done with an additional parameter UnivariateRealFunction
f (at Line 1) to the method call. Both the manually-written patch and the patch by
jGenProg add the parameter f to the method call (at Line 5). This patch generated
by jGenProg is considered correct since the it is the same as that by developers.

To repair Bug M70, jGenProg generates a patch by replacing the method call by
another one, which is picked elsewhere in the same class. This bug cannot be repaired
by either jKali or Nopol. jKali removes and skips statements; Nopol only handles bugs
that are related to if conditions. Indeed, the fact that certain bugs are only repaired by
one tool confirms that the fault classes addressed by each approach are not identical.
To sum up, Bug M7 shows that the GenProg algorithm, as implemented in
jGenProg, is capable of uniquely repairing real Java bugs (only jGenProg
succeeds).

5.2 Case Study of M8, Bug that is Incorrectly Repaired by jKali and jGenProg

In this section, we present a case study of Bug M8, for which jKali as well as jGenProg
find a test-suite adequate patch, but not Nopol.

Bug M87 in Commons Math, is about the failure to create an array of a random
sample from a discrete distribution. Fig. 5 shows an excerpt of the buggy code and the
corresponding manual and synthesized patches (from class DiscreteDistribution<T>).
The method sample receives the expected number sampleSize of random values and
returns an array of the type T[].

The bug is due to an exception thrown at Line 11 during the assignment to out[i].
The method Array.newInstance(class, int) requires a class of a data type as the first
parameter. The bug occurs when a) the first parameter is of type T1, which is a sub-
class of T and b) one of the samples is an object which is of type T2, which is a

7 Bug ID in the bug tracking system of Commons Math is Math-942, http://issues.
apache.org/jira/browse/MATH-942.

http://issues.apache.org/jira/browse/MATH-942
http://issues.apache.org/jira/browse/MATH-942

18 Martinez, Durieux, Sommerard, Xuan, Monperrus

1 T[] sample(int sampleSize) {
2 if (sampleSize <= 0) {
3 throw new NotStrictlyPositiveException([...]);
4 }
5 // MANUAL PATCH:
6 // Object[] out = new Object[sampleSize];
7 T[] out = (T[]) Array.newInstance(
8 singletons.get(0).getClass(), sampleSize);
9 for (int i = 0; i < sampleSize; i++) {

10 // PATCH: removing the following line
11 out[i] = sample();
12 }
13 return out;
14 }

Fig. 5 Code snippet of Bug M8. The manually-written patch is shown in the MANUAL PATCH
comment at Lines 5 and 6 (changing a variable type). The patch by jKali in the PATCH comment
removes the loop body at Line 11.

sub-class of T, but not of type T1. Due to the incompatibility of types T1 and T2, an
ArrayStoreException is thrown when this object is assigned to the array.

In the manual patch, the developers change the array type in its declaration (from
T[] to Object[]) and the way the array is instantiated. The patch generated by jKali
simply removes the statement, which assigns sample() to the array. As consequence,
method sample never throws an exception but returns an empty array (only containing
null values). This patch passes the failing test case and the full test suite as well. The
reason of this is that the test case has only one assertion: it asserts that the array
size is equal to 1. There is no assertion on the content of the returned array. However,
despite passing the test suite, the patch is clearly incorrect. This is an example of a bug
that is not well specified by the test suite. For this bug, jGenProg can also generate a
patch by replacing the assignment by a side-effect free statement, which is semantically
equivalent to removing the code. To sum up, Bug M8 is an archetypal example
of under-specified bugs as detected by the jKali system.

5.3 Case Study of L55, Bug that is Repaired by Nopol, Equivalent to the Manual
Patch

Nopol (DeMarco et al (2014)) focuses on condition-related bugs. Nopol collects runtime
data to synthesize a condition patch. In this section, we present a case study of Bug
L55, which is only repaired by Nopol, but cannot be repaired by jGenProg or jKali.

Bug L55 in Commons Lang relates to a utility class for timing. The bug appears
when the user stops a suspended timer: the stop time saved by the suspend action is
overwritten by the stop action. Fig. 6 presents the buggy method of Bug L55. In order
to solve this problem, the assignment at Line 10 has to be done only if the timer state
is running.

As shown in Fig. 6, the manually-written patch by the developer adds a precon-
dition before the assignment at Line 10 and it checks that the current timer state is
running (at Line 7). The patch by Nopol is different from the manually-written one.
The Nopol patch compares the stop time variable to a integer constant (at Line 9),
which is pre-defined in the program class and equals to 1. In fact, when the timer

Automatic Repair of Real Bugs in Java 19

1 void stop() {
2 if (this.runningState != STATE_RUNNING
3 && this.runningState != STATE_SUSPENDED) {
4 throw new IllegalStateException(...);
5 }
6 // MANUAL PATCH:
7 // if (this.runningState == STATE_RUNNING)
8 // NOPOL PATCH:
9 // if (stopTime < StopWatch.STATE_RUNNING)

10 stopTime = System.currentTimeMillis();
11 this.runningState = STATE_STOPPED;
12 }

Fig. 6 Code snippet of Bug L55. The manually-written patch is shown in the MANUAL PATCH
comment at Lines 6 and 7 while the patch by Nopol is shown in the NOPOL PATCH at Lines 8
and 9. The patch by Nopol is equivalent to the manually-written patch by developers.

is running, the stop time variable is equals to −1; when it is suspended, the stop
time variable contains the stop time in millisecond. Consequently, both preconditions
by developers and by Nopol are equivalent and correct. Despite being equivalent, the
manual patch remains more understandable. This bug is neither repaired by jGenProg
nor jKali. To our knowledge, Nopol is the only approach that contains a strategy of
adding preconditions to original statements, which does not exist in jGenProg or jKali.
To sum up, Bug L55 shows an example of a repaired bug, 1) that is in a
hard-to-repair project (only Nopol succeeds) and 2) whose specification by
the test suite is good enough to drive the synthesis of a correct patch.

Summary. In this section, we have presented detailed case studies of three patches
that are automatically generated for three real-world bugs of Defects4J. Our case stud-
ies show that automatic repair approaches are able to repair real bugs. However, dif-
ferent factors, in particular the weakness of some test cases, yield clearly incorrect
patches.

6 Discussion

6.1 Threats to Validity

6.1.1 Benchmark

Our results are obtained on four subject programs, from a benchmark in which there
was no attempt to provide a representative set of fault classes. Future experiments on
other benchmarks are required mitigate this threat to the external validity.

We have taken the bugs of the Defects4J benchmark as they are and we did not
modify the test cases. This is very important to decrease the following threats. First,
we measure the effectiveness of the repair tool as it would have be at the time when
the bug was reported. We do not use other tests of information “from the future”. It
would introduce a potential experimental bias if we modify the benchmark, which has
been set up independently of our experiment.

20 Martinez, Durieux, Sommerard, Xuan, Monperrus

6.1.2 Implementations of GenProg and Kali

jGenProg and jKali are the re-implementations of the GenProg and Kali algorithms in
Java. There exists a threat that the implementations do not produce results that are
as good as the original systems would (there is also a risk that the re-implementation
produces better results). The authors of jGenProg and jKali carefully and faithfully
reimplemented the original systems. Note this threat is absolute. Either one takes the
risk or one give up any comparative evaluations between programming languages. To
find potential re-implementation issues, the systems are publicly available on Github
for peer-review.

6.1.3 Bias of assessing the correctness, readability, and difficulty

In our work, each patch in Table 3 is validated by an analyst, which is one of the
authors. An analyst manually identifies the correctness of a patch and labels the re-
lated readability and difficulty. Then, he discusses and validates the result of the patch
analysis with another author, called a reviewer. Since patch correctness analysis on an
unknown code base is a new kind of qualitative analysis, only explored by Qi et al
(2015), we do not know its inherent problems and difficulty. This is why the method-
ological setup is a pilot one, where no independent validation has been attempted to
measure inter-annotator agreement. This results in a threat to the internal validity of
the manual assessment.

We share our results online on the experiment Github repository to let readers
have a clear idea of the difficulty of our analysis work and the correctness of gener-
ated patches (see Section 4.1). For assessing the equivalence, one solution would be to
use automatic technique, as done in mutation testing. However, whether the current
equivalence detection techniques scale on large real Java code is an open question.

6.1.4 Random nature of jGenProg

jGenProg, as the original GenProg implementation, has a random aspect: statements
and mutations are randomly chosen during the search. Consequently, it may happen
that a new run of jGenProg yields different results. There are two different threats.
Our experiment may have over-estimated the repair effectiveness of GenProg (too many
patches found) or underestimated the repair effectiveness (too few).

To analyze the overestimation threat, for each of the 27 repaired bug, we have run
jGenProg ten times with different seeds. For 18/27 cases, a test-adequate patch was
found in all 10 runs, in 6 cases, a test-adequate patch was found in at least 7 runs. In
the remaining 3 cases, a patch was found in a minority of runs, and we can consider
that our reference run was lucky to find at least one test-adequate patch. Note that this
experiment is quite fast because the runs are mostly successful and hence terminate
fast, much before the 3-hour time budget limit.

Analyze the underestimation threat is much more challenging, because if a bug is
not repaired, it means that the trial lasted at least 3 hours (the time budget used in
this experiment). Consequently, if the bug is really unrepairable, trying with n different
seeds would require n× 3 hours of computation. For 224− 27 = 197 unrepaired bugs,
this sets up a worst case bound of 197× 10× 3 = 5910 hours of computation, i.e. 224
days, which is not reasonable, even split into parallel tasks. Consequently, we decided to
sample 5 unrepaired bugs and run with 10 different seeds (representing an experimental

Automatic Repair of Real Bugs in Java 21

budget of 5×10×3 = 150 hours). The result was clear cut: no additional patches could
be found. This suggests that the “unrepairedness” comes from the essential complexity
of the problem and not from the accidental randomness of jGenProg.

6.1.5 Presence of multiple patches

In this experiment, we stop the execution of a repair system once the first patch is
found. This is the patch that is manually analyzed. However, as also experienced by
others, there are often several if not dozens of different patches per bug. It might
happen that a correct patch lies somewhere in this set of generated patches. We did
not manually analyze all generated patches because it would require months of manual
work. This finding shows that there is a need for research on approaches that order
the generated patches so as to reveal the most likely to be correct, this has been
preliminarily explored by Long and Rinard (2016b).

6.2 Impact of Flaky Tests on Repair

Our experiment uncovered one flaky test in Defects4J (C8). We realized that flaky tests
have a direct impact on automatic repair. If the failing test case is flaky, the repair
system might conclude that a correct patch has been found while it is actually correct.
If one of the passing test cases is flaky, the repair system might conclude that a patch
has introduced a regression while it is not the case, this results in an underestimation
of the effectiveness of the repair technique.

6.3 Reflections on GenProg

The largest evaluations of GenProg are by Le Goues et al (2012a) and Qi et al (2015).
The former reports that 55/105 bugs are repaired (under the definition that the patch
passes the test suite), while the latter argued that only 2/105 bugs are correctly re-
paired (under the definition that the patch passes the test suite and that the patch is
correct and acceptable from the viewpoint of the developer). The difference is due to an
experimental threat, the presence of under-specified bugs and a potential subjectiveness
in the assessment.

In this paper, we find that our re-implementation of GenProg, jGenProg correctly
repairs 5/224 (2.2%) bugs. In addition, it uniquely repairs 4 bugs, such as M70 discussed
in Section 5.1. We think that the difference in repair rate is probably due to the inclusion
criteria of both benchmarks (GenProg and Defects4J). To our opinion, none of them
reflect the actual distribution of all bug kinds and difficulty in the field.

However, the key finding is that having correctly and uniquely repaired bugs in-
dicates that the core intuition of GenProg is valid, and that GenProg has to be a
component of an integrated repair tool that would mix different repair techniques.

6.4 On the Choice of Repair Techniques

Given a new bug, can one choose the most appropriate repair technique? In practice,
when a new bug is reported, one does not know in advance the type of its root cause.

22 Martinez, Durieux, Sommerard, Xuan, Monperrus

The root cause may be an incorrect condition, a missing statement, or something else.
It means that given a failure (or a failing test case) there is no reason to choose one or
another repair technique (say jGenProg or Nopol). The pragmatic choice is to run all
available techniques, whether sequentially or in parallel. However, there may be some
information in the failure itself about the type of the root cause. Future results on the
automatic identification of the type of root cause given a failure would be useful for
repair, in order to guide the choice of repair technique.

7 Related Work

7.1 Real-World Datasets of Bugs

The academic community has already developed many methods for finding and ana-
lyzing bugs. Researchers employ real-world bug data to evaluate their methods and
to analyze their performance in practice. For instance, Do et al (2005) propose a con-
trolled experimentation platform for testing techniques. Their dataset is included in
SIR database, which provides a widely-used testbed in debugging and test suite opti-
mization.

Dallmeier and Zimmermann (2007) propose iBugs, a benchmark for bug localization
obtained by extracting historical bug data. BugBench by Lu et al (2005) and BegBunch
by Cifuentes et al (2009) are two benchmarks that have been built to evaluate bug
detection tools. The PROMISE repository (Menzies et al (2015)) is a collection of
datasets in various fields of software engineering. Le Goues et al (2015) have designed
a benchmark of C bugs which is an extension of the GenProg benchmark.

In this experience report, we employ Defects4J by Just et al (2014a) to evaluate
software repair. This database includes well-organized programs, bugs, and their test
suites. The bug data in Defects4J has been extracted from the recent history of five
widely-used Java projects. To us, Defects4J is the best dataset of real world Java bugs,
both in terms of size and quality. To our knowledge, our experiment is the first that
evaluates automatic repair techniques via Defects4J.

7.2 Test-Suite Based Repair Approaches

The idea of applying evolutionary optimization to repair derives from Arcuri and Yao
(2008). Their work applies co-evolutionary computation to automatically generate bug
patches. GenProg by Le Goues et al (2012b) applies genetic programming to the AST
of a buggy program and generates patches by adding, deleting, or replacing AST nodes.
PAR by Kim et al (2013) leverages patch patterns learned from human-written patches
to find readable patches. RSRepair by Qi et al (2014) uses random search instead of
genetic programming. This work shows that random search is more efficient in finding
patches than genetic programming. Their follow-up work (Qi et al (2013)) uses test
case prioritization to reduce the cost of patch generation.

Debroy and Wong (2010) propose a mutation-based repair method inspired from
mutation testing. This work combines fault localization with program mutation to ex-
haustively explore a space of possible patches. Kali by Qi et al (2015) has recently been
proposed to examine the repair power of simple actions, such as statement removal.

Automatic Repair of Real Bugs in Java 23

SemFix by Nguyen et al (2013) is a notable constraint based repair approach.
This approach provides patches for assignments and conditions by combining symbolic
execution and code synthesis. Nopol by DeMarco et al (2014) is also a constraint based
method, which focuses on repairing bugs in if conditions and missing preconditions.
DirectFix by Mechtaev et al (2015) achieves the simplicity of patch generation with
a Maximum Satisfiability (MaxSAT) solver to find the most concise patches. Relifix
(Tan and Roychoudhury (2015)) focuses on regression bugs. SPR (Long and Rinard
(2015)) defines a set of staged repair operators so as to early discard many candidate
repairs that cannot pass the supplied test suite and eventually to exhaustively explore
a small and valuable search space.

Besides test-suite based repair, other repair setups have been proposed. Pei et al
(2014) proposed a contract based method for automatic repair. Other related repair
methods include atomicity-violation fixing (e.g. Jin et al (2011)), runtime error repair
(e.g. Long et al (2014)), and domain-specific repair (e.g. Samimi et al (2012); Gopinath
et al (2014)).

7.3 Empirical Investigation of Automatic Repair

Beyond proposing new repair techniques, there is a thread of research on empirically
investigating the foundations, impact and applicability of automatic repair.

On the goodness of synthesized patches, Fry et al (2012) conducted a study of
machine-generated patches based on 150 participants and 32 real-world defects. Their
work shows that machine-generated patches are slightly less maintainable than human-
written ones. Tao et al (2014) performed a similar study to study whether machine-
generated patches assist human debugging. Monperrus (2014) discussed in depth the
acceptability criteria of synthesized patches.

Martinez and Monperrus (2015) studied thousands of commits to mine repair mod-
els from manually-written patches. They later investigated (Martinez et al (2014)) the
redundancy assumption in automatic repair (whether you can repair bugs by rear-
ranging existing code). Zhong and Su (2015) conducted a case study on over 9,000
real-world patches and found two important facts for automatic repair: for instance,
their analysis outlines that some bugs are repaired with changing the configuration
files.

A recent study by Kong et al (2015) compares four repair systems: including Gen-
Prog (Le Goues et al (2012b)), RSRepair (Qi et al (2014)), Brute-force-based repair
(Le Goues et al (2012a)), and AE (Weimer et al (2013)). This work reported repair
results on 119 seeded bugs and 34 real bugs from the Siemens benchmark and in the
SIR repository. Our experiment is on a bigger set of real bugs coming from larger and
more complex software applications.

Long and Rinard (2016a) have performed an analysis of the search space of their two
systems SPR and Prophet on the benchmark of C bugs. They show that not all repair
operators are equal with respect to finding the correct patch first. This is clearly differ-
ent from what we do in this paper: 1) we consider a different benchmark (Defects4J),
in a different programming language (Java), while they consider the Manybugs bench-
mark of C bugs. 2) they do not perform any manual analysis of their results.

24 Martinez, Durieux, Sommerard, Xuan, Monperrus

8 Conclusion

We have presented a large scale evaluation of automatic repair on a benchmark of real
bugs in Java programs. Our experiment was conducted with three automatic repair
systems on 224 bugs in the Defects4J dataset. We find out that the systems under
consideration can synthesize a patch for 47 out of 224. Since the dataset only contains
real bugs from large-scale Java software, this is a piece of evidence about the applicability
of automatic repair in practice.

However, our manual analysis of all generated patches show that most of them
are incorrect (beyond passing the test suite), because the overfit on the test data. Our
experiment shows that overfitting also happens for Java software tested with a state-of-
the-art testing infrastructure (as opposed to old-school C programs in Qi et al (2015));
and also happens with Nopol, a synthesis based technique (and not only for Genprog
and similar techniques).

Our results indicate two grand challenges for this research field: 1) producing sys-
tems that do not overfit (RQ2) and 2) producing systems that reason on the expected
behavior beyond what is directly encoded in the test suite (RQ3). There is also a third
challenge, although not the focus on this experiment: during the exploratory phase, we
have observed the presence of multiple patches for the same bug. This indicates a need
for research on approaches that order the generated patches so as to reveal the most
likely to be correct. Preliminary work is being done on this topic by Long and Rinard
(2016b).

Lastly, there is also a need for research on test suites. For instance, any approach
that automatically enriches test suites with stronger assertions would have direct im-
pact on repair, by preventing the synthesis of incorrect patches.

Automatic Repair of Real Bugs in Java 25

References

Abreu R, Zoeteweij P, Van Gemund AJ (2007) On the accuracy of spectrum-based fault
localization. In: Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, IEEE, pp 89–98

Arcuri A, Yao X (2008) A novel co-evolutionary approach to automatic software bug fixing.
In: Proceedings of the IEEE Congress on Evolutionary Computation, pp 162–168, DOI
10.1109/CEC.2008.4630793, URL http://dx.doi.org/10.1109/CEC.2008.4630793

AstorCode (2016) The github repository of jgenprog and jkali. http://bit.ly/1OLZSAu
Bolze R, Cappello F, Caron E, Daydé M, Desprez F, Jeannot E, Jégou Y, Lanteri S, Leduc J,

Melab N, et al (2006) Grid’5000: a large scale and highly reconfigurable experimental grid
testbed. vol 20, SAGE Publications, pp 481–494

Cifuentes C, Hoermann C, Keynes N, Li L, Long S, Mealy E, Mounteney M, Scholz B (2009)
Begbunch: Benchmarking for c bug detection tools. In: Proceedings of ISSTA, ACM, New
York, USA, pp 16–20, DOI 10.1145/1555860.1555866, URL http://doi.acm.org/10.1145/
1555860.1555866

Dallmeier V, Zimmermann T (2007) Extraction of Bug Localization Benchmarks from History.
In: Proceedings of the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, pp 433–436, DOI 10.1145/1321631.1321702, URL http://doi.acm.
org/10.1145/1321631.1321702

Debroy V, Wong WE (2010) Using mutation to automatically suggest fixes for faulty programs.
In: Third International Conference on Software Testing, Verification and Validation, ICST
2010, Paris, France, April 7-9, 2010, pp 65–74, DOI 10.1109/ICST.2010.66, URL http:
//dx.doi.org/10.1109/ICST.2010.66

DeMarco F, Xuan J, Le Berre D, Monperrus M (2014) Automatic repair of buggy if conditions
and missing preconditions with smt. In: Proceedings of the 6th International Workshop on
Constraints in Software Testing, Verification, and Analysis, ACM, pp 30–39

Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering
10(4):405–435

ExperimentalData (2016) The github repository of the experimental data. http://bit.ly/
1ON6Vmf

Fry ZP, Landau B, Weimer W (2012) A human study of patch maintainability. In: Proceedings
of the 2012 International Symposium on Software Testing and Analysis, pp 177–187

Gopinath D, Khurshid S, Saha D, Chandra S (2014) Data-guided repair of selection statements.
In: Proceedings of the 36th International Conference on Software Engineering, ACM, pp
243–253

Gu Z, Barr E, Hamilton D, Su Z (2010) Has the bug really been fixed? In: Software Engineering,
2010 ACM/IEEE 32nd International Conference on, vol 1, pp 55–64, DOI 10.1145/1806799.
1806812

Jha S, Gulwani S, Seshia SA, Tiwari A (2010) Oracle-guided component-based program syn-
thesis. In: Proceedings of the International Conference on Software Engineering, IEEE,
vol 1, pp 215–224

Jin G, Song L, Zhang W, Lu S, Liblit B (2011) Automated atomicity-violation fixing. In:
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp 389–400, DOI 10.1145/1993498.1993544, URL http://doi.acm.
org/10.1145/1993498.1993544

Jones JA, Harrold MJ, Stasko J (2002) Visualization of test information to assist fault lo-
calization. In: Proceedings of the 24th international conference on Software engineering,
ACM, pp 467–477

Just R, Jalali D, Ernst MD (2014a) Defects4J: A database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pp 437–440

Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G (2014b) Are mutants a valid
substitute for real faults in software testing. In: 22nd International Symposium on the
Foundations of Software Engineering (FSE 2014)

Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written
patches. In: Proceedings of the 2013 International Conference on Software Engineering, pp
802–811

http://dx.doi.org/10.1109/CEC.2008.4630793
http://bit.ly/1OLZSAu
http://doi.acm.org/10.1145/1555860.1555866
http://doi.acm.org/10.1145/1555860.1555866
http://doi.acm.org/10.1145/1321631.1321702
http://doi.acm.org/10.1145/1321631.1321702
http://dx.doi.org/10.1109/ICST.2010.66
http://dx.doi.org/10.1109/ICST.2010.66
http://bit.ly/1ON6Vmf
http://bit.ly/1ON6Vmf
http://doi.acm.org/10.1145/1993498.1993544
http://doi.acm.org/10.1145/1993498.1993544

26 Martinez, Durieux, Sommerard, Xuan, Monperrus

Kong X, Zhang L, Wong WE, Li B (2015) Experience report: How do techniques, programs,
and tests impact automated program repair? In: Software Reliability Engineering (ISSRE),
2015 IEEE 26th International Symposium on, IEEE, pp 194–204

Le Goues C, Dewey-Vogt M, Forrest S, Weimer W (2012a) A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each. In: Software Engineering (ICSE),
2012 34th International Conference on, IEEE, pp 3–13

Le Goues C, Nguyen T, Forrest S, Weimer W (2012b) Genprog: A generic method for automatic
software repair. Software Engineering, IEEE Transactions on 38(1):54–72

Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The
manybugs and introclass benchmarks for automated repair of c programs. IEEE Transac-
tions on Software Engineering (TSE), in press

Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ACM, New York,
NY, USA, ESEC/FSE 2015, pp 166–178, DOI 10.1145/2786805.2786811, URL http://
doi.acm.org/10.1145/2786805.2786811

Long F, Rinard M (2016a) An Analysis of the Search Spaces for Generate and Validate Patch
Generation Systems. In: Proceedings of the 38th International Conference on Software
Engineering, pp 702–713

Long F, Rinard M (2016b) Automatic patch generation by learning correct code. SIGPLAN
Not 51(1):298–312, DOI 10.1145/2914770.2837617, URL http://doi.acm.org/10.1145/
2914770.2837617

Long F, Sidiroglou-Douskos S, Rinard MC (2014) Automatic runtime error repair and con-
tainment via recovery shepherding. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014, p 26, DOI 10.1145/2594291.2594337, URL http://doi.acm.org/10.1145/2594291.
2594337

Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y (2005) Bugbench: Benchmarks for evaluating bug
detection tools. In: Workshop on the Evaluation of Software Defect Detection Tools

Martinez M, Monperrus M (2015) Mining software repair models for reasoning on the search
space of automated program fixing. Empirical Software Engineering 20(1):176–205, DOI
10.1007/s10664-013-9282-8, URL http://dx.doi.org/10.1007/s10664-013-9282-8

Martinez M, Monperrus M (2016) Astor: A program repair library for java (demo). In: Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis, ACM,
New York, NY, USA, ISSTA 2016, pp 441–444, DOI 10.1145/2931037.2948705, URL
http://doi.acm.org/10.1145/2931037.2948705

Martinez M, Weimer W, Monperrus M (2014) Do the fix ingredients already exist? an empirical
inquiry into the redundancy assumptions of program repair approaches. In: Proceedings
of the 36th International Conference on Software Engineering, pp 492–495, DOI 10.1145/
2591062.2591114, URL http://doi.acm.org/10.1145/2591062.2591114

Mechtaev S, Yi J, Roychoudhury A (2015) Directfix: Looking for simple program repairs. In:
Proceedings of the 37th International Conference on Software Engineering, IEEE

Menzies T, Krishna R, Pryor D (2015) The promise repository of empirical software engineering
data. URL http://openscience.us/repo

Monperrus M (2014) A critical review of automatic patch generation learned from human-
written patches: essay on the problem statement and the evaluation of automatic software
repair. In: Proceedings of the 36th International Conference on Software Engineering,
ACM, pp 234–242

Monperrus M (2015) Automatic software repair: a bibliography. Tech. Rep. hal-01206501,
University of Lille, URL http://www.monperrus.net/martin/survey-automatic-repair.
pdf

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) Semfix: Program repair via semantic
analysis. In: Proceedings of the 2013 International Conference on Software Engineering,
IEEE Press, pp 772–781

Noor T, Hemmati H (2015) Test case analytics: Mining test case traces to improve risk-driven
testing. In: Proceedings of the IEEE 1st International Workshop on Software Analytics,
IEEE, pp 13–16

NopolCode (2016) The github repository of nopol. http://bit.ly/1mBlOlx
Pei Y, Furia CA, Nordio M, Wei Y, Meyer B, Zeller A (2014) Automated fixing of programs

with contracts. IEEE Trans Software Eng 40(5):427–449, DOI 10.1109/TSE.2014.2312918,
URL http://doi.ieeecomputersociety.org/10.1109/TSE.2014.2312918

http://doi.acm.org/10.1145/2786805.2786811
http://doi.acm.org/10.1145/2786805.2786811
http://doi.acm.org/10.1145/2914770.2837617
http://doi.acm.org/10.1145/2914770.2837617
http://doi.acm.org/10.1145/2594291.2594337
http://doi.acm.org/10.1145/2594291.2594337
http://dx.doi.org/10.1007/s10664-013-9282-8
http://doi.acm.org/10.1145/2931037.2948705
http://doi.acm.org/10.1145/2591062.2591114
http://openscience.us/repo
http://www.monperrus.net/martin/survey-automatic-repair.pdf
http://www.monperrus.net/martin/survey-automatic-repair.pdf
http://bit.ly/1mBlOlx
http://doi.ieeecomputersociety.org/10.1109/TSE.2014.2312918

Automatic Repair of Real Bugs in Java 27

Qi Y, Mao X, Lei Y (2013) Efficient automated program repair through fault-recorded testing
prioritization. In: 2013 IEEE International Conference on Software Maintenance, pp 180–
189, DOI 10.1109/ICSM.2013.29, URL http://dx.doi.org/10.1109/ICSM.2013.29

Qi Y, Mao X, Lei Y, Dai Z, Wang C (2014) The strength of random search on automated pro-
gram repair. In: Proceedings of the 36th International Conference on Software Engineering,
ACM, pp 254–265

Qi Z, Long F, Achour S, Rinard M (2015) An analysis of patch plausibility and correctness for
generate-and-validate patch generation systems. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ACM, New York, NY, USA, ISSTA 2015,
pp 24–36, DOI 10.1145/2771783.2771791, URL http://doi.acm.org/10.1145/2771783.
2771791

Samimi H, Schäfer M, Artzi S, Millstein TD, Tip F, Hendren LJ (2012) Automated repair
of HTML generation errors in PHP applications using string constraint solving. In: Pro-
ceedings of the 34th International Conference on Software Engineering, pp 277–287, DOI
10.1109/ICSE.2012.6227186, URL http://dx.doi.org/10.1109/ICSE.2012.6227186

Smith EK, Barr E, Le Goues C, Brun Y (2015) Is the cure worse than the disease? overfitting
in automated program repair. In: Proceedings of the 10th Joint Meeting of the European
Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), Bergamo, Italy, DOI 10.1145/2786805.2786825

Tan SH, Roychoudhury A (2015) Relifix: Automated repair of software regressions. In: Pro-
ceedings of the 37th International Conference on Software Engineering - Volume 1, IEEE
Press, Piscataway, NJ, USA, ICSE ’15, pp 471–482, URL http://dl.acm.org/citation.
cfm?id=2818754.2818813

Tao Y, Kim J, Kim S, Xu C (2014) Automatically generated patches as debugging aids: a
human study. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp 64–74

Weimer W, Fry ZP, Forrest S (2013) Leveraging program equivalence for adaptive pro-
gram repair: Models and first results. In: Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, IEEE, pp 356–366

Xuan J, Monperrus M (2014) Test case purification for improving fault localization. In: Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), ACM

Xuan J, Martinez M, Demarco F, Clément M, Lamelas S, Durieux T, Le Berre D, Monperrus
M (2016) Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs.
IEEE Transactions on Software Engineering URL https://hal.archives-ouvertes.fr/
hal-01285008

Zhong H, Su Z (2015) An empirical study on real bug fixes. In: Proceedings of the 37th
International Conference on Software Engineering-Volume 1, IEEE Press, pp 913–923

http://dx.doi.org/10.1109/ICSM.2013.29
http://doi.acm.org/10.1145/2771783.2771791
http://doi.acm.org/10.1145/2771783.2771791
http://dx.doi.org/10.1109/ICSE.2012.6227186
http://dl.acm.org/citation.cfm?id=2818754.2818813
http://dl.acm.org/citation.cfm?id=2818754.2818813
https://hal.archives-ouvertes.fr/hal-01285008
https://hal.archives-ouvertes.fr/hal-01285008

	1 Introduction
	2 Background
	3 Experimental Protocol
	4 Empirical Results
	5 Case Studies
	6 Discussion
	7 Related Work
	8 Conclusion

