
Noname manuscript No.
(will be inserted by the editor)

A Correlation Study between Automated Program Repair and
Test-Suite Metrics

Jooyong Yi1 · Shin Hwei Tan2 · Sergey Mechtaev2 ·
Marcel Böhme2 · Abhik Roychoudhury2

Received: date / Accepted: date

Abstract Automated program repair is increasingly gaining traction, due to its potential to
reduce debugging cost greatly. The feasibility of automated program repair has been shown
in a number of works, and the research focus is gradually shifting toward the quality of
generated patches. One promising direction is to control the quality of generated patches
by controlling the quality of test-suites used for automated program repair. In this paper,
we ask the following research question: "Can traditional test-suite metrics proposed for the
purpose of software testing also be used for the purpose of automated program repair?" We
empirically investigate whether traditional test-suite metrics such as statement/branch cov-
erage and mutation score are effective in controlling the reliability of generated repairs (the
likelihood that repairs cause regression errors). We conduct the largest-scale experiments of
this kind to date with real-world software, and for the first time perform a correlation study
between various test-suite metrics and the reliability of generated repairs. Our results show
that in general, with the increase of traditional test suite metrics, the reliability of repairs
tend to increase. In particular, such a trend is most strongly observed in statement coverage.
Our results imply that the traditional test suite metrics proposed for software testing can also
be used for automated program repair to improve the reliability of repairs.

Keywords automated program repair · test suite · empirical evaluation · correlation

� Jooyong Yi
j.yi@innopolis.ru

Shin Hwei Tan
shinhwei@comp.nus.edu.sg

Sergey Mechtaev
mechtaev@comp.nus.edu.sg

Marcel Böhme
mboehme@comp.nus.edu.sg

Abhik Roychoudhury
abhik@comp.nus.edu.sg

1 Innopolis University, Republic of Tatarstan, Russian Federation

2 School of Computing, National University of Singapore, Singapore

2 Jooyong Yi et al.

1 Introduction

The idea of fixing bugs automatically is gaining traction, as evidenced by the emergence
of a new research field of “automated program repair”. Researchers have experimentally
shown that automated program repair is possible for real-world large-scale software such as
the PHP interpreter and Heartbleed-containing OpenSSL (Le Goues et al, 2012a; Nguyen
et al, 2013; Le Goues et al, 2012b; Weimer et al, 2013; Nguyen et al, 2013; Kim et al, 2013;
White et al, 2011; Dallmeier et al, 2009; Xuan et al, 2017; Assiri and Bieman, 2014; Pei et al,
2014; Debroy and Wong, 2010; Samimi et al, 2012; Qi et al, 2014, 2013; Mechtaev et al,
2016). Currently, the research focus is gradually shifting from the feasibility of automated
program repair to the quality of generated patches (Assiri and Bieman, 2014; Smith et al,
2015; Qi et al, 2015; Long and Rinard, 2016a). In particular, these latest research results
raise a question about how to generate a “correct” patch—a patch that not only passes all
tests available to a repair system, but also indeed fixes the bug. Most of the automated
program repair approaches use a test-suite as a proxy of software specification, since formal
specification is hardly used in the industry. While the fact that software tests are widely
available is advantageous, the fact that a test-suite is an incomplete specification can make
a generated repair incomplete; there is generally no guarantee that no other new tests will
fail a generated repair. This problem of automated program repair is akin to the problem of
software testing; even if all available tests pass the software under test, there is generally no
guarantee that no other new tests will fail the software under test. Despite this limitation, it
is possible to improve software quality by improving the quality of a test-suite. Likewise, is
it possible to control the quality of automatically generated repair by controlling the quality
of a test-suite? This is our key high-level research question we aim to answer in this paper.
Apart from this main research question, we also investigate how test-suite metrics affect
repairability (repair success rate) and repair time.

To answer our main research question, we conduct large-scale experiments about the
correlation between test-suite quality and automated program repair. Our subject programs
contain four large-scale real-world programs such as a PHP interpreter and a TIFF image
processing library, in addition to a well-known benchmark, SIR (Do et al, 2005). In com-
parison, previous studies (see Section 7.1) were conducted with small student programs or
SIR subjects. As a result, we can provide stronger empirical evidences about the correlation
between the quality of test-suites and the quality of automatically generated repairs than pre-
vious studies. Also, we for the first time compare various test-suite metrics such as statement
coverage, branch coverage, test-suite size, and mutation score, with regard to their degrees
of correlation (i.e., correlation coefficients) with repair quality. As a result, we can answer
whether the traditional test suite metrics proposed for the purpose of software testing are
also useful in the context of automated program repair, and which test-suite metric is most
effective.

With regard to the quality of automatically generated repairs, we focus on the reliability
of a generated repair, that is, whether regressions occur in a repair. Judging whether a repair
is correct is often subjective and difficult to be automated in the absence of formal spec-
ifications. Previous studies investigate the reliability of repairs instead, because whether a
generated repair causes regressions can be checked in an automated way (Assiri and Bieman,
2014; Ke et al, 2015; Kong et al, 2015; Smith et al, 2015). That is, once a repair is gener-
ated, this repair can be tested with a test-universe (held-out test-suite) that contains tests that
were not available at the time of generating the repair. If a failing test is found in the test-
universe, it is considered that the repair causes regressions. As in previous studies, we also
similarly investigate how often regressions occur to measure the quality of a repair. Mean-

A Correlation Study between Automated Program Repair and Test-Suite Metrics 3

while, we obtain automatically generated repairs by running GENPROG (Le Goues et al,
2012b; Weimer et al, 2013). In total, we collected 3818 repairs from 142 buggy versions of
10 different programs of various sizes (173–1046K LoC), using 14600 randomly sampled
test suites. We sample test suites from the whole test cases available in our subjects. While
we retrieve the main results from GENPROG-generated repairs, we also conduct smaller
scale experiments with another repair tool SEMFIX (Nguyen et al, 2013) to see whether our
main results extend beyond GENPROG. GENPROG and SEMFIX are first search-based and
constraint-based repair tools, respectively. Search-based repair tools navigate a set of repair
candidates through a search algorithm until a repair is found, while constraint-based repair
tools first construct repair constraints that should be satisfied by a repair and symbolically
search for a repair satisfying the repair constraint using a theorem prover. While our experi-
ments may not generalize to all other repair tools, GENPROG, the repair system we mainly
use in our study, has been used in many previous studies on automated program repair (Smith
et al, 2015; Kong et al, 2015; Qi et al, 2015; Le Goues et al, 2012a,b; Weimer et al, 2013;
Le Goues et al, 2013). Our experimental results obtained from GENPROG complement the
results from earlier studies.

Our results show that in general, the traditional metrics of test-suites, that is, statement
coverage, branch coverage, test-suite size, and mutation score, are negatively correlated with
the likelihood that a generated repair causes a regression. In other words, as the traditional
metrics of a test-suite increase, generated repair tend to cause regressions less often. Our
result implies that the traditional test suite metrics proposed for software testing can also be
used for automated program repair. Among the test-suite metrics we investigate, statement
coverage is shown to be most strongly correlated with regression ratio. A practical impli-
cation is that to reduce regression ratio, increasing statement coverage is likely to be more
effective than improving the other test-suite metrics such as branch coverage. However, it
should be noted that the highest correlation of statement coverage does not necessarily im-
ply that a statement coverage-adequate test-suite is better than a branch coverage-adequate
test-suite.

In summary, the main contributions of this paper are:

– We for the first time conduct a correlation study of automated program repair with var-
ious test-suite metrics such as statement coverage, branch coverage, test-suite size, and
mutation score. According to our study, traditional test-suite metrics proposed for soft-
ware testing are negatively correlated with the likelihood that a generated repair causes
regressions. Therefore, improving a test-suite based on traditional test-suite metrics is
beneficial both for software testing and automated program repair. Among test-suite
metrics we investigate, statement coverage is shown to be most strongly correlated.

– We conduct the largest experiments to date about the correlation between test-suite qual-
ity and the performance of automated program repair (in particular, the reliability of
repairs). Our subject programs contain four large-scale real-world programs. Our ex-
perimental results provide strong empirical evidences that repair quality problem is in-
deed quite severe (the average regression ratio of 3818 repairs repairs we obtained from
GENPROG is 40%), and traditional test suite metrics can be used to control the quality
of automatically generated repairs.

Apart from our main contributions, we also report other noteworthy results in this paper.
We for the first time investigate the correlation between mutation score and repair quality
(regression ratio of repairs). Despite the conceptual similarity of automated program repair
to mutation testing, the correlation of mutation score with repair quality is not observed to

4 Jooyong Yi et al.

be stronger than the correlation of coverage-based metrics. Our new mutation-based metric,
capable-tests ratio, is observed to be more strongly correlated with the reliability of repairs
in real-world subjects than mutation score. We also investigate how test-suite metrics affect
repairability (repair success rate) and repair time. While we could not find a correlation
pattern consistent across all subjects, positive correlations between repairability and test-
suite metrics (as test-suite metrics increase, repairability increases) and negative correlations
between repair time and test-suite metrics (as the test-suite metrics increase, repair time
decreases) were observed in some subjects.

2 Background

2.1 Automated Program Repair

Test-driven program repair tools take as input a buggy program and a test-suite in which at
least one of tests fails in the given buggy program. Such tests that fail in the buggy program
are called negative tests, whereas those that pass are called positive tests. The immediate
goal of test-driven repair tools is to find an edit of the buggy program that passes all the tests
in the provided test-suite. The goal is achieved by first, localizing suspicious program loca-
tions, and next, modifying these suspicious parts of the program. This general framework is
shared between various test-driven repair tools.1 The main differences between these repair
tools lie in how edits are constructed and how the final edit constituting a repair is searched
for. For example, GENPROG and SEMFIX, the two repair tools we use in our study, use two
different repair techniques, namely search-based and constraint-based techniques, respec-
tively. A search-based technique constructs edits by syntactically changing the program in
various ways (e.g., deleting a statement or copying an existing statement in another program
location), and searches for a repair using a search-based technique. Meanwhile, a constraint-
based technique first constructs repair constraints that should be satisfied by a repair, and
then synthesizes a repair satisfying the repair constraint using a theorem prover (typically,
an SMT solver). Description about other repair tools are provided in Section 7.2.

2.2 Repairs Causing Regressions

Typically, a test-suite used for a test-driven program repair tool consists of a small number
of negative tests and a relatively large number of positive tests. While negative tests set a
goal of repairing the given buggy program, positive tests serve as anti-goals; they filter out
hazardous repair candidates, that is, those that pass negative tests but fail one of positive
tests. Still, due to the incomplete nature of tests (not all desirable behaviors of software are
tested), a test-driven repair tool runs the risk of generating repairs causing regressions.

2.3 On Mutation Testing and Automated Program Repair

Mutation testing is a systematic method to measure the fault detection ability of a test-suite
(Jia and Harman, 2011). In mutation testing, a given program is modified (mutated) in var-
ious ways by applying mutation operators at various program locations. These modified

1 One exception is DirectFix (Mechtaev et al, 2015) where fault localization and edit parts are fused.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 5

(a) A killed mutant (b) A survived mutant

Fig. 1: The cross marks represent the tests in a test-suite. Crossing over a cross mark means
that the mutant fails the corresponding test.

programs (mutants) represent potential faulty programs. Then, the fault detection ability of
a test-suite TS is measured as the mutation score of TS, which is the ratio of the num-
ber of killed mutants 2 over the total number of non-equivalent (i.e., semantically different)
mutants.

Automated program repair has similarities to mutation testing. It can be viewed that
automated program repair “mutates" the original program, this time in an attempt to find a
repair. As in mutation testing, mutants that fail to pass all tests in the provided test-suite are
considered buggy (hence, incorrect repairs). This conceptual similarity between mutation
testing and automated program repair suggests the plausibility of using the mutation score
to measure the quality of a test-suite not only for mutation testing but also for automated
program repair. Just as a higher mutation score is associated with a better fault-detection
ability in mutation testing, it appears plausible to associate a higher mutation score with a
better ability to guide a reliable repair.

There is not only similarity but also duality between mutation testing and automated
program repair. As pointed out by Weimer et al (2013), “our confidence in mutant test-
ing increases with the set of non-redundant mutants considered, but our confidence in the
quality of a program repair gains increases with the set of non-redundant tests." Note that
mutation score measures the non-redundancy of killed mutants, not the non-redundancy of
tests capable of killing mutants. We introduce a new metric called capable-tests ratio in the
next section that measures the non-redundancy of capable tests.

3 Research Questions

The key high-level research question of this study is whether it is possible to control the
quality of automatically generated repair by controlling the quality of a test-suite. To address
this question quantitatively, we investigate the correlation between the quality of a test-suite
and the quality of an automatically generated repair. If a positive correlation is found, the use
of a high-quality test suite is likely to lead to a high-quality repair. Thus, our first research
question is:

2 A mutant m is considered killed when the test result of m for at least on test in the provided test-suite is
different from the test result of the original program for the same test.

6 Jooyong Yi et al.

(a) An unreliable repair (b) A reliable repair

Fig. 2: The dots represent the tests in the test-universe, while the cross marks represent the
tests in a test-suite used to guide automated program repair. Crossing over a dot or a cross
mark means that the repair fails the corresponding test.

Research Question 1: Is there a positive correlation between the quality of a test-suite
and the quality of an automatically generated repair?

However, this research question should be refined, because it does not state how to
measure the quality of a test-suite and the quality of a generated repair. We first describe
how we measure them, before refining the research question.

Measuring Test-Suite Quality with Traditional Metrics and Capable-Tests Ratio. We
measure the quality of a test-suite using the following five kinds of test-suite metrics: (1)
statement coverage, (2) branch coverage, (3) test-suite size, (4) mutation score, and (5)
capable-tests ratio. All metrics except for the last one are traditional test-suite metrics. The
last metric—capable-tests ratio—is a new metric we introduce in this paper to complement
a potential shortcoming of the mutation score which will be described shortly. Fig. 1 picto-
rially describes mutation testing. The tests in a provided test-suite (represented with cross
marks in the figure) guard the program against regression-causing changes (represented with
a mutant that crosses over a cross mark). We hypothesize that the more the provided test-
suite TS contains tests that kill one of mutants (we call such tests capable tests), the more
likely TS can prevent regression-causing repairs. However, mutation score does not mea-
sure the percentage of capable tests in a test-suite; it only shows the percentage of killed
mutants, and adding or removing tests killing no mutant does not change the mutation score
of the test-suite. To complement this shortcoming of the mutation score, we introduce a new
metric capable-tests ratio we define as the following: The capable-tests ratio of a test-suite
TS is the ratio of the number of capable tests in TS, that is the number of tests that kill at
least one mutant, over the total number of tests in TS.

Measuring Repair Quality. Meanwhile, we measure the quality of repair from the per-
spective of reliability. We deem a repair R to be reliable if there is no regression detected
when testingRwith its test-universe.3 Note that the test-universe is the superset of a test-suite
used to drive automated repair. In Fig. 2, both repairs (the shaded areas) are valid because
they pass all tests in a given test-suite, represented with the cross marks in the figure. How-
ever, the one in Fig. 2(a) is unreliable because it fails some tests in the test-universe (the
dots).

3 Only positive tests are considered; an output change for negative tests is not a regression.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 7

Fig. 3: A scatter plot that illustrates the correlation between the mutation score (the
MUT_SCORE axis) and the regression ratio (the Reg_Ratio axis). Coordinate (0.55, 62/97)
of the plot describes the following. First, among test-suites with which repairs are success-
fully generated, there are 97 test-suites whose mutation scores are not greater than 0.55. Sec-
ond, out of these 97 cases, a regression is detected in 62 cases. Similarly, coordinate (0.79,
347/970) describes that there are 970 test-suites whose mutation scores are not greater than
0.79, and a regression is detected in 347 cases.

Based on the preceding concept of a reliable repair, we evaluate the reliability of repairs
through regression ratio, which is computed as the number of regression-causing repairs
over the total number of repairs obtained with the test-suites under investigation. Note that
for each pair of a test-suite TS and a repair R generated with TS, we record whether regres-
sion is observed in R when tested against the test-universe. Our primary goal in this paper
is to examine the correlations between the reliability of repairs and various test-suite met-
rics. We compute regression ratio at each metric score as follows. First, we collect repairs,
each of which is generated with a test-suite whose metric is not greater than the score under
investigation; for example, to compute the regression ratio at mutation score 0.5, we collect
repairs generated with test-suites whose mutation scores are not greater than 0.5. Subse-
quently, we proceed to count how many of these repairs cause regressions when tested with
the test-universe. Formally, the following formula is used to calculate the regression ratio at
metric score s.

| {TS | repaired(TS) ∧metric ≤ s ∧ regression(TU)} |
| {TS | repaired(TS) ∧metric ≤ s} |

,

where TS and TU represent a test-suite and a test-universe, respectively (note that TS ⊆
TU). In the formula, predicate repaired(TS) represents that a repair is successfully generated
within the timeout when TS is used to guide automated program repair. Another predicate
regression(TU) means that a regression error is observed when testing the obtained repair
with TU—in other words, regression(TU) is true if there is a test t ∈ TU \ TS for which
the obtained repair fails. By tracking the regression ratio at different metric scores, we can
retrieve the correlation between the regression ratio and a test-suite metric. Note that the
lower the regression ratio is, the higher reliability of repairs.

Fig. 3 shows how the regression ratio (the Reg_Ratio axis) changes as the mutation score
(the MUT_SCORE axis) changes in one of our subjects, tcas. For example, among test-suites

8 Jooyong Yi et al.

with which repairs are successfully generated, there are 97 test-suites whose mutation score
is not greater than 0.55, and a regression is detected in 62 cases out of those 97 cases. By
increasing the mutation score threshold to 0.79, we can consider 873 more test-suites, in the
majority of which a regression is not detected, as evidenced by a lower regression ratio there
(347/970).

Now that we described how we measure the quality of a test-suite and a repair, we now
refine our Research Question 1 as follows:

Research Question 1 (Refined): Is there a negative correlation between the metrics of
a test-suite and the regression ratio of automatically generated repairs? In other words,
are generated repairs less likely to cause regressions, as test-suite metrics increase?

Correlation analysis can not only show a general tendency about how test-suite met-
rics are associated with the quality of repairs, it can also be used to see which test-suite
metric is most strongly associated with the quality of repairs, by comparing the correlation
coefficients of different test-suite metrics. We thus ask the following research question.

Research Question 2: Which test-suite metric is most strongly correlated with the
regression ratio of automatically generated repairs?

Answering this research question can be practically important. Imagine that a test-suite
available for automated program repair is neither statement coverage-adequate nor branch
coverage-adequate. Which would be more beneficial between improving statement coverage
and branch coverage, in terms of improving the likelihood of obtaining a regression-free
repair? It would be more cost-effective to improve a test-suite metric which is more strongly
negatively correlated with the regression ratio of repairs.

Meanwhile, a higher-quality test suite may impose stricter restrictions on repair gener-
ation. In other words, it may be more difficult to find a repair that satisfies more stricter
constraints imposed by a higher-quality test suite. We therefore evaluate whether the re-
pairability of automated program repair is negatively correlated with test-suite metrics.

Research Question 3: Is there a negative correlation between the metrics of a test-suite
and the repairability of automated program repair? In other words, should repairability
be sacrificed in an attempt to obtain a higher-quality repair via a higher-quality test-
suite?

We compute repairability at each metric score in a similar way to how we compute
regression ratio. First, we collect test-suites, each of which has a metric not greater than
the score under investigation; for example, to compute the repairability at mutation score
0.5, we collect test-suites whose mutation scores are not greater than 0.5. Subsequently, we
proceed to count how many of these test-suites succeed to generate a repair within the time
budget. Formally, the following formula is used to calculate repairability at metric score s.

| {TS | metric ≤ s ∧ repaired(TS)} |
| {TS | metric ≤ s} |

,

where predicate repaired(TS) represents that a repair is successfully generated within 1 hour
when test-suite TS is used to guide automated program repair.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 9

Table 1: Subjects of our experiments (6 SIR subjects in the top and 4 non-SIR subjects
in the bottom); Column “LOC” shows the lines of code, column “Versions” the numbers of
buggy versions, column “Test-Universe Size” the number of tests in the test universe of each
subject, column “Test-Suites” the number of test suites we constructed by sampling the test
universe, and column “Test-Suite Size” the range of the number of tests in the test-suite of
each subject.

Subject LOC Versions Test-Universe Size Test-Suites Test-Suite Size

tcas 173 41 1608 4100 1–100
tot_info 565 23 1052 2300 1–100
print_tokens 726 7 4130 700 1–100
print_tokens2 570 10 4115 1000 1–100
schedule 412 9 2650 900 1–100
schedule2 374 9 2710 900 1–100

php 1046K 21 200 2100 1–100
libtiff 77K 11 78 1100 1–78
grep 9.4K 5 1582 900 1–100
findutils 18K 6 82 600 1–82

Total 142 18207 14600

In addition to repairability, repair time—the time taken to generate a repair—may be
affected by the quality of a test-suite. We thus ask the following similar research question.

Research Question 4: Is there a negative correlation between the metrics of a test-suite
and repair time? In other words, should more time be spent in an attempt to obtain a
higher-quality repair via a higher-quality test-suite?

4 Experimental Methodology

4.1 Subjects, Test-Universes and Test-Suites

Table 1 shows our 10 subject C programs of various sizes ranging from 173 LOC to 1046K
LOC, as shown in the “LOC” column. Our subjects consist of 6 well-known Siemens
programs collected from Software-artifact Infrastructure Repository (SIR) constructed by
Do et al (2005), 2 real-world programs (php and libtiff) previously used to evaluate GEN-
PROG (Le Goues et al, 2012a; Weimer et al, 2013),4 and another 2 real-world programs
(grep and findutils) taken from COREBENCH (Böhme and Roychoudhury, 2014).5 We col-
lect real-world subjects that have a large number of tests and multiple buggy versions, and
are amenable for automated fix; in php and libtiff, GENPROG are reported to generate repairs
in many buggy versions in the previous study (Le Goues et al, 2012a). Similarly, buggy ver-
sions of grep and findutils are repaired by GENPROG in our pilot experiment. The number of
buggy versions of each subject is shown in the “Versions” column. Our subjects contain in

4 We used the original GENPROG benchmark. At the time of writing this paper, the benchmark was up-
dated after a few problems in the test scripts of php and libtiff are reported in (Qi et al, 2015).

5 The grep subject in CoREBench contains real errors unlike the grep in SIR that contains seeded errors.

10 Jooyong Yi et al.

total 142 buggy versions, among which the 6 SIR subjects have 99 buggy versions and the
4 non-SIR subjects have 43 buggy versions.

Each of our subjects has a relatively large number of tests, which is our test-universe.
The test-universes of our large subjects consist of developer-written tests. Assuming that
these tests are well-maintained (which appears to be the case), the tests in the test-universe
are likely to be different from each other. In other words, the risk that some tests are identical
to each other—which is undesirable because then, the training test-suite and the held-out
test-suite can have the same test—is low. Meanwhile, the test-universes of our small subjects
are extracted from the SIR benchmark (Do et al, 2005), which are generally considered high-
quality and were used in numerous previous studies.

The “Test-Universe Size” column of Table 1 shows the total number of tests in the
test-universe of each subject.6 We construct a large number of test-suites by randomly se-
lecting tests from these test-universes (without replacement) at each test-suite-construction
iteration. The “Test-Suites” column shows how many test-suites we constructed for each
subject. For each buggy version of a subject, we constructed 100 test-suites such that it
contains at least one failing test case. Only in grep, we constructed 180 test-suites to collect
more repairs; due to the smallest number of buggy versions of grep (5 versions), less number
of repairs are obtained from grep. The size of each test-suite is chosen uniformly at random
between 1 and 100, except for in libtiff and findutils where the maximum size is the size of the
test-universe, that is, 78 and 82, respectively. Note that in our study, we compare experimen-
tal results across test-suite metrics, not across subjects. In each subject, we compute diverse
test-suite metrics for each test-suite we construct. In total, we prepare 14600 test-suites.

We acknowledge that our simple random test-suite construction method in itself does
not distinguish the effect of test-suite size and the effect of other test-suite metrics such as
coverage (coverage tends to increase as the size of the test-suite increases). An alternative
more controlled test-suite construction method is to construct a set of test-suites of identical
size with different levels of coverage, and similarly a set of test-suites of identical coverage
with different sizes, although Namin and Andrews (2009) reported in their study that it is
difficult to obtain such a more ideal set of test-suites. To compensate the shortcoming of our
test-suite construction method, we perform ANCOVA (analysis of covariance) and separate
out the effect of coverage, similar to the work of Namin and Andrews (2009).

4.2 Automated Repair Algorithm

To obtain repairs, we mainly used GENPROG (Le Goues et al, 2012a; Weimer et al, 2013),
which is also used in previous studies (Kong et al, 2015; Smith et al, 2015). We fed GEN-
PROG with the 14600 test-suites we prepared. When running GENPROG, we used almost
the same configuration parameters as those that were used in an earlier GENPROG experi-
ment (Le Goues et al, 2012a). One noteworthy difference is that we used the deterministic
repair algorithm of GENPROG (Weimer et al, 2013) to minimize randomness during exper-
iments. All experiments were performed by distributing the load on 10 machines, each of
which has two Intel Xeon E5520 2.2GHz processors and 24GB of main memory. To obtain
a large number of repairs, which is essential for our study, we used relatively short timeout,
1 hour. We obtained in total 3818 repairs.

While GENPROG is the main repair tool we used, we also conducted smaller scale
supplementary experiments with another repair tool SEMFIX (Nguyen et al, 2013) to see

6 While php contains 8471 tests, we randomly selected 200 tests out of them to deal with long running
time of the php tests.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 11

whether the results we obtained extend beyond GENPROG. We chose SEMFIX because the
repair algorithm of SEMFIX is fundamentally different from that of GENPROG. Essentially,
SEMFIX extracts from the runs of a test-suite a set of constraints in the form of logical for-
mulas, and subsequently solves these constraints to obtain a repair. Such a deductive style of
repair of SEMFIX is in contrast to GENPROG’s generate-and-validate approach; GENPROG

repeats the loop of generating a repair candidate and validating it until a repair is found.
In our experiments with SEMFIX, we used the same test-suites as used for our main ex-

periments with GENPROG. We collected repairs using SEMFIX from the same SIR subjects
as used in our main experiments except for tot_info which does not work with the current
version of SEMFIX.7 Meanwhile, testing our non-SIR subjects requires running non-trivial
test-scripts written in scripting languages. To deal with these non-SIR subjects with the cur-
rent version of SEMFIX, it is necessary to transform these test-scripts into corresponding C
program statements. This is because SEMFIX extracts logical formulas through a symbolic-
execution tool, KLEE (Cadar et al, 2008) that currently cannot handle scripting languages.
Still in an attempt to deal with a large subject at least partially, we manually transformed the
test-scripts of 4 versions of libtiff (i.e., 01209c9, 3af26048, d13be72c, and 0661f81).

4.3 Measuring Test-Suites Metrics

It is well known that computing mutation score typically takes a long time due to the high
volume of mutants. Each and every mutant should be tested with the test suite under in-
vestigation, resulting in running the same test repeatedly for different mutants. For large
programs, obtaining mutation score is particularly challenging because there are too many
mutants to be tested within a reasonable time budget. To alleviate the problem, it is custom-
ary to sample parts of the mutants, and compute the mutation score only with the sampled
mutants.

We measure the mutation score and the capable-tests ratio of each test-suite using PRO-
TEUM (Maldonado et al, 2001).8 To deal with enormous size of mutants generated from
the 4 large subjects (php, libtiff, grep, findutils), we randomly sampled 1 – 3% of the total
mutants, using the options PROTEUM provides. Although we do not distinguish equivalent
mutants, note that the same mutant samples of program P are used across all test-suites
for P in our experiments. Thus, the mutation scores of these test-suites are affected at the
same rate by equivalent mutants that may exist, making the correlations between mutation
scores of these test-suites and the reliability of repairs unaffected accordingly. Meanwhile,
to measure the statement and branch coverage of our test-suites, we use gcov.9 When run-
ning GENPROG or SEMFIX, it is necessary to mark the source file(s) allowed to be repaired.
Our measurements of mutation score and statement/branch coverage are performed on these
marked files.

5 Experimental Results

In this section, we outline the results from our experiments with the repair tools GENPROG

and SEMFIX. We first present the results from our main experiments performed with GEN-
PROG. The results from SEMFIX is presented in Section 5.5.2.

7 tot_info includes non-linear arithmetic expressions which are not currently supported by the underlying
SMT solver SEMFIX uses.

8 We extended its parser to handle the large subjects (php, libtiff, grep, and findutils).
9 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

12 Jooyong Yi et al.

Table 2: GENPROG experiments: statistics for repairs and regressions

Subjects Test-Suites Repairs Repair Ratio Regressing Regression Ratio

tcas 4100 972 24 % 348 36 %
tot_info 2300 137 6 % 17 12 %
print_tokens 700 28 4 % 0 0 %
print_tokens2 1000 235 24 % 9 4 %
schedule 900 37 4 % 37 100 %
schedule2 900 108 12 % 53 49 %

php 2100 1666 79 % 915 55 %
libtiff 1100 313 28 % 42 13 %
grep 900 128 14 % 41 32 %
findutils 600 194 32 % 83 43 %

Total 14600 3818 26 % 1545 40 %

5.1 Basic Statistics – Repair Ratio and Regression Ratio

Before investigating our research questions, we first present Table 2 which shows the basic
statistics for our experiment such as how often repairs are generated (repair ratio) and how
often regressions are observed (regression ratio). The “Test-Suites” column shows the num-
ber of test-suites in each subject, and the “Repairs” column the total number of obtained
repairs for each subject. We obtain repairs by running GENPROG for maximum 1 hour. In
total, we obtained 3818 repairs out of 14600 trials, resulting in average repair ratio of 26%.
The repair ratio of each subject is defined as the ratio of the total number of obtained repairs
(available in the “Repairs” column) over the total number of repair trials (available in the
“Test-Suites” column). Note that the total number of repair trials is equivalent to the number
of test-suites, because we initiate a separate repair session for each test-suite.

For the obtained repairs, we investigate whether regressions are observed. We run each
repaired program against its test universe, and observe whether regressions occur. That is, if
a repaired program fails any of the previously passing tests in the test universe, we consider
that a regression occurs. The “Regressing” column shows the number of repairs for which
regressions are observed. For example, in tcas, out of the 972 repairs obtained, 348 of them
are observed to be regression-causing repairs. The “Regression Ratio” column of Table 2
shows the regression ratio in each subject, which is defined as the ratio of the number of
regression-causing repairs (available in the “Regressions” column) over the total number
of repairs (available in the “Repairs” column). For example, the regression ratio in tcas is
348/972, which is about 36%. The overall regression ratio ranges from 0% of print_tokens
to 100% of schedule. The average regression ratio of all subjects is 40%, as shown in the
“Total” row.

Ideally, an automated program repair tool should generate a repair as often as possible
(which can be indicated by a high repair ratio), and the generated repair should be regression-
free as much as possible (which can be indicated by a low regression ratio). Table 2 indicates
that the current repair tool does not achieve these goals yet. The overall repair ratio is as low
as 26%, while the overall regression ratio is as high as 40%. In subject schedule, the repair
ratio is only 4% and all generated repairs cause regressions. In subject php, while the repair
ratio is relatively high reaching 79%, regression ratio is also quite high (55%).

A Correlation Study between Automated Program Repair and Test-Suite Metrics 13
Ta

bl
e

3:
G

E
N

P
R

O
G

ex
pe

ri
m

en
ts

:c
or

re
la

tio
ns

be
tw

ee
n

th
e

re
gr

es
si

on
ra

tio
an

d
va

ri
ou

s
te

st
-s

ui
te

m
et

ri
cs

St
at

em
en

tC
ov

er
ag

e
B

ra
nc

h
C

ov
er

ag
e

Te
st

-S
ui

te
Si

ze
M

ut
at

io
n

Sc
or

e
C

ap
ab

le
-T

es
ts

R
at

io

Su
bj

ec
t

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

tc
as

-0
.9

2
78

%
10

0%
95

%
-0

.8
4

39
%

95
%

90
%

-0
.8

7
2

10
0

60
-0

.9
3

0.
05

0.
79

0.
67

-0
.0

3
0.

42
1.

00
0.

65

pr
in

t_
to

ke
ns

2
-1
∗

7%
8%

7%
0.

65
3%

4%
3%

-0
.8

8
2

10
0

59
-0

.8
0

0.
24

0.
83

0.
79

0.
51

0.
33

1.
00

0.
56

to
t_

in
fo

-0
.8

9
76

%
97

%
95

%
-0

.8
8

67
%

92
%

89
%

-0
.8

4
3

99
56

-0
.8

6
0.

51
0.

88
0.

80
0.

91
0.

19
1.

00
0.

49

sc
he

du
le

2
-0

.4
98

%
99

%
99

%
0.

12
∗

81
%

94
%

90
%

0.
48

16
10

0
67

0.
83

0.
67

0.
73

0.
70

0.
41

0.
23

0.
90

0.
38

ph
p

-0
.6

5
0%

89
%

22
%

-0
.7

5
0%

50
%

13
%

-0
.8

8
1

10
0

50
-0

.0
6

0.
00

1.
00

0.
45

-0
.7

0.
00

1.
00

0.
3

lib
tif

f
-0

.7
9%

31
%

20
%

-0
.7

3
6%

23
%

15
%

-0
.7

7
1

71
19

-0
.4

4
0.

00
1.

00
0.

43
-0

.4
7

0.
00

1.
00

0.
82

gr
ep

-0
.9

2
36

%
68

%
51

%
-0

.8
5

22
%

53
%

36
%

-0
.6

2
4

93
18

-0
.5

1
0.

01
0.

10
0.

02
-0

.8
1

0.
73

1.
00

0.
95

fin
du

til
s

-0
.9

5
2%

33
%

22
%

-0
.9

5
1%

22
%

15
%

-0
.8

6
1

56
18

-0
.7

8
0.

00
0.

54
0.

18
-0

.8
2

0.
00

1.
00

0.
65

A
ve

ra
ge

-0
.8

4
34

%
70

%
51

%
-0

.8
3

23
%

56
%

43
%

-0
.6

6
4

90
43

-0
.6

4
0.

13
0.

84
0.

55
-0

.1
2

0.
24

0.
99

0.
6

T
he

to
pm

os
tc

ol
um

n
sh

ow
s

th
e

5
te

st
-s

ui
te

m
et

ri
cs

w
e

in
ve

st
ig

at
e.

T
he

“r
”

co
lu

m
n

of
ea

ch
te

st
-s

ui
te

m
et

ri
c

sh
ow

s
th

e
co

rr
el

at
io

n
co

ef
fic

ie
nt

be
tw

ee
n

th
e

re
gr

es
-

si
on

ra
tio

an
d

th
e

co
rr

es
po

nd
in

g
m

et
ri

c
in

Pe
ar

so
n’

sr
.N

eg
at

iv
e

co
rr

el
at

io
n

co
ef

fic
ie

nt
s,

sh
ad

ed
in

th
e

ta
bl

e,
im

pl
y

th
at

re
gr

es
si

on
sa

re
le

ss
ob

se
rv

ed
as

th
e

m
et

ri
c

in
cr

ea
se

s.
In

th
e

“A
ve

ra
ge

”
ro

w
,t

he
co

ef
fic

ie
nt

s
of

ea
ch

m
et

ri
c

is
av

er
ag

ed
ac

ro
ss

al
ls

ub
je

ct
s.

Fo
r

ea
ch

m
et

ri
c,

w
e

al
so

sh
ow

th
e

m
in

im
um

/m
ax

im
um

/m
ea

n
va

lu
es

of
ou

rt
es

t-
su

ite
s.

A
ll

co
rr

el
at

io
n

co
ef

fic
ie

nt
s

sh
ow

n
in

th
e

ta
bl

e
ar

e
st

at
is

tic
al

ly
si

gn
ifi

ca
nt

at
th

e
0.

05
le

ve
le

xc
ep

tt
ho

se
as

te
ri

sk
ed

.

14 Jooyong Yi et al.

5.2 Correlation Coefficients about Regression Ratio

Our first research question involves correlation between test-suite metrics and the regression
ratio of repairs.

Research Question 1: Is there a negative correlation between the metrics of a test-
suite and the regression ratio of automatically generated repairs? In other words, are
generated repairs less likely to cause regressions, as test-suite metrics increase?

Table 3 shows the correlations between the regression ratio and various metrics of test-
suites, that is, statement coverage, branch coverage, test-suite size, mutation score, and
capable-tests ratio. For each metric, the “r” column shows Pearson’s product moment corre-
lation coefficients (Pearson’s r) (Pearson, 1895) rounded to two decimal places. The corre-
lation coefficients of print_tokens and schedule are not available because in our experiments,
repairs for these subjects either always caused regressions (in the case of schedule) or always
did not cause regressions (in the case of print_tokens). All correlation coefficients shown in
Table 3 are statistically significant at the 0.05 level except those asterisked. In Table 3, we
also show the minimum/maximum and mean values of each metric (under the Min, Max,
and Mean columns, respectively) of our randomly constructed test-suites.10 For example,
the test-suites of tcas has on average 95% statement coverage ranging between 78% and
100%. Note that these min/max/mean values are retrieved only from the test-suites that suc-
cessfully guided repairs, excluding test-suites with which no repair is found within timeout;
for these excluded test-suites, the regression ratio of repairs cannot be investigated.

Encouraging Results of Traditional Metrics. In Table 3, negative correlation coefficients
are shown in shades. A negative correlation coefficient of a metric M implies that as the
value of M increases, the regression ratio tends to decrease; in other words, the reliability of
repairs tends to increase. In general, negative correlations are observed across all traditional
metrics we investigated—statement coverage, branch coverage, test-suite size, and mutation
score. In particular, statement coverage consistently shows negative correlations across all
subjects. Similarly, the other traditional test-suite metrics also show negative correlations in
the majority of subjects. Our results suggest that the traditional test-suite metrics can also
be effectively used to control the regression rate of automatically generated repairs.

As the traditional test-suite metrics (statement coverage, branch coverage, test-suite
size, and mutation score) increase, the regression rate of automatically generated repairs
generally decreases, showing the promise of using the traditional test-suite metrics to
control the regression ratio of automatically generated repairs.

Our finding implies that the efforts to improve test-suites for the purpose of testing—
which is already practiced in the industry—can also benefit automated program repair. Note
that our main finding is consistently observed across real-world large-scale software and
controlled small-scale subjects (SIR subjects).

Discouraging Results of Capable-Tests Ratio. On the contrary to the traditional test-
suite metrics, the results from capable-tests ratio are discouraging. The expected negative
correlations are observed only in large real-world subjects (php, libtiff, grep, and findutils). In

10 The minimum statement/branch coverage of php is 0 because some tests do not execute the marked
source files.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 15

Table 4: Average rankings of test-suite metrics

Metric Statement Branch Test-Suite Mutation Capable-Tests
Coverage Coverage Size Score Ratio

Avg. Ranking 1.75 2.5 2.75 4 3.875

all the small subjects except tcas, positive correlations are observed. Capable-tests ratio does
not seem as useful as the traditional metrics in controlling the quality of generated repairs.

Next we compare correlation coefficients of different test-suite metrics to investigate our
second research question.

Research Question 2: Which test-suite metric is most strongly correlated with the
regression ratio of automatically generated repairs?

To investigate this research question, we rank test-suite metrics in each subject in order
of the correlation coefficients. The metric whose correlation coefficient is the smallest is
ranked first in each subject. For example, in tcas, mutation score is ranked first, statement
coverage is ranked second, test-suite size is ranked third, and so on. Table 4 shows the av-
erage ranking of each test-suite metric. Statement coverage has the highest average ranking.
Indeed, statement coverage is ranked first in 5 subjects (print_tokens2, tot_info, schedule2,
grep, and findutils) out of total 8 subjects, and ranked second (tcas) in one subject. Also, only
statement coverage consistently shows a negative correlation across all subjects.

In our experiments, statement coverage is, on average, more strongly correlated with
regression ratio than other metrics we investigate. Our results suggest that to reduce the
regression ratio, increasing statement coverage is more promising than improving the
other test-suite metrics.

Implication and Limitation of Correlation. It should be noted that the highest correlation
of statement coverage does not necessarily imply that a 100% statement coverage-adequate
test-suite is most effective in controlling the reliability of repairs. A correlation between A
and B only shows how B tends to change as A changes, or vice versa. In fact, covering a
buggy statement may not be enough to reveal the bug, and this is why more sophisticated
coverage such as branch coverage is more commonly advocated in software testing. Our
finding only implies that return on investment tends to be higher in statement coverage than
in other metrics. In other words, a practical implication of our finding is that if the currently
available test-suite is neither statement coverage-adequate nor branch coverage-adequate,
improving the statement coverage of the test-suite would improve the reliability of repairs
more effectively than improving branch coverage.

In Table 4, mutation score has the lowest average ranking. Mutation score is ranked
even lower than another mutation-based metric, capable-tests ratio, although the average
ranking gap between these two metrics is marginal. Mutation score is ranked last in 5 sub-
jects (schedule2, php, libtiff, grep, and findutils) out of total 8 subjects. A possible reason for
the low ranking of mutation score is that the mutants used in mutation testing are sampled
evenly from all possible mutants, whereas in automated program repair, repair edits are per-
formed only on suspicious program locations (the suspicious locations are identified through

16 Jooyong Yi et al.

the fault localization step of automated program repair). When the mutant sampling rate is
100% as in the case of our small subjects, a mutant M can be sampled at a non-suspicious
program location L in which a program repair tool does not generate a repair candidate.
Even if M is killed, the increase of the mutation score has no direct bearing on improving
the reliability of a repair in this case, because no repair candidate is generated at L. In other
words, M is not likely to represent unreliable repairs. Meanwhile, when the mutant sam-
pling rate is low as in the case of our large subjects, the chance that a mutant is sampled
at suspicious program locations is also low. Another possible reason for the low ranking of
mutation score is the discrepancy between mutation operators and repair operators. Given
that the mutation scores can change depending on which mutation operators are used (Yao
et al, 2014), using selective mutation operators—instead of all mutation operators—may
change the correlation coefficients.

Comparison with Test-Suite Size. Notice that mutation score and capable-tests ratio show
lower average ranking than test-suite size, whereas statement coverage and branch coverage
show higher average rankings than test-suite size. This result suggests that increasing state-
ment coverage or branch coverage is likely to reduce regression ratio more effectively than
blindly adding arbitrary tests into the test suite. To further investigate whether (a) improv-
ing coverage indeed influences the reduction of regression ratio in the statistical sense or
(b) regression ratio reduces merely because the test-suite size increases, we perform AN-
COVA (analysis of covariance). When performing ANCOVA with statement coverage and
test-suite size, the p-value of the statement coverage is less than 0.05 in all subjects except
in php where the p-value is 0.057. This indicates that the influence of statement coverage
on regression ratio is, in general, statistically significant. Meanwhile, the interaction effect
between statement coverage and test-suite size is not as significant. The p-value of the in-
teraction effect is statistically insignificant (> 0.05) in tot_info, php, libtiff, grep, and findutils.
The result on branch coverage is similar. The p-value of the branch coverage is less than
0.05 in all subjects except in print_tokens2 where the p-value is 0.075. The p-value of the
interaction effect between branch coverage and test-suite size is statistically insignificant
(> 0.05) again in tot_info, php, libtiff, grep, and findutils.

5.3 Correlation Coefficients about Repairability

Next we report our results on repairability. Our research question regarding repairability is:

Research Question 3: Is there a negative correlation between the metrics of a test-suite
and the repairability of automated program repair? In other words, should repairability
be sacrificed in an attempt to obtain a higher-quality repair via a higher-quality test-
suite?

Table 5 shows the correlations between the repairability and various metrics of test-
suites. Pearson’s correlation coefficients are shown in the table with negative coefficients
being highlighted.11 The overall correlation patterns are different between the small SIR
subjects and the large real-world subjects. In the small subjects, positive correlations are ob-
served more often than negative correlations across traditional test-suite metrics (statemen-
t/branch coverage, test-suite size, and mutation score); test-suite size and mutation score

11 Min/Max/Mean values of the table are different from those of Table 3, because there we consider only
test-suites from which repairs are generated, whereas in Table 5, we consider all test-suites.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 17
Ta

bl
e

5:
G

E
N

P
R

O
G

ex
pe

ri
m

en
ts

:c
or

re
la

tio
ns

be
tw

ee
n

re
pa

ir
ab

ili
ty

(r
ep

ai
rs

uc
ce

ss
ra

te
)a

nd
va

ri
ou

s
te

st
-s

ui
te

m
et

ri
cs

St
at

em
en

tC
ov

er
ag

e
B

ra
nc

h
C

ov
er

ag
e

Te
st

-S
ui

te
Si

ze
M

ut
at

io
n

Sc
or

e
C

ap
ab

le
-T

es
ts

R
at

io

Su
bj

ec
t

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

tc
as

0.
55

45
%

10
0%

94
%

0.
88

14
%

95
%

85
%

0.
92

2
10

0
54

0.
97

0.
00

0.
83

0.
65

-0
.0

3
0.

00
1.

00
0.

68

pr
in

t_
to

ke
ns

0.
13

53
%

97
%

90
%

0.
24
∗

39
%

93
%

82
%

0.
64

1
10

0
49

0.
78
∗

0.
35

0.
85

0.
80

0.
72

0.
37

1.
00

0.
62

pr
in

t_
to

ke
ns

2
-0

.8
2

7%
8%

7%
-0

.4
∗

3%
4%

3%
0.

87
1

10
0

52
0.

26
0.

02
0.

84
0.

79
0.

38
0.

02
1.

00
0.

60

to
t_

in
fo

0.
71

65
%

98
%

94
%

0.
87

60
%

93
%

88
%

0.
87

1
99

52
0.

92
0.

42
0.

90
0.

82
-0

.1
9

0.
17

1.
00

0.
50

sc
he

du
le

0.
33

30
%

99
%

96
%

0.
43

14
%

95
%

86
%

0.
93

1
10

0
49

0.
71

0.
00

0.
89

0.
81

0.
42

0.
00

1.
00

0.
47

sc
he

du
le

2
0.

31
66

%
99

%
99

%
0.

71
49

%
96

%
88

%
0.

99
1

10
0

54
0.

65
0.

28
0.

77
0.

69
0.

26
0.

20
1.

00
0.

45

ph
p

0.
73

0%
89

%
22

%
0.

76
0%

50
%

13
%

0∗
1

10
0

50
-0

.0
8

0.
00

1.
00

0.
44

0.
81

0.
00

1.
00

0.
28

lib
tif

f
-0

.3
1

6%
31

%
23

%
-0

.1
9

4%
23

%
17

%
-0

.9
3

1
77

29
-0

.3
3

0.
00

1.
00

0.
47

0.
83

0.
00

1.
00

0.
81

gr
ep

-0
.9

9
36

%
73

%
60

%
-0

.9
9

22
%

58
%

45
%

-0
.9

1
4

10
0

43
-0

.4
6

0.
00

0.
77

0.
02

-0
.6

9
0.

00
1.

00
0.

58

fin
du

til
s

-0
.9

4
2%

36
%

28
%

-0
.9

4
1%

24
%

19
%

-0
.9

9
1

81
40

-0
.6

6
0.

00
0.

61
0.

20
-0

.2
2

0.
00

1.
00

0.
70

A
ve

ra
ge

-0
.0

3
31

%
73

%
61

%
0.

19
20

%
67

%
55

%
0.

27
1

95
47

0.
22

0.
08

0.
84

0.
54

0.
23

0.
08

1.
00

0.
57

T
he

to
pm

os
tc

ol
um

n
sh

ow
s

th
e

5
te

st
-s

ui
te

m
et

ri
cs

w
e

in
ve

st
ig

at
ed

fr
om

st
at

em
en

tc
ov

er
ag

e
to

ca
pa

bl
e-

te
st

s
ra

tio
.T

he
“r

”
co

lu
m

n
of

ea
ch

te
st

-s
ui

te
m

et
ri

c
sh

ow
s

th
e

co
rr

el
at

io
n

co
ef

fic
ie

nt
be

tw
ee

n
th

e
re

pa
ir

ab
ili

ty
an

d
th

e
co

rr
es

po
nd

in
g

m
et

ri
c

in
Pe

ar
so

n’
s

r.
A

ll
sh

ow
n

co
ef

fic
ie

nt
s

ar
e

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
at

th
e

0.
05

le
ve

le
xc

ep
tt

ho
se

as
te

ri
sk

ed
.N

eg
at

iv
e

co
rr

el
at

io
n

co
ef

fic
ie

nt
s,

sh
ad

ed
in

th
e

ta
bl

e,
im

pl
y

th
at

le
ss

re
pa

ir
s

ar
e

ob
ta

in
ed

as
th

e
m

et
ri

c
in

cr
ea

se
s.

In
th

e
“A

ve
ra

ge
”

ro
w

,t
he

co
ef

fic
ie

nt
s

of
ea

ch
m

et
ri

c
is

av
er

ag
ed

ac
ro

ss
al

ls
ub

je
ct

s.
Fo

re
ac

h
m

et
ri

c,
w

e
al

so
sh

ow
th

e
m

in
im

um
/m

ax
-

im
um

/m
ea

n
va

lu
es

of
ou

rt
es

t-
su

ite
s.

18 Jooyong Yi et al.

Table 6: Mean and max time of successful repairs with a one-hour timeout

Subject Repair Time
Mean Max

tcas 2.7 m 14.1 m
print_tokens 6.9 m 48.3 m
print_tokens2 0.6 m 29 m

tot_info 1.4 m 4.9 m
schedule 3 m 24 m
schedule2 1 m 13 m

Subject Repair Time
Mean Max

php 7.2 m 56 m
libtiff 14.1 m 57.6 m
grep 24 m 59.6 m

findutils 11.6 m 59.5 m

are positively correlated with repairability across all small subjects, and statement/branch
coverage is also positively correlated in the majority of the small subjects. This implies that
as test-suite metrics increase, it is more likely for a repair to be generated automatically in
the small subjects. Meanwhile, the opposite pattern is observed in the large subjects. There,
negative correlations are observed across the same traditional test-suite metrics as the pre-
ceding; mutation score is negatively correlated with repairability across all large subjects,
and the remaining traditional test-suite metrics (statement/branch coverage and test-suite
size) are also negatively correlated except for in php.

Our experimental data suggest a possibility that a high-score test-suite helps find a re-
pair in small programs. One possible explanation is that the use of a higher quality test-suite
for statistical fault localization tends to localize faulty program locations more precisely as
reported in previous studies (Artzi et al, 2010; Baudry et al, 2006), and knowing where to fix
is a big advantage when fixing a program. However, it can also be more difficult to satisfy
more tests, which makes a negative impact on repairability. Depending on the situations in
which repair takes place, test-suite may impact on repairability positively or negatively. We
conjecture that our inconclusive result on repairability may be due to interaction effects. For
example, repairability may be affected significantly by failing-tests ratio (the proportion of
failing tests in a test-suite), and the interaction between failing-tests ratio and test-suite met-
rics may cause the observed inconclusive result. We leave the investigation of this conjecture
as future work.

Our experimental results are inconclusive about the correlation between test-suites and
repairability. However, we note that increasing test-suite metric does not always de-
crease repairability. Im some subjects, positive correlations were observed between
test-suite metrics and repairability, indicating that as the test-suite metrics increase,
repairability tends to increase.

5.4 Correlation Coefficients about Repair Time

Our last research question involves repair time.

Research Question 4: Is there a negative correlation between the metrics of a test-suite
and repair time? In other words, should more time be spent in an attempt to obtain a
higher-quality repair via a higher-quality test-suite?

A Correlation Study between Automated Program Repair and Test-Suite Metrics 19
Ta

bl
e

7:
G

E
N

P
R

O
G

ex
pe

ri
m

en
ts

:c
or

re
la

tio
ns

be
tw

ee
n

re
pa

ir
tim

e
an

d
va

ri
ou

s
te

st
-s

ui
te

m
et

ri
cs

St
at

em
en

tC
ov

er
ag

e
B

ra
nc

h
C

ov
er

ag
e

Te
st

-S
ui

te
Si

ze
M

ut
at

io
n

Sc
or

e
C

ap
ab

le
-T

es
ts

R
at

io

Su
bj

ec
t

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

tc
as

0.
92

78
%

10
0%

95
%

0.
77

39
%

95
%

90
%

0.
99

2
10

0
60

0.
85

0.
05

0.
79

0.
67

-0
.8

8
0.

42
1.

00
0.

65

pr
in

t_
to

ke
ns

-0
.9

6
74

%
95

%
88

%
-0

.9
4

62
%

92
%

79
%

-0
.9

8
9

10
0

50
-0

.7
9

0.
76

0.
86

0.
82

0.
78

0.
46

0.
94

0.
62

pr
in

t_
to

ke
ns

2
-1
∗

7%
8%

7%
0.

04
∗

3%
4%

3%
-0

.5
7

2
10

0
59

-0
.3

7
0.

24
0.

83
0.

79
0.

75
0.

33
1.

00
0.

56

to
t_

in
fo

0.
68

76
%

97
%

95
%

0.
73

67
%

92
%

89
%

0.
95

3
99

56
0.

9
0.

51
0.

88
0.

80
-0

.8
4

0.
19

1.
00

0.
49

sc
he

du
le

-0
.6

6∗
95

%
99

%
97

%
-0

.7
5

83
%

93
%

89
%

-0
.4

5∗
8

10
0

64
-0

.8
9

0.
74

0.
86

0.
84

-0
.4

8
0.

21
1.

00
0.

40

sc
he

du
le

2
0.

84
∗

98
%

99
%

99
%

0.
92

81
%

94
%

90
%

0.
93

16
10

0
67

0.
94
†

0.
67

0.
73

0.
70

0.
24

0.
23

0.
90

0.
38

ph
p

-0
.3

6
0%

89
%

22
%

-0
.2

9
0%

50
%

13
%

-0
.7

4
1

10
0

50
0.

53
0.

00
1.

00
0.

44
-0

.7
8

0.
00

1.
00

0.
30

lib
tif

f
0.

98
9%

31
%

20
%

0.
99

6%
23

%
15

%
0.

87
1

71
19

0.
75

0.
00

1.
00

0.
43

0.
61

0.
00

1.
00

0.
82

gr
ep

0.
85

36
%

68
%

51
%

0.
95

22
%

53
%

36
%

0.
76

4
93

18
0.

65
†

0.
00

0.
10

0.
01

0.
66

0.
00

1.
00

0.
58

fin
du

til
s

0.
86

2%
33

%
22

%
0.

87
1%

22
%

15
%

0.
86

1
56

18
0.

6
0.

00
0.

54
0.

18
0.

67
0.

00
1.

00
0.

65

A
ve

ra
ge

0.
42

39
%

73
%

56
%

0.
36

40
%

68
%

57
%

0.
34

4
91

44
0.

2
0.

29
0.

84
0.

62
0.

07
0.

18
0.

98
0.

54

T
he

to
pm

os
tc

ol
um

n
sh

ow
s

th
e

5
te

st
-s

ui
te

m
et

ri
cs

w
e

in
ve

st
ig

at
ed

fr
om

st
at

em
en

tc
ov

er
ag

e
to

ca
pa

bl
e-

te
st

s
ra

tio
.T

he
“r

”
co

lu
m

n
of

ea
ch

te
st

-s
ui

te
m

et
ri

c
sh

ow
s

th
e

co
rr

el
at

io
n

co
ef

fic
ie

nt
be

tw
ee

n
th

e
re

pa
ir

ab
ili

ty
an

d
th

e
co

rr
es

po
nd

in
g

m
et

ri
c

in
Pe

ar
so

n’
s

r.
A

ll
sh

ow
n

co
ef

fic
ie

nt
s

ar
e

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
at

th
e

0.
05

le
ve

le
xc

ep
tt

ho
se

as
te

ri
sk

ed
.N

eg
at

iv
e

co
rr

el
at

io
n

co
ef

fic
ie

nt
s,

sh
ad

ed
in

th
e

ta
bl

e,
im

pl
y

th
at

le
ss

tim
e

te
nd

s
to

be
ta

ke
n

to
ob

ta
in

a
re

pa
ir,

as
th

e
m

et
ri

c
in

cr
ea

se
s.

In
th

e
“A

ve
ra

ge
”

ro
w

,t
he

co
ef

fic
ie

nt
s

of
ea

ch
m

et
ri

c
is

av
er

ag
ed

ac
ro

ss
al

ls
ub

je
ct

s.
Fo

re
ac

h
m

et
ri

c,
w

e
al

so
sh

ow
th

e
m

in
im

um
/m

ax
im

um
/m

ea
n

va
lu

es
of

ou
rt

es
t-

su
ite

s.

20 Jooyong Yi et al.

Table 6 shows the mean and max time taken to generate repairs in each subject. Repair
time of small subjects (shown in the left-hand side table) is generally smaller than the repair
time of large subjects (shown in the right-hand side table). Table 7 shows the correlation
between repair time and test-suite metrics. Similar to the case of repairability, no conclusive
pattern is observed.

Our experimental results are inconlusive about the correlation between test-suites and
repair time. However, we note that increasing test-suite metric does not always increase
repair time. In some subjects, negative correlations were observed between test-suite
metrics and repair time, indicating that as the test-suite metrics increase, repair time
tends to decrease.

5.5 Generalizing the Results

To mitigate external threats to our results, we perform the following. First, we replace Pear-
son’s correlation coefficients shown earlier with Kendall’s rank correlation coefficients, and
see if similar results are observed (Section 5.5.1). Second, we replace GenProg, an auto-
mated program repair tool used in our experiments, with another program repair tool, SEM-
FIX (Nguyen et al, 2013), and see if similar results are observed (Section 5.5.2).

5.5.1 Different Correlation Coefficient: Kendall Rank Correlation Coefficient

To investigate how our results are affected by the use of different kinds of correlation coeffi-
cients, Table 8 shows the correlation coefficients between regression ratio and test-suites in
Kendall’s rank correlation coefficients. We use Kendall’s τb to handle tied ranks (Kendall,
1945). Despite the changes of correlation coefficients, the overall pattern remains similar.
As in our previous analysis, we find that:

– Negative correlations are generally observed across all traditional metrics.
– Statement coverage is, on average, most strongly correlated with regression ratio. The

average ranking of test-suite metrics is ordered as follows: statement coverage (2.25)
≤ test-suite size (2.25) ≤ branch coverage (3) ≤ mutation score (3.25) ≤ capable-tests
ratio (4.25), where the numbers in parentheses show the average ranking of the corre-
sponding metrics.

– Coverage-based metrics generally show stronger correlation with regression ratio than
mutation-based metrics.

– In modularized real-world software, capable-tests ratio is shown to be negatively corre-
lated with regression ratio.

5.5.2 Different Repair Algorithm: SEMFIX

Apart from the main experiments performed with GENPROG, we conducted supplementary
experiments with another repair tool, SEMFIX. Note that SEMFIX takes a fundamentally
different repair approach from GENPROG; while GENPROG repeats to run each repair can-
didate until all available tests pass, SEMFIX first constructs repair constraints that should be
satisfied by a repair and synthesizes a repair satisfying the repair constraint using a theorem
prover. Meanwhile, the differences in fault localization employed in these two tools are not

A Correlation Study between Automated Program Repair and Test-Suite Metrics 21
Ta

bl
e

8:
C

or
re

la
tio

ns
be

tw
ee

n
th

e
re

gr
es

si
on

ra
tio

an
d

va
ri

ou
s

te
st

-s
ui

te
m

et
ri

cs
(K

en
da

ll’
s
τ b

)

St
at

em
en

tC
ov

er
ag

e
B

ra
nc

h
C

ov
er

ag
e

Te
st

-S
ui

te
Si

ze
M

ut
at

io
n

Sc
or

e
C

ap
ab

le
-T

es
ts

R
at

io

Su
bj

ec
t

τ b
M

in
M

ax
M

ea
n

τ b
M

in
M

ax
M

ea
n

τ b
M

in
M

ax
M

ea
n

τ b
M

in
M

ax
M

ea
n

τ b
M

in
M

ax
M

ea
n

tc
as

-0
.8

9
78

%
10

0%
95

%
-0

.6
4

39
%

95
%

90
%

-0
.8

2
2

10
0

60
-0

.9
6

0.
05

0.
79

0.
67

-0
.1

2
0.

42
1.

00
0.

65

pr
in

t_
to

ke
ns

2
-1
∗

7%
8%

7%
0.

98
3%

4%
3%

-0
.9

7
2

10
0

59
-0

.9
9

0.
24

0.
83

0.
79

0.
25

0.
33

1.
00

0.
56

to
t_

in
fo

-0
.8

6
76

%
97

%
95

%
-0

.9
2

67
%

92
%

89
%

-0
.9

9
3

99
56

-0
.8

2
0.

51
0.

88
0.

80
0.

49
0.

19
1.

00
0.

49

sc
he

du
le

2
-0

.7
1

98
%

99
%

99
%

-0
.0

8∗
81

%
94

%
90

%
0.

51
16

10
0

67
0.

82
0.

67
0.

73
0.

70
0.

47
0.

23
0.

90
0.

38

ph
p

-0
.4

4
0%

89
%

22
%

-0
.3

6
0%

50
%

13
%

-0
.8

3
1

10
0

50
0.

27
0.

00
1.

00
0.

45
-0

.7
4

0.
00

1.
00

0.
3

lib
tif

f
-0

.9
5

9%
31

%
20

%
-0

.9
4

6%
23

%
15

%
-0

.9
9

1
71

19
-0

.5
8

0.
00

1.
00

0.
43

-0
.4

5
0.

00
1.

00
0.

82

gr
ep

-0
.9

8
36

%
68

%
51

%
-0

.9
9

22
%

53
%

36
%

-0
.9

7
4

93
18

-0
.9

3
0.

01
0.

10
0.

02
-0

.7
1

0.
73

1.
00

0.
95

fin
du

til
s

-0
.8

7
2%

33
%

22
%

-0
.8

8
1%

22
%

15
%

-0
.8

9
1

56
18

-0
.9

0.
00

0.
54

0.
18

-0
.7

3
0.

00
1.

00
0.

65

A
ve

ra
ge

-0
.8

3
34

%
70

%
51

%
-0

.7
9

23
%

56
%

43
%

-0
.7

4
4

90
43

-0
.6

6
0.

13
0.

84
0.

55
-0

.1
9

0.
24

0.
99

0.
6

T
he

to
pm

os
tc

ol
um

n
sh

ow
s

th
e

5
te

st
-s

ui
te

m
et

ri
cs

w
e

in
ve

st
ig

at
e.

T
he

“τ
b
”

co
lu

m
n

of
ea

ch
te

st
-s

ui
te

m
et

ri
c

sh
ow

s
th

e
co

rr
el

at
io

n
co

ef
fic

ie
nt

be
tw

ee
n

th
e

re
gr

es
si

on
ra

tio
an

d
th

e
co

rr
es

po
nd

in
g

m
et

ri
c

in
K

en
da

ll’
s
τ b

.
N

eg
at

iv
e

co
rr

el
at

io
n

co
ef

fic
ie

nt
s,

sh
ad

ed
in

th
e

ta
bl

e,
im

pl
y

th
at

re
gr

es
si

on
s

ar
e

le
ss

ob
se

rv
ed

as
th

e
m

et
ri

c
in

cr
ea

se
s.

In
th

e
“A

ve
ra

ge
”

ro
w

,t
he

co
ef

fic
ie

nt
s

of
ea

ch
m

et
ri

c
is

av
er

ag
ed

ac
ro

ss
al

ls
ub

je
ct

s.
Fo

r
ea

ch
m

et
ri

c,
w

e
al

so
sh

ow
th

e
m

in
im

um
/m

ax
im

um
/m

ea
n

va
lu

es
of

ou
rt

es
t-

su
ite

s.
A

ll
co

rr
el

at
io

n
co

ef
fic

ie
nt

s
sh

ow
n

in
th

e
ta

bl
e

ar
e

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
at

th
e

0.
05

le
ve

le
xc

ep
tt

ho
se

as
te

ri
sk

ed
.

22 Jooyong Yi et al.
Ta

bl
e

9:
Se

m
Fi

x
ex

pe
ri

m
en

ts
:c

or
re

la
tio

ns
be

tw
ee

n
th

e
re

gr
es

si
on

ra
tio

an
d

va
ri

ou
s

te
st

-s
ui

te
m

et
ri

cs

St
at

em
en

tC
ov

er
ag

e
B

ra
nc

h
C

ov
er

ag
e

Te
st

-S
ui

te
Si

ze
M

ut
at

io
n

Sc
or

e
C

ap
ab

le
-T

es
ts

R
at

io

Su
bj

ec
t

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

r
M

in
M

ax
M

ea
n

tc
as

-0
.9

78
%

10
0%

95
%

-0
.6

2
39

%
95

%
90

%
-0

.7
9

2
10

0
59

-0
.7

3
0.

05
0.

79
0.

67
-0

.0
1

0.
42

1.
00

0.
64

6

pr
in

t_
to

ke
ns

2
-1
∗

7%
8%

7%
0.

46
∗

3%
4%

3%
-0

.6
9

4
10

0
60

-0
.9

7
0.

49
0.

83
0.

80
0.

66
0.

36
1.

00
0.

55
4

sc
he

du
le

2
-0

.3
5∗

98
%

99
%

99
%

0.
64
∗

82
%

93
%

90
%

-0
.3
∗

16
10

0
68

0.
86

0.
67

0.
73

0.
70

-0
.5

3
0.

23
0.

69
0.

37
4

lib
tif

f
-0

.8
2

6%
31

%
23

%
-0

.8
1

4%
23

%
17

%
-0

.8
7

1
74

27
-0

.3
7

0.
00

1.
00

0.
45

-0
.8

3
0.

00
1.

00
0.

82
4

A
ve

ra
ge

-0
.7

7
47

%
59

%
56

%
-0

.0
8

32
%

54
%

50
%

-0
.6

6
5.

75
93

.5
53

-0
.3

0
0.

30
0.

84
0.

66
-0

.1
8

0.
25

0.
92

0.
6

T
he

to
pm

os
t

co
lu

m
n

sh
ow

s
th

e
5

te
st

-s
ui

te
m

et
ri

cs
w

e
in

ve
st

ig
at

e.
T

he
“r

”
co

lu
m

n
of

ea
ch

te
st

-s
ui

te
m

et
ri

c
sh

ow
s

th
e

co
rr

el
at

io
n

co
ef

fic
ie

nt
be

tw
ee

n
th

e
re

gr
es

si
on

ra
tio

an
d

th
e

co
rr

es
po

nd
in

g
m

et
ri

c
in

Pe
ar

so
n’

s
r.

N
eg

at
iv

e
co

rr
el

at
io

n
co

ef
fic

ie
nt

s,
sh

ad
ed

in
th

e
ta

bl
e,

im
pl

y
th

at
re

gr
es

si
on

s
ar

e
le

ss
ob

se
rv

ed
as

th
e

m
et

ri
c

in
cr

ea
se

s.
In

th
e

“A
ve

ra
ge

”
ro

w
,t

he
co

ef
fic

ie
nt

s
of

ea
ch

m
et

ri
c

is
av

er
ag

ed
ac

ro
ss

al
ls

ub
je

ct
s.

Fo
r

ea
ch

m
et

ri
c,

w
e

al
so

sh
ow

th
e

m
in

im
um

/m
ax

im
um

/m
ea

n
va

lu
es

of
ou

r
te

st
-s

ui
te

s.
A

ll
co

rr
el

at
io

n
co

ef
fic

ie
nt

s
sh

ow
n

in
th

e
ta

bl
e

ar
e

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
at

th
e

0.
05

le
ve

le
xc

ep
tt

ho
se

as
te

ri
sk

ed
.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 23

Table 10: Average rankings of test-suite metrics (SemFix)

Metric Statement Branch Test-Suite Mutation Capable-Tests
Coverage Coverage Size Score Ratio

Avg. Ranking 1.5 4 2.75 3.75 3

as significant. Statistical fault localization (Jones et al, 2002; Liblit et al, 2003) is employed
in both tools. Still, the concrete fault localization techniques employed in these two tools are
not exactly identical with each other.

Note that the objective of this additional SEMFIX experiments is to see if our findings
obtained from the GENPROG experiments also hold when a different repair algorithm is
used. We emphasize that comparing the performance of GENPROG and SEMFIX is not the
purpose of this study. In fact, comparing correlation coefficients between the two tools does
not determine the winner. One tool may show a stronger correlation with the test-suite qual-
ity than the other tool, while it still generates regression-causing repairs more frequently.

Table 9 shows the correlations between the regression ratio observed in the SEMFIX ex-
periments and various test-suite metrics. We used the same test-suites as used in our GEN-
PROG experiments. In general, the results are similar to those obtained from the GENPROG

experiments. As in the GENPROG experiment, negative correlations between regression ra-
tio and the traditional test-suite metrics (statement coverage, branch coverage, test-suite size,
and mutation score) are observed in the majority of cases. In particular, statement coverage
and test-suite size are negatively correlated with regression ratio in all subjects. Mutation
score shows negative correlations except in schedule2, similar to the GENPROG experiment.
While branch coverage shows positive correlations in two subjects (print_tokens2 and sched-
ule2), these results are not statistically significant (p > 0.05).

Similar to the GENPROG experiment, we compute the average ranking of each test-
suite metric and show the result in Table 10. Recall that in each subject, the metric whose
correlation coefficient is the smallest is ranked first. Statement coverage again is ranked
highest as in our GENPROG experiment. The rest of the metrics are, on average, ranked
lower than test-suite size.

Our experimental results from SEMFIX generally coincide with our finding from the
GENPROG experiment, despite the differences in repair algorithms and fault localiza-
tion techniques. The traditional test-suite metrics are, overall, negatively correlated with
regression ratio, similar to our GENPROG experimental results. In particular, statement
coverage is again shown to be most strongly correlated with regression ratio.

6 Threats to Validity

External: Subjects, Test Universes, Mutants, and Repair Tools. Our findings may not
generalize to other subjects, although our subjects consist of various software projects of dif-
ferent sizes, extracted from diverse sources (SIR, GenProg, and CoREBench) that contain
seeded bugs (SIR), actual bugs (GenProg), and actual regression bugs (CoREBench). Simi-
larly, our test universes may not be representative of the whole test case population, which
is theoretically infinite. In general, the larger a test universe is, the more likely regressions

24 Jooyong Yi et al.

are observed when testing a repaired program. To mitigate this threat, we selected subjects
that have a large number of test cases.

Similarly, the use of 1-hour timeout also threatens the external validity of our experi-
mental results. Results may vary depending on which timeout is used in the experiments.
The external validity of our mutants are also similarly threatened, because in large subjects,
we randomly sampled 1–3% of mutants to be able to deal with the large size of the mutant
population (for SIR subjects whose sizes are smaller, we used the whole mutant population).
The relatively weak correlation between mutation score and regression ratio as compared to
other test-suite metrics may be due to the difference between mutation testing and auto-
mated program repair. Repair candidates generated from an automated program repair tool
are not necessarily identical with or similar to mutants generated from a mutation testing
tool. Also, an automated program repair tool modifies only suspicious program locations,
whereas mutation testing does not consider the suspiciousness of program locations when
sampling mutants. Our results obtained with randomly sampled mutants is, despite its limi-
tations, still interesting from practical point of view, because mutant sampling is a common
approach taken in mutation testing to deal with a large number of mutants practically. One
way to mitigate the threats posed by sampled mutants is to change the sampling rate and see
if similar results are maintained. We leave this investigation as future work.

Lastly, a repair tool affects the experimental results, and different results may be ob-
tained when a different repair tool is used. To mitigate this threat, we also conducted an
additional experiment with SEMFIX, and observed that the overall results are similar to the
results from our main experiment. Note that SEMFIX uses a fundamentally different repair
approach from GENPROG used for our main experiment.

Internal: Correctness of Tools. Our findings are based on the raw data generated by var-
ious tools, i.e, GCOV, GENPROG, SEMFIX, and PROTEUM, where the latter three tools are
research prototypes. We also modified PROTEUM because the original PROTEUM cannot
handle any of our non-SIR subjects. In order not to exacerbate this threat, our modification
to PROTEUM is minimally restricted to its parser.

7 Related Work

7.1 Empirical Studies on Automated Program Repair and Test Suites

Automatically generated repairs cause regressions essentially because the space of plausible
repairs (repairs that pass all tests of a given test-suite) is larger than the space of correct
repairs (Long and Rinard, 2016a). Obviously, not all repairs that pass a given test-suite
are correct repairs. After all, automatically generated repairs can be overfit to the test-suite
available to a repair system (Smith et al, 2015). To prevent more efficiently a repair sys-
tem from generating incorrect repairs, a stronger test-suite is necessary (Long and Rinard,
2016a). However, Long and Rinard do not investigate how to improve a test-suite. Mean-
while, Smith et al. report a positive correlation between test-suite size 12 and the reliability
of repairs (Smith et al, 2015). Their experiments are conducted with small student programs
(≤ 23 LoC), and other test-suite metrics such as statement/branch coverage and mutation
score are not investigated. More recently, Kong et al. investigate 9 SIR subjects and report
a similar correlation between test-suite size and the reliability of repairs (Kong et al, 2015).

12 The “coverage” referred to in (Smith et al, 2015) essentially means how many tests of a given test-
universe are covered.

A Correlation Study between Automated Program Repair and Test-Suite Metrics 25

Another small-scale empirical study was performed by Assiri and Bieman with 4 SIR sub-
jects (≤ 565 LOC) (Assiri and Bieman, 2014) . One of their main findings is that branch
coverage-adequate test-suites tend to be more effective in controlling regression errors than
statement coverage-adequate test-suites. As discussed in Section 5.2, our result that state-
ment coverage is most strongly correlated with regression ratio should not be confused with
comparing coverage-adequate test suites. Our result implies that when a test-suite is nei-
ther statement coverage-adequate nor branch coverage-adequate, improving the statement
coverage of the test-suite is more likely to improve the reliability of repairs than improving
branch coverage. Meanwhile, if there are already a statement coverage-adequate test-suite
and a branch coverage-adequate test-suite, using the branch coverage-adequate test-suite ap-
pear to be better (Assiri and Bieman, 2014). However, this result is obtained from 4 small
SIR subjects, and whether this result can be extended to large real-world software is not
shown. In fact, test-suites of real-world software are usually not coverage-adequate, which
is also the case for our real-world subjects.

We for the first time perform a correlation study between various test-suite metrics and
the reliability of generated repairs. Large real-world software and their test-suites are
investigated in our correlation study unlike previous correlation studies.

Apart from the aforementioned studies on test-suite quality, the quality of an individual
test can also affect the quality of automatically generated repair. For instance, if a test oracle
is weak, a generated repair may not fix the bug manifested by the test (Qi et al, 2015).
To improve the quality of generated repairs, both the quality of the individual test and the
quality of the test-suite should be improved.

The quality of a test-suite have long been the subject of research in software testing.
There is a large body of research on identifying/generating/maintaining effective and ef-
ficient test-suites, in particular in terms of bug finding (Andrews et al, 2006; Cadar et al,
2008; Cadar and Engler, 2005; Godefroid et al, 2005; Miller and Spooner, 1976; Shoenauer
and Xanthakis, 1993). More recently, other applications of test-suites other than bug finding
such as fault localization have attracted the attention of researchers, and thereafter appro-
priate attributes of these unconventional applications have been studied (Baudry et al, 2006;
Artzi et al, 2010).

While improving the quality of the test-suite provides a proactive measure to improve
the repair quality, regression test generation techniques can provide a reactive measure
(Böhme et al, 2013a,b; Person et al, 2011; Santelices et al, 2008). A generated repair in-
duces program changes. These changes can be stress-tested automatically with regression
test generation techniques that are specifically directed towards these repair-related changes.
In future, we envision automated repair techniques that integrate regression test generation
techniques to detect regression-introducing repairs and simultaneously improve the quality
of the test-suite.

7.2 Automated Program Repair Approaches

Automated program repair approaches can be broadly classified into a search-based ap-
proach and a constraint-based approach. The search-based repair approach, also often called
the generate-and-validate approach, navigates a set of repair candidates explicitly through a
search algorithm such as genetic programming, whereas the constraint-based approach con-
structs repair constraints that should be satisfied by a repair and symbolically searches for

26 Jooyong Yi et al.

a repair satisfying the repair constraint using a theorem prover (typically, an SMT solver).
GENPROG (Weimer et al, 2013; Le Goues et al, 2012b) and SEMFIX (Nguyen et al, 2013),
used in our experiments, are first repair systems employing the search-based and constraint-
based repair approach, respectively.

More recent search-based repair systems include RSRepair, SPR, Prophet, SearchRe-
pair, and a system of Debroy and Wong. The system of Debroy and Wong (2014) uses
mutation operators to generate a repair. RSRepair (Qi et al, 2014) employs a random search
algorithm to search for a repair. SPR (Long and Rinard, 2015) employs an efficient staged
repair search algorithm (instead of directly editing a program, SPR first checks whether
a certain class of edits defined by an edit schema contains a repair, and generates an edit
only when a repair can be instantiated from the edit schema). Prophet (Long and Rinard,
2016b) employs a machine learning algorithm to prioritize a patch candidate similar to hu-
man patches. The idea of using human patches was first suggested in PAR (Kim et al, 2013)
where patch templates commonly observed in human patches are manually extracted and
used to generate patches. SearchRepair (Ke et al, 2015) searches a large database of code
fragments for ones that are semantically similar to the defective code fragment and uses the
found fragments to generate a repair for the defect. A related idea is to extract patterns of
bad patches generated from automated repair systems (e.g., deleting an error-handling code
to pass a test) to filter out similarly bad repairs (Tan et al, 2016). We also mention that there
is a repair system fixing specifically regression errors, using repair templates tailored for
fixing regression errors (Tan and Roychoudhury, 2015).

Meanwhile, more recent constraint-based repair systems include DirectFix, Angelix,
and Nopol. DirectFix (Mechtaev et al, 2015) generates minimal repairs (repairs that change
the original program minimally) by reducing the program repair problem into a MaxSAT
problem. It is shown that minimal repairs generated by DirectFix cause regression less fre-
quently than SemFix-generated repairs. Angelix (Mechtaev et al, 2016) transfers DirectFix
techniques to large-scale real-world software such as a PHP interpreter and Heartbleed-
containing OpenSSL. While SemFix, DirectFix and Angelix repair buggy C programs,
Nopol (Xuan et al, 2017) is a constraint-based repair system for Java programs. Despite
the advancement of these recent repair tools such as SPR and Angelix, they still inherit the
same problem of their predecessors such as GENPROG and SEMFIX; that is, they also run
a risk of generating repairs causing regressions, due to the incompleteness of a test-suite.
Investigating whether our results are extended to these more recent tools is left as future
work.

While most automated program repair approaches are test-driven (a test-suite is used
as a specification), AutoFix (Pei et al, 2014) uses program contracts such as pre/post-
conditions as a specification. Similarly, there are other specification-driven program repair
techniques (He and Gupta, 2004; Jobstmann et al, 2005; Gopinath et al, 2011; Könighofer
and Bloem, 2011; Samimi et al, 2010; Elkarablieh and Khurshid, 2008). Apart from the
preceding source-level repair techniques, there are also runtime error repairing techniques
that recover from corrupted program states (e.g., null-derefernce) while the program is being
executed (Perkins et al, 2009; Long et al, 2014).

8 Conclusion

Many automated program repair tools use a test-suite as the specification of the software
under repair. Thus, automated program repair tools may end up generating a repair that
fails new tests that were not available at the time of repair, causing regressions. Indeed, our

A Correlation Study between Automated Program Repair and Test-Suite Metrics 27

experimental results show that regression in generated repairs is widespread. Our study is
the largest to date to show how severe the regression problem of automatically generated
repairs is. To address this problem, we in this paper investigate the possibility of using test-
suite metrics proposed for software testing to control the regression ratio of automatically
generated repairs. Overall, the results of our study are positive. Traditional test-suite met-
rics are generally negatively correlated with the regression ratio of repairs, implying that
traditional test-suite metrics can also be used for automated program repair. In particular,
statement coverage is shown to be most strongly correlated among the metrics we investi-
gate, implying that to reduce the regression ratio, increasing statement coverage is generally
more promising than improving branch coverage or mutation score.

Acknowledgements This research is supported in part by the National Research Foundation, Prime Min-
ister’s Office, Singapore under its National Cybersecurity R&D Program (TSUNAMi project, Award No.
NRF2014NCR-NCR001-21) and administered by the National Cybersecurity R&D Directorate. The first au-
thor thanks Innopolis University for its support.

References

Andrews JH, Briand LC, Labiche Y, Namin AS (2006) Using mutation analysis for assess-
ing and comparing testing coverage criteria. IEEE Transactions on Software Engineering
32(8):608–624

Artzi S, Dolby J, Tip F, Pistoia M (2010) Directed test generation for effective fault local-
ization. In: Proceedings of the 19th International Symposium on Software Testing and
Analysis, ISSTA ’10, pp 49–60

Assiri FY, Bieman JM (2014) An assessment of the quality of automated program operator
repair. In: Proceedings of the 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation, ICSE ’14, pp 273–282

Baudry B, Fleurey F, Le Traon Y (2006) Improving test suites for efficient fault localization.
In: Proceedings of the 28th International Conference on Software Engineering, ICSE ’06,
pp 82–91

Böhme M, Roychoudhury A (2014) CoREBench: Studying complexity of regression errors.
In: Proceedings of the 2014 International Symposium on Software Testing and Analysis,
ISSTA ’14, pp 105–115

Böhme M, Oliveira BCdS, Roychoudhury A (2013a) Partition-based regression verification.
In: Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13,
pp 302–311

Böhme M, Oliveira BCdS, Roychoudhury A (2013b) Regression tests to expose change
interaction errors. In: Proceedings of the 2013 Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE ’13, pp 334–344

Cadar C, Engler D (2005) Execution generated test cases: How to make systems code crash
itself. In: Proceedings of the 12th International Conference on Model Checking Software,
SPIN ’05, pp 2–23

Cadar C, Dunbar D, Engler D (2008) KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’ 08, pp 209–224

28 Jooyong Yi et al.

Dallmeier V, Zeller A, Meyer B (2009) Generating fixes from object behavior anomalies. In:
Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, pp 550–554

Debroy V, Wong WE (2010) Using mutation to automatically suggest fixes for faulty pro-
grams. In: Proceedings of the Third International Conference on Software Testing, Veri-
fication and Validation, ICST ’10, pp 65–74

Debroy V, Wong WE (2014) Combining mutation and fault localization for automated pro-
gram debugging. Journal of Systems and Software 90:45–60

Do H, Elbaum SG, Rothermel G (2005) Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering
10(4):405–435

Elkarablieh B, Khurshid S (2008) Juzi: A tool for repairing complex data structures. In:
Proceedings of the 30th International Conference on Software Engineering, ICSE ’08, pp
855–858

Godefroid P, Klarlund N, Sen K (2005) DART: Directed automated random testing. In:
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, pp 213–223

Gopinath D, Malik MZ, Khurshid S (2011) Specification-based program repair using SAT.
In: Proceedings of the 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems: Part of the Joint European Conferences on Theory
and Practice of Software, TACAS ’11/ETAPS ’11, pp 173–188

He H, Gupta N (2004) Automated debugging using path-based weakest preconditions. In:
Proceedings of the 7th International Conference on Fundamental Approaches to Software
Engineering, FASE ’04, pp 267–280

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering 37(5):649–678

Jobstmann B, Griesmayer A, Bloem R (2005) Program repair as a game. In: Proceedings of
the 17th International Conference on Computer Aided Verification, CAV ’05, pp 226–238

Jones JA, Harrold MJ, Stasko JT (2002) Visualization of test information to assist fault lo-
calization. In: Proceedings of the 24th International Conference on Software Engineering,
ICSE ’02, pp 467–477

Ke Y, Stolee KT, Le Goues C, Brun Y (2015) Repairing programs with semantic code search
(t). In: Proceedings of the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’15, pp 295–306

Kendall MG (1945) The treatment of ties in ranking problems. Biometrika 33(3):239–251
Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-

written patches. In: Proceedings of the 2013 International Conference on Software Engi-
neering, ICSE ’13, pp 802–811

Kong X, Zhang L, Wong WE, Li B (2015) Experience report: How do techniques, programs,
and tests impact automated program repair? In: Proceedings of the 2015 IEEE 26th Inter-
national Symposium on Software Reliability Engineering, ISSRE ’15, pp 194–204

Könighofer R, Bloem R (2011) Automated error localization and correction for impera-
tive programs. In: Proceedings of the International Conference on Formal Methods in
Computer-Aided Design, FMCAD ’11, pp 91–100

Le Goues C, Dewey-Vogt M, Forrest S, Weimer W (2012a) A systematic study of auto-
mated program repair: Fixing 55 out of 105 bugs for $8 each. In: Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, pp 3–13

Le Goues C, Nguyen T, Forrest S, Weimer W (2012b) GenProg: A generic method for
automatic software repair. IEEE Transactions on Software Engineering 38(1):54–72

A Correlation Study between Automated Program Repair and Test-Suite Metrics 29

Le Goues C, Forrest S, Weimer W (2013) Current challenges in automatic software repair.
Software Quality Journal 21(3):421–443

Liblit B, Aiken A, Zheng AX, Jordan MI (2003) Bug isolation via remote program sampling.
In: Proceedings of the ACM SIGPLAN 2003 conference on Programming Language De-
sign and Implementation, PLDI ’03, pp 141–154

Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Proceedings of
the 2015 Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE ’15, pp
166–178

Long F, Rinard M (2016a) An analysis of the search spaces for generate and validate patch
generation systems. In: Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pp 702–713

Long F, Rinard M (2016b) Automatic patch generation by learning correct code. In: Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’16, pp 298–312

Long F, Sidiroglou-Douskos S, Rinard M (2014) Automatic runtime error repair and con-
tainment via recovery shepherding. In: Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’14, pp 227–238

Maldonado JC, Delamaro ME, Fabbri SCPF, Simão AdS, Sugeta T, Vincenzi AMR, Masiero
PC (2001) Proteum: A family of tools to support specification and program testing based
on mutation. In: Wong WE (ed) Mutation Testing for the New Century, Kluwer Academic
Publishers, Norwell, MA, USA, pp 113–116

Mechtaev S, Yi J, Roychoudhury A (2015) DirectFix: Looking for simple program repairs.
In: Proceedings of the 37th IEEE/ACM International Conference on Software Engineer-
ing, ICSE ’15, pp 448–458

Mechtaev S, Yi J, Roychoudhury A (2016) Angelix: Scalable multiline program patch syn-
thesis via symbolic analysis. In: Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, pp 691–701

Miller W, Spooner DL (1976) Automatic generation of floating-point test data. IEEE Trans-
actions on Software Engineering 2(3):223–226

Namin AS, Andrews JH (2009) The influence of size and coverage on test suite effective-
ness. In: Proceedings of the 8th International Symposium on Software Testing and Anal-
ysis, ISSTA ’09, pp 57–68

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013) SemFix: Program repair via se-
mantic analysis. In: Proceedings of the 2013 International Conference on Software Engi-
neering, ICSE ’13, pp 772–781

Pearson K (1895) Note on regression and inheritance in the case of two parents. Proceedings
of the Royal Society of London 58:240–242

Pei Y, Furia C, Nordio M, Wei Y, Meyer B, Zeller A (2014) Automated fixing of programs
with contracts. IEEE Transactions on Software Engineering 40(5):427–449

Perkins JH, Kim S, Larsen S, Amarasinghe S, Bachrach J, Carbin M, Pacheco C, Sherwood
F, Sidiroglou S, Sullivan G, Wong WF, Zibin Y, Ernst MD, Rinard M (2009) Automat-
ically patching errors in deployed software. In: Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, pp 87–102

Person S, Yang G, Rungta N, Khurshid S (2011) Directed incremental symbolic execution.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, pp 504–515

Qi Y, Mao X, Lei Y (2013) Efficient automated program repair through fault-recorded test-
ing prioritization. In: Proceedings of the 2013 IEEE International Conference on Software

30 Jooyong Yi et al.

Maintenance, ICSM ’13, pp 180–189
Qi Y, Mao X, Lei Y, Dai Z, Wang C (2014) The strength of random search on automated

program repair. In: Proceedings of the 36th International Conference on Software Engi-
neering, ICSE ’14, pp 254–265

Qi Z, Long F, Achour S, Rinard M (2015) An analysis of patch plausibility and correctness
for generate-and-validate patch generation systems. In: Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2015, pp 24–36

Samimi H, Aung ED, Millstein T (2010) Falling back on executable specifications. In: Pro-
ceedings of the 24th European Conference on Object-oriented Programming, ECOOP’10,
pp 552–576

Samimi H, Schäfer M, Artzi S, Millstein T, Tip F, Hendren L (2012) Automated repair
of HTML generation errors in PHP applications using string constraint solving. In: Pro-
ceedings of the 34th International Conference on Software Engineering, ICSE ’12, pp
277–287

Santelices R, Chittimalli PK, Apiwattanapong T, Orso A, Harrold MJ (2008) Test-suite aug-
mentation for evolving software. In: Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pp 218–227

Shoenauer M, Xanthakis S (1993) Constrained GA optimization. In: Proceedings of the 5th
International Conference on Genetic Algorithms, ICGA ’93, pp 573–580

Smith EK, Barr ET, Le Goues C, Brun Y (2015) Is the cure worse than the disease? over-
fitting in automated program repair. In: Proceedings of the 2015 Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE ’15, pp 532–543

Tan SH, Roychoudhury A (2015) relifix: Automated repair of software regressions. In: Pro-
ceedings of the 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, ICSE ’15, pp 471–482

Tan SH, Yoshida H, Prasad MR, Roychoudhury A (2016) Anti-patterns in search-based
program repair. In: Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE’16, pp 727–738

Weimer W, Fry ZP, Forrest S (2013) Leveraging program equivalence for adaptive program
repair: Models and first results. In: Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’13, pp 356–366

White DR, Arcuri A, Clark JA (2011) Evolutionary improvement of programs. IEEE Trans-
actions on Evolutionary Computation 15(4):515–538

Xuan J, Martinez M, Demarco F, Clement M, Marcote SRL, Durieux T, Berre DL, Monper-
rus M (2017) Nopol: Automatic repair of conditional statement bugs in Java programs.
IEEE Transactions on Software Engineering 43(1):34–55

Yao X, Harman M, Jia Y (2014) A study of equivalent and stubborn mutation operators using
human analysis of equivalence. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE ’14, pp 919–930

	Introduction
	Background
	Research Questions
	Experimental Methodology
	Experimental Results
	Threats to Validity
	Related Work
	Conclusion

