
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Factors and actors leading to the adoption of a JavaScript framework

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Accepted version (Final draft)

Pano, Amantia; Graziotin, Daniel; Abrahamsson, Pekka

Pano, A., Graziotin, D., & Abrahamsson, P. (2018). Factors and actors leading to the adoption of
a JavaScript framework. Empirical Software Engineering, 23(6), 3503-3534.
https://doi.org/10.1007/s10664-018-9613-x

2018



Factors and actors leading to the adoption of a JavaScript
framework

Amantia Pano · Daniel Graziotin · Pekka
Abrahamsson

Abstract The increasing popularity of JavaScript has led to a variety of JavaScript frameworks
that aim to help developers to address programming tasks. However, the number of JavaScript
frameworks has risen rapidly to thousands of versions. It is challenging for practitioners to identify
the frameworks that best fit their needs and to develop new ones which fit such needs. Further-
more, there is a lack of knowledge regarding what drives developers towards the choice. This paper
explores the factors and actors that lead to the choice of a JavaScript framework. We conducted
a qualitative interpretive study of semi-structured interviews. We interviewed 18 decision makers
regarding the JavaScript framework selection, up to reaching theoretical saturation. Through cod-
ing the interview responses, we offer a model of desirable JavaScript framework adoption factors.
The factors are grouped into categories that are derived via the Unified Theory of Acceptance and
Use of Technology. The factors are performance expectancy (performance, size), effort expectancy
(automatization, learnability, complexity, understandability), social influence (competitor analysis,
collegial advice, community size, community responsiveness), facilitating conditions (suitability, up-
dates, modularity, isolation, extensibility), and price value. A combination of four actors, which are
customer, developer, team, and team leader, leads to the choice. Our model contributes to the body
of knowledge related to the adoption of technology by software engineers. As a practical implica-
tion, our model is useful for decision makers when evaluating JavaScript frameworks, as well as for
developers for producing desirable frameworks.

Keywords JavaScript · programming frameworks · decision making · technology adoption ·
human aspects of software development · qualitative research · interpretivism

Amantia Pano
Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
E-mail: amantia.pano@unibz.it

Daniel Graziotin
Institute of Software Technology, University of Stuttgart, Germany
E-mail: daniel.graziotin@informatik.uni-stuttgart.de

Pekka Abrahamsson
Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
E-mail: pekka.abrahamsson@jyu.fi



1 Introduction

JavaScript has become one of the fundamental programming languages for the Web, and it has
been in the top 10 most popular programming languages since the last decade [62]. According
to a survey of W3Techs, 88.2% of one billion websites analyzed rely on this technology [67]. The
increasing presence and demand of web users has led to the increasing complexity of web-based
software.

Complexity in developing new applications threatens the continuous evolution of programming
languages. One of the goals of software engineering is the creation of reusable code [18]. This goal was
initially accomplished by using modules. Yet, modules are limited to resolving small programming
tasks. Programmers develop libraries containing pre-written JavaScript code so as to ease and
shorten the development of projects. Libraries support the functional and aesthetic aspects of web-
centric development. Libraries can be grouped according to their functionalities or they can be
part of an application skeleton that is commonly referred to as a framework. JavaScript frameworks
comprise a set of utilities, functions, and high-level abstractions, which have been tested in different
platforms and browsers. Frameworks serve different purposes, including visual design, charting and
dashboards, animation, drag and drop, and event handling.

The rising number of applications relying on JavaScript has resulted in an increased activity of
open source communities. Several new JavaScript frameworks have been released and others have
been extended with new functionalities [21]. GitHub [30] has recently started offering advanced
search capabilities on programming languages and various statistics. JavaScript is currently the
top programming language with more than 440,000 projects having at least one GitHub star [31].
Practitioners have noted this proliferation of frameworks and cope with the difficulties arising from
it with running jokes, e.g., [6].

New but also experienced developers face difficulties in “making sense out of the jungle of
JavaScript frameworks” [24], especially in defining the most suitable characteristics for a favorable
framework to use for their projects [49,24,68,54,4]. Gizas et al. [21] have argued that for web
developers, it is important to select a JavaScript framework that suits their needs and provides
high quality and high performance of the code. They opted for a technical evaluation of JavaScript
frameworks using performance benchmarks. While we do not deny the importance of the technical
aspects of performance and software quality, there is more to it. Gizas et al. [21] have admitted that
crucial factors could influence the adoption, such as maintainability and active community support.
The previous statement is, however, anecdotal.

Graziotin and Abrahamsson [24] took hold of the previous statement and noted that the limited
research on the factors influencing the adoption of a JavaScript framework have insofar focused
on performance and quality only. They suggested investigating the developers’ perceptions and
experience when it comes to adoption. Developers’ experience and opinions are shared in web
communities or blogs. For example, Walsh [68] has shared his viewpoint that, in addition to how
fast and big the code is, practitioners should also observe the availability of documentation, the
community involvement, and the general adoption of the framework. Reyes [54] has added that
practitioners should assess the maturity of the framework, the provided functionality, and the
update frequency. Again, these statements come from experience and are valuable; however, they
come from single sources and are anecdotal.

We share the previous concern regarding a lack of understanding on the factors that lead to
the adoption of a JavaScript framework. An understanding of the adoption factors of a JavaScript
framework will lead to the creation of new frameworks that answer the needs of developers, as



well as the possibility of the meaningful categorization of the existing frameworks for supporting a
choice.

Our paper explores the factors and actors leading to the adoption of a JavaScript framework
as requested by previous research, e.g., [8,24]. The research question that we aim to answer is
Which factors and actors lead to the adoption of a JavaScript framework?. We report a qualitative
interpretive study of semi-structured interviews during which we interviewed 18 participants. We
recruited the participants using various channels, and we refined our participation criteria while we
gathered data. Participants were either expert developers, decision makers in their companies, or
entrepreneurs, or were at least able to motivate the adoption of a JavaScript framework.

The analysis of the qualitative data revealed:

1. A model of features that are desirable in a JavaScript framework—which are grouped into
the areas of the Unified Theory of Acceptance and Use of Technology (UTAUT) [65], namely
performance expectancy, effort expectancy, social influence, facilitating conditions, and price
value [66].

2. A representation of the decision makers involved in the framework selection—namely customer,
developer, team, and team leader—which is based on the model.

The remainder of this article is divided into five sections. Section 2 reports our literature review
of the research in software and web engineering and practitioners’ voices. Section 3 reports our
methodology, in terms of the epistemological stance, participants’ recruitment, interview design,
and data analysis. Section 4 provides the resulting model. Each item is demonstrated by one or
more interview snippets that brought us to elicit the particular category or factor. In section 5, we
compare our model with the existing literature, we suggest several implications, and we provide the
limitations of this study. Section 6 concludes the paper.

2 Related work

In this section, we present the works that we identified as relevant to our study. First, we summarize
the related work from the scientific literature. Then, we provide a selection of relevant practitioners’
viewpoints. The reason for including the grayer literature by developers and leaders is that they
produced more related material—in technical blogs, reports, and dedicated websites—than what
has been published in the scholarly literature.

2.1 Scientific literature

The software engineering body of knowledge has shown a limited understanding of the question we
address in this paper.

Gizas et al. [21] stated that we must consider three aspects when comparing JavaScript frame-
works: quality, performance and validation tests on the frameworks. The authors compared the
frameworks ExtJS [15], Dojo [11], jQuery [34], MooTools [47], Prototype [53], and YUI [71]. During
the research they identified four different run-time versions for each language: (1) Base Version
(uncompressed) which includes the core functions only; (2) Compact Version, i.e., the base version
with no comments and blank lines; (3) Full Compact Versions, with all the available functions in
a compact format; (4) Development Kits, with all the development tools to satisfy more advanced



developer needs. Gizas et al. [21] defined common functions to use for the evaluation: Document
Object Model (DOM)1 manipulation, selectors, Asynchronous JavaScript and XML (AJAX)2 func-
tionalities, basic elements of forms, functions for base event handling and functions for compatibility
support and loading utilities. Gizas et al. [21] measured quality of the classic software metrics of
measuring size (e.g., lines of code), complexity (e.g., McCabe’s Cyclomatic Complexity [43]), and
maintainability (e.g., Maintainability Index). The tools used for the quality tests were: JSmeter,
CLOC, and Understand. The validation tests were conducted using the Yasca software utility, in
combination with JavaScript Lint. The authors employed different browsers and operating systems
for the performance tests, which they analyzed with the SlickSpeed Selectors test framework [21].

Misra and Cafer [45] introduced a complexity metric for JavaScript, called JavaScript Cogni-
tive Complexity Measure (JCCM). The metric is intended to access the design quality of scripts.
The JCCM metric formula is calculated using (1) the size in terms of lines of code containing
variables and operators, (2) the number of arbitrarily named distinct variables (ANDV), (3) the
number of meaningfully named variables (MNV), (4) the cognitive weights of basic control struc-
tures (BCS) such as loops, recursions, etc., and (5) the number of operators. The authors analyzed
thirty JavaScript files from the Web. The authors showed that the metric converges to the metrics
of Cyclomatic Complexity [43], Logical Lines of Code, and Halstead metrics [26]. The paper does
not report any validation from the practitioners’ point of view.

Graziotin and Abrahamsson [24] conducted a pilot qualitative study with experienced web de-
velopers for an exploratory model for the comparison of JavaScript frameworks. The model suggests
that there are three criteria that drive practitioners towards the choice of a JavaScript framework,
namely documentation, community, and the pragmatics of a JavaScript framework. Additionally,
the findings suggest that it is important for practitioners to have software metrics applied to a single
software project implemented using different JavaScript frameworks, in order to have meaningful
comparisons. The pilot study was conducted on a very limited sample of practitioners (four), but
it lays down the basic motivations and foundations of the present work.

In addition to the previous papers dealing with the adoption of JavaScript frameworks, we found
two related works on the factors leading to the adoption of programming language add-ons among
developers. The first tested a theory on the factors leading to the adoption of software components.
The second tested a theory on the factors leading to the adoption of a programming framework.

Stefi [56] investigated the developers’ intention to adopt software components. Stefi collected
142 answers from a questionnaire distributed to software developers. The construction of the ques-
tionnaire was based on the Unified Theory of Acceptance and Use of Technology (UTAUT) [65],
which we also adopted for the present study and will explain in Section 3.5, with the addition of
items representing the not-invented-here bias and mindfulness to account for individual differences.
The participants rated items that were related to a post-adoption rationale. The results show that
performance expectancy, social influence, and the not-invented-here bias play the biggest role in
the intention of adopting software components.

Polančič et al. [52] conducted an online survey of 389 software developers for examining the major
drivers towards the adoption of a framework and its success. The authors framed the creation of
the survey items with the Technology Acceptance Model (TAM) [9], a predecessor of UTAUT that
explains how users arrive at accepting any technology through the perceived usefulness and ease-

1 DOM is an application programming interface (API) set and a model that defines the logical structure of web
documents and the way a document is accessed and manipulated. [38]

2 AJAX is a set of web development practices and techniques for enabling asynchronous web applications on the
client-side [19]



of-use. The survey asked the respondents to identify a framework that they were either developing
or using. Then, participants rated Likert and semantic differential scale items also related to TAM.
That is, participants quantitatively explained a post-adoption decision. The authors found that a
successful adoption of a framework is mostly driven by a continuous intention to use the framework
and its perceived usefulness. Additionally, the authors empirically demonstrated that TAM can be
applied to the post-adoption research of frameworks, and that the post-adoption TAM constructs
anticipate the success of a framework. The investigated programming languages were mostly Java,
and the .NET framework, and JavaScript is not mentioned.

2.2 Practitioner viewpoints

To further investigate the overall knowledge in the field, we selected some insightful pieces in the
gray literature of developers’ personal experience and the advice they shared with others, and the
most prominent technical websites specialized in our topic of interest.

According to Bennet [4], there are four parameters that a JavaScript framework must ensure in
order to be considered as a meaningful choice. The parameters are (1) a normalized event model,
including attaching and removing listeners, automatic scope correction and access to the event itself,
(2) a normalized wrapper around XMLHttpRequest3, including the ability to specify callbacks to fire
when the request finishes, (3) a set of normalized utilities for working with the DOM, especially for
getting or setting styles and managing class names, and (4) facilities for creating visual animations,
whether predefined or custom, which handle cross-browser timing issues. Bennet also suggested
that a JavaScript framework should present the scripting language as it is and not make it similar
to other languages, and that the DOM methods should be used only if wrapping is necessary for
cross-browser compatibility. Also, the name of objects inside a JavaScript library or framework
should be meaningful and possibly be inherent to the functionalities that the library or framework
provides, and that the documentation is very important for easily understanding a framework and
extending its functionalities.

Reyes [54] oriented towards an analysis of the maturity of a framework by retrieving information
on how long it has been developed and how often new updates are released. It is important to
Reyes that the community behind a benchmark consists of experienced developers. He took into
consideration the requirements of the framework with respect to the requirements of the web page.
Programmers should focus on the usability of the framework. Reyes suggested checking if the
framework needs continuous updates and if the programmers are required to know the libraries
and frameworks very well. The analysis also focused on the documentation, which is crucial for
satisfying information needs.

Walsh [68] advised analyzing the speed of a JavaScript framework by using the MooTools Slick
Speed test [61]. The tool evaluates the speed and validity of selectors of Cascading Style Sheets
(CSS) version 34 for MooTools 1.2 [47], MooTools 1.3.1 [47], jQuery 1.5.1 [34], Prototype 1.7 [53],
YUI 2.8.2 Selector [71], and Dojo 1.5 [11]. A JavaScript framework should not be heavy in terms of
storage as it could grow while features are added or extended. The author considered modularity as
a crucial aspect to check for. The community and its activity are important, as Walsh considered
those factors as reflective of quality and interest. As with any other programming language, it is

3 XMLHttpRequest is a specification for an API that provides client-side functionality for transferring data between
a client and a server. [37]

4 CSS is a set of style rules that apply visual properties to elements of a web document [3]



helpful to identify if the needs of the web application will be fulfilled and if implementation is
effectively time consuming or not.

While reviewing the practitioners area, we found three interesting projects aiming to make sense
of JavaScript frameworks. Two of them terminated their service during the peer review of this paper.

Jster.net [36] offers a categorization of 1780 frameworks and libraries5. The catalog is divided
into the following categories: Essential frameworks; User Interface; Multimedia; Graphics; Data; De-
velopment; Utilities; and Applications. The entries are ordered within each category in terms of their
popularity on GitHub as aggregated by the number of project favorites, forks, and a community-
based rating. There appears to be no support for the longevity of the libraries, which might become
obsolete over time.

The website designzum.com [10] offered a ranking of JavaScript frameworks based on parameters
such as weight (in terms of code), ease of learning and implementing, modularity, and simplicity of
wrapping up with new features. The list focused on two keywords: lightweight and simple to learn.
The website jsdb.io [35] ranked the JavaScript frameworks by exploiting four parameters coming
from the GitHub [30] repositories of the frameworks. The metrics used were composed of (1) stars,
or the number of GitHub [30] users observing the project, (2) the average length of time between
code commits, (3) the number of contributors in the last 100 commits, (4) the number of forks
made for a given project.

The review of the literature and of the practitioner’s sites has suggested that scientific research
has developed metrics that can be applied for measurements, and it also introduces a model which
is based on subjective criteria arising from qualitative research on the practitioners’ feedback. Prac-
titioners, however, appear to value more practical features of a JavaScript framework or library that
are important for developers. Niche technical websites have adopted miscellaneous, non-validated
variables to rank or list JavaScript frameworks.

This abundance of non-scientifically validated parameters has led us to research a model which
gathers the empirical and theoretical knowledge for identifying the relevant variables that guide
practitioners towards the choice of a JavaScript framework.

3 Methodology

In this section, we describe our chosen methodology. First, we characterize the study in terms of
our worldview. Secondly, we clarify variance-based and process-based research, so that we can char-
acterize the output of our study. Thirdly, we provide a description of the participants’ recruitment
process and criteria. Finally, we describe how we analyzed the data obtained from the interviews.

3.1 Interpretive research

Our aim is to deliver new knowledge concerning the features that decision makers weight as impor-
tant when selecting a JavaScript framework. We research human behavior based on the perceptions
that the individuals offer us when asked on their adoption of a framework. We recognize that our
analysis of the participants’ perceptions will be further interpreted by us. This is why we conduct
interpretive research, which is frequently adopted when producing theories and models for explain-
ing phenomena [40]. Interpretivism is established in information systems research [69], but it is still
emerging in software engineering research. For this reason, we describe it here briefly.

5 They were 1573 when we first submitted the present paper.



Interpretive research derives from interpretivism, often interchanged with social constructivism [14,
40], and it is defined by Geertz [20] as “really our own constructions of other people’s constructions
of what they and their compatriots are up to” (p. 9). The assumption of this worldview is that indi-
viduals (participants and researchers) seek an understanding of the world they live in, and develop
subjective meanings of their experience toward objects, things, and phenomena [7].

Given the novelty of the research question and the lack of knowledge towards its answer, we
opted to design a qualitative analysis using semi-structured interviews with open-ended questions
to be executed and analyzed with the inspiration of grounded theory [41].

3.2 Variance based and process based research

We would like to clarify that the present work, while exploring the adoption process, is not process-
based research but variance-based.

Variance-based models and theories provide explanations for phenomena in terms of relation-
ships among dependent and independent variables [41,46]. In variance theory, the precursor is both
a necessary and sufficient condition to explain an outcome, and the time ordering among the inde-
pendent variables is immaterial [51,46]. Based on our experience with the literature, the majority
of software engineering research is variance-based, yet process-based studies are rising.

Process-based research development has its roots in studies attempting to explain how and why
organizations change [64]. Nowadays, process-based research activities attempt to understand how
things evolve over time and why they evolve in the way we observe [41]. Process data consist mainly
of stories—which are implemented using several different strategies—about what happened during
the observation of events, activities, choices, and the people performing them over time [41].

The output of the present work, while investigating the adoption process, is of variance type.
That is, we present a model of factors that influence the choice of a JavaScript framework but we
do not offer a representation of the adoption process itself. One of the implications of this choice
is that we do not offer any representation of the decision-making process per se, but the static
representation of the factors that lead to the adoption of a framework.

3.3 Participants recruitment

We planned the selection and recruitment of the participants so as to identify individuals who
could enrich the research outcome through sharing their experiences and thoughts. We followed a
judgmental sample strategy, meaning that we followed a non-probability sampling technique and we
purposely looked for experts in order to analyze their experience. Criteria for participation was to
be either expert developers, decision makers in their companies, or entrepreneurs, or were at least
able to motivate their JavaScript frameworks’ adoption. As we analyzed the data, we performed
small refinements to the criteria (e.g., looking for participants with in-house developed frameworks
instead of adopting an open-source one) until reaching theoretical saturation as suggested by Strauss
and Corbin [60]. We also aimed to obtain a sample size in the range of the suggested number of
participants in qualitative studies [25].

The recruitment process started by searching for developers who were working actively in the
web development field and who were competent, proficient and experts in the domain.

The time it takes to be proficient in a programming language strongly depends on the program-
mer’s acquired knowledge [55]. The model proposed by Dreyfus and Dreyfus [13], which describes



skills acquisition, proposes these stages: novice, advanced beginner, competent, proficient, and ex-
pert. This model states that novice and advanced beginners have no recognition of the relevance of
the task they are assigned to, while those who are competent, proficient and expert do. The first
two levels of skills apply to those individuals who are not autonomous and are not able to deal
with the resolution of complex situations. We expected the participants to belong to the compe-
tent, proficient, and expert level of skills in the field. We expected the developers to be decision
makers and to have a broader view on the technologies used for web development and particularly
JavaScript. Furthermore, we expected them to have a historical knowledge of the frameworks and
their evolution over time.

Developers behind JavaScript frameworks tend to be part of open source communities. They
share their knowledge on forums, blogs, web pages or online magazines, so the recruitment phase
started on the Web.

The recruitment process employed social networks as a primary source for finding candidates.
We identified the hashtag (#) symbol and tool as a key to filtering the information spread over
the Web. The hashtag is a form of meta data tag used in social networks such as Twitter [63],
Facebook [16], and Google+ [23]. Hashtags allow social network users to post information on a
specific topic by using the same tag. This allows people who search for a specific keyword to have
all related posts grouped in the view.

We structured the research by keywords into three approaches, all of which employed different
social networks. The first approach focused on the widely adopted social networks Twitter [63],
Facebook [16], and Google+ [23]. We inspected these three social networks using the following
hashtags: #javascript, #javascript #framework, and #web #development.

The second approach was to research more specific figures based on the participants’ skills and
knowledge in a more formal platform such as LinkedIn [42].

The third approach consisted of researching within the communities related to JavaScript within
the social coding platform GitHub [30].

We reviewed the initial query results every 4 hours for a week. The research results returned posts
by developers, help requests from novices in the field, talks from journals and posts for advertising
services. We focused on the posts of developers. We inspected their profiles to see the description of
their working area and skills. In those cases where a website was included in the profile description,
we inspected the website for any additional information on the candidate that could be helpful
to identify his current work and past experience. In some occurrences the reference websites were
blogs maintained by the candidates. We prepared an invitation text for the recruitment, which was
adapted depending on whether more detailed information on the candidate could be retrieved.

E-mail recruitment offered a brief explanation of where the contact was retrieved from and the
purpose of the research. We also specified the time commitment expected of the interviewee. We
obtained either a verbal or written consent prior to recording the interview. The e-mail specified
that participation was on a voluntary basis and that to drop out at any point was possible without
consequences. Participants were informed that we would not collect data for third parties, that
the data would remain with us and the transcripts would not be published but only the research
findings supported by anonymous quotes. We used participant codes to identify candidates so that
the responses could not be traced back to the participant’s confidential data. It was mentioned
that no detailed information concerning the company they were working for would be asked for
or revealed in the final report. We ended with our contact details, which could be used in case of
interest.



The second approach focused on a professional social network, which is LinkedIn [42]. Here,
professionals complete their profile descriptions by adding skills and certifications. The recruitment
in this approach was based upon the skills. Candidates were recruited by sending them direct
messages.

The third approach was to get into the heart of JavaScript framework design, by analyzing
GitHub [30] repositories. Some JavaScript framework communities were chosen based on popular-
ity such as AngularJS [2], jQuery [34], NodeJS [48], etc. GitHub [30] allows the research of the
community for the most trending repositories and developers of the month for any of the languages
in their repositories. We selected the candidates appearing in this view for the month of July 2014.
We contacted them if they provided any e-mail or company contact information.

3.4 Interview design

The qualitative research interview, especially when undertaken through an interpretive worldview,
seeks to describe the world and the meaning of specific phenomena based on the perception of the
participants [7]. The information retrieved during the interview stems from the experiences of the
participant. The interviewer can deepen the understanding of the responses by asking additional
questions as the process is interactive [44].

For the research design, we chose to employ a semi-structured interview approach, and we
formulated open-ended questions. This choice allowed us to briefly enter the subject of the research
and to discover new information if the persons were less eloquent than expected. The starting
questions, which are the results of a refinement process as the interviews were proceeding, are
available in the appendix (Section 8). Over time, fifteen practitioners agreed to participate in the
interview and three of them participated via e-mail. The interviews were conducted on the phone,
personally, via Skype and Google Hangouts, and via e-mail. Interviewees were asked to respond
with their availability and a time schedule appropriate for them for the interview.

We expected the duration of the interviews to be within five to ten minutes. We found it to be
an acceptable length as the candidates were participating during their free time. We informed them
in advance that the time commitment would not impact significantly on their time schedule.

3.5 Data analysis

We transcribed the interviews immediately after they were concluded. Then, we alternated phases
of data analysis with refinements of the interview skeleton. For analyzing the data, we developed
codes, which are words or phrases that summarize the content of a data segment, be it a word,
sentence, or paragraph [60]. Extracts of the responses can also be a code and we refer to those as
in vivo codes [60].

We analyzed the data with QSR International’s NVivo 10 software tool [33]. Participants’ re-
cruitment and data analysis stopped when we agreed to reach theoretical saturation. That is,
interviews and analyses were performed iteratively with few participants at a time until the last
round of new interviews and analysis did not lead to changes to the resulting model.

We performed three iterative phases of data coding and analysis, namely:

Phase 1 Characterization and summarization of the interview extracts.
Phase 2 Identification of relationship between codes.



Phase 3 Identification of grouping categories and central categories for the taxonomy.

We describe these phases with the aid of a coding example, also known as chain of evidence, in
Table 1.



Interview Extract / Phase 1 Phase 2 Phase 3
Interviewer: “Do you think that the framework
you use is mature enough, and why?”

Maturity
depends on size
of JSF and size
of community

Factors-
Social influence-
Community size

P01: “Angular is huge [size of JSF] and well
developed and the community behind it too [size
of community]”.

Community size
and time of
activity imply
maturity

Factors-
Social influence-
Community size
Factors-
Social influence-
Community
responsiveness

P08: “every framework with time [activity time]
gets mature when many people around the world
try their hands in that [size of community]”.
Interviewer: “How close are you with the
community?”
P01: “We rely a lot on the community [frequent
contact with community] and on Internet sites
such as Reddit [feedback from other
programmers].”

The community
responds
promptly as
bigger the
framework is

Factors-
Social influence-
Community
responsiveness

P01 [continued]: “Communities are quite
important, we rely on them every time [frequent
contact with community] and as much big the
community [size of community] as faster you
receive responses from them [fast responsiveness]”

Questions are
replied quickly
in a big
community

Factors-
Social influence-
Community size
Factors-
Social influence-
Community
responsiveness

Table 1: Working example of the coding process.
Color coding: [codes for characterization]; codes for relationships; codes for overarching categories; codes for UTAUT categories;



Table 1 provides three columns. In the first column (Phase 1), we report an interview extract
and the corresponding code in square brackets that characterize the various parts of the inter-
view extract. Participant P01 used the adjective “huge” referring to both the community size and
JavaScript framework size, while P08 referred to community size in terms of “many people around
the world try their hand in that”. These were the characterization and summarization codes we
identified in Phase 1. The phase produced 76 codes including labels and in vivo codes.

In the second column (Phase 2), we provide commonalities and relationships between the par-
ticipants and the codes of Phase 1. There, we connected the codes related to community size,
JavaScript framework size, and time of activity with a relationship implying framework maturity.
We also connected codes about community feedback with the size of a community. This phase aided
us in developing the implications that we summarize in Section 5.3.

In the third column (Phase 3), we show the final grouping categories of the codes. Community
size was grouped into the Unified Theory of Acceptance and Use of Technology (UTAUT) category
of social influence (explained next), which in turn is part of the factors category. Codes which
refer to a similar concept are grouped into a category. We identified five categories and twenty
subcategories of factors as shown in Figure 1 and Figure 2. We also produced two central overar-
ching categories, which are able to cover the entire spectrum of available categories. These central
categories are sometimes called themes in the literature and are strictly related to the research
question. The central categories we identified were Factors and Actors that lead to the adoption of
a JavaScript framework.

The coding process that produced the five main categories of Figure 1 was influenced by the
Unified Theory of Acceptance and Use of Technology (UTAUT) [65]6. UTAUT was proposed by
Venkatesh et al. [65] to explain the acceptance of technology by users. It is considered as an evolu-
tion of the older Technology Acceptance Model (TAM) [9], as it attempts to reduce its redundancy
and isolate the core determinants of user acceptance of technology adoption.” [1]. Four main con-
structs are direct determinants of behavioral intention to adopt a technology, namely performance
expectancy, effort expectancy, social influence, facilitating conditions, plus a fifth one, price value
(added in a revision of UTAUT [66])7. We explain the constructs when we introduce them in
Section 4.

UTAUT is considered to be the leading theory for explaining the adoption of technology [70].
A recent literature review by Williams et al. [70] found that UTAUT was employed to explain
the adoption of various technologies in several fields (e.g., communication systems, office systems,
e-learning technologies). In software engineering and related research fields, UTAUT was employed
as intended, by treating developers as technology users, for explaining the adoption tools among
developers, such as agile process supporting tools [29] and the use of recommended systems in inte-
grated development environments [50]. However, UTAUT (and its predecessor TAM) have also been
used for investigating the adoption of programming paradigms such as object-oriented program-
ming [27], learning and acceptance of algorithms [12] and programming languages [32] and, finally,
the developers’ intention to adopt existing software components [56] and programming language
frameworks [52], as we do in our study. All previous studies adopted UTAUT or TAM as a framing
component for designing quantitative questionnaires and to study developers’ post-adoption inten-
tions. While we also study developers’ post-adoption intentions, we adopted UTAUT to help us
build the higher-level items of our classification, post data collection.

6 We thank an anonymous reviewer for suggesting to look into UTAUT,
7 Mediating factors to technology adoption are gender, age, experience, and voluntariness of use [65]. We do not

consider these mediating factors as we do not test the theory in this study.



We inspected each second-level categories of Figure 1 and discussed if and how they could be
part of a UTAUT category. We would create a separate category otherwise. We will describe in
Section 4.2 that we found our categories to be a good fit for all UTAUT original categories with
the exception of one (Cost), which is however part of a revision of UTAUT [66].

As a final note, the reader might notice a resemblance of our coding phases to those proposed by
the grounded theory methodology by Strauss and Corbin in [59], which are called open, axial, and
selective coding. We are aware that many different coding strategy have been proposed by several
authors 8. However, we note that these strategies have evolved over time. As argued by Heath and
Cowley [28], the history of grounded theory presents several developments, interpretations, and
conflicts. Qualitative coding is specifically a part the clash, but a difference between the various
proposed coding techniques is debatable and almost negligible, if not uninteresting. Glaser stated
that fighting over a true grounded theory methodology is a “rhetorical wrestle” [22]. Researchers,
continue Heath and Cowley [28], should stop debating about grounded theory, select or develop the
method that best suits their cognitive style and research environment, and start doing research. We
are of the same stance and define our study as a qualitative interpretive study of semi-structured
interviews, which uses elements of grounded theory as proposed by Strauss and Corbin in [59].
Hence, our neutral naming of the coding phases. Even if we do not take a stance in the previous
matter, we describe our methodology meticulously to allow the evaluation of our study and to
ensure replications and extensions.

4 Results

This section presents the results of the research. Initially, we provide a classification of the partic-
ipants based on the judgmental sampling of the recruitment phase. Then, we introduce our clas-
sification of factors and actors leading to the adoption of a JavaScript framework. Each category,
sub-category, and code is demonstrated by one or more interview quotes.

4.1 Participants’ classification

We recruited eighteen participants for this study. The participants were located for working purposes
in the following countries: Albania, Germany, India, Italy, Netherlands, and the USA. The data was
collected via a phone interview for two participants, chat via Google Hangouts for two participants,
call via Skype for eleven participants and three participants requested the questions to be sent via
e-mail.

The interviewees were classified according to five attributes: (1) years of experience, (2) frame-
works used, (3) development focus, (4) company size, and (5) company type. The results are dis-
played in Table 2. What follows is a description of each attribute used in the classification.

8 Stol et al. [57] have conveniently summarized the major proposals for grounded theory, including coding tech-
niques.



ID
Experience

years
frameworks
used

Development
focus

Company
Size and Type

P01 4 Angular JS, Gulp JS, Node JS, pure JS FB Small Research
P02 4 BackboneJS, ExpressJS, jQuery, NodeJS, pure JS F Independent Worker
P03 4 Angular JS, jQuery, RequireJS F Medium Industry

P04 5 Own frameworks FB Medium Industry
P05 5 Own frameworks FB Small Industry

P06 6 Falcon.js, jQuery, LessJS, MooTools F Large Industry
P07 6 jQuery Mobile F Small Industry
P08 6 AngularJS, jQuery, UnderscoreJS, VanillaJS B Large Industry

P09 6 No frameworks F Independent Worker
P10 8 AngularJS, jQuery, ReactJS F Large Industry
P11 8 DojoToolkit B Large Industry

P12 8 EmberJS, AngularJS, BackboneJS FB Medium Industry
P13 9 AngularJS, jQuery, KnockoutJS F Medium Industry
P14 10 SpringJS B Medium Research

P15 10 jQuery, pure JS FB Small Industry
P16 11 Express.js, Node.JS, pure JS F Medium Industry
P17 12 jQuery, pure JS FB Medium Industry

P18 15 AngularJS, BackboneJS, KnockoutJS, NodeJS, UnderscoreJS FB Large Industry

Table 2: Classification of participants. F: front-end; B: back-end; FB: front- and back-end



Years of experience The participants answered the question “How long have you been developing
for the Web?” The minimum experience was 4 years and the maximum experience in the field was
15 years.

Framework used The participants answered the question “Do you use any frameworks for helping
development?” or “Which framework do you use for developing web applications?”. This clas-
sification includes three possible assignment strategies: (1) using no frameworks; (2) using own
frameworks; or (3) using one or more frameworks, which we listed. The need for this classification
arose from the fact that one of the participants stated that no framework was used for developing:

“I don’t rely or use any framework, except cases when [the customer] requires it [. . . ] I prefer
[pure] JavaScript. It seems more natural to work with the language than library [meant as
framework].”—P099.

Two participants stated as follows:

“I decided to create it on my own, I created some classes which interact with the underlying
system. The framework will be soon available for download. I will distribute it under GPL
license, for non commercial and for commercial use.”—P05

“[referring to a former statement of the interview that jQuery according to people is fantastic]
not now, although it helps me greatly expand the idea of what people need [to] make [their]
job easier, because i did my own framework”—P04

Development focus The participants stated whether they were working for the front-end or for the
back-end of systems, or for both. Three of the participants were working exclusively for the back-
end, six of them stated they were working for both the front and the back-end, while the rest of
the participants stated they were working mostly or exclusively for the front-end.

Company size and type Two participants stated they were working as freelancers, five were working
in large business companies, seven were working for medium-sized companies, and four were working
for small companies with a maximum of 5 collaborators. The majority of the developers worked
for companies which have IT as their core business while the others work in different areas such
as industry (sales, outsourcing, finance) and research. We collected this information in the form of
memos during the participant recruitment phase.

4.2 Factors leading to the adoption of a JavaScript Framework

Here, we describe our classification of factors leading to the adoption of a JavaScript framework.
First, we present the overall classification scheme of the Factors central category; then, we describe
each discovered category and code which are accompanied by citations of interview extracts. The
interview extracts are reported verbatim with respect to what the participants declared. Between
some of our codes, we also offer implications that we derived from observations of the relevant data,
should we generalize our results. These implications are then listed altogether in Section 5.3.

9 Our quotations are verbatim excerpts, except for spelling and punctuation corrections. If we applied changes to
wording (for comprehensibility), these are indicated by square brackets.



4.3 Factors

The Factors category groups the attributes of a JavaScript framework according to a set of categories
of features. The categories and subcategories that we developed during the coding phase can be
observed in Figure 1.

4.3.1 Performance expectancy

Performance expectancy is defined in UTAUT as the degree to which an individual believes that
using the potentially adoptable system will help to attain gains in work or outcome performance [65].
We rework the original definition to observe the performance gains of the built application instead.10.

Performance

The participants explained their concern on the overall performance of the final application and on
its size. A drawback was described as when the number of lines of code to build basic functionality
is too high or when the payload for including the required functionality is too high in terms of
memory and bandwidth. A participant stated the following in this regard:

“[making a decision] may also be related to the requirement that you actually have. Like
using React right now seems to promise a lot of performance benefits [. . . ] to the hardware
side”—P10

“Google [PageSpeed Insights] measures all the cache timing, cookies, it measures and tells
you if this JavaScript weights too much and it tells you to optimize it and that’s why we use
Less. We have been using Less a lot recently.”—P06

“jQuery is quite good for Sharepoint as we want to touch the server as [little] as possible
and that’s why we put [a] bunch of code that creates the page without touching the server
side and so the page is updated only by the engine of javascript. ”—P17

Implication: A framework [documentation, author, website] should state clearly if it is intended
for developing applications that will run relying mostly on the resources of the client or on those of
the server.11

Size

The size of an application developed via a JavaScript framework is used as a parameter for evaluating
new frameworks to use:

10 One reason for our reworked definition is that, in our interpretation of the data, our participants saw their
job-related productivity proxied both by application performance and ease of their daily operations, that is effort
expectancy as we describe in the next sub-section. This is in line with the general open debate regarding what
developers’ productivity actually is (see for example, [5,17,39]), as well as when applying UTAUT in the context of
software engineering, where performance expectancy can be interchanged with effort expectancy [29,56]. We opted to
support our participants both ways, and concentrate gains in the product’s performance as performance expectancy,
while ease of use and programming effort belong to effort expectancy in the next sub-section.
11 Several implications emerged from the data, and we first report them near the relevant evidence.



Price Value

Suitability

Updates

Modularity

Isolation

Extensibility

Automatization

Size

Performance

Understandability

Learnability

Community Responsiveness

Community Size

Collegial Advice

Complexity

Performance 
Expectancy

Effort Expectancy

Facilitating 
Conditions

Social Influence

Competitor Analysis

Cost

Fig. 1: Factors leading to the adoption of a JavaScript Framework



“I developed a small demo prototype to see how it [the framework] actually is practical, so
how much code it produces for example.”—P12

Implication: The number of lines of code of the applications created by means of the framework
should be as low as possible.

4.3.2 Effort expectancy

Effort expectancy is the degree of ease associated with the use of the system [65]. Here we embrace
the UTAUT definition, but we further characterize it by including those aspects that are related to
when a framework reduces the effort and complexity when conducting programming tasks.12

Learnability

Reflects the effort that a developer should make to learn the framework. The requirements for
starting to use a framework can be high or low but this also depends on the technical skills of the
developer. Some participants stated that they choose the framework and libraries according to the
time they are given to submit the project.

“Most of the time you search for plugins to do something small and there you do not have
to learn. You just check if it does what you need it to do. Otherwise, let’s for instance refer
to AngularJS it would take some weeks to learn the basics.”—P03

Complexity

A perceived reduction of complexity while developing is an important adoption factor.

Interviewer: “What do you mean by benefit? Is it in terms of a specific quality that they
satisfy?”
P01: “We want to avoid complex systems and we want libraries [meant as frameworks] to
integrate with what we already have.”

Interviewer: “What did you like most of this framework?”
P08: “Every framework offers a new learning [experience,] the best feature is you don’t need
to be rockstar in the vanilla JS also these frameworks let you do many tasks which were earlier
very very complex to implement which lead in saving the time, making the performance good
and it [makes] the UI experience very good.”

Understandability

Comprises the attributes of software that allow users to recognize how the JavaScript framework
can be applied and used.

A well-documented framework enables time to be saved and more quickly extends the function-
alities coming with the base source code.

12 See footnote 10.



“You also check the documentation if you want to do something which is not already available
in the examples. Meaning, if you want to do something more extravagant.”—P03

Additionally, developers look for running, documented examples to base their work on.

“There are a couple of methods that you should do an override and the rest it does auto-
matically. There is a skeleton of the application and it guides you on how to implement the
application. This is a big advantage according to me.”—P14

“Most of these JavaScript frameworks come together with a set of examples and we [inspect]
them to understand how we can use the package. If from the examples we notice that it
seems easy enough then we take it into consideration otherwise we pick another one.”—P15

Implication: Documentation should be precise and include several examples for implementing
common tasks. Documentation should allow developers to find guidelines on implementing a feature
quickly.

A framework with a clear code structure contributes to shortening the time a programmer needs
to become familiar with the new platform.

“I got interested in AngularJS because of the two way data binding, and clean and easy
to comprehend structure of the code. It is easy to become productive quite fast with this
framework.”—P02

Implication: The code that implements a framework should be easy to read and understand. At
the same time, a framework should allow the creation of cleaner code as well.

“I love the idea of directives. This makes it so much easier to reuse code, and the front-end
code looks so much cleaner and easier to comprehend.”—P02

“if you look at React you see a lot more computer science basics there, a lot of ideas that
should help you structure your application, as well as use the most simplest approach like
not mutating state and always having just one flow through your application and I think
this is really beneficial.”—P10

Implication: A framework should enable the development of clear code.

4.3.3 Social influence

Social influence is the degree to which an individual perceives that important other people either
use a system, or believe that s/he should use the system [65]. Subjective norm, social influence and
peer pressure, as well as competition [66] could drive the adoption of a technology.

Competitor analysis

Developers proxy the advice from competitor analyses, as follows:

“We have also done some research on the market: how many companies, if there are other
companies in similar context which are using Angular. And we found quite a lot of those.”—
P12

Implication: A framework is estimated as reliable if used by similar companies in their pro-
duction environment.



Collegial advice

The code represents those direct recommendations from peers and self-constructed networks of trust
that practitioners employ when considering a framework.

Collegial advice is built by perceiving the popularity of a framework, as outlined by P04 and
P18.

“People were always talking about the fantastic jQuery”—P04

Interviewer: “Do you use the same principles [the proof of concept involves rebuilding web-
sites with a new framework] when you have to choose libraries and frameworks for developing
a specific functionality?”
P18: “Yes, the main principles involved, obviously we look at how popular is the library
[referring to a framework] cause that helps indicate whether or not it has been used in
existing projects.”

Practitioners seek the Web for reviews, experiences, and opinions of peers, e.g.:

Interviewer: “So did you base your choice [jQuery and jQuery Mobile] also on blogs, on
community or anything else?”
P07: “Particularly blogs, there were blogs which did comparisons on both the ease of use
and the completeness of the arguments covered by the framework.”

Practitioners suggested that, by looking at the presence of several mentions of the framework
including examples and tutorial, they were more convinced by the choice.

“Before using any framework we study the framework by visiting the sites, searching video
tutorials and once we are comfortable enough then only we use them.”—P08

Developers also interact with colleagues, e.g.:

“If there is something particularly useful [. . . ] we can talk to the Ambassador of the area, in
this case for example the Test Ambassador.”—P07

Community size

When talking about the attractiveness of JavaScript frameworks, the participants often mentioned
the communities behind the development of the frameworks. Developers try to identify products that
are expected to be used in the long term and that are improved continuously. The community is the
heart of an open-source project as it is a container for new ideas to extend product functionalities,
and bug fixes. The larger the community, the faster the response time in issue resolution. We
developed two codes related to the community, namely community size and (next) community
responsiveness.

Interviewer: “Which parameters did you check or did you test for your study [referring to a
search for a JavaScript framework]?”
P12: “Well it was mainly the community size was one criteria, then the development tools
which you had available for the framework.”
Interviewer: “How come you changed from Java MVC to Angular JS?”



P12: “Well, basically it is for a new product we are doing and there we are planning to
potentially extract some source code parts of the product into the open source community
and therefore Angular JS is much more convenient. Because the community around it is
much bigger. ”
Interviewer: “So you mean the people who are contributing?”
P12: “Yes, the people who are contributing. And then it is more modern let’s say [. . . ]”

Interviewer: “Currently which framework would you advise more [...]?”
P12: “Currently the focus is for sure on Angular but also Ember is quite diffused. The
problem is with Ember it has for example a quite young community so you do not really
know yet how it is going in the long term.”

P10: “The React ecosystem is not as large as the Ember or Angular ecosystem it still needs
some work on a few thing[s] like having components for tag input or day pickers but nothing
really major that everybody is using, so I think React especially could benefit from a larger
community and have more influence there.”

Community responsiveness

As mentioned above, community size went hand-in-hand with the perceived responsiveness of the
community. Developers look forward to active communities, because it is expected that issues are
solved quickly.

“Communities are quite important, we rely on them every time and, [the bigger] the com-
munity [, the] faster you receive responses from them. [. . . ] When querying a community of
open source for such big projects such as AngularJS it is easy that you receive a fast response
very easily [and quickly].”—P01

Implication: The community behind a framework is its heart and as such its size and contrib-
utors signal the trust of developers in the technology.

Decision makers place value on the age of a framework as a proxy of the work of the community
behind it.

Interviewer:“Do you see Angular as a mature enough framework?”
P12: “Yes, I would say yes. ”
Interviewer: “Because it has some characteristics like you said: the community and what else
comes in your mind?”
P12: “Also because of its age probably because it is the oldest framework which is around.
It took years to get popular and now in these years it took off. So that’s probably the [most
important] reason and then also compared to the features. So it has already some advanced
features in respect with the other frameworks. ”
“I think AngularJS is a mature framework also because of its age probably because it is the
oldest framework which is around. It took years to get popular and now in these years it
took off.”—P12

“Every framework with time gets mature when many people around the world try their
hands in that.”—P08

Implication: Frameworks which have been around for a longer time are preferred to new ones.



4.3.4 Facilitating conditions

Facilitating conditions are defined as the degree to which an individual believes that an organi-
zational and technical infrastructure exists to support the use of the system [65]. In our specific
case, it collects those framework characteristics in the context of suiting current requirements and
integration potential.

Suitability

Collects the attributes which express if the product is appropriate for fulfilling the tasks required
in a specific function.

One of the front-end programmers stated that searching for a framework or a functionality is
mostly looking for what problem it is solving. Several others pointed out that nowadays libraries
are commonly included in the native libraries of a framework.

“If I go for Knockout JavaScript if I want to go for HTTP connectivity I will check if jQuery
has something but when you take AngularJS it has its own library to do that.”—P13

Implication: Simple tasks such as event handling, DOM manipulation, and real time component
updates should be automatized.

A framework which can create a complete application fulfilling the expectations of the developer
gains advantage over others; it is seen as a good solution for saving time and avoiding exhaustive
search for the suitable functionality.

“[referring to Dojo Toolkit] I chose this framework because I needed something which could
create complete applications and something that could handle the chaos that was by that
time of the JavaScript libraries and this framework does both of these things in a decent
way.”—P11

Decision makers evaluate JavaScript frameworks over time and according to tasks and needs.
They can make proposals to their team leader (or the rest of the team in case of self-organized
teams). The team leader (the team) analyzes the request to identify how it could possibly be
integrated into the project. If the integration is feasible, the leader (team) accepts the request or
identifies libraries which are already provided, which can achieve the desired functionalities.

P07: “If there is something particularly useful [... and] if it implements something interesting
they [the frameworks] are inserted in the project. Then they [team leaders] organize tech
talks to teach how to use the new added libraries [meant as framework functionalities].”
Interviewer: “During the tech talks do you discuss the structure of a library, functionalities
or what else?”
P07: “Yes, for instance I needed to use PowerMojito which is an extension of Mojito. I would
go to the ambassador which takes care of the test section. If I go there and tell him that
using it has this and that advantages, he can decide to insert it in the libraries [meant as
framework functionalities] which are imported by default. He then decides to arrange tech
talks, during which they talk about the functionalities and why it is useful and how to use
it.”



The framework should not only be suitable to achieve a requirement, it should also be suitable
for the software engineers. A developer stated that they also appreciate the architecture of the
framework as it allows him to have continuous control and full visibility of the structure, and this
is one of his needs.

“I am more and more moving toward React because it is solving the problems in a more
elegant way, in my opinion. So organizing the rendering strategy between all your components
and parts of the application is way more organized if you use React.”—P10

Updates

Describes the need of developers to use frameworks which (1) are continuously updated and (2)
extend their functionalities to stay competitive in the market.

“And then AngularJS is more modern let’s say. So it has some features which Java MVC
didn’t have or doesn’t yet have.”—P12

“[. . . ] also [frameworks should] allow the implementation of new technologies”—P04

Implication: Frequently updating a framework with new features for matching web design trends
is evaluated positively.

Updates ensure compatibility, as well.

“The issue was that MooTools did not have a continuous evolution and had a lot of bugs
and issues with different browsers.”—P06

Implication: Applications created through a framework should run in different browsers.

Modularity

One of the developers who was not using any framework for developing but was integrating libraries
into pure JavaScript code, stated that the principle of modularity does not apply when using your
own code as sometimes issues of compatibility can occur:

Interviewer: “Did it ever happen that they did not fully integrate with what you were de-
veloping?”
P09: “You bet. This is not so rare. Sometime, I have to look around and implement another
one library or to hack and modify the source code.”

A developer who had built their own framework pointed out that another crucial aspect was
the need for extensibility and modularity in the sense of scalability, that was the reason they
programmed a new framework for JavaScript.

“The framework is composed of different libraries, allowing scalability and also allows users
to use their own libraries [meant as framework component], making them part of the core
system [. . . ] It allows to change one module without affecting the others.”—P04

Implication: A framework should be modular; changing a module should not affect others.
The modularity of a framework means that it is flexible, too. It should be easy to import libraries

and features, as portrayed by P12.



“As far as I know there is no really good approach for modularity in the application. So if you
have, if you want to implement some more advanced features like lazy loading of modules
and that stuff you have to do it on your own. [. . . ] AngularJS allows importing external
libraries because most of the parts are based on jQuery, however you have to wrap those
into Angular directives. So that’s for sure one disadvantage of Angular. [. . . ] you cannot
simply take a jQuery plugin for instance and put it into the project. You could, but it is
not suggested by the Angular team. You have to wrap it such that you can augment those
plugins by augmenting the initial HTML code basically. So through those Angular directives.
That’s how they call it.”—P12

Another type of flexibility achieved trough modularity is the possibility to add a framework at
a later stage of development.

“I start with pure JS to do the basic and necessary stuff and then use framework or lib.”—P09

Implication: Libraries that come with a framework should enable the achievement of basic and
advanced functionalities at any development stage.

Isolation

The participants declared that they tend to develop applications that exploit the client as much as
possible instead of the server. This design strategy is done to preserve the server status.

“We want to touch the server as little as possible and to keep the application mostly on the
client side, that’s why we put [a] bunch of code that creates the page without touching the
server side and so the page is updated only by the engine of JavaScript.”—P17

Extensibility

Pointed out by a participant when talking about issues in extending frameworks:

“Let’s say it is easier to use [Angular] but more difficult to extend. Let’s say there are other
frameworks which are more difficult to use but then are more extensible.”—P03

“If something is not already there in Angular JS it is flexible enough to use external libraries
as well.”—P13

Implication: A framework should allow external libraries to be imported without having to adapt
them.

4.3.5 Price value

Price value was not included in the original UTAUT, yet our participants often mentioned the costs
of adopting a framework. Indeed, price value was included in a revision of UTAUT [66] and we
adopted it as one of our major categories.



Team Leader

Team

Developer

Customer

Fig. 2: Actors leading to the adoption of a JavaScript Framework

Cost

Five of the participants stated that they try to use mostly free frameworks. The participants stated
that this depends on the customer’s requirement to keep the costs low:

“If something [referring to frameworks and libraries] is not free then we see how much it costs,
if it is bearable for the company and plus what functionality it is providing to us.”—P13

“The libraries we use are chosen first of all [from] the open source [community]. The customers
prefer projects which are composed of many open source components.”—P15

The developers motivated the choice either as coming from a company’s strategy or as coming
from the customer’s requirements.

“I proposed the change due to the fact that we have to go open source”—P12

Implication: Free frameworks are preferred to paid ones.

4.4 Actors leading to the adoption of a JavaScript Framework

The codes for the Actors central category refer to how the developers decide which framework to
proceed with or which library to include during the development. The categories that we identified
are displayed in Figure 2.

Developers affirmed that the solution is based on the customer’s decision in case they had to
work on existing projects or chosen freely according to the parameters presented in the previous
section. It was interesting for the purpose of the research to explore the adoption of frameworks in
teams. Two categories arose: decisions made as a team and decisions made by the team leader.

Teams adopt different strategies for evaluating frameworks, as stated in the following interview
snippet.



“We took an existing set of pages and rebuilt them using Angular and what we looked at was
the amount of effort involved and how easily testable it was. We check in team the libraries
[meant as frameworks] which could work good for solving an issue and we meet and talk, as
the community is quite big and it evolves quickly. We choose the one library which could
bring us more benefit. Nothing is rushed because there is too much out there.”—P18

“We have a team that researches and then we propose the solutions to the others so that
each one can say his opinion. We state the characteristics of each and then we discuss which
one to pick.”—P01

“If there is something particularly useful which is not being covered by the libraries [meant
as frameworks], which have already been imported, we can talk to the Ambassador of the
area, in this case for example the Test Ambassador. You show him the plus and minus. If you
need something else, for instance recently, I needed the framework we use for doing tests.
The one we use to create models of computations.”—P07

5 Discussion

In this section, we first compare our results to the related work in the scientific literature and the
practitioner viewpoints. Then, we state the theoretical and practical implications of the results.
Finally, we elaborate on the limitations of the study.

5.1 Scientific literature

Our findings confirm that the size of a framework, as suggested by Misra and Cafer [45] and Gizas
et. al [21], is important for practitioners, but it is not sufficient alone as a metric. Practitioners care
to understand the payload brought by frameworks in the context of their own web applications as
well. For this purpose, developers implement ad-hoc benchmarks to measure the number of lines of
code generated for a sample web page or a sample application. The performance of the framework
measured in terms of execution time, as introduced by Gizas et. al [21] and Misra and Cafer [45],
is confirmed to be a factor influencing the choice of a JavaScript framework.

This research corroborates the statement by Graziotin and Abrahamsson [24] that decision mak-
ers study the documentation to evaluate the time they would need to be productive. More specif-
ically, developers tend to prefer frameworks that include examples of achieving simple tasks and
hints for achieving advanced functionalities. Additionally, our research supports the classification of
a frameworks’ maturity introduced by Graziotin and Abrahamsson [24], based upon the frequency
of released updates. This classification is extended by adding the frameworks’ age parameter. This
parameter was also mentioned as an important factor by the technical blogger Reyes [54].

Stefi [56] employed UTAUT for constructing a quantitative survey investigating the intention
to adopt software components. While a direct comparison with our work is a difficult task, we
can report that our results support the findings that UTAUT performance expectancy and social
influence have a role in the adoption decision of JavaScript frameworks as well.

The work of Polančič et al. [52] has a very similar context to our work; however, they employed
a different theory for constructing their instrument (TAM instead of UTAUT). We attempt to
compare results here, too, given that UTAUT was born as a TAM successor. The most impressive



results of the study showed a strong relationship between the perceived usefulness and ease of
use of a framework and its adoption. We found supporting evidence in the qualitative data, given
that several of our codes were in the similar categories of facilitating conditions, effort expectancy
and performance expectancy. Also, Polančič et al. concluded that “framework developers should be
aware that the acceptance of frameworks is dependent on framework users perceptions.” (p. 582),
which we fully support in our study. Developers are users of frameworks, and produce for users
or frameworks. This is why it is important to understand which characteristics of a JavaScript
framework drive its adoption, for producing future frameworks.

5.2 Practitioner viewpoints

A JavaScript framework, as mentioned in the technical blog of Bennet [4], should be accurate and
represent the language as it is. This, according to our findings, can be achieved if the framework
allows developers to have an overview of the execution flow of applications. Developers like to
understand how the framework operates in order to promptly identify possible issues.

Our results confirm that modularity, as Bennet [4] reported, is a factor that plays a significant
role in the choice of the framework. Modular frameworks ease the process of the modification of code
sections without affecting other components. Our findings match the statement of Walsh [68] that
a framework should be suitable for achieving the functionality it addresses. Furthermore, decision
makers prefer frameworks which include libraries for achieving basic and advanced functionalities
in their core version.

Our research outlines the factors which influence the choice of a JavaScript framework, namely
performance expectancy (performance, size), effort expectancy (automatization, learnability, com-
plexity, understandability), social influence (competitor analysis, collegial advice, community size,
community responsiveness), facilitating conditions (suitability, updates, modularity, isolation, ex-
tensibility), and price value. These factors are evaluated by a combination of four possible decision
makers: customer; developer; team; and team leader.

5.3 Implications

Our research enriches the body of knowledge of technology adoption of software engineers. Our
taxonomy is organized with UTAUT but, on the lower level, identifies 16 attributes that are relevant
to the choice of a JavaScript framework. Several of these factors are novel, such as the native support
for basic and advanced features, the compatibility with existing infrastructures, the possibility to
choose if the application should run mostly on the client or on the server side, and its cost. To
our knowledge, this is the first qualitative study in the domain. As such, it sets basic building
blocks for quantitative and qualitative research on the factors we identified. Our model can also be
exploited by future studies on the process of adopting a JavaScript framework. While our research
has focused on JavaScript frameworks exclusively, future studies can verify the suitability of our
model regarding the adoption of frameworks for other programming languages.

The results of our study favor practical implications. Decision makers can employ the model
that we propose as a reference to evaluate new JavaScript frameworks or to confirm the choice of
the already chosen ones. We are not providing any quantitative approach to drive the selection, as
this is left to future studies. Practitioners are free to select how to measure the adherence of the
candidate framework to the factors we discovered, thus guiding the decision.



Our model can also be inspiring for those developers willing to publish new frameworks so as to
make them captivating. The variables introduced by the model reflect the thoughts and expectations
of practitioners which have a broad view on the portfolio of JavaScript frameworks in the market.
The development of a new framework could thus try to observe these recommendations so as to
gain popularity with respect to already existing ones.

Finally, this research has outlined a number of interesting observations that we offer in Ta-
ble 3. The implications are mostly directed at developers for the creation of desirable frameworks.
However, we believe that they can also be read by decision makers as guidelines for selecting a
framework, together with the taxonomy we produced.

� A framework [documentation, author, website] should state clearly if it is
intended for developing applications that will run relying mostly on the
resources of the client or on those of the server.

� The number of lines of code of the applications created by means of the
framework should be as low as possible.

� Documentation should be precise and include several examples for imple-
menting common tasks. Documentation should allow developers to find
guidelines on implementing a feature quickly.

� The code that implements a framework should be easy to read and under-
stand.

� A framework should enable the development of clear code.
� A framework is estimated as reliable if used by similar companies in their

production environment.
� The community behind a framework is its heart and as such its size and

contributors signal the trust of developers in the technology.
� Frameworks which have been around for a longer time are preferred to new

ones.
� Simple tasks such as event handling, DOM manipulation, and real time

component updates should be automatized.
� Frequently updating a framework with new features for matching the web

design trends is evaluated positively.
� Applications created through a framework should run in different browsers.
� A framework should be modular; changing a module should not affect others.
� Libraries that come with a framework should enable the achievement of basic

and advanced functionalities at any development stage.
� A framework should allow external libraries to be imported without having

to adapt them.
� Free frameworks are preferred to paid ones.

Table 3: Implications for JavaScript Frameworks developers and decision makers

It is worth noting that the previously stated implications have a stronger meaning when singled
out. When considered on the whole, the implications might carry cross-tradeoffs. For example, a
framework with an easy to understand code could be a paid one. Analyzing the tradeoffs is outside
the scope of this study. We leave our remarks as a suggestion for future research.



5.4 Limitations

The most significant limitation of this research is that the sample is limited. Although we did
sample up to an agreement that there was theoretical saturation, we decided to sample only for
expert individuals, not newcomers. Our 18 participants were recruited using ever refining criteria,
and we were able to gather a rich amount of data. We were able to reach theoretical saturation [58].
Additionally, the sample size belongs to the range of the suggested number of participants in
qualitative studies [25].

Another limitation of this study is that we relied on our participants’ own judgment for what
they considered a JavaScript framework. In particular, some participants declared to use in-house
frameworks without disclosing much about them.

A minor limitation of this study is that the interviews were done mostly using Skype, Google
Hangouts or on the phone. This kind of communication differs from the face-to-face interview. The
environment typically chosen for the interviews done in person would also have allowed more focus
on the emotions and expressions of the interviewees. Conversely, the participants are all familiar
with these instant messaging and conferencing technologies and feel more comfortable if they choose
the time and the location for the interview. Besides this, as the participants who were recruited
work in different countries it would have been economically unfeasible to arrange interviews with
all of them in person.

6 Conclusions

The proliferation and diversity of JavaScript applications has led to a plethora of JavaScript frame-
works. Novices and experienced programmers face several challenges to identify the patterns they
should take into consideration when choosing a framework. Furthermore, developers who wish to
release new frameworks require an overview of the most relevant characteristics that a framework
must ensure to guarantee its adoption.

The present work identified a lack of research for solving the previously reported issues when
selecting a JavaScript framework. Existing research has mainly focused on predefined metrics which
have been reported to have little meaning for practitioners. While benchmarks, technical reports,
and expert’s opinions are available, they suffer the same problem identified in the scientific research
field. The knowledge we were missing concerned the factors that drive developers towards the
adoption.

The purpose of our study was to identify and understand the factors that influence the choice of
a JavaScript framework with respect to another. In this paper, we reported a qualitative interpretive
study of semi-structured interviews. We interviewed eighteen participants who are decision makers
in their companies or on their own, or are able to motivate the JavaScript framework decision and
adoption.

Our research aimed to answer the research question Which factors and actors lead to the adoption
of a JavaScript framework?

Through a qualitative coding of the interview responses, we offer a model of desirable JavaScript
framework adoption factors. The factors are grouped into categories that are derived by the Unified
Theory of Acceptance and Use of Technology (UTAUT). The factors are performance expectancy
(performance, size), effort expectancy (automatization, learnability, complexity, understandability),
social influence (competitor analysis, collegial advice, community size, community responsiveness),



facilitating conditions (suitability, updates, modularity, isolation, extensibility), and price value. A
combination of four actors, who are customer, developer, team, and team leader, leads to the choice.

Our work confirmed those technical factors which had already been discovered in previous
research. However, we found that the factors introduced by prior research were only the tip of the
iceberg for understanding the adoption and are often assessed in ways that are not meaningful for
practitioners.

The present paper introduces several implications for framework developers and for the decision
makers in the context of technology adoption. Our classification offers desirable factors (Figure 1)
and suggestions (Section 5.3) that can drive the development of future JavaScript frameworks. On
the other hand, the same factors and suggestion can help current decision makers in the adoption
of existing JavaScript frameworks.

Our work lays down foundations for future research. Quantitative studies can be conducted in
order to employ or develop metrics for each of the discovered attributes we reported in Section 4.2
and Section 4.4. Future works should lead towards the creation of benchmarks that have real,
practical utility. Altogether, we envision the creation of a global ranking system of JavaScript
frameworks which will be valued by the practitioners. We believe, however, that such a system
should be created only after the development of metrics that operationalize our factors.

7 Acknowledgments

We would like to thank all the participants of this study.
Our gratitude goes to the editor and three anonymous reviewers whose feedback improved our

original efforts immeasurably.
Daniel Graziotin has been supported by the Alexander von Humboldt (AvH) Foundation.

References

1. Understanding How Social-Behavioural Science Theory Can Explain the Design of Software Websites, vol. 2016
49th Hawaii International Conference on System Sciences (HICSS). IEEE (2016)

2. AngularJS: Angularjs (2017). URL https://angularjs.org

3. Atkins, T.J., Etemad, E.J., Rivoal, F.: Css snapshot 2015. Tech. rep., W3C (2015). URL https://www.w3.org/

TR/CSS/

4. Bennett, J.: Choosing a JavaScript library (2007). URL http://www.b-list.org/weblog/2007/jan/22/

choosing-javascript-library/

5. Cheung, S.C., Orso, A., Storey, M.A. (eds.): Software developers’ perceptions of productivity, vol. the 22nd ACM
SIGSOFT International Symposium. ACM Press, New York, New York, USA (2014)

6. Craver, N.: New york is so cool for programmers, they even have this sign that keeps track of how many javascript
frameworks are out there (2017). URL https://web.archive.org/web/20170717154926/https:/twitter.com/

Nick_Craver/status/886192620065705984

7. Creswell, J.W.: Research design: qualitative, quantitative, and mixed method approaches, vol. 2nd, 3 edn. Sage
Publications, Thousand Oaks, California (2009)

8. Cunha, J., Moura, H.P., Vasconcellos, F.: Decision-making in Software Project Management: A Systematic
Literature Review. Procedia Computer Science 100, 947–954 (2016)

9. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theo-
retical models. Management science 35(8), 982–1003 (1989)

10. designzum.com: designzum.com (2017). URL http://designzum.com

11. Dojo: Dojo (2017). URL https://dojotoolkit.org

12. Doukakis, S., Giannakos, M.N., Koilias, C., Vlamos, P.: Measuring students’ acceptance and confidence on
algorithms and programming: The impact of the engagement with cs on secondary education. Informatics in
Education 12(2), 207–219 (2013)

https://angularjs.org
https://www.w3.org/TR/CSS/
https://www.w3.org/TR/CSS/
http://www.b-list.org/weblog/2007/jan/22/choosing-javascript-library/
http://www.b-list.org/weblog/2007/jan/22/choosing-javascript-library/
https://web.archive.org/web/20170717154926/https:/twitter.com/Nick_Craver/status/886192620065705984
https://web.archive.org/web/20170717154926/https:/twitter.com/Nick_Craver/status/886192620065705984
http://designzum.com
https://dojotoolkit.org


13. Dreyfus, H.L., Dreyfus, S.E., Zadeh, L.A.: Mind over Machine: The Power of Human Intuition and Expertise in
the Era of the Computer. IEEE Expert 2 (1987). DOI 10.1109/MEX.1987.4307079

14. Easterbrook, S., Singer, J., Storey, M.a., Damian, D.: Selecting empirical methods for software engineering
research. In: Guide to Advanced Empirical Software Engineering, pp. 285–311. Springer (2008). DOI 10.1007/
978-1-84800-044-5\ 11

15. ExtJS: Extjs (2017). URL https://www.sencha.com/products/extjs/

16. Facebook: Facebook (2017). URL https://facebook.com

17. Fagerholm, F., Ikonen, M., Kettunen, P., Münch, J., Roto, V., Abrahamsson, P.: Performance alignment work:
How software developers experience the continuous adaptation of team performance in lean and agile environ-
ments. Information and Software Technology 64, 132–147 (2015)

18. Fayad, M., Schmidt, D.C.: Object-oriented application frameworks. Commun. ACM 40(10), 32–38 (1997). DOI
10.1145/262793.262798

19. Garrett, J.J.: Ajax: A new approach to web applications (2005). Available at http://archive.is/NodKD
20. Geertz, C.: The Interpretation of Cultures: Selected Essays, vol. 1. Basic Books, New York, New York, USA

(1973)
21. Gizas, A.B., Christodoulou, S.P., Papatheodorou, T.S.: Comparative evaluation of javascript frameworks. In:

Proceedings of the 21st international conference companion on World Wide Web, pp. 513–514 (2012)
22. Glaser, B.G.: Choosing grounded theory. Grounded Theory Review 13(2), 3–19 (2014)
23. Google: Google plus (2017). URL https://plus.google.com

24. Graziotin, D., Abrahamsson, P.: Making sense out of a jungle of javascript frameworks - towards a practitioner-
friendly comparative analysis. In: Product-Focused Software Process Improvement - 14th International Con-
ference, PROFES 2013, Paphos, Cyprus, June 12-14, 2013. Proceedings, pp. 334–337 (2013). DOI 10.1007/
978-3-642-39259-7\ 28

25. Guest, G.: How many interviews are enough?: An experiment with data saturation and variability. Field Methods
18(1), 59–82 (2006). DOI 10.1177/1525822X05279903

26. Halstead, M.: Elements of Software Science (Operating and programming systems series). Elsevier Science Inc.,
New York, NY, USA (1977)

27. Hardgrave, B., Johnson, R.: Toward an information systems development acceptance model: The case of object-
oriented systems development. IEEE Trans. Eng. Manage. 50(3), 322–336 (2003)

28. Heath, H., Cowley, S.: Developing a grounded theory approach: a comparison of glaser and strauss. International
Journal of Nursing Studies 41(2), 141–150 (2004)

29. Hong, W., Thong, J.Y.L., Chasalow, L.C., Dhillon, G.: User acceptance of agile information systems: A model
and empirical test. Journal of Management Information Systems 28(1), 235–272 (2011)

30. https://github.com: Github (2017). URL https://github.com

31. https://github.com: Most starred github repositories (2017). URL https://github.com/search?q=stars%3A%

3E1&type=Repositories

32. Idemudia, E.C., Dasuki, S.I., Ogedebe, P.: Factors that influence students’ programming skills: a case study from
a nigerian university. IJQRE 3(4), 277 (2016)

33. International, Q.: Nvivo 10 (2012). URL http://www.qsrinternational.com/nvivo-product

34. jQuery: jquery (2017). URL https://jQuery.com

35. jsdb.io: jsdb.io (2017). URL http://jsdb.io

36. Jster.net: Jster.net (2017). URL http://jster.net

37. van Kesteren, A., Aubourg, J., Song, J., Steen, H.R.M.: Xmlhttprequest level 1. Tech. rep., W3C (2014). URL
https://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/

38. van Kesteren, A., Gregor, A., Ms2ger, Russell, A., Berjon, R.: W3c dom4. Tech. rep., W3C (2015). URL
http://www.w3.org/TR/2015/REC-dom-20151119/

39. Kettunen, P.: The many facets of high-performing software teams: A capability-based analysis approach. Systems,
Software and Services Process Improvement pp. 131–142 (2013)

40. Klein, H.K., Myers, M.D.: A Set of Principles for Conducting and Evaluating Interpretive Field Studies in
Information Systems. MIS Quarterly - Special issue on intensive research in information systems 23(1), 67
(1999). DOI 10.2307/249410

41. Langley, A.: Strategies for Theorizing from Process Data. The Academy of Management Review 24(4), 691
(1999). DOI 10.2307/259349

42. LinkedIn: Linkedin (2017). URL https://linkedin.com

43. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering (4), 308–320 (1976)
44. McNamara, C.: General Guidelines for Conducting Interviews. In Field Guide to Consulting and Organizational

Development. Authenticity Consulting, LLC (1999). URL http://managementhelp.org/businessresearch/

interviews.htm

https://www.sencha.com/products/extjs/
https://facebook.com
https://plus.google.com
https://github.com
https://github.com/search?q=stars%3A%3E1&type=Repositories
https://github.com/search?q=stars%3A%3E1&type=Repositories
http://www.qsrinternational.com/nvivo-product
https://jQuery.com
http://jsdb.io
http://jster.net
https://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/
http://www.w3.org/TR/2015/REC-dom-20151119/
https://linkedin.com
http://managementhelp.org/businessresearch/interviews.htm
http://managementhelp.org/businessresearch/interviews.htm


45. Misra, S., Cafer, F.: Estimating Quality of JavaScript. The International Arab Journal of Information Technology
9(November), 535–543 (2012)

46. Mohr, L.B.: Explaining Organizational Behavior. Jossey-Bass Inc (1982)
47. MooTools: Mootools (2017). URL http://mootools.net/

48. NodeJS: Nodejs (2017). URL https://nodejs.org

49. Ocariza, F., Bajaj, K., Pattabiraman, K., Mesbah, A.: An Empirical Study of Client-Side JavaScript Bugs. 2013
ACM / IEEE International Symposium on Empirical Software Engineering and Measurement pp. 55–64 (2013).
DOI 10.1109/ESEM.2013.18

50. Papadopoulos, G.A., Kuflik, T., Chen, F., Duarte, C., Fu, W.T. (eds.): GUI Design for IDE Command Recom-
mendations, vol. the 22nd International Conference. ACM Press, New York, New York, USA (2017)

51. Pfeffer, J.: Reviewed Work: Explaining Organizational Behavior. by Lawrence B. Mohr. Administrative Science
Quarterly 28(2), 321 (1983). DOI 10.2307/2392635. URL http://www.jstor.org/stable/2392635?origin=

crossref

52. Polančič, G., Heričko, M., Rozman, I.: An empirical examination of application frameworks success based on
technology acceptance model. Journal of Systems and Software 83(4), 574–584 (2010)

53. Prototype: Prototype (2017). URL http://prototypejs.org

54. Reyes, J.: How to Choose a Right JavaScript Framework (2010). URL http://designreviver.com/tips/

how-to-choose-a-right-javascript-framework/

55. Robins, A., Rountree, J., Rountree, N.: Learning and Teaching Programming : A Review and Discussion. Com-
puter Science Education 13, 137–172 (2003). DOI 10.1076/csed.13.2.137.14200

56. Stefi, A.: Do developers make unbiased decisions? - the effect of mindfulness and not-invented-here bias on the
adoption of software components. ECIS 2015 Completed Research Papers. p. 175 (2015)

57. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering research. the 38th International
Conference p. 120–131 (2016)

58. Strauss, A., Corbin, J.: Grounded theory methodology. Handbook of qualitative research 17, 273–285 (1994)
59. Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for Developing Grounded

Theory. SAGE Publications, Inc (1998)
60. Strauss, A., Corbin, J.: Basics of Qualitative Research (3rd ed.): Techniques and Procedures for Developing

Grounded Theory, vol. 3. SAGE Publications, Inc., 2455 Teller Road, Thousand Oaks California 91320 United
States (2008). DOI 10.4135/9781452230153

61. test, M.S.S.: Mootools slick speed test (2017). URL https://github.com/mootools/slick/tree/master/speed

62. Tiobe: Tiobe Index (2015). URL http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

63. Twitter: Twitter (2017). URL https://twitter.com

64. Van De Ven, A.H., Poole, M.S.: Explaining Development and Change in Organizations. Academy of Management
Review 20(3), 510–540 (1995)

65. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: Toward a
unified view. MIS Quarterly 27(3), 425–478 (2003)

66. Venkatesh, V., Thong, J.Y.L., Xu, X.: Consumer acceptance and use of information technology: Extending the
unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2012)

67. W3Techs: Web Technology Surveys - Usage of JavaScript for websites (2014). URL http://w3techs.com/

technologies/details/cp-javascript/all/all

68. Walsh, D.: 8 Considerations For Choosing Your JavaScript Framework (2007). URL http://davidwalsh.name/

javascript-framework-considerations

69. Walsham, G.: Doing interpretive research. European Journal of Information Systems pp. 320–330 (2006). DOI
10.1057/palgrave.ejis.3000589

70. Williams, M.D., Rana, N.P., Dwivedi, Y.K.: The unified theory of acceptance and use of technology (utaut): a
literature review. Journal of Ent Info Management 28(3), 443–488 (2015)

71. YUI: Yui (2017). URL http://yuilibrary.com

8 Appendix

Interview skeleton

We developed a generic open-ended interview skeleton, which was maintained to guide the inter-
viewer towards the logical flow of the questions to be asked.

http://mootools.net/
https://nodejs.org
http://www.jstor.org/stable/2392635?origin=crossref
http://www.jstor.org/stable/2392635?origin=crossref
http://prototypejs.org
http://designreviver.com/tips/how-to-choose-a-right-javascript-framework/
http://designreviver.com/tips/how-to-choose-a-right-javascript-framework/
https://github.com/mootools/slick/tree/master/speed
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://twitter.com
http://w3techs.com/technologies/details/cp-javascript/all/all
http://w3techs.com/technologies/details/cp-javascript/all/all
http://davidwalsh.name/javascript-framework-considerations
http://davidwalsh.name/javascript-framework-considerations
http://yuilibrary.com


1. How long have you been developing for the Web?
2. Which was your first programming language for the Web?
3. Which languages do you use for the front-end/back- end?
4. Do you rely on any frameworks for developing? If yes which ones? If no, do you develop in pure

JavaScript?
5. When did you start learning Java/JavaScript?
6. Have you ever used JavaScript frameworks? Which ones?
7. Which libraries did you use?
8. Why did you choose this scripting framework?
9. What did you like most about this framework/library?

10. How long did it take you to learn the framework?
11. What do you think of the quality of the framework?
12. Would you recommend this framework to others?
13. Do you think the framework you used was mature enough? How?
14. Were there any functionalities that you liked or disliked?

The question draft was used as a guideline for several interviews, except for special cases, such
as those where the participants had developed their own JavaScript frameworks or were not using
any JavaScript framework but were programming in pure JavaScript language. In these cases they
were posed questions like:

1. Which features similar to other frameworks did you include?
2. How do you decide which new features to integrate into your framework?
3. When did you decide to move from frameworks to pure JavaScript?
4. Would you generally recommend pure JavaScript or frameworks?

9 Vitae

Amantia Pano works as a system administrator at the Free University of Bozen-Bolzano in Italy.
She holds a MSc degree from the Faculty of Computer Science of the same university. Her research
focus is empirical software engineering, in particular on software development process. She collab-
orates with academic staff and students in preparing the required computational environments for
research and teaching activities.



Daniel Graziotin is a postdoctoral researcher at the University of Stuttgart, Germany. His
research interests include human, behavioral, and psychological aspects of empirical software engi-
neering, studies of science, and open science. He is associate editor at the Journal of Open Research
Software and academic editor at the Research Ideas and Outcomes (RIO) journal. Daniel was
awarded an Alexander von Humboldt Fellowship for postdoctoral researchers in 2017, the Euro-
pean Design Award (bronze) in 2016, and the Data Journalism Award in 2015. He received his PhD
in computer science at the Free University of Bozen-Bolzano, Italy.

Pekka Abrahamsson is professor of Information Systems at the University of Jyväskylä,
Finland. Prior to his current position he was a full professor at NTNU in Norway, dean and full
professor at Free University of Bozen-Bolzano, Italy and in University of Helsinki. His research
interests are centered on empirical software engineering, agile development and more recently on
software startups. He is the recipient of the Nokia Foundation Award in 2007 for his achievements
in the software research. He leads also the SSRN, the global network of software startup researchers.
He received his PhD on Software Engineering from University of Oulu.


	1 Introduction
	2 Related work
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusions
	7 Acknowledgments
	8 Appendix
	9 Vitae

