
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Understanding the Motivations, Challenges and Needs of
Blockchain Software Developers: A Survey

Amiangshu Bosu · Anindya Iqbal · Rifat

Shahriyar · Partha Chakroborty

Received: November 6, 2018 / Accepted: March 19, 2019

Abstract The blockchain technology has potential applications in various areas
such as smart-contracts, Internet of Things (IoT), land registry, supply chain man-
agement, storing medical data, and identity management. Although the Github
currently hosts more than six thousand active Blockchain software (BCS) projects,
few software engineering research has investigated these projects and its’ contrib-
utors. Although the number of BCS projects is growing rapidly, the motivations,
challenges, and needs of BCS developers remain a puzzle. Therefore, the primary
objective of this study is to understand the motivations, challenges, and needs of

BCS developers and analyze the differences between BCS and non-BCS development.
On this goal, we sent an online survey to 1,604 active BCS developers identified via
mining the Github repositories of 145 popular BCS projects. The survey received
156 responses that met our criteria for analysis.

The results suggest that the majority of the BCS developers are experienced
in non-BCS development and are primarily motivated by the ideology of creating
a decentralized financial system. Although most of the BCS projects are Open
Source Software (OSS) projects by nature, more than 93% of our respondents
found BCS development somewhat different from a non-BCS development as BCS
projects have higher emphasis on security and reliability than most of the non-
BCS projects. Other differences include: higher costs of defects, decentralized and
hostile environment, technological complexity, and difficulty in upgrading the soft-
ware after release. These differences were also the primary sources of challenges
to them. Software development tools that are tuned for non-BCS development
are inadequate for BCS and the ecosystem needs an array of new or improved
tools, such as: customized IDE for BCS development tasks, debuggers for smart-

A. Bosu
Department of Computer Science, Wayne State University, Detroit, MI, USA
Tel.: +1-313-577-0731
E-mail: amiangshu.bosu@wayne.edu

A. Iqbal, R. Shahriar, and P. Chakroborty
Department of Computer Science and Engineering, Bangladesh Uniersity of Engineering and
Technology, Dhaka, Bangladesh
E-mail: anindya@cse.buet.ac.bd, rifat@cse.buet.ac.bd, shuvopartho@gmail.com

ar
X

iv
:1

81
1.

04
16

9v
2

 [
cs

.S
E

]
 2

0
M

ar
 2

01
9

2 Bosu et al.

contracts, testing support, easily deployable simulators, and BCS domain specific
design notations.

Keywords blockchain · cryptocurrency · survey · bitcoin · ethereum · motivation ·
challenges

1 Introduction

In 2008, a person or entity under the pseudonym Satoshi Nakamoto, published a
whitepaper to introduce ‘Bitcoin,’ a digital currency (aka cryptocurrency) based on
an immutable and decentralized public ledger known as blockchain [61]. Currently,
‘Bitcoin’ is the leading cryptocurrency with a market cap of over 100 billion USD.
On the other hand, the blockchain technology that runs Bitcoin could prove to be
much more significant [86], as a blockchain can record transactions between two
parties efficiently and in a verifiable and permanent way; thus eliminating the need
for the third party in the middle. Moreover, the availability of all the transactions
ever completed to all nodes makes a blockchain-based system more transparent
than centralized solutions. Therefore, apart from its application in cryptocurrency,
the blockchain technology has potential applications in various other domains such
as smart-contracts [26], Internet of Things (IoT) [42], land registry [89], supply
chain management [50], storing medical data [6], and identity management [46].

The technological innovation and fundamental changes required in the design,
development, and deployment of blockchain have also attracted tremendous inter-
ests from the software development community. For example, a recent study [15]
from March 2018 reported 3,000 Blockchain software (BCS) projects hosted on
Github1. In October 2018, within seven months, that number stands at 6,800 (i.e.,
more than doubled). Unlike traditional development, blockchain developers need to
be cautious about malicious actors, secure an immutable and distributed database,
and design efficient and reliable protocols withstanding the scarcity of tools and
resources which is unavoidable for a new technology. The unalterable nature of
a blockchain makes the recovery of an error prohibitively difficult or practically
next to impossible if the vulnerability is detected after the deployment. Although
some other large-scale software such as financial applications requires similar ro-
bustness, the rapidly changing blockchain ecosystem adds significant new chal-
lenges [68]. The significant differences between traditional software development
(i.e., non-BCS) and blockchain oriented development motivated Destefanis et al.
[27] even to propose a new development paradigm named Blockchain-Oriented
Software Engineering (BOSE).

Although several characteristics of the BCS technology suggest BCS develop-
ment to be different from a non-BCS development, very few software engineering
(SE) research has focused on the former. Therefore, several questions regarding
BCS development still remain a puzzle. For example, i) Who are the BCS developers

and what are their motivations behind joining BCS development? ii) Is BCS develop-

ment indeed different from a non-BCS development? iii) If different, what are the areas

that mark those differences? iv) Do current development tools and practices that
are tuned for non-BCS development satisfy the needs of BCS developers? v) If
not, what are the tools and techniques that BCS developers are in need?

1 https://github.com/topics/blockchain

https://github.com/topics/blockchain

Motivations and Challenges of Blockchain Software Developers 3

Answering these questions would enable the research community and the providers
of technical tools to build necessary support to design, develop, test, and deploy
BCS applications. Moreover, developers interested to join BCS projects are likely
to have valuable guidance for their preparation. Therefore, this study aims to un-

derstand the motivations, challenges, and needs of BCS developers and analyze the

differences between BCS and non-BCS development. We also aim to conduct a com-
parative analysis of BCS with non-BCS development to pinpoint specialized tasks
that may benefit the former.

On these goals, we designed and sent an online survey to 1,604 BCS developers
gathered via mining the Github repositories of 145 BCS projects. A survey is an
ideal instrument for this study as current BCS developers have first-hand experi-
ences of their challenges and needs. The survey received 156 responses from BCS
developers that met our criteria for analysis. We adopted a systematic qualitative
analysis approach to build a coding scheme for the open-ended responses. Using a
qualitative analysis software, multiple coders independently assigned codes to each
response and achieved a ‘substantial’ inter-rater reliability (Cohen’s κ = 0.62) [21].
We reported partial results of the survey in a recent publication [15], which ex-
plored only the software development practices (i.e., verification and validation,
task assignment, requirement analysis, and communication and collaboration) of
BCS projects. On the other hand, this publication focuses on a different set of
questions none of which was included in our prior article.

The primary contributions of this study include:

– A better understanding of BCS developers’ motivations, challenges, and needs;
– A comparative analysis of BCS with non-BCS development;
– A comparative analysis of the results of our survey with two prior SE surveys

to set our results into the perspective of the software development realm.
– Potential directions for SE researchers to build supports for BCS development;

and
– A characterization of the contemporary BCS development community.

The remainder of the paper is organized as follows. Section 2 provides a back-
ground on blockchain and a overview of a prior motivating study. Section 3 in-
troduces the research questions of this study. Section 4 describes our research
methodology. Section 5 describes the demographics of our respondents. Section 6
presents the results of this study. Section 7 discusses the implications of our find-
ings. Section 8 describes the threats to the validity of our results. Finally, Section 9
concludes the paper.

2 Background

This section provides a brief overview of the key concepts on blockchain and a
prior SE study that assisted in designing our survey questions to compare BCS
development against non-BCS.

2.1 Blockchain

Blockchain is a decentralized, peer-to-peer, transparent, immutable, and append-
only data storage. It keeps a permanent record of writes called transactions. Mul-

4 Bosu et al.

Fig. 1 Simplified diagram of a blockchain

tiple transactions are grouped in blocks. Each block in a blockchain contains its
hash computed using a well-known hashing or proof-of-work [47] algorithm (e.g.,
SHA256, ethash, and equihash) and the hash of the previous block called parent
block (Figure 1). The first block in a chain is called the genesis block, which does
not have any parent. Each block’s hash is calculated based on its data, current
timestamp and the hash of its parent block. Any change in a block’s data causes
alteration of its hash and invalidates all the subsequent blocks, and the tampering
becomes immediately evident to every member node of the chain. Hence, to com-
promise a blockchain, collusion of the majority of the network is required which is
impractical in case of a large blockchain [62]. Therefore, blockchain is a chain of
blocks where the blocks are irreversible and immutable.

All the nodes in a blockchain network participate simultaneously in finding
the next block to write. This process is called mining, where the nodes calculate
a hash value by adding a nonce (i.e., a random value) to a list of transactions
waiting to be added to the blockchain. To be eligible as the next block, the hash
must be smaller than an agreed-upon value (known as difficulty), and the nodes
continue calculations using different nonces until they find a nonce that generates
a hash satisfying the ‘difficulty.’ The node finding a new block will broadcast it to
all other nodes in the network to confirm the correctness of this new block. Once
confirmed, the new block is added to the blockchain, and each of the transactions
contained in the block is considered verified [18]. The finder is usually rewarded
with a pre-defined number of tokens, known as block reward. The difficulty of the
next block is determined by the network with a pre-defined algorithm.

There is no central control over the operation of a blockchain. The underlying
philosophy is that no single participant or group of participants can control the
infrastructure and all the participants in the network have an equal role to play.
In the absence of a central controller, the transactions are mediated by the mem-
ber nodes using a consensus protocol, which ensures that all the nodes have an
identical copy of the blockchain. A new block is considered verified only after the
majority of the member nodes vote it as true and trustworthy using the consensus
protocol. A blockchain’s security is based on the assumption that tampering would
have to happen across the majority of the nodes (aka 51% attack) of a network in
the same way simultaneously. So once a blockchain network achieves critical mass,
altering a blockchain posthoc becomes infeasible.

Motivations and Challenges of Blockchain Software Developers 5

In the context of the blockchain, public key cryptography [33] ensures the
integrity and authenticity of any message/transaction. Each node owns a pair of
asymmetric encryption keys [79], where the public key is broadcast to all relevant
nodes but the private key is kept secret. A sender signs messages with its own
private key and a receiver verifies the integrity of the message by decrypting it
with the sender’s public key. In cryptocurrency applications, the public key of a
user also acts as his/her account address. Therefore, a user must sign outgoing
transactions using his/her private key. A miner node would verify an outgoing
transaction from an account only when it can authenticate the transaction using
the owner’s public key.

One of the recent innovative applications of blockchain is Smart-contracts,
which are self-executing contracts with the terms of the agreement between buyer(s)
and seller(s) of transactions written using lines of code instead of a legal lan-
guage. Smart-contracts permit trusted transactions and agreements to be carried
out among different anonymous parties without the need for a central authority,
legal system, or external enforcement mechanism. Since a smart-contract, once
deployed, lives on a distributed and decentralized blockchain network, it remains
traceable, transparent, and irreversible.

2.2 Game Development vs. Traditional Development at Microsoft

One of the objective of this study is to identify the differences between BCS and
non-BCS development. The design of our survey questions to investigate this objec-
tive is motivated by a prior study at Microsoft (referred as ‘MS study’ hereinafter)
by Emerson et al. [60]. The primary objective of the MS study was to compare
game development against traditional software development. On this goal, the
MS study interviewed 14 developers who had both game and non-game develop-
ment experiences. Those interviews focused on topics from the 10 areas in the
Software Engineering Body of Knowledge (SWEBOK) as well as general work
features from applied psychology [43]. After analyzing the interview transcripts,
the authors selected 28 statements to assess the differences between game and
non-game development at Microsoft.

In a survey of Microsoft developers from three different domains (i.e., Game,
Office, and Other), each of the respondents were asked to rate each of the se-
lected 28 statements on a 5-point Likert scale from ‘Strongly Disagree’ to ‘Strongly
Agree’. The results of the survey identified differences between game and non-game
development in terms of i) having clear requirements, ii) using agile development
methods, iii) valuing creativity, iv) communicating with non-engineers, v) team
compositions, and vi) taking pride for developed software. The empirically devel-
oped 28 statements spanning various software engineering as well as general work
feature is another key contribution from this study, since these statements can be
reused to compare the opinions of software developers from two different domains.

3 Research Questions

The primary objective of this study is to understand the motivations, challenges,

and needs of BCS developers and analyze the differences between BCS and non-BCS

6 Bosu et al.

development. We aim to achieve this goal based on four specific research questions.
We also explore one additional research question to characterize the contemporary
BCS development community. Following subsections introduce the five research
questions with a brief motivation behind each question.

3.1 Personal Characteristics of the BCS Developers

Characterizing the Open Source Software (OSS) developers has drawn interests
from the researchers [23,22,35,52,59] to understand the distribution of expertise,
the strength (and durations) of their attachments to particular projects, and the
recruitment and retention of newcomers. However, such a characterization for BCS
developers is currently missing. There is a common concept that blockchain devel-
opment community is dominated by libertarian and anarchist groups who consider
it as a means of removing control from an imposing authority [32]. The contrib-
utors like to create a system that regulates itself and provide advantages to those
willing to take part in it [71]. Hence, it is worth formal study the demographics of
the BCS developers regarding their age, gender, education, and general software
development experience and see if it differs from non-BCS. Also, the future par-
ticipants of BCS development are likely to have idea about the characteristics of
existing community who are involved in the industry with large stake, wide variety
of motivation and ethical consideration. Since this understanding has importance,
our first research question is:

RQ1: Who is contributing to BCS projects?

3.2 Motivations of BCS Developers

Much research has focused on understanding the motivations of OSS develop-
ers [35,38,53,72,52] and have identified five primary categories motives as follow-
ing:

– Intrinsic motivations refer to a person’s desire to feel competent and self-
determined. Intrinsic motives are directly linked to the emotions of interest
and enjoyment [25]. Examples of such motives include fun, hobby, self-interest,
and feeling competent.

– External rewards refer to direct or indirect incentives, which include mone-
tary compensation, benefits through software usage, or prospects for career
growth [52].

– Ideology includes the norms, beliefs, and values shared among the developers of
an OSS project [83]. For example, the Free Software Foundation was established
on the ideology of providing users with freedom to use, modify, and redistribute
software [82].

– Community recognition corresponds to a person’s needs for belonging and love.
A developer desiring to identify him/herself as a member of an OSS community
seeks that recognition from other community members [35].

– Learning opportunities offered by OSS projects help increasing one’s ‘human
capital’ (i.e., personal skills, capabilities, and knowledge) by means of educa-
tion, training, learning, and practicing. Since these human capital gains even-
tually leads to better job opportunities, higher salaries, and more fulfilling

Motivations and Challenges of Blockchain Software Developers 7

jobs, learning is one of the motives among many OSS developers, especially
newcomers [35].

The results of those studies found “intrinsic motivations” ranking top among OSS
developers. Although most of the BCS projects are also OSS projects, large inflows
of cash through ICO (Initial Coin Offerings) or token sales [3], which are very
common for BCS projects are rare for non-BCS OSS projects. Many of the early
BCS developers / investors have garnered significant financial rewards from the
recent boom of the cryptocurrency market. Therefore, it won’t be surprising if
external rewards are the primary motives for many of the BCS developers. Our
next research question tries to find out whether BCS developers’ motivations are
similar to non-BCS OSS developers or they are attracted by potential financial
gains. Understanding the motivations of BCS developers is important since it
will help to identify prospective joiners, which may form synergies with a BCS
community. Hence, our next research question is:

RQ2: What are the primary motivations of BCS developers?

3.3 Differences Between BCS and non-BCS development

Although BCS projects possess many traits of traditional OSS projects, we expect
some differences between BCS and non-BCS development due to several char-
acteristics (e.g., the immutability of data, hostile environment, and difficulty of
upgrading the software after deployment) that distinguish the BCS domain from
the non-BCS one. Since identifications of the differences between BCS and non-
BCS development will allow assessing the applicability of various traditional SE
tools and techniques for BCS projects, we seek to find out:

RQ3: What are the differences between BCS and non-BCS development?

3.4 Challenges of BCS Development

Most of the innovative applications of the blockchain technology such as smart-
contracts and distributed applications (aka dapps) are at nascent stages. The BCS
development landscape is also changing at a rapid pace with projects fiercely com-
peting with each other to emerge as the market leader [51]. Although the high
costs of bugs mandate high reliability from a BCS, developers face tremendous
pressures from the investors to release the product. These scenarios coupled with
the unique characteristics of the BCS domain pose several challenges to the BCS
developers. We believe identifications of the primary challenges of BCS devel-
opment will provide prospective joiners with guidance for their preparation and
encourage research to mitigate those challenges. Hence our next research question
is:

RQ4: What are the primary challenges of BCS development?

3.5 Tools that BCS Developers Need

The difficulty of testing BCS ranks among the top of challenges encountered by
BCS developers [68,13]. Current testing tools cannot simulate testbeds to simu-

8 Bosu et al.

late the distributed and hostile execution environment of a BCS. Moreover, smart-
contract development, which is gaining popularity lacks supporting tools [19]. The
requirement of tools, once clearly understood, will lead to the development of sup-
porting tools to design, develop, test, and deploy BCS applications. Since contem-
porary BCS developers have the first-hand knowledge of their needs for supporting
tools, we inquire:

RQ5: What are the tools that BCS developers currently need?

4 Research Methodology

Since the five research questions of this study are geared towards gathering the
opinions of BCS developers, we chose a survey as our research instrument. The
remainder of this section describes the survey design, our participant selection
criteria, pilot testing, data collection, and qualitative data analysis.

4.1 Survey

Our goal in designing the survey was to keep it as short as possible, while still
gathering all of the relevant information. For the current paper, we only consider
a subset of the survey questions, while question focusing on software development
practices of BCS projects were reported in a recent publication [15]. Table 1 lists
each survey question included in this paper, the research question that motivated
its inclusion, and the answer choices provided. Questions indicated with a ‘D,’
rather than a ‘RQ#’ were included to gather demographics about the respondents.
For the questions that were open-ended, there are no specified answer choices.
Several of the open-ended and demographics questions were inspired by previous
surveys [60,38,90,35,52,92].

To compare BCS with non-BCS development, the survey asked the respondents
(Q13 in Table 1) to rate their agreements for 16 statements on a 5-point Likert scale
from ‘Strongly disagree’ to ‘Strongly agree.’ These statements (‘Statement’ column
in Table 3) were adopted from a prior SE survey at Microsoft (Section 2.2) to assess
the differences between the game and non-game development [60]. While the MS
study had 28 statements, our survey did not include the statements regarding the
company or manager as BCS projects are mostly community driven.

4.2 Participant Selection

To ensure valid results, we only surveyed BCS developers with sufficient experience.
We identified 145 BCS projects based on following four criteria:

– Tagged under at least one of the following six ‘topics’2: blockchain, cryptocurrency,
altcoin, ethereum, bitcoin, and smart-contracts.

– ‘Starred’ by at least ten users.
– Have at least five distinct contributors.
– A manual verification of the repository confirmed it as a BCS project.

2 https://blog.github.com/2017-01-31-introducing-topics/

https://blog.github.com/2017-01-31-introducing-topics/

Motivations and Challenges of Blockchain Software Developers 9

Table 1 Survey Questions

RQ*Question Text Answer Choices
Q1 RQ1 How old are you? [#]
Q2 RQ1 Which gender do you identify yourself with? [Male, Female, Prefer not to dis-

close]
Q3 RQ1 What is your highest level of education? [High school, Bachelors, Masters,

Ph.D.]
Q4 RQ1 How many years of software development experi-

ences do you have?
[Less than a year, between one
to five years, between six to ten
years, more than ten years]

Q5 D How many years have you been developing
blockchain software?

[Less than a year, between one to
two years, between three to five
years, more than five years]

Q6 D What is your primary Blockchain software project
(i.e. the project that you have spent most of your
time)

[#]

Q7 D Do you receive any direct compensation (i.e, salary
or cryptocurrency) from your primary project?

[I get directly paid with a FIAT
currency, I get compensated with
shares, tokens, or cryptocur-
rency, I receive both FIAT salary
and tokens/shares, No, I do not
receive any direct compensation]

Q8 D Approximately, how many pull requests have you
submitted to your primary project?

[Less than 10, Between 11 to 30,
More than 30]

Q9 D Approximately, how many hours on average do you
spend per week on your primary project?

[Less than 5, between 6 to 10, Be-
tween 11 to 20, Between 21 to 35,
I work full time]

Q10 RQ2 What are your motivations to contribute to your
primary project?

Q11 RQ3 Based on your experiences, what are the primary
differences between blockchain and non-blockchain
software development ?

[#]

Q12 RQ3 The following statements aim to compare
blockchain and non-blockchain software develop-
ment. For each of the following items please rate
how you agree or disagree with that statement.

[Strongly disagree, Disagree,
Neutral, Agree, Strongly Agree]

Total 16 statements (shown in Table 3)
Q13 RQ4 What are the most challenging aspects of blockchain

software development?
Q14 RQ5 Please describe the type of tools that you currently

do not have, but if implemented, can greatly help
your blockchain software development activities.

[#]

* ‘RQ#’ numbers refer to the research question that motivated the inclusion of the survey question
* Questions indicated with a ‘D’, were included to gather demographics about the respondents.

We used Github API3 to identify 1,604 contributors, each of whom had submit-
ted at least five changes to one of those 145 projects. We mine the Git commit logs
of the identified 145 projects to gather the email addresses of those 1,604 active
contributors. We also got the survey questions, consent form, participant selection
strategy, solicitation email, and data management reviewed and approved by our
university’s Institutional Review Board (IRB).

4.3 Pilot Survey

To help ensure the understandability of the survey, we asked Computer Science
professors and graduate students with experience in SE and experience in survey

3 https://developer.github.com/v3/

https://developer.github.com/v3/

10 Bosu et al.

design to review the survey to ensure the questions were clear and complete.
The feedback only suggested minor edits. The changes we made include: adding
more answer choices to several questions and adding clarifying examples to three
questions.

4.4 Data Collection

On December 13, 2017, we sent each of the 1,604 BCS developers in our list
a personalized email mentioning the BCS repository that we mined to obtain
his/her email address with a link to the survey hosted on Qualtrics [80]. We also
asked the respondents through both the solicitation emails and a reminder in the
survey to answer our questions based on his/her personal experiences with the
BCS project where we obtained his/her email address. Since 62 of our solicitation
emails bounced, we were left with at most 1,542 potential participants, assuming
all other emails actually reached their intended recipient. On December 21, 2017,
we sent a reminder email. We closed the survey on January 5, 2018; after the
response rate slowed to almost no response each day.

Data from the survey link created with Google’s URL shortener showed a total
358 clicks on the survey URL (≈23% of the invitations). Out of those clicks, 200
people took the survey with a response rate of ≈13% (200/1542). As most of the
questions were optional, many respondents skipped some of the questions. Only
115 respondents answered all the questions. After the exclusion of the 44 responses
that did not answer either at least 75% of the questions or at least one open-ended
question, we were left with 156 responses for analysis.

We also collect the developer demographics data from the 2018 Stack Over-

flow Annual Developer Survey (referred as the ‘SO Survey’ hereinafter) [64]. Stack-
Overflow has been running the annual developer survey since 2011. The primary
objective of the SO Surveys are to learn who contemporary developers are and
what they need. These surveys cover a wide range of developer demographics such
as age, education, location, gender, role, experience, ethnicity, and favorite tech-
nologies. Since the ‘2018 SO survey’ was responded by total 98,855 developers
from 183 countries worldwide, it is an accurate overview of the active software
developers worldwide. Therefore, a comparison against the demographics of the
SO Survey will enable us to identify if the BCS community is underrepresented or
overrepresented by certain groups.

After contacting the authors of the MS survey, we were able to obtain their
dataset, which allows us to compare and contrast BCS development with three
non-BCS domains (i.e., Games, Office, and Other) from Microsoft (MS).

4.5 Qualitative Analysis Process

For the open-ended questions, we followed a systematic qualitative data analysis
process. First, two of the authors independently extracted the general themes
from the first 75 responses to each question. Using those themes, the authors had
discussion sessions to develop an agreed-upon coding scheme for each question.
Using this coding scheme, another author went through the remaining answers to
determine any additional codes that need to be added.

Motivations and Challenges of Blockchain Software Developers 11

With this scheme, two of the authors independently coded each response using
the Coding Analysis Toolkit (CAT) [55] software. The coders could also add new
codes, if necessary. We computed the level of inter-rater reliability of the man-
ual coding process using Cohen’s kappa [21], which was measured as 0.62. While
there is no universally accepted ‘good’ kappa, values between 0.61 to 0.80 are
generally recognized as ‘substantial agreements’ [45]. We used CAT to identify the
discrepancies in coding and had discussion sessions to resolve all conflicts. Once we
completed the coding process, we transferred the data into SPSS [81] for further
analysis along with the quantitative data.

As a result of the coding process, a large number of codes emerged from each
of the open-ended questions. To help with our analysis, we had discussion sessions
to identify the codes that express similar themes. We grouped those codes into a
smaller number of high-level categories with each category including one or more
codes expressing a similar theme. Table 4 in the appendix shows the codes that
emerged from our open-coding of the four survey questions and the categories that
we assign each code to for the four open-ended questions included in this paper.

5 Demographics

To provide a proper context for the results, this section describes the demographics
of the projects represented by the respondents and of the respondents themselves.

5.1 Projects Represented

Table 2 provides the results to Q6 (Table 1) about respondents’ primary projects.
The number in parenthesis represents the number of respondents who listed that
project. Our respondents represent 61 different BCS projects. The Coin Devel-
opment Index [34], which tracks the top BCS projects, indicates our respondents
representing 18 out of the top 25 projects. Also, 37% of our respondents coming
from the top ten projects indicates the participation of the top BCS developers in
our survey.

5.2 Respondents’ Demographics

In response to Q5, 81.4% of our respondents indicated having less than 2 years
of BCS development experiences, while 37.8% had less than a year (Figure 2(a)).
In terms of compensation (Figure 2(b)), 43.1% of our respondents do not receive
any direct financial benefits. The ratio of volunteers among our respondents is
similar to the ratios reported in prior studies [11,9]. Among the respondents re-
ceiving direct financial compensations, 37.3% reported receiving shares, tokens or
cryptocurrencies that may further motivate them to spend efforts to make their
projects successful.

In terms of the number of contributions to a BCS project (Figure 2(c)) 57.6%
of our respondents have made more than 10, while 42.9% had submitted more than
30. On the other hand, 42.7% of our respondents spend at least 20 hours a week
on a BCS project, and 32.7% were working full time (Figure 2(d)). Combining

12 Bosu et al.

Table 2 Projects represented by our respondents. The numbers in parentheses under the
columns ‘Multiple occurrences’ represent the number of respondents who listed that project.
Only one respondent from each of the projects listed under ‘Single occurrences’.

Multiple occurrences Single occurrences
Ethereum (22) Bitcoin (9) Ambisafe Basic Identity Token Bytom
Bitshares (7) Monero (6) Cpuminer Dash Distense
Sia (6) Waves (5) DNSChain Ebets ESKU
Solidity (5) Lbry (4) Etherbet Etherplay Fabric Labs
Ripple (4) Nem (3) Golem Haskoin ZeroLink
Cardano (3) Decred (3) Icofunding Ind Iroha
EOS (3) Hyperledger (3) JS Miner Keyrun Libsnark
IOTA (3) Factom (2) LiteCoin Payroll System PHP-Mpos
Feather coin (2) Lisk (2) Populus Progmathon Pycoin
Metamask (2) Namecoin (2) Shapeshift Snapcoin Status
Neo (2) Remix IDE (2) Steller Storj Swifty
Stratis (2) Trezor (2) Vandal Vcash Viper
Zcash (2) Undisclosed /Private (14)

0%

10%

20%

30%

40%

Less than a ye
ar

Between 1 to 2 ye
ars

Between 3 to 5 ye
ars

More than 5 ye
ars

(a) BCS development experience

0%

10%

20%

30%

40%

FIAT curre
ncy

Shares or cryptocurre
ncy

Both FIAT and cryptocurre
ncy

No direct compensation

(b) Type of financial compensa-
tion

0%

10%

20%

30%

40%

Less than 10

Between 11 to 30

More than 30

(c) Total number of code com-
mits in BCS projects

0%

10%

20%

30%

Less than 5

Between 6 to 10

Between 11 to 20

Between 21 to 35

Full ti
me

(d) Average number of hours per
week spent on BCS development

Fig. 2 Demographics of the respondents

our respondents’ number of commits and number of hours per week spent in BCS
projects, we conclude that our respondents include a sample of active BCS devel-
opers from the top BCS projects who are qualified to provide valuable insights for
the goals of this study.

Motivations and Challenges of Blockchain Software Developers 13

BCS SO−Survey

Did not disclose

Female

Male

0% 25% 50% 75%
(a) Gender

More than 40 yrs

Between 31 to 40 yrs

Between 26 to 30 yrs

Between 19 to 25 yrs

0% 10% 20% 30%
(b) Age

Ph.D.

Masters

Bachelors

High school

0% 10% 20% 30% 40% 50%
(c) Education

More than 10 yrs

Between 5 to 10 yrs

Between 1 to 5 yrs

Less than a year

0% 10% 20% 30% 40%
(d) Development Experience

Fig. 3 Personal characteristics of the BCS developers

6 Results

The following subsections describe the results of our survey by answering the five
research questions introduced in Section 3. To help clarify the results, we also
include excerpts from the qualitative responses to the open-ended questions. Each
of the excerpts is followed by a number representing a unique identifier for the
respondent who expressed that opinion. For example, [#5] indicates a response
from respondent number 5. In a qualitative analysis, each open-ended response
could match multiple codes. Therefore, the sum of the percentages can be greater
than 100%. We conclude each of the subsections with a brief discussion of the key
takeaways from the results of each research question.

6.1 RQ1: Who is contributing to BCS?

Figure 3 shows the personal characteristics of the BCS developers in terms of their
age (Q1), gender (Q2), education (Q3), and software development experience (Q5).
We also compare these characteristics with the results from the that includes the
demographics of 98,855 developers around the globe.

Around 95% of our respondents are males compared to only 3% females (Fig-
ure 3(a)). These numbers suggest that the ratio of females in BCS development
may be lower compared to the the software development community as reported
in the SO survey (6.7%).

In terms age (Figure 3(b)), our respondents are younger compared to the gen-
eral software developer population. The distributions are noticeably different for
two age groups. First, developers, who are aged between 26 to 30 years repre-
sent 31% of the BCS developers, compared to 25.4% general software developer
population coming from the same age group. On the other hand, although 15.9%
general software developer population are aged 40 years and higher, only 11.7% of

14 Bosu et al.

the BCS developers belong to that age group. Therefore, BCS development may
be attracting more young developers than the veterans.

In terms of the highest level of education (Figure 3(c)), our respondents are
more qualified with 15.4% high school graduate, 46.8% with a bachelors degree,
32.7% with a masters degree, and 5.1% with a Ph.D. The corresponding numbers in
the SO survey are 23.4%, 47.7%, 23.2%, and 2.2% respectively. The higher educa-
tional qualifications of our respondents may not be surprising as BCS development
requires more in-depth knowledge of computing than non-BCS development [98].

In terms of software development experiences (Figure 3(d)), 70.5% of our re-
spondents have more than five years of development experiences and 42.3% have
more than 10 years. The corresponding numbers in the SO survey are 62.3% and
34.1% respectively. It indicates that the BCS developers are likely to be more
experienced in software development than their non-BCS counterparts.

Key takeaway 1: In general, BCS developer population is more qualitifed
than the general software developer population. Although, we noticed that
more than 81% of our respondents have less than 2 years of BCS development
experience, more than 70% developers from the same group were found to
have more than five years of development experiences. These numbers indicate
that a large number of software developers, who are experienced in non-BCS
development, have recently joined BCS projects potentially due to the recent
hypes generated by the blockchain technology.

6.2 RQ2: Motivations of BCS Developers

Figure 4 shows the primary motivations of BCS developers, which emerged from
the answers to Q10 (Table 1) of our survey. Besides technical attraction, the other
five categories of motivations that BCS developers have, are similar to the moti-
vations of Open Source Software (OSS) developers [35,52,96]. Since blockchain is
a new technology, many BCS developers indicate their fascinations to this innova-
tive technology as one of their primary motives. While ideology did not top the
list of OSS developers’ motives [35,52,96], it ranks top for the BCS developers.

Since results from the psychology domain suggest that a person’s motivation
may vary based on his/her age, education level [40], compensation [36], or gen-
der [58], we investigated whether those factors had any impact on a BCS devel-
oper’s motives. Our results suggest significant differences (Chi Square, after ap-
plying False Discover Rate (FDR) corrections [8] for multiple comparisons) in mo-
tivations based on the age (χ2 = 33.34, p = 0.03) or compensation (χ2 = 40.58, p =
0.01) of a respondent but no significant difference was found based on the level of
education (χ2 = 22.40, p = 0.29) or gender (χ2 = 9.83, p = 1.0). While most of the
BCS developers between 31 to 40 years of age have ideological motives, developers
aged between 26 to 30 years are more likely to be motivated by external rewards
and developers aged 25 years and younger are more likely to be motivated by the
prospects of learning (Figure 5). On the other hand, developers receiving some
types of direct compensations are more likely motivated by external rewards. The
following subsections examine these motivations in more detail.

Motivations and Challenges of Blockchain Software Developers 15

Community recognition

Learning

Technical attraction

Intrinsic

External rewards

Ideology

0.0% 10.0% 20.0% 30.0%
Percentage of the respondents

Fig. 4 Primary motivations of BCS developers’

0.0%

20.0%

40.0%

Ideology

External

Intrin
sic

Technical attra
ction

Learning

Community re
cognitio

n

Less than 25 Between 26 to 30 Between 31 to 40 More than 40

Fig. 5 Age vs. Motivation (percentage computed based on motivations within the same age
group)

6.2.1 Ideology

The primary motivation behind Bitcoin, the first blockchain based cryptocurrency
was to create a decentralized currency that cannot be manipulated by a central
authority. More than one-third of our respondents (36.9%) are motivated by a
similar ideology.

I truly believe in the right to have a private way to send and store money. Also

removing power from banks and governments. [#195]

6.2.2 External rewards

Some developers (36.2%) contribute to BCS projects to earn money either by work-
ing part-time or by accepting bounty offers. Developers, who hold cryptocurrency,
are naturally motivated to increase its value.

.. earn money; I get salary, and also I bought coins so their growth will give me

money. [#147]

Many developers are full-time employees of the organization that manages
his/her project.

I am paid to work full-time contributing to blockchain projects. [#75]

16 Bosu et al.

6.2.3 Intrinsic

Due to the various programming challenges that BCS development offers, many
developers (29.2%), who enjoy writing code to solve problems, contribute to BCS
projects.

I love coding. I love to solve problems and support people. [#127]

Some contribute to BCS projects due to their passions for a particular area.
It’s an opportunity to work on a programming language, which I’ve always wanted

to do. [#142]

6.2.4 Technical attraction

Attraction to the blockchain technology is one of the motivations for many BCS
developers (28.5%).

Curiosity mainly. I was studying cryptography by myself before that and saw a chance

to see it applied in unbelievable ways. [#31]

6.2.5 Learning

Developers (26.9%) considering blockchain as a promising technology for the future
want to learn and add it to their portfolio.

... to develop a better understanding of making and working of a blockchain. [#103]

6.2.6 Community recognition

Some respondents (8.5%) want to improve their portfolio through their involve-
ment and recognition in the BCS community.

.. become more famous in the community (get good reputation). [#63]

Key takeaway 2: Due to the significant financial gains by the early cryptocur-
rency investors as well as a large influx of cash through ICOs, we hypothesized
that the majority of the BCS developers might be motivated by external re-
wards. However, the ratio of our respondents reporting external motives (36%)
were similar to the number from prior OSS studies [35,52]. Moreover, the ratio
of volunteers (43%) is also similar to what was reported in prior studies [52,9].
On the other hand, ideological motives were more frequent among BCS devel-
opers (37%) than among the OSS developers [35,52]. Therefore, getting aligned
with the ideology of a BCS community is important to become a member of
that community.

6.3 RQ3: Differences Between BCS and non-BCS Development

Our survey included two questions to find the differences between BCS and non-
BCS development. Figure 6 shows the primary differences between BCS and non-
BCS development as indicated by the respondents of our survey in response to
Q11. Although BCS development has many similarities to traditional OSS de-
velopment, due to some unique characteristics of the BCS domain, 93% of our

Motivations and Challenges of Blockchain Software Developers 17

No difference

Maintainability

Others

Immature ecosystem

Domain chracteristics

Security / Reliability

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%
Percentage of the respondents

Fig. 6 Differences between BCS and non-BCS development

respondents reported BCS development as somewhat different from non-BCS de-
velopment. Majority of our respondents did not encounter such strict security or
reliability requirements while developing a non-BCS. The unique characteristics
of the BCS domain (e.g., immutability, difficulty in upgrading the software) was
also a differentiating factor for more than one-third respondents.

The following six subsections detail those differences. We conclude this section
with a comparison of BCS development with three software development domains
from Microsoft (Section 6.3.6).

6.3.1 Security/reliability

A higher emphasis on security and reliability is the primary factor that differ-
entiates BCS from most of the non-BCS. Since the primary applications of the
blockchain technology are maintaining ledgers of financial transactions, ensuring
the security and reliability of a BCS application is the highest priority for majority
of the BCS developers (50.7%).

Security and backward compatibility are held with utmost importance here unlike

some other FOSS projects. [#3]

A single defect in a BCS application can cost millions of dollars. For example,
recently a bug in the parity wallet code enabled hackers to steal $30M worth
Ethereum tokens [65].

..you should be more careful because there is too much at stake (nowadays a lot of

money are invested in cryptocurrencies). In most of the projects (non-blockchain)

when a bug appears, it will be fixed and soon forgotten. But in blockchain projects

some bugs can be very costly and never forgotten. [#147]

6.3.2 Domain characteristics

One-third of our respondents (33.3%) consider several characteristics of the BCS
domain as factors differentiating BCS development from non-BCS. First, data
stored in a blockchain is immutable. In other domains, there are several mecha-
nisms to fix errors later by altering data. However, altering a blockchain ledger is
almost impossible.

... also a disadvantage that you can not fix problems due to human errors or bugs in

that transactions can not be changed. [#97]

18 Bosu et al.

Second, compared to the most non-BCS applications that operate on central-
ized and/or hosted environments, BCS applications operate on a complex, secured,
distributed and decentralized network.

The distributed nature of blockchain software development makes it difficult to build

robust software. Unreliable connections, unexpected latency, and malicious nodes cre-

ate a hostile production environment. [#135]

Third, blockchains use public key cryptography and cryptographic hash func-
tions to store and verify transactions. Cryptography is difficult to master and
very few other domains require similar in-depth knowledge of cryptography as the
BCS domain. Moreover, the knowledge of networking and networking security is a
must for BCS development. The daunting requirement of having knowledge about
diverse technological areas is another differentiating factor.

All kinds of knowledge are involved. It’s hard to comprehend the whole project, in-

cluding cryptography, network programming, economy policy etc.[#166]

Finally, the blockchain technology is changing rapidly with new protocols, in-
novations, and possibilities emerging everyday. BCS projects that are not able to
evolve rapidly are at the risk of loosing their market capitalization.

Technology moves fast and blockchain software development (in general, not just

Ethereum) is moving at an extremely fast pace. Need to keep up and adjust to meet

whatever new requirements arise.[#98]

6.3.3 Immature ecosystem

Many of the innovative aspects of the blockchain technology (e.g., smart-contract,
privacy) are relatively new. Although the number of BCS projects have grown
exponentially during the last couple of years, many tools and libraries that may
support BCS development are still missing. Even the tools that currently exist are
not stable. Therefore, many respondents (14.7%) consider the BCS development
ecosystem as immatured compared to most of the non-BCS counterparts.

We are in 1986 on a web development timeline, to my mind. Like everything is in

C can hit memory leaks, crashes, etc. Everything very raw and dangerous. We still

have most of the stack to build. [#137]

Since Blockchain is a new technology, there is scarcity of enough domain-
experienced developers compared to most non-BCS domains. The demographics
of our survey also shows more than 83% respondents with less than two years of
experience in BCS development.

People have more experience in other areas. [#48]

Motivations and Challenges of Blockchain Software Developers 19
T

a
b

le
3

C
o
m

p
a
ri

so
n

o
f

B
C

S
d

ev
el

o
p

m
en

t
w

it
h

th
re

e
n

o
n

-B
C

S
d

o
m

a
in

s
a
t

M
ic

ro
so

ft
.

G
re

y
b

a
ck

g
ro

u
n

d
in

d
ic

a
te

s
a

st
a
ti

st
ic

a
ll
y

si
g
n

ifi
ca

n
t

d
iff

er
en

ce
.

F
o
r

th
e

eff
ec

t
si

ze
s

(r
),

a
v
a
lu

e
in

re
d

in
d

ic
a
te

s
B

C
S

d
ev

el
o
p

er
s

a
g
re

ei
n

g
le

ss
w

it
h

th
a
t

st
a
te

m
en

t,
w

h
il
e

a
v
a
lu

e
in

g
re

en
in

d
ic

a
te

s
m

o
re

a
g
re

em
en

t
fr

o
m

th
em

.
If

a
n

eff
ec

t
si

ze
is

st
a
ti

st
ic

a
ll
y

si
g
n

ifi
ca

n
t,

th
e

b
a
ck

g
ro

u
n

d
co

lo
r

in
te

n
si

ty
o
f

th
e

ce
ll

in
d

ic
a
te

s
st

re
n

g
th

o
f

th
e

eff
ec

t
si

ze
w

it
h

d
a
rk

er
sh

a
d

es

in
d

ic
a
ti

n
g

la
rg

er
eff

ec
t

si
ze

s.
F

o
r

ex
a
m

p
le

,
n

eg
a
ti

v
e

eff
ec

ts
a
re

p
re

se
n
te

d
b
y
:

i)
sm

a
ll

,
m

ed
iu

m
,

a
n

d
la

rg
e

a
n

d
p

o
si

ti
v
e

eff
ec

ts
a
re

p
re

se
n
te

d
b
y
:

i)

sm
a
ll

,
m

ed
iu

m
,

a
n

d
la

rg
e

.
T

h
e

b
a
ck

g
ro

u
n

d
co

lo
r

S
ta

ti
st

ic
a
l

si
g
n

ifi
ca

n
ce

(p
)

is
re

p
o
rt

ed
a
ft

er
a
p

p
ly

in
g

co
rr

ec
ti

o
n

fo
r

m
u

lt
ip

le
co

m
p

a
ri

so
n

s
u

si
n

g

F
a
ls

e
D

is
co

v
er

y
R

a
te

(F
D

R
)

[8
].

S
ta

te
m

e
n
t

R
a
ti

n
g

d
is

tr
ib

u
ti

o
n

B
C

S
V

s.
G

a
m

e
s

B
C

S
V

s.
O

ffi
c
e

B
C

S
V

s.
O

th
e
r

p
r

p
r

p
r

A
.

Q
u
a
li
ty

a
ss

u
r
a
n
c
e

Q
A

1
.

M
y

so
ft

w
a
re

is
w

el
l
te

st
ed

m
a
n
u

a
ll

y
(e

.g
.,

p
a
id

te
st

er
s

th
o
r-

o
u

g
h

ly
u

se
th

e
so

ft
w

a
re

).
0
.8

2
0
.0

6
0
.0

5
2

0
.1

4
0
.0

9
0
.1

2

Q
A

2
.

M
y

so
ft

w
a
re

is
w

el
l

te
st

ed
b
y

a
u

to
m

a
te

d
te

st
in

g
(e

.g
.,

sc
ri

p
ts

th
a
t

th
o
ro

u
g
h

ly
u

se
th

e
so

ft
w

a
re

).
<

0
.0

1
0
.3

2
0
.0

9
0
.1

2
0
.0

2
0
.1

8

Q
A

3
.

M
y

so
ft

w
a
re

is
w

el
l

te
st

ed
b
y

u
n

it
te

st
s.

<
0
.0

1
0
.3

4
<

0
.0

1
0
.3

1
0
.5

7
0
.0

1

Q
A

4
.

B
u

g
s

in
m

y
so

ft
w

a
re

a
re

h
a
rd

to
d

ia
g
n

o
se

.
<

0
.0

1
0
.2

3
0
.1

9
0
.0

8
.3

4
0
.0

6

Q
A

5
.

It
’s

d
iffi

cu
lt

to
w

ri
te

th
o
ro

u
g
h

a
u

to
m

a
te

d
te

st
s

fo
r

m
y

so
ft

-
w

a
re

b
ec

a
u

se
it

’s
so

co
m

p
le

x
.

0
.0

2
0
.1

5
0
.1

3
0
.1

0
.9

3
0
.1

B
.

D
e
v
e
lo

p
m

e
n
t

p
r
o
c
e
ss

D
P

1
.

M
y

te
a
m

h
a
s

fl
ex

ib
le

re
le

a
se

d
ea

d
li

n
es

.
<

0
.0

1
0
.4

6
<

0
.0

1
0
.5

3
<

0
.0

1
0
.4

4

D
P

2
.

M
y

so
ft

w
a
re

h
a
s

cl
ea

r
fu

n
ct

io
n

a
l

re
q
u

ir
em

en
ts

.
0
.0

2
0
.1

4
0
.6

4
0
.0

2
0
.9

3
0
.0

9

D
P

3
.

M
y

te
a
m

u
se

s
a

w
a
te

rf
a
ll

p
ro

ce
ss

,
ra

th
er

th
a
n

a
n

a
g
il
e

p
ro

ce
ss

.
0
.0

4
0
.1

2
0
.6

5
0
.0

3
0
.0

9
0
.0

8

D
P

4
.

M
y

te
a
m

a
d

h
er

es
st

ri
ct

ly
to

a
p

ro
ce

ss
(f

o
r

ex
a
m

p
le

,
sc

ru
m

o
r

w
a
te

rf
a
ll
).

<
0
.0

1
0
.2

<
0
.0

1
0
.3

7
<

0
.0

1
0
.2

9

C
.

S
o
ft

w
a
r
e

m
a
in

te
n
a
n
c
e

S
M

1
.

M
y

so
ft

w
a
re

h
a
s

h
ig

h
te

ch
n

ic
a
l

d
eb

t
(f

o
r

ex
a
m

p
le

,
a

lo
t

o
f

h
a
ck

s)
.

0
.3

0
.0

4
0
.1

3
0
.1

0
.5

3
0
.0

2

S
M

2
.

T
h

e
te

ch
n

ic
a
l

d
eb

t
is

li
k
el

y
to

b
e

p
a
id

d
o
w

n
in

th
e

fu
tu

re
(f

o
r

ex
a
m

p
le

,
th

ro
u

g
h

re
fa

ct
o
ri

n
g
).

<
0
.0

1
0
.1

8
<

0
.0

1
0
.2

3
0
.0

2
0
.1

7

S
M

3
.

M
y

so
ft

w
a
re

’s
a
rc

h
it

ec
tu

re
ev

o
lv

es
si

g
n

ifi
ca

n
tl

y
a
s

th
e

so
ft

-
w

a
re

g
et

s
m

o
re

m
a
tu

re
.

0
.2

6
0
.0

5
0
.0

6
0
.0

9
0
.5

1
0
.0

3

D
.

Id
e
o
lo

g
y

/
m

o
r
a
le

D
M

1
.

M
y

so
ft

w
a
re

cr
ea

te
s

v
a
lu

e
fo

r
so

ci
et

y.
<

0
.0

1
0
.2

6
0
.2

1
0
.0

7
0
.0

2
0
.1

7

D
M

2
.

C
re

a
ti

v
it

y
is

h
ig

h
ly

v
a
lu

ed
o
n

m
y

te
a
m

.
0
.0

3
0
.1

4
0
.4

8
0
.0

2
0
.5

3
0
.0

2

D
M

3
.

C
re

a
ti

n
g

m
y

so
ft

w
a
re

is
ch

a
ll
en

g
in

g
.

0
.2

4
0
.0

6
0
.5

6
0

0
.7

4
0
.0

3

D
M

4
.

W
h

en
I

te
ll

p
eo

p
le

o
u

ts
id

e
o
f

m
y

co
m

p
a
n
y

a
b

o
u

t
th

e
so

ft
-

w
a
re

I
w

o
rk

o
n

,
th

ey
a
re

im
p

re
ss

ed
.

0
.0

4
0
.1

3
0
.1

3
0
.1

0
.0

9
0
.1

1

20 Bosu et al.

6.3.4 Maintainability

According to 6.7% of our respondents, maintaining a BCS application is difficult
compared to a non-BCS application. Blockchains usually incorporate new func-
tionality through hard forks [93], which is usually scheduled way ahead of time to
ensure that all the nodes are running the same version of the software. Due to the
difficulty in upgrade, a BCS application needs to be well tested before a release.

.. non-blockchain software can easily upgrade features but blockchain software needs

to wait for the preparation of nodes all over the world to upgrade functionality. [#22]

BCS applications run on public blockchains that have thousands of blocks
created over the years. Therefore, a BCS application must be backward compat-
ible and capable of validating earlier transactions or executing smart-contracts
deployed through earlier versions.

Ethereum is a public chain. So we have to consider backward compatibility all the

time. [#28]

6.3.5 No difference

Some BCS developers (8%) do not find much difference between BCS and non-BCS
development.

Not that different from other performance-sensitive, high reliability software. [#9]

6.3.6 How does BCS development differ from software development at Microsoft?

The ‘Rating distribution’ column in Table 3 shows the distributions of the ratings
by our respondents for 16 statements (The ‘Statement’ column in Table 3). The
leftmost bar indicates ‘Strongly disagree,’ the middle bar indicates ‘Neutral,’ and
the rightmost bar indicates ‘Strongly agree.’ We do not plot the ratings from the
Microsoft developers since a prior publication reports those [60].

Since the Shapiro-Wilk [78] test indicates that those ratings significantly dif-
fer from a normal distribution, we use non-parametric statistics. For each of the
statements, we compare the responses from BCS developers with the responses of
Microsoft developers from three domains (i.e., Games, Office, and Others). The
three ‘p’ columns show statistical significance of the differences based on the Mann-
Whitney U test after applying corrections for multiple comparisons using the FDR
method [8]. The three ‘r’ columns show the effect sizes estimated using Rosen-
thal’s formula [74]. Rosenthal [73] also recommends interpreting those effect sizes
as: r ≥ 0.5⇒ large, r ≥ 0.3⇒ medium, and r ≥ 0.1⇒ small.

Posthoc, we grouped the 16 statements into following four categories based on
the theme of each statement.

A. Quality Assurance: BCS developers agree more than both Games and Office

developers that their software is well tested using unit tests (QA3). They also
consider BCS more thoroughly automated tested (QA2) than both Games and
Other. However, for manual testing (QA1), we did not find any significant differ-
ence. From the remaining two statements, BCS developers agree more than the
Games developers on bug diagnosis difficulty (QA4) but disagree with them on
the difficulty of writing unit tests (QA5). These results indicate BCS developers’
higher emphasis on automated testing to ensure the quality of their software.

Motivations and Challenges of Blockchain Software Developers 21

B. Development process: Among the four groups, BCS developers have the most
flexible deadlines (DP1). Since the costs of defects are very high and patching a
defect after release is very difficult, BCS developers are more flexible in postponing
a release. On the other hand, among the four groups they are the least strict in
following a process (DP4).

C. Software maintenance: Among the four groups, BCS developers are the most
focused on paying technical debts (SM2), which further emphasizes the impor-
tance of long term maintainability of a BCS application. For the remaining two
statements the differences were not significant.

D. Ideology/morale: In terms of ideology/morale, BCS has no significant difference
with Office. The results of comparisons with the remaining two groups are mixed.
On taking pride outside, for their work (DM4), BCS developers agree less than
Games but are not significantly different than Other ; while on creating value for
the society (DM1), BCS developers top both. BCS developers also agree less than
the Games developer on the valuation of creativity (DM2) within their team.

In summary, BCS has the most differences with Games (i.e., 12), followed by
Other (i.e., 5) and the least with Office (i.e., 4). BCS development has higher em-
phasis on security, reliability, and maintainability but lower emphasis on following
a process or deadline than the other three domains. Apart from those differences,
BCS may not be much different from traditional development domains, especially
widely used software, such as Office.

Key takeaway 3: So, is BCS development really different? The answer to this
question will depend on whom we ask. It’s true that BCS development has a
very high emphasis on security and reliability, but many of the existing soft-
ware development domains (e.g., financial transaction, air traffic controller,
and nuclear power plant management) have a similar emphasis on security and
reliability. If a developer’s non-BCS experience is in high assurance software
(Section 6.3.5), then he/she might find little differences. However, over 93%
of our respondents’ non-BCS experiences significantly differed from their ex-
periences in BCS (Figure 6). Our survey received responses from ≈10% of the
most active developers from the top BCS projects, and 70% of our respon-
dents have more than 5 years of development experiences (Section 6.1). Yet,
they found BCS development different from non-BCS. Some of the differences,
such as the immaturity of the ecosystem, will resolve with time, but others,
such as immutability of data as well as difficulty in upgrading the software
after deployment, which is rare among the non-BCS domains, will linger as a
differentiating factor.

6.4 RQ4: Challenges of BCS Development

Figure 7 shows the primary types of challenges of BCS development according
to the respondents of our survey (Q13: Table 1). Since prior results from the
Psychology domain suggest that a person’s ability to acquire knowledge of a new
domain depends on his/her age and education level [7], we investigated whether
those factors have any impact on the challenges reported by the BCS developers
from our survey. Although we did not find any differences based on the education

22 Bosu et al.

Lack of supporting materials

Non−technical

Development

Uncommon characteristics of BCS

0.0% 20.0% 40.0% 60.0%
Percentage of the respondents

Fig. 7 Primary challenges of BCS development

level (χ2 = 14.46, p = 0.27), we found that the developers aged 40 years and older,
who are likely to have significant experiences in non-BCS domains, were more
likely (χ2 = 35.07, p = 0.02) to be challenged by the characteristics of the BCS
domain (Section 6.4.1) than the other age groups.

6.4.1 Uncommon characteristics of BCS

Some of the characteristics of the BCS domain that are rare among non-BCS, are
sources of challenges for more than 61% BCS developers. Around 70% respon-
dents of our survey have more than five years of software development experience.
Therefore, the aspects of BCS development that differ from a non-BCS are primary
sources of challenges for them. While discussing BCS development challenges, our
respondents reiterated following differences already mentioned earlier (section 6.3):

– high costs of defects (section 6.3.1);
– technological complexity (section 6.3.2);
– distributed, decentralized, and hostile environment (section 6.3.2);
– rapidly changing ecosystem (section 6.3.2); and
– difficulty in maintenance (section 6.3.4).

Steep learning curves to get familiar with a BCS project is another challenge
for many BCS developers. The codebase of a BCS project is not only complex
but also requires a sound understanding of cryptography, networking, distributed
systems as well as project specific protocols.

The bitcoin core codebase is an incredibly complicated system, so the hardest part is

building up a good enough understanding of it such that it’s safe to make changes.

[#156]

6.4.2 Development

Development challenges are related to testing, ensuring security, and reviewing
code as mentioned by 35% of our respondents. Testing blockchain software is chal-
lenging as the software executes on a distributed and potentially hostile environ-
ment that currently cannot be adequately simulated on a development machine.

.. to test that bugs are not included in important parts such as consensus. [#22]

The security of a BCS software is the highest priority as it handles financial
data that can be exploited for financial gains. Therefore, BCS developers must
consider security aspects when writing code.

Motivations and Challenges of Blockchain Software Developers 23

... thinking with a security mindset. the software is literally money, so when writing

it you have to be wary of any way in which things could go wrong.[#143]

Due to the lack of quality reviewers, open source software (OSS) developers
often have to wait for a long time to get their code reviewed [10]. BCS developers
also report similar challenges.

... it is often difficult to get code reviews on open source projects even with a history

of contributions. [#75]

6.4.3 Non-technical

The non-technical challenges of BCS development, which were reported by 12% of
our respndents, are due to collaboration issues, difficulties in reaching agreement
among the community members, and the ethical aspects of BCS. Most of the BCS
projects are run by communities. However, many of the projects have raised over
hundreds of millions of dollars through initial coin offerrings [41] and have very
high valuations [1]. Since a large sum of money is at stake, community members
often engage in arguments to decide a project roadmap [24].

Governance, deciding on changes, and set a future roadmap. [#35]

The development team comprising volunteers with diverse personalities, back-
ground, experience, and motivation often encounter issues to collaborate.

nothing particular to the blockchain, prickly personalities! [#51]

Some BCS developers are primarily motivated by the prospects of financial
gains and will not hesitate to adopt an unethical approach if presented with an
opportunity. Without a central monitoring authority, preventing developers with
malicious intents is a challenge.

human greed, and cleaning up the mess after bounties and scams on forum.[#44]

6.4.4 Lack of supporting materials

The lack of supporting tools and documentation is a source of challenges for many
BCS developers (6%). Many of the supporting tools that can help their develop-
ment tasks are yet to be developed. Moreover, the tools that are currently available
are immature and unreliable.

Reliability of and the lack of good development tools. Like testing frameworks, and

the difficulty of debugging.[#16]

To understand a complicated domain such as BCS, developers are looking for good
learning materials and tutorials, but such materials are currently rarities. Even the
documentation that they currently have are not user friendly.

Blockchain is totally a new technology so there is few information we can find.

24 Bosu et al.

Other

Smart−contract support

Development Support

Testing support

0.0% 20.0% 40.0%
Percentage of the respondents

Fig. 8 Categories of tools that BCS developers need

Key takeaway 4: Since most of the non-BCS domains do not have similar high
reliability and security requirements as the BCS domain, developers coming
from other domains (except high assurance software) will encounter challenges
due to those differences. Moreover, BCS Developers must be careful in writing
code due to high costs of defects as well as difficulty in upgrading the software.
Yet, they are under constant pressure due to a rapidly changing ecosystem as
well as high expectations from the stakeholders to release new versions. More-
over, as the blockchains become more popular the scalability of BCS software
has become an area of concern [68]. As a result BCS development is challenging
even for developers with considerable non-BCS experiences (Section 6.4.1).

6.5 RQ5: Tools that BCS Developers Need

We asked the respondent of our survey to describe the type of tools that they cur-
rently do not have but if implemented can significantly improve their development
productivity (Q14: Table 1). In response, our respondents indicated their needs for
four categories of tools (Figure 8). We also hypothesized the the requirement for
supporting tool may vary based on the software development experience or BCS
development experience of a respondent. However, the results of our analysis did
not find any statistically significant difference.

6.5.1 Testing support

Majority of our respondents (53.1%) suggest that testing is the area of BCS de-
velopment that currently needs supporting tools the most. BCS developers use
‘testnets’ [94] to experiment their code before deploying it to the ‘mainnet’ [29].
Many developers experience difficulties in setting up a testnet. An easy to setup,
‘one-click testnet’ may be a solution.

Easy way of forking mainnets for testing purposes, a way to deploy a test net in one

click would be nice.[#150]

The simulators that BCS developers currently have are limited and are un-
able to simulate a complex and hostile real world environment. While they have
testnets, but the scales and complexities of testnets are no where closer to a main-
net. Few recent works [84,16] have attempted to build such simulators, but no
satisfactory solution exists yet.

Motivations and Challenges of Blockchain Software Developers 25

Easier ways to simulate complex network topologies on one single machine to simu-

late the network. [#195]

Formal verification [20] techniques have been useful to secure BCS projects.
However, developers find current formal specification languages (e.g., TLA+, VDM,
and Z-notation) very complex to learn and use. They wish for user friendly alter-
natives.

End-to-end formal specification and verification tools with notations that mere pro-

grammers can understand. I sometimes think our formalists actually like to make

their work obscure. [#1]

Static analysis and penetration testing tools have been useful in non-BCS do-
mains for security testing [17,4]. Since, those tools do not work well on BCS code-
base, developers wish for automated security testing tools designed specifically for
the BCS domain.

Fuzz testing, something like linting for security best practices. [#196]

6.5.2 Development support

The IDEs, designed for the non-BCS domains, lack adequate supports for testing
and debugging a BCS codebase. Therefore, BCS developers use an array of tools
for various development activities. Some developers (28.6%) maintain that an IDE
designed specifically for BCS development would help them.

... they are all mostly disconnected, I have to switch from one tool/platform to another

for my regular development activities many times every day. It would help if there

were better integration between them all. [#66]

Even the tools that exist are not reliable, and BCS developers wish them to
be more stable.

Tools exist that are in their infancy and just need to get better. [#13]

6.5.3 Smart-contract development

Smart-contracts are written using contract-oriented programming language such as
Solidity or Vyper and then compiled into bytecode for a platform (e.g., Ethereum
Virual Machine aka EVM). Remix, an IDE for solidity, currently lacks many fea-
tures such as: error highlighting and line by line debugging, that many BCS de-
velopers (24.5%) wish for.

Better tool support for smart-contract development. IDE integration with interactive

debugging. [#137]

Before interacting with a smart-contract, a developer might want to verify its
security properties by decompiling its bytecode. While few solutions exist [85],
smart-contract developers wish for a reliable and user-friendly decompiler.

... high-level Solidity decompiler that works (the current EVM-to-Solidity decompilers

are horrible). [#113]

6.5.4 Others

The other tools wished by the respondents include UML/design notations for
the BCS domain, containers for deployment, and automated performance analysis
tools.

26 Bosu et al.

Key takeaway 5: Based on the personal experiences of our respondents, they
found some widely used tools tuned for non-BCS development, lacking required
support for BCS development. While some of the needs expressed by our re-
spondents (e.g., easy to write formal specification) may be a wishful thinking
and difficult to achieve, most of those tools are feasible. Potentially imple-
mentable tools for BCS development include: testing environment, automatic
security testing, static analysis for smart-contrats, and easy to deploy testnets.
Since an array of research predict tremendous impacts of the blockchain tech-
nology and smartcontracts in future [44,67,31], the number of BCS projects
and developers contributing to those projects will grow significantly over the
next decade. Therefore, research and development efforts should focus on im-
plementing those tools to build a mature BCS development ecosystem.

7 Implications

In the following subsections, we discuss key implications of our results.

7.1 Notes for Prospective Joiners

Ideology drives more than one-third of the BCS developers (Section 6.2.1). Prior
research suggest that OSS developers who do not share a common ideology with
the community are not only less productive [83] but also fail to form synergies
with the existing members. There are several instances where ideological conflicts
have split a BCS community into two rival projects (e.g., Ethereum → Ethereum
and Ethereum Classic). Therefore, a prospective joiner should select a project that
has ideologies aligned with his/her beliefs.

Second, an experienced non-BCS developer, regardless of his/her prior non-
BCS domain, will encounter differences due to several unique characteristics of the
BCS domain (Section 6.3.2). A prospective joiner must be prepared to conduct
rigorous testing to ensure the correctness of code before deployment, since– i) data
cannot be altered once written on the blockchain and ii) updating BCS is very
difficult compared to non-BCS. Despite such extensive correctness requirements,
tools and frameworks to conduct such rigorous tests are either limited or non-
existent (Section 6.5.1). Therefore, a prospective joiner must be ready to spend
significant manual efforts to test BCS for correctness, as our respondent#29 stated,
“Testing is 80% of development.”

Finally, BCS has steep learning curve with knowledge requirements in Cryptog-
raphy, networking, security and distributed computing (Section 6.4.1). Yet, docu-
mentations and tutorials to assist the learning process of a newcomer are limited
(Section 6.4.4). Therefore, a BCS joiner needs to be prepared to spend consider-
able efforts researching blockchain concepts and to utilize community Q&A sites
(e.g., https://bitcoin.stackexchange.com).

7.2 Education and Preparation

Our results suggest that special skills, beyond those required for most non-BCS
development would be beneficial for persons considering to join BCS. Chief among

https://bitcoin.stackexchange.com

Motivations and Challenges of Blockchain Software Developers 27

them is the knowledge of secured programming (Section 6.3.1). Unlike the majority
of non-BCS, every module of a BCS is subject to attacks by malicious actors, since
the stakes are substantially higher (Section 6.3.2). Second, due to its distributed
and untrusted environment, a BCS developer needs in-depth networking knowledge
to design and secure communication between distributed nodes (Section 6.3.2).
Third, a sound understanding of cryptography is required, since BCS is secured
using encryption (Section 6.3.2). Finally, a lot of concepts of Blockchain are verified
using principles of mathematics, therefore a sound math skill is essential to design
new BCS algorithms or protocols (Section 6.3.2).

7.3 Suggestions for Tool Developers

The study outcome also presents a requirement for developing an array of tools
specialized for BCS development. As discussed in section 6.5, potentially im-
plementable tools for BCS development include: testing environment, debugging
tools, automatic security testing, static analysis for smart-contracts, and easy to
deploy testnets.

Since several characteristics of the BCS domain are different from a non-BCS
domain, quite a few categories of tools (e.g., IDE, simulator, and static analysis
tools), that are stable and mature for non-BCS development, either do not exist
or lacks important support for BCS (Section 6.5.1). Due to the lack of appropriate
testing supports, BCS developers primarily depend on manual code reviews to
ensure the security of their software [15]. As a result, expensive bugs and hacks
are very frequent in the BCS ecosystem [87,91,68].

Smart-contracts, which open a new type of programming paradigm, are gaining
popularities [56]. Yet, the smart-contract programming domain lacks basic devel-
opment supports, such as an IDE with error highlighting, line by line debugging,
and decompilers (Section 6.5.3). As a result, many of the smart-contracts deployed
on public blockchains are vulnerable [63].

Finally, due to a higher emphasis on security and reliability, BCS developers
are highly interested in writing formal specifications for their software. However,
current formal verification languages and tools are difficult to learn and use for
BCS (Section 6.5.1). Therefore, another potential direction could be building cus-
tomized formal specifications for the BCS domain.

7.4 Research Directions

The needs of BCS developers as identified in section 6.5 will provide guidance
to researchers to identify areas needing the most attentions. One of such areas
is testing, where BCS development would benefit from research efforts. While
prior research has focused on testing distributed programs [14], BCS operates on
a different type of distributed environment where nodes are both collaborating
and competing with each other other at the same. Moreover, some of those nodes
may potentially have malicious intents. To simulate such networks in a testing
environment (Section 6.5.1), research efforts are required to model their behavior.
Such models may be also useful to mathematically verify the reliability and security
of a network.

28 Bosu et al.

Second, smart-contracts automatically execute on distributed virtual-machines
(e.g., EVM) based on certain predefined conditions. Since smart-contract program-
ming languages (e.g., Solidity and Vyper) have different syntax and execution
models, existing formal specification languages do not work well for those (Sec-
tion 6.5.3). Although recent studies have focused on building new customized
specifications to secure smart-contracts [39,66], more research effort is warranted
as it is a high priority for the BCS developers.

Third, automated security testing is another key need for BCS developers.
Fuzzing4 technique has been successfully used for automated security testing in
various domains. ContractFuzzer [48], a recent tool, is the first fuzzer that aims
to provide fuzzing support for Ethereum smart-contracts. However, such fuzzers
are currently non-existent for other types of BCS. Research efforts to build fuzzers
for various BCS would tremendously help the BCS ecosystem (Section 6.5.1) as
security is the top priority for BCS projects. Finally, academic researchers, of-
ten in collaboration with practitioners, may focus on automated documentation
generation, the lack of which is a barrier for the newcomers (Section 6.4.4).

8 Threats to validity

This section discusses the four common types threats to validity for this study.

8.1 Internal validity

Participant selection is the primary threat to internal validity. We selected five
commits as a threshold for an invitation to this survey. A higher or lower threshold
may have altered the results. However, the results of our analysis did not find any
significantly differences in opinions based on the number of pull requests of a
respondent (Q8). Therefore, this threat may be minimal.

Although the response rate of our survey is similar to prior SE surveys [11,
49], the response rate is only (≈13%). Therefore our results could suffer from a
potential ‘non-response bias’ (i.e., the opinions of the respondents who chose to
participate may be different from who did not) [5]. Even so, the 156 responses that
we analyzed provide a rich source of data to reveal the insights described in this
paper.

8.2 Construct validity

The primary threats to construct validity are related to the design of our sur-
vey. For example, respondents may misunderstand our questions or the questions
may not be appropriate to investigate our research questions. Therefore, we took
following measures during our survey design to reduce potential threats.

– We conducted expert reviews as well as a pilot test to check both understand-
ability and appropriateness of the survey questions.

– We carefully worded the open-ended questions in an unbiased manner.

4 providing invalid, unexpected, or random data as inputs

Motivations and Challenges of Blockchain Software Developers 29

– We provided clear instructions as well as asked the respondents to answer based
on their personal experiences with BCS projects.

The actual responses our open-ended questions do indicate that the respondents
understood the intent of the survey questions. Therefore, we think this threat is
minimal.

Another potential threat to construct validity is our comparison of the BCS
developers’ ratings collected for this study with the ratings from the MS study. On
the comparability of two different surveys, Herndon suggests that two surveys are
comparable if both surveys have: i) the same target population, ii) the same ob-
jective, and iii) uses the same survey methodology [37]. The MS study, empirically
identified 28 statements spanning various software engineering as well as general
work feature, to identify differences between game and non-game development.
These statements were rated by three separate groups of developers to identify
differences in opinions among those groups. In this study, we have collected rat-
ings from a fourth group (i.e. BCS developers) for 19 out of the 28 statements that
are applicable to BSC projects and compared that group with the three groups
from the MS study. We believe data collected for our study is comparable with the
MS study since both studies have: i) software developers as the target population,
ii) have the same objective of comparing the opinions of software developers from
different domains, and iii) used a web-based survey to solicit ratings for a simi-
lar set of statements using the same Likert-scale. Moreover, comparing data from
multiple surveys is not uncommon in many disciplines [30,76,77,54,70]. Therefore,
we consider this threat to be minimal.

Finally, we have compared the demographics of our respondents against the
demographics of the respondents reported in the SO survey. Comparisons of de-
mographics across multiple surveys is common [57,75,69]. Since our respondents
come from the same population (i.e., software developers), a possible threat to
validity for these comparisons is minimal.

8.3 External validity

The respondents of our survey may not adequately represent all BCS develop-
ers. While our respondents come from 61 different BCS projects, they primarily
represent the top ones. Therefore, some of the opinions, especially, the challenges
encountered by BCS developers in smaller projects may be different from those
included in this study. However, our results also indicate that BCS developers’
challenges are primarily due to the differences between BCS and non-BCS devel-
opment, which may be similar across all projects.

Section 6.3.6 compares BCS development with three non-BCS development do-
mains from the same organization (i.e., Microsoft). Therefore, differences identified
in that section may not apply to a different domain or a different organization.
A common misconception about industrial research at large companies such as
Microsoft is that software projects at Microsoft are not representative of other
software projects. While projects might be larger in size, most development prac-
tices at Microsoft are adapted from the general software engineering community
and also used outside Microsoft. Since Microsoft is a well-recognized and mature
software development organization, we believe that MS developers are eligible to
provide us credible insights on non-BCS development,

30 Bosu et al.

8.4 Conclusion validity

We sent out the survey to 1,604 BCS developers that were eligible at that time.
Using Yamane’s [95] formula for a recommended sample size, we would need ≈320
responses to obtain results that are within 5% margin of error. Despite our best
efforts, we obtained only 156 responses that are eligible for analyses. Therefore,
many of our quantitative results are subject higher margin of errors. However,
several prior SE surveys that have provided valuable insights to the community
are also subject to similar errors as responses for SE surveys are generally low [53,
49,11].

9 Conclusion

Despite the existence of a large number of active BCS projects as well as tremen-
dous developer interests in the blockchain technology, there have been few empir-
ical SE research exploring this area. In an attempt to bridge this gap, we studied
the motivations, challenges, and needs of BCS developers. Our results suggest that
although most of the BCS projects are Open Source Software (OSS) projects by
nature, more than 93% of our respondents found BCS development somewhat
different from a non-BCS development as BCS projects have higher emphasis on
security and reliability than most of the non-BCS projects. Other differences in-
clude: higher costs of defects, decentralized and hostile environment, technological
complexity, and difficulty in upgrading the software after release. These differ-
ences were also the primary sources of challenges to the BCS developers. Software
development tools that are tuned for non-BCS does not adequately support BCS
development tasks and the ecosystem needs an array of new or improved tools, such
as: a customized IDE for BCS development tasks, debuggers for smart-contracts,
testing support, easily deployable simulators, and BCS domain specific design no-
tations.

From the findings of our study, the prospective joiners of BCS development may
gain some technical insight such as to learn secure programming practices, form
mindset on test-centric development approach and also non-technical issues related
to collaboration in the community of diverse motivation. Students wishing to join
BCS should prepare themselves by gaining knowledge in networking, distributed
programming, cryptography, and mathematics. This study also identifies pressing
need of tools supporting various BCS development tasks. Many of these tools
require active participation of SE researchers who are expected to grab high-impact
research problems from this research.

Acknowledgements We are grateful to Emerson Murphy-Hill from Google; Tom Zimmer-
mann, and Nachi Nagappan from Microsoft Research for providing us the dataset of their
Survey at Microsoft. We thank the anonymous reviewers for their thorough reviews and highly
appreciate the comments and suggestions, which significantly contributed to improving the
quality of this publication. We thank the anonymous respondents of our survey.

Motivations and Challenges of Blockchain Software Developers 31

References

1. Cryptocurrency market capitalization. https://www.coinmarketcap.com/ (2019). Ac-
cessed: 2019-01-15

2. Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L.: Software engineering body of
knowledge. IEEE Computer Society, Angela Burgess (2004)

3. Adhami, S., Giudici, G., Martinazzi, S.: Why do businesses go crypto? an empirical analysis
of initial coin offerings. Journal of Economics and Business (2018)

4. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Security & Privacy
3(1), 84–87 (2005)

5. Armstrong, J.S., Overton, T.S.: Estimating nonresponse bias in mail surveys. Journal of
marketing research pp. 396–402 (1977)

6. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: Using blockchain for medical
data access and permission management. In: Open and Big Data (OBD), International
Conference on, pp. 25–30. IEEE (2016)

7. Beier, M.E., Ackerman, P.L.: Age, ability, and the role of prior knowledge on the acqui-
sition of new domain knowledge: promising results in a real-world learning environment.
Psychology and aging 20(2), 341 (2005)

8. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the royal statistical society. Series B (Method-
ological) pp. 289–300 (1995)

9. Bosu, A., Carver, J., Guadagno, R., Bassett, B., McCallum, D., Hochstein, L.: Peer im-
pressions in open source organizations: A survey. Journal of Systems and Software 94(0),
4 – 15 (2014)

10. Bosu, A., Carver, J.C.: Impact of developer reputation on code review outcomes in oss
projects: An empirical investigation. In: Proceedings of the 8th ACM/IEEE international
symposium on empirical software engineering and measurement, p. 33. ACM (2014)

11. Bosu, A., Carver, J.C., Bird, C., Orbeck, J., Chockley, C.: Process aspects and social
dynamics of contemporary code review: insights from open source development and in-
dustrial practice at microsoft. IEEE Transactions on Software Engineering 43(1), 56–75
(2017)

12. Bosu, A., Iqbal, A., Shahriyar, R., Chakroborty, P.: Understanding the motivations, chal-
lenges and needs of blockchain software developers: A survey. CoRR abs/1811.04169
(2018). URL http://arxiv.org/abs/1811.04169

13. Brooke, S.: The ins and outs of testing blockchain apps (2018). URL https://jaxenter.
com/ins-outs-testing-blockchain-apps-146447.html

14. Campion, S., Messinger, D.: System and method for distributed software testing (2013).
US Patent 8,621,434

15. Chakraborty, P., Shahriyar, R., Iqbal, A., Bosu, A.: Understanding the software develop-
ment practices of blockchain projects: A survey. In: Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, ESEM
’18, pp. 28:1–28:10 (2018)

16. Chen, C., Qi, Z., Liu, Y., Lei, K.: Using virtualization for blockchain testing. In: In-
ternational Conference on Smart Computing and Communication, pp. 289–299. Springer
(2017)

17. Chess, B., McGraw, G.: Static analysis for security. IEEE Security & Privacy 2(6), 76–79
(2004)

18. Chuen, D.L.K.: Handbook of digital currency: Bitcoin, innovation, financial instruments,
and big data. Academic Press (2015)

19. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations, design land-
scape and research directions. arXiv preprint arXiv:1608.00771 (2016)

20. Clarke, E.M., Wing, J.M.: Formal methods: State of the art and future directions. ACM
Computing Surveys (CSUR) 28(4), 626–643 (1996)

21. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological
Measurement 20(1), 37–46 (1960)

22. Dahlander, L., Mckelvey, M.: Who is not developing open source software? non-users, users,
and developers. Economics of Innovation and New Technology 14(7), 617–635 (2005)

23. David, P.A., Shapiro, J.S.: Community-based production of open-source software: What
do we know about the developers who participate? Information Economics and Policy
20(4), 364 – 398 (2008). Empirical Issues in Open Source Software

http://arxiv.org/abs/1811.04169
https://jaxenter.com/ins-outs-testing-blockchain-apps-146447.html
https://jaxenter.com/ins-outs-testing-blockchain-apps-146447.html

32 Bosu et al.

24. De Filippi, P., Loveluck, B.: The invisible politics of bitcoin: Governance crisis of a decen-
tralized infrastructure. Internet Policy Review 5(4), 529–546 (2016)

25. Deci, E., Ryan, R.M.: Intrinsic motivation and self-determination in human behavior.
Springer Science & Business Media (1985)

26. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards creating
a safe smart contract: Lessons and insights from a cryptocurrency lab. In: International
Conference on Financial Cryptography and Data Security, pp. 79–94. Springer (2016)

27. Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., Hierons, R.M.: Smart
contracts vulnerabilities: a call for blockchain software engineering? In: Proceedings of the
2018 International Workshop on Blockchain Oriented Software Engineering, pp. 19–25.
IEEE, Campobasso, Italy (2018)

28. Dev, J.A.: Bitcoin mining acceleration and performance quantification. In: Electrical and
Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on, pp. 1–6. IEEE
(2014)

29. Documentation, B.D.: Mainnet, bicoin main network. https://bitcoin.org/en/
glossary/mainnet. Accessed: 2018-01-04

30. Elliott, M.R., Davis, W.W.: Obtaining cancer risk factor prevalence estimates in small
areas: combining data from two surveys. Journal of the Royal Statistical Society: Series
C (Applied Statistics) 54(3), 595–609 (2005)

31. Fanning, K., Centers, D.P.: Blockchain and its coming impact on financial services. Journal
of Corporate Accounting & Finance 27(5), 53–57 (2016)

32. Galati, F.: Blockchain as a process: Ideologies and motiva-
tions behind the technology. https://medium.com/coinmonks/
blockchain-as-a-process-ideologies-and-motivations-behind-the-technology-c25219d87881/
(2019)

33. Garfinkel, S.L.: Public key cryptography. Computer 29(6), 101–104 (1996)
34. Gilbertson, T., Vroegindewey, L.: Larrys cryptocoin risk (2017). URL https://www.

coindevelopmentindex.com/
35. Hars, A., Ou, S.: Working for free? motivations of participating in open source projects. In:

System Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference
on, pp. 9–pp. IEEE (2001)

36. Hennessey, B.A., Amabile, T.M.: Reality, intrinsic motivation, and creativity. American
Psychologist 51, 1153–1166 (1998)

37. Herndon, J.B.: Comparing and linking survey data: Considerations for work-
ing with multiple data sources (2018). URL https://www.nidcr.nih.gov/
grants-funding/grant-programs/behavioral-social-sciences-research-program/
comparing-and-linking-survey-data

38. Hertel, G., Niedner, S., Herrmann, S.: Motivation of software developers in open source
projects: an internet-based survey of contributors to the linux kernel. Research policy
32(7), 1159–1177 (2003)

39. Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., Moore, B.,
Park, D., Zhang, Y., Stefanescu, A., et al.: Kevm: A complete formal semantics of the
ethereum virtual machine. In: 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), pp. 204–217. IEEE (2018)

40. Hitka, M., Balážová, Ž.: The impact of age, education and seniority on motivation of
employees. Business: Theory and practice 16, 113 (2015)

41. Howell, S.T., Niessner, M., Yermack, D.: Initial coin offerings: Financing growth with
cryptocurrency token sales. Tech. rep., National Bureau of Economic Research (2018)

42. Huh, S., Cho, S., Kim, S.: Managing iot devices using blockchain platform. In: Advanced
Communication Technology (ICACT), 2017 19th International Conference on, pp. 464–
467. IEEE (2017)

43. Humphrey, S.E., Nahrgang, J.D., Morgeson, F.P.: Integrating motivational, social, and
contextual work design features: a meta-analytic summary and theoretical extension of
the work design literature. Journal of applied psychology 92(5), 1332 (2007)

44. Iansiti, M., Lakhani, K.R.: The truth about blockchain. Harvard Business Review 95(1),
118–127 (2017)

45. J. Richard Landis, G.G.K.: The measurement of observer agreement for categorical data.
Biometrics 33(1), 159–174 (1977). URL http://www.jstor.org/stable/2529310

46. Jacobovitz, O.: Blockchain for identity management (2016)
47. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: Secure Infor-

mation Networks, pp. 258–272. Springer (1999)

https://bitcoin.org/en/glossary/mainnet
https://bitcoin.org/en/glossary/mainnet
https://medium.com/coinmonks/blockchain-as-a-process-ideologies-and-motivations-behind-the-technology-c25219d87881/
https://medium.com/coinmonks/blockchain-as-a-process-ideologies-and-motivations-behind-the-technology-c25219d87881/
https://www.coindevelopmentindex.com/
https://www.coindevelopmentindex.com/
https://www.nidcr.nih.gov/grants-funding/grant-programs/behavioral-social-sciences-research-program/comparing-and-linking-survey-data
https://www.nidcr.nih.gov/grants-funding/grant-programs/behavioral-social-sciences-research-program/comparing-and-linking-survey-data
https://www.nidcr.nih.gov/grants-funding/grant-programs/behavioral-social-sciences-research-program/comparing-and-linking-survey-data
http://www.jstor.org/stable/2529310

Motivations and Challenges of Blockchain Software Developers 33

48. Jiang, B., Liu, Y., Chan, W.: Contractfuzzer: Fuzzing smart contracts for vulnerability
detection. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 259–269. ACM (2018)

49. Kononenko, O., Baysal, O., Godfrey, M.W.: Code review quality: how developers see it.
In: Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, pp.
1028–1038. IEEE (2016)

50. Korpela, K., Hallikas, J., Dahlberg, T.: Digital supply chain transformation toward
blockchain integration. In: Proceedings of the 50th Hawaii international conference on
system sciences (2017)

51. Krafft, P.M., Della Penna, N., Pentland, A.S.: An experimental study of cryptocurrency
market dynamics. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18, pp. 605:1–605:13 (2018)

52. Lakhani, K.R., Wolf, R.G.: Why hackers do what they do: Understanding motivation
and effort in free/open source software projects. MIT Sloan Working Paper 4425-03
(September 2003)

53. Lee, A., Carver, J.C., Bosu, A.: Understanding the impressions, motivations, and barriers
of one time code contributors to floss projects: A survey. In: Proceedings of the 39th
International Conference on Software Engineering, ICSE ’17, pp. 187–197. IEEE Press,
Piscataway, NJ, USA (2017). DOI 10.1109/ICSE.2017.25. URL https://doi.org/10.
1109/ICSE.2017.25

54. Lohr, S.L., Rao, J.: Inference from dual frame surveys. Journal of the American Statistical
Association 95(449), 271–280 (2000)

55. Lu, C.J., Shulman, S.W.: Rigor and flexibility in computer-based qualitative research:
Introducing the coding analysis toolkit. International Journal of Multiple Research Ap-
proaches 2(1), 105–117 (2008)

56. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 254–269. ACM (2016)

57. Mcdonald, M.P.: The True Electorate: A Cross-Validation of Voter Registration Files and
Election Survey Demographics. Public Opinion Quarterly 71(4), 588–602 (2007)

58. Meece, J.L., Glienke, B.B., Burg, S.: Gender and motivation. Journal of school psychology
44(5), 351–373 (2006)

59. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software
development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3), 309–346
(2002)

60. Murphy-Hill, E., Zimmermann, T., Nagappan, N.: Cowboys, ankle sprains, and keepers
of quality: How is video game development different from software development? In:
Proceedings of the 36th International Conference on Software Engineering, pp. 1–11. ACM
(2014)

61. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
62. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Cryptocur-

rency Technologies: A Comprehensive Introduction. Princeton University Press (2016)
63. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and

suicidal contracts at scale. arXiv preprint arXiv:1802.06038 (2018)
64. Overflow, S.: Stack overflow annual developer survey (2017). URL https://insights.

stackoverflow.com/survey/
65. Palladino, S.: The parity wallet hack explained (2017). URL https://blog.zeppelin.

solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
66. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verification tool for

ethereum vm bytecode. In: Proceedings of the 2018 26th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 912–915. ACM (2018)

67. Peters, G.W., Panayi, E.: Understanding modern banking ledgers through blockchain tech-
nologies: Future of transaction processing and smart contracts on the internet of money.
In: Banking Beyond Banks and Money, pp. 239–278. Springer (2016)

68. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software engineer-
ing: challenges and new directions. In: Proceedings of the 39th International Conference
on Software Engineering Companion, pp. 169–171. IEEE Press, Buenos Aires, Argentina
(2017)

69. Posel, D., Devey, R.: The demographics of fathers in south africa: an analysis of survey
data, 1993–2002. Baba: men and fatherhood in South Africa pp. 38–52 (2006)

https://doi.org/10.1109/ICSE.2017.25
https://doi.org/10.1109/ICSE.2017.25
https://insights.stackoverflow.com/survey/
https://insights.stackoverflow.com/survey/
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7

34 Bosu et al.

70. Raghunathan, T.E., Xie, D., Schenker, N., Parsons, V.L., Davis, W.W., Dodd, K.W.,
Feuer, E.J.: Combining information from two surveys to estimate county-level prevalence
rates of cancer risk factors and screening. Journal of the American Statistical Association
102(478), 474–486 (2007)

71. Reijers, W., Coeckelbergh, M.: The blockchain as a narrative technology: Investigating the
social ontology and normative configurations of cryptocurrencies. Philosophy & Technol-
ogy 31(1), 103–130 (2018)

72. Roberts, J.A., Hann, I.H., Slaughter, S.A.: Understanding the motivations, participation,
and performance of open source software developers: A longitudinal study of the apache
projects. Management science 52(7), 984–999 (2006)

73. Rosenthal, J.A.: Qualitative descriptors of strength of association and effect size. Journal
of social service Research 21(4), 37–59 (1996)

74. Rosenthal, R.: Parametric measures of effect size. The handbook of research synthesis pp.
231–244 (1994)

75. Ross, J., Irani, L., Silberman, M.S., Zaldivar, A., Tomlinson, B.: Who are the crowd-
workers?: Shifting demographics in mechanical turk. In: CHI ’10 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’10, pp. 2863–2872 (2010)

76. Sadana, R., Mathers, C.D., Lopez, A.D., Murray, C.J., Iburg, K.: Comparative analyses of
more than 50 household surveys on health status. Summary measures of population health:
concepts, ethics, measurement and applications. Geneva: World Health Organization pp.
369–386 (2002)

77. Schenker, N., Gentleman, J.F., Rose, D., Hing, E., Shimizu, I.M.: Combining estimates
from complementary surveys: a case study using prevalence estimates from national health
surveys of households and nursing homes. Public Health Reports (2016)

78. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).
Biometrika 52(3/4), 591–611 (1965)

79. Simmons, G.J.: Symmetric and asymmetric encryption. ACM Computing Surveys (CSUR)
11(4), 305–330 (1979)

80. Snow, J., Mann, M.: Qualtrics survey software: handbook for research professionals.
Qualtrics Labs, Inc (2013)

81. SPSS, I.: Spss statistical software. IBM Corporation 24 (2017)
82. Stallman, R.: Free software foundation (fsf) (2003)
83. Stewart, K.J., Gosain, S.: The impact of ideology on effectiveness in open source software

development teams. Mis Quarterly pp. 291–314 (2006)
84. Stoykov, L., Zhang, K., Jacobsen, H.A.: Vibes: fast blockchain simulations for large-scale

peer-to-peer networks. In: Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-
ference: Posters and Demos, pp. 19–20. ACM (2017)

85. Suiche, M.: Porosity: A decompiler for blockchain-based smart contracts bytecode. DEF
CON 25 (2017)

86. Swan, M.: Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.” (2015)
87. Technologies, P.: A postmortem on the parity multi-sig library self-destruct. https:

//paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
(2017)

88. technology, S.: Blockchain software security best practices. https://www.synopsys.com/
blogs/software-security/blockchain-software-security-best-practices/ (2018)

89. Underwood, S.: Blockchain beyond bitcoin. Communications of the ACM 59(11), 15–17
(2016)

90. Von Krogh, G., Haefliger, S., Spaeth, S., Wallin, M.W.: Carrots and rainbows: Motivation
and social practice in open source software development. MIS quarterly pp. 649–676 (2012)

91. Wan, Z., Lo, D., Xia, X., Cai, L.: Bug characteristics in blockchain systems: a large-
scale empirical study. In: Mining Software Repositories (MSR), 2017 IEEE/ACM 14th
International Conference on, pp. 413–424. IEEE (2017)

92. West, J., Gallagher, S.: Challenges of open innovation: the paradox of firm investment in
open-source software. R&d Management 36(3), 319–331 (2006)

93. Wiki, B.: Hardfork. https://bitcoin.org/en/glossary/hard-fork. Accessed: 2018-01-04
94. Wiki, B.: Testnet. https://en.bitcoin.it/wiki/Testnet. Accessed: 2018-01-04
95. Yamane, T.: Statistics: An introductory analysis (1973)
96. Ye, Y., Kishida, K.: Toward an understanding of the motivation open source software

developers. In: Proceedings of the 25th international conference on software engineering,
pp. 419–429. IEEE Computer Society (2003)

https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.synopsys.com/blogs/software-security/blockchain-software-security-best-practices/
https://www.synopsys.com/blogs/software-security/blockchain-software-security-best-practices/
https://bitcoin.org/en/glossary/hard-fork
https://en.bitcoin.it/wiki/Testnet

Motivations and Challenges of Blockchain Software Developers 35

97. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology:
Architecture, consensus, and future trends. In: Big Data (BigData Congress), 2017 IEEE
International Congress on, pp. 557–564. IEEE (2017)

98. Zheng, Z., Xie, S., Dai, H.N., Wang, H.: Blockchain challenges and opportunities: A survey.
Work Pap.–2016 (2016)

36 Bosu et al.

Table 4 Codes that emerged from our open-coding of the four survey questions and the
categories that we assigned each code to.

Question Codes Assigned category

Q10: What are your
motivations to contribute to
your primary project?

Ideology Ideology
Financial gains

External rewards
Job, profession
Hobby, Fun

Intrinsic motivation
Passion, Self interest
Technical attraction Technical attraction
Learning, professional development Learning
Community recognition Community Recognition

Q11: Based on your
experiences, what are the
primary differences between
blockchain and
non-blockchain software
development ?

High emphasis on security reliability
Security/ reliabilityIrreversible data

Costly defects
Networking knowledge

Domain characteristics
Cryptography knowledge
Distributed environment
High pace development
Lack of tools

Immature ecosystemNew technology /framework
Lack of experienced developer
Backward compatibility

Maintainability
Upgrade difficulty
No difference No difference
Others Others

Q13: What are the most
challenging aspects of
blockchain software
development?

Cost of defects

Uncommon characteristics
of BCS

Steep learning curve
Technological complexity
Maintainability
High pace development
Scalability
Testing

Development challengesSecurity
Code reviews
Collaboration difficulties

Non-technical challengesGovernance, politics
Ethical aspects
Lack of tools Lack of supporting

materialsLack of documentation

Q14: Please describe the
type of tools that you
currently do not have, but if
implemented, can greatly
help your blockchain
software development
activities.

Simulator

Testing supports
Security testing support
Easily deployable testnet
Formal spec verifier
Static analysis tools
Development environment /IDE

Development supportsStable development tools
Easy to write formal specification
IDE for smart contracts

Smart-contract supportDebugger for smart contracts
EVM decompiler
Blockchain specific design notations

OthersContainer
Others

	1 Introduction
	2 Background
	3 Research Questions
	4 Research Methodology
	5 Demographics
	6 Results
	7 Implications
	8 Threats to validity
	9 Conclusion

