
Universidade Federal da Bahia
Departamento de Ciência da Computação

Programa de Pós-Graduação em Ciência da Computação

DESIGNING SMART CITY MOBILE
APPLICATIONS: A GROUNDED THEORY

Roselane Santana Silva

DISSERTAÇÃO DE MESTRADO

Salvador, Bahia - Brasil
December 20, 2019

ROSELANE SANTANA SILVA

DESIGNING SMART CITY MOBILE APPLICATIONS: A
GROUNDED THEORY

M.Sc. Dissertation submitted to the
Master Program in Computer Sci-
ence of Math Institute at Federal
University of Bahia in partial ful-
fillment of the requirements for the
Master degree in Computer Science.

Advisor: Eduardo Santana de Almeida
Co-advisor: John D. McGregor

Salvador, Bahia - Brasil
December 20, 2019

I dedicate this dissertation to God, my parents, my hus-

band, my brothers, friends, and professors who gave me all

the necessary support to get here.

ACKNOWLEDGEMENTS

God is the greatest provider of this opportunity and strength in my life. All honor and
glory belong to Him!

The execution and completion of this cycle represents an effort that I could only have
accomplished with the support of very important people in my life that always remarked
a presence during special moments of my professional and personal life.

I would like to warmly thank my beautiful family, specially my parents and my two
brothers. Without their caress, attention, and incentive, I would not have reached this
point. My loving husband, Eber Farias, who showed me a new way of seeing life, always
with patience, fondness, and love. Thank you for always standing by me.

I want to thank all the professors that supported me during the tracking of my path
at the Federal University of Bahia. specially to my advisor Dr. Eduardo Almeida, who
always believed in me, and always encouraged me to pursue an academic career. I also
want to express my gratitude to my co-advisor and friend, Dr. John McGregor, for always
being there for me, patiently pointing the way for me during the dissertation writing. I
have no words to describe how blessed I am for the opportunity to work with these two
extraordinary professionals.

I could not forget to thank all the practitioners and reviewers who significantly sup-
ported this dissertation, specially the interviewees for collaborating with our study and
the RiSE research group/LES friends for their valuable comments and suggestions. I also
would like to thank CAPES for financial support, which helped me during my master’s
degree. Without this support, I could not spend my time researching and trying to do
my best to conduct this dissertation.

In short, someone wisely said that anyone who has a friend has everything. I totally
agree because I was blessed with so many friends in my life that it would not be fair to
mention only a few names here. They all know how important their friendship is to me.

Muito Obrigada, todos vocês! ♥

v

"We know that all things work together for good for those

who love God, for those who are called according to his

purpose."

—ROMANS 8:28

RESUMO

A comunidade de arquitetura de software tem desempenhado um papel fundamental no
desenvolvimento de aplicações móveis. Muitas das ideias utilizadas no design destes
sistemas vieram da arquitetura de software tradicional e têm contribúıdo para o que a
computação móvel tem se tornado: uma tendência poderosa, adaptável, e robusta. Ao
mesmo tempo, a computação móvel tende a ser uma área muito desafiadora. Aplicações
no contexto de cidades inteligentes precisam operar dentro das limitações de energia da
bateria, velocidade de processamento e capacidade de armazenamento dos dispositivos
móveis, mas também lidar com as demandas exatas dos requisitos cŕıticos de cidades
inteligentes e operar em um ambiente exposto e de constante mudança, que nem sempre
é confiável. Como não existem modelos de design amplamente aceitos para esse tipo de
software, arquitetos e desenvolvedores recorrem a decisões arquiteturais alternativas que
atendam a todas as demandas, o que requer tempo e experiência. Por esta razão, este
estudo tem como objetivo construir uma teoria sobre o processo de design de aplicativos
móveis no domı́nio de cidades inteligentes na perspectiva do time de desenvolvimento de
software. Visando mitigar a falta de informações verificadas sobre o design de aplicativos
móveis, conduzimos um estudo de caso múltiplo com 9 aplicativos no contexto de cidades
inteligentes desenvolvidos por 4 times de desenvolvimento de software. Desses aplicativos,
6 foram submetidos a uma engenharia reversa para expor a arquitetura de cada aplicativo.
Com base em todos os dados coletados, um modelo emergente de teoria fundamentada foi
constrúıdo para explicar como o processo de design de arquitetura bem constrúıdo pode
gerar um aplicativo com caracteŕısticas desejadas. A teoria fundamentada desenvolvida
através desta pesquisa e o processo pelo qual ela foi constrúıda foram submetidos a um
processo de avaliação baseado na literatura de Engenharia de Software e na experiência
do pesquisador. Essa avaliação nos permitiu aperfeiçar o modelo emergente gerado e ver-
ificar que o processo experimental foi aplicado corretamente, gerando resultados válidos.
Na avaliação da teoria também foi abordada algumas das ameaças à validade, como a
influência do pesquisador. Para mitigar ainda mais as ameaças, esse processo incluiu
coleta e análise de dados de projetos adicionais. A teoria resultante oferece explicações
sobre como times de Engenharia de Software tem projetado aplicativos móveis para o
domı́nio de cidades inteligentes. Esse conhecimento servirá como base para uma melhor
compreensão dos fenômenos e definições de processos de design e desenvolvimento mais
eficazes.

Palavras-chave: Aplicações Móveis, Arquitetura de Software, Cidades Inteligentes,
Teoria Fundamentada, Estudo de Caso, Entrevistas

ix

ABSTRACT

The software architecture community has played a crucial role in the development of
mobile software. Many of the ideas used in the design of these systems came from tradi-
tional software architecture and those ideas have contributed to what mobile computing
has become: a powerful, adaptable, and robust trend. At the same time, mobile com-
puting tends to be a very challenging area. Applications in the context of smart cities
need to operate within the battery power, processor speed, and capacity limitations of
mobile devices, but also the exacting demands of life-critical smart city requirements,
and operate in a constantly changing and exposed environment, which may not always
be trusted. Since there are no widely accepted design models for this type of software,
architects and developers resort to primitive design decisions to meet all the needs of
these applications, which takes additional time and expertise. For this reason, this study
aims to build a theory about the design process for mobile applications in the context of
smart cities from the perspective of software development time. Aiming to mitigate the
lack of verified information about designing mobile apps, we conducted a multi-case study
with 9 smart city mobile applications developed by 4 software development teams. Six
applications were reverse engineered to expose the architecture of each application. Based
on all the data collected, an emergent grounded theory model was constructed to explain
how the selected design process produces an app with the desired characteristics. The
grounded theory developed through this research, and the process by which the theory
was developed, were subjected to an evaluation process developed from the literature and
the researchers’ experience. That evaluation allowed us to refine the emergent model and
verify that the experimental process was correctly applied there creating valid results.
The evaluation also addressed some of the threats to validity such as the influence of
the researcher. To further ensure validity, this process included gathering and analyzing
data from additional projects. The resulting theory offers explanations for how software
engineering teams design mobile apps for smart cities. This knowledge will serve as a
basis to further understand the phenomena and advances towards more effective design
and development process definitions.

Keywords: Mobile Applications, Software Architecture, Smart city, Grounded Theory,
Case Study, Interviews

xi

CONTENTS

Contents xiii

List of Figures xvii

List of Tables xix

Chapter 1—Introduction 1

1.1 Motivation . 1
1.2 Problem Statement . 2

1.2.1 Objective . 2
1.3 Research Method . 2
1.4 Statement of the Contributions . 3
1.5 Dissertation Structure . 4

Chapter 2—Foundation 5

2.1 Software Architecture . 5
2.2 Mobile Software . 6

Android Applications . 7
2.3 The Smart City concept . 8
2.4 Grounded Theory (GT) . 8

Open Coding . 9
Axial Coding . 9
Selective Coding . 10

2.5 Chapter Summary . 10

Chapter 3—Research Design 11

3.1 Case Selection . 12
3.2 Characterization of Software Selected for Study 13
3.3 Quality of the selected applications . 15
3.4 Data Collection . 16

3.4.1 Stage 1: Multi-Case Study . 16
3.4.2 Stage 2: Reverse-Engineering . 17

3.5 Data Analysis . 17
3.6 Validity Procedure . 19

xiii

xiv CONTENTS

3.7 Chapter Summary . 19

Chapter 4—A Ground Theory about the Development of Smart City Mobile
Applications 21

4.1 Characterization of a theory . 22
Theory constructs . 22
Theory proposition . 22
Scope . 22
Explanation . 22

4.2 Characterization of our theory . 22
Constructs . 22
Propositions . 24
Scope . 24
Explanation . 26

4.3 Discussion of the Grounded Theory . 26
4.3.1 Quality attributes and the resulting NFRs for Mobile Applications 26
4.3.2 Smart cities context . 28
4.3.3 Architectural patterns and styles 30
4.3.4 Candidate anti-pattern on architecture construction 31

4.4 A Deeper Look at the Architecture of Selected Android Apps 32
4.4.1 Multi-level analysis . 32
4.4.2 Example Reconstructed Architecture 33

4.5 Threats to Validity . 35
Construct Validity . 35
- Internal Validity . 35
- External Validity . 36
- Conclusion Validity . 36

4.6 Chapter Summary . 36

Chapter 5—The evaluation of the Initial Theory 39

5.1 Theory evaluation tasks . 40
Review of the literature . 40
Apply a set of theory evaluation criteria 40
Validate the model with researchers in similar areas 41
Validate the model with practitioners involved in theory generation . . . 41
Perform interviews with new practitioners 42
- Characterization of the subjects . 42
- Characterization of the apps . 42

5.2 Discussion of the evaluation tasks . 42
5.2.1 Review of the literature . 43
5.2.2 Apply a set of theory evaluation criteria 43
5.2.3 Validate the model with researchers in similar areas 44
5.2.4 Validate the model with practitioners involved in theory generation 45

CONTENTS xv

- Substantial Disagreement (20% of agreement) 45

- Moderate Agreement (between 50% and 70% of agreement) . . . 47

- Substantial Agreement (above 80% of agreement) 48

5.2.5 Perform interviews with new practitioners 51

5.3 Final Propositions for the Grounded Theory 52

5.4 Recommendations for the SE team . 53

5.5 Threats to Validity . 54

- Construct Validity . 54

- Internal Validity . 55

- External Validity . 55

5.6 Chapter Summary . 55

Chapter 6—Conclusion and Future Work 57

6.1 Summary of Research Contributions . 57

6.1.1 Empirical Data from a Multi-case Study 57

6.1.2 Reverse-Engineered Architectures 58

6.1.3 Theoretical Development Model 58

6.2 Research Products . 58

6.3 Related Work . 59

6.3.1 Mobile applications . 59

6.3.2 Software architecture . 60

Software architecture and mobility 61

6.3.3 Smart city architecture . 61

6.4 Future Work . 62

6.5 Concluding Remarks . 63

Bibliography 65

Appendix A—Case Study Artifacts 71

A.1 Background questionnaire . 71

A.2 Interview planning . 75

A.3 Confidentiality Agreement and Interview Consent Term 75

A.4 Interview protocol . 78

Card 1: Quality Attributes/Non-Functional Requirements 78

Card 2: Software Architecture . 78

Card 3: Mobile Development . 79

Appendix B—Reverse-Engineering Artifacts 81

B.1 Tutorial of the Reversed-Engineered Architecture 81

B.2 Feedback questionnaire . 82

B.3 The recovered architectures . 86

xvi CONTENTS

Appendix C—Grounded Theory Artifacts 89

C.1 Axial coding diagram . 89
C.2 Theory Evaluation Questionnaire . 89

LIST OF FIGURES

1.1 High-level research activities . 3

2.1 Example of emergence of the category “Mentor” from underlying concepts.
(HODA; NOBLE; MARSHALL, 2013) 10

3.1 Research Analysis Process . 11
3.2 Characterization of the 19 interviews about 9 mobile applications devel-

oped by 4 different development teams 12
3.3 An example of open coding extracted from QDA Miner tool 18

4.1 Theory representation of how software engineering teams design mobile
apps for smart cities . 25

4.2 Recovered architecture of the application A8-T3 using the architecture
description language ACME . 34

5.1 Theory evaluation process design . 39
5.2 Percentage agreement gathered from the questionnaire about the proposi-

tions . 46

A.1 Interview Planning. 75

B.1 Architecture of Application A2 extracted from ACME 86
B.2 Architecture of Application A3 extracted from ACME 86
B.3 Architecture of Application A4 extracted from ACME 87
B.4 Architecture of Application A7 extracted from ACME 87
B.5 Architecture of Application A8 extracted from ACME 88
B.6 Architecture of Application A9 extracted from ACME 88

C.1 Axial coding diagram (the complete diagram is available online at the
supplementary material site) . 89

xvii

LIST OF TABLES

2.1 Example Architectural Styles taken from Taylor, Medvidovic and Dashofy
(2009) . 6

3.1 Role and experience of the respondents according to their groups 14

4.1 Major constructs in Sjøberg’s framework for SE theories 21
4.2 List of constructs identified in the study 23
4.3 List of propositions identified in the study 24
4.4 How mobile application aspects are impacted by the QAs 27
4.5 Number of components and their provided ports of the reverse engineered

apps . 33
4.6 Architectural styles identified in the reverse engineered apps 33

5.1 Role and experience of the respondents 42
5.2 List of propositions that were modified after the theory evaluation process 53

xix

LIST OF ACRONYMS

ACME Architectural Description of Component-Based Systems

API Application Program Interface

APK Android Package Kit

CS Case Study

EMSE Empirical Software Engineering

SCMA Smart City Mobile Application

GT Grounded Theory

GPS Global Positioning System

NAND Neither agree nor disagree

NFR Nonfunctional Requirements

QA Quality Attribute

QDA Qualitative Data Analysis

SA Software Architecture

SE Software Engineering

UI User Interface

xxi

Chapter

1
INTRODUCTION

Mobile computing has the potential to aid in resolving significant societal issues that
benefit from crowd-sourcing to provide large volumes of timely data. This potential
may be achieved by facilitating wide-spread participation in problem identification, data
collection, and analysis in the face of a rapidly expanding population. This research
explores issues related to the structure of applications intended to contribute with data
to smart city infrastructures.

1.1 MOTIVATION

According to the last United Nations report (NATIONS; AFFAIRS, 2019), the world’s
population had reached nearly 7.7 billion in June of 2019. It is expected to be 8.5 billion by
2030 and 9.7 billion by 2050. Medium-variant projections indicate that roughly 83 million
people are being added to the world’s population every year. Also expanding rapidly is
citizens’ access to mobile computing through ownership of smartphones. Nowadays, it
is estimated that more than 5 billion people have mobile devices, and over half of these
connections are smartphones, although it varies by country, and the economic power of
the country (TAYLOR; SILVER, 2019). Nevertheless, according to OpenSignal’s 2016
report, “One thing is clear from our results: a decent mobile data connection isn’t hard
to find in a majority of the world’s countries (OPENSIGNAL, 2016)”.

As cities become increasingly crowded, several urban issues are exacerbated, such as
traffic jams, natural resource consumption, epidemics, sustainability problems, and waste
management. Mobile computing has the potential to address some of these challenges
by connecting people, improving citizens’ quality of life, and reducing costs, among other
benefits. For example, we examined a mobile application for citizens to use for reporting
problems, such as traffic accidents and fires, to authorities on the road waiting for a quick
response.

Mobile computing offers opportunities to make smart cities even smarter by making
data instantly available for real time analysis, feedback, and control. In addition, cities are
becoming smarter as sensors become cheaper and are able to measure an ever increasing

1

2 INTRODUCTION

variety of attributes, such as air pollution, foot traffic in a particular area, or water
leaks in transmission lines (NEWCOMBE, 2014). This data can be used by software
applications (apps) to aid citizens, business leaders, and government officials in making
a number of decisions and in providing a wide variety of services.

1.2 PROBLEM STATEMENT

Mobile computing faces a number of challenges including constraints on battery power,
processor speed, and capacity limitations of mobile devices, the exacting demands of life-
critical smart city requirements, and the constantly changing and exposed environment,
which may not always be trustworthy. These unique challenges have been addressed by
a number of frameworks, architectures, and design strategies (MEHDI et al., 2018), but
there is a lack of detailed information on how those specialized mobile device software
architectures are implemented to address these challenges (DINIZ et al., 2016).

1.2.1 Objective

To provide much needed information on experiences in structuring mobile apps, this
study aims to investigate what characteristics1 influence the architecture design of mobile
software in the smart city domain through a multi-method research approach.

Based on the results, we provide a theoretical model and a set of recommendations in
order to help improve the design of Smart City Mobile Applications (SCMA).

1.3 RESEARCH METHOD

As can be seen in Figure 1.1, we split this investigation into the following activities: a
multi-case study of several SCMAs to collect empirical evidence from the stakeholder’s
perspective; reverse-engineering of those apps to extract more information from the ar-
chitecture of the mobile apps, grounded theory building process to analyze the collected
data and derive an emergent model for designing SCMA, and a grounded theory evalua-
tion process to evaluate and to provide direction for refining the theoretical model. Each
approach will be covered in Chapters 3, 4, and 5.

We gathered data by interviewing 19 stakeholders of nine mobile applications intended
for the smart city domain developed by four innovation development teams spread across
Brazil. The main selection criteria for choosing these apps included having ready access
to the development teams for interviews and having access to the source code of the
applications for analysis. Besides using interviews, we reversed engineered six apps that
were available in Google play and then re-interviewed some developers who participated
in the development of the reverse-engineered apps.

These data were used to conduct an in-depth qualitative analysis using Grounded
Theory (GT) procedures. GT is a suitable research technique for understanding and
explaining a phenomenon (STOL; RALPH; FITZGERALD, 2016). In our case, the

1In this dissertation, we refer to characteristics in terms of design decisions, architectural styles,
limitations of mobile devices that may affect prioritization of non-functional requirements, technologies
used, among other aspects in the software development process.

1.4 STATEMENT OF THE CONTRIBUTIONS 3

Figure 1.1 High-level research activities

phenomenon to be explained is the process of designing SCMA.
We employed coding, a technique for performing data analysis that is divided into

three phases: open coding, axial coding, and selective coding (CORBIN; STRAUSS,
2008). GT will discussed in more detail in Section 4.

Through this theoretical model, researchers will be able to suggest to software archi-
tects processes and tools suitable for a specific project.

1.4 STATEMENT OF THE CONTRIBUTIONS

The research reported in this dissertation has resulted in a number of contributions to
the community:

• Empirical information about a set of application development projects:
We performed a multi-case study with teams of nine mobile applications. The
applications covered in this research were similar in that they all related to issues in
emergency management but differed in features and objectives. This study provided
insights into the specification and design of mobile applications.

• A theoretical model created using grounded theory: This research resulted
in a theoretical model that can support future research that uses, refines, or ex-
tends the knowledge captured in the model. The model contains 21 constructs, 17
propositions, and describes the phenomena of designing SCMA.

• Models of six SCMA architectures: We provided descriptions of the archi-
tectures for six SCMA obtained using reverse-engineering techniques and report on
the elements of these architectures. The accompanying discussion provides guidance
and data for future research and development of SCMA.

• A rigorously derived set of findings about deployed SCMA: We described
in detail the techniques and data collected in support of the theoretical model.
This description should guide future researchers in replicating our work and in
structuring their own research. We formalized these contributions in a published
paper in the journal Empirical Software Engineering (EMSE).

4 INTRODUCTION

1.5 DISSERTATION STRUCTURE

The remainder of this dissertation is structured as follows.
Chapter 2 provides background information to facilitate understanding of the rest

of this dissertation.
Chapter 3 outlines our empirical research approach.
Chapter 4 describes a grounded theory of the development of SCMA derived from

empirical research data, and discuss the generated model. It presents the results of
a study, which used reverse engineering, which extracted more information from the
architecture of the mobile applications used in this work.

Chapter 5 presents the theory evaluation design, tasks and results. A set of recom-
mendations for the SE team is also presented in this chapter.

Finally, Chapter 6 presents a summary of the dissertation, the main conclusions,
and future work.

Chapter

2
FOUNDATION

The work discussed in this dissertation is supported by previous research in four areas:
software architecture, mobile software, smart cities, and grounded theory. This chapter
provides background information on these subjects necessary to understand the research
reported in this dissertation. Section 2.1 defines Software Architecture and presents im-
portant concepts related to this field, such as architectural styles, and quality attributes.
Section 2.2 presents the key concepts of mobile software and a brief overview of the es-
sential building blocks of Android applications. Section 2.3 presents the main definitions
of a smart city and section 2.4 discusses about Grounded Theory, and how it was applied
in this study.

2.1 SOFTWARE ARCHITECTURE

Software architecture (SA) plays a crucial role in the design and development of high-
quality systems. Taylor, Medvidovic and Dashofy (2009) defined software architecture
as the set of principal design decisions made during its development and any subsequent
evolution, given that the stakeholders are responsible for determining which aspects are
considered ‘principal’. In this definition, design decisions include how the system is
organized into subsystems and components, how functionality is allocated to components,
and how components interact with each other.

In short, SA is a high-level design that describes the business decisions and the re-
quirements to be satisfied by the system. It does not define details of implementation,
but rather addresses the interactions and the behavior of components.

Architectural styles and patterns define how to organize the components of the sys-
tem so that one can build a complete system and satisfy the customer’s requirements
in a given development context (SHARMA; KUMAR; AGARWAL, 2015). A software
architectural style is a collection of architectural design decisions that are applicable in a
given development context, constrain architectural design decisions that are specific to a
particular system within that context, and elicit beneficial qualities in each resulting sys-
tem (TAYLOR; MEDVIDOVIC; DASHOFY, 2009). There are many architectural styles

5

6 FOUNDATION

used by software developers, so one needs to understand which particular architectural
style will be appropriate for each project. In other words, architectural styles consist of a
set of shared assumptions and constraints across a set of architectures to solve common
problems of design. Some examples of architectural styles are presented in Table 2.1.

Table 2.1 Example Architectural Styles taken from Taylor, Medvidovic and Dashofy (2009)

Client-server

It is a network architecture which separates the direct interaction
with users (a client) from the major domain computation (a server).
Each instance of the client software can send requests to a server.
This server processes each request and sends a response to the client

Pipe-and-filter

Components take input streams and transform (filter) the input
data into output data that is streamed. Connectors are conduits
(pipes) for data streams from one filter to another. Style invariants
are: filters are independent from other filters (no shared state) and
a filter has no knowledge of filters from which it receives data nor
of those to which it sends data.

Publish-
subscribe

Subscribers register/deregister to receive specific messages or
specific content. Publishers send those message types, either
synchronously or asynchronously, to subscribers who have
registered an interest.

Peer-to-peer
(P2P)

Each node is equal to every other node and any node may send
requests to any other node. This network does not have the notion
of clients or servers, only equal peer nodes that simultaneously
function as both client and server to the other nodes on the
network. P2P networks are typically used for connecting nodes
via largely ad-hoc connections.

The ability to manage information is key in the design of mobile systems, and novel
software designs are required to assist this effectively by addressing the decisions, con-
straints, and goals of the mobile setting. The objective of designing an architecture is to
understand the essential design decisions and the key system quality attributes, which
are discussed in Section 4.3.1. In this context, there is a set of architecture principles
attributed to mobile applications, presented by Bagheri et al. (2016), that have played a
significant role in the design process of mobile applications: architecture building blocks,
hierarchical (de)composition, architectural styles, software architecture models, architec-
ture implementation and deployment, and support for non-functional properties. For the
purposes of this research, the architectural styles of the investigated apps are discussed
in Section 4.4.

2.2 MOBILE SOFTWARE

Mobile software has evolved a lot, and the systems keep getting even smaller, smarter,
more pervasive, more powerful, and more integral to our lives. Recent statistics show that
the number of mobile apps is on the rise and they are expected to increase even more in

2.2 MOBILE SOFTWARE 7

the near future (SAIFI, 2017). As evidence of this, the number of available apps in the
Google Play Store was most recently placed at 3.6 million in March 2018 (STATISTA,
2018a). The number of mobile app downloads worldwide has been steadily increasing.
In 2017, users downloaded 178 billion apps. That number is projected to grow to 258
billion in 2022, a 45 percent increase over five years (STATISTA, 2018b).

With this explosion in the development of mobile software, it has become an impor-
tant area for software engineering (SE) researchers, and studies have been addressing
different facets of mobile software systems. Recent studies have been conducted to help
researchers and practitioners to quickly get an overview in the area of mobile software
systems addressing different facets in this domain (NAGAPPAN; SHIHAB, 2016). In
this dissertation, we focus on the architecture design of this type of software.

One facet in mobile applications that has been investigated is the set of challenges
that directly impact the software development process (WASSERMAN, 2010; NAGAP-
PAN; SHIHAB, 2016; BIØRN-HANSEN et al., 2019), such as limited resources, need to
integrate with other applications, sensor handling, peculiar infrastructure, security and
testing issues, and so on. Such process challenges have motivated our work on the concept
of analyzing how this kind of software has been designed in order to encourage developers
to adhere to the important principles of abstraction and modularity that are built into
the platform architecture.

Android Applications

As aforementioned, one of the contributions of this work was to provide descriptions of
the architecture of the set of selected apps. To achieve that, we used a reverse-engineering
technique developed by Bagheri et al. (2016) for Android applications.

We investigated the architecture of Android apps. This choice is driven by the open-
source nature of Android, which allows researchers greater access to system internals.
The Android community has produced a large body of literature as well as techniques for
reverse engineering and other analyses. Next, we provide a brief overview of the essen-
tial building blocks of Android applications. Android has the following core framework
components that define its architecture (GOOGLE, 2018a):

• Activity: is a class with user interaction. An app may have many independent
activities that form user interface components.

• Service: is a class that runs in the background to perform tasks without affecting
user interface (UI) components.

• Broadcast Receiver: is a component that enables the system to deliver events,
such as a low battery warning, to the app asynchronously. This component allows
the app to respond to broadcast announcements.

• Content Provider: is an abstraction of a database that allows storage and re-
trieval of data within the app with the use of an Android database.

8 FOUNDATION

The first three component types (activity, service, and broadcast receiver) are acti-
vated by an asynchronous message called an intent. Intents allow the app to interact
with components within the application as well as with outside applications.

2.3 THE SMART CITY CONCEPT

The concept for a smart city was first conceived in the nineties, in the context of Internet
adoption, and it has evolved gradually ever since as infrastructure control and planning
have become more automated. Although there has been an exponential increase in inter-
est for systems that control more of everyday life and data from the sensors (COCCHIA,
2014), the definition of smart city is still emerging, and the work of defining and concep-
tualizing the breadth and depth of the concept is still in progress (AIRAKSINEN et al.,
2017).

This is partially due to two visions of what constitutes “smart”. One view is an area in
which industries are sufficiently advanced that they require intensive information services
and infrastructure, such as that available in the Silicon Valley area in California, USA
(KITCHIN, 2015). A second view, and the one that more closely reflects our view is an
area in which the infrastructure for everyday living takes advantage of technologies. This
view is of a city that collects and analyzes data to aid in both immediate decisions, such
as control of traffic signals, and in the long term planning decisions, such as locations
of new electric vehicle charging stations. This is the view motivating our work. Due to
the growing evolution of the expression “smart city” and the ambiguity in definitions,
architectures for systems operating in a smart city are being designed without an agreed
upon prioritization of quality attributes and without clearly stated constraints. At the
same time, traditional analysis and design processes cannot satisfy the requirements called
for in this always changing, sometimes safety-critical, context. Furthermore, collecting
data is getting easier whereas finding an effective way to store, manage, and analyze the
data became a very important challenge for software engineers (WENGE et al., 2014).

2.4 GROUNDED THEORY (GT)

GT is a method for qualitative research, proposed by sociologists (GLASER; STRAUSS,
1967), that focuses on an interpretative process through the analysis of meanings and
concepts used by actors in real contexts in the sense of understanding actions of a phe-
nomenon. Corbin and Strauss (1990) defined systematic methods and procedures for
grounded theory research, which will be described later in this section. The expected
end result of applying GT methods is a set of propositions, which is totally supported by
the data and that richly describes the phenomenon under investigation. GT has become
an accepted approach for qualitative research. We chose to use this approach for two
main reasons. First, there are several sources explaining the concepts and how to apply
this approach (GLASER, 1998; CORBIN; STRAUSS, 1990; SEAMAN, 1999; CORBIN;
STRAUSS, 2008; SJØBERG et al., 2008). Second, many researchers have used the tech-
nique frequently to conduct data analysis (ADOLPH; HALL; KRUCHTEN, 2011; HODA;
NOBLE; MARSHALL, 2012; SOUSA et al., 2018).

2.4 GROUNDED THEORY (GT) 9

The theory generation process involves using a method named constant comparison,
which starts by attaching labels (codes) to pieces of text which are descriptive of the topic
of the study. Then, the field notes are grouped into categories based on the codes and
subcodes they have been assigned. Next, the researchers write memos, i.e, a synthesized
idea of the coded data, setting the researcher’s expectations when reading each code.
Finally, the next step in the process is to find patterns in the categories that have been
generated (SEAMAN, 1999).

Corbin and Strauss (2008) divided the coding portion of the method into the following
procedures: open coding, axial coding, and selective coding. To illustrate the use of each
procedure, a real example from the literature is presented in this section, as well as an
example of its use from our interview transcripts is given in Section 3.5.

Open Coding

It refers to the process of generating codes (text strings) and associating those codes to
pieces of text, which are relevant to describing concepts of certain themes that are of
interest in the study. The coding is “open” in that the researcher is able to create any
code he wishes. These codes become categories by grouping codes that refer to similar
constructs. The following is an example extracted from Hoda, Noble and Marshall (2013)
on Self-Organizing Roles on Agile Software Development Teams:

• Interview quotation: “We had [Mentor] as well at the time [the team started
Agile practices] so...It made it easy...having [Mentor] there as a backup... [it has]
been really good to have that guidance from [the Mentor].” — (I8, Tester).

• Key Points: “Coach providing guidance in initial stages”

• Codes: Providing initial guidance

• Concept: Providing initial guidance and support

• Category: Mentor

Coding is an interactive process, that is, it involves reading through the text, creating
and assigning codes, and then reading through it again to make sure that they are being
used consistently. Categories can be added, deleted, merged, or modified during the
analysis. The process continues until the saturation point is achieved when analyzing
new text.

Axial Coding

It refers to the process of identifying relationships between categories. Now, relationships
between concepts (conditions, interactions, and consequences) and categories of interest
are evaluated to enable the identification of relationships among them.

Figure 2.1 shows several concepts that were related to the mentor category. The
researchers condensed all these concepts by saying that the mentor encourages, supports,
and oversees the team as they begin to practice agile software development on a day-to-
day basis.

10 FOUNDATION

Figure 2.1 Example of emergence of the category “Mentor” from underlying concepts.
(HODA; NOBLE; MARSHALL, 2013)

Selective Coding

It refers to the process of choosing one or a few major categories, which is/are related
to other categories, integrating and refining the identified ones in the process of building
the theory. It can be an existing category, or a new category can be created.

Concluding the example, a grounded theory on self-organizing Agile teams presented
three main categories/themes that emerged from the study: self-organizing roles, self-
organizing practices, and critical factors influencing self-organizing teams.

The grounded theory methodology was used to study day-to-day reports of architec-
tural decision-making from software engineering teams (SOUSA et al., 2018), which leads
us to believe that Grounded Theory is well suited to exploring how software engineering
teams design mobile apps for smart cities.

2.5 CHAPTER SUMMARY

In this chapter, we presented an overview of the main topics addressed in this dissertation.
We began by introducing the main area of this work, software architecture. We also
provided brief introductions to mobile software and smart cities as major influences on
content and grounded theory as a systematic research method used to analyze the data
collected during this study and to generate a theory. The next chapter presents the details
of the research approach assembled to provide empirical evidence on designing smart city
mobile applications.

Chapter

3
RESEARCH DESIGN

This chapter outlines the multi-method approach we assembled during this work to pro-
vide empirical evidence regarding the design of smart city mobile applications (SCMA)
from the perspective of software engineering (SE) teams. The integration of multiple
complementary research methods allowed us to triangulate the results increasing the em-
pirical knowledge about this area (MORSE, 2003). We conducted a multi-case study
with nine SCMA developed by four software development teams and used the results of
this study to hypothesize a theory about how SCMA are developed.

Figure 3.1 Research Analysis Process

Figure 3.1 describes our research analysis process in terms of the activities and flow
of information. The studies performed can be divided into four stages. In stage 1, we
conducted a multi-case study with four development teams using background question-
naires, archival records of nine mobile applications and 19 interviews with stakeholders
of SE teams. In stage 2, we reverse-engineered the six apps that had apk files in the

11

12 RESEARCH DESIGN

Google Play store since we had access to tools for manipulating apk-formatted files. We
used the information about the as-built architectures to validate the results of the data
analysis of the as-designed architectures. In stage 3, we used Grounded Theory (GT) to
analyze all evidence we got from previous stages to derive an emergent theoretical model
for designing SCMA. Finally, in stage 4 we applied a set of tasks to evaluate and refine
our model.

Further details of the design and execution of the multi-case study and reverse-
engineering are described in our complementary material site1, which provides a full
replication package of this study. In the next sections of this chapter, we describe how
the multi-case study and the reverse-engineering (stages 1 and 2) were conducted. Chap-
ter 4 and 5 will describe in more detail our qualitative analysis through the grounded
theory building and evaluation process respectively (stages 3 and 4).

3.1 CASE SELECTION

The multi-case study was initiated in the middle of 2017 and conducted in two parts:
first, a single embedded case study (CS) was conducted with a development team, which
we named T1, following the CS guidelines described in Runeson and Höst (2008), and
then, this study was replicated with teams T2, T3, and T4 in the following year (see Fig.
3.2).

Figure 3.2 Characterization of the 19 interviews about 9 mobile applications developed by 4
different development teams

The main criteria we used to select the apps in both parts of the study were the
following: mobile applications intended for the smart city domain. For the purposes of
this study we created our own characterization of smart city mobile application (SCMA)
based on scientific references, highlighting the necessary criteria on which our selection
was based:

• Enables solutions to improve citizens’ quality of life (DAMERI, 2013);

1Supplementary material site is available at https://rose2s.github.io/EMSE2019

3.2 CHARACTERIZATION OF SOFTWARE SELECTED FOR STUDY 13

• Promises multiple benefits to safety and security, environment and transportation,
energy management, educational facilities, tourism, and citizens’ health (KHA-
TOUN; ZEADALLY, 2016);

• Facilitates citizens’ interaction to solve urban problems, often on the fly (ESPOSTE
et al., 2019).

Besides being a SCMA, other selection criteria included having ready access to the
development teams and having access to the source code. First, we made contact with
practitioners from the Fraunhofer Project Center for Software Systems and Engineering
(FRAUNHOFER, 2014), whose focus is the development of innovative software solutions.
For the teams T2-T4 we kept the same selection criteria as for T1, but we broadened
the search to include development teams around Brazil. After collecting some general
information such as the domain, the status of the project, and team background, we sent
an email to selected project managers telling them about our study proposal and asking
for their participation. Once we got the manager’s agreement, we asked them to assist
us in identifying development team members to be interviewed. Since our study required
specific information to be gathered, participants needed to have played specific roles and
have at least one year of experience on the project.

All four teams selected work with mobile applications which support citizens and en-
tities related to public services, such as public safety, tourism, transportation, education,
and smart buildings; through training and developing human resources in the context of
smart cities; and through disseminating knowledge, experiences, and results in scientific
publications.

Most teams we selected, except for T1 which had a SE team composed of 6 stake-
holders, had either 1 or 2 developers. We interviewed all stakeholders even those who
had already left the project by the time we conducted this study. A characterization of
each subject is detailed in Table 3.1, including an interviewee ID (I1 to I19), their roles
in the project, years of experience, the application with which they were involved (A1 to
A9), and their respective development teams (T1 to T4).

3.2 CHARACTERIZATION OF SOFTWARE SELECTED FOR STUDY

In this section, we present a short description of each application we selected grouped by
their respective development teams.

T1: System Engineering Project Center

• A1 is an effective emergency and crisis management solution developed by a European-
Brazilian partnership to ensure that the people visiting large-scale events will feel
safe2. An experimental prototype was tested at the 2014 FIFA World Cup.

T2: Development Group for Smart Cities

• A2 is a mobile traffic application for bicycle navigation and information sharing
among cyclists. It provides a crowd-sensing service to report and share special

2A1 is private but indirect information is available at http://www.rescuer-project.org

14 RESEARCH DESIGN

Table 3.1 Role and experience of the respondents according to their groups

Role
Experience

(years)
Application

Development
Team

I1 Manager 5 A1 T1
I2 Req. Analyst 20+ A1 T1
I3 Mobile Developer 8 A1 T1
I4 Web Developer 3 A1 T1
I5 Architect 8 A1 T1
I6 Researcher 1 A1 T1

I7
Req. Analyst, Architect
Developer

1 A2 T2

I8
Developer
Tester

2 A2 T2

I9
Req. Analyst, Architect
Developer, Tester

2 A3 T2

I10 Developer, Tester 1 A4 T2
I11 Developer, Tester 4 A4 T2
I12 Manager 20+ A5, A6 T3

I13
Req. Analyst, Architect,
Developer, Tester

2 A5 T3

I14 Developer 2 A6 T3
I15 Manager 4 A7, A8 T3
I16 Developer 4 A7 T3
I17 Developer 1 A8 T3
I18 Manager, Req. Analyst 20+ A9 T4
I19 Developer, Tester 10+ A9 T4

locations and events on the city roads, informs about weather conditions, and issues
voice alerts near dangerous locations in real time.

• A3 is a smart collection app that facilitates the collection of cooking oil residue
through an intelligent system that informs collecting companies about the level of
oil in real time at the eco-points distributed throughout the city and helps turn the
cooking oil collected into fuel oil.

• A4 is a smart application that streamlines the search for vacant spots within a
parking lot with a vacancy detection system3.

T3: Project for Smart Cities

• A5 is intended to speed up registration of emergency incidents in the University.
It was developed in partnership with the public safety department, which is the

3A2, A3, and A4 are no longer available but the APK files are at our supplementary material site

3.3 QUALITY OF THE SELECTED APPLICATIONS 15

main customer, to allow the registration and monitoring of the status of emergency
incidents for its users. The idea arose from the need to assist security guards of all
campuses of the Federal University of Rio Grande do Norte, because of suspicious
actions and incidents that had occurred and were reported by students.

• A6 is integrated with A5 and it is aimed to assist security guards of the university
at the moment of an incident. It is intended to speed up the arrival of police forces
at emergency incidents in the geographical area of the University4.

• A7 is a citizen problem reporter app that allows the general public to report non-
emergency problems concerning public services such as trash, pothole, and flood-
ing5. Through the app, local government personnel can monitor, verify and assign
reports to responsible agencies for resolution.

• A8 is a smart city app that is intended to enhance tourists’ travel experience6. The
app encompasses a mobile tourist guide application, a tourism information system,
and a business intelligence infrastructure. This app was sponsored by the city hall
and headed by the department of tourism. The objective is to assist the tourists
free of charge in an easy and practical way and to enhance the experience of those
who want to know the city of Natal better.

T4: Information Technology Management

• A9 is a communication channel to report security incidents and is intended to in-
crease the quality of prevention and safety-related actions on university campuses
at the University of Sao Paulo7.

3.3 QUALITY OF THE SELECTED APPLICATIONS

We asked the managers of each development team about the acceptance of the selected
applications by the intended audience and the general answer was that citizens have
supported the apps by downloading and using it and giving feedback to improve it. For
those apps that have not achieved many users, one of the team’s goals after releasing the
product has always been to encourage users to adopt it.

To exemplify the success of the app A9, Ferreira et al. (2017) presented statistical
data collected by a case study showing its effectiveness. A9 was released in 2016, and by
the date of this work, it already had around 12,000 installs in iOS and Android versions,
which shows a good acceptance from the audience. Important findings of the study
include: (1) after the app introduction, the security guard response time reduced from
8-10 minutes to 5-7 minutes; and (2) the emergency call and watch over me buttons were
the types of use most often reported by the users.

4A5 and A6 are private and not available for download
5A7 is no longer available but the APK file is at our supplementary material site
6A8 is available for download at goo.gl/8wBxVb
7A9 is available for download at goo.gl/1njBJz

16 RESEARCH DESIGN

These buttons have been widely used by users to keep themselves safe. When pressing
the “watch over me” button, the user can alert the security dispatch center that he is
going to be walking around a suspicious place. If within the specified period of time, the
user shakes his phone, it sends an alert to the dispatch center, and a vehicle is immediately
sent to the user’s location. When the emergency call button is touched, the local campus
security is called and immediate action can be taken including sending a vehicle to the
user’s location.

Amorim et al. (2017) described the evaluation process used for the app A1 with
experts on emergency response. The results showed that the participants thought the
app was well designed, easy to understand, easy to learn, and easy to use.

3.4 DATA COLLECTION

As shown in Figure 3.1, we used a variety of activities to collect data so as to achieve
maximize the benefits of the multiple available sources of evidence.

3.4.1 Stage 1: Multi-Case Study

• Pre-Questionnaire - A background questionnaire was sent to each participant
before the interview to gather personal information and their main roles on the
project (recall Table 3.1).

• Archival Record - The type of archival records that were used varied depending
upon what the project had documented. T1 was the only development team that
had formal documents so that we analyzed artifacts, such as requirement speci-
fications, design documents, mobile solutions, a conceptual model of mobile user
interaction, portability and variability management. The other teams’ artifacts
were based on quarterly reports and informal diagrams. We analyzed all the docu-
ments to which we had access. Additionally, each team had at least one published
work about the design and/or implementation of their mobile application, from
which we could capture some information.

• Interview - The interview sessions were based on a semi-structured model (BR-
ERETON et al., 2008). Aiming to investigate the design process from the perspec-
tive of the SE team, we divided the interview into three points of interest following
the guidelines defined in (YIN, 2013). These three points were captured on cards
used to present during the interviews: card 1 - software requirements, card 2 -
mobile development and card 3 - software architecture. All cards were used with
all participants, even if it was not directly related to their role on the project. The
division of the cards helped us to guide the interview based on the most impor-
tant role played by the interviewee, e.g., the participant who mainly worked on the
mobile aspect of the app first answered questions on Card 2. We paused briefly
between each of the cards telling the interviewees we would be moving to another
card. This way, we kept the participant engaged, and answering the main questions
before getting tired. Each interview lasted on average of 40 minutes. In total, a

3.5 DATA ANALYSIS 17

set of six participants from team T1 were interviewed, five from T2, six from T3,
and two from T4, resulting in nineteen interviews and roughly thirteen hours of
audio-recorded and transcribed.

3.4.2 Stage 2: Reverse-Engineering

• Architecture Reverse-Engineering - The goal of this part of the study was to
replicate the original study described by Bagheri et al. (2016) so as to investigate
software architecture principles in our set of apps as another data source for our
analysis.8 We reverse-engineered the software architecture from either the source
code of the applications that were public and available in Google Play Store or from
its APK file. The applications A2, A3, A4, A7, A8, and A9 are represented by the
gray boxes with dashed lines in Figure 3.2.

• Feedback Questionnaire - We used a short questionnaire to validate the reverse-
engineered architecture, its structure, and the architectural styles used from the
point of view of the architects/developers.

According to Runeson and Höst (2008), it is useful to pilot-test the data collection
instrument to anticipate problems in data analysis; therefore, before doing any interviews,
a pilot was conducted with a software architect of a smart city project. This was a good
approach that helped refine our interview questions. All the interviews were recorded
with the consent of the interviewees, then the audio files were transcribed almost literally
and integrally using Trint9, an on-line transcription application.

When further data collection and analysis leads to a point of diminishing results, the
category is said to have reached theoretical saturation and the researcher can stop collect-
ing data (HODA; NOBLE; MARSHALL, 2012). In this research, we stopped collecting
and analyzing data after interviewing nine mobile applications from four different devel-
opment teams (recall Fig. 3.2), when interviews stopped providing new insights into the
existing categories. This was a clear indication we had reached a saturation point, i.e., no
more new information would be gained from additional subjects (CORBIN; STRAUSS,
2008).

3.5 DATA ANALYSIS

GT is a suitable research technique for understanding and explaining a phenomenon
(STOL; RALPH; FITZGERALD, 2016). In our case, the phenomenon to be explained
is the process of designing architectures for SCMA. Using GT enables us to generalize
findings from case studies, a common situation where statistical generalization is not
sensible (YIN, 2013). Rather than only using GT techniques, we explicitly claim to use
GT by building a theory based on the data as an effective way to obtain general knowl-
edge about the development of SCMA and for understanding the development process
(CORBIN; STRAUSS, 2008).

8Since it is not a trivial task, we created a tutorial about this study, and made it available in our
complementary material.

9Trint is available at https://trint.com

18 RESEARCH DESIGN

We employed coding, a technique for performing data analysis in GT (recall section
2.4). For each transcript, two researchers employed (independently) open coding, where
text phrases that represent the domain were used as labels or codes and associated with
portions of all nineteen transcriptions and archival data. Two software packages that
facilitate coding and other types of qualitative analysis were used: Atlas.ti10 and QDA
Miner11. Since coding is a subjective task and it is based on the researcher’s experience,
the resulting codes of each author for each transcription were compared, merged and
refined until a consensus was reached.

Figure 3.3 An example of open coding extracted from QDA Miner tool

As shown in Figure 3.3, in the quote12, a researcher attached pieces of text from the
interview transcripts, in blue, red and purple colors respectively, to one of the chosen
codes “Architectural Pattern”,“How it is designed”, and “Architecture Documentation”.
After the researchers discussed all the generated codes, the codes were grouped according
to their properties, composing concepts that represent categories. Since Open coding is
an iterative process, the codes were refined and new categories were identified until the
last document had been analyzed and the saturation point had been achieved.

In the second phase, axial coding, categories were associated with the set of codes
previously identified corresponding to the entire design process of the smart mobile ap-
plications. Using the same example (Fig. 3.3), the three pieces of text were added into
the following categories:

1. Architectural patterns for SCMA

2. How software architecture is designed

3. Architecture Documentation

Finally, in selective coding we identified the core categories that most describe the
design process of the selected SCMA by following Sjøberg’s framework (2008). The core
categories are defined in the table of constructs (see table 4.2) which make up the theory
building process detailed in Chapter 4.

10Atlas.ti is available at https://atlasti.com
11QDA Miner is available at https://provalisresearch.com
12Since interviews were performed in the participant’s native language, the quotes are around texts

that were translated into English.

3.6 VALIDITY PROCEDURE 19

3.6 VALIDITY PROCEDURE

We carefully built the studies to reduce bias in data collection and data analysis by using
data triangulation. All six interviews for T1 were face-to-face and three researchers (the
author of this dissertation and two masters students) participated in all six interviews.
Moreover, the transcriptions were validated by the participants, allowing them to give
feedback on interview audios and transcripts.

To triangulate the information gotten through documentation, we made summaries in
which one researcher did a summary and the other two reviewed it. Since the development
teams are located in four different states of Brazil, interviews for T2-T4 were done via
Skype, using its call recorder tool.

3.7 CHAPTER SUMMARY

In this chapter, we outlined the research analysis process used in this work. This study
can be divided into four stages. The first two stages are studies conducted to collect
empirical evidence on how mobile applications developed for smart cities were designed
from the perspective of the software engineering team, and the last two stages represent
the process of building and validating a theoretical model based on Grounded Theory. The
next chapter presents our Grounded Theory building process and the steps to generate
an emergent model.

Chapter

4
A GROUND THEORY ABOUT THE DEVELOPMENT

OF SMART CITY MOBILE APPLICATIONS

A major facet of our research is developing a theory about the creation of mobile apps in
the Smart Cities context. Although Section 2.4 presented several approaches for applying
GT in Software Engineering, we used Sjøberg’s framework (SJØBERG et al., 2008) to
represent and describe a theory from empirical data collected in this research project.
This framework was selected because it made describing the theory creation process
more straightforward and easier to understand.

Table 4.1 shows the major constructs of this framework and maps it onto our scenario.
The steps model the situation where an actor applies a technology to perform development
activities on a software system.

Table 4.1 Major constructs in Sjøberg’s framework for SE theories

Archetype Class Subclasses

Actor Software Engineering (SE) team
Technology Design processes for mobile technologies
Activity Creation of the Architecture Design
Software System Smart City Mobile Applications

Before describing a theory, these high-level concepts must be instantiated for the
problem at hand. According to Sjøberg’s framework (SJØBERG et al., 2008), a theory is
created by building the following elements: theory constructs, propositions, explanation,
and scope. The theory is based on, and the instantiated constructs are created from, the
completed coding process (recall Section 3.5). Each element of the framework is briefly
described in Section 4.1 and then the detailed information for our study is presented in
Section 4.2.

21

22A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

4.1 CHARACTERIZATION OF A THEORY

Theory constructs

Theory constructs are the core categories identified previously in the coding process that
helps to explain a phenomena. For example, a construct termed “architecture” might be
identified after interviews produced references to high-level design, system design, and
system structure.

Theory proposition

A theory proposition is a relationship between theory constructs, which describes how
core categories interact with each other. For example, a proposition might relate the
architecture to non-functional requirements (NFR) by stating the proposition “an archi-
tecture must satisfy the NFRs as well as the functional requirements”.

Scope

The scope of a theory is the universe for which the theory is expected to be an accurate
explanation. For example, a theory might explain that it is not applicable to game apps,
but does apply to apps that communicate with a central server.

Explanation

The explanation is based on all the previous steps of the theory building process. It
describes “why” the resulting theory is what it is. For example, user training on a product
is seen as related to acceptance by the users of the product. In one of the studied apps,
user training was related to users being successful at directing help to incidents.

4.2 CHARACTERIZATION OF OUR THEORY

In this section, we present our theory created from the empirical data. We describe each
of the artifacts using the constructs from Sjøberg’s framework (SJØBERG et al., 2008).

Constructs

Table 4.2 describes the constructs identified during our study. We identified 21 core
categories directly related to our central category, which is SCMA.

4.2 CHARACTERIZATION OF OUR THEORY 23

Table 4.2 List of constructs identified in the study

C1
Architecture
design

A high-level structural design of a software system.

C2
Architectural
styles

A set of design decisions that identify the kinds of
components and connectors that may be used to compose
a system or subsystem.

C3
Design
decisions

A description of the set of rationales, design rules, and
design constraints for a given architecture (JANSEN, 2008).

C4 Technical debt

A concept in SE that reflects the extra development work
that arises when code that is easy to implement in the short
run is used instead of applying the best overall solution
(JANSSEN; JANSSEN, n.d.).

C5
Smart city
context

A characterization of a city’s infrastructure for collecting
and using data in management and policy decisions.

C6 Domain experts
A person with special knowledge in the context in the
domain of smart cities (e.g., a firefighter is an expert in
emergency management).

C7 Technical skills Abilities needed for software programming.
C8 Documentation Artifacts that explain the software (requirement specification).

C9
Functional
requirement

A requirement that defines what a system is supposed to do.

C10
Non-functional
requirement

A requirement that specifies criteria that can be used to judge
the quality of operation of a system, rather than specific
behaviors.

C11 Technologies Technical tools that support software development.

C12 API
A software intermediary that describes how software units talk to
each other.

C13 Framework
It is a coherent unit of reuse, both by use-relationships and by
extension through sub-classing.

C14
Software
development

The process of specifying, designing, developing, and testing
involved in mobile applications.

C15 Challenges Challenges faced when designing and developing a SCMA.

C16
Development
approach

There are three primary approaches to building mobile apps:
web, hybrid and native.

C17
Resources
management

The effective use of mobile resources.

C18 Software testing
An investigation conducted to provide information about the
quality of the software product.

C19 Testing tools
Software intended to help software engineers to find bugs in
mobile apps.

C20 Testing issues
Issues related to testing mobile software (e.g., testing real
scenarios).

C21 User training
Process of training a staff who will work supporting the citizen
through the app.

24A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

Propositions

The constructs from Table 4.2 were examined and relationships among them were consid-
ered. All pairwise combinations of constructs were analyzed. When a pair of constructs
were found to be related, a proposition was constructed that captured the relationship.
These relationships were based on information from several sources including discussions
with the study participants, the professional and research literature, and the experience
of the researcher. The initial statements of the propositions were reviewed by the study’s
participants and researchers before being accepted as final. Table 4.3 describes the final
propositions produced by our study.

Table 4.3 List of propositions identified in the study

P1 Domain experts positively impact the definition of requirements for a SCMA.
P2 The lack of documentation creates technical debt.
P3 Functional requirements for a SCMA come from a smart cities context, which

is citizen-oriented
P4 Most non-functional requirements are not taken into consideration by

SE team when making design decisions.
P5 The satisfaction of non-functional requirements depends upon the design

decisions made.
P6 The level of technical skills impacts the development of SCMA.
P7 The lack of architecture decisions creates technical debt.
P8 The architecture design of SCMA is API-centric.
P9 The use of architectural styles positively impacts the design of SCMA.
P10 Effective mobile resource management positively impacts the architecture

design of SCMA.
P11 The smart cities context brings complexity to mobile applications.
P12 The development or adoption of smart city frameworks reduce the

complexity of the development of SCMA.
P13 The adopted development approach brings specific development

challenges for SCMA.
P14 Smart technologies positively impact the development speed of SCMA.
P15 The lack of testing tools for mobile applications negatively impacts

the testing process of SCMA.
P16 Training users positively impact the acceptance of SCMA products.
P17 Testing SCMA involves the need to simulate real-world scenarios.

Scope

The scope of the theory is smart city mobile applications. Our theoretical model is illus-
trated in Figure 4.1, where it is constrained to “SE team”, “create architecture design”
activity, and “smart city mobile applications” of a software system.

4.2 CHARACTERIZATION OF OUR THEORY 25

Figure 4.1 Theory representation of how software engineering teams design mobile apps for
smart cities

26A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

Explanation

The theory cuts across the 4 major divisions in the theoretical framework. Figure 4.1
describes our theoretical model by showing the inter-relationships among the constructs
and propositions. The lines in the figure labeled P(n) show the specific connections be-
tween constructs and the arrows show the direction of implication between the constructs.
These relationships were identified from interview data provided by the app developers.

The figure shows that SE teams building smart cities mobile applications have focused
primarily on speeding up development under the pressure of time to market thus neglect-
ing important software architecture principles in the application development process.
Although they do not follow any guide to design their application, architects and devel-
opers have reduced the development complexity by adopting architecture specification
frameworks, creating faster and more portable apps by choosing a specific development
approach, reducing time to market by adopting agile methodologies to mobile platform
development, and satisfying some NFRs by using architectural patterns and styles in
their apps.

On the other hand, the software design effort has suffered from inadequate testing
processes due to the difficulty in simulating real scenarios required in the smart cities
context, and the lack of documentation of the process, which have caused technical debt
to be accrued.

4.3 DISCUSSION OF THE GROUNDED THEORY

By cross analyzing the core categories in the coding process, we identified some relation-
ships that helped to hypothesize a theory about how SCMA are developed and what
characteristics in the software development process influence the architecture design of
these applications. In general terms, we found that the construction of the architecture
for a SCMA relies on several factors such as the priorities among quality attributes,
completeness of the non-functional requirements (NFR), project domain, technologies, a
development approach that was adopted, and others.

We will discuss the generated theory from four main directions: Quality attributes
and the resulting NFRs for mobile applications, smart cities context, architectural pat-
terns and styles, and candidate anti-patterns of architecture construction. To clarify,
the proposition numbering P(n) is a result of the coding process in the grounded theory
method and reflects the table of propositions (recall Table 4.3).

4.3.1 Quality attributes and the resulting NFRs for Mobile Applications

Development teams building mobile apps take into account some of the quality attributes
(QAs) inherent in the context of smart cities in the construction of the architecture, but
the degree of mobility needed for mobile apps affects the priorities of the QAs. In Table
4.4, we catalog the five QAs most related to mobile apps as reported by the participants
in the interviews.

We noticed that all participants whose role in the project was either architect or
developer reported all the QAs listed in Table 4.4 for the following reasons: respondents

4.3 DISCUSSION OF THE GROUNDED THEORY 27

Table 4.4 How mobile application aspects are impacted by the QAs

Battery
Life

Mobile Resource
Management

Development
Approach

Development
Challenge

Performance X X X X
Portability X X X
Privacy X
Reusability X X X
Reliability X X X

claim that even apps for smart cities seem to be very simple and lightweight, but it is the
large number of interactions among complex entities in smart cities that adds complexity
to mobile applications (P11). For them, the back-end of these apps is very complex
because they have to monitor extra sensors, analyze inputs from the crowd, integrate
many components, communicate through APIs, and so on.

One QA reported by the participants was Performance , one of the most relevant
to mobile applications (WASSERMAN, 2010; BIØRN-HANSEN et al., 2019). The con-
tinuous use of GPS (battery life) used to get the user’s information leads to high battery
consumption. In order to mitigate this, the SE team made use of asynchronous tasks
- computation that runs tasks on background threads (GOOGLE, 2018b) and limited
the period in which GPS events are dispatched. For instance, “(...) the user sets the
time period in which they want to be tracked while walking in any dangerous place at
the university” (respondent #I18). Cross-platform development, a type of development
approach in which developers generate the same app for multiple platforms from a single
set of code, has an adverse effect on the performance of the app (NAGAPPAN; SHIHAB,
2016).

Building native applications for each mobile platform can be very expensive and so we
expected Portability to be within the list of the most relevant QAs. Indeed, the inter-
views showed that developers of mobile applications have taken advantage of frameworks
to develop hybrid applications as (mobile resources). For instance, “We are thinking of
adopting a hybrid approach to generate the native code for both platforms (Android and
IOS) because as (the previous developer) has left the project, continuing maintenance with
both platforms will be very costly” (respondent #I16).

On the other hand, experts who master all programming knowledge required for
all platforms are hard to find. Projects have invested in cross-platform development
to attract users from different platforms, but cross-platform development brings with
it development issues related to performance, unexpected behavior of the application
because of feature interactions, hardware limitations, and problems with different versions
of the platform. Our theory explains that the level of development challenges in SCMA
depends upon the development approach adopted (P13), but a deeper study is needed
specifically on the use of multi-platform approaches for SCMA to provide strong evidence
of these challenges and solutions.

Reliability is a concern since predominant features for smart applications are re-

28A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

ceiving/analyzing/reporting data from several users automatically as soon as the data
arrives. The apps need to ensure the reliability of their data (Development challenges),
especially for emerging occurrences by analyzing fake inputs from the crowd and develop-
ing alternative solutions: “I implemented a listener that keeps monitoring the data flows
in case of unavailability of the Internet, wrong data types, and late data for potential
mitigation as quickly as possible” (respondent #I9).

The cross-platform development approach also affects this QA since the development
is heavily influenced by the quality of the functionality available in third-party libraries.

A trade-off was identified between Reliability and Privacy when developing an
SCMA and the architect needs to prioritize one over the other based on the objectives
of the app. We identified both situations in our study. Basically, the satisfaction of non-
functional requirements depends upon the design decisions made (P5). SCMA, just like
any real-world application, has conflicting non-functional requirements and the architect
will have to make trade-offs among them.

On one hand, the architect only uses the data that is extremely relevant to the system
and maintains user privacy: “Since it is a crowd-sourcing app, we can not save infor-
mation from any user. Actually, it would be good to have this information as to avoid
pranks (in the system), but we decided that every GPS position would be anonymous (...)
privacy in this context of smart cities is fundamental to preserve the user’s own privacy”
(respondent #I5).

On the other hand, the architect decides to reveal the user identify so that the system’s
reliability is enhanced: “When an unknown person uses the app, they are informed about
what information will be used. (...) we have few pranks because the user is aware that
they will be identified by our monitoring center” (respondent #I19).

Finally, Reusability is a prevalent QA for mobile applications. Developers reuse
libraries and components within an application, as well as across platforms (e.g., Android
and IOS). Our findings give support to the work of (MOJICA et al., 2014), in which they
compared the extent of reuse on hundreds of thousands of Android apps and revealed
that overall 84% of mobile apps are completely reused by another mobile app. According
to respondents, the two biggest reasons for them to reuse code were to increase the
productivity of mobile app projects and to integrate SCMA with smart city frameworks.
For example, “The architecture of the app (A3) was somewhat based on the architecture
of (A2), which relied basically on Fiware1 platform” (respondent #I16). At the same
time, SE teams have faced development challenges regarding reuse, such as refactoring,
either before reusing or afterward due to the large effort to integrate a reused class.

4.3.2 Smart cities context

The smart cities context brings challenges to all phases of the development process of
SCMA, and we discuss here some of the main challenges reported by the SE team.

Requirements: Extracting and understanding requirements for mobile applications
is not a trivial task, and a number of studies have focused on requirement extraction
for mobile applications (NAGAPPAN; SHIHAB, 2016). While SE teams for SCMA also

1Fiware is available at https://www.fiware.org

4.3 DISCUSSION OF THE GROUNDED THEORY 29

extract topics from user reviews to revise requirements, our study also identified that
the elicitation of requirements of SCMA depends heavily on the experts (P1) in the
application domain who, based on citizen’s needs (P3), act as partners justifying the
need for the application, distilling the features, explaining important aspects related to
this domain, and validating it.

“In a report about fire, firefighters taught us that the color of the smoke is important,
(..) they explained that there is a lighter and a darker gray and (identifying this difference)
helped us to understand the type of fire to be treated” (respondent #I2).

Design: The smart city context also brings challenges to the design of SCMA. The
complexity due to the number of interactions among complex entities in smart cities led
SE teams to adopt smart city frameworks (P12). Fiware was the framework adopted for
the majority of the applications. It is a generic, extensible platform able to cope with the
essential requirements in smart cities, and which has been used in Europe successfully
in several cases. Development teams have created a wide range of smart city applica-
tions using the platform (FIWARE Foundation, 2018). Many benefits were listed by the
participants who adopted this platform, including that (1) it becomes the core of the
app’s architecture since it establishes communication among all the components, (2) it
offers a greater facility to integrate components and applications, and (3) provides a set
of Application Programming Interfaces (APIs) that facilitate the designing of such appli-
cations. Fiware provides several architectural styles that address specific NFRs. “One of
the advantages that we had using the Fiware platform was that (it) had components that
dealt with security already within the context of the platform” (respondent #I3).

Development: Mobile applications, especially crowd-sourcing apps - apps that ob-
tain information from a large number of people voluntarily undertaking a task of mutual
benefit (NANDAN; PURSCHE; ZHE, 2014) - pose challenges to software development.
Respondents reported issues related to network coverage. Since such apps require con-
nection to the Internet and in some areas the network coverage is poor, developers might
need to implement alternative solutions to deal with the availability of the app. “We had
a very big challenge which was the WiFi signal that worked very well inside the mall but
in the parking lot (it’s six floors of parking) was very bad. How were we going to map the
routes if there is no signal?” (respondent #I11). The use of Google/Apple maps API,
beacons, and triangulation were solutions studied by the participants. Moreover, real-
time data in this context implies that information is only true at the time data arrives
and if it arrives at the right time. For example, in the context of the application A1,
where the crowd sends reports about emergency situations in real time, delayed informa-
tion may lead to the problem not being solved. Therefore, aiming to mitigate problems
related to software development of SCMA and hence speeding up its development, SE
teams make use of smart technologies (P14).

Testing: Finally, testing SCMA involves several factors. Respondents reported that
it is exhausting, takes a lot of time, and there is inadequate support by testing tools for
mobile applications (P15). The lack of testing tools for mobile apps, a gap confirmed by
other researchers (FRANCESE et al., 2017), becomes even more serious in the context of
smart cities where testing also involves the need to simulate real-world scenarios (P17).
It is difficult to construct test scenarios with the same challenges as the real operational

30A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

environment.
“The problem is not the development of the app itself, the big problem in these tests

are the people (who take action) in response to some emergency reported by the app”
(respondent #I18).

This quote raised another testing challenge which is training users who will use the
app to support a citizen who will report a problem using the app (P16). For instance,
“There was a lot of training with the university security forces because they were resistant
to changing their way of working, and most of them were already retiring and were not
adapted to mobile technology.” (respondent #I14).

4.3.3 Architectural patterns and styles

As previously discussed in Section 2.1, mobile applications follow the architectural prin-
ciple of building blocks, which was derived from traditional software architecture practice
(BAGHERI et al., 2016). In this context, our study reveals that although architects and
developers of SCMA have not adopted any specific architectural pattern and most of the
time the application architecture is not planned, they are likely to use good development
practices, such as modular programming, layered architecture, and component-based soft-
ware engineering. This is due to the need to fit their code into frameworks, which are
based on architectural styles. Syer et al. (2011) found that Android apps rely heavily on
the Android platform and its architectural styles.

The preference for one style over another depends on how the architecture is designed,
but in general, they are API-Centric (P8). “The apps of our group (T2) are a bit similar
because there are a lot of API calls in them.” (respondent #I10).

SCMA used some architectural styles that are very common in smart city applications,
and the use of such styles have positively impacted the design of these applications (P9).

One of the most predominant architectural styles was Client-Server. It may be
because SCMA have clear separation between clients and servers. Picking the application
A2 as an example, the citizens using the mobile app to report any obstacles in bike paths
and to receive information about weather conditions are on the client side while Fiware
is on the server side. Using the Client-Server style positively impacts the architecture in
the following ways (BOSCH, 2000):

• Scalability and Portability. Each component can evolve separately without affecting
others;

• Maintainability. Stable protocols lead to well-defined and reusable components;

• Security. Security layers can be added to evaluate external events.

Publish-subscribe, a type of implicit invocation style, was also identified in SCMA.
In this style, components communicate through asynchronous messages allowing better
integration among them. Indeed, the publisher object, when performing internal process-
ing of a routine, checks for objects that have subscribed to that event and notifies them
immediately. “We use publish-subscribe to automatically update the data when some data

4.3 DISCUSSION OF THE GROUNDED THEORY 31

is updated on the server, the app receives a notification, we treat this notification and per-
form the internal update of the application.” (respondent #I17). We could observe from
the interviews that architects/developers utilize this style through the use of frameworks.
Examples reported by the participants were Fiware and Firebase2. This style strongly
impacts the reliability of the system since the implicit invocation style is centralized, and
so it more easily deals with unexpected events, thereby improving reliability; as well as
maintainability due to the independence of the components.

Lastly, the message broker style was also used to ensure a more efficient commu-
nication among the components. “The choice of communication by broker had excellent
results, the performance was exceptional.” (respondent #I4). The message broker is re-
sponsible for receiving a message from one component and making it available to others,
and so it was used for validation, transformation, and routing of messages. Two of the
teams (T1, T2) that used this style relied respectively on RabbitMQ3 - a open-source
software message broker software, and a Fiware component called Orion Context Broker.

4.3.4 Candidate anti-pattern on architecture construction

We noticed some situations within the SE teams that negatively impact not only the
design of the application, but the entire development process. The first evidence of the
candidate anti-pattern4 that emerged from our theory is that the lack of documentation
creates technical debt (P2). Contrary to traditional software development, which is more
focused on specification documents, developers of mobile applications are more likely to
adopt agile practices (FRANCESE et al., 2017). However, reviewing the archival data we
mostly saw high-level technical reports (except for T1 which is a research and innovation
project), that do not specify any feature nor how the design decision were made (P4).
The problem appears when it comes to testing the application and it is not possible to
track the requirements to specific tests or the person who holds the tacit knowledge leaves
the project: “I was developing this part, but as I ended up leaving the project, this ended
up being discontinued.” (respondent #I7).

The other evidence of a negative impact is that failing to implement architecture
decisions creates technical debt (P7). To get products to market faster, mobile appli-
cation development teams usually have a short period in which to deliver the product
(FRANCESE et al., 2017). Many developers prefer to meet time-to-market requirements
at the expense of robustness: “We did not create an architecture before we developed the
application because of the short time we had.” (respondent #I13). Mobile applications
developed for smart cities are no different. Since the demand comes from citizens’ needs
to be protected (P3), delays can be life-critical. All of the apps included in this study
were directly related to life-critical situations such as personal protection or emergency
response. Therefore, the faster “solution” that SE teams find is neglecting the architec-
ture design. The consequence of this common reaction is the creation of technical debt

2Firebase is available at https://firebase.google.com
3RabbitMQ is available at https://www.rabbitmq.com
4We use “candidate” here to reflect the Patterns community’s belief that there be multiple published

instances of a design before it is referred to as a pattern.

32A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

on the project. That is, there is an implied cost of additional rework caused by choosing
an easier alternative instead of using a correct approach that would take longer.

4.4 A DEEPER LOOK AT THE ARCHITECTURE OF SELECTED ANDROID
APPS

We begin with a multi-level description of the Android apps’ architecture based on a
previous study (BAGHERI et al., 2016) and then we present an in-depth description of
one specific app.

4.4.1 Multi-level analysis

From a qualitative data analysis of nineteen interviews, we can began to understand which
characteristics describe and influence the architecture design of SCMA in terms of design
decisions that architects make, architectural styles they use, and limitations of mobile
devices that may affect the prioritization of non-functional requirements, among other
aspects discussed in the previous sections. However, this study also raised a question
about the structure of the architecture for mobile apps: What does the android style,
which multiple study respondents mentioned, look like? Therefore, we decided to take a
deeper look at the architecture of the set of selected apps, which were either available in
the Google Play Store or we had access to its APK file.

Our architectural analysis was intended to investigate the effectiveness of the architec-
ture design performed by the teams using agile methods. To ensure accuracy we needed
to compare the as-designed and as-built architectures of each app. Data collected via
interviews with the development teams provided the as-designed information. Reverse
engineering from each app’s source code provided the as-built architecture. This cross
validation allowed us to investigate the extent to which the resulting app actually utilized
specific Android styles, components, and connectors.

The results of these analyses are similar to those found in a study by Bagheri et
al. (2016), in the sense of using a wide variety of components and connectors, which
contribute to the success of Android apps. However, most of the components were derived
from a small set of components provided by the Android framework. Table 4.5 shows
the average number of component instances and connector usages in each app. While
BAGHERI et al. found that the ranking of component types in frequency from highest to
lowest is: Activity, Content Provider, Service, and Broadcast Receiver ; we found Activity
and Service are the most used components in our small sample of apps from the Google
Play repository. Another difference is that we found the number of ports in some of our
apps was well above the average for Android apps. This might indicate that the mobile
applications analyzed in this study have more data flows than the average Android app.

The high number of components and connectors results from Android apps using more
than one architectural style. We confirmed the use of four out of five styles identified in
Bagheri’s study. Table 4.6 depicts which ones were identified in our set of apps.

We noticed that all six app architectures have used the publish-subscribe style in-
stead of the message-based explicit-invocation style for sending a group communication

4.4 A DEEPER LOOK AT THE ARCHITECTURE OF SELECTED ANDROID APPS 33

Table 4.5 Number of components and their provided ports of the reverse engineered apps

App-Team
Components Provided

Activity Service Provider Receiver Ports

A2-T2 9 1 0 0 18
A3T-2 7 2 1 2 9
A4-T2 6 2 2 1 6
A7-T3 4 8 1 5 14
A8-T3 13 1 0 0 114
A9-T4 17 1 0 0 55

Table 4.6 Architectural styles identified in the reverse engineered apps

message-based
explicit-invocation

message-based
implicit- invocation

publish-subscribe shared state

A2-T2 X X
A3-T2 X X
A4-T2 X X X
A7-T3 X X
A8-T3 X X
A9-T4 X X X

(except for A9T4 that used both), which makes the architecture more efficient and ele-
gant (BAGHERI et al., 2016). This result confirms the findings of the interviews which
suggested the use of the publish-subscribe style made the communication between com-
ponents more efficient.

4.4.2 Example Reconstructed Architecture

In this section, we present a case study using one app to illustrate the concepts inves-
tigated in this research. We reverse-engineered the architecture of the mobile app A8
using the architecture description language ACME5. Then we give an in-depth description
of the structure of A8 and the reader will see how the architectural principles identified
in this research can be applied to a specific example.

Figure 4.26 shows the reverse-engineered app architecture of A8 at a very coarse
grained level. This level of representation helps to see the typical Android architecture
and supports information captured from the interviews.

The system is largely divided into service components and activity components. The
architecture shows a high degree of connectivity as discussed earlier. From the feed-
back interview with the developer of A8, we could differentiate which components were
implemented by developers, and which components were provided by the Android frame-
work. For example, the components LocationService, UpadateRatesIntentService, My-

5ACME Studio is available at http://acme.able.cs.cmu.edu/AcmeStudio
6Figure 4.2 was created using the ACME Studio tool. A full tutorial of the architecture reverse-

engineering and recovered architectures are available in our complementary material.

34A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

Figure 4.2 Recovered architecture of the application A8-T3 using the architecture description
language ACME

4.5 THREATS TO VALIDITY 35

FirebaseMessagingService, MyFirebaseInstanceIDServer, ProximityActivity, Notification-
ViewActivity were implemented by the developers. However, appMeasurementService and
all components of the type Receiver, in the bottom part of the figure, are components
provided by the Android framework.

We used the reverse-engineered architecture to confirm information from the designer
about the connections as actually implemented. For example, “It [the recovered architec-
ture] is correct. The connection between the components MainActivity and SplashActiv-
ity is because the SplashActivity calls the MainActivity component directly.” (respondent
#I17, developer, app A8).

We also identified that FirebaseInitProvider, FirebaseInstanceIdService, and Fire-
baseMessaginService are components of the Firebase framework, which was discussed
in Section 4.3.3 as a framework frequently used for the respondents to implement the
architectural style publish-subscribe. Therefore, we were able to identify and verify the
use of, this architectural style through this framework.

Overall, the recovered architectures have a high degree of connectivity among numer-
ous components (at the activity component level) and do not explicitly show the exact
styles that were adopted in the app, but the styles used could be identified from the rep-
resentation. Study participants found it very helpful to see how their app is structured,
how components are interacting with others and felt they would make better decisions
on the architecture design of their applications using this information.

4.5 THREATS TO VALIDITY

In this section we discuss several potential threats to the validity of our results with their
corresponding mitigating factors according to Runeson and Höst (2008), which distinguish
four criteria for validity:

Construct Validity

Our study is mainly threatened by a list of architectural patterns and styles, which are
available in our complementary material7, we provided the list to the participants to be
used as reference. This data could have biased their answers. However, the list was made
by considering surveys of the software architecture literature (TAYLOR; MEDVIDOVIC;
DASHOFY, 2009; ROMAN; PICCO; MURPHY, 2000; GARLAN, 2000; SHARMA; KU-
MAR; AGARWAL, 2015; ZHANG et al., 2016). Moreover, we conducted a pilot study
to adjust the time required to perform the interview, the quality of our questions, and
thus mitigate any construct threats.

- Internal Validity

Misinterpretations of the interviews is an internal validity issue we need to consider. The
data collection could have been biased by the researcher’s opinion. Regarding that, a
validity procedure for the multi-case study was already discussed in Section 3.6. Also,

7https://rose2s.github.io/EMSE2019

36A GROUND THEORY ABOUT THE DEVELOPMENT OF SMART CITY MOBILE APPLICATIONS

the recovered architecture obtained from the reverse-engineering of Android apps was
validated with each respective developer using a feedback questionnaire (recall Fig. 3.1).
The profiles of the interviewees were very diverse, each one played a different role on
the project and the majority had more than 4 years of experience in the team. This
diversity reduced the probability of misinterpretations. Finally, besides the discussion on
the criteria to select the systems (recall Section 3.1), budgetary restrictions also were a
constraint on which apps to study and how to collect the data.

- External Validity

The main threat to external validity is the non-generalizability of the study to the whole
domain of mobile applications being developed for smart cities. However, to the best of
our knowledge, the best place to look for SCMA is in research and innovation groups. By
selecting nine mobile applications from four different locations we certainly found appli-
cations that varied by size, methodology, objective, team, and design process. Although
innovation groups do not represent a cross-section of the app industry, the applications
were all related to public services and most of the development teams had partnerships
with cities.

- Conclusion Validity

The sensitivity of GT is a threat since this method is very subjective and depends on how
the researcher sees the problem. To mitigate this threat, another student from the same
research group performed the entire analysis process separately from the coding process
until the identification of the constructs and the depiction of propositions; then every
step was discussed, refined, brought to a consensus, and results were merged to shape the
theory.

Moreover, according to Adolph, Hall and Kruchten (2011), confirmability of the study
is a good criteria to evaluate the theory for rigor. It argues that conclusions depend on
subjects and conditions of the study rather than the researcher. Then, by involving
the study participants in several phases of the research, potential biases or influences
present in the researchers conducting our study were eliminated. Lastly, we provide a
supplementary material that will help other researchers to replicate this study and test
our theory under changes in the study components.

4.6 CHAPTER SUMMARY

In this chapter, we presented the central result of this research effort. The theory de-
scribed in this chapter was developed on top of data collected from people with first
hand knowledge of the project and the resulting software. The use of a grounded theory
approach to model development took advantage of these data sources to identify a set of
fundamental constructs and then to capture relationships among the constructs in the
form of propositions. A detailed explanation of each proposition in Figure 4.1 is discussed
within the text in Section 4.3. The model provides an initial resource for explaining the
choices made by teams developing SCMA and for reasoning about scenarios regarding the

4.6 CHAPTER SUMMARY 37

implications of changing the development process. In the following chapters, we provide
a description of the evaluation of the model.

Chapter

5
THE EVALUATION OF THE INITIAL THEORY

In this chapter, we describe the evaluation process of the grounded theory. To the best of
our knowledge, papers that use GT usually define their own evaluation method for their
theory. Some researchers have even applied only single evaluation tasks (HODA; NO-
BLE; MARSHALL, 2012; SOUSA et al., 2018). However, for the purpose of making our
evaluation process more robust, we applied a set of 5 tasks based on techniques from the
GT literature (ADOLPH; HALL; KRUCHTEN, 2011; STOL; RALPH; FITZGERALD,
2016) and the researcher’s experience. The 5 steps are defined in Figure 5.1.

Figure 5.1 Theory evaluation process design

The two tasks shown at the bottom of Figure 5.1 were applied periodically during the
evaluation process. The three remaining activities were performed sequentially so that
each task provided insights that contributed to the following activities. In Section 5.1,
we describe each task and its respective results when applied to our theory are presented
in Section 5.2.

39

40 THE EVALUATION OF THE INITIAL THEORY

5.1 THEORY EVALUATION TASKS

In this section, we describe each of the five tasks in the theory evaluation process.

Review of the literature

The literature review used in this study was conducted in two parts. The first one was an
exploratory research study within the current knowledge landscape of smart city mobile
applications. The second phase was intended to determine how well the generated theory
fits with the existing literature on the subject as recommended by Adolph, Hall and
Kruchten (2011) and Hoda, Noble and Marshall (2012). To that end, it was focused on
relating the research findings to the literature through the integration of ideas.

Apply a set of theory evaluation criteria

Sjøberg et al. (2008) specified a set of criteria for evaluating grounded theories. Next, we
list these criteria and give a very brief evaluation of our theory relative to each criterion:

• Testability - The degree to which a theory is constructed such that empirical
refutation is possible.

• Empirical Support - The degree to which a theory is supported by empirical
studies that confirm its validity.

• Explanatory Power - The degree to which a theory accounts for and predicts all
known observations within its scope.

• Parsimony - The degree to which a theory is economically constructed with a
minimum of concepts and propositions.

• Generality - The breadth of the scope of a theory and the degree to which the
theory is independent of specific settings.

• Utility - The degree to which a theory supports the relevant areas of the software
industry.

According to Adolph, Hall and Kruchten (2011), there are other criteria we need to
take into account when evaluating a theory for rigor. They addressed the grounded theory
rigor issue with two questions:

1. Is the story expressed in the theory a true story and not a fabrication?

2. Is the theory a good story, one people will find interesting, adds to the known body
knowledge and is useful for informing policy?

These two questions address aspects of a theory that can be effectively compared to
the following more general software engineering qualities:

5.1 THEORY EVALUATION TASKS 41

• Transferability - How far can the findings/conclusions be transferred to other
contexts and how do they help derive useful theories?

• Confirmability - Conclusions depend on subjects and conditions of the study
rather than the researcher.

• Dependability/Auditability - The study process is consistent and reasonably
stable over time and among researchers.

• Credibility - The research findings are credible and consistent.

Validate the model with researchers in similar areas

One of the criteria employed to validate rigor in qualitative grounded theory studies is
fittingness, also known in the literature as resonance (CHARMAZ, 2006). In order to
verify that our theory makes sense to others, we decided to present our emergent model
to other software engineering researchers. In addition, the contributions of this work were
evaluated by experts through a paper submission to an EMSE Special Issue on “Software
Engineering for Mobile Applications”.

Validate the model with practitioners involved in theory generation

According to Stol, Ralph and Fitzgerald (2016), resonance is one of the criterion when
evaluating grounded theory studies. It addresses questions such as: does our grounded
theory make sense to our participants? Similarly, Sousa et al. (2018) stated that an
important step in theory evaluation is validating the model with practitioners involved in
theory generation. We decided to perform an agree/disagree survey with the practitioners
involved in the theory generation as to appropriately evaluate this criterion.

Just to recap, all the teams selected to participate in this study focus on innovative
software solutions by supporting entities related to public services, such as public safety,
tourism, transportation, education, or smart buildings. A detailed characterization of
each subject was presented in Table 3.1 and a description of each app was also detailed
in Section 3.2.

Since we already had interrupted their work at least twice for this study, this time we
were not able to interview them, instead we used an online survey to get quick feedback
from each of the team members.

The survey basically consisted of the 17 propositions (recall Table 4.3), followed by a
short description of each, and the following options from which they had to select: (1)
agree, (2) disagree or (3) neither agree nor disagree (shorted in this work to NAND) and
the option of writing a short justification for their answers.

From 19 stakeholders interviewed, 13 answered our request (almost 70%), although
2 of the responding stakeholders emailed us back justifying the reason why they would
not be answering the survey. We had a total of 11 respondents. Respondent #I6 decided
to not respond the survey because her/his role was researcher, not active participant, on
A1-T1, and the respondent #I14 had left the project by the time we sent the survey.

42 THE EVALUATION OF THE INITIAL THEORY

Perform interviews with new practitioners

Finally, following the example presented in Hoda, Noble and Marshall (2012) for eval-
uating a grounded theory by performing interviews with new practitioners, we selected
another company to perform new interviews. The main selection criterion was having
the same as the previous ones, but having a greater potential market given the size of
the team and the timing with respect to the targeted market.

We performed two interviews following Runeson and Höst's guidelines (RUNESON;
HÖST, 2008), with a duration of 30 minutes each, based on the same protocol as the
previous interviews. Our conduct of these new interviews was informed by the feedback
from the previous tasks detailed in this chapter. The questions followed the same idea of
the survey but the order of the questions were based on the groups of priorities: critical,
moderate and desired propositions.

- Characterization of the subjects

A characterization of the new subjects, I20 and I21, is detailed in Table 5.1. This includes
their interviewee IDs, I20 and I21, their roles in the project, years of experience, the ap-
plication with which they were involved (A10 and A11), and their respective development
team (T5).

Table 5.1 Role and experience of the respondents

Role
Experience

(years)
Application

Development
Team

I20 Solution Architect 10+ A10 T5
I21 Software Architect 10+ A11 T5

- Characterization of the apps

Next, we present a short description of applications A10 and A11.

T5: A public institution of the government of Bahia

• A10 is a digital customer service system for the Government of Bahia. Its main
purpose is to consolidate the use of all government digital services in one place1.

• A11 offers a quality service in finding the best profiles to be outsourced for the
Government of Bahia. It has a smart selection criteria with professionals who
access the app, through the application of several tests2.

5.2 DISCUSSION OF THE EVALUATION TASKS

In this section, we discuss the main findings of the five tasks in the theory evaluation
process.

1A10 is available for download at shorturl.at/fVWXZ
2A11 is available for download at shorturl.at/gsI57

5.2 DISCUSSION OF THE EVALUATION TASKS 43

5.2.1 Review of the literature

Although the development of mobile applications for the smart city domain is a more
restrictive subject than the general notion of mobile apps across all domains, by evaluating
our results in the light of previous work in the literature we can highlight the following:

− Ivan et al. (2009) stated that citizen-oriented applications must be orientated to-
wards citizen satisfaction, delivering high quality public services.

− We have seen in this work the need to better manage the mobile resources for
SCMA. Due to the fact the battery is a scarce resource for those apps, several
studies have proposed ways to measure and to save energy used for mobile apps
(NAGAPPAN; SHIHAB, 2016).

− Nagappan and Shihab (2016) reported that more work is needed on automated
testing of mobile apps, specially for cross-platform apps. This gap was also reported
by other researchers (FRANCESE et al., 2017). Similarly, our work confirmed that
the lack of automated testing tools for mobile apps is a concern that needs more
investigation.

− Mobile development teams have often adopted cross-platform development frame-
works (FRANCESE et al., 2017; BIØRN-HANSEN et al., 2019).

5.2.2 Apply a set of theory evaluation criteria

Next, we give a very brief evaluation of our theory relative to each criterion described in
Section 5.1:

• Testability - Our theory has an acceptable level of testability since empirical
refutation of its propositions is possible by replicating the study.

• Empirical Support - Considering the brief discussion in Section 5.2.1, we consider
that the propositions of our theory are reasonably supported by other empirical
studies. Even though they have a slightly different focus than the study on which
our theory is based, some of the findings of this dissertation agreed with the findings
of previous studies. Conducting additional studies is part of our planned future
work.

• Explanatory Power - We consider the explanatory power of the theory to be
adequate given the narrow scope of the study. Part of our future work is to expand
the scope of the theory.

• Parsimony - We consider the parsimony of the theory to be moderate given that
our original efforts focused more on roughing out a theory and less on the efficiency
with which it is expressed.

44 THE EVALUATION OF THE INITIAL THEORY

• Generality - The current scope of this theory is narrow, therefore we consider
the generality of the theory as low. Our planned future work will address this by
broadening the scope.

• Utility - While the scope of the theory is narrow the study was very focused and
hit its intended audience. We consider the utility of the theory to be high.

• Transferability - Our theory is transferable within the context of our targeted
domain of smart cities.

• Confirmability - By involving the study participants in several phases of the
research, any biases or influences present in the researchers conducting our study
were eliminated.

• Dependability/Auditability - Although no other researchers have replicated our
work yet, there was a high level of dependability among the results of the various
study activities.

• Credibility - Our theory has a high degree of credibility due to presenting various
results of the research back to the study participants and adjusting the theory to
reflect their input.

5.2.3 Validate the model with researchers in similar areas

The model discussed in chapter 4 (recall figure 4.1) was presented to the Reuse in Software
Engineering (RiSE) research group at Federal University of Bahia and also two professors
who work with Software Architecture and Testing in Software Engineering. As a result,
we got a lot of good feedback on our model representation allowing us to reshape it, and
include some insights on how to make it more robust. In addition, the professors made a
valuable contribution by linking the topics of this dissertation with their students’ work.
This enables us to find additional studies that support our findings.

To exemplify this, during the presentation of the proposition P15, which initially
was about the lack of testing tools for mobile apps, a professor whose area is Testing in
Software Engineering pointed out several papers that report on available testing tools.
The professor also agreed that the lack of automated testing tools is actually the biggest
problem. Later on, while performing the evaluation of the theory by a survey with the
practitioners involved in theory generation (section 5.2.4), we confirmed this deficiency
with the participants themselves and refined that proposition for our model.

Besides getting feedback from research in similar areas we got excellent in-depth expert
feedback from several researchers through a paper submission to an EMSE Special Issue
on “Software Engineering for Mobile Applications”. The reviewers’ feedback provided
input to our theory evaluation making the work more complete and useful for the research
community.

Although they did not ask about the model propositions themselves, the reviewers
raised an important question concerning the quality of the selected apps and asked for
more details. The question concerned missing information about the acceptance of the

5.2 DISCUSSION OF THE EVALUATION TASKS 45

apps by the customers, their success with respect to their goals, etc. The validity of the
research results is connected with the quality of apps, in the sense that an unsuccessful
app should be treated as a counterexample, showing practices and perhaps architectures
that have to be avoided. To address the request of this reviewer, we created a subsection
to discuss the quality of the selected applications (recall 3.3) and provide more informa-
tion about the apps and their acceptance by the audience. Section 5.4 provides some
recommendations for a SE team based on the good and bad practices we found in our
study.

Another concern involved whether the scope was sufficiently well defined. The smart
city mobile applications (SCMA) were selected based on a characterization of “smart city
app.” This could impact the quality of the model. To mitigate this issue we included in
Section 3.1 a more detailed characterization of SCMA highlighting the specific criteria
on which our selections were based.

Reviewers also asked about the sensitivity of the theory: How sensitive is this theory?
Would the results of the study be the same if the study components were exchanged for
other similar components? For example, if a different set of apps were chosen. Adolph,
Hall and Kruchten (2011) argue that conclusions depend on subjects and conditions of the
study and confirmability is an important criteria to evaluate the theory. By involving the
study participants in several phases of the research, potential biases or influences present
in the researchers conducting the study were eliminated. In the next sections (5.2.4 and
5.2.5), we describe the findings of validating the model with practitioners involved in
theory generation and with new practitioners to apply the confirmability criteria.

5.2.4 Validate the model with practitioners involved in theory generation

As can be seen in Figure 5.2, we divided the results of this task into three groups of
priorities: critical - the propositions with the highest percentage of disagreement between
participants (between 20% and 50%), moderate - the propositions with some disagreement
but also some agreement (between 50% and 70%) and desired - the propositions with the
highest percentage of agreement among participants (above 80%).

We detail the results of the questionnaire by providing supporting statements by the
interviewees who agreed with the proposition described P(n); NAND statements, which
stands for neither agree nor disagree with the P(n) and disagreement statements of those
who disagreed with each P(n).

- Substantial Disagreement (20% of agreement)

• P4. Most non-functional requirements are not taken into consideration by the SE
team when making design decisions.

Supporting statement:“Unfortunately, due to the pressure to deliver something
functional quickly and lack of resources, most of the nonfunctional requirements
are left to the end of the project or even, are not implemented” (#I12).

NAND statement: “Some non-functional requirements are essential for mobile ap-
plications and therefore are prioritized (e.g. performance and scalability). Others

46 THE EVALUATION OF THE INITIAL THEORY

Figure 5.2 Percentage agreement gathered from the questionnaire about the propositions

end up in the background” (#I4).

Disagreement statement: “At the architectural level, there is clear concern about
the non-functional requirements of the system” (#I5).

We concluded that NFRs were taken into account for the SE team if they were con-
sidered crucial to the app although some NFR are only used in the planning phase.
In short, only those NFRs that affect the run time performance are considered.
Long term properties such as maintainability are paid much less attention.

• P12. The development or adoption of smart city frameworks reduces the complexity
of the development of SCMA.

Supporting Statement: “I agree that the adoption of frameworks and libraries
speed the development of applications and decrease complexity since it is encapsu-
lated in the components of the framework itself and not in the application, which
only calls them” (#I17).

NAND statement: “This will depend on other factors to measure whether or not it
actually reduces the complexity of development such as the learning curve for the
framework in question, the community/company that maintains the framework,
and the degree of technical knowledge of the team” (#I15).

Disagreement statement: “The choice for a framework can bring advantages,
such as code reuse. However, there is no guarantee that certain non-functional
requirements will be guaranteed by the choice of the framework. On the other
hand, a choice may even impact performance, for example” (#I5).

We concluded some smart city frameworks for smart city applications may reduce
the complexity of the development due to the ability of code reuse, reduced coupling,

5.2 DISCUSSION OF THE EVALUATION TASKS 47

etc, but it will depend on many factors and because of that we can not guarantee
a direct correlation. P12 needs to be refined.

- Moderate Agreement (between 50% and 70% of agreement)

• P8. The architecture design of SCMA is API-centric.

Supporting statement: “Because SCMAs usually need to interact with platforms
and applications, the use of APIs is a way to enable most of the architectural styles”
(#I15).

NAND statement: “Our solution was not based on APIs although we used them a
lot” (#I5).

We concluded that most of the interviews relied on the use of APIs to design their
SMCA, except for #I5 since they built their own solution for app A1. P8 needs to
be somewhat refined.

• P7. The lack of architecture decision-making creates technical debt.

Supporting statement: “Any decision that is made to benefit one factor will be
detrimental to another. For example, prioritizing development time will hamper
the quality of the architecture, which will actually create technical debt” (#I12).

Disagreement statement: “Architectural decisions will always exist, although
they are not explicit sometimes. What can generate technical debt is the fact that
developers do not follow the decisions made” (#I5).

This is where the as-designed and the as-built system split off from each other.
Given that the as-designed is the result of careful analysis, failure to use it results
in a system with reduced quality and hence increased tech debt. Therefore, failing
to implement architectural decisions will create technical debt.

• P11. The smart cities context brings more complexity to mobile applications.

Supporting statement: “SCMAs are relatively simple, but the whole background
needed to provide simplicity of the domain can get very complex to meet all the
actors, variables and infrastructures required” (#I12).

NAND statement: “This complexity depends on the context of the SCMA. For
example, in many cases, interaction with another system can be very complex and
in other cases, it can be very straightforward” (#I17).

We concluded that the complexity comes with the degree of difficulty of the re-
quirement and this domain usually needs to integrate with other components and
sensors, use gateways to communicate between platforms, use a lot of third party
technologies. Therefore, they together add complexity to the smart city domain.
However, it is not exclusive to SCMA, there are other domains to which this propo-
sition also applies, such as safety-critical systems.

48 THE EVALUATION OF THE INITIAL THEORY

• P13. The level of development challenges in SCMA depends upon the development
approach adopted.

Supporting statement: “The challenge will be measured according to the chosen
approach, and it is up to the team to decide which approach to take” (#I12).

NAND statement: “This may happen depending on the mobile application frame-
work chosen to develop the app” (#I14).

Disagreement statement: “The level of development challenges might be related
to the complexity of the problem to be solved” (#I5).

We noticed that the hybrid approach issue brought different experiences depending
on the mobile application framework and the SE team needs to list the pros and cons
of each approach before choosing one because it will strongly impact the quality of
the application. Based on the answers, we decided to change P13 to the following:
the adopted development approach and its associated tools bring specific development
challenges for SCMA.

- Substantial Agreement (above 80% of agreement)

• P3. Functional requirements for SCMA come from a smart cities context, which is
citizen-oriented.

Supporting statement: “Citizens are the owners of the solutions; The citizen's
need is often the starting point for the development of such applications” (#I15).

Supporting statement: “The application must meet the needs of the citizen so
their functional requirements should attend them directly. Besides, the specification
of these requirements should be assisted by domain experts” (#I2).

Since there were no opposite opinions regarding P3, we concluded it does not need
to be refined.

• P16. Training users positively impacts the product acceptance of SCMA.

Supporting statement: “We faced some resistance to get the agents and end
user’s acceptance of our application so that if we had invested more in training this
issue would have been less” (#I15).

NAND Statement: “When a SCMA is also a crowd-sensing app, there is no way to
train the crowd but it may need another application for internal users to monitor/
analyze what the crowd sent as input. They definitely must be trained to know
how to analyze the reports that arrive and how to help the citizens more quickly
and effectively” (#I2).

We noticed that the majority of the SCMAs have a team of internal users that use
the mobile app or a part of it (dashboard, desktop app, a different view of the app)
to assist the citizens and this group definitively needs to be trained.

• P2. The lack of documentation creates technical debt.

5.2 DISCUSSION OF THE EVALUATION TASKS 49

Supporting statement: “The time taken to contextualize/train a new stakeholder
can be greatly reduced if there is at least a technical documentation, specially in
small teams where there is a member turnover culture” (#I10, #I15).

Supporting statement: “The lack of documentation increases the number of
meetings to discuss the scope of the project and generates momentary demands
that may not be necessary for the project” (#I7).

NAND statement: “Our project had a lot of documentation but perhaps the stake-
holders were not aware and did not have access to a large number of documents”
(#I5).

We concluded that a project needs to have at least a technical documentation as
to deliver a successful product with good quality within a reasonable time.

• P14. Smart technologies positively impact the development speed of SCMA.

Supporting statement: “There is no need to re-develop the technologies adopted
if they bring benefit we should use them” (#5).

Supporting statement: “Having these technologies that aid SCMA development,
we can focus more on developing business rules, and it positively impacts the speed
of development” (#I5).

Although new technologies will always request an initial time investment to learn
them, smart technologies have grown their use lot in the applications developed for
smart cities. We concluded that this proposition does not need to be refined.

• P15. The lack of testing tools for mobile applications negatively impacts the testing
of SCMA.

Supporting statement: “We still have a huge gap in finding tools and techniques
focused on testing for SCMA. Today, in my opinion, it is the main bottleneck in
the SCMA development process” (#I15).

Supporting statement: “In many cases testing is still a stressful activity since
the process is not fully automated” (#I17).

NAND statement: “The problem I faced was the effort required to implement au-
tomated testing” (#I5).

These results confirmed what we discussed in section 5.2.3 by validating the model
with experts. We concluded that the lack of automated testing tools is seen as a
wide problem for SCMA and it can be considered a good research opportunity for
further investigation.

• P1. Domain experts positively impact the definition of requirements for SCMA.

Supporting statement: “They have important information gained from their ex-
perience that helps the requirements to fit better the real needs of the domain”
(#I5).

50 THE EVALUATION OF THE INITIAL THEORY

Supporting statement: “The definition of the requirements for SCMA is fully
tied to its domain and so it is essential to have a domain expert to act as the bridge
between domain and the application” (#I17).

The proposition P1 got total approval of the respondents and so it does not need
to be refined.

• P5. The satisfaction of non-functional requirements depends upon the design deci-
sions made

Supporting statement: “There are always trade-offs for architectural decision
making, which also applies to SCMA” (#I5).

Supporting statement: “Any non-functional requirement is based on the cost-
benefit ratio, that is, when implemented, another will be impacted, so it must be
evaluated to decide whether or not to develop a specific non-functional requirement”
(#I15).

The satisfaction of non-functional requirements is indeed a joint work under the
participation of requirements engineer, software architect, and development team.
The proposition P5 got total approval of the respondents and so it does not need
to be refined.

• P6. The level of technical skills impact the design/development of SCMA.

Supporting statement: “Inexperience with the technologies that a SCMA re-
quires produces a system more prone to bugs” (#I5).

Supporting statement: “One of the main lacks in this context is the absence of
a framework intended to support the development of SCMA” (#I12).

The proposition P6 got total approval of the respondents and so it does not need
to be refined.

• P9. The use of architectural styles positively impacts the design of SCMA.

Supporting statement: “Architectural styles facilitate code maintenance and leg-
ibility” (#I7).

The proposition P9 got total approval of the respondents and so it does not need
to be refined.

• P10. Effective mobile resource management positively impacts the architecture de-
sign of SCMA.

Supporting statement: “SCMA or any app that consumes a lot of resources,
managing them is essential” (#I2).

NAND statement: “Although it is desirable, the effective use of mobile resources
does not have as much impact on the apps of non-continuous use” (#I16).

Despite the above statement provided by the interviewee #I16, whose app had not
a continuous use, the majority of SCMA requires a lot of mobile resources and this
needs to be well managed; otherwise, it will impact negatively the product success.

5.2 DISCUSSION OF THE EVALUATION TASKS 51

• P17. Testing SCMA involves the need to simulate real-world scenarios.

Supporting statement: “Testing for SCMA is the main bottleneck for SCMA, and
simulation of real-world scenarios is one of the major challenges of these tests. We
can not predict, for example, how people will behave in a life-threatening scenario”
(#I2, #I5).

Supporting statement: “These applications will be used in the complex context
that brings the possibility of various types of errors, it is important that the appli-
cation is robust and prepared for real scenarios” (#I17).

The proposition P17 got total approval of the respondents and so it does not need
to be refined.

5.2.5 Perform interviews with new practitioners

From the analysis of two interviews (#I20, #21) performed in December 2018 with 2
software architects of a public institution of the government of Bahia, it was possible to
confirm our conclusions described in the last section and to provide some recommenda-
tions for the SE team (Section 5.4). The main findings are described next.

The respondent #I20 reported that the critical NFRs for their project (app A10)
were performance and security and both were part of the architecture decision and were
taken into consideration, but some other NFRs, which they considered to have lower
priority were ignored because of the same reasons discussed earlier in this chapter (P4).
Nevertheless, the application A21 failed on prioritizing critical RNFs and noticed the
consequences of neglecting them after launching the app. The respondent #I21 reported
that one of the main concerns with innovative mobile apps is speeding up development
under the pressure of time to market. “The first one to launch an idea in the market
wins!”.

The respondent #21 confirmed our findings about P7 in the previous section. Because
they failed to implement architectural decisions, technical debt was generated in the
project. “We still have unresolved bugs in the system because we do not have time to
come back to fix them”.

They did not adopt a framework for smart cities (P13) but they made use of several
communication libraries to connect to other platforms, and APIs (P8). One successful
example reported by #I20 was the use of the Layer7 API Gateway3, a high-performance
gateway to connect the data and applications across any combination of cloud, container
or on-premises environments. It is a consolidated market solution applied to increase
speed, quality, and security but also to decrease the complexity of the smart solution
(P14). “If there is a known solution, we do not create one, we reuse it” (#I20).

Similarly, the development of the app A21 made use of smart technologies to better
manage the mobile resource (P16), mainly the battery and the GPS. Since this app keeps
looking for the closest available professional to attend a request, the use of the GPS is
continuous. The solution used a Google API and changed the architecture to not sending

3Layer7 API Gateway is available at https://www.broadcom.com/products/software/api-
management/layer7-api-gateways

52 THE EVALUATION OF THE INITIAL THEORY

the GPS signal all the time but sending it only when the user has exceeded a radius of
X meters (this number may vary), and calculating the best route.

The native development approach was chosen to develop the app A10 because perfor-
mance was critical and so they preferred to develop it native for both platforms (Android
and iOS) even knowing that the financial cost to retain professional engineers to maintain
both platforms was much higher, they do not regret that decision. According to #I20,
the hybrid approach has a lot of limitations and has caused a lot of problems in the past
related to compatibility and performance issues (P13). On the other hand, the hybrid de-
velopment approach was chosen to develop the app A11 using the Ionic4, a cross-platform
mobile app development. Although it is a widely know framework, previous interviewees
besides #I21 do not recommend it. The reason mentioned includes performance and the
life cycle of the app. According to him, it will always be shorter than a native app be-
cause ionic libraries release updates faster than android libraries and the developer needs
to keep updating the versions of the code, the code is unstable until it breaks. When
SCMAs are developed for fields such as e-governance, the SE team has no autonomy,
and the project is managed by people in different roles who have divergent interests most
of the time. Besides that, these customers usually have different opinions about what
should be included in the SCMA (P11). Aiming to manage the conflicting requirements
raised in this context, the software architect #I20 raised the need for a demand prioriti-
zation committee in the project. His SE team applied the prioritization matrix approach
to provide to project stakeholders with a resource to balance between requirements, the
priorities, and impacts, and to increase the chances of a successful project by promoting
consensus between stakeholders.

According to #I20, tests are neglected most of the time and this is a cultural problem
where they shifted testing to the end. He confessed that failed when they did not give
relevance to testing earlier in the planning phase and so got a negative impact later in
the development process. Testing SCMA is even more crucial because of the need for
testing real-world scenarios (P15-P17). For that, the respondent #I20 recommended
the Firebase test lab for Android and iOS5, which is a Google platform that provides
cloud-based infrastructure for testing Android and iOS apps.

Finally, adopting agile methodology in software development was a good alternative
found to handle technical debt in the project (P2). By ensuring the value of the following
agile manifesto: working software over comprehensive documentation6, both development
teams learned, from failures, to document as little as possible and express the require-
ments as user stories and eventually prototypes.

5.3 FINAL PROPOSITIONS FOR THE GROUNDED THEORY

After evaluating the theory by performing the five tasks detailed in this chapter, we
created a list of refined propositions and highlighted the changes in Table 5.2. A total of
nine propositions were refined after applying the five evaluation tasks.

4https://ionicframework.com
5Firebase Test lab is available at https://firebase.google.com/docs/test-lab
6Agile manifesto is available at https://agilemanifesto.org

5.4 RECOMMENDATIONS FOR THE SE TEAM 53

Table 5.2 List of propositions that were modified after the theory evaluation process

P2 The lack of at least technical documentation creates technical debt.
P4 Some non-functional requirements are not taken into consideration by the

SE team when making design decisions.
P7 Failing to implement architectural decision creates technical debt.
P8 The architecture design of SCMA is mostly API-centric.
P11 The smart cities context adds complexity to a mobile app’s backend.
P12 The development or adoption of smart city frameworks may reduce the

complexity of the development of SCMA.
P13 The adopted development approach and its associated tools bring

specific development challenges for SCMA.
P15 The lack of known automated testing tools for mobile applications negatively impacts

the testing of SCMA.
P16 Training internal users positively impacts the acceptance of SCMA products.

5.4 RECOMMENDATIONS FOR THE SE TEAM

Based on the propositions concerning not only architects’ actions but also those of re-
quirements analysts, developers, and testers, we provide the following additional support
for SE teams that are designing SCMAs:

1. Adopt agile methodologies. Since teams have a culture of member turnover, doc-
umentation must be extremely relevant to be of value. In the scenario of SCMA,
where the pressure to deliver a product is critical but the customer’s need is also very
important, agile methodologies are a good choice because they produce a constant
delivery stream of value to the customer and allow developers to reorganize priori-
ties as needed. Priority matrices are strongly recommended to track the changing
priorities among quality attributes (QA).

2. Bring all stakeholders to the design decision meetings. A non-functional requirement
(NFR) is prioritized over another based on the cost-benefit ratio, and a decision
about anyone attribute may impact other QAS and the associated NFRs. Therefore,
design decisions need to be evaluated by the entire team including the domain
experts as to have a successful result.

3. Invest in training on new technologies. If possible, after choosing new technologies
and tools, align the team through a short training oriented to the use of this smart
technology. It would decrease the time needed to learn new technologies and will
allow you to use the existing smart technologies that are aimed for SCMAs.

4. Adopt a SCMA framework when you are really going to use it. This topic arose some
disagreement because there were architects that adopted robust frameworks and so,
took a lot of effort to learn it, but only used a few components from the framework.
The use of SCMA frameworks, such as Fiware was strongly recommended. However,

54 THE EVALUATION OF THE INITIAL THEORY

only when the solution is fully integrated into the framework and if you use several
components it provides rather than just take advantage of a few components.

5. Separate the effort required to plan and perform testing. Testing SCMA is an ex-
hausting activity because the process is not always fully automated. Development
teams have the “culture” of shifting testing to the last moment and it entails several
problems to the application.

6. Invest time in user training. The respondents were very positive about the impact
of user training on mobile applications developed for smart cities.

7. Try Firebase Test Lab for testing the apps. Our respondents strongly recommended
the use of the test lab to provide a realistic environment for testing SCMA.

8. Identify and evaluate those architectures widely used in SCMA. Choosing the ar-
chitecture that maximizes similarities in the face of operating system differences
can greatly influence the effort required for cross-platform development and main-
tenance. Respondents mentioned abandoning cross-platform strategies due to cost
considerations.

9. Examine the architecture styles used to realize those SCMA architectures. A recur-
ring problem among the respondents was the lack of knowledge about architectural
styles, which may have prevented them from having a more robust and intelligent
design. Individual styles can be swapped in and out of a larger architecture to
achieve specific values for NFRs.

10. Native development approaches are more welcome by participants than hybrid ap-
proaches. It was stated by respondents that a hybrid approach, such as Ionic,
impacts the performance of the app. The life cycle of the hybrid-developed app is
usually lower compared to a native-developed app due to the necessity to perform
updates frequently. On the other side, approaches that natively render applications,
such as React Native7 was recommended by some of the participants.

5.5 THREATS TO VALIDITY

There are some threats to the validity of our research and some of those threats arise
from the choices about how to evaluate the research results and process. In this section,
we discuss how elements of our evaluation approach contribute to our research having
three types of validity.

- Construct Validity

To have construct validity a research must be objective and unbiased and the evaluation
method must be similarly objective and unbiased. The extensive use of evaluation cri-
teria from the published literature and interactions with the actual engineers involved

7React Native is available at http://www.reactnative.com

5.6 CHAPTER SUMMARY 55

in developing the apps being studied ensures that this work has construct validity due
to eliminating researcher bias. Interviewing developers from two additional projects who
were unaware of the results of the first interviews eliminated participant bias. Previewing
the interview questions with an experienced developer was intended to ensure that the
questions being asked were related to the study being investigated.

- Internal Validity

To have internal validity a research must ensure that the objective and unbiased proce-
dures are strictly followed. Our evaluation followed techniques published in well respected
venues for evaluating a grounded theory as to determine whether inferences, in this case
in the form of propositions, are unbiased. The development of a grounded theory applied
in this dissertation was not intended to alter the behavior of the developers interviewed
and thus the inferences arising from this research are in the form of propositions in an
initial model. The review of these propositions was carried out by experienced researchers
other than the principal investigator.

- External Validity

To have external validity a research must be applicable to areas outside the scope of
the study and the evaluation techniques must ensure this. The results of this work
were focused on mobile apps providing emergency services. The grounded theory was
developed by analyzing the architectural structures and development method with very
little reference to the emergency service domain. This work may not be applicable to just
any app but it should apply to apps used in a mobile context.

5.6 CHAPTER SUMMARY

This chapter described our theory evaluation process in order to validate whether the
constructs and propositions of the theory are clear and precise; whether the theory can be
(dis) confirmed; and whether the theory scope is clearly specified and the implications of
widening the scope. The evaluation was composed of five tasks: (1) review the literature,
(2) apply a set of theory evaluation criteria, (3) validate the model with researchers in
similar areas, (4) validate the model with practitioners involved in theory generation,
and (5) perform interviews with new practitioners. As a result, we provided a list of
propositions that were modified after the theory evaluation process in Section 5.3 and 10
recommendations for the SE team in Section 5.4. In the next chapter, we present the
main conclusions of this work, summarize the research contributions and discuss potential
future work.

Chapter

6
CONCLUSION AND FUTURE WORK

Smart city applications have become an integral part of human activity in cities with
the appropriate infrastructure and mobile devices have been key to this evolution. While
mobile computing is becoming ubiquitous, the creation of architectural designs for mo-
bile applications is still not a trivial process. Mobile applications have specific require-
ments and the development process needs to be adapted to address the increased use of
frameworks and to accommodate the criteria for being accepted into the proprietary app
store of the equipment manufacturer (IMAGINOVATION, 2017). Although there are
new studies investigating the different facets of the world of mobile applications (ZHAO;
MEDVIDOVIC, 2019), there is very little knowledge about how software engineering
(SE) teams actually proceed to design their apps in practice.

6.1 SUMMARY OF RESEARCH CONTRIBUTIONS

This work made several contributions to the SE research community, but we focused on
three: (1) empirical data from a multi-case study, (2) a set of reverse-engineered architec-
tures, and (3) a theoretical development model of developing SCMA. Each contribution
was described in detail earlier in this dissertation so each is summarized below.

6.1.1 Empirical Data from a Multi-case Study

This research was partially motivated by the knowledge gap surrounding the develop-
ment of smart city mobile applications (SCMA). Using a multi-case study approach was
intended to produce a larger knowledge base of empirical data more quickly than a sin-
gle case study approach. The management of the data collection and analysis process
was carefully documented. Researchers will be able to easily adapt the experimental
procedures freeing them to concentrate on recruiting projects to participate in research
studies.

57

58 CONCLUSION AND FUTURE WORK

6.1.2 Reverse-Engineered Architectures

This research focused on the architectures underlying the apps chosen for the study.
Project documents and interviews with staff provided an as-designed view of the archi-
tecture. As a basis for comparison, reverse engineering tools, such as COVERT and
ACME were used to produce an as-built view of the architecture. These views were
produced for six SCMA and then used to describe relationships between certain architec-
tural styles and the properties of the resulting apps. The analyses will be of use in future
research projects.

6.1.3 Theoretical Development Model

This research organized and analyzed the empirical data using a grounded theory tech-
nique. This technique produced a model of developing SCMA. The model, which con-
tains 21 constructs and 17 propositions, can be used to answer “what-if” questions about
changes to the development process. This model provides the basis for an evolving un-
derstanding of SCMA development. As new studies produce additional data, future
researchers will be able to incorporate their data into the model, revise and strengthen
the model. As future studies investigate mobile apps in domains different from emergency
management the model will become more robust.

6.2 RESEARCH PRODUCTS

This research generated several types of tangible products that support the significant
contributions to the research community. These contributions have been discussed in
detail in this dissertation and summarized in this chapter, but have also resulted in three
research products.

Empirical data - The raw data, analyzed data and all experimental procedures
have been captured on our research website.

Journal paper - A paper addressing some intermediate results of this work was
published in the journal Empirical Software Engineering (EMSE):

• Farias, Roselane Silva, de Souza, Renata Maria, McGregor, John D., and de
Almeida, Eduardo Santana. Designing smart city mobile applications: An initial
grounded theory. Empirical Software Engineering, May 2019. ISSN 1573-7616.

Replication package To promote openness within the research community and
facilitate further work, an extensive replication package was created and made publicly
available. The complementary material site is available on github1. The package includes
copies of survey forms, questions and other materials created for use in the original
research.

Impact on studied projects - An indirect and very difficult to quantify, contri-
bution is the knowledge gained by the study participants. Through the interviews and
follow-up questions, the participants have had the opportunity for introspection about

1Supplementary material site is available at https://rose2s.github.io/EMSE2019

6.3 RELATED WORK 59

their work. It is likely that the intervention of the researchers has influenced the future
behavior of the study participants.

6.3 RELATED WORK

This study is within the intersection of mobile software, software architecture, and smart
city issues. To the best of our knowledge, there is no other study that addresses all three
areas so we have divided the discussion into the following categories of research relevant
to our work: empirical studies on mobile applications, software architectures, and smart
city architectures. Next, we provide an overview of the most relevant previous work from
each of these areas and outline the differences between them and this work.

6.3.1 Mobile applications

Mobile applications are an increasingly important part of our daily life, and the research
community has been invested in this area focusing mainly on issues in mobile app de-
velopment (WASSERMAN, 2010; JOORABCHI; MESBAH; KRUCHTEN, 2013; KATZ,
2014; NANDAN; PURSCHE; ZHE, 2014; NAGAPPAN; SHIHAB, 2016; FRANCESE et
al., 2017). Many challenges found in traditional software development will also impact
mobile development (NAGAPPAN; SHIHAB, 2016). These studies of mobile applica-
tions have identified common issues faced by both areas, and those challenges specific to
mobile devices. As apps have become more complex and life critical their development
started to require consideration of factors beyond ordinary telephony features, those fea-
tures related to making or receiving a telephone call. Our work interviewing SE teams
confirmed most of the challenges described in these papers, but also revealed challenges
specific to the smart city domain.

To exemplify, Wasserman (2010) described a set of issues related to software develop-
ment for mobile devices. Among the topics addressed in his paper are potential interaction
with other applications, sensor handling, heterogeneity, security, user interface, restricted
resources, and power consumption. In his study, he found that as mobile applications
have become more complex, it is essential to apply software engineering processes to as-
sure high-quality mobile applications. He concluded that mobile developers are likely to
use recommended sets of principles, but rarely use any formal development processes.
Similarly, our work revealed a set of non-functional requirements that smart city mobile
applications (SCMA) have taken into account, and those, which have been neglected.

Katz (2014) identified eight security issues that affect mobile applications’ architec-
ture because of their constraints. The three issues pertinent to our work include:

• Not using encryption or using weak encryption - The workflow in the app will be
different depending upon the level of encryption being used. This will affect the
architecture as well as the performance of the software.

• Not implementing secure communications to servers - There are many patterns of
secure communication. The pattern selected will impact the shape of the architec-
ture.

60 CONCLUSION AND FUTURE WORK

• Patching your app too slowly - Mobile apps are exposed to a wide range of sites
that may infect the app. The architecture must be designed to allow for fast and
easy modifiability.

These issues are pertinent to our work in that they impact the architecture of the
mobile apps, each of which constitutes the client side of client-server systems where the
client is mobile. Beyond the basic client server architecture, the complexity of these
apps and the criticality of their constraints illustrate that the architectural styles used
in these apps are worthy of study. The discussion in Katz (2014) addresses architecture
issues but only within the confines of the security issues. Our work considers architecture
styles that guide architecture creation for complete systems. These styles will be investi-
gated using several quality attributes including security. More recently, FRANCESE et
al.’s work (2017) reported conclusions about mobile development, based on a qualitative
investigation, which were also observed in our study:

• app development is mostly done by junior developers. In fact, our study interviewed
10 junior developers (less than 5 years of industrial experience) as compared to 2
senior developers;

• agile methodologies and cross-platform development frameworks are adopted by
many teams. We could observe that even though they follow no development pro-
cess, they make use of agile methodologies, such as daily meetings, and adopt
frameworks for architecture specification;

• support for testing is considered inadequate. We have identified several pieces of
evidence of inadequate support, which is an identified gap and serves as a potential
trend upon which to base research;

• fragmentation of software and hardware is a concern. Indeed developers have com-
plained about the need to have different skills, and

• app development is considered different from the development of web/desktop ap-
plications. We confirmed this finding by describing the design process of SCMA,
which is challenging and very different from desktop system development.

6.3.2 Software architecture

Software architecture (SA) plays a crucial role in the software development process. Pa-
pers on this area have addressed a variety of topics such as non-functional requirements
(NFR), decision-making, architectural styles, and others. Our work addressed all these
aspects, which are essential for the design process of SCMA.

Non-functional requirements (NFR) directly affect the software architecture, espe-
cially architectural decision-making. Regarding this subject, Ameller et al. (2012) pre-
sented an empirical study about how software architects deal with NFRs in practice.
Their main conclusions include that the two most important types of NFRs for architects
relate to the QAs performance and usability, and that NFRs are not often documented.

6.3 RELATED WORK 61

These results were also observed by our empirical study on mobile applications. How-
ever, limiting our scope to SCMA and interviewing different stakeholders we could note
that the role of the stakeholder and the project’s domain may influence the perception of
importance of the NFRs. This could be observed in our study but not in theirs because
all our participants played the architect role and there was essentially a single domain so
that our analysis was very focused.

Regarding software architectural styles, Sharma, Kumar and Agarwal (2015) ad-
dressed the importance of choosing an architectural style appropriately using a survey.
They specify the advantages and disadvantages of each architectural style and clarify
that it would be helpful for developers to select an appropriate style according to their
project’s requirements. In that regard, our work investigated how SE teams build the
architecture of SCMA, and listed several requirements inherent to the domain of smart
cities and mobile applications that have impacted the design of these systems and choice
of one style over another.

Software architecture and mobility To support the rapid and cost-effective design
of smart applications on mobile devices, Medvidovic and Edwards (2010) provided a
roadmap of the intersection of the areas of software architecture and mobility. They
highlighted representative existing solutions and identified several remaining research
challenges. They concluded that existing architectural principles need to be adapted
and novel architectural paradigms devised to support mobile computing. In a way, our
work addresses this opportunity since our theory describes how architects/developers
have dealt with architecture design in practice.

Liu et al. (2011) conducted an empirical study from a developer’s perspective on
two hundred apps from the App Store to provide a focused overview of the status and
trends of iOS mobile health apps and an analysis of related technology, architecture,
and user interface design issues. As a result, one of the implications for developers
is the compatibility with external sensors. This finding remains true since our study
also observed that developers have different problems depending on the platform chosen
(Android and iOS) and cross-platform development become a known issue for mobile
software development (NAGAPPAN; SHIHAB, 2016).

Bagheri et al. (2016) described the main software architectural principles in con-
temporary mobile software by mining the reverse-engineered architectures of hundreds
of Android apps. They listed five mobile computing drivers for contemporary mobile
software and traced them back to the software architecture literature. Although this
work is not related to smart cities, it was important for us to understand how software
architecture has been applied to mobile devices. However, our work looks beyond the
communication portion of the application to the domain of application. We investigated
those architectural styles in actual use in the emerging domain of apps for mobile devices.

6.3.3 Smart city architecture

Regarding the smart city domain, this research was based on two work: a literature review
(TOMAS et al., 2013) and a survey on smart city architectures (SILVA et al., 2013). These

62 CONCLUSION AND FUTURE WORK

studies have concluded that no architecture fully satisfies all essential requirements in the
context of smart cities. However, they reported important aspects of this context.

Tomas et al. (2013) conducted a literature review on smart city architectures. Their
work found eleven relevant architectural approaches, and then identified a set of issues
that these approaches aim to solve and some architectural patterns employed. Their main
findings were regarding the main challenges and issues of smart city architectures as well
as the most used architectural patterns in this context. Although their results were very
complete and verified for several smart city software, they were not concerned about the
architectural style, which was covered by our work.

Later, Silva et al. (2013) conducted a survey discussing the same topic. They high-
lighted a set of essential NFRs for smart city applications, and we used their list of
architecture requirements as a guide to conduct our interviews. For each NFR, we asked
the SE teams how it was specified, designed, implemented and tested.

Santana et al. (2017) provided an updated review of the literature and a reference
architecture for a software platform for mobile apps. The architecture for this platform
is not specifically about mobile applications but includes the means to integrate mobile
applications into a network of stationary devices. Our work built on this information to
go more deeply into the mobile aspects of these systems by examining the concrete appli-
cation architectures used rather than the more abstract reference architecture reported
in their work.

6.4 FUTURE WORK

Due to the relatively brief time allocated for a master’s degree, this work should be viewed
as an initial step in assembling the evidence that supports the SCMA design process. The
research reported here is the foundation for additional investigation into the design of
SCMA. There are several possible avenues for future research. The opportunities for
future research include:

• Study Replications - Aiming to enhance the possibility of generalization, more
case studies should be conducted in similar conditions. The next step is to perform
studies in an industry environment with larger and more diverse mobile applications.
This will give us the possibility of more variation in the data to analyze and the
ability to make a cross-case analysis by performing comparisons among applications,
and thus supporting a more robust theoretical model.

• Deeper Architectural Analysis - We intend to investigate in more depth whether
a specific architectural style impacts the architecture construction, comparing it
with the set of smart city non-functional requirements, by reverse-engineering the
software architecture of a large number of mobile applications and subjecting those
results to rigorous analysis.

• More refined theory evaluation - We intend to expand our theory evaluation
not only by refining the existing propositions, as we did in this work but also by
adding new propositions to enhance the theoretical model.

6.5 CONCLUDING REMARKS 63

• A reference architecture for SCMA - We intend to expand this work by pro-
viding a reference architecture specific for SCMA including architectural styles most
used to structure SCMA and architecture tactics used to design SCMA.

6.5 CONCLUDING REMARKS

We conducted a multi-case study with four SE teams who developed a total of nine mobile
applications for smart cities. Using a variety of techniques we collected empirical data
from the artifacts and personnel of these projects. The data were analyzed using grounded
theory techniques and the resulting information was used to derive a theory, grounded
in the evidence we collected, describing the characteristics in the software development
process and factors that influence how SE teams create the architectural design of SCMA.
In addition to the collection of first-hand data from developers, an initial version of the
theory and derived model was used to collect input from researchers in similar areas.
This additional data was used to modify and extend the theory.

This contribution to the body of knowledge concerning designing SCMA is an initial
step in developing an architecture design technique for SCMA. To exemplify, our theoret-
ical model predicts that developers will rely on a set of smart city frameworks to reduce
the complexity of designing mobile applications in this domain and confirms previous
studies about the impact of development approaches in mobile apps. The model does
not yet detail what those frameworks should be nor how they should interact to avoid
increasing the complexity of the applications. The empirical grounded theory approach
used in this work should provide an excellent basis for attacking the next level of issues
constraining the evolution of the model.

BIBLIOGRAPHY

ADOLPH, S.; HALL, W.; KRUCHTEN, P. Using grounded theory to study the experi-
ence of software development. Empirical Software Engineering, v. 16, n. 4, p. 487–513,
Aug 2011. ISSN 1573-7616.

AIRAKSINEN, M. et al. Smart city performance measurement framework citykeys. In:
2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC),
2017. p. 718–723.

AMELLER, D. et al. How do software architects consider non-functional requirements:
An exploratory study. In: 2012 20th IEEE International Requirements Engineering Con-
ference (RE), 2012. p. 41–50. ISSN 1090-705X.

AMORIM, A. M. et al. Quality attributes analysis in a crowdsourcing-based emergency
management system. In: ICEIS - Proceedings of the 19th International Conference on
Enterprise Information Systems, Volume 2, Porto, Portugal, 2017. p. 501–509.

BAGHERI, H. et al. Software architectural principles in contemporary mobile software:
from conception to practice. Journal of Systems and Software, Elsevier, v. 119, p. 31–44,
2016.

BIØRN-HANSEN, A. et al. An empirical study of cross-platform mobile development in
industry. Wireless Communications and Mobile Computing, 2019.

BOSCH, J. Design and Use of Software Architectures: Adopting and Evolving a Product-
line Approach. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000.
ISBN 0-201-67494-7.

BRERETON, P. et al. Using a protocol template for case study planning. In: Proceed-
ings of the 12th International Conference on Evaluation and Assessment in Software
Engineering. Swindon, UK: BCS Learning & Development Ltd., 2008. (EASE’08), p.
41–48.

CHARMAZ, K. Constructing Grounded Theory: A Practical Guide Through Qualitative
Analysis : SAGE Publications, 2006. ISBN 9780761973539.

COCCHIA, A. Smart and Digital City: A Systematic Literature Review : Springer Inter-
national Publishing, 2014. 13-43 p. ISBN 978-3-319-06160-3.

CORBIN, J. M.; STRAUSS, A. Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative sociology, Springer, v. 13, n. 1, p. 3–21, 1990.

65

66 BIBLIOGRAPHY

CORBIN, J. M.; STRAUSS, A. Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory.: SAGE Publications., 2008.

DAMERI, R. Searching for smart city definition: a comprehensive proposal. INTERNA-
TIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, v. 11, n. 5, p. 2544–2551,
Oct. 2013.

DINIZ, H. B. M. et al. A reference architecture for mobile crowdsensing platforms. In:
Proceedings of the 18th International Conference on Enterprise Information Systems :
SCITEPRESS - Science and Technology Publications, Lda, 2016. (ICEIS 2016), p. 600–
607. ISBN 978-989-758-187-8.

ESPOSTE, A. de M. D. et al. Design and evaluation of a scalable smart city software
platform with large-scale simulations. Future Generation Computer Systems, v. 93, p. 427
– 441, 2019. ISSN 0167-739X.

FERREIRA, J. E. et al. Smart services: A case study on smarter public safety by a mobile
app for university of são paulo. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence
Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud
Big Data Computing, Internet of People and Smart City Innovation, 2017. p. 1–5.

FIWARE Foundation. Fiware - Developers. 2018. Available from Internet: 〈https://www.
fiware.org/developers/〉.

FRANCESE, R. et al. Mobile app development and management: Results from a qualita-
tive investigation. In: Proceedings of the 4th International Conference on Mobile Software
Engineering and Systems. Piscataway, NJ, USA: IEEE Press, 2017. (MOBILESoft ’17),
p. 133–143. ISBN 978-1-5386-2669-6.

FRAUNHOFER. Fraunhofer Project Center for Software Systems and Engineering. 2014.
Available from Internet: 〈http://www.fpc.ufba.br/index.php/en/about-us〉.

GARLAN, D. Software architecture: A roadmap. In: Proceedings of the Conference on
The Future of Software Engineering. New York, NY, USA: ACM, 2000. (ICSE ’00), p.
91–101. ISBN 1-58113-253-0.

GLASER, B. Doing Grounded Theory: Issues and Discussions. Sociology Press, 1998.
ISBN 9781884156113. Available from Internet: 〈https://books.google.com.br/books?id=
XStmQgAACAAJ〉.

GLASER, B.; STRAUSS, A. The Discovery of Grounded Theory: Strategies for Qualita-
tive Research: Aldine, 1967. (Observations (Chicago, Ill.)). ISBN 9780202302607.

GOOGLE. Application Fundamentals - Android Developer Documentation. 2018. Avail-
able from Internet: 〈https://developer.android.com/guide/components/fundamentals〉.

GOOGLE. AsyncTask - Android Developer Documentation. 2018. Available from Inter-
net: 〈https://developer.android.com/reference/android/os/AsyncTask〉.

BIBLIOGRAPHY 67

HODA, R.; NOBLE, J.; MARSHALL, S. Developing a grounded theory to explain the
practices of self-organizing agile teams. Empirical Software Engineering, v. 17, n. 6, p.
609–639, Dec 2012. ISSN 1573-7616.

HODA, R.; NOBLE, J.; MARSHALL, S. Self-organizing roles on agile software develop-
ment teams. IEEE Transactions on Software Engineering, v. 39, n. 3, p. 422–444, March
2013. ISSN 0098-5589.

IMAGINOVATION. 16 Reasons the App Store Rejects Mobile Apps & How to
Avoid Them. 2017. Available from Internet: 〈https://medium.com/@Imaginovation/
16-reasons-the-app-store-rejects-mobile-apps-how-to-avoid-them-63f73fa33a3a〉.

IVAN, I. et al. The modern development cycle of citizen oriented applications. Studies in
Informatics and Control, v. 18, p. 263–270, 09 2009.

JANSEN, A. G. J. Architectural design decisions. Thesis (Doctoral) — University of
Groningen, 2008.

JANSSEN, D.; JANSSEN, C. Techopedia - The IT Education Site. n.d. Available from
Internet: 〈https://www.techopedia.com/definition/27913/technical-debt〉.

JOORABCHI, M. E.; MESBAH, A.; KRUCHTEN, P. Real challenges in mobile app
development. In: 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, 2013. p. 15–24. ISSN 1949-3770.

KATZ, K. Eight security issues to prepare for in mobile app develop-
ment. 2014. Available from Internet: 〈https://www.kony.com/resources/blog/
eight-security-issues-prepare-mobile-app-development〉.

KHATOUN, R.; ZEADALLY, S. Smart cities: Concepts, architectures, research oppor-
tunities. Commun. ACM, ACM, New York, NY, USA, v. 59, n. 8, p. 46–57, jul. 2016.
ISSN 0001-0782.

KITCHIN, R. Making sense of smart cities: addressing present shortcomings. Cambridge
Journal of Regions, Economy and Society, v. 8, n. 1, p. 131–136, 2015.

LIU, C. et al. Status and trends of mobile-health applications for ios devices: A de-
veloper’s perspective. Journal of Systems and Software, v. 84, n. 11, p. 2022 – 2033,
2011. ISSN 0164-1212. Mobile Applications: Status and Trends. Available from Internet:
〈http://www.sciencedirect.com/science/article/pii/S0164121211001610〉.

MEDVIDOVIC, N.; EDWARDS, G. Software architecture and mobility: A roadmap.
Journal of Systems and Software, v. 83, n. 6, p. 885 – 898, 2010. ISSN 0164-1212.
Software Architecture and Mobility. Available from Internet: 〈http://www.sciencedirect.
com/science/article/pii/S0164121209002854〉.

68 BIBLIOGRAPHY

MEHDI, M. et al. Referenceable mobile crowdsensing architecture: A healthcare use
case. Procedia Computer Science, v. 134, p. 445–451, 2018. ISSN 1877-0509. The 15th
International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2018) /
The 13th International Conference on Future Networks and Communications (FNC-2018)
/ Affiliated Workshops.

MOJICA, I. J. et al. A large-scale empirical study on software reuse in mobile apps. IEEE
Software, v. 31, n. 2, p. 78–86, Mar 2014. ISSN 0740-7459.

MORSE, J. M. Procedures and practice of mixed method design: Maintaining control,
rigor, and complexity. The Sage Handbook of Mixed Methods Research in Social & Be-
havioral Research, p. 189–208, 2003.

NAGAPPAN, M.; SHIHAB, E. Future trends in software engineering research for mobile
apps. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2016. v. 5, p. 21–32.

NANDAN, N.; PURSCHE, A.; ZHE, X. Challenges in crowdsourcing real-time informa-
tion for public transportation. In: 2014 IEEE 15th International Conference on Mobile
Data Management, 2014. v. 2, p. 67–72. ISSN 1551-6245.

NATIONS, D. o. E. U.; AFFAIRS, S. World Population Prospects 2019: Highlights, 2019.
46 p. Available from Internet: 〈https://esa.un.org〉.

NEWCOMBE, T. The Rise of the Sensor-Based Smart City. 2014. Available from Inter-
net: 〈http://www.govtech.com/data/The-Rise-of-the-Sensor-Based-City.html〉.

OPENSIGNAL. Global State of Mobile Networks. 2016. Available from Internet: 〈https:
//www.opensignal.com/reports/2016/08/global-state-of-the-mobile-network〉.

ROMAN, G.-C.; PICCO, G. P.; MURPHY, A. L. Software engineering for mobility: A
roadmap. In: Proceedings of the Conference on The Future of Software Engineering. New
York, NY, USA: ACM, 2000. (ICSE ’00), p. 241–258. ISBN 1-58113-253-0.

RUNESON, P.; HÖST, M. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, v. 14, n. 2, Dec 2008. ISSN
1573-7616.

SAIFI, R. The 2017 Mobile App Market: Statistics, Trends, and Analysis.
2017. Available from Internet: 〈https://www.business2community.com/mobile-apps/
2017-mobile-app-market-statistics-trends-analysis-01750346\\#7Fi1f2awFZ0xIFTh〉.

SANTANA, E. F. Z. et al. Software platforms for smart cities: Concepts, requirements,
challenges, and a unified reference architecture. ACM Comput. Surv., ACM, New York,
NY, USA, v. 50, n. 6, p. 78:1–78:37, nov. 2017. ISSN 0360-0300.

SEAMAN, C. B. Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering, v. 25, n. 4, p. 557–572, Jul 1999. ISSN 0098-5589.

BIBLIOGRAPHY 69

SHARMA, A.; KUMAR, M.; AGARWAL, S. A complete survey on software architectural
styles and patterns. Procedia Computer Science, v. 70, p. 16 – 28, 2015. ISSN 1877-
0509. Proceedings of the 4th International Conference on Eco-friendly Computing and
Communication Systems.

SILVA, W. M. da et al. Smart cities software architectures: a survey. In: ACM. Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing, 2013. p. 1722–1727.

SJØBERG, D. I. K. et al. Building theories in software engineering. In: SHULL, F.;
SINGER, J.; SJØBERG, D. I. K. (Ed.). Guide to Advanced Empirical Software Engi-
neering. London: Springer London, 2008. cap. 12, p. 312–336. ISBN 978-1-84800-044-5.

SOUSA, L. et al. Identifying design problems in the source code: A grounded theory. In:
Proceedings of the 40th International Conference on Software Engineering. New York,
NY, USA: ACM, 2018. (ICSE ’18), p. 921–931. ISBN 978-1-4503-5638-1.

STATISTA. Number of available applications in the Google Play
Store from December 2009 to June 2018. Android, Google, 2018.
Available from Internet: 〈https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/〉.

STATISTA. Number of mobile app downloads worldwide in 2017, 2018 and 2022 (in
billions). 2018. Available from Internet: 〈https://www.statista.com/statistics/271644/
worldwide-free-and-paid-mobile-app-store-downloads/〉.

STOL, K.-J.; RALPH, P.; FITZGERALD, B. Grounded theory in software engineer-
ing research: A critical review and guidelines. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), 2016. p. 120–131.

SYER, M. D. et al. Exploring the development of micro-apps: A case study on the
blackberry and android platforms. In: 2011 IEEE 11th International Working Conference
on Source Code Analysis and Manipulation, 2011. p. 55–64.

TAYLOR, K.; SILVER, L. Smartphone ownership is growing rapidly around the world,
but not always equally. Pew Research Center, 2019.

TAYLOR, R. N.; MEDVIDOVIC, N.; DASHOFY, E. M. Software architecture: founda-
tions, theory, and practice: Wiley, 1 edition, 2009.

TOMAS, G. H. et al. Smart cities architectures - a systematic review. In: HAMMOUDI,
S. et al. (Ed.). ICEIS (2): SciTePress, 2013. p. 410–417.

WASSERMAN, A. I. Software engineering issues for mobile application development. In:
ACM. Proceedings of the FSE/SDP workshop on Future of software engineering research,
2010. p. 397–400.

WENGE, R. et al. Smart city architecture: A technology guide for implementation and
design challenges. China Communications, IEEE, v. 11, n. 3, p. 56–69, 2014.

70 BIBLIOGRAPHY

YIN, R. K. Case study research: Design and methods : Sage publications, 2013.

ZHANG, W. et al. An empirical study on big video data processing: Architectural styles,
issues, and challenges. In: 2016 International Conference on Identification, Information
and Knowledge in the Internet of Things (IIKI), 2016. p. 110–115.

ZHAO, Y.; MEDVIDOVIC, N. A microservice architecture for online mobile app opti-
mization. In: Proceedings of the 6th International Conference on Mobile Software En-
gineering and Systems. Piscataway, NJ, USA: IEEE Press, 2019. (MOBILESoft ’19), p.
45–49.

Appendix

A
CASE STUDY ARTIFACTS

In the stage phase 1 of this study, we conducted a multi case study using background
questionnaires, archival records of the applications and 19 interviews with stakeholders
of SE teams. This appendix presents the following artifacts: background questionnaire;
interview planning; confidentiality agreement and interview consent term; and interview
protocol.

A.1 BACKGROUND QUESTIONNAIRE

71

Background Questionnaire
This form aims to gather information about the participants. No information
will be disclosed.

* Required

1. Email address *

2. Full name *

3. Skype: *

4. Educational Background *
Check all that apply.

 Bachelor’s degree

 Master’s degree

 Doctorate degree

 Professional degree

 Other:

5. In which role(s) have you worked before starting on this project? *
Check all that apply.

 Requirements Analyst

 Project Manager

 Software Engineer/Developer

 Tester

 Software Architect

 Other:

6. How much experience do you have in the role(s) selected above?
*
Check all that apply.

 < 1 year

 between 1 and 3 years

 between 3 and 5 years

 > 5 years

7. With which applications are you
involved?

8. What is your role in this application? *
Check all that apply.

 Software Engineer/Developer

 Tester

 Project Manager

 Requirements Analyst

 Software Architect

 Other:

9. How long have you been working on this project? *
Mark only one oval.

 < 1 year

 < 2 years

 < 3 years

 More than 3 years

 Other:

10. Have you ever worked with mobile applications? *
Mark only one oval.

 Yes

 No

Powered by

11. Have you ever worked with applications in the smart city domain?
*
Mark only one oval.

 Yes

 No

12. Is there any additional information that you would like to share
with us?

A.2 INTERVIEW PLANNING 75

A.2 INTERVIEW PLANNING

Figure A.1 Interview Planning.

A.3 CONFIDENTIALITY AGREEMENT AND INTERVIEW CONSENT TERM

Since all the interviews were performed in Portuguese, the confidentiality agreement and
the consent term were written in Portuguese. They basically describes the purpose of the
interview and it is a guarantee for the companies the researchers will keep confidential
any information about the project and every archival data their have access during the
study.

Termo de Confidencialidade

Estudo de Caso sobre o design de aplicações móveis no contexto de cidade inteligentes

Este termo se refere ao estudo de caso sobre o design de aplicações móveis no contexto de
cidade inteligentes conduzido no projeto ​_____________________ ​conduzido através do
programa de pós graduação em Ciência da Computação (PGCOMP) da Universidade Federal
da Bahia (UFBA) sob orientação do Prof. PhD. Eduardo Santana de Almeida.

Declaramos estar ciente de que os documentos obtidos por meio deste estudo serão
mantidos sob confidencialidade, ​não divulgando nenhuma informação sensível do
projeto. ​Da mesma forma, nos comprometemos a manter sigilo das técnicas e documentos
apresentados e que fazem parte do estudo. ​Em caso de eventuais publicações,
divulgaremos apenas informações com alto nível de abstração, e não serão divulgadas
diagramas ou imagens inseridas nos documentos do projeto.

Pesquisadora Responsável:

Roselane Santana Silva

PROFESSOR RESPONSÁVEL
Prof. PhD. Eduardo Santana de Almeida
Programa de Pós-Graduação em Ciência da Computação/UFBA

Salvador, Ba, Brasil

Termo de Consentimento
Estudo de Caso sobre o design de aplicações móveis no contexto de cidade inteligentes

OBJETIVO DO ESTUDO
Este estudo visa realizar uma investigação sobre os princípios arquiteturais em aplicações móveis
no contexto de cidades inteligentes.

DECLARAÇÃO
Eu declaro concordar em participar do estudo de caso conduzido por Roselane Santana Silva do
Programa de Pós-Graduação em Ciência da Computação (PGCOMP) da Universidade Federal da
Bahia (UFBA), sob orientação do Professor PhD. Eduardo Santana de Almeida.

PROCEDIMENTO
Para participar deste estudo colaborarei em: (1) fornecer informações sobre minha experiência no
projeto; (2) responder as questões feitas na entrevista pelas pesquisadoras com base nas práticas
atuais; (3) permitir a verificação dos artefatos de software gerados pela equipe de desenvolvimento
de software; e (4) responder um questionário final com as minhas impressões.

CONFIDENCIALIDADE
Eu estou ciente de que meu nome não será divulgado em hipótese alguma e não será utilizado em
nenhum momento durante a apresentação dos resultados. Também estou ciente de que os dados
obtidos por meio deste estudo serão mantidos sob confidencialidade. Da mesma forma, me
comprometo a não comunicar os meus resultados enquanto o estudo não for concluído, bem como
manter sigilo das técnicas e documentos apresentados e que fazem parte do estudo.

BENEFÍCIOS E LIBERDADE DE DESISTÊNCIA
Eu entendo que, os benefícios que receberei deste estudo são limitados ao aprendizado do material
que é distribuído e ensinado. Também entendo que sou livre para realizar perguntas a qualquer
momento, solicitar que qualquer informação relacionada a minha pessoa não seja incluída no
estudo ou comunicar minha desistência de participação, sem qualquer penalidade. Por fim,
declaro que participo de livre e espontânea vontade com o único intuito de contribuir para o avanço
e desenvolvimento da Engenharia de Software.

Assinatura do Entrevistado

Salvador, Bahia, Brasil

78 CASE STUDY ARTIFACTS

A.4 INTERVIEW PROTOCOL

First of all, let me thank you for being willing to participate in this interview. In this
study, we are trying to understand how the modeling/design process of mobile appli-
cations works in the context of smart cities. We are interviewing a range of software
engineering teams, in order to uncover how this process works, what tools they use, what
design decisions they make, what architectural styles and frameworks they adopt, what
challenges exist in that domain, and so on.

The interview will last between 30 to 50 minutes and it is divided into three parts:
quality attributes/non-functional requirements, aspects of mobile applications, and soft-
ware architecture. By and large, we want to have a nice conversation with you about
these topics. Do you have any question before we start?

Card 1: Quality Attributes/Non-Functional Requirements

1. What was your main role in the application?

2. Could you talk about the software development team members of the project?

3. How long did this project last?

4. Where did the idea of the app come from? Did you think about the smart city
context initially?

5. How were the requirements defined? Was there any documentation?

6. Did you analyze the main challenges of the project from a development perspective?
If so, how did you mitigate them?

7. Could you cite any problem encountered and how did you solve it?

8. Show a list of quality attributes (performance, availability, security), and ask the
following questions for each one:

(a) Why <performance> was/was not crucial?;

(b) How did you deal with <performance> issues?;

(c) How was it specified? How was it modeled in the architecture? How was it im-
plemented? What aspects of testing were applied to ensure <performance>?

Card 2: Software Architecture

1. How was the system architecture designed? Was it based on other architecture/frame-
works?

2. Have you participated in any design decision in Architecture? If so, do you remem-
ber any design decision your team made? why?

A.4 INTERVIEW PROTOCOL 79

3. How were the quality attributes mapped in the architecture? How were they mod-
eled? [Give some examples]

4. Has any architectural pattern been adopted? [Give some examples]

5. Has any architectural style been adopted? [Give some examples]

Card 3: Mobile Development

1. What were the main challenges faced in the development of the mobile application?

2. What development approach (native, hybrid) was used to develop the application?
Why?

3. Have you used any framework during design/development phase? Which ones?

4. What smartphone features (GPS, camera, audio) does the application use and how?
How did it impact the architecture?

5. Have you thought about maximizing battery life and managing these resources?
How?

6. Has any test method for mobile applications been used?

Any other final thoughts? Thank you for your time.

Appendix

B
REVERSE-ENGINEERING ARTIFACTS

In the stage 2 of this study, we reverse-engineered the software architecture of six apps
that were either available in Google Play Store or we had access to its APK file. This ap-
pendix presents the following: a tutorial of the reversed-engineered architecture, feedback
questionnaire, and images of the recovered architectures.

B.1 TUTORIAL OF THE REVERSED-ENGINEERED ARCHITECTURE

We provide a tutorial of our Reverse-Engineering study so that other researchers can
replicate this study.

1. APK Downloader

(a) Get the example.apk file using the app name or Google Play URL at APK-
Downloader website

2. COVERT

(a) Use COVERT tool to generate the intermediate code (example.xml):

i. Download COVERT tool1

ii. Add your example.apk into Covert/<appFolder>

iii. Run the command:

./covert.sh <appFolder>

iv. Output: example.xml (located in Covert/appFolder/analysis/model/ex-
ample.xml)

3. ACME-Generator

(a) Add your example.xml from step 1 into ACME-Generator folder2

1Available at https://www.ics.uci.edu/∼seal/projects/covert/index.html
2Available at https://github.com/arsadeghi/ACME-Generator

81

82 REVERSE-ENGINEERING ARTIFACTS

(b) Add your example.apk into ACME-Generator folder

(c) Run the command:

sh run.py ./apps/example.apk ./resources

(d) Output: example.acme

4. ACME STUDIO

(a) Download ACME STUDIO3

(b) Open your example.acme in ACME STUDIO

i. Create a new project

ii. Add your file example.acme into ACME workspace

iii. Refresh and open the project in acme to see the architecture of your app.

For more details please check Covert Tool User Manual4, which was developed by the
Software Engineering and Analysis Lab (SEAL) of University of California, Irvine.

B.2 FEEDBACK QUESTIONNAIRE

Some developers allowed us to interview them again to get their feedback was used to
validate the recovered architectures from the architecture reverse engineering of their
apps, but most of them were preferred the questionnaire online, which we describe next.

• Architecture Reverse Engineering

– Do you recognize these components?

– Which of these components have you implemented?

– Which of these components belong to the Android framework?

– Is there any component that was crucial in the implementation, but this tool
did not recover?

– Is there any component that was not recovered?

– Is it possible to identify any architectural style that was used (client server,
publish subscribe) or any technology (Fiware, Firebase, Context Broker)?

Next is the questionnaire we sent to the developer of application named “Campus
USP”.

3Available at http://www.cs.cmu.edu/∼acme/AcmeStudio/
4Available at https://www.ics.uci.edu/∼seal/projects/covert/COVERT%20User%20Manual 2.0.pdf

Arquitetura do app "Campus USP"
Realizamos um estudo empírico para recuperar a arquitetura do aplicativo
Campus USP, e gostaríamos de saber sua opinião sobre essa arquitetura
gerada

* Required

1. Você reconhece esses
componentes? Justifique. *

Arquitetura ­ Campus USP

2. Quais desses componentes foram implementados por vocês? *
Mark only one oval.

 GalaryActivity

 CamaraActivity

 PhotoActivity

 OptionsActivity

 PrefeituraActivity

 PhotoIntentActivity

 AudioActivity

 SegurancaActivity

 PrivacyPolicyActivity

 AgreementActivity

 MainActivity

 SetingsActivity

 UserActivity

 MapActivity

 InformationActivity

 MonitorActivity2

 SensorServiceImp

3. Existe algum componente que
foi fundamental na
implementação, mas a
ferramenta não identificou?
Qual? *

4. Quais desses componentes são
do próprio framework do
Android? *

Powered by

5. Olhando a arquitetura, é possível identificar o estilo arquitetural
que foi utilizado (cliente servidor, publish subscribe, etc) ou
alguma tecnologia utilizada (Fiware, Context Broker)? Justifique. *

86 REVERSE-ENGINEERING ARTIFACTS

B.3 THE RECOVERED ARCHITECTURES

Figure B.1 Architecture of Application A2 extracted from ACME

Figure B.2 Architecture of Application A3 extracted from ACME

B.3 THE RECOVERED ARCHITECTURES 87

Figure B.3 Architecture of Application A4 extracted from ACME

Figure B.4 Architecture of Application A7 extracted from ACME

88 REVERSE-ENGINEERING ARTIFACTS

Figure B.5 Architecture of Application A8 extracted from ACME

Figure B.6 Architecture of Application A9 extracted from ACME

Appendix

C
GROUNDED THEORY ARTIFACTS

For the data analysis process we analyzed the evidence from the case study using Grounded
Theory (GT) procedures to derive a theory. Next we provide the following artifacts: the
axial coding diagram, and the theory evaluation questionnaire.

C.1 AXIAL CODING DIAGRAM

Figure C.1 Axial coding diagram (the complete diagram is available online at the supplemen-
tary material site)

C.2 THEORY EVALUATION QUESTIONNAIRE

89

Questionário de validação do modelo
Para obter mais informações da primeira parte deste estudo, acesse o
nosso material suplementar: https://rose2s.github.io/EMSE2019

Este questionário visa validar o modelo teórico sobre o design de
aplicações móveis no contexto de cidades inteligentes na perspectiva dos
entrevistados.

Obs: A palavra SCMA se refere a Smart City Mobile Applications

* Required

1. Email address *

2. Nome e Instituição *

Representação do modelo teórico

3. P1. Domain experts positively impact the definition of
requirements for SCMA (Smart City Mobile App). P1. Especialistas
de domínio (ex: bombeiro, advogado, e servidores) impactam
positivamente na definição de requisitos para SCMA). *
A elicitação de requisitos dessas aplicações depende fortemente dos
especialistas de domínio da aplicação que, com base nas
necessidades dos cidadãos, atuam como parceiros explicando
aspectos importantes relacionados a esse domínio e validando.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

4. Justifique P1

5. P2. The lack of documentation creates technical debt. (P2. A falta
de documentação gera débito técnico). *
Problemas como o desenvolvimento mais lento que o normal, o
aumento da densidade de defeitos causado pelo acúmulo de débito
técnico ou problemas/dificuldades ao testar o aplicativo por não ter os
requisitos ou por a pessoa que detém o conhecimento da app ter
saído do projeto.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

6. Justifique P2

7. P3. Functional requirements for SCMA come from a smart cities
context, which is citizen­oriented. (P3. Requisitos funcionais para
SCMA surgem do próprio contexto de cidades inteligentes, que é
orientado ao cidadão). *
Esse apps são visam melhorar a vida do cidadão em áreas como
utilidade pública, turismo, segurança pública, e portanto os requisitos
são baseados nesse contexto.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

8. Justifique P3

9. P4. Most non­functional requirements are not taken into
consideration by the team when making design decisions. (P4. A
maioria dos requisitos não funcionais não são levados em
consideração pela equipe de desenvolvimento ao tomar decisões
de design). *
A equipe não se preocupa com requisitos não funcionais devido a
limitações de projeto como tempo curto, recursos, etc.. A
documentação principal é baseada em relatórios técnicos de alto nível,
os quais não especificam as decisões de design tomadas.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

10. Justifique P4

11. P5. The satisfaction of non­functional requirements depends
upon the design decisions made. (P5. A satisfação de requisitos
não funcionais depende das decisões de design tomadas). *
SCMA, assim como qualquer app do mundo real, tem requisitos não
funcionais conflitantes e o designer terá que fazer um trade­off entre
eles. Por exemplo, trade­off entre privacidade do usuário e
confiabilidade dos dados.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

12. Justifique P5

13. P6. The level of technical skills impact the design/development of
SCMA. (P6. O grau de conhecimentos técnicos afeta o
desenvolvimento de SCMA). *
A falta de domínio de tecnologias móveis e frameworks para o design
e desenvolvimento de apps de smart city ocasionam no atraso do
desenvolvimento.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

14. Justifique P6

15. P7. The lack of architecture decision­making creates technical
debt. (P7. A falta de decisão de design gera débito técnico). *
Devido curto prazos de projetos, a solução mais rápida que os times
de desenvolvimento encontram é negligenciar o design da arquitetura.
A conseqüência disso é a criação de débito técnico no projeto, um
custo implícito de retrabalho causado pela escolha de uma alternativa
mais fácil, em vez de usar uma abordagem correta que levaria mais
tempo.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

16. Justifique P7

17. P8. The architecture design of SCMA is API­centric. (P8. O design
arquitetural de SCMA é centrado em APIs). *
A preferência por um estilo arquitetural sobre outro depende de como
a arquitetura é projetada, mas em geral são centrados em chamadas
de APIs.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

18. Justifique P8

19. P9. The use of architectural styles positively impacts the design
of SCMA. (P9. O uso de estilos arquiteturais impactam
positivamente no design de SCMA). *
SCMA usam estilos arquiteturais muito comuns em aplicativos de
cidade inteligentes (cliente­servidor, publish­subscribe, message
broker), e o uso de tais estilos impactam positivamente no design
dessas aplicativos.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

20. Justifique P9

21. P10. Effective mobile resource management positively impacts
the architecture design of SCMA. (P10. O gerenciamento efetivo
dos recursos móveis impacta positivamente no design de SCMA).
*
O gerenciamento efetivo da bateria, a escolha da plataforma de
desenvolvimento (nativa, híbrida) e outros recursos impactam
diretamente nos requisitos não funcionais de performance, segurança,
portabilidade, privacidade, etc, impactando assim no design dessas
aplicações.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

22. Justifique P10

23. P11. The smart cities context brings more complexity to mobile
applications. (P11. O contexto de cidades inteligentes traz mais
complexidade para aplicativos móveis). *
Mesmo que SCMA pareça ser um domínio de aplicações simples, há
um grande número de interações entre entidades em cidades
inteligentes que adiciona complexidade as aplicações, e o back­end
desses app geralmente é muito complexo, pois tem que lidar com
sensores, analisar inputs vindas da multidão (crowdsourcing), integrar
muitos componentes internos, e chamada de APIs.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

24. Justifique P11

25. P12. The development or adoption of smart city frameworks
reduces the complexity of the development of SCMA. (P12. O
desenvolvimento ou adoção de frameworks para apps de cidades
inteligentes reduz a complexidade do desenvolvimento de SCMA).
*
A equipe de desenvolvimento optam por utilizar frameworks
complexos de smart cities como o Fiware (uma plataforma genérica
para especificação de arquitetura em cidades inteligentes) ou
desenvolver seu próprio framework de acordo com suas necessidades
visando benefícios como (1) maior facilidade para integrar
componentes e aplicativos e (2) fornecer um conjunto de APIs que
facilitam o design, e (3) estabelecer comunicação entre todos os
componentes.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

26. Justifique P12

27. P13. The level of development challenges in SCMA depends upon
the development approach adopted. (P13. O grau de desafios de
desenvolvimento em SCMA depende da abordagem de
desenvolvimento escolhida). *
Desenvolvimento multi­plataforma gera o mesmo aplicativo para várias
plataformas, mas afeta o desempenho do aplicativo. Ao mesmo
tempo, a abordagem nativa se torna muito custosa pois além de
demorar mais, é necessário ter desenvolvedores experts em mais de
uma linguagem de programação. Com isso, muitos desenvolvedores
têm usado frameworks para utilização de desenvolvimento híbrido,
mas os mesmos já relatam outros problemas devido a essa
abordagem.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

28. Justifique P13

29. P14. Smart technologies positively impact the development speed
of SCMA. (P14. Tecnologias inteligentes impactam positivamente
a velocidade do desenvolvimento de SCMA). *
O uso de APIs de mapas, beacons e triangulação são tecnologias
amplamente utilizadas em aplicações crowdsensing. Além disso,
aplicações de smart city em tempo real (exemplo, apps de
emergência), a fim de mitigar problemas relacionados a latência de
informações, aceleraram o seu desenvolvimento através do uso de
tecnologias.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

30. Justifique P14

31. P15.The lack of testing tools for mobile applications negatively
impacts the testing of SCMA. (P15. A falta de ferramentas de teste
para aplicativos móveis afeta negativamente o teste de SCMA). *
Entrevistados relataram que teste para SCMA é desgastante, leva
muito tempo e não há suporte adequado por meio de ferramentas de
teste.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

32. Justifique P15

33. P16. Training users positively impacts the product acceptance of
SCMA. (P16. O treinamento de usuários impactam positivamente
na aceitação do produto de SCMA). *
Um grande desafio em testes de SCMA são os profissionais que usam
o aplicativo para apoiar um cidadão que relatou um problema no
aplicativo. Por exemplo, um segurança que recebe uma ocorrência de
emergência através do aplicativo e usa essas informações para
solucionar o incidente.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

34. Justifique P16

35. P17. Testing SCMA involves the need to simulate real­world
scenarios. (P17. Testar SCMA envolve a necessidade de simular
cenários do mundo real.). *
A falta de ferramentas de teste para aplicativos móveis torna­se ainda
mais sério no contexto de cidades inteligentes, onde o teste também
envolve a necessidade de simular cenários do mundo real.
Mark only one oval.

 Concordo

 Nem concordo nem discordo

 Discordo

 Não tenho informação suficiente para responder esta questão

 Other:

