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Abstract
The graphical nature of prominent modelling notations, such as the standards UML and
SysML, enables them to tap into the cognitive benefits of diagrams. However, these nota-
tions hardly exploit the cognitive potential of diagrams and are only partially graphical
with invariants and operations being expressed textually. The Visual Contract Language
(VCL) aims at improving visual modelling; it tries to (a) maximise diagrammatic cogni-
tive effectiveness, (b) increase visual expressivity, and (c) level of rigour and formality. It
is an alternative to UML that does largely pictorially what is traditionally done textually.
The paper presents the results of a controlled experiment carried out four times in different
academic settings and involving 43 participants, which compares VCL against UML and
OCL and whose goal is to provide insight on benefits and limitations of visual modelling.
The paper’s hypotheses are evaluated using a crossover design with the following tasks: (i)
modelling of state space, invariants and operations, (ii) comprehension of modelled prob-
lem, (iii) detection of model defects and (iv) comprehension of a given model. Although
visual approaches have been used and advocated for decades, this is the first empirical
investigation looking into the effects of graphical expression of invariants and operations on
modelling and model usage tasks. Results suggest VCL benefits in defect detection, model
comprehension, and modelling of operations, providing some empirical evidence on the
benefits of graphical software design.
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1 Introduction

There is a crying need for modelling in software and systems engineering. Modelling no
longer needs to be advocated as good engineering practice; instead, its necessity emerges
from the practice of software and systems engineering. Modelling and design are simply the
natural response to a need for abstraction and better means for tackling complexity.

Visual modelling has always been part of software engineering (Chen 1976; Ross 1977;
Ross and Schoman 1977) with graphical design being advocated as a way forward for nearly
three decades (Harel 1988; 1992). Popular notations of software and systems engineering,
such as the standards UML and SysML (OMG 2012), are graphical, which enables them
to tap into the cognitive benefits that diagrams are known to provide (Larkin and Simon
1987); their graphical nature is seen as a major factor behind their popularity.1 However,
they fail to fully exploit the visual spectrum and are criticised for having low cognitive
effectiveness (Moody 2009; Moody and van Hillegersberg 2009).

Mainstream visual notations are criticised for their semantics problems (Wieringa 1998;
Evans et al. 1998; Stevens 2002; Henderson-Sellers and Barbier 1999; Henderson-Sellers
2005; France et al. 2006; Manfred Broy 2011; Rumpe and France 2011; Micskei andWaese-
lynck 2011). Their semantics is seen as being flimsy and ill-defined, resulting in imprecision
due to the many ways in which phrases of a language may be interpreted and misinter-
preted. Models expressed in these notations may have inconsistencies in them (Lange and
Chaudron 2006; Farias et al. 2012), are prone to ambiguities and misunderstandings, and
are often not mechanisable because they lack means of semantic inference. This, in turn,
hampers exhaustive verifiability using theorem proving or model-checking as this requires
a formally-defined semantics. Nevertheless, rigorous-minded research communities have
learnt to overcome this issue; standards UML and SysML, seen by many as a family of mod-
elling languages (Cook et al. 1999; Clark et al. 2000), are often seen as bloated language
definitions that hinder rigorous usage. However, by defining well-founded profiles — a spe-
cialisation or a subset of the standard notation, or a family member—, it is possible to tackle
the semantics problem; it is in this way that many formalisations of UML (Varró 2002;
Störrle 2003; Amálio et al. 2004; Amálio et al. 2005; 2006; Amálio 2007), OCL (Richters
and Gogolla 1998; Richters 2001) and SysML (Amálio et al. 2016) have been achieved.

The graphics of mainstream languages can be disappointing. They cannot express all
that is required diagrammatically; UML provides the textual OCL notation to express con-
straints of operations and invariants. UML’s graphical description of behaviour has been
criticised (Henderson-Sellers 2005; France et al. 2006; Manfred Broy 2011; Dobing and
Parsons 2006); collaboration and sequence diagrams are but partial behavioural descrip-
tions as they describe scenarios; state and activity diagrams provide total descriptions, but
their emphasis on explicitly defined states and state transitions may result in descriptions
that are cumbersome, especially with systems other than those traditionally classified as
reactive.

The Visual Contract Language (VCL) (Amálio and Glodt 2015; Amálio and Kelsen
2010a; Amálio et al. 2010; Amálio et al. 2011) expresses software designs formally and

1The sequel uses the terms visual, pictorial, graphical and diagrammatic interchangeably.
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graphically. It embodies a critique of the UML that aims to improve the following: (a) dia-
grammatic expressivity by describing pictorially what is described textually in the UML
realm; (b) visual effectiveness by designing VCL according to theories and guidelines for
the design of visual notations; and (c) the semantics issue by designing VCL with a formal
semantics. To achieve this, VCL comes with two novel visual notations: assertion and con-
tract diagrams, key ingredients in ensuring that VCL does visually what is done textually
with UML.

VCL’s foundational premise is that graphical software design is a good idea. The paper
investigates this premise to gauge the effectiveness of visual software design and VCL’s
novel diagram types. The empirical investigation involves a controlled experiment, carried
out four times in university settings with 43 participants, which compares VCL against the
UML and OCL standards (our baseline) to provide insight into benefits and limitations of
visual modelling. The paper examines the following: (i) modelling of state space, invariants
and operations, (ii) comprehension of modelled problem, (iii) detection of model defects and
(iv) end-user comprehension of a given model, (v) usefulness, (vi) ease of use, (vii) usability
and (viii) overall appraisal of examined notations. Results suggest benefits of VCL’s graph-
ical approach in defect detection and model comprehension, and more general benefits of
visual design.

1.1 Contributions

The paper’s contributions are as follows:

– This is the first empirical study that compares a design language that expresses
predicates graphically against the UML and its OCL satellite notation.

– This is the first empirical demonstration suggesting benefits of a diagrammatic
approach to the modelling of operations using design-by-contract (Meyer 1992).

– This is the first empirical demonstration that suggests that a diagrammatic modelling
approach benefits tasks associated with the usage of models. The paper shows how
VCLwas significantly better when compared to UML+OCL in tasks related to end-user
model comprehension and defect detection.

1.2 Outline

The remainder of this paper starts with some background (Section 2) focussed on VCL and
diagrammatic description. This is followed by the experiment’s scope (Section 3), design
(Section 4) and materials (Section 5). The paper then talks about the pursued statistical anal-
ysis (Section 6), the experiment’s participants (Section 7) and the results of the controlled
experiment (Section 8). Finally, it discusses threats to the validity of the paper’s results
(Section 9), presents related work (Section 10) and draws its conclusions (Section 11).

2 Background

The sequel provides background on the cognitive benefits of diagrams and VCL, discusses
the principles of graphical notations applied in VCL’s design, and presents VCL’s trajectory
and founding ideas explaining why VCL is a suitable representative of graphical modelling.
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2.1 Diagrams and their Cognitive Effectiveness

When solving problems, humans use both internal representations, stored in their brains,
and external representations, recorded on paper or some other medium (Larkin and Simon
1987). For cognitive scientists, the form of external representations matters to the agents’
performance in various cognitive tasks, such as problem-solving or decision-making (Larkin
and Simon 1987; Zhang 1997); form determines what information can be perceived,
what cognitive processes can be activated and what can be discovered. According to
Zhang (1997), “external representations are not simply inputs and stimuli to the internal
mind; rather, they are so intrinsic to many cognitive tasks that they guide, constrain and even
determine cognitive behaviour”.

Humans favour pictorial representations (Pinker and Freedle 1990; Larkin and Simon
1987; Golkasian 1996; Goolkasian 2000; Harel 1988; Chen 2004). Larkin and Simon’s
study (1987) show that text and diagrams containing the same information are not neces-
sarily equivalent with respect to the processing required to extract information, highlighting
that diagrams facilitate perceptual inferences — some are called free rides because they
are easily perceptible (Shimojima 1996). Subsequent studies (Golkasian 1996; Goolkasian
2000) have replicated the findings of Larkin and Simon (1987), highlighting a picture advan-
tage. However, the superiority of pictures should not be taken for granted (Larkin and Simon
1987; Petre 1995).

The practical relevance of diagrams is endorsed by their ubiquity in engineering (Fer-
guson 1977; 1992). Visual thinking is seen as intrinsic to engineering; thinking, designing
and communicating with pictures are recognised as essential engineering activities. Like in
traditional engineering, diagrams became an integral part of software engineering (Moody
2009). Diagrams in all forms and shapes, from formal representations to informal and
ephemeral sketches, constitute a prominent means of software engineering expression.
Unlike traditional engineering, however, software diagrams are not tied to the physical shape
of any designed artefact, which entailed greater freedom regarding diagrammatic shapes
and forms (Blackwell et al. 2001).

Unsurprisingly, software engineering visual languages have been advocated for decades
as means to facilitate human communication and problem solving (Harel 1988). Visual lan-
guages, such as Harel’s statecharts (1987), UML and SysML, are widely taught. The UML
development is seen as a pivotal in software engineering, providing a common unifying
language that the field had never had before. Although diagrams favour perceptual infer-
ences, this does not entail cognitive effectiveness (Larkin and Simon 1987; Petre 1995) as
diagrams need to be designed to exploit the benefits of visual representations (Larkin and
Simon 1987; Moody 2009). This is where mainstream visual languages lag behind; the
UML, for instance, is criticised for breaching many rules of visual language design (Moody
2009; Moody and van Hillegersberg 2009).

2.2 A Primer on VCL

VCL follows the approach to modelling of UML and many of UML’s predecessors (Rum-
baugh et al. 1991; Booch 1994; Wieringa 1998) based on an object oriented (OO) style of
description, which sees a software system as a collection of data with associated behaviour
inter-operatable from the environment. Another VCL pillar is discrete mathematics and set
theory, the foundation of languages such as Z (Spivey 1992; Woodcock and Davies 1996;
ISO 2002) and B (Abrial 1996).
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VCL is introduced here with an example of a secure bank whose complete VCL model is
given in Amálio (2011). A banking system manages customers, accounts and transactions,
and needs to be made secure. Figures 1 and 2 present a few model excerpts that illustrate
VCL.

VCL organises models around inter-dependent packages using ideas from aspect orien-
tation (Amálio et al. 2010). Figures 1 and 2 present diagrams of two different packages.
Package diagrams (PDs) define packages (represented as clouds) and their dependencies to
other packages. PD of Fig. 1a says that package Bank imports sets from CommonTypes.
Package CommonTypes provides definitions common across the model; Bank focuses
on those concerns specific to banking; other packages in Amálio (2011) address security
concerns and the modular weaving of security and banking.

Structural diagrams (SDs), VCL’s UML class diagram equivalent, express domains of
discourse in state space (data or conceptual) models by representing entities of interest as
sets (round contours). SD of Bank (Fig. 1b) has class sets for banking entities, namely, cus-
tomers, accounts and transactions, and uses value sets from SD of CommonTypes (Fig. 1c
— e.g. CT::Name. Objects and values are depicted as rectangles. Sets for dates and times
of Fig. 1c use VCL’s predicate language to define the novel derived sets. Set Month, for
instance, is defined as the natural numbers (set Nat) from 1 to 12 in a graphical depiction
of a set comprehension — Month = {n : Nat | n ≥ 1 ∧ n ≤ 12}. The arrows emanating
from Nat (predicate edges) refer to the source and are combined through conjunction.

State spaces are subject to constraints (or invariants) that must be respected in all states of
the system. Unlike UML, VCL identifies invariants in the data model— a SD defines a state
space made up of state structures and their constraints— as assertions (named elongated hexa-
gons) defined in assertion diagrams (ADs). In Fig. 1b, assertions HasCurrentBefSavings,
SavingsArePositive and CorporateHaveNoSavings, defined in ADs of
Fig. 1b, e and f, embody relevant invariants: customers must hold a current account prior to
opening a savings account (HasCurrentBefSavings), savings accounts must be pos-
itive (SavingsArePositive) and corporate customers must not hold savings accounts
(CorporateHaveNoSavings).

Whilst SDs focus on static aspects, behaviour diagrams (BDs) concentrate on dynamics (or
behaviour). BDs provide a map over the constituent units of a package’s behaviour defined
in separate diagrams. BDs units of Bank (Fig. 2a) include the operations available to the
environment, namely, create customer, open account, deposit, withdraw, delete account,
view an account’s balance, get accounts in debt, and get accounts of a customer.

In BDs, operations that modify state are represented as contracts (double-lined elon-
gated hexagons); those that observe (or enquire) state as assertions (single-lined hexagons).
Global operations (visible to the environment) stand alone; local operations (invisible to
the environment) are placed inside the contours of their class sets. Local modifier opera-
tions can either create new class objects (constructors, symbol N), update existing objects
(symbol U) or delete class objects (symbol D). For instance, the global OpenAccount
does all that is involved in opening actual bank accounts and the New operation inside
Account, a sort of sub-operation, creates new account objects only. Modifier operations
are defined in contract diagrams (CDs); operations CreateCustomer, Customer.New,
AccWithdraw and Account.Withdraw of Fig. 2a are defined in CDs of Fig. 2b, c,
d and e, respectively. Observe operations are defined in ADs; ADs of Fig. 2h and g define
the local Account.GetBalance and the global AccGetBalance of Fig. 2a; AD of
Fig. 2f defines GetAccountGivenAccNo imported in Fig. 2e and g.

ADs and CDs comprise a box with an identifier, followed by compartments for dec-
larations (top) and predicate (bottom) which may be further split in two. ADs have one
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Fig. 1 Diagrams of the state space VCL model of secure simple bank (from Amálio (2011))
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Fig. 2 Diagrams of dynamic VCL model of package Bank in secure simple bank (from Amálio (2011))

predicate compartment as only one set of states is being referred to; CDs have two
predicate compartments corresponding to the states of pre- and post-condition (to the left
and right, respectively). Declaration compartments include relevant variables (either internal
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or of inputs and outputs), and imported assertions and contracts. Predicate compartments are
made-up of graphical formulas read from top to bottom and combined using conjunction.
Two kinds of formulas are supported: logic- and set-based. Logic formulas, read from left
to right, resemble their textual counter-parts. Set formulas start from some inner graphical
expression and grow outwards.

AD SavingsArePositive (Fig. 1e) expresses a local invariant of Account. It has
no declarations; the predicate contains a pictorial propositional logic formula made-up of
individual atomic statements involving predicate edges that are with an implication to say
that if the account’s type is savings then its balance must not be negative — aType =
savings =⇒ balance ≥ 0.

Predicate of AD CorporateHaveNoSavings (Fig. 1f) expresses a set formula. Rela-
tion Holds defined in SD of Fig. 1b, which denotes a set of pairs, is restricted to those pairs
with corporate customers and savings accounts (a sort of filtering); the restricted relation is
then required to be empty — hence, corporate customers must not hold savings accounts. In
Fig. 1f the restrictions are performed using domain restriction (symbol�) and range restric-
tion (�) using edge modifiers (represented as double arrows and denoting functions) and
the outer shading indicates that the restricted set or relation must be empty. The resulting
formula is: {o : Customer|o.cT ype = corporate} � Holds � {o : Account |o.aType =
savings} = ∅.

AD HasCurrentBefSavings (Fig. 1d) says that the set of customers with current
accounts is a subset of customers with savings accounts — hence, a customer must hold a
current account prior to holding a savings account. This involves two internal set variables
(included in the declarations compartment) to represent customers with current accounts
(custsCurr) and customers with savings accounts (custsSav), which are defined in the
predicate in a similar way: relation Holds is range-restricted using edge modifiers (symbol
�) to accounts that are either current or savings, and the actual sets are obtained from these
restricted relations using the domain relational operator (symbol ←); finally, the bottom-
most formula says, using enclosure (or insideness), that custsSav must be a subset of
custsCurr. This results in the following formulas:

custsCurr = dom(Holds � {o : Account |o.aType = current})
custsSav = dom(Holds � {o : Account |o.aType = savings})
custsSav ⊆ custsCurr

AD GetAccountGivenAccNo (Fig. 2f) fetches the Account object correspond-
ing to aNo? into output a! — a! ∈ {o : Account |o.accNo = aNo?}. AD
Account.GetBalance (Fig. 2h), which stores the account’s balance in the output
bal!, is imported in global AccGetBalance (Fig. 2g), which fetches the account object
corresponding to the aNo? input (via imported GetAccountGivenAccNo) and calls
Account.GetBalance on this object.

CD Customer.New (Fig. 2c), a constructor, says how a new Customer object
(c!) should be initialised in the post-condition; using predicate edges, the after-state (rep-
resented in bold) of custNo is set non-deterministically, and those of name, addr
and cType are set to the corresponding inputs. CD Account.Withdraw (Fig. 2e)
declares an amount natural number input and says in the post-condition that the new
account’s balance (bold line around rectangle) is the old balance minus the requested
amount. These two local operations are brought into the global context (of a system
or package) through CreateCustomer (CD in Fig. 2b) and AccWithdraw (CD in

Empirical Software Engineering (2020) 25:1205–12581212



Fig. 2d). CD of CreateCustomer declares inputs required from the environment and
imports Customer.New; CD of AccWithdraw declares aNo? input for account from
which money is to be withdrawn, and imported assertion GetAccountGivenAccNo of
(Fig. 2f).

VCL’s ADs and CDs, illustrated in the VCL model excerpts of Figs. 1 and 2, are major
novelties of VCL, giving VCL a strongly graphical character.

2.3 VCL and its Visual Effectiveness

VCL’s design follows theories of visual notation design, namely, physics of notations
(PoN) (Moody 2009) and cognitive dimensions of notations (CDN) (Green 1989; Green
and Petre 1996; Blackwell et al. 2001). The following exemplifies how these theories are
applied in VCL using Figs. 1 and 2:

– VCL tries to be well-matched to meaning, following CDN’s closeness of mapping and
PoN’s semantic transparency, by conveying the underlying mathematics. For exam-
ple: VCL’s round contour set construct (eg. Customer, Account, CustId and
CustType in Fig. 1b, and Holds, Account and Customer in Fig. 1f) taps to simi-
lar shapes of mathematics (Venn or Euler circles); the shading of Venn diagrams is used
in Fig. 1f to indicate that the set must be empty; the single and double lines of asser-
tions and contracts (see Fig. 2a), respectively, refer to the fact that assertions involve a
single set of states, whereas contracts involve the state-sets of pre- and post-conditions.

– VCL’s graphical primitives follow PoN’s principle of semiotic clarity. In the differ-
ent diagrams of Figs. 1 and 2, sets are consistently rendered as rounded shapes, and
values and objects (members of a set) as rectangles,2 constraints upon single states
are hexagons (independently of whether they denote invariants or observe operations).
Furthermore, VCL’s primitives have a core meaning that varies slightly with the con-
text, enabling users to infer the meaning of graphical expressions in different contexts,
following CDN’s consistency and PoN’s graphical economy. The round contours of
Fig. 1b do not mean exactly the same as the several round shapes of ADs and CDs of
Figs. 1 and 2, but they all have set-like meanings.

– PoN’s principles of perceptual discriminability and visual expressiveness can be
observed in the panoply of shapes and colours used across the different VCL diagram
elements illustrated in Fig. 1 — packages are green clouds, sets are rounded blue con-
tours, assertions are red hexagons and contracts are brown hexagons, objects are yellow
rectangles, shading distinguishes empty from non-empty sets, and size and brightness
differentiate types of sets and edges.

– PoN’s cognitive integration (integration of different pieces of information), and CDN’s
role-expressiveness (how pieces contribute to the whole) is intrinsic to VCL. In SDs, as
illustrated in Fig. 1b, the assertions of Bank’s SD, defined separately in ADs, explic-
itly say that the AD-defined invariants constrain the SD’s defined state space. BDs, on
the other hand, identify all the different pieces of behaviour defined separately in ADs
and CDs, as illustrated in Fig. 2a. Importing mechanism in ADs and CDs (illustrated
in Fig. 2b, d and g) integrate pieces defined elsewhere to make compound definitions.
Furthermore, the ‘+’ attached to package (clouds) assertions and contracts (elongated

2UML represents both classes and objects as rectangles.
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hexagons) of SDs, BDs and PDs, provide navigation clues that a separate diagram is
opened upon double-clicking. CDN’s role-expressiveness is also manifested in SDs
when line size and brightness are used to distinguish class from values sets (class con-
tours are thicker) to give relevance to classes which are the major abstractions of a
domain and act as beacons.

– PoN’s dual coding (text complements graphics to strengthen communication) and
CDN’s secondary notation is applied in SDs of Fig. 1b and c to distinguish the differ-
ent kinds of sets and to reinforce the multiplicity constraints of relations; sets include a
word to indicate set-kind, class sets are bold-lined and remaining sets have lines with
normal thickness; relation multiplicity is conveyed both visually and textually. Figure 1f
reinforces the empty set meaning through both shading and symbol ∅ .

– PoN’s complexity management (representing information without overloading the
human mind) and CDN’s abstraction gradient, are intrinsic to VCL. Statics and
dynamics are clearly separated through VCL structural and behaviour diagrams; UML
represents data and operations in class diagrams that tend to become severely cluttered
even for medium to small models. VCL’s package construct (represented as clouds,
Fig. 1a) defines large modules to keep the contents of each package manageable; ref-
erence sets (symbol ↑) enable references to sets from other packages. VCL operations
are constructed modularly; operation and assertions may be composed of other mod-
ules (operations or assertions); for example, in Fig. 2d, operation AccWithdraw
is made-up of observe operations GetAccountGivenAccNo and local contract
Account.Withdraw.

– VCL addresses CDN’s hard mental operations dimension as part of its raison d’être
as it tries to improve the usability of formal software design, with its inherently hard
underlying mathematics, through visualisation. However, this per-se does not totally
solve this problem and two principles discussed above, CDN’s abstraction gradient
and PoN’s complexity management, are key in giving VCL an abstract and modular
ethos, which helps in dealing with hard mental operations. The notion of separation,
inherent to modularity, is manifested in the different compartments of ADs and CDs
(Figs. 1 and 2), which ease the hardness of the task through order and focus as each
compartment expresses something specific that is relevant to the whole (also an appli-
cation of the cognitive integration principle). Furthermore, modellers are encouraged
to come up with abstractions and express designs that are modular as VCL provides
the means to break down potentially overwhelmingly complex problems into manage-
able and meaningful chunks. BDs, for instance, encourage abstraction and modularity
by letting the modeller focus on the different pieces that make up an overall behaviour.
Despite this, there are so many ways in which VCL could be improved to ease hard
mental operations.

2.4 VCL’s Trajectory, Founding Ideas and Suitability as Visual Notation

VCL embodies ideas of both graphical and formal modelling. A major influence is Amálio’s
PhD thesis (2007) which proposes UML+Z (Amálio et al. 2006; Amálio et al. 2004), a mod-
elling approach combining UML with the formal language Z. VCL’s Z semantics (Amálio
2007; Amálio et al. 2005; Amálio 2019) was borrowed from this work. Another inspira-
tion is the work lead by Kelsen on diagrammatic expression of behaviour in the language
EP (Kelsen 2006; Kelsen and Ma 2008; Amálio et al. 2011).

Empirical Software Engineering (2020) 25:1205–12581214



VCL emphasises rigour, formality and modularity. Early works developed the concept
with diagrams built using drawing tools (Amálio and Kelsen 2010a; Amálio et al. 2010;
Amálio and Kelsen 2010b; Amálio et al. 2010). A major influence was the development
of VCL’s aspect-oriented modelling approach (Amálio et al. 2010). Once VCL had been
developed as a concept, we embarked upon the construction of VCL’s tool, the Visual Con-
tract Builder (VCB),3 which made VCL more tangible and firmly defined (Amálio et al.
2011; Amálio and Glodt 2015). The tool paved the way to the use of VCL for coursework
and student projects (Leemans and Amálio 2012a; Tobias et al. 2012), brought the language
to life, and made the experiment presented here possible. Empirical results on modelling
tools, emerging from a spin-off survey of the experiment presented here, highlighted that
both VCL and its tool were being positively received by users (Amálio and Glodt 2015).

VCL is an experimental language embodying ideas on visual and formal modelling. It
was designed to not drastically deviate from UML; it keeps the same OO foundation which
has proved suitable for software design. We wanted to improve the graphics, precision and
connection to mathematical modelling. VCL SDs, for instance, introduced just a few nov-
elties with respect to class diagrams to exploit the idea of having more self-contained and
closely integrated diagrams focussed on data modelling, but avoiding drastic divergences.
The statecharts (Harel 1987) notation was inspirational; although developed independently
from UML or any of its main predecessors, it ended-up incorporated in the standard. Like-
wise, we hope that VCL ideas can be incorporated into such standards if they prove to be
useful.

VCL’s major novelty, its capacity to express predicates visually, makes it a promi-
nent representative of graphical design languages. There are other languages with formal
basis and capable of expressing predicates visually, such as augmented constraint dia-
grams (ACDs) (Fish et al. 2005) and Visual OCL (VOCL) (Bottoni et al. 2001; Ehrig and
Winkelmann 2006); however, VCL’s most salient difference lies in its superior tool sup-
port. In a comparative study focussed on practical application (Tobias et al. 2012), VCL
outperformed ACD and VOCL. VCL’s VCB tool outperformed the UML tool Papyrus in
the comparison of tools used in the controlled experiment presented here that focussed on
usability (Amálio et al. 2011). VCL is the only visual design language expressing visual
predicates that tackles modelling in the large through its modelling primitives inspired
by aspect-orientation (Amálio et al. 2010). In terms of usability, VCL appears to outper-
form both ACD and VOCL in what respects the use of colour for visual expressivity. VCL
was applied to case studies proposed as challenges by research communities, such as the
large car-crash crisis management system (Amálio et al. 2010) and its variant the Barba-
dos car-crash management system (Amálio 2012; Mussbacher et al. 2012), and a cardiac
pacemaker (Leemans and Amálio 2012a, b).

VCL is being used in student projects at undergraduate and masters level with education
being a modest success. It has been used by many students to design systems and applica-
tions. Further developments of VCL could focus on: (a) VCL and its tool, aiming towards
code generation, (ii) empirical experimentation, following from the results presented here,
and (iii) VCL’s formal foundations.

3http://vcl.gforge.uni.lu
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3 The Experiment’s Scope

The study presented here examines VCL as a visual design notation. It seeks to know
whether VCL and its capacity to express predicates visually provide any advantage over
existing standard notations, in particular UML and its OCL satellite textual notation, from
the perspective of modellers and end-users. The sequel distils the aims of the study into
the experiment’s objective and research questions, which are then translated into tasks and
hypotheses.

3.1 Objective

The experiment’s objective is as follows:

Evaluate the effectiveness of VCL on user performance using a set of tasks associated
with constructing and using design models by comparing VCL against UML and its
satellite textual language OCL.

To accomplish this, two perspectives are considered: modellers and end-users. As said
above, the experiment gauges effectiveness, which is meant here to be the degree to which
something is successful or adequate in producing a result or accomplishing a purpose.4 This
involves evaluating performance, which means how effective are modellers or end users in
accomplishing tasks.

To fulfil its objective the experiment investigates the following: (i) modelling, which
assesses performance in building design models and perceptions emerging from doing so;
(ii) problem comprehension, which evaluates the problem comprehension gained from mod-
elling; (iii) model usage, which assesses the performance of end-users in tasks related to the
usage of models, namely defect detection and model comprehension; (iv) usefulness, ease
of use, usability and overall appraisal, which assess perceptions emerging from experiment
experiences.

3.2 Research Questions

The experiment seeks answers to the following research questions (RQs):

– RQ1: Is the performance of modellers in building software designs better with VCL
than UML+OCL?

– RQ2: Is the comprehension of the problem accrued from modelling better with VCL
than UML+OCL?

– RQ3: Is end-users’ performance in tasks related to usage of software designs, namely
defect detection and model comprehension, better with VCL than UML+OCL?

– RQ4: Is VCL perceived as being more useful and easy to use than UML+OCL?
– RQ5: Is VCL’s usability better than UML+OCL’s?
– RQ6: How is the overall perception of VCL in comparison to UML+OCL?

3.3 Dependent Variables

The dependent variables hold measures to assess the different RQs; they are sampled
according to independent variables the most determinant of which being the notation

4From definitions of effectiveness in Oxford English dictionary and Dictionary.com.
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(either VCL or UML). RQ1 to RQ3 are measured both objectively and subjectively. RQ4
to RQ6 are measured subjectively. All RQs are analysed quantitatively; RQ6 is analysed
qualitatively also.

Table 1 summarises the dependent variables; it comprises columns for variable’s cate-
gory and RQ, variable definition and description. Variables’ names follow a convention:

Table 1 Dependent variables

Category/RQ Definition Description

Completeness (Co), RQ1 score
maxScore

Aggregate proportion obtained
from measuring satisfaction of each
expected model piece on an ordinal
scale from 4 (fully satisfied) to 0
(unsatisfied). Variables: CoS, CoI,
CoO

Accuracy (Ac), RQ1 score
maxScore

Aggregate proportion obtained
from evaluating test cases on an
ordinal scale from 4 (fully satis-
fied) to 0 (unsatisfied). Variables:
AcS, AcI, AcO

Perceived modelling (PM),
RQ1

{V CL,UML,NP } Notation perceived as providing
better modelling performance.
Variables: PMS, PMI, PMO

Problem comprehension (PC), RQ2 correctAnswers
noQuestions

Proportion of correct answers in PC
questionnaire. Variables: PC

Perceived PC (PPC), RQ2 {V CL,UML,NP } Notation perceived as providing
better PC performance. Variables:
PPC

Model comprehension (MC), RQ3 correctAnswers
noQuestions

Proportion of correct answers in
MC questionnaire. Variables: MC

Defect detection (DD), RQ3 f oundDef ects
totalDef ects

Proportion of identified defects in
model with seeded defects (DD).
Variables: DD

Perceived usage, RQ3 {V CL,UML,NP } Notation perceived as providing
better DD or MC performance.
Variables: PDD, PMC

Usefulness (U) and ease of
use (EoU), RQ4

score
maxScore

Calculated from responses on a
Likert Scale from 1 (strongly agree)
to 5 (strongly disagree). Variables:
U, EoU

Usability (Us), RQ5 {V CL,UML,NP } Notation perceived as better for dif-
ferent usability criteria. Variables:
UsR, UsN, UsMOs UsLEC, UsLF,
UsC, UsL, UsCS

Appraisal (Appr),
RQ6

{Positive,Negative,Neutral} →
Integer

Subject’s appraisal of VCL in com-
ments to open questions to obtain
number of positive, negative and
neutral comments. Variables: Appr

Preferred notation (PN), RQ6 {V CL,UML,NP } Preferred notation at state space
(S), invariants (I), operations (O),
overall and to use in the future.
Variables: PNS, PNI, PNO, PN,
FN

(S = state space; I = invariants; O = operations; DD = defect detection; PDD = perceived DD; PMC =
perceived MC; Us = usabiliy; R = reading; N = navigation; MOs = maps and overviews; LEC = live error
checking; LF = look and feel; C = cohesion; L = learnability; CS = comfort/satisfaction; PN = preferred
notation; FN = future notation; NP = no preference)
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abbreviation of category (e.g. Co = completeness; Ac = accuracy) followed by abbreviation
of measured modelling aspect — either state space (S), invariants (I) or operations (O). For
example, CoS is completeness of state space. We use two types of variables: (i) proportion
(obtained quantity is divided by maximum quantity, yielding a continuous number between
0 and 1); and (ii) nominal or categorical (possible values drawn from a bounded discrete
set).

The sequel gives further details on how the different RQs are assessed.

3.3.1 RQ1, Modelling

RQ1’s tasks involve building a design from a given case study narrative. The design is
partitioned into: state space, constraints over the state space (invariants) and behaviour as
operations made-up of pre- and post-conditions (contracts).

We compare the following: (a) VCL structural diagrams against UML class diagrams, (b)
VCL assertion diagrams of invariants against OCL constraints of invariants, and (c) VCL
assertion and contract diagrams of operations against OCL constraints of operations. The
comparison is based on the following criteria:

– Completeness (Co) measures how much is modelled. This is based on a breakdown
of requirements and corresponding modelling pieces, whose satisfaction is marked
manually on an ordinal scale from 4 (fully satisfied) to 0 (unsatisfied).

– Accuracy(Ac) measures the quality of what is modelled based on a partitioning of
requirements into aspects of interest exercised by test cases, which are evaluated
manually on an ordinal scale from 4 (fully satisfied) to 0 (unsatisfied).

This measurement apparatus, detailed in Amálio et al. (2013), aims to make the grading
objective, repeatable and unbiased. Completeness and accuracy variables of Table 1 hold
objective measures of modelling performance in state space (CoS and AcS), invariants (CoI
and AcI) and operations (CoO and AcO) in the form of aggregate proportions (obtained
score divided by maximum score). Categorical variables PMS, PMI and PMO of Table 1
hold subjective measures of modelling performance in state space (S), invariants (I) and
operations (O).

3.3.2 RQ2, Problem Comprehension

From a set of multiple choice questions framed in a modeller perspective, RQ2 is evaluated
objectively and subjectively in variables PC (a proportion of correct answers) and PPC of
Table 1, respectively.

3.3.3 RQ3, Model Usage

This is evaluated with the following tasks:

– Defect detection (DD), related to model inspection, consists of identifying defects in a
model with seeded errors.

– Model Comprehension (MC), or how well end-users understand given models, is
assessed through multiple choice questions about a given design.

Variable DD of Table 1 provides an objective measure as a proportion of encountered
defects. Variable MC, focussed on the end-user perspective, measures the proportion of
correct questions in the MC questionnaire.
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3.3.4 RQ4, Usefulness and Ease of Use

The examined notations are assessed at the light of perceived usefulness (PU) and perceived
ease of use (PEoU) (Davis 1989) in the debriefing survey. PU is the degree to which some-
one believes that a particular system would enhance their performance. PEoU is the degree
to which someone believes that a particular system would be free of effort. Both PU and
PEoU are seen as important determinants for user acceptance of a technology (Davis 1989).
The corresponding variables,U andEoU (Table 1), hold an aggregate proportion calculated
from Likert scaled statements.

3.3.5 RQ5, Usability

The debriefing survey assesses RQ5 based on relevant criteria, namely: readability,
navigation, maps and overviews, live error checking, look and feel, learnability and
comfort/satisfaction. Usability measures are held in the Us variables of Table 1.

3.3.6 RQ6, Overall Perception

The debriefing survey enquires about overall perceptions of the examined languages based
on experiment experiences. The relevant RQ6 dependent variables of Table 1 are: Appr

(an appraisal of positive, negative and neutral aspects of VCL based on the open-ended
questions of the debriefing survey) and the variables, that gauge the preferred notation with
respect to state space (PNS), invariants (PNI), operations (PNO), overall (PN) and future
usage (FN).

3.4 Hypotheses

There is one major independent variable for used notation — it has two treatments:
VCL and UML. The hypotheses are formulated from independent and dependent variables
(Table 1). Each dependent variable has corresponding null, H 0

i (no difference between the
notations), and alternative, Ha

i (there is a difference between the notations), hypotheses.
For example, completeness of state space gives H 0

1 : CoS(V CL) = CoS(UML) and
Ha

1 : CoS(V CL) �= CoS(UML); 11 out of 31 hypotheses follow this template. Sub-
jective dependent variables are three-valued, either V CL, UML or NP (no preference);
the underlying hypotheses cater to this; for example, perceived modelling of state space
gives H 0

7 : PMS(V CL) = PMS(UML) = PMS(NP) and Ha
7 : PMS(V CL) �=

PMS(UML) �= PMS(NP); 19 out of 31 hypotheses follow this pattern. Hypothesis H31
is formulated based on the values positive, negative and neutral; the first two are co-related
to V CL and UML respectively; this gives: H 0

31 : Appr(Positive) = Appr(Negative) =
Appr(Neutral) and Ha

31 : Appr(Positive) �= Appr(Negative) �= Appr(Neutral).

3.5 Recruitment

Participants were recruited from the following institutions: (a) Faculty of Sciences of the
University of Lisbon, Portugal (FCUL); (b) Faculty of Science and Technology of the New
University of Lisbon, Portugal (FCT/UNL); (c) University of Luxembourg (UL); and (d)
University of York, UK (UY). Computer science students were rewarded withAC50 vouchers
for taking part in the experiment and were required to have completed or be in the process
of completing a course on UML-based software design.
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4 Experiment Design

The following explains the major elements of the experiment’s design.

4.1 Case Studies

The experiment’s case studies, detailed in Amálio et al. (2013), are as follows:

– University Library (UL). A university library system enables members to borrow and
return books, renew borrowings and recall books unavailable for loan.

– Flight Booking (FB). A system to manage flight bookings of different airlines.

4.2 Experimental Tasks and Time Allocation

The experiment’s tasks feed the dependent variables of Table 1. Each session required par-
ticipants to work as both modellers and end-users, using either VCL or UML+OCL in
either one of the two case studies. A session lasted two hours and comprised the following
sequence of tasks (summarised in Table 2):

1. Modelling of state space and invariants (variables CoS, CoI , AcS and AcI , Table 1)
required completing a data model of either case study within 30 minutes, using either
UML class diagrams (CDs) and OCL, or VCL structural and assertion diagrams.

2. Modelling of operations (variables CoO and AcO, Table 1) involved modelling two
operations in a given data model within 35 minutes, using either OCL and UML CDs,
or VCL behaviour, contract and assertion diagrams.

3. Problem comprehension (variable PC, Table 1) involved completing a questionnaire
focussed on the modelled problem within 15 minutes.

4. Defect Detection (variable DD, Table 1), about finding seeded defects in complete
models (comprising both static and dynamic parts) within 25 minutes, required brows-
ing through either UML CDs and OCL, or VCL structural, assertion, behaviour and
contract diagrams (a VCL complete model).

5. Model Comprehension (variable MC, Table 1), about completing a questionnaire on a
given model within 15 minutes, involved browsing through UML CDs and OCL, and a
VCL complete model.

Participants worked on each of the two systems, using VCL or UML+OCL. They were
prevented from collaborating; the work was monitored as tasks were performed in a class-
room. Although aware of the experiment’s overall goal, participants were unaware of
experimental hypotheses or dependent variables.

Table 2 Sequence of five tasks of an experiment session

Task 1 Task 2 Task 3 Task 4 Task 5

Modelling of
state space and
invariants, 30
minutes

Modelling of
operations, 35
minutes

Problem compre-
hension, 15 min-
utes

Defect Detection,
25 minutes

Model Com-
prehension, 15
minutes
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Table 3 Experiment’s scheduling, highlighting case study and language used by each group on each round

Day 1 Day 2 Day 3 Day 4

Group A VCL, UL UML+OCL, UL UML+OCL, FB VCL, FB

Group B UML+OCL, UL VCL, UL VCL, FB UML+OCL, FB

(UL = University Library; FB = Flight Booking)

4.3 Design Type and Scheduling

The experiment follows a crossover or within-subjects design — all participants are subject
to the different treatments. It involves one main factor (or treatment), the design notation
(either VCL or UML+OCL), and a secondary case study factor (either UL or FB), yielding
four treatment combinations of a 22 factorial design. The rationale is: (a) maximise number
of data points to increase statistical power, (b) remove or mitigate bias emerging from dif-
ferences in case-study complexity or individual ability, (c) at the cost of possible carry-over
effects (Greenwald 1976).

Participants were split into two groups. The group-assignment was mainly based on
availability due to the experiment’s voluntary nature. However, an effort was made to scat-
ter the high ability individuals evenly among groups based on the results of an ability
questionnaire; this is elaborated further in Section 7.

Table 3 outlines the experiment’s four rounds. In each round, each group is given a
different treatment. All participants were subject to the four treatment combinations.

4.4 Modelling Tools

The experiment relied on modelling tools. This enhances language usability, contributes to
the quality of resulting models and ensures a connection with modern-day reality, which
relies heavily on software tools. The experiment uses two Eclipse-based tools: Visual Con-
tract Builder (VCB) (Amálio and Glodt 2015; Amálio et al. 2011)5 and Papyrus.6 VCB is
the only VCL tool. Papyrus was chosen because it is Eclipse-based, which ensures a certain
degree of similarity.

4.5 Training

The training covered the examined notations, focussed on the more challenging tasks of
modelling of state space, invariants and operations, and relied on the participant’s university
training on UML-based design. It consisted of a live and assisted modelling of a system from
a requirements description using the notations under study and their supporting tools mim-
icking the experiment’s modelling tasks. No training was given on the experiment’s model
usage tasks (problem comprehension, defect detection and model comprehension) due to
time reasons — if participants were able to model, then they would be able to undertake the
easier model usage tasks.

The training lasted 4 to 6 hours with two mandatory hours per notation. Table 4 sum-
marises the training provided at the different experiment replications. Each participant had
at least 4 hours of training (2 VCL + 2 UML) with variations across the replications. At

5http://vcl.gforge.uni.lu/
6http://www.eclipse.org/papyrus/
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Table 4 Administered training in the different experiment replications

Session 1 Session 2 Session 3

FCUL VCL (2 hours) UML+OCL (2 hours) –

FCT/UNL VCL (2 hours) UML+OCL (2 hours) 1 hour VCL followed by 1 hour
UML+OCL (optional)

U. Luxembourg VCL (2 hours) UML+OCL (2 hours) 1 hour VCL followed by 1 hour
UML+OCL (optional)

U. York UML+OCL (3 hours) VCL (3 hours) –

FCUL no extra training was given. Some FCT/UNL and Luxembourg participants were
given one hour extra of training. York participants received six hours of training (3 VCL +
3 UML).

5 Instrumentation

The experiment’s artefacts comprise: (a) case study narratives; (b) sample case study mod-
els for tasks of modelling, defect detection and model comprehension; (c) problem and
model comprehension questionnaires; (d) ability questionnaire; and (e) debriefing survey.
All materials are given in full in Amálio et al. (2013).

Each seeded defect and comprehension question was selected according to a number of
criteria: it had to cover different aspects or parts of the system to the largest extent pos-
sible; it should neither be trivial nor overly difficult to answer or find. The questions had
to be relevant and genuine, ideally questions that a software engineer could ask about the
system. Standard techniques for phrasing subjective questions and designing surveys were
followed (Oppenheim 1996).

5.1 Case Study Narratives and Sample Models

All tasks of an experiment session use either one of the two case studies, UL or FB
(Section 4.1), exemplars of systems used in the teaching of software design.

At the start of a session, participants were given a requirements narrative (given in
(Amálio et al. 2013)). For the task on modelling state space and invariants, participants
had to complete a given incomplete model (called initial model) — Fig. 3a gives UL’s ini-
tial VCL model. For the modelling of operations, participants had to model two operations
on another given model (intermediate model with a complete state space and incomplete
dynamics).

The given models aimed to get the most out of the short modelling tasks. They acted as
ice-breakers, countering against the blank page effect, and contributing to the task’s fluidity
and engagement to provide meaningful experiment data.

For defect detection (DD), participants were given models with seeded defects, which
they had to identify by completing an online form. Figure 3b gives the SD of UL’s DD
VCL model and Fig. 3c gives the UML counterpart; all faulty models are given in full
in Amálio et al. (2013). Defects were seeded in the solution models of both case studies;
for example, one error in Fig. 3b is that authors do not have names, whereas in Fig. 3c
class Author is missing altogether. Table 5 gives the frequency distribution of seeded
defects across the different modelling aspects being analysed (state space, invariants and
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Fig. 3 Structural diagrams of sample models of university library
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Table 5 Frequency distribution of seeded errors in models with defects

University Library Flight Booking

VCL UML+OCL VCL UML+OCL

State space 8 7 13 13
Invariants 7 5 7 6
Operations 21 24 19 20

Total 36 36 39 39
Goodness of fit p-value .51 .9

This considers both case studies; distributions are given with respect to modelling aspects (state space,
invariants and operations)

operations). A χ2 goodness of fit test confirmed that the distributions of notations and case
study are evenly distributed (see p-values of goodness of fit in Table 5) to avoid bias — no
significant differences were found.

For model comprehension, subjects were given a complete case study model. Two
operations of these models for the UL case study are given in Fig. 4.

5.2 Comprehension Questionnaires

After modelling, participants had to complete a questionnaire with 12 multiple-choice ques-
tions having one correct answer, to assess comprehension of modelled problem. A sample
question is given in Fig. 5.

Model comprehension questionnaires were accompanied by a complete model of the
system. They contained 12 multiple-choice questions having a unique correct answer. A
sample question of a model comprehension questionnaire for the university library case
study is given in Fig. 6. Whilst the problem comprehension questionnaire someone’s

Fig. 4 Local operation Copy.recall of university library expressed in the notations under study
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Fig. 5 A sample question of a problem comprehension questionnaire for the flight booking case study

evaluates understanding of the requirements of the modelled problem, the model compre-
hension questionnaire was focussed on the understanding of what is modelled and what a
model actually says. Note how diagrams of Fig. 4 give the answer to question of Fig. 6:
when a Copy is recalled, its status changes from onloan to recalled.

5.3 Ability Questionnaire

The ability questionnaire assesses the capabilities of participants prior to the experiment. It
questioned participants on whether they had completed or were in the process of completing
a higher education degree in computer science, and what was their exposure to com-
puter programming, discrete mathematics, visual modelling (using either object-oriented
or structured methods), and formal modelling. Figure 7 gives two sample questions of this
questionnaire.

5.4 Debriefing Survey

The debriefing survey gauges perceptions resulting from individual experiment experiences.
This includes perceived performance in tasks of modelling, problem comprehension, defect
detection and model comprehension, as well as perceived usefulness, ease of use, usability,
preferred notation, and positives and negatives of the two notations under study. In addition,
the debriefing survey provides supplementary information meant to support and explain the
quantitative results by providing qualitative insight. A sample question is given in Fig. 8.

6 Statistical Analysis

The quantitative analysis relies on null-hypothesis significance testing (NHST), effect sizes
(ESs) and confidence intervals (CIs). ESs are quantitative estimates of the magnitude of
some effect of interest, often the size of a difference. CIs give the precision of point esti-
mates or measurements, providing a range of plausible values within which we can have
a degree of confidence that the estimate is not due to chance. The analysis was conducted
using the R statistical software (R Core Team 2015).

Fig. 6 A sample question of a model comprehension questionnaire for the university library case study
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Fig. 7 Two questions of the ability questionnaire

6.1 Means, Proportions and their CIs

The analysis emphasises measures of central tendency. For continuous variables, we calcu-
late means (point estimates) whose precision is assessed through 95% CIs calculated using
the following formula (Cumming 2012):

95%CI = M ± t.95(N − 1) × SE, SE = SD√
N

Fig. 8 A sample question from the debriefing questionnaire
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Above: M is the sample’s mean, SE the standard error, SD the standard deviation, and N

the size of the sample; t.95(N − 1) is critical value of the t distribution with N − 1 degrees
of freedom and corresponding to the 95% range.7

Categorical variables are studied with proportions, derived from frequency distributions,
which, like means, are estimates whose precision can be assessed with CIs. For proportion
CIs, we use the more robust approach of Newcombe et al (Newcombe 1998; Newcombe
and Altman 2000), as recommended by Cumming (Cumming 2012) as it provides good
approximations even when N is small and P is close or equal to 0 or 1; this gives the
formula8:

A = 2 × x + 1.962, B = 1.96 × √
1.962 + 4 × x × (1 − P), C = 2 × (N + 1.962)

95%CI = [(A − B)/C, (A + B)/C]
Where P is the estimated proportion, x is the observed frequency for the property of interest,
and N is the total number of observations — P = x/N .

6.2 Hypothesis Testing

For a dependent variable V (Table 1), null and alternative hypotheses are formulated using
either continuous or categorical templates:

H 0
i : V (V CL) = V (UML) Ha

i : V (V CL) �= V (UML)

H 0
i : V (V CL) = V (UML) = V (NP) Ha

i : V (V CL) �= V (UML) �= V (NP)

Hypotheses are tested by estimating probabilities called p-values. Given data D, and some
null hypothesis H0, a p-value is a conditional probability estimate, P(D|H0) (Cohen 1994)
— the likelihood of the given observations assuming that the null hypothesis is true. Reject-
ing H0 means that it is unlikely because our observations deem P(D|H0) to be unlikely
— hence, we accept the alternative hypothesis. Null hypotheses are rejected based on three
levels of statistical significance, depending on whether the p-value is below α = .05 (*),
α = .01 (**) or α = .001 (***).

Continuous hypotheses are tested using the non-parametric Wilcoxon test (hereafter
referred to as W), a robust test as it does not assume that the sample population is nor-
mally distributed. Categorical variables are tested using the χ2 test. Calculated p-values are
two-tailed.

To counter against the problems of multiple testing and to increase the reliability of
NHST, the analysis uses the false discovery rate (Benjamini and Hochberg 1995) and the
method of Benjamini and Yekutieli (BY) (Benjamini and Yekutieli 2001), a more relaxed
alternative to the family-wise error rate and the conservative procedure of Bonferroni (Holm
1979), to calculate adjusted p-values. Null hypotheses are rejected based on adjusted
p-values only.

6.3 Effect Sizes (ESs)

We use as ES measurement the raw (or unstandardised) mean difference. We consider two
cases: paired and unpaired data.

7The classical formula uses the value 1.96, the Z score of the 95% range in the normal distribution. However,
the t approach is more robust as it handles small sample sizes (less than 30), the case of many CIs calculated
here.
8The traditional formula to calculate SEs for proportion CIs is: SE =

√
P×(1−P)

N
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Given the experiment’s within-subjects design, most of our mean difference calculations
fall under the paired case. The formulas are as follows (Grissom and Kim 2005; Pfister and
Janczyk 2013; Franz and Loftus 2012; Cumming 2012):

PD = VV CL − VUML, SEPD = SDPD√
N

, 95%CI = MPD ± t.95(N − 1) × SEPD

Above: MPD = MV CL − MUML; SDPD = standard deviation of paired differences.
The formula for the unpaired case is as follows (Cumming 2012):

SEUD =
√

(NA−1)SD2
A+(NB−1)SD2

B

NA+NB−2

95%CI = MUD ± t.95(NA + NB − 2) × SEUD

Above, we assume groups A and B, and MUD = MB − MA.
Raw mean differences provide an intuitive measurement of an effect, but they lack uni-

formity, making it difficult to compare effects when the scales differ. To cater for uniformity,
we use the ES Cohen’s d (Cohen 1988), which is appropriate for continuous variables
and means. To estimate this, we use the standard deviation average (or pooled standard
deviation) as the standardiser (denominator) (Cumming 2012):

d = MV CL−MUML

SDav
SDav =

√
SD2

V CL+SD2
UML

2

There are slightly different ways of calculating the Cohen’s d, which vary depending on the
formula used for the denominator. The formula above, based on the standard deviation aver-
age, fits the paired design being followed (Cumming 2012). CIs for this ES are calculated
using approaches based on non-central t distributions (Cumming and Finch 2001; Kelley
2007).

For categorical data, we use the ES measurement Cohen’s h (Cohen 1988), based on
the arcsine transformation, which is appropriate for differences between proportions. The
formula for h and the SE to calculate CIs (from Cohen (1988)) is:

h = 2 × arcsin
√

PV CL − 2 × arcsin
√

PUML, SE = 1√
N

6.4 Statistical Graphs

The paper depicts its results using the following graph types:

– Histograms (example in Fig. 9c), typically used to depict frequency distributions, use
the area of the bars to represent proportions.

– Plots of point estimates and confidence intervals (example in Fig. 9e) depict point esti-
mates (e.g. means) as dots and 95% confidence intervals (CIs) as error bars to convey
the uncertainty of the sampled point estimates. They display the different samples in
the abscissa and the units of the analysed data in the ordinate (Fig. 9e uses subject’s
proficiency scores).

– Forest plots (example in Fig. 12a) display point estimates and their corresponding
95% CIs. Point estimates are represented as circles and CIs as error bars; the abscissa
conveys the scale of the pictured result.
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Fig. 9 A characterisation of the experiment’s participants based on responses to the ability questionnaire.
(UL = University of Luxembourg; U = unfit; N = Novice; C = Competent; S = Skilled; UG = Undergraduate;
PG = Postgraduate)

6.5 Symbols

The sequel adopts the following symbols to convey statistical significance and ES:

– For statistical significance, given a p-value p we have: ns = not significant (p ≥ .05);
* = p < .05; ** = p < .01, *** = p < .001.

– For ESs, we use symbols to denote the attained magnitude level. Given a value es we
have: ø = null (|es| ≤ .05); • = small (.05 < |es| ≤ .2); •+= small to medium (.2 <

|es| < .4); ••= medium (.4 ≤ |es| ≤ .6); ••+= medium to large (.6 < |es| < .8);
•••= large (|es| ≥ .8)

7 Participants

Figure 9 characterises the experiment’s participants using data gathered from the abil-
ity questionnaire. Participants had diverse levels of education and training, ranging from
bachelor students taking a course on object-oriented design for the first time to students
undertaking their PhD studies in topics related to software engineering. The proficiency
scores cater to the subjects’: higher education in computer science, ability in computer pro-
gramming, and exposure to discrete mathematics, OO modelling and formal modelling.
Each criterion was evaluated on a scale from 0 (no competence or exposure) to 4 (high
degree of competence or exposure to a subject); the final score being a proportion (obtained
score divided by maximum score). From this score, participants were classified as unfit
(between 0 and .4), novice (between .4 and .6), competent (between .6 and .8) and skilled
(between .8 and 1). Table 9a provides the mean proficiency scores and 95%CIs of each
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venue and in total, and the frequency distributions across proficiency categories, both are
pictured in Fig. 9d and e, respectively. In general, participants had the required level of
training and education. All participants were, or in the course of being, university-trained
in UML-based software design; 23 under- and 19 post-graduate students took part in the
experiment (Fig. 9c).

Table 9b and the plot of Fig. 9f characterise the proficiencies of the two experimen-
tal groups. We can see that the proficiency of group B is non-significantly higher than
A’s, — W p-value = .06 (ns), MB−A = .1[−.24, .44], medium to large effect (d =
.62[−.05, .99], ••+)

8 Results

We start with an overview of the experiment’s results (Section 8.1), followed by an account
of the results for: modelling (Section 8.2), comprehension and model usage (Section 8.3),
usefulness and ease of use (Section 8.4), usability (Section 8.5) and overall perception
(Section 8.6). Since the experiment uses a crossover design we look into learning effects
(Section 8.7).

8.1 Results: a Bird’s Eye View

Table 6 summarises the outcomes of hypotheses testing. First column (Hyp) gives the
dichotomous outcome: either null (no difference) or alternative (a significant difference in
favour of either approach) hypothesis — highlighted using shading (green in colour ver-
sion). Columns V CLM/P and UMLM/P give either a mean (M) or a proportion (P) of
VCL and UML, respectively. Column V CL−UML gives difference between either means
or proportions. Column p/q gives NHST probabilities (p-values) with appraisals of signif-
icance (as per Section 6.5); raw p-values (first value), denoted as p, are calculated using
either Wilcoxon (W) or χ2 tests; if p is significant, we obtain the adjusted p-value, denoted
as q, using the false discovery rate (Benjamini and Hochberg 1995) and the method of
Benjamini and Yekutieli (BY) (Benjamini and Yekutieli 2001) to counter against multiple
testing issues. Finally, column es (effect size) provides measures of magnitude, using either
Cohen’s d or h and levels of magnitude (as per Section 6.5). Null hypotheses are rejected
based on the adjusted p-value q.

The experiment’s results are given in full in Amálio et al. (2013) with an accompanying
detailed analysis. The next sections present an abridged analysis with relevant results.

8.2 Modelling

Modelling is evaluated objectively based on completeness (how much is modelled) and
accuracy (quality of what is modelled), supplemented with subjective measures. We present
the data using plots of means and CIs, focusing on the results for overall, each case study,
and each experiment venue.

8.2.1 Completeness

The completeness results, corresponding to hypotheses H1..3 of Table 6, are portrayed in
Fig. 10. They are as follows:
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Table 6 Results of hypotheses testing

Confirmed alternative hypotheses are highlighted (in shaded or green in colour version)
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Fig. 10 Model completeness and accuracy for state space, invariants and operations. (CS UL = University
Library case study (CS); FB = Flight Booking; FCUL, FCT/UNL, UL and UY are the different institutions)

– In state space (Fig. 10a), VCL (M = .64, 95% CI [.6, .69], sd = .22) is very close to
UML+OCL (M = .67, CI [.63, .71], sd=.19) — the mean of differences (MD) is −.03
(CI [−.07, .02]). Cohen’s d ES of −.13 (CI [−.35, .08], •) indicates a small effect.

– In invariants (Fig. 10c), VCL (M = .1, CI[.07, .13], sd = .14) is close to UML+OCL
(M=.13, CI[.09, .18], sd = .22) — MD = −.03 (CI[−.08, .01]), small effect (d =
−.18, CI[−.38, .05], •).

– In Operations (Fig. 10e), VCL’s advantage (M = .16, CI [.13, .19], sd = .14) to
UML+OCL (M = .11, CI [.09, .13], sd = .1) is significant — MD = .05[.03, .08], W
p = 3 × 10−6(***), BY q = 7 × 10−5 (***), d = .45[.26, .71] (••).
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8.2.2 Accuracy

The accuracy results, corresponding to hypotheses H4..6 of Table 6, are portrayed in Fig. 10.
They are as follows:

– In state space (Fig. 10b), VCL (M = .38[.33, .43], sd = .23) is quasi-equal to UML
(M = .38[.34, .43], sd = .22) — MD = 0[−.05, .05], d = −.01[−.22, .21] (ø).
Likewise for invariants (Fig. 10d) — VCL (M = .2[.16, .24], sd = .18), UML (M =
.2[.15, .24], sd = .21), MD = .01[−.04, .05], d = .03[−.19, .24] (ø).

– Operations (Fig. 10f) highlight a non-significant VCL advantage (M = .11 [.08, .14],
sd = .13) to UML+OCL (M = .09[.06, .11], sd = .11) — MD = .02[0, .04], W
p = .07 (ns), d = .17[−.03, .4] (•).

8.2.3 Perceived Performance

The debriefing questionnaire (Amálio et al. 2013) asked about any perceived notation
advantages in modelling. The results, corresponding to hypotheses H7..9 of Table 6, are
given in Fig. 11, which contains a table of frequencies (Fig. 11a), a histogram (Fig. 11b)
and a plot of proportions and their CIs (Fig. 11c). The results are as follows:

– In state-space (PMS), a higher but non-significant proportion of subjects perceived a
better performance with VCL (22 out 43 = .51[.39, .67]) than UML + OCL (15/43
= .35[.15, .4]) and no preference (6) — proportion difference (PD) = .16[−.11, .41],
χ2 p = .011 (*), BY q = .088 (ns), h = .33[.03, .63] (•+).

– In invariants (PMI), a higher but non-significant proportion of subjects perceived a
better performance with VCL (23/43 = .53[.39, .67]) than UML + OCL (11/43 =
.26[.15, .4]) and no preference (9) — PD = .28[.02, .5], χ2 p = .018 (*), BY q = .13
(ns), h = .58[.28, .88] (••).

– In operations (PMO), VCL (26/43 = .6[.46, .74]) significantly outperformed
UML+OCL (12/43 = .28[.17, .43]) and no preference (5) — PD = .33[.05, .55], χ2

p = .00034 (***), BY q = .0061 (**), h = .67[.37, .97] (••+).
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Fig. 11 Notation perceived as providing best modelling performance (SS = State Space; Is = Invariants; Os
= Operations; NP = No preference)
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Fig. 12 Forest Plots of effect sizes and their CIs for modelling

8.2.4 Overall

Figure 12 presents forest plots of ESs for objective (Fig. 12a) and subjective (Fig. 12a)
measures of modelling.

8.3 Comprehension andModel Usage

The tasks of problem comprehension, defect detection and model comprehension resulted
in objective and subjective performance measures.

8.3.1 Objective Performance

The results, corresponding to hypotheses H10..12 of Table 6 and portrayed in Fig. 13, are as
follows:

– In problem comprehension (PC, Fig. 13a), VCL (M = .65[.61, .69], sd= .19) is quasi-
equal to UML+OCL (M = .64[.6, .68], sd= .2) — MD = .01[−.04, .05]).

– In defect detection (DD, Fig. 13b), VCL’s (M = .27[.24, .3], sd= .13) difference to
UML (M = .19[.17, .21], sd = .1) is highly significant — MD = .08[.05, .1]), W
p = 5 × 10−7 (***), BY q = 2 × 10−5 (***), d = .67[.41, .87] (••+).

– In model comprehension (MC, Fig. 13c), VCL (M=.67[.64, .71], sd = .16) signifi-
cantly outperforms UML+OCL (M = .61[.58, .64], sd = .16) — MD = .06[.02, .1]),
W p = .0025 (**), BY q = .022 (*), d = .37[.09, .52] (•+).

8.3.2 Perceived Performance

The results, corresponding to hypotheses H13..15 of Table 6, are described in Fig. 14 with
a table of frequencies (Fig. 14a), a histogram (Fig. 14b), and a plot of proportions and CIs
(Fig. 14c). The results are as follows:

– In PC, VCL (P = .47[.33, .61]) outperformed UML+OCL (P = .12[.05, .24]) non-
significantly — PD = .35[.13, .53], χ2 p = .0098 (**), BY q = .081 (ns), h =
.81[.51, 1.1] (•••).

– In DD, VCL (P = .56[.41, .7]) outperformed UML+OCL (P = .23[.13, .38]) non-
significantly — PD = .33[.06, .54], χ2 p = .0074 (**), BY q = .066 (ns), h =
.68[.38, .98] (••+).
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Fig. 13 Plots of means and CIs for model usage and comprehension (CS UL = University Library case study
(CS); CS FB = Flight Booking CS; FCUL, FCT/UNL, UL and UY are the different experiment venues)
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Fig. 14 Notation perceived as providing the best performance in problem comprehension (PC), defect
detection (DD) and model comprehension (MC)
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Fig. 15 Forest Plots of effect sizes of objective and perceived performance in problem and model
comprehension (PC and MC) and defect detection (DD)

– In MC, VCL (P = .44[.3, .59]) outperformed UML+OCL (P = .14[.07, .27]) non-
significantly — PD = .3[.08, .49]), χ2 p = .026 (*), BY q = .17 (ns), h =
.69[.39, .99] (••+).

8.3.3 Overall

Figure 15 presents forest plots of objective and perceived performance in model usage and
comprehension. Figure 15a portrays the Cohen’s d ESs (Cohen’s d) with CIs; Fig. 15b does
the same with subjective measures and Cohen’s h.

8.4 Usefulness and Ease of Use

Variables U and EoU aggregate perception scores (proportion) emerging from statements
evaluated on Likert scale from 1 (strongly agree) to 5 (strongly disagree).9 The results,
corresponding to hypotheses H16,17 of Table 6 and portrayed in the plots of Fig. 16, are as
follows:

– In U (Fig. 16a), VCL (M = .68[.64, .73], sd = .15) outperforms UML+OCL (M =
.66[.61, .7], sd = .14), but not significantly — MD = .03[−.04, .09] (sd=.14), W
p = .19 (ns), d = .18[−.18, .42] (•).

– In EoU (Fig. 16b), VCL (M = .58[.55, .62], sd=.12) significantly outperforms
UML+OCL (M = .49[.45, .54], sd=.14, ) — MD = .09[.04, .15] (sd=.14), W
p = .0026 (**), BY q = .022 (*), d = .7[.21, .85], (••+).

8.5 Usability

The usability results, corresponding to hypothesis H18..25 of Table 6, are portrayed in Fig. 17,
which contains a table of frequencies (Fig. 17a), a histogram (Fig. 17b), a plot of proportions
and CIs (Fig. 17c), and a forest plot of ESs (Fig. 17d). They are as follows:

– In reading (R), VCL’s proportion of .53 (CI [.39, .67]) against UML+OCL’s .33 (CI
[.19, .47]) yields a non-significant proportion difference (PD) of .21[−.07, .45] — χ2

p = .0064 (**), BY q = .066 (ns), h = .43[.13, .73] (••).
– In navigation (N), VCL’s (P = .69[.54, .81]) difference to UML+OCL (P =

.14[.07, .28]) is significant — PD = .55[.29, .72]), χ2 p = 6 × 10−6 (***), BY
q = .00014 (***), h = 1.19[.88, 1.49] (•••).

9For each response, the score is obtained by the formula 5 − x if the statement is positive and x − 1 if the
statement is negative yielding a score on a scale 0..4 for each response.
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Fig. 16 Usefulness (U) and ease of use (EoU)

– In maps and overviews (MOs), VCL’s (P = .56[.41, .7]) difference to UML+OCL
(P = .21[.11, .35]) is not significant — PD = .35[.09, .56]), χ2 p = .0074 (**), BY
q = .066 (ns), h = .74[.31, 1.16] (••+).

– In live error checking (LEC), VCL (P = .51[.37, .65]) significantly outperformed
UML (P = .09[.04, .22]) — PD = .42[.2, .59], χ2 p = .0024 (**), BY q = .03 (*),
h = .97[.68, 1.27] (•••).

– In look and feel (LaF), VCL (P = .7[.55, .81]) is significantly higher than UML+OCL
(P = .16[.08, .3]) — PD = .53[.27, .72], χ2 p = 3 × 10−6 (***), BY q = 9 × 10−5
(***), h = 1.15[.85, 1.45] (•••).
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Fig. 17 Usability results derived from debriefing survey. (NP= No preference; R = Reading; N = Navigation;
MOs = Maps and overviews; LEC = live error checking; LaF = Look and feel; C=Cohesion; L=Learnability;
CS=Comfort Satisfaction)
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– In cohesion (C), VCL (P = .37[.24, .52]) non-significantly outperforms UML (P =
.27[.16, .42]) — PD = .1[−.14, .32], χ2 p = .68 (ns), h = .21[−.1, .52] (•+).

– In learnability (L), VCL (P = .46[.3, .64]) non-significantly outperforms UML+OCL
(P = .32[.18, .51]) — PD = .14[−.18, .43], χ2 p = .27, h = .29[−.08, .66] (•+).

– In comfort/satisfaction (CS), VCL’s (P = .54[.36, .7]) advantage to UML (P =
.25[.13, .43]) is not significant — PD = .29[−.04, .55], χ2 p = .074 (ns), h =
.6[.22, .97] (••).

The usability analysis above together with Fig. 17d are consistent with the EoU results
of the previous section. The spin-off study that compared the experiment’s tools (Amálio
and Glodt 2015) highlighted that VCL underperformed UML+OCL in the writing criteria,
albeit non-significantly; this suggests that, in certain circumstances, graphical editors are
less convenient than their textual counter-parts (Amálio and Glodt 2015).

8.6 Overall Perception

Participants’ overall perception was appraised with respect to preferred notation, and
positive and negative aspects.

8.6.1 Preferred Notation

The results, corresponding to hypotheses H26..30 of Table 6, are depicted in Fig. 18 with a
table of frequencies with levels of significance and ES (Fig. 18a), a histogram (Fig. 18b), a
plot of means and CIs (Fig. 18c) and a forest plot of ESs (Fig. 18d). They are as follows:

– In the state space (PNS), VCL (P = .42[.28, .57]) under-performs UML+OCL (P =
.44[.3, .59]), but non-significantly — PD = −.02[−.29, .24], χ2 p = .026 (*), BY
q = .17 (ns), h = −.05[−.35, .25] (ø).

– In invariants (PNI), VCL (P = .65[.5, .78]) significantly outperforms UML+OCL
(P = .19[.1, .33]) — PD = .47[.2, .66], χ2 p = 6 × 10−5 (***), BY q = .0012 (**),
h = .99[.69, 1.28] (•••).

– In operations (PNO), VCL (P = .58[.43, .72]) significantly outperforms UML (P =
.21[.11, .35]) — PD = .37[.11, .58]), χ2 p = .0026 (**), BY q = .03 (*), h =
.78[.49, 1.08] (••+).

– Overall, VCL’s (P = .49[.35, .63]) advantage to UML (P = .28[.17, .43]) is not
significant— PD = .21[−.05, .44], χ2 p = .091 (ns), h = .43, CI [.14, .73] (••).

– There is a tie in the notation to be used in the future (NF) — PV CL = PUML =
.33[.2, .47], PD = 0[−.23, .23], h = 0[−.3, .3] (ø).

These results endorse VCL’s positive perceptions with its approach to invariants and
operations being appraised favourably (Fig. 18d).

8.6.2 Positive and negative aspects

Individual comments to the several open questions of the debriefing survey were classified
as positive, negative or neutral to VCL in comparison to UML+OCL. Figure 19 gives the
results; it contains a table of frequencies (Fig. 19a), a histogram (Fig. 19b), a plot of pro-
portions and CIs (Fig. 19c), and two histograms detailing positive and negative comments
(Fig. 19d and e). The results of hypothesis H31 (Table 6) are as follows:
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Fig. 18 Perceived preferred notation. (NP = no preference; PNS = preferred state space notation; PNI =
preferred invariants notation; PNO = preferred notation for operations; PN = preferred notation overall; FN
= notation to use in Future)

– From a total of 385 comments, 215 were positive (P = .56[.51, .61]), 121 negative
(P = .31[.27, .36]) and 49 were neutral — Fig. 19a and b.

– As signalled by Fig. 19c, positives significantly surpass the negatives — PD =
.24[.15, .33], χ2 p = 4 × 10−24 (***), BY q = 4 × 10−22 (***),h = .5[.4, .6] (••).

– By dissecting the positive comments (Fig. 19d), we can see that understanding (U, 21),
ease of use (oU, 20) and ease of finding errors (EFE, 19) were the most remarked.
Participants also appraised positively VCL’s modelling of behaviour (MB, 18) and
invariants (MI, 14), and VCL’s visualisations (V, 14), usability with respect to ease of
access to information (EAI, 13) and navigability (N, 12), while appreciating VCL as an
overall language (OL, 10). UML’s Papyrus tool was perceived by many as difficult (TD,
10). Some participants appreciated VCL’s overall modelling (M, 8), organisation (Or,
8), user interface (UI, 6), appealling (A, 5), and its sate modelling approach (MS, 5),
while remarking UML+OCL’s bad usability (BU, 6). A few participants found it com-
fortable to work with VCL (Ct, 4), appreciated VCL’s cohesion (Cn, 4) and capacity
to provide overviews (Ov, 4) while remarking that OCL is difficult (D, 4).

– In terms of VCL’s negatives (Fig. 19e), the most remarked aspects were UML’s famil-
iarisation (F, 16), the fact that UML is more know (MK, 9) and VCL’s bad usability
(BU, 9). Some participants remarked UML’s ease of use (EU, 8), modelling of state (MS,
8) and behaviour (MB, 7), and cohesion (Cn, 7), while remarking VCL’s cumbersome
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Fig. 19 Perceived positives and negatives of VCL in comparison to UML+OCL. (A = appealing; BU =
bad usability; CB = cumbersome modelling of behaviour; CI = cumbersome modelling of invariants; Cn =
cohesion; Ct = comfort; D = difficult; EAI = easy to access information; Ed = editing; EU = ease of use; EFE
= easy to find errors; Ex = expressivity; F = familiarity; M = modelling; MB = modelling behaviour; MI =
modelling of invariants; MK = more known; MS = modelling of state; N = navigability; Ok = it’s okay; OL
= overall language; Or = organisation; Ov = overviews; T = tool; TD = tool difficult; UI = user interface; U
= understanding; V = visualisation)

modelling of behaviour (CB, 8) and cumbersome editing (Ed, 7). Some participants
appraised positively UML’s Papyrus tool (T, 6) and UML’s understanding (U, 5), while
recognising that VCL’s tool is difficult (TD, 6). A few praised UML as an overall lan-
guage (OL, 4), its capacity to provide overviews (Ov, 3) and its expressivity (Ex, 3), and
that UML is okay and does the job (Ok, 3), while emphasising that they felt comfortable
using UML (Ct, 3) and that it is easy to find errors in UML models (EFE, 3).

8.7 Learning effects

Figure 20 depicts an analysis of learning effects typical of crossover designs (Greenwald
1976). Figure 20a contrasts first and second attempts at the different experiment tasks for
the orders V-U (VCL followed by UML) and U-V (UML followed by VCL). For four
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Fig. 20 Learning effects (Legend: V-U = VCL followed by UML; U-V = UML followed by VCL)

(out of nine) measures, namely, completeness of state space (CoS), accuracy of state space
(AcS), accuracy of invariants (AcI) and program comprehension (PC), there is a perfor-
mance improvement on the second attempt (a learning effect) independent of the used
notation. For completeness of invariants (CoI), there are improvements only when UML is
used in the second attempt. For four measures, completeness of operations (CoO), accu-
racy of operations (AcO), defect detection (DD) and model comprehension (MC), there are
improvements only when VCL is used in the second attempt.

Figure 20b pictures the means and CIs of the paired differences of both V-U and U-
V for each task measure — PD = VV CL − VUML. Figure 20c gives the calculated p-
values and ESs of PD(V-U) and PD(U-V). We observe a significant effect for completeness
of state space (CoS), accuracy of state space (AcS) and accuracy of invariants (AcI). The
remaining differences are not significant; ESs tend to be small, being medium only for
model comprehension (MC). Overall, there is a general tendency for the paired difference to
be higher when VCL is used on the second attempt. This suggests that due to VCL’s novelty,
participants’ VCL proficiency grows as subjects learn by doing the experiment’s tasks.

9 Threats to Validity

This section discusses threats to the validity of the experiment reported here, including
conclusion, construct, internal and external validity.
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9.1 Conclusion Validity

Conclusion validity is concerned with the relation between treatment and outcome, and
the statistical results. Following from the debate on null-hypothesis significance testing
(NHST) (Cohen 1994; Cumming 2013; Nuzzo 2014) and recommendations of high-
ranked social science journals, the analysis supplemented NHST with levels of uncertainty,
plausibility and magnitude; measures of central tendency (means and proportions) were
accompanied by confidence intervals (CIS) and effect sizes (ESs). As highlighted in
Section 6.2, null hypotheses are rejected based on adjusted p-values only, calculated using
the false discovery rate (Benjamini and Hochberg 1995) and the method of Benjamini and
Yekutieli (Benjamini and Yekutieli 2001).

The statistical analysis strived for robustness. We used non-parametric tests and avoided
breaching tests’ assumptions. Continuous variables were analysed using the non-parametric
Wilcoxon test as it is not dependent on normality assumptions; Wilcoxon calculated p-
values are consistent with parametric t-tests and the robust trimmed means test (Yuen 1974)
suggested by Wilcox and Keselman (Wilcox and Keselman 2003). The χ2 test, used to
assess categorical variables, is robust with respect to the distribution of the data, but all
categorical variables were found to be normal by Pearson’s test. All statistical testing results
are given in Amálio et al. (2013); here we provide Wilcoxon, χ2 and BY p-values only.

For ESs, we complemented the classical Cohen d with the more robust alternatives of
Algina et al (Algina et al. 2005) andWilcox and Tian (Wilcox and Tian 2011). All calculated
ESs, given in full in Amálio et al. (2013), were found to be consistent; here we focussed on
Cohen’s d and h.

9.2 Construct Validity

Construct validity concerns how measurements are affected by factors related to experi-
mental settings. It relates to training, case studies, measurement instruments, including the
defects seeded, and the different questionnaires. Table 7 presents statements drawn from
the debriefing survey, accompanied by levels of significance and effect, that supports the
analysis that follows. Likewise for Fig. 21, which depicts performance hindering factors.

The training concentrated on the challenging modelling tasks and relied on partici-
pants’ prior exposure to software modelling (Section 4.5). It tried to: refresh or enhance
design skills and familiarise participants with the modelling tools within the time available.
Many participants felt that (Table 7, training): the training was insufficient (T1, Table 7),
more training would have improved performance (T5), training was a major performance-
hindering factor (Fig. 21, LTr), they lacked knowledge and experience (Fig. 21, LKE), they
felt prepared with UML (T2), but not with VCL or OCL (T3 and T4, respectively). This sug-
gests the following: (a) the experiment’s tasks were challenging because many participants
were unhappy with their performance; (b) participants’ prior exposure to UML (confirmed
by the results of T2 in comparison to T3 and T4) could have biased the results in favour
of UML, but the results are positive to VCL, hence: (i) although seen as insufficient, the
training seems to have worked, and (ii) VCL accommodates UML-trained practitioners; (c)
training was insufficient for the modelling of invariants and operations as most participants
lacked prior training.

The experiment’s case studies (CSs), exemplars of real-world software systems simi-
lar to CSs used in the teaching of software design, do not favour one notation over the
other, and are from familiar application domains (a university library and a flight booking
system). They laid the foundation for tasks that are both feasible and challenging, but not
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Table 7 Debriefing survey statements related to training, case studies, defect detection and modelling tools,
rated on a Likert scale from 1 (strongly agree) to 5 (strongly disagree)

Id Question N Mean SD

Training

T1 The training allowed me to carry
out the tasks of the experiment
competently

43 3.21[2.91, 3.51]∗∗∗,•+ .99

T2 I had enough training in UML 43 2.56[2.24, 2.88]∗,•• 1.08

T3 I had enough training in OCL 43 3.67[3.38, 3.96]∗∗∗,••• .97

T4 I had enough training in VCL 43 3.35[3.09, 3.61]∗,•• .87

T5 I would have performed better if I
were given more hours of training

43 1.63[1.39, 1.86]∗∗∗,••• .79

Case studies

CS1 I had enough time to read through
the requirements descriptions of the
given case studies

43 2.02 [1.74, 2.31]∗∗∗,••• .96

CS2 I fully understood the systems
described in the requirements doc-
uments

43 2.21[1.97, 2.45]∗∗∗,••• .8

CS3 In general, I had no problems carry-
ing out the experiment’s tasks

43 2.79[2.52, 3.06]NS,•+ .91

CS4 The instructions were clear and
easy to follow

43 1.77[1.56, 1.97]∗∗∗,••• .68

CS5 The university library system was
fairly easy to understand

43 2.02[1.79, 2.25]∗∗∗,••• .77

CS6 The flight booking system was
fairly easy to understand

43 2.14[1.87, 2.41]∗∗∗,••• .89

CS7 The university library case study
was realistic; a good example of a
real-world case study

7 1.57[.99, 2.15]∗,••• .79

CS8 The flight booking case study was
realistic; a good example of a real-
world case study

7 1.86[1.19, 2.52]NS,••• .9

Defect detection

DD1 I fully understood the task 43 1.81[1.61, 2.02]∗∗∗,••• .7

DD2 I was not sure what type of errors I
was looking for

43 3.02[2.65, 3.4]NS,ø .03

Modelling tools

MT1 The modelling tools were fairly sta-
ble

43 2.23[1.96, 2.51]∗∗∗,••• .92

Columns: mean of response with 95% CIs, standard deviation (SD). Statement are compared against
neutrality to derive significance and effect

overwhelmingly complex. Participants recognised many of these characteristics in the CSs,
as evidenced by Table 7 (case studies); most subjects felt that: (a) they had enough time to
read the use case narratives (CS1), which (b) they understood (CS2), (c) the case studies
were fairly easy to understand (CS4 and CS5). Many subjects felt that: the tasks were car-
ried with difficulties (CS3 in Table 7 and DTCS in Fig. 21). A few subjects lacked a clear
understanding of the tasks (Fig. 21, LUT). York participants (N = 7) found the CSs to be
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Fig. 21 Perceived performance hindering factors derived from the debriefing survey. (DTCS = Difficult tasks
and case studies; F = Fatigue; LCE = Lack of concentration and engagement; LKE = Lack of knowledge and
experience; LTi = lack of time; LTr = lack of training; LUT = Lack of understanding of tasks)

realistic (CS7, CS8). Overall, this suggests that: (i) the tasks were challenging, (ii) many
participants lacked prior knowledge for such a challenging experiment, (iii) although the
training worked somehow, it was not able to fill the knowledge gaps of most subjects.

Lack of time (Fig. 21, LTi, 24 out of 43) was a performance obstacle. Limited time and
CS’s reasonable complexity were countered with starting models to be completed within
the allotted times. Despite this, the tasks on modelling of operations and invariants, and
problem comprehension, were not entirely satisfactory. Modelling of invariants had to be
done together with the state space within 30 minutes, which proved short; modelling of
operations was too difficult for a 35-minute task. Task’s short duration, lack of training and
inherent difficulty, explain the low results obtained in these tasks.

One of the authors marked the models constructed by the participants. To minimise
bias and maximise objectivity, a systematic, repeatable and divide-and-conquer scoring
approach, detailed in Amálio et al. (2013), was pursued. Both completeness and accuracy
relied on a requirements-based marking breakdown made up of individual items that are
fairly objective and with little room for subjectivity. The completeness scoring scheme
focused on the modelling required by each requirement; the accuracy scoring scheme
consisted of test-cases, expressed as snapshots or object diagrams based on an approach
outlined in (Amálio et al. 2004; Amálio 2007). Marking both completeness and accuracy
involved going through each item of the marking scheme.

The seeded defects, chosen to avoid both favouring any of the notations and being obvi-
ous, were scattered evenly across state space, invariants and operations (see Section 5.1).
Defect detection (DD) was designed to be intuitive and challenging, which was acknowl-
edged by the participants (DD results in Table 7); an overwhelming majority of them
understood the task (DD1, in Table 7) and many found it challenging because the errors
were not obvious (DD2), which is endorsed by DD’s modest final scores: .27 for VCL and
.19 for UML+OCL.

The model comprehension questions were selected to be of a certain level of complexity
and to ensure a reasonable level of coverage. They were articulated to avoid bias in favour of
one treatment over the other; the multiple-choice questions eased marking. The debriefing
survey was designed to capture the perceptions of subjects with respect to the experiment
experience. It contained questions that targeted experiment hypothesis related to subjective
assessments. To avoid bias, and to increase the reliability of the collected data, we followed
guidelines of questionnaire design (Oppenheim 1996).
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The modelling tools could bias or confound the results. We used tools built atop the
same platform, Eclipse, to ensure a certain degree of similarity. Papyrus is a major UML
Eclipse-based tool with a significantly larger user-base than VCL’s tool, VCB. Despite some
criticisms, both tools were seen as being stable (Table 7, modelling tools). A spin-off sur-
vey, tied to the experiment presented here (Amálio and Glodt 2015), compared these two
tools with a focus on usability; the results, favourable to VCB, concluded that participants
could not always discern between tool and language. Nevertheless, VCB is the implemen-
tation of VCL’s language and its underlying ideas. The fact that VCB was competitive with
Papyrus, a major UML tool, testifies to the quality of both VCL and VCB. Certain VCB
features may be superior to Papyrus, but that per-se does not account for VCL’s positive
results presented here and in Amálio and Glodt (2015). Both tools, built on top of Eclipse’s
modelling infrastructure, have considerable room for improvement.

9.3 Internal Validity

Internal validity threats are related to external factors that affect the outcomes of the experi-
ment, but are not a consequence of the studied treatment. Table 8 presents statements drawn
from the debriefing survey, accompanied by levels of significance and effect, that aids the
analysis presented here.

The experiment’s volunteer basis is a possible internal threat. Usually, experiments resort
to blocking to counter against variability in the capability of subjects. In our setting, this
was, by and large, infeasible; assignment to a group was mainly decided on the basis of
a subject’s availability. Section 7 highlights a slight and non-significant imbalance in the
proficiency scores of both experimental groups.

Information exchange did not affect the experiment: (i) all participants were working in
parallel on the same case study, (ii) group sessions would run separately, but on the same day
(morning or afternoon) and (iii) participants were busy. There was hardly any opportunity
or motivation for exchanging information.

The experiment’s crossover design suffers from known carry-over effects (Greenwald
1976). Here, the most relevant carry-over effect is the learning accrued from carrying out
tasks on the same system using the two languages; modelling using one language may give
rise to a learning effect leading to an improved performance when modelling with the next
language. To balance the experiment and counter against such learning effects, the order of
the two notations with respect to the two case studies was permuted for each group — a
group starting with VCL on university library (UL) would start with UML+OCL on flight
booking (FB), and vice-versa. We followed a 22 factorial design (case study is a factor)
with the case study tasks being undertaken in parallel to: (a) avoid case study difficulty as
a confounding effect,10 (b) counter against exchanges of information, and (c) have more
experiment practice (a total of 4 rounds) because software design is challenging, the training
was somehow insufficient (see discussion on training in Section 9.2 above) and any prac-
tice improvements would only lead to more interesting results and better founded opinions
for the debriefing survey. To counter against further carry-over effects, participants were

10The different levels of difficulty was acknowledged by the participants in the debriefing survey; 27 out of
43 participants said that FB was more complex (p = .63[.48, .76]), 11 found that UL was more complex
(p = .26[.15, .4]) and 5 found the two case studies to be similar of complexity (p = .12[.05, .24]) with the
difference between FB and UL being significant — PD = .37[.09, .59], χ2 p-value = .00012 (***), ES
h = .77[.47, 1.07] (••+).

Empirical Software Engineering (2020) 25:1205–1258 1245



Table 8 Debriefing survey statements related to the overall experiment rated on a Likert scale from 1
(strongly agree) to 5 (strongly disagree)

Id Question N Mean SD

E1 I liked the experiment 35 1.89[1.61, 2.16]∗∗∗,••• .83

E2 The experiment was interesting 43 1.93[1.66, 2.2]∗∗∗,••• .91

E3 During the experiment I was moti-
vated, committed and I felt chal-
lenged

43 2.23[1.94, 2.52]∗∗∗,••• .97

E4 I felt it was a good learning experience 43 1.95[1.7, 2.21]∗∗∗,••• .84

Columns: mean of response with 95% CIs, standard deviation (SD). Each statement is evaluated against
neutrality to derive significance and effect size

not given feedback on their performance. The analysis of order of notation (Section 8.7)
detected a few significant learning effects with large or medium effect sizes, however, this
does not affect the paper’s main results: modelling of operations, defect detection and model
comprehension.

Lack of engagement was refuted by the debriefing survey (Table 7): participants liked the
experiment (E1), finding it interesting (E2), somehow challenging (E3) and positive from
a learning perspective (E4). One of the options to the question “please indicate the reasons
for your lack of motivation if you felt somehow demotivated” was “I do not really see the
need for software design modelling in software engineering”, which was selected by only
one participant (out of 43).

9.4 External Validity

External validity, concerned with the generalisability of the results, is a recurrent issue in
software engineering research (Glass 1994). Given that we want to extrapolate our results to
software engineering practice, a question that emerges refers to the experiment’s degree of
realism (Sjøberg et al. 2002). In software engineering controlled experiments there is often
an issue of scalability. Due to time constraints, size of case studies and tasks are reduced,
and this may break the connection to industrial realities which usually deal with larger
problems. We alleviated this issue with case studies that are neither too small nor trivial,
and are realistic. This was acknowledged by many participants (see Section 9.2, above). To
ensure the feasibility of the modelling tasks within allotted times, participants were given
partial models that they were required to complete.

Another problem is the degree of representativeness with respect to software engineering
practitioners (Falessi et al. 2017). The participant cohort was culturally diverse; we ran the
experiment in universities of three European countries, involving participants from across
the globe. Participants were students who may be perceived as unrepresentative of industrial
professionals; however, many postgraduate participants had previous industrial experiences,
and many were about to embark on new professional careers in industry. The experiment
results attest to the cohort’s degree of representativeness; a few individuals performed
remarkably high, others noticeably low. Collectively, the average results on state space mod-
elling and other model usage and comprehension tasks show that participants were able to
undertake these required tasks, even though they were challenging. The low results on the
modelling of invariants and operations are more due to the experiment’s time constraints,
the inherent difficulty of these tasks and the limited time available for training, rather than
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the cohort’s overall ability. We see our cohort as a reasonably competent workforce, which
is reflective of industrial settings applying design modelling. Empirical studies failed to find
significant differences in performance between students and professionals (Höst et al. 2000;
Arisholm and Sjøberg 2004; Salman et al. 2015); a recent study found out that profession-
als appear to perform better in tasks they are accustomed to, but there is no difference when
it comes to using new approaches or technologies (Salman et al. 2015).

A criticism of software engineering controlled experiments concerns pen-and-paper tasks
which are not seen as reflecting modern-day realities. The experiment presented here used
Eclipse tools, a popular platform for modern-day software development that we see as
reflective of current practice.

We see the results presented here as generalisable to general graphical modelling, even
though only two languages are examined. This is because VCL is a suitable representative of a
largely visual software design language (Section 2.4) and UML+OCL is a suitable baseline.

10 RelatedWork

This is the first empirical study that investigates the benefits of a modelling language capable of
expressing predicates graphically, a pre-requisite to the diagrammatic expression of: (i) sys-
tem invariants, (ii) and operations as contracts made up of pre- and post-conditions. Other
languages with this capability, Visual OCL (Bottoni et al. 2001; Ehrig and Winkelmann
2006) and Augmented Constraint Diagrams (Fish et al. 2005), lack empirical scrutiny.

Table 9 summarises related empirical studies. This paper covers several aspects of
previous work:

– It covers comprehension, a focus of many studies (Purchase et al. 2002; Purchase et al.
2001; Torchiano 2004; Staron et al. 2006; Ricca et al. 2007; 2010) to investigate
whether either notation or modelling per se are fulfilling their aims. This paper insists
on end-user comprehension (either through model comprehension or defect detection
tasks), but going beyond to explore the problem comprehension gained frommodelling.

– It goes beyond data modelling, sharing with (Kim and March 1995) the emphasis on
the modeller perspective, with Otero and Dolado (Otero and Dolado 2002) the focus on
dynamic modelling and with Briand et al (Briand et al. 2005; Briand et al. 2011) the
focus on constraints and design by contract, but exploring novel graphical notations to
the modelling of invariants and operations not covered by any other study.

Certain interesting aspects of related work are unexplored here:

– The impact of UML design on maintenance involving either code or design
changes (Tilley and Huang 2003; Arisholm et al. 2006), which also delves into model
comprehension as understanding is often a precondition to accomplishing the changes
that are required.

– Coarse-grained modelling (Moody 2002; Farias et al. 2012; Ali et al. 2014), which
is related to VCL’s coarse grained modularity approach inspired by aspect-oriented
modelling (Amálio et al. 2010).

No other work in the literature has looked into the graphical expression of invariants
and operations. This paper explores this problematic through a comparison of VCL against
OCL, which expresses invariants and operations textually. It examines VCL’s novel graphi-
cal approach with respect to end-user and modeller understanding, modelling effectiveness
and usability.
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11 Conclusions

Visual modelling has always been part of software engineering (Chen 1976; Ross 1977;
Ross and Schoman 1977). Graphical design approaches have been advocated for nearly
three decades (Harel 1988, 1992). Nevertheless, our knowledge of visual modelling is
sketchy. We know that issues of syntax are vital to the usability of diagrammatic notations,
seen as de-facto languages of software engineering practice (Moody 2009). However, the
alleged benefits of visual modelling constitute a patchy region made up of many gray areas
lacking empirical scrutiny. Is visual modelling a good idea?

This article shed some light on this general question. If data modelling is well studied
and reasonably convincing, the same is not true for other more intricate aspects of software
design. This paper pursues an answer to the following question: can we model effectively
more complicated aspects of a software design, such as constraints and operations, graphi-
cally? If the research on the visual expression of predicates and system dynamics has shown
that a largely visual approach is possible, we are still largely unsure on whether graphics are
any better than text.

This papers delves into this question through a controlled experiment carried out four
times, which by studying VCL’s effectiveness as a visual language tries to draw more
general conclusions about graphical modelling. VCL is largely graphical; different mod-
elling aspects are expressed largely diagrammatically, including invariants and operations.
It is a suitable representative of largely diagrammatic languages. The experiment compares
VCL against the standard UML and its OCL satellite notation, which, together, champion
an approach to design modelling that is partially graphical with invariants and operations
expressed textually in OCL. The experiment involved 43 students from four universities in
three countries who received training in UML, OCL and VCL. The comparison focussed on:
(i) modelling of state space, invariants and operations (RQ1); (ii) problem comprehension
(RQ2); (iii) model defect detection (RQ3); (iv) end-user model comprehension (RQ3); (v)
usefulness and ease of use (RQ4); (vi) usability (RQ5); and (vii) overall appraisal (RQ6).
Aspects (i) and (ii) take the perspective of the modeller or designer, (iii) and (iv) of a design
end-user, and (v)–(vii) of a general software engineer or computer scientist. Careful atten-
tion was paid to ensure that the observed trends were due to the notations and not other
extraneous factors.

A relevant result of this paper is that VCL modelling of operations got better results than
OCL. Individuals performed significantly better using VCL with respect to completeness,
but not accuracy. A significant proportion of subjects perceived a better VCL performance,
VCL was the preferred notation for modelling operations with a significant difference
and behavioural modelling was perceived as a major positive aspect of VCL (Fig. 19d).
Therefore, results suggest benefits of diagrammatic modelling of operations in a VCL style.

Results are unclear for the remaining modelling aspects. In state-space modelling, VCL’s
graphical improvements were appreciated by an interesting minority, but most remained
agnostic to them, possibly due to the familiarity of widespread UML class diagrams
(Fig. 19e). In the objective measures, VCL failed to provide an improvement. Nevertheless,
VCL’s conservative approach with respect to UML modelling paid off: with some train-
ing participants transposed their prior UML knowledge into VCL. Hence, on the one hand,
the familiarity of UML class diagrams is hard to beat, but, on the other hand, participants
transposed knowledge across languages becoming accustomed to the differences in syntax.

In the modelling of invariants, VCL failed to provide significant improvements. However,
a non-significant proportion of participants perceived a VCL improvement, a significant
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Table 10 Summary of the
experiment’s findings per
research question (RQ)

RQ Findings

RQ1 On modelling of state space, invari-
ants and operations:

• VCL’s structural diagrams (SDs)
were quasi-equal to UML class dia-
grams (variables CoS, AcS and
PMS).

• On invariants, no significant VCL
benefits were encountered.

• On operations, significant VCL
benefits were encountered in com-
pleteness (CoO), but not accuracy
(AcO). A significant proportion of
subjects perceived a better VCL
performance (PMO).

RQ2 On the modeller’s comprehension
of modelled problem, no signifi-
cant differences were encountered
in both objective (PC) and subjec-
tive measurements (PPC).

RQ3 On model usage, significant VCL
benefits were encountered in objec-
tive measurements of defect detec-
tion (DD) and model comprehen-
sion (MC).

RQ4 In usefulness (U), no significant
VCL benefits were encountered. In
ease of use (EoU), VCL was per-
ceived as being significantly better
than UML+OCL.

RQ5 Usability was analysed from differ-
ent angles. Significant VCL ben-
efits were found for navigation
(UsN), live error checking (LEC)
and look and feel (LF).

RQ6 On the overall perception:

• A largely significant proportion
of participants preferred VCL as a
notation to express invariants (PNI)
and operations (PNO).

• In the appraisal of positive and
negative aspects (Appr), VCL was
appraised favourably as positives
significantly surpassed negatives.

proportion of participants chose VCL as the preferred notation for invariants, and VCL
modelling of invariants was perceived as a major positive aspect (Fig. 19d). These positive
results, together with the low scores in the modelling of invariants and operations, suggests
the need for a better experimental apparatus, with improved training and more time devoted
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to carry out these more complex tasks — as remarked by the participants’ appraisal of the
training (Section 9.2).

In model usage, the results signal a VCL improvement. In defect detection (DD), VCL’s
objective performance was significantly better, which is consistent with the way partici-
pants perceived their performance; ease of finding errors in VCL models was a frequently
occurring positive aspect of VCL (see Fig. 19d). In model comprehension (MC), VCL was
significantly better, which is consistent with the way participants perceived their perfor-
mance; comments concerning understanding, ease of use, easy to access information were
among the most frequently occurring VCL positive aspects (see Fig. 19d).

In three usability criteria, navigation, live error checking and look and feel, VCL outper-
formed UML+OCL significantly. It is interesting to relate these criteria to the theories of
notation design considered here: physics of notations (PoN) (Moody 2009) and cognitive
dimensions of notations (CDN) (Green 1989; Green and Petre 1996; Blackwell et al. 2001).
Navigation is related to PoN’s principle of cognitive integration (also maps and overviews,
rated well but without significance); live error checking is related to the CDN’s error prone-
ness and hard mental operations, as VCL’s tool warns users when they write something
meaningless which aids reasoning and avoids mistakes; and look and feel is related to PoN’s
principles of semiotic clarity, perceptual discriminability and complexity management — a
result of VCL’s syntactic clarity, visual expressivity and overall tidiness. This suggests that,
with respect to these theories of visual notation design, VCL and its tool appear to be better
than UML+OCL and Papyrus.

Both notations were perceived as equally useful, but VCLwas largely perceived as more easy
to use. VCL was also the preferred notation for invariants and operations by a significant
proportion. Finally, VCL was also highly appraised as positive in comparison to UML. This
appears to endorse VCL’s better model usage results and VCL’s overall graphical approach.

The findings presented here are summarised in Table 10 for each research question
(Section 3.2). Overall, results suggest usability benefits of graphical software design, which
was clear in model usage and more modest in modelling. Participants responded well to
VCL’s novel graphical notations, providing empirical evidence to motivate further research
on diagrammatic modelling.

The results presented here should not be regarded as a claim of absolute scientific truth,
but rather as a contribution to a research question. The stronger results need to be confirmed
through replication, and the weaker results together with the new questions spurred by the
paper’s analysis require further experimentation.
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