
Noname manuscript No.
(will be inserted by the editor)

Explicit Programming Strategies

Thomas D. LaToza · Maryam Arab ·
Dastyni Loksa · Amy J. Ko

the date of receipt and acceptance should be inserted later

Abstract Software developers solve a diverse and wide range of problems.
While software engineering research often focuses on tools to support this prob-
lem solving, the strategies that developers use to solve problems are at least
as important. In this paper, we offer a novel approach for enabling developers
to follow explicit programming strategies that describe how an expert tackles
a common programming problem. We define explicit programming strategies,
grounding our definition in prior work both within software engineering and
in other professions which have adopted more explicit procedures for problem
solving. We then present a novel notation called Roboto and a novel strategy
tracker tool that explicitly represent programming strategies and frame exe-
cuting strategies as a collaborative effort between human abilities to make de-
cisions and computer abilities to structure process and persist information. In
a formative evaluation, 28 software developers of varying expertise completed a
design task and a debugging task. We found that, compared to developers who
are free to choose their own strategies, developers given explicit strategies ex-
perienced their work as more organized, systematic, and predictable, but also
more constrained. Developers using explicit strategies were objectively more
successful at the design and debugging tasks. We discuss the implications of
Roboto and these findings, envisioning a thriving ecosystem of explicit strate-
gies that accelerate and improve developers’ programming problem solving.

Keywords Developers · productivity · strategies · test-driven development ·
debugging

Thomas D. LaToza and Maryam Arab
George Mason University, Fairfax, VA, USA
E-mail: {tlatoza, marab}@gmu.edu

Dastyni Loksa and Amy J. Ko
University of Washington, Seattle, WA, USA
E-mail: {ajko, dloksa}@uw.edu

ar
X

iv
:1

91
1.

00
04

6v
2

 [
cs

.S
E

]
 6

 N
ov

 2
01

9

2 LaToza, Arab, Loksa, and Ko

1 Introduction

Programmer productivity has been a major focus of software engineering re-
search for decades. The field has studied tools to make developers more pro-
ductive (e.g.,[33]), it has long investigated measures of individual developer
productivity (e.g.[60]), it has tried to predict productivity from numerous fac-
tors (e.g., [16]), and it has contextualized productivity among the larger set of
skills that developers must have to be great engineers (e.g., [43]). At the heart
of all of these efforts is the goal of understanding what factors make developers
productive.

Much of this research has focused on specific skills. For example, researchers
have captured low-level programming knowledge as part of learning technolo-
gies [3]. A long history of work has theorized about program comprehension
skills, describing the bottom up, top down, and opportunistic strategies that
developers use at a high level [59,69]. Some have theorized about debugging
strategies, characterizing them as iterative convergent processes [26]. More
broadly, research on program comprehension suggests that “experts seem to
acquire a collection of strategies for performing programming tasks, and these
may determine success more than does the programmer’s available knowledge”
[25].

However, developers today have few explicit programming strategies which
they may apply. An explicit programming strategy is a human-executable pro-
cedure for accomplishing a programming task. It describes steps in which a
human acts or retrieves and interprets information from the world. Consider,
for example, debugging: there are many abstract descriptions of what devel-
opers do when debugging (e.g., forming hypotheses, gathering data) [73], but
few explicit strategies which enumerate steps a developer can follow to reli-
ably localize a fault from a failure. Similarly, consider program design. Work
has abstractly characterized it as a process of transforming a programming
problem into a program that solves it, but few strategies offer explicit steps by
which developers can do this activity. Or consider API selection, which likely
has many hard-won strategies in industry, few of which have been written
down systematically as a strategy. While programmers perform these software
engineering skills daily, we have few explicit strategies for doing these tasks
that developers can follow, either to improve their performance, or to learn
the skill for the first time. These strategies, reflecting developers processes and
skills, therefore remain invisible, mostly residing in the minds of the world’s
most experienced developers.

In other engineering disciplines, researchers explicitly prescribe procedures
in handbooks to train new engineers. Consider, for example, the Civil Engi-
neering Handbook [12]. It is a tome, bursting with examples of how to plan
and schedule construction, how to process wastewater, and how to design steel
structures. Such handbooks not only describe numerous procedures that con-
stitute civil engineering skill, but also provide numerous examples of how to
apply these procedures to solve problems in the domain. These books provide
engineers with explicit procedures for solving common problems in a field of

Explicit Programming Strategies 3

engineering, and often determine what is taught in engineering classes, what
constitutes an accredited curriculum, and what is tested in engineering licens-
ing exams. Handbooks also support the work of expert engineers, providing
them reminders, guidance, and evidence-based procedures that present the
best practices for solving engineering problems.

Software engineering, in contrast, has no such handbook. While computer
science and software engineering has cataloged algorithms, design patterns,
architectural styles and other specific solutions, this knowledge is declarative,
rather than procedural in form, describing templates that can be applied in a
situation rather than a procedure for taking action. Yet much of software engi-
neering work constitutes problem solving, where developers seek information
and make decisions, such as when localizing a fault, reasoning about the im-
plications of a change, or formulating a design [42,34,66]. If we had a software
engineering handbook encompassing procedural knowledge, novice software
engineers might more rapidly learn effective software engineering strategies.
Experts might be more productive, following well-tested procedures for solving
a range of software engineering problems, rather than taking shortcuts, satis-
ficing, and using organically-developed personal strategies. This formalization
of programming problem solving could ultimately result in better software by
both accelerating software engineering work and by preventing defects, which
often have their root causes in human error [39].

Before we can create such a handbook for software engineering, there must
first be a way of explicitly representing strategies for programming, so that
developers may read and follow these strategies to guide their work. Unfortu-
nately, there are many open questions about how to represent strategies for
developer use:

– How can we describe explicit programming strategies?
– How can we support developers in following explicit programming strate-

gies?
– How do explicit programming strategies help and hinder developers’ effec-

tiveness?

In this paper, we investigate representing programming strategies as semi-
formal procedures that involve the productive interaction between a develop-
ers’ ability to reason and decide and a computer’s ability to structure, process,
and persist information. We first review related background on strategies, sur-
veying work in other domains as well as software engineering (Section 2). We
then propose Roboto, a mixed-initiative strategy description language for ex-
plicitly describing programming strategies, and a strategy tracker tool for sup-
porting developers in following these strategies (Figure 1, Section 3). Through
a formative evaluation comparing Roboto strategies to developers’ own self-
guided strategies, we show that developers were not only more systematic with
Roboto strategies but that they also found the explicit support helpful and
organizing, and that the explicit strategies led to increased success (Section 4).
While developers also found explicit strategies constraining, many viewed this
as a reasonable tradeoff if the strategies are more effective. We then discuss

4 LaToza, Arab, Loksa, and Ko

Fig. 1: Explicit programming strategies capture a specific sequence of actions
for accomplishing a programming task. For example, the above example offers
a strategy for merging using Git. To execute this strategy, the strategy tracker
lets the computer and developer work together, assigning responsibilities to
each. For example, in an if statement, the developer determines if the query
is true or false and the computer then advances the program counter to the
appropriate next statement.

the implications of this work for software engineering (Section 6) and conclude
(Section 7).

2 Background

Academic literature on strategies varies widely in how it defines strategies.
For example, in educational psychology, there has long been concern about
the lack of a coherent definition: “[It] appears that “strategy” is too broad
term and must be defined more specifically for meaningful interpretations to
be made.” [2]. And yet, in psychology, there is a vast literature about the effects
of explicit training on strategies, showing the effects of explicit strategies on
physics problem solving [11], the significant role of choice of strategy on task
performance [44], and the importance of meta-cognitive strategies in retaining
general problem solving among the elderly [41]. In this literature, regardless
of how strategies are defined or operationalized, strategy training appears to
have strong effects.

It has long been known that humans have limited attention and work-
ing memory resources, limiting problem solving performance and leading to
human error when limits are exceeded [54]. In response, work in the area of
distributed cognition views human problem solving not as computation that
occurs exclusively in the head but as computation that is distributed between

Explicit Programming Strategies 5

the human and the artifacts that exist in their environment. Environments in
complex domains, such as naval ships, often explicitly offload some responsi-
bility for planning and persistence to the world [31]. Controlled lab studies
examining problem solving found that external representations provide mem-
ory aids, ease use of information from the environment, structure cognitive
behavior, and change the nature of the task [74]. Studies of developers have
found that experts offload working memory demands by taking notes during
programming tasks [57].

One form of external representation supporting problem solving is the
standard operating procedure (SOP). SOPs formalize complex, error-prone
operations, such as landing a plane or repairing a nuclear power plant [70].
SOPs offer a series of step-by-step instructions that help people in an orga-
nization achieve efficiency, prevent errors, reduce communication, and comply
with regulations. Widely deployed in the military, health, and other safety
critical settings, SOPs regulate individual, team, and organizational behavior.

In health care, a similar idea of checklists has increased in popularity, partly
due to Gawande’s Checklist Manifesto [24]. This book argued that many prob-
lems in medicine are so complex, no individual or team can adequately manage
complexity; checklists of actions and states to verify in medical and surgical
procedures can manage this complexity by guarding against medical errors
and setting a standard of performance. Gawande notes that many providers in
health care are resistant to embracing checklists because they take autonomy
away from the expert and put it in a document. He argues that the collabora-
tive definition of checklists by teams is key to encouraging experts to embrace
explicit strategies, and presents evidence that when they do, medical errors
decline and outcomes improve.

Suchman also addressed strategies in her book Plans and Situated Actions
[68]. In it, she argued that human behavior generally does not emerge from
individuals making plans and executing them. Rather, the context in which
one is situated, and the rich awareness it affords, make plans more of a re-
source to draw upon to inform decisions and action. She argues that rather
than designing plans and expecting people to follow them, one should design
contexts in which plans inform and guide behavior, along with other factors,
such as the expertise of individuals and teams.

In software engineering, one way to capture expertise is by codifying spe-
cific recurring groups of elements, such as in the form of design patterns or
architectural styles. For example, Gamma et al. outline a set of design pat-
terns that address common problems in achieving modularity and reuse in
object-oriented design [23]. Shaw and Garlan envision a world in which ar-
chitectural styles are made explicit and shared and outline several common
architectural styles [64]. These capture the structure of systems, whereas pro-
gramming strategies offer complementary expertise, prescribing the structure
of developers’ work.

Representing strategies through a dedicated description language is an ex-
ample of a domain-specific language. A domain-specific language offers devel-
opers a language specialized for supporting a specific task, offering task-specific

6 LaToza, Arab, Loksa, and Ko

notations and constructs that trade generality for fitness for a specific purpose
[49]. Traditional domain-specific languages focus on specifying computation
that is done entirely by the computer. Our work explores how domain-specific
languages might be used to describe work that is distributed across both com-
puters and humans.

Research on programming and software engineering links explicit strate-
gies and productivity. For example, studies have shown that the use of explicit
slicing strategies in debugging [21], the use of explicit strategies in tracing pro-
gram execution [71], and the use of explicit strategies to extract requirements
from problem statements [27], are either correlated with or cause decreases in
task completion time or increases in task performance. Early research on the
LISP tutor [3] and software design environments [56] similarly showed that
by defining expert problem solving strategies, and nudging novices to follow
those expert strategies through hints and feedback, novices could approach
expert performance. Many have also described explicit strategies for debug-
ging; Metzger, for example, describes debugging strategies as a high-level plan
for accomplishing a goal through a sequence of physical and cognitive actions
[50] and Zeller presents a series of formal and informal procedures for isolating
causes and effects of defects [73]. In the area of software architecture, work
has described techniques by which developers should choose between various
design alternatives to make design decisions [4,18].

Research on programming has also found that metacognitive strategies—
helping developers to think more systematically about their thinking and their
progress—is both associated with and causes increases in task performance.
Early work speculated that “the strategic elements of programming skill may,
in some case, be of greater significance than the knowledge-based components.”
[14]. Later studies confirmed this for novices, finding that while novices have
many diverse strategies while programming [48], most of their strategies are
either inherently ineffective, executed ineffectively, or interleaved with ineffec-
tive strategies [58,51,45]. To explain these effects, some studies demonstrated
that self-regulation strategies, such as monitoring one’s work and explicitly
evaluating one’s progress and use of time, and self-explanation, were associ-
ated with greater problem solving success [57,19]. Other studies showed ex-
perimentally that explicit training on these general self-regulation strategies
[7] or self-regulation strategies specifically related to programming [46], can
cause significant increases in task productivity and programming self-efficacy.
Other work has explored the possibility of teaching specific problem solving
strategies to novice programmers and the challenges that this brings [36].

In software engineering, a common way to offer prescriptive problem solv-
ing guidance is through a “practice” or development methodology. For ex-
ample, Agile [6] presents high-level plans and principles for guiding action,
offering principles such as “Continuous attention to technical excellence and
good design enhances agility.“ Such general guidelines and principles do not,
by themselves, offer step-by-step guidance, but might be used to motivate more
detailed strategies describing how they should be carried out. Some prior work
has proposed explicit steps for specific activities in software engineering. For

Explicit Programming Strategies 7

example, research on process specification languages attempt to model soft-
ware development processes to specify steps engineers must follow to achieve a
software engineering goal [72]. Other work has described steps in a design pro-
cess, such as laying out a linear design process to specify, implement, test, and
review a function [20]. Perhaps the most extensive catalogs exist for refactoring
[47,32]. Test-driven development [5] offers specific steps developers should use
to write tests, then write the minimum amount of code for tests to pass. Re-
search has also studied emergent strategies in contexts like pair programming,
finding that explicit strategies can evolve organically through negotiation [61].
Other recent work has investigated mixed-initiative “lab protocols“ that sci-
entists often write when analyzing data computationally, finding that while
lab protocols represent idealized steps, scientists use a range of techniques to
expand or limit the semantic interpretation of these protocols [1].

While this prior work suggests that explicit strategies and explicit self-
regulation of the execution of these strategies can increase success in many
domains, including software engineering, and there have been some informal
descriptions of how to solve specific classes of software engineering problems,
this prior work does not provide guidance on how to represent programming
strategies or guide developers on the use of them. This leaves an important
gap in supporting and training software engineers.

3 Explicit Programming Strategies

We define an explicit programming strategy as a human-executable procedure
for accomplishing a programming task. Figure 1 shows one example of an ex-
plicit program strategy that provides step by step guidance for resolving a
merge conflict. This example is human-executable in that a human can inter-
pret and follow its steps, and it is a procedure in that the steps are a well-defined
series of actions to be performed.

As with strategies in other domains, programming strategies are expressed
imperatively, describing steps in which a human acts or retrieves and interprets
information from the world. Describing a sequence of steps as a strategy does
not mean it is the best approach or even that it is ever a successful approach;
for example, there are other ways to resolve merge conflicts than the approach
portrayed in Figure 1. For a given programming task, there may be many
distinct strategies, which may vary in effectiveness; and, for each strategy,
there may be many variants, which might choose to include or exclude details
or handle specific cases in different ways.

Explicit programming strategies capture detailed prescriptive advice de-
scribing how to work in a specific way, going beyond high-level characteriza-
tions of the types of activities developers should do. For example, consider
a high-level characterization of a software development process, such as agile
software development. Agile specifies that working software should be pre-
ferred over comprehensive documentation and responding to change should be
preferred over following a plan [6]. In practice, there may be countless ways

8 LaToza, Arab, Loksa, and Ko

developers might act that is consistent with this advice. A project might have
an agile practice of never documenting anything under any circumstances but
instead collocate software developers. This might then require a strategy de-
scribing how a developer might decide who to ask for a specific issue, how
much, if any, investigation to do before asking them. There might be a family
of agile strategies which describe an agile approach to the problem of elic-
iting requirements, actions a developer should take whenever a requirement
changes, or how to decide what decisions, if any, should be documented. In
this way, strategies might be used to teach a software development practice,
but offer much more specific, prescriptive advice describing concrete actions
a developer may take in the midst of a software engineering activity and the
order in which they should occur.

Programming strategies may be represented in a variety of forms. One
might characterize test-driven development [5] as a process wherein a devel-
oper writes tests first, or more specifically as writing a test for a behavior,
verifying that it fails, implementing the behavior, and then testing the be-
havior. But even this more specific description leaves some of this activity
unspecified: when, if ever, should a developer identify and address design is-
sues? Should these issues be addressed after implementing each behavior, or
all together after implementing many behaviors as part of a larger feature?
How and from where should the developer identify the behaviors? As descrip-
tions of strategies become more detailed to offer guidance on such questions,
pure natural language descriptions might become unwieldy or unreasonably
ambiguous. This suggests the need for a representation of strategies that sep-
arately lists actions for a developer to take, just as in a recipe or checklist. In
situations where developers act conditionally or repeat actions (e.g., edit the
code to address the failure, run the tests, repeat until all the tests pass), it may
be helpful to introduce control structures or to even decompose strategies into
separate sub-strategies, to help developers be more thorough and systematic in
following the strategy. As strategies offer more specific guidance, become more
detailed, and grow in complexity, this suggests the need for a more formal and
structured notation, such as a programming language.

A fundamental goal of a notation for programming strategies is to enable
a developer to change their behavior to be consistent with a strategy. Prior
work on lab protocols, a form of mixed-initiative program in data science,
found that it is important to offer both guidance as well as sufficient flexibility
to accommodate expertise not captured in a procedure [1]. We found similar
requirements in an early prototype in which we simply presented an explicit
strategy to the user as text and asked them to follow it. This high degree of
autonomy introduced a number of challenges for developers. As they moved
back and forth between the strategy text and their development environment,
some lost their place and did not know which statement to read next. As devel-
opers’ cognitive load increased due to the overhead of understanding the code,
they sometimes forgot that they were being asked to work using a different
strategy. Instead, they reverted to working through their traditional strategies,
abandoning the remaining steps described in the strategy they were asked to

Explicit Programming Strategies 9

use. These pilots, along with prior work, suggest that carefully choosing what
kind of autonomy developers have when executing strategies is key to jointly
leveraging human cognition and computation.

In this paper, we explore how we might describe explicit programming
strategies for individual developers. We build upon recent work envisioning
distributed human computation [53,1], in which humans and computers jointly
compute, requiring mixed-initiative interfaces that coordinate human and com-
puter actions [30]. We bring these high-level visions for human-computer coor-
dination to the specific domain of programming strategies. Our premise is that
when working independently, a developer is left to plan and monitor plan ex-
ecution while also reasoning about code, retrieving information, and devising
design solutions. Novices lack many of these skills, which lessens their ability
to be systematic in their reasoning [46], and experts often engage in simi-
lar externalization strategies to regulate planning and information persistence
during a task [57]. Moreover, prospective memory (their memory for future
plans) is faulty, especially as people age, making external memory aids critical
to avoid failure [17]. Therefore, our hypothesis is that by explicitly offloading
these planning and information persistence functions to the computer, both
novices and experts may perform better on tasks by allowing them to focus on
information retrieval and decision making.

How then, should this collaboration between developer and computer be
supported? There are many possible ways. A “high autonomy” approach might
simply be to encourage developers to write down their strategies for problems
they encounter, check them regularly, and adjust their plans accordingly. Prior
work shows that such informal task scaffolding can improve rank novice be-
havior [46]; perhaps it can also improve the performance of more experienced
developers, or perhaps the lack of structure would result in minimal impact. A
“low autonomy” approach might be to precisely structure developer behavior,
prescribing exact strategies for the developer to follow at the level of precision
that might be required for a computer to execute (like a Standard Operating
Procedure). This extreme form of explicit strategy might leave no room for
the developer’s own knowledge or expertise; it might also cause them to reject
the strategy because it leaves them no autonomy.

In this paper, we present a point in the design space that is a compromise
between these extremes, delegating roles to the computer and the developer as
best suited. With this flexibility, it allows strategy authors to make an informed
choice about how to divide the labor. We call this strategy description language
Roboto. In the rest of this section, we describe the Roboto strategy description
language and then present a tool for executing Roboto strategies.

3.1 Roboto

The overarching design principle behind Roboto is that developers are better
than computers at retrieving complex information and making decisions, while
computers are better than developers at remembering, being thorough, and

10 LaToza, Arab, Loksa, and Ko

1 STRATEGY renameVariable (name)
2 SET codeLines TO all lines of source code that contain 'name'
3 FOR EACH 'line' IN codeLines
4 IF the line contains a valid reference to the variable
5 Rename the reference
6 SET docLines TO all lines of documentation that contain the name 'name'
7 FOR EACH 'line' IN docLines
8 IF the line contains a reference to the name
9 Rename the name

Fig. 2: An example Roboto strategy that systematically renames a variable in
source and documentation. In Roboto, the developer is responsible for retriev-
ing complex information and making decisions. For example, the developer
determines which lines of documentation reference the variable name. The
computer helps ensure that the developer is thorough, systematic, and re-
members past information they’ve written down. For example, the computer
tracks the name of the variable to be renamed, the set of program statements
a developer decides to inspect, and the next strategy step to execute, which is
displayed to the developer through the strategy tracker.

1 STRATEGY towerOfHanoi(level source target auxiliary)
2 SET 'topDiscs' TO 'level' minus one
3 IF 'level' greater than 1
4 # We will now jump to a substrategy to move some discs to the auxilary.
5 DO towerOfHanoi('topDiscs' 'source' 'auxiliary' 'target')
6 Move the disc at 'source' to 'target'
7 IF 'level' greater than 1
8 # We will now jump to a substrategy to move discs back from the auxilary.
9 DO towerOfHanoi('topDiscs' 'auxiliary' 'target' 'source')

Fig. 3: An example of a recursive Roboto strategy for solving the Tower of
Hanoi puzzle.

being systematic. For example, Figure 2 shows an example of a Roboto strategy
that guides a developer through the error-prone process of renaming a variable
in a web application built in a dynamic language. In this strategy, the computer
is responsible for ensuring that the developer finds all of the lines to update,
remembers to check documentation, and remembers to update each one; the
developer is responsible for using tools to actually perform these actions in
their editor or IDE. This notation gives developers the responsibility of acting
in the world and retrieving information from it, and assigns the computer the
responsibility for the strategy’s control flow and its persistence of information
from the world. Strategies may be short and simple or long and complex, may
be organized into separate, cohesive substrategies, and may be recursive. While
the focus of our design is on strategies for programming, explicit strategies may
also be used in other domains where computers and humans work together
to accomplish a task. For example, Figure 3 shows an example of a Roboto
strategy for solving the Tower of Hanoi puzzle. Additional examples of explicit
strategies can be found in our online repository 1.

Figure 4 shows the Roboto grammar that achieves this division of respon-
sibilities. Some of the non-terminals in the grammar convey actions that are
executed by a developer:

1 http://programmingstrategies.org

Explicit Programming Strategies 11

STRATEGY :: strategy IDENTIFIER (IDENTIFIER+) STATEMENTS

STATEMENTS :: STATEMENT+

STATEMENT :: * (ACTION | CALL | CONDITIONAL | FOREACH | ASSIGNMENT | RETURN)+

ACTION :: (word | IDENTIFIER)+ .

CALL :: do identifier (IDENTIFIER*)

CONDITIONAL :: if QUERY STATEMENTS

FOREACH :: for each IDENTIFIER identifier STATEMENTS

UNTIL :: until QUERY STATEMENTS

ASSIGNMENT :: set IDENTIFIER to QUERY

RETURN :: return QUERY

QUERY :: (word | IDENTIFIER | CALL)+

IDENTIFIER :: ’ identifier ’

Fig. 4: The Roboto language grammar.

– Actions are a series of natural language words describing an action a
developer should take in the world (e.g., “Rename the name“ in Figure 2,
line 9). Developers perform all of this work. Anything a developer would
need to do, including operating a tool, navigating within an IDE, or asking
a colleague for information, might be captured by an action.

– Queries describe information that a developer should obtain from the
world, either to make a decision or to persist state for later use (e.g., “all
lines of documentation that contain the name ‘name’“ in Figure 2, line
2). This might include finding information in source code, conducting an
Internet search, or some other activity producing information.

– Comments annotate a statement in a Roboto strategy and typically con-
tain rationale for the statement or other knowledge a developer might need
to successfully execute it (e.g., “We will now jump to a substrategy to move
some discs to the auxilary“ in Figure 3, line 4). Comments are critical to
convincing a developer that the next step is reasonable as well as helping
developers understand the overarching approach of a strategy and how an
individual statement supports that approach.

The remaining non-terminals in the grammar are executed by the com-
puter:

– Assignments take the result of a query that a developer has executed
and store the resulting information in a variable (e.g., “SET codeLines TO
all lines of source code that contain name ‘name’“ in Figure 2, line 2).
Multiple assignments may reference the same variable, storing a new value
which overwrites the previous value. This is effectively a way of persisting
some fact for later use by the developer or the computer, much like a
developer might use a notepad to keep notes during a task. A computer
is responsible for this since it will not forget or lose the information a
developer has captured.

– Conditions take the result of a query and branch the strategy’s execution
(e.g., “IF the line contains a reference to the name“ in Figure 2, line 8).
During execution, they ask a developer to indicate whether the associated
query is true or false, and then the computer branches accordingly. We

12 LaToza, Arab, Loksa, and Ko

gave this responsibility to the computer because of its larger responsibility
in structuring the control flow of a strategy.

– Loops (for each and until) also involve a condition, and iterate through
lists of data a developer has retrieved from the world or ask a developer
to repetitively perform a series of actions until a condition is reached (e.g.,
“FOR EACH ‘line’ in ‘codeLines’“ in Figure 2, line 3). After finishing the
execution of the statements within the loop’s block, the computer returns
control to the first statement. In this way, the computer is responsible
for ensuring that developers are exhaustive in their consideration of data,
rather than satisficing [67], helping to prevent inefficiencies and defects in
decision making.

– Strategy enables strategies to be functionally decomposed into sub-strategies
and invoked, supporting functional decomposition and reuse of strategies,
while also giving further control flow to the strategy (e.g., “STRATEGY
renameVariable (name)“ in Figure 2, line 1). Like in other programming
languages, sub-strategies execute, then return control of execution to the
caller. Sub-strategies also create separate variable scopes, reducing the in-
formation a developer must consider at once.

In allocating responsibility between the human and the computer, Roboto
represents an intermediate point between pure natural language descriptions
and traditional programming languages. Existing catalogs of strategies use
natural language, describing strategies as a list of actions, relying on sentences
of text to describe conditional behavior or repetition, or else omit conditional
behavior and iteration entirely [20,32,47]. In making explicit control flow and
permitting strategies to be structured into sub-strategies, it is possible to more
precisely describe exactly when particular actions will be taken and to group
and reuse complex sequences of actions. This makes strategies more explicit
by clarifying exactly what a developer should do as well as enabling better
tool support for strategy execution.

Roboto, as a notation, differs from programming languages in several ways
by what it does not include. Work that is allocated entirely to the human
is left as natural language descriptions of actions. For example, there are no
comparison operators, as the human makes judgments about the state of the
world. Similarly, there are no arithmetic operators, as the human is responsible
for acting in the world. And loops do not include increment forms, as either
the computer has responsibility for ensuring all elements in a collection are
visited in a for each loop or the human has responsibility for determining when
a condition is reached in an until loop.

One complexity of persisting state through variables is whether to type the
results of queries that developers perform. In our design, all variables are either
strings or lists of strings, under the assumption that most tasks will require the
description of some state in the world, and that developers are best capable of
writing these descriptions for their use. We support lists so that the computer
can systematically iterate through items retrieved by a developer.

Explicit Programming Strategies 13

None of these design decisions are necessarily “right.” As we have discussed,
there are many possible ways to describe explicit programming strategies, and
Roboto is just one. Because our investigation was formative, our goal was
not to find the “best” strategy notation, but to investigate the impact of “a”
notation on developer behavior, building an understanding of how alternative
decisions might have led to different behavior. We would expect many future
works to explore these design choices in more detail.

3.2 Supporting Strategy Execution

Successfully following a strategy requires developers to be systematic by fol-
lowing each statement as written in a strategy step by step. We found in our
early explorations that developers struggled to track the information they’d
gathered from the world and keep their place in a strategy, which led them to
not follow the strategy systematically. Therefore, to offload the responsibility
of keeping track of a place within the strategy, we chose to design a strategy
execution tool, adopting the model of an interactive debugger. The tool helps
developers step through the strategy one statement at a time, executing the
parts for which they are responsible, and letting the computer execute the
parts for which it is responsible. Figure 5 depicts the strategy tracker tool for
Roboto.

When developers first begin executing a strategy, they need both confi-
dence that the strategy they have selected is appropriate for their context and
to understand what it will offer them. Roboto strategies may have an introduc-
tory comment, describing the purpose of the strategy. As a developer begins
the strategy, this information is displayed to the developer in the form of a
popup (Figure 5a). When an initial strategy includes parameters, the popup
displays the name of each parameter and prompts the developer to enter an
argument value for each in a textbox (e.g., ”requirements”, with a textbox to
enter a list of requirements).

Like in a traditional debugger, a program counter keeps track of the active
statement in the strategy. As in Roboto each statement constitutes an indi-
vidual and indivisible operation, control passes from statement to statement.
The developer advances the program counter with the next button (Figure
5b), which steps the user to the next statement. The current statement is in-
dicated to the developer by highlighting and bolding the statement text. This
reduces the burden on the developer’s working memory, enabling the devel-
oper returning their focus from the programming environment to the strategy
to rapidly see where to resume.

To help developers understand the rationale for a statement, the tracker
provides both the statement and a comment (listed in a line immediately below
the statement), which may offer rationale and additional guidance (Figure
5c). Developers who are more expert may focus only on the statement while
ignoring the guidance, while the comment provides a learning resource for
developers with less experience.

14 LaToza, Arab, Loksa, and Ko

a

b

c

e

f

d

g

Fig. 5: In the strategy tracker, the developer and computer work collabo-
ratively to execute a strategy. After selecting a strategy, the developer (a) is
introduced to the strategy through an introductory popup. The developer then
works through the strategy statement by statement, (b) using the next button
to advance the program counter and (c) performing the described statement,
and (d) communicating decisions to the tracker when necessary. Developers
may (e) record a value for a variable, offloading to the computer the responsi-
bility of remembering it. For each statement, (f) the division of responsibility
between the computer and developer is outlined through a list of steps each
should perform.

For some Roboto statements, input from the developer is required before
proceeding to the next statement. For assignment statements, for example,
the tracker prompts the developer to enter a value for a variable, disabling
the next button until they do so. For condition statements, the developer
advances to the next statement by determining whether the query in the state-
ment is True or False (Figure 5d), with the next button disabled.

Developers can assign values to variables using the variables pane (Figure
5e), externalizing the value and offloading the burden of remembering it. When

Explicit Programming Strategies 15

a query statement asks the developer to record a value, they can use the
variables pane to write it down. All variable values are treated as a string
or list of strings, giving the users flexibility to record data in whatever way
is appropriate for the diversity of information they might gather from the
world. Developers may also enter lists of values, separated with a comma, to
denote multiple elements. When a list is referenced within a for each loop,
the tracker automatically steps through each element, automatically assigning
a named temporary variable a value corresponding to the current element
in the list. To reduce information overload, variables are only shown in the
variables pane after they have been referenced by at least one statement, as
with a breakpoint debugger.

To reinforce the partnership between the computer and the developer, the
developer needs a clear understanding of their role. Each statement in a strat-
egy consists of steps executed by the computer and by the developer. A list of
steps (Figure 5f) communicates, for the current statement, the responsibilities
assigned to the computer and those assigned to the developer. Icons indicate
whether each step is performed by the developer or the computer. For exam-
ple, in a conditional, the developer is assigned the responsibility to find the
value of any referenced variables, interpret the query to determine if it is true
or false, and communicate this by clicking True or False. The computer then
determines the next statement to execute and advances the program counter.

As in a breakpoint debugger, the strategy tracker maintains a stack frame
for each sub-strategy, containing the values for local variables defined in the
sub-strategy. When a developer enters a sub-strategy, a new stack frame is
created for that sub-strategy. Variables that were in scope for the previously
executing sub-strategy are hidden from the variables pane. When control re-
turns to the calling sub-strategy, the stack frame is popped and the variables
pane again shows the values for the calling sub-strategy.

To grant developers flexibility in how they use the strategy, the developer
can, at any time, change the value of variables, including those not assigned
in the current statement. If a developer later decides that the value they had
written down in a previous step was incorrect, they can edit it. Changing the
value of a variable only influences the execution of subsequent statements. If
the developer intends to change the path taken, the developer may use the
previous button to go backwards to before the conditional, edit the value, and
then proceed. Loops pose an additional complication, as the developer might
delete the currently active element in the loop or delete an element which has
already been used in the loop iteration. For this reason, editing or deleting
values previously used in the loop iteration is disabled. Developers may influ-
ence the subsequent behavior of the loop by editing, adding, or deleting values
that have not yet been referenced.

To give further flexibility, the tracker also gives developers the ability to
step backwards, as in a reversible or omniscient debugger [52,38]. If a developer
realizes that they have gone off track, making the wrong choice at a conditional
or loop, they can use the previous button (Figure 5g) to move step by step back
to the point where they diverged and then resume forward progress. When a

16 LaToza, Arab, Loksa, and Ko

developer steps backwards, they undo the statement they just executed and
return to the state of the previous statement. If, in executing this statement,
the developer had assigned a variable, either as instructed by an assignment

statement or in editing any other variable’s value, this action is undone and
the value is reverted. Variables that have no longer been referenced in the
current sub-strategy are again hidden. In this way, stepping backwards lets
developers return to the state they were in before and try an alternative path
forward.

As developers may complete programming tasks using diverse tools, in-
cluding a wide variety of integrated development environments, programming
languages, command line tools, communication tools, and websites, we de-
signed the strategy tracker to be used alongside any programming tool. To
achieve this, we implemented the strategy tracker as a web application. Devel-
opers may interact with the strategy tracker in one window side by side with
the programming tools they use to accomplish their task. Strategies may be
referenced in a developer’s work by, for example, including a link to a strat-
egy within another tool (e.g., in a slack message or code commit), which may
then open a browser window with the strategy. Programming tools may offer
deeper integration by hosting the strategy tracker from a dedicated browser
window within the tool, which might enable automatically configuring window
positions to show the strategy and appropriate windows side by side.

4 Formative Evaluation

Most of the empirical studies in software engineering research are summative
in nature, attempting to answer a question with some certainty by gathering
and analyzing data. Summative studies tend to pose well-defined hypotheses,
ideally derived from well-defined theories, and then test them. For example, a
notable study of the effect of physical distance between developers on defect
density in their components was a summative study, testing the theoretically-
grounded hypothesis that distance matters [8]. In other disciplines, such as
medicine, summative studies are things like large human-subject clinical trials
that carefully analyze the causal effects of some medical intervention such as
a drug or surgery at scale.

In contrast, formative studies, rather than seeking to rigorously test hy-
potheses, seek to rigorously generate hypotheses. Formative studies are typi-
cally done at the beginning of a field’s investigation into a new phenomenon,
to help identify what might be true about a phenomenon, so that theories
might be developed and hypotheses derived from that theory might be tested
in future work. In software engineering, formative evaluations include things
like case studies of new tool innovations, which do not demonstrate utility,
value, or feasibility at scale, but rather identify existence proofs of value, while
also surfacing unsolved problems. In medicine, a formative study might be an
early, small-sample, animal-subject observational study, which reveals possible
effects of an intervention for later study. Formative evaluations such as these

Explicit Programming Strategies 17

are common in education research [22] and in HCI research [63], two disciplines
our work builds upon.

Our evaluation of Roboto and the strategy tracker was formative in nature:
our goal was not to test whether Roboto and its tracker are “effective,” but
rather to understand how explicit strategies written in Roboto and executed
in the tracker change developers’ strategic behavior and thereby help or hin-
der their progress, so that future work may improve upon the effectiveness,
utility, and use of explicit programming strategies. Specifically, we sought to
investigate:

– What strategies do guided and self-guided developers choose to use?
– How do explicit strategies help and hinder developers’ problem solving?
– To what extent do explicit strategies improve success on debugging and

design tasks?

As Roboto and our tool for executing Roboto strategies are just one first
attempt to explore explicit strategies, these questions help us identify hy-
potheses and questions for future work to investigate, not to provide definitive
summative evidence of benefits. Because of this, we focused on closely analyz-
ing a smaller set of developers’ strategic behavior rather than a more shallow
analysis of a larger group of developers’ behavior.

The design of our study involved two groups completing the same set of
two tasks. Our goal was for each group to have similar basic knowledge of
a set of languages, APIs, and tools, but varying the independent variable of
strategic knowledge. One group, which we will call self-guided, completed the
tasks through standard practice, unaided by explicit strategies or the strategy
tracker tool. This group provided us a baseline for comparison, helping us
understand variation of strategies without the presence of explicit Roboto
strategies. The second group, which we will call guided, completed the tasks
with explicit strategies through the strategy tracker tool and was instructed to
follow the strategies as long as they were helping accomplish the task. These
two groups allowed us to contrast guided and self-guided strategic behavior,
highlighting the strengths and weakness of both forms of programming work.
Our study materials and replication package are publicly available 2.

4.1 Programming Strategies

Rather than construct our own explicit strategies, we adapted strategies re-
ported in prior work into Roboto notation, including those that have been
fully automated in prior tools but are also appropriate for manual execution
and strategies that cannot or have not yet been automated. We selected two
strategies, one for design and one for fault localization.

For a design strategy, we adapted Test-Driven Development [5] into the
Roboto strategy shown in Figure 6. We described each step in detail, adding

2 https://github.com/devuxd/ExplicitProgrammingStrategiesStudyMaterials

18 LaToza, Arab, Loksa, and Ko

1 # This is a strategy for doing design by writing tests first and then making sure code passes
2 # the tests. This strategy requires one parameter: requirements. Requirements describe in
3 # detail what your application should do. They often take the form of text explaining how
4 # your application should behave, particularly in response to specific inputs. In this
5 # strategy, you will need to reference the requirements for your application. You can either
6 # copy them here or simply refer to them being elsewhere.
7 STRATEGY testDrivenDevelopment(requirements)
8 # The first step in test-driven development is enumerating all of the user scenarios.
9 # You want to ensure that you enumerate specific requirements that are focused and small
10 # and can be described in a sentence or less. You should try to find all of the user
11 # scenarios which might exist.
12 # You should separate each scenario with a comma.
13 SET 'scenarios' to be short descriptions of the testable user scenarios in requirements
14 FOR EACH 'scenario' IN 'scenarios'
15 Create a new test for scenario
16 # Check that the new test demonstrates that the scenario is not yet implemented by
17 # checking that it does not pass
18 UNTIL the new test does not pass
19 Fix the new test so that it does not pass
20 # Make it work
21 Implement the code to make the test pass
22 Run the tests
23 UNTIL all of the tests pass
24 Edit the code to address the test failure
25 Run the tests
26 # Make it right
27 # Look to see if there any issues that make the design less than ideal.
28 SET 'designIssue' TO be an unaddressed design issue if any or nothing otherwise
29 UNTIL 'designIssue' is nothing
30 Edit the code to fix the design issue
31 Run the tests
32 SET 'designIssue' TO be an unaddressed design issue if any or nothing otherwise
33 # Make it fast
34 # Look to see if there any performance issues that might cause it to be slow in some
35 # circumstances
36 SET 'perfIssue' TO be an unaddressed performance issue if any or nothing otherwise
37 UNTIL 'perfIssue' is nothing
38 Edit the code to fix the performance issue
39 Run the tests
40 SET 'perfIssue' TO be an unaddressed performance issue if any or nothing otherwise

Fig. 6: The test-driven development strategy, translating scenarios into tests,
which drive development.

comments to explain the motivation for each step. In piloting, we found that
this explanation was largely sufficient in helping participants understand the
idea of the strategy.

For fault localization, we selected a precise backwards dynamic slicing al-
gorithm, as used in the Whyline [37], which has been shown to significantly
reduce developers’ time to localize a fault [40]. While this strategy has been
used in a purely automated tool, few widely used platforms support the ex-
ecution tracing stack necessary to use the Whyline in practice. Therefore,
manually following the algorithm by leveraging human cognition as a source
of data collection and capture may be a reasonable substitute. Figure 7 shows
the Roboto strategy we wrote for precise backwards dynamic slicing. We found
during piloting that in addition to providing the core approach to backwards
slicing, the strategy also required extensive rationale and guidance to help de-
velopers execute their portion of the strategy successfully. We included these as
comments, iteratively refining the explanations and rationale in the comments
through pilot testing, while attempting to keep the strategy generic.

Explicit Programming Strategies 19

1 # If you've spent a lot of time debugging unfamiliar code, the way that you probably debug is
2 # to first look at the failure, then look at the code to understand how it's architected, and
3 # then look for possible reasons for why the program failed. Once you have a guess, you
4 # probably then check it with things like breakpoints and logging. This strategy often works
5 # if you can have a lot of prior experience with debugging and inspecting program state. But
6 # if you don't have that experience, or you happen to guess wrong, this approach can lead to
7 # a lot of dead ends.
8 #
9 # The strategy you're about to use is different. Instead of guessing and checking, this
10 # strategy involves systematically working backwards from the code that directly caused the
11 # failed output to all of the code that caused that failed output to occur. As you work
12 # backwards, you'll check each statement for defects. If you work backwards like this,
13 # following the chain of causality from failure to cause, you will almost certainly find the
14 # bug.

15 STRATEGY debug()
16 # This first step will give you enough familiarity to find lines in the program that create
17 # the program's output. Read the names of all of the functions and variables in the program
18 # Some programs produce command line output with print statements.
19 # Is the faulty output you're investigating printed to a command line?
20 IF the faulty output is logged to a command line
21 # To find print statements, try searching for keywords related to 'log' or 'print'
22 SET outputLines TO the line numbers of calls to console logging functions
23 # Graphical output includes things like colored lines and rectangles
24 IF the faulty output is graphical output
25 # To find these lines, try searching for keywords related to graphical output, like '
26 # draw' or 'fill'. Focus on lines that directly render something, not on higher-level
27 # functions that indirectly call rendering functions.
28 SET outputLines TO the line numbers of function calls that directly render graphics to
29 the screen
30 # Now that you have some lines that could have directly produced the faulty output, you're
31 # going to check each line, see if it executed, and then find the cause of it executing. If
32 # you're lucky, you only have one output line to check.
33 FOR EACH 'line' IN 'outputLines'
34 # First, let's make sure the line executed. You want to be sure that this is actually the
35 # source of the wrong output. You can check this by inserting a logging statement, or
36 # setting a breakpoint on the line.
37 IF the program executed 'line'
38 Analyze the line to determine its role in the overall behavior of the program
39 # Check for errors such as the wrong function being called, the wrong argument being
40 # passed to a function, the wrong variable being referenced, or a wrong operator being
41 # used.
42 IF any part of 'line' is inconsistent with its purpose
43 # You found the bug
44 RETURN 'line'
45 # If the output statement is not wrong, perhaps the line was not supposed to execute at
46 # all?
47 IF 'line' was not supposed to execute at all
48 # The conditional might be in the same function as the output statement, or it might
49 # have been a conditional in a function that called this function. Check the call
50 # stack if necessary by setting a breakpoint. Find the conditional that led this line
51 # to being executed
52 # Some value in the conditional's boolean expression must have been wrong. Which
53 # value was it?
54 SET 'wrongValue' to the value in the conditional's boolean expression that ultimately
55 allowed the faulty output to execute
56 # We'll use another strategy to find the source of the incorrect value.
57 RETURN localizeWrongValue('wrongValue')
58 # If the line was supposed to execute, but it executed with an incorrect value, find
59 # that value.
60 IF 'line' executed with an incorrect value
61 SET 'wrongValue' TO the incorrect value
62 # We'll use another strategy to find the cause of the incorrect value.
63 RETURN localizeWrongValue('wrongValue')
64 # If you made it to this line, then you must have missed something. Is it possible you
65 # made a mistake above? If so, go back and verify your work, because something caused the
66 # faulty output.
67 RETURN nothing

68 STRATEGY localizeWrongValue(wrongValue)
69 # The approach of this strategy is to recursively search backwards for the source of a
70 # value. We begin by finding all of the lines of code that could have produced the wrong
71 # value. For example, if a value was stored in a variable, we would find all of the
72 # assignments to that variable that could have defined the variables current value. If it
73 # was a function's return value, find the return statements that returned that wrong value.
74 # These lines include expressions that computed the wrong value, a value passed in through
75 # a parameter, or a function call that returned a value. Inspect the code to find the
76 # source of the incorrect value.
77 SET 'lines' to all of the lines of the the program that could have produced 'wrongValue'
78 # We'll check each line for errors, or for faulty values.
79 FOR EACH 'line' IN 'lines'
80 # Use a logging statement or a breakpoint to verify that this line actually executed.
81 IF 'line' executed
82 # Does the line incorrectly compute the value? If so, you found the defect!
83 IF 'line' is defective
84 RETURN 'line'
85 # If the line itself wasn't defective, maybe one of the values it used to execute was
86 # defective.
87 SET 'badValue' TO any incorrect value used by the line to execute
88 IF 'value' isn't nothing
89 RETURN localizeWrongValue('badValue')
90 # If you made it to this line, then you didn't find the cause of the wrong value. Is it
91 # possible you made a mistake above? If so, check your work and start over.
92 RETURN nothing

Fig. 7: The backwards slicing debugging strategy, showing extensive comments
detailing the rationale for each step.

20 LaToza, Arab, Loksa, and Ko

4.2 Participants

To understand the range of possible benefits and problems, we sought to re-
cruit developers with diverse programming expertise. This would help us reveal
the range of reactions that developers have to explicit strategies. Measuring
programming expertise is still more of an art than a science, with no validated
general instruments, and only early evidence of what programming expertise
is and scant evidence of which factors correlate with it. However, recent prior
work suggests that the best predictors of productivity and program quality
are granular measurements related to a task, not years of experience [16], and
so we grounded our measures of expertise in the task domain we selected:
front-end web development in JavaScript. Therefore, our inclusion criteria for
study participation were robust knowledge of JavaScript semantics and robust
knowledge of front-end web development APIs. For each, participants were
given a JavaScript program and asked to describe its output. We scored each
based on the number of correct described output lines, with a maximum pos-
sible score of 7 across the two tasks. There was a clear bimodal distribution
in the middle of the scale, so we invited participants who scored 5 or above
to participate. To ensure that participants in each condition had similar lev-
els of expertise, we used stratified random sampling to assign participants to
groups. For the 19 participants with the maximum possible score of 7, 10 were
assigned to the control condition and 9 to the experimental condition. Of the
remainder, 5 were assigned to the experimental condition and 4 the control
condition.

Because our goal was a diverse sample with varying expertise, our recruit-
ment strategy involved several distinct efforts. First, we recruited from under-
graduate populations with students who had taken a web development course
that taught HTML, CSS, JavaScript, and the React framework, as well as from
undergraduate populations that self-reported experience in web development.
Second, we recruited from several populations of graduate students, spanning
both full time students as well as part time students currently employed full
time as a software developer. Finally, we recruited full-time software developers
from our professional networks. Overall, this yielded a sample of 28 partici-
pants, with a range of 2 to 28 years of programming experience (median 5,
inter-quartile 5) and 0 to 15 years of industrial experience as a software devel-
oper (median 2, inter-quartile 3). Participants were between 20 and 36 years
of age (median 25, inter-quartile 7). 21 participants were male, and 7 female.

4.3 Tasks

To help us explore the varying impact of explicit strategies, we asked par-
ticipants to complete two tasks, one debugging task localizing a defect from
reproduction steps and one design task translating a natural language prob-
lem statement into an implementation. Because our participants had a range
of strategic expertise, we needed tasks that would be challenging for experts

Explicit Programming Strategies 21

but not impossible for novices. Therefore, the debugging and design tasks fo-
cused on helping participants learn to use the strategies and strategy tracker,
approximating first-time use rather than long-term expert use. To select these
tasks, we first iterated on their design using pilot studies. The final debug-
ging task provided a defective web-based action game with a snake that only
moved diagonally rather than in response to keyboard input. The design task
asked participants to create a simple auto-complete control which generates
and ranks completions based on the words that the user has entered in a text
area.

4.4 Data

To understand how explicit programming strategies helped and hindered de-
velopers, we gathered several sources of data for analysis.

Before beginning the study, we administered the inclusion criteria measure
of JavaScript prior knowledge, then collected demographic data to characterize
who was participating in the study.

To explore the effect of prior expertise on progress, our approach was to
focus on task expertise, rather than overall programming expertise. This is
because decades of prior work expertise in learning sciences clearly demon-
strates that expertise is task-specific [10]. Therefore, to measure task-specific
expertise, in our demographic survey, we presented natural language descrip-
tions of the TDD and precise backwards dynamic slicing debugging strategies,
and asked participants to self-report prior experience with each guided strat-
egy (e.g., our TDD scale ranged from, “used TDD extensively” to “have never
heard of TDD”). While there are clearly many facets to expertise on these spe-
cific strategies, and likely many degrees of expertise with these facets, partic-
ipants responses to these task-expertise questions were largely bimodal: most
participants reported being entirely unfamiliar with each strategy, and par-
ticipants who reported having using the strategy in the past. Therefore, we
ultimately classified each participant, for each task, as either unfamiliar or
familiar with the strategy. (We use these labels in presenting our results).

To observe participants’ work, the experimenter had a display mirroring
the participant’s screen and described high-level visible actions the participant
was taking, including interactions with the IDE, the strategy tracker, and
transcripts of think aloud speech. While we initially asked participants to
think aloud, participants often forgot, and we did not prompt them to think
aloud more than once. We also collected the final code produced for each task
as well as the time on task.

After completing each task, we interviewed participants, asking them to
describe the strategies they used (“Describe the strategy or strategies you used
to complete the task.”) and how they helped and hindered their progress (“How
did this strategy help in making progress on the task?” and “In what ways, if
any, did the strategy get in the way of making progress?”). (We describe how
we analyzed this data in Sections 4.7.1 and 4.7.2, where we present results).

22 LaToza, Arab, Loksa, and Ko

While observing the actual actions that developers performed to execute
their strategies would also be indicative of their strategies, and potentially
more objective, prior work on problem solving in other domains (primarily
mathematics) has shown that it is not possible to objectively infer strategies
from actions because there are many possible different strategies that can lead
to similar actions [62]. A more common approach to observing strategy is to
retrospectively ask a person to describe the strategies they used in as much
detail as possible. While these retrospective accounts have the risk of not
reflecting the strategies that someone actually used, prior work with children
as young as 8 are capable of accurately describing their strategic intents [15] as
long as the prompt occurs immediately after a short period of problem solving.
This has the added benefit of not requiring the experimenter to ask clarifying
questions about the actions they were taking, which can invoke self-regulation
skills that would not have otherwise been used [13].

4.5 Piloting

A standard best practice in designing controlled experiments of software en-
gineering tools is piloting, which involves conducting a study procedure to
identify and then eliminate confounding factors in measurement [35]. Because
our study design involved a new idea of explicit strategies and a potentially
unfamiliar programming environment, we piloted our study design and ma-
terials for the guided condition over 15 times before we had confidence that
participants could comprehend the strategies and tools they were to use. Pilot
participants were drawn from the same underlying population as the study
participants, graduate and undergraduate students as well as full-time soft-
ware developers with knowledge of web development. Each pilot participant
completed both the debugging and design tasks. To identify points of confusion
participants had understanding our materials, we used a number of signals:
misuse of tools, misunderstanding of a strategy, misunderstanding of a task,
usability problems with the tracker, misunderstanding of interview questions,
and insufficient prior knowledge about the languages and platforms. After each
round of piloting, we updated our materials to address these issues. After fif-
teen pilots, we no longer observed any of these categories of issues and were
therefore confident that most participants would have sufficient time and cog-
nitive resources to make sufficient progress on the tasks. We did not want or
need everyone to succeed at the tasks. This would have resulted in a ceil-
ing effect in our task performance measurements, which would have masked
the effects of the strategies we provided. We separately conducted three pilot
sessions with the self-guided condition, who interacted with a subset of the
materials used by guided participants.

Explicit Programming Strategies 23

4.6 Procedure

Prior to participating, participants completed the inclusion criteria assessment
and those that met the criteria were invited to participate. Study sessions
were conducted with individual participants both in-person (17) and remotely
through screensharing (11). At the beginning of the study session, participants
completed a short demographic assessment. Participants then worked through
a series of short tutorials on the WebStorm IDE, debugging in Chrome, and
writing unit tests in the Jasmine testing framework and completed short exer-
cises to apply their knowledge. Participants in the experimental condition were
then introduced to the idea of programming strategies, the Roboto language,
and the strategy tracker tool. The experimenter demoed using a strategy for
handling merge conflicts in Git, demonstrating following the strategy using
the strategy tracker. Participants then tried using a strategy themselves, solv-
ing a Tower of Hanoi example using the tool and the strategy in Figure 3.
To minimize the disruption of switching between the tool and the Tower of
Hanoi, participants were instructed to arrange each browser window side by
side. Finally, participants were reminded that, to benefit from the strategy,
they need to practice self-regulation and follow the strategy as described.

All participants were then given the debugging task followed by the design
task. Participants were given 30 minutes to complete each task. Participants
in the self-guided condition were asked to solve the task, and participants in
the guided condition were asked to use the strategy tracker to learn the strat-
egy and apply it to the task. Guided participants were instructed to place the
tool side by side with the development environment. At the end of the task,
participants were interviewed about their strategy and their experience using
the strategy. Participants were then given the design task and interviewed
again about their experiences. Finally, participants in the experimental con-
dition were debriefed about their experiences with explicit strategies and the
strategy tracker tool. Participants were compensated with a $30 gift card. The
study was approved by our institutions’ Institutional Review Boards.

4.7 Results

Our formative evaluation sought to answer three questions, which we answer
through the data we gathered.

4.7.1 What strategies did guided and self-guided developers use?

One of the first and most critical aspects of developer work was what strategies
they used. Self-guided participants could choose any strategy, while guided
participants had to decide whether to follow our prompt to use the provided
Roboto strategies, or deviate from them. We expected to observe a diversity
of strategies in both conditions.

24 LaToza, Arab, Loksa, and Ko

There are no well-studied methods for identifying strategy from developer
actions or verbal data. As noted in Section 4.4, we used a method from re-
search on mathematics problem solving for eliciting strategies [15], prompting
developers to retrospectively describe in words the strategies that they used to
solve the problem, and, if they used the provided strategy, to summarize it or
refer to it directly.

To categorize these retrospective descriptions of strategy, we individually
analyzed the strategy descriptions that developers provided for each task, using
the transcripts of actions to help interpret and contextualize their descriptions.
Our goal in this first analysis was to generate a set of distinct categories of
strategies and a coding scheme for classifying them. We then used this coding
scheme to categorize the one or more strategies that developers described
using. To assess the reliability of the coding scheme, we had two of the authors
independently categorize strategy descriptions for both tasks. Disagreements
on the first pass were minimal and emerged from ambiguities in the coding
scheme. After an additional pass, both authors reached 100% agreement in
which set of strategy codes to assign to each participant.

Table 1 lists the categories of strategies that emerged from our qualitative
analysis and examples of how developers described them. To our surprise, the
strategies that developers used were not particularly diverse. For the design
problem, the three strategies involved different approaches to decomposition:
reusing the decomposition in an existing example program (template), ana-
lyzing the problem for ideas for decomposition (decompose), or using tests
to drive decomposition (TDD). For the debugging task, participants either
modified the program to understand its behavior (guess & check), searched
forward from user input (forward), or searched backward from faulty output
(backward). The forward and backward strategies are consistent with existing
observations of debugging behavior [9].

Table 1 also shows the frequency of use of each type of strategy by con-
dition. Only 4 participants across both used more than one strategy while
debugging. For the design task, most self-guided participants used the de-
composition strategy, with only a few following TDD and template strategies.
Most of the participants in the guided condition reported following the TDD
strategy we provided. The one who did not had trouble describing a strategy
(and for two others we were missing data because of corrupted audio files).
None of the participants for which we had data used more than one strategy
during the design task. For the debugging task, most self-guided participants
used a forward strategy, while two also used a guess & check strategy. All
guided participants using the backwards strategy we provided, except for one
for which we had no data due to a corrupted audio file. A few interleaved a
forward search strategy into their process.

These results show that when developers retrospectively described their
strategies for these two tasks, 1) there was great regularity in the strategies
they reported using, 2) that developers given explicit strategies largely did not
deviate from them, and 3) that, at least during 30-minute tasks, developers
tend not to use multiple strategies.

Explicit Programming Strategies 25

Table 1: Strategies developers described using in the two tasks and their fre-
quency by condition.

Design Description Self-guided Guided
Template Found and used example code

as a template for implementation.
(“The first thing I did was to see
the code and a template. One of
things I want to do is to keep it
simple. If I pick something too long
or too complex, it make[s] it hard
for me to modify it. ”)

4/14 (29%) 0/14 (0%)

Decompose Analyzed functional requirements
for sub-problems, implementing
each independently “First I tried
to determine what exactly the func-
tion is supposed to do and the input
variables that are involved in it and
what it is supposed to return just
looking at the method signature...
Then I... tried getting started on
the function ... like creating any
necessary objects and arrays...”

9/14 (64%) 0/14 (0%)

TDD Translated functional requirements
into test cases, identifying sub-
problems from test case require-
ments. “Once I’m implementing
the tests for a scenario... So you
start by making a failing test which
is essentially just creating a stub.
And then you sort of fill out the
stuff with the minimum amount of
code that would just get it to pass.”

2/14 (14%) 11/14 (79%)

Debugging
Guess & check Participants found suspicious lines

of code, modifying them and check-
ing the effects of their modification.
“At some point I did some exper-
imentation, which is when I was
looking for something different, I
would change a line, I would add
a line, I would copy a line and see
what effects it would have. Just to
help further my understanding of
the code.”

2/14 (14%) 0/12 (0%)

Forward search Participants identified where the
program began processing input,
following its execution from there,
analyzing it for defects. “I started
by reading, getting an overview of
the whole code in the IDE [to]
see where the functions were. Then
I looked for some functions that
had to do with movement or in-
put. Then [I] tr[ied] to understand
two functions that I identified as
problematic that would be causing
the problem, which were the ‘check-
input’ and ‘move’.”

13/14 (93%) 3/14 (21%)

Backward search Participants identified faulty out-
put and worked backwards through
control and data flow dependencies
to localize the statement(s) that
caused the failure (same as the ex-
plicit debugging strategy provided
to the guided group). “The ap-
proach I took was to... look at each
line that put a graphic output on
the screen. And then, run through
each line really systematically to
see like what it did, if it was work-
ing, if it was supposed to execute in
the first place.”

1/14 (7%) 13/14 (100%)

26 LaToza, Arab, Loksa, and Ko

4.7.2 How did explicit strategies help and hinder developers’ problem solving?

Whereas the previous section described what developers did, here we analyze
developers’ perceptions of how the strategies they used (theirs or the strategies
we provided) influenced their problem solving process. To perform this anal-
ysis, we used the answers that developers provided to our post-task prompts
of what “helped” and “hindered” their progress on their task. We gave the
same prompt to both guided and self-guided participants, asking them to re-
flect on all of the strategies they employed during the task. After transcribing
their answers, we inductively developed a set of attitudes expressed across the
answers in both conditions. This resulted in a separate code book of positive
and negative attitudes for each task, including 18 distinct attitudes about the
debugging task, and 19 distinct attitudes about the design task.

Common practice in qualitative software engineering research is often to
quantify qualitative data by coding, counting it, and measuring inter-rater re-
liability in these counts. However, we took a different approach to qualitative
coding recently advocated by Hammer and Berland, and now widely adopted
in the learning sciences [28]. Their perspective on qualitative data argues that
the richest meaning of qualitative data emerges from a detailed analysis of the
disagreements in a group of coders about what the data means and how it
was classified according to a coding scheme. Therefore, rather than relying on
inter-rater reliability measures for validity, we instead analyzed our disagree-
ments to assess validity. To do this, our process for coding was to reach 100%
agreement on the attitudes in each response, and in the process, surface detail
about our disagreements that revealed potential flaws in the validity of our
coding scheme. To achieve this, two authors independently assigned zero or
more help and hinder attitudes to the 108 transcribed responses (28 partici-
pants, two tasks each, two questions each). After this process, the two authors
disagreed on only 12 of the responses. They discussed each of these 12 dis-
agreements, some of which were attitudes that were overlooked and therefore
added to the coding scheme, and some of which were disagreements about what
counted as an “attitude”. The coders discussed all other agreed upon codes
and determined that their interpretations emerged from the same meaning of
the data.

Template strategies for the design task. For the design task, the self-
guided participants had similar attitudes about their chosen strategies. The
4 that used the Template strategy (one of which reported no experience with
TDD), for example, all described the examples they found as providing a clear
starting point for their work, but that trying to comprehend the example code
was challenging, and that this comprehension took extra time. For example,
one participant said:

“At first, I thought it was kind of cheating. I dont use library. At the be-
ginning it makes you spend some time but at the end when you get that
done and you will be able to add every case... For me trying to under-

Explicit Programming Strategies 27

stand somebody else code is difficult... The way they named variables,
the way they put the structure... it sometimes hindered progress.”

Of the four developers using the template strategy, only one satisfied any
requirements for the task.

Decomposition strategies for design task. Of the 9 participants (all
self-guided) that reported using a Decomposition strategy, 4 reported that it
“organized” their work and another 4 reported that it gave them a “starting
point” for their work. Of these 9, however, three reported that they viewed
decomposition as taking extra time and one noted that mistakes in decompo-
sition eventually required them to redesign their solution. One representative
participant said:

“[Decomposition] was helpful because initially when I read the prob-
lem I thought I might be out of depth in this thing because I didn’t
understand how will I proceed with this problem, but after that, even I
asked a few questions, I tried to understand the full specification of the
problem so I can break it down into more understandable, more man-
ageable problems... It helped me comprehend the problem a lot better
and to approach the problem in a better manner.”

All but one of these 9 participants using the decomposition strategy satis-
fied three or more of the task requirements.

TDD strategies for the design task. The 2 self-guided participants
and the 11 guided participants that reported using a test-driven development
strategy reported that TDD helped them “organize their work” (8 of 13),
helped build “confidence” in the correctness of their code (3 of 13), helped
avoid extra work (2 of 13), and provided a “starting point” (2 of 13). Attitudes
between the guided and self-guided TDD participants about how TDD helped
were indistinguishable, but sentiments about how it hindered differed: the two
self-guided participants reported TDD taking extra time (2 of 2). Most guided
participants reported no hindrances, except for some (2 of 11) reporting some
uncertainty about how to interpret the explicit strategy’s instructions and
one reporting a fear of diverging from the strategy. One guided participant
captured these attitudes well:

“[Test-driven development] was really good at, dont overwhelm yourself
with the details [you] don’t need quite yet. By starting very simple, just
getting it so there’s... return an empty array of that, I make a little bit
of progress. And for me, TDD is always a little bit like a game... I
always have a little incremental improvement that I could do on this
task. That really helped.”

While all participants using TDD felt like their work was more systematic,
only those reporting experience with TDD made progress on implementing
functional requirements. Those reporting no experience with TDD reported
investing more of their time learning to plan and writing tests than writing
code to satisfy tests.

28 LaToza, Arab, Loksa, and Ko

Guess & check strategies for the debugging task. The two partici-
pants who used the Guess & check strategy (both in the self-guided condition
and neither successful at the task), mentioned that trying to debug by mod-
ifying the program caused them to focus too narrowly in their search. Both
of these participants quickly abandoned this strategy for the forward search
strategy.

Forward strategies for the debugging task. The 13 self-guided and 3
guided participants that used a Forward search strategy reported that there
was little helpful about it, with the exception of two participants that said it
helped them gain some familiarity with the code. Many reported that it caused
them to have a long startup period (4 of 16), that it did not feel systematic (3
of 16), and that it wasted time (2 of 16). These attitudes likely were influenced
by most of these participants not localizing the defect. This developer captured
these attitudes well:

“[I] felt scattered sometimes. Like I would go to one thing, and I feel
like I get a little off track like ’what was I going here for?’... Or like
once I eliminated that track, I had to like think of what I was doing
before I went down that path.”

Of these 16 participants who used a forward strategy, 7 reported before
the task that they had experience with working backwards, but none used the
strategy in the task. Moreover, the forward strategy was ultimately unhelpful,
with only 3 finding the defect and none fixing it.

Backward strategies for the debugging task. The 14 participants
that used the Backward search strategy (all in the guided condition, but only 3
reporting prior experience with a backward search strategy) felt positive about
the strategy and the explicit support for executing it. Many said it provided
them a helpful sequence of steps to localize the fault (5 of 14), helped them
be systematic in their process (2 of 14), provided them context for their fault
localization (3 of 14), and saved time (2 of 14). All participants reported that
it was helpful, including the 5 who made no progress on finding or fixing the
defect. The only hindrances that the guided participants noted were that the
explicit strategy occasionally had unclear instructions (2 of 14), and that they
often felt there was not room to deviate using their instincts or experience (2
of 14). One participant described these trade-offs well:

“I don’t typically do the due diligence of reading all of the variable
names and function names when I’m dealing with this sort of thing.
And it seemed pretty clear to me that this is maybe a really good idea.
Because one thing I noticed was that my initial instinct was to try to
really close[ly] read the flow of the program. Then, when I remembered
that the task was actually just to read the variable names and function
names, I was able to get through it much much faster. I still had a
pretty good idea of actually how it worked without getting quite as in
detail with the rest of the flow of the program... ”

This same guided participant shared their thoughts on how the explicit
strategy hindered them:

Explicit Programming Strategies 29

“I’m following these instructions, and I’m trying very hard to adhere
to the instructions. It can feel kind of confining... It made me kind of
hesitant to trust my instinct on things... I felt the need to really slow
down, read the instructions multiple times, and to not do any action
that could sort of mess up my adherence to the instructions.”

In contrast, the one self-guided participant that attempted to use a back-
wards search strategy said:

“Since I wasn’t used to this code, at first it was a little overwhelming.
I was like oh what does all this mean... I couldn’t understand all of
the key components interact with each other and how each of these
functions or variables were being used...

The overarching trend in these attitudes was that participants tended not
to choose TDD and backward search when given a choice, even when they
reported experience with them, but when compelled to use them, appreciated
how explicit strategies helped organize their work and remember to take key
steps in developing their understanding of a problem or program.

4.7.3 To what extent did explicit strategies improve progress on debugging
and design tasks?

Whereas the prior two result sections show that most participants did not
choose the TDD or backwards search strategies independently but found value
when they used them, here we examine if explicit strategies helped developers.
To assess outcomes, we used a separate definition of task progress for the design
and debugging tasks.

For the design task, we defined two independent factors for measuring the
amount of progress. The first factor was how functionally correct a partici-
pants’ solution was with respect to our prompt. To measure this, we enumer-
ated the requirements provided in the task description and developed a rubric
for judging whether each of 5 requirements were satisfied or not. Two authors
analyzed the problem statement for requirements, discussed ways of detecting
having met these requirements in participants’ implementations, and agreed
upon a rubric that assigned a point per requirement, resulting in an ordinal
0-5 scale. One author scored each submission using this scale. Figure 8a shows
the number of participant on each group of guided and self guided participants
based on strategy familiarity and condition.

Our second measure of progress on the design task was the maturity of
the solution’s verification infrastructure, which both guided and self-guided
participants wrote. We counted each test that did not have syntax errors and
that had a purpose related to a requirement, independent of a corresponding
implementation. This resulted in an ordinal scale ranging from 0 to an observed
maximum of 5 tests. Figure 8b shows progress scores by condition and strategy
familiarity for the number of total participant on each group.

30 LaToza, Arab, Loksa, and Ko

For the debugging task, we defined three ordinal levels of progress: fixed if
they identified the location of the defect and proposed a correct fix, found if
they found the defect but could not fix it, and failed otherwise. Our ordinal
scale ordered these from low to high as failed, found, and fixed.

Figures 8 and 9 show the level of progress that participants reached on
each of the tasks. To examine if the explicit strategy manipulation or strat-
egy familiarity had an effect on our three ordinal progress scales, we used
the Wilcoxon Rank Sum Test, a non-parametric test to compare outcomes be-
tween two independent groups suitable for ordinal data [29]. Table 2 shows the
results. Guided participants in the design task wrote significantly more tests,
but did not satisfy significantly more requirements in their implementation.
In the debugging task, guided participants made significantly more progress.
Strategy familiarity with TDD was not related to progress on the design task
with tests or requirements, and strategy familiarity with a backwards search
debugging strategy was not related to progress on localizing the fault, sug-
gesting that it was the explicit support for the strategy that resulted in more
tests and more successful fault localization.

Explicit Programming Strategies 31

Table 2: Effects of guidance and strategy familiarity on task progress. Wilcoxon
Rank Sum Test *=p<.05.

Task Param Diff P-value

Design-Implementation
Familiar 87.0 0.3021
Guided 82.5 0.2325

Design-Tests
Familiar 72.0 0.1036
Guided 48.0 0.0076*

Debug
Familiar 92.5 0.4779
Guided 39.5 0.0008*

(a) a) The number of requirements satisfied by participants in the design task

(b) b) The number of relevant tests created by participants in the design task

Fig. 8: Progress on the design task by condition and strategy familiarity. Each
block counts the number of participants that attained each level of progress.

32 LaToza, Arab, Loksa, and Ko

To understand the impact of the explicit strategy manipulation and strat-
egy familiarity jointly, we built an ordinal logistic regression model, which
controls for each factor. We chose an ordinal logistic regression model as the
dependent variable, progress, in both tasks was ordinal. Table 4 lists the model
parameters. The model shows that, accounting for the effects of strategy fa-
miliarity on TDD, guided participants in the design task were 1.3 times as
likely to write more tests. In the debugging task, guided developers were 1.96
times as likely to make more progress on localizing the fault. Notably, while
choice of strategy was significantly associated with more tests and successful
debugging, strategy familiarity was not.

Fig. 9: Progress on the debugging task by condition and strategy familiarity.

We also analyzed the effects of explicit strategies on task time. Overall, 23
out of 28 participants on the debugging task used the full task time and 22 out
of 28 participants on the design task used the full task time. Analyzing time
by condition on the debugging task, 4 of the 5 participants who finished early
were guided. On the design task, 5 of the 6 participants who finished early
were guided. We tested for an effect of the explicit strategy manipulation and
strategy familiarity on task time with a Wilcoxon Sum Rank Test. As the
results in Table 3 show, the effects of strategy familiarity on task time was
not significant for either task. The effect of guidance on task time was not
significant for the design task and approached significance for the debugging
task (p = 0.056).

5 Threats to validity

As with any empirical study, our study design had several types of threats to
validity.

Explicit Programming Strategies 33

Table 3: Effects of guidance and strategy familiarity on task time. Wilcoxon
Rank Sum Test *=p<.05.

Task Param Diff P-value

Design
Familiar 93.5 0.393
Guided 75.5 0.870

Debug
Familiar 93.5 0.500
Guided 75 0.056

Table 4: Effects of guidance and strategy familiarity on progress. Ordinal lo-
gistic regressions for each task. *=p<.05.

Task Param Odds ratio SE B Wald Pr > χ2

Design-Impl
Familiar 0.60 0.682 0.204 0.651
Guided 0.73 0.691 0.487 0.485

Design-Tests
Familiar 0.84 0.752 0.808 0.369
Guided 1.30 0.799 5.177 0.023*

Debug
Familiar 1.40 1.296 2.807 0.094
Guided 1.96 1.562 8.398 0.004*

There were several issues in our study design related to construct validity.
Because there are no well-validated measures of prior knowledge in program-
ming or specific strategies, our measures were coarse, which means that our
claims about the relationship between task expertise and task performance are
tentative. In measuring progress on the debugging and design tasks, we chose
measures that assessed how developers localized the defect for the debugging
task and how many requirements and tests of these requirements developers
wrote for the design task. It is possible that developers may have made some
progress in ways that were not measured, for example formulating a correct
hypothesis about the cause of a defect without a location or formulating a
plan in their head about how to implement a behavior without writing it
down. To identify the strategy that each participant used, we grouped similar
strategies into clusters. As with any clustering approach, strategies might have
been further broken down into additional sub-clusters reflecting variants of the
higher-level strategies we focused on.

From a conclusion validity perspective, there were several issues. First and
foremost, our sample included diverse programming expertise, but this diver-
sity inevitably led to significant variation in task performance. This decreased
our ability to see the effects of explicit strategies experimentally. Additionally,
calibrating task difficulty is always challenging, especially with such diverse
prior knowledge. This meant that both the TDD and debugging tasks had
floor effects, with many participants making no progress in the short amount
of time we offered them. This reduced the sensitivity of our measurements,
reducing our ability to precisely assess the effect size of our results. To ensure
that incentives did not bias participants, all participants were compensated the
same amount, regardless of condition, task performance, or their responses.

34 LaToza, Arab, Loksa, and Ko

From an external validity perspective, our study design had many artificial
qualities. Our participants were unfamiliar with the concept of a programming
strategy, and we provided training materials as well as a demo by the experi-
menter. In practice, developers who were already familiar with the concept of
a strategy might not need as extensive training materials. Conversely, train-
ing inexperienced developers might require more scalable training materials,
without the need of in-person training.

In practice, we would expect developers to learn strategies over a much
longer period of time and eventually excel at applying them (perhaps even
without the aid of the strategy execution support we provided). In our ex-
periment, however, we measured only the first exposure to explicit strategies,
with very little time for practice. While this is an important part of strategy
use to study—after all, any adopter of explicit programming strategies will go
through it, and this determines whether they are likely to use them again—
it does not address the potential of explicit strategies to shape programming
practices over long periods of time in professional contexts. Our sample may
also have been biased, since the authors’ recruited participants from their so-
cial networks. There may be unique demographics in these groups that do not
capture programming expertise in other social networks. The two tasks that
we chose, while representative of the broad categories of design and debugging
tasks, are specific tasks that do not represent the full range of task variation
in software engineering. Investigating the effect of explicit strategies on that
range is necessarily left to future work. Finally, we chose tasks for which de-
velopers could make progress within the time bounds of a lab study. We did
not observe developers working on longer and more complex debugging or de-
sign tasks. These might raise additional challenges which might increase or
decrease the benefits offered by explicit strategies.

6 Discussion

Our formative evaluation illustrates some of the potential benefits of explicit
programming strategies. Developers guided by a strategy described their work
as more organized, systematic, and predictable; they also performed objec-
tively better on debugging and testing tasks. Guided developers worked qual-
itatively differently than the ways in which unguided developers naturally
worked, debugging through backwards rather than forwards search and de-
signing using test-driven development rather than simple decomposition. In
this way, developers were able to change the way they approached these prob-
lems and benefited from the collective software engineering wisdom embodied
in these strategies, unlike the unguided developers, who had to rely on only
their own strategic expertise.

Our initial results raise a variety of important questions in how developers
might effectively interact with a programming strategy. Future studies might
include multiple conditions with different strategies to compare their effec-
tiveness, employ a longitudinal deployment of a strategy into an organization

Explicit Programming Strategies 35

to examine its use and adoption over time, or examine how developers might
create strategies by asking experienced developers to write down their own
strategies.

The effectiveness of a developer employing a novel strategy depends on
the context in which it is used. In our study, we found that developer who
adopted a backwards strategy were more effective than those who used a for-
ward strategy. But one might imagine a task for which the opposite is true,
if, for example, the defect is located closer to the input processing than the
output processing. Whether or not test-driven development results in overall
productivity benefits may also depend on context, as its benefits are not consis-
tently visible [65]. In this way, much more research is necessary to understand
the fitness to purpose of various software engineering strategies for the typical
situations in which developers work. Making strategies explicit and capturing
strategies is an important first step, helping open up a future space of research
that examines how, when, and whether specific strategies are effective. If the
number of strategies available were to increase, helping developers choose an
effective strategy based on their context would also become a critical problem.

While we believe Roboto is an interesting point in the design space of pro-
gramming strategy description languages, it is not the only possible design.
For example, one trade off of giving power over all control flow to the strat-
egy is that when a developer has better information than the strategy, or a
better strategy altogether, a developer must effectively abandon the explicit
strategy altogether and go forward alone. Strategy languages that make dif-
ferent choices from Roboto might better support reuse of persisted state and
points of deviation in a strategy flow. Prior work on organizational behavior
also suggests that any sufficiently complex goal requires open-ended adaption.
Crowdsourcing researchers have argued that this is an inherent limitation of
workflows built into crowdsourcing systems, suggesting that explicit strate-
gies might be powerful for some forms of tasks but not necessarily all tasks,
and especially not for tasks involving entire teams and organizations. [55]. It
might be possible to create alternative language designs that are more reactive,
where the developer has more control to change the plan they are following
through mechanisms such as events or exceptions. However, our study partic-
ipants found value in being encouraged to be more systematic, suggesting it
is important to understand how to effectively balance adaptation with being
systematic.

In addition to these language design considerations, the content of a strat-
egy is likely equally important. For example, Roboto only allows for the tar-
geting of one level of expertise: if a developer does not sufficiently understand
how to execute an action or query, they may have no way to proceed and will
abandon the strategy. For expert developers, new strategies may be harder
to adopt, as past strategies used frequently over time become habitual, auto-
matic, and unconscious, much as tying a shoe. At the same time, developers
who feel they already have an effective strategy may be hard to motivate to
change their strategy. In contrast, novices with no strategies or who feel that
their strategies are ineffective may be more open to guidance. Alternative

36 LaToza, Arab, Loksa, and Ko

strategy description languages might offer affordances for learning unfamiliar
concepts and skills referred to in a strategy (e.g., a link to an outside resource
explaining a key concept), or for linking strategies with identical approaches
but different levels of scaffolding to guide behavior.

Another important question for future research to investigate is whether
environments which support developers in executing a strategy are beneficial
only when initially learning an unfamiliar strategy or are beneficial each time a
developer returns to a strategy. Participants found that the strategy execution
environment pushed them to be more systematic, but it is unclear to what de-
gree the change might persist over time if support were removed. In fields such
as medicine and aviation where safety and reliability are paramount, the value
of explicit strategies comes in part from ensuring that practitioners are sys-
tematic, helping avoid potentially costly errors that may be easily overlooked.
In software engineering tasks, the cost of missed steps may vary widely. When
debugging a defect, a missed step might prevent a developer from considering
a potential location. In other cases, in the moment situated actions based on
expertise may lead to better performance. The cost may also vary by task and
context, where missed steps might add time to getting to the same ultimate
answer or might result in defects with important consequences. There may
also be benefits of not being systematic, as developers shortcut long sets of
steps through new insights. Understanding the contextual factors influencing
the value of being systematic requires a more fine-grained understanding of the
moment-to-moment behavior which occurs throughout programming work.

In our study, we found that guided developers were generally able to un-
derstand and follow the strategies. But achieving this required an extensive
piloting process, in which we iterated the strategy descriptions to carefully
calibrate the level of detail for the specific expertise levels of our participants.
In practice, it may be easier to write strategies at multiple levels of detail,
supporting participants with varying levels of familiarity of the concepts ref-
erenced by strategies. In our current design, each statement is described with
progressive disclosure at two levels of detail, with a statement offering a one
line high-level description and the comment below clarifying details about
what key concepts mean (e.g., defining what “graphical output” is in Fig-
ure 5c). But for complex concepts, it may be helpful to go further, offering
longer explanations and examples to effectively teach key concepts. Alterna-
tively, complex queries and actions might themselves be linked to additional
sub-strategies and developers given the option to decide that they know the
substrategy and can execute it without assistance or to use a strategy tracker
to learn it in detail.

Building a repository of strategies also requires authoring the strategies. As
strategies ideally reflect the best known practices, one might imagine software
engineering researchers conducting empirical studies to identify various strate-
gies and codifying these explicitly, as we explicitly captured existing strategies
in this work. Or developers themselves might play a larger role, as strategy
creation is crowdsourced much as sites such as Stack Overflow crowdsource
knowledge sharing today. This requires techniques for motivating contribu-

Explicit Programming Strategies 37

tion, collaboratively identifying which strategies are most helpful and when.
It may also be helpful to involve users of strategies more directly, collect-
ing feedback to help surface issues and challenges with strategies, confusing or
inadequate text, and opportunities for refinement, which others might then ad-
dress. Companies and organizations might also have a role, as they might wish
to establish best practices for their domain or to increase the use of strategies
that prioritize specific qualities (e.g., quality over speed, or speed over qual-
ity). We envision a rich future ecosystem of strategies, where researchers and
developers work together to create, study, and improve strategies over time.

While our focus has been on explicit strategies for programming, the ideas
might also be relevant for knowledge intensive domains outside of program-
ming. In domains where computer and humans both have an important role in
solving specific problems, documenting how this collaboration is to take place
may have value. Or in more traditional domains where standard operating
procedures are commonly used, it may be helpful to offer greater tool support
for complex and challenging strategies.

As we noted in the beginning of this paper, programmer productivity is
not just a matter of using the right tools, it’s also a matter of how they are
used. Prior work, and the ideas and evidence in this paper reinforce this view,
suggesting that we need substantially more research on strategy languages
and tools like Roboto, and research on specific strategies. If we advance our
understanding of strategies, not only we we help developers better leverage
the tools and skills they have, but in doing so, improve software quality by
improving developers’ decisions.

7 Conclusion

In this paper, we explored the potential for guiding developers through ex-
plicit programming strategies which help to standardize and share steps for
solving typical programming problems much as engineering handbooks do in
other disciplines. In Roboto, strategies are captured as semi-formal procedures
that distribute responsibility to both the developer and computer, where the
developer is responsible for reasoning and deciding and the computer helps
structure processes and persist information. Using a strategy tracker, develop-
ers perform the core reasoning activities, as they are prompted to take action,
to gather and process information through queries, and make judgments about
their environment through conditions. In turn, the computer helps carry out
this reasoning and be more systematic in following the strategy by display-
ing the current statement, recording variables, and advancing the program
counter. In this way, the computer and developer work together. We found
that, compared to developers who are free to choose their own strategies, de-
velopers given explicit strategies experienced their work as more constrained
but also as more organized and systematic. And using explicit strategies en-
abled developers to be more successful in their work.

38 LaToza, Arab, Loksa, and Ko

Future work should explore many dimensions of explicit programming
strategies, including how to support developers in writing them, how to repre-
sent strategies support varying levels of expertise, and how to help developers
choose strategies appropriate to their tasks. This work could enable a world
in which how to program well is not a mysterious, expert skill, hard won only
through practice, but something that can be shared widely, for the benefit of
all developers.

Acknowledgements We thank our study participants for their time. This work was sup-
ported in part by the National Science Foundation under grants CCF-1703734 and CCF-
1703304.

References

1. Abbott, K., Bogart, C., Walkingshaw, E.: Programs for people: What we can learn from
lab protocols. In: Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 203–211 (2015)

2. Ames, C., Archer, J.: Achievement goals in the classroom: Students’ learning strategies
and motivation processes. Journal of Educational Psychology 80(3), 260 (1988)

3. Anderson, J.R., Conrad, F.G., Corbett, A.T.: Skill acquisition and the lisp tutor. Cog-
nitive Science 13(4), 467–505 (1989)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn. Addison-
Wesley Professional (2012)

5. Beck, K.: Test-driven development: by example. Addison-Wesley Professional (2003)
6. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile software
development (2001)

7. Bielaczyc, K., Pirolli, P.L., Brown, A.L.: Training in self-explanation and self-regulation
strategies: Investigating the effects of knowledge acquisition activities on problem solv-
ing. Cognition and instruction 13(2), 221–252 (1995)

8. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does distributed develop-
ment affect software quality? an empirical case study of windows vista. In: Proceedings
of the 31st international conference on software engineering, pp. 518–528. IEEE Com-
puter Society (2009)

9. Böhme, M., Soremekun, E.O., Chattopadhyay, S., Ugherughe, E., Zeller, A.: Where is
the bug and how is it fixed? an experiment with practitioners. In: European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 117–128 (2017)

10. Bransford, J.D., Brown, A.L., Cocking, R.R., et al.: How people learn, vol. 11. Wash-
ington, DC: National academy press (2000)

11. Çalışkan, S., Selçuk, G.S., Erol, M.: Effects of the problem solving strategies instruction
on the students physics problem solving performances and strategy usage. Procedia-
Social and Behavioral Sciences 2(2), 2239–2243 (2010)

12. Chen, W.F., Liew, J.R.: The civil engineering handbook. Crc Press (2002)
13. Chi, M.T.: Quantifying qualitative analyses of verbal data: A practical guide. The

Journal of the Learning Sciences 6(3), 271–315 (1997)
14. Davies, S.P.: Models and theories of programming strategy. Int. Journal of Man-Machine

Studies 39(2), 237–267 (1993)
15. Desoete, A., Roeyers, H., Buysse, A.: Metacognition and mathematical problem solving

in grade 3. Journal of Learning Disabilities 34(5), 435–447 (2001)
16. Dieste, O., Aranda, A.M., Uyaguari, F., Turhan, B., Tosun, A., Fucci, D., Oivo, M.,

Juristo, N.: Empirical evaluation of the effects of experience on code quality and pro-
grammer productivity: An exploratory study. ESE pp. 1–86 (2017)

Explicit Programming Strategies 39

17. Einstein, G.O., McDaniel, M.A.: Normal aging and prospective memory. Journal of
Experimental Psychology: Learning, Memory, and Cognition 16(4), 717 (1990)

18. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques for
software architecture design: A comparative survey. ACM Comput. Surv. 43(4), 33:1–
33:28 (2011)

19. Falkner, K., Vivian, R., Falkner, N.J.: Identifying computer science self-regulated learn-
ing strategies. In: Conference on Innovation & Technology in Computer Science Edu-
cation, pp. 291–296 (2014)

20. Felleisen, M.: How to design programs: an introduction to programming and computing.
MIT Press (2001)

21. Francel, M.A., Rugaber, S.: The value of slicing while debugging. Science of Computer
Programming 40(2-3), 151–169 (2001)

22. Frick, T., Reigeluth, C.: Formative research: A methodology for creating and improving
design theories. Instructional-design theories. Hillsdale, NJ: Lawrence Erlbaum Asso-
ciates pp. 633–652 (1999)

23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, Boston, MA, USA (1995)

24. Gawande, A., Lloyd, J.B.: The checklist manifesto: How to get things right, vol. 200.
Metropolitan Books New York (2010)

25. Gilmore, D.: Expert programming knowledge: a strategic approach. In: Psychology of
programming, pp. 223–234. Academic Press, London (1990)

26. Gilmore, D.J.: Models of debugging. Acta psychologica 78(1), 151–172 (1991)
27. Haidry, S.e.Z., Falkner, K., Szabo, C.: Identifying domain-specific cognitive strategies

for software engineering. In: Conference on Innovation and Technology in Computer
Science Education (SIGCSE), pp. 206–211 (2017)

28. Hammer, D., Berland, L.K.: Confusing claims for data: A critique of common practices
for presenting qualitative research on learning. Journal of the Learning Sciences 23(1),
37–46 (2014)

29. Hilton, J.F.: The appropriateness of the wilcoxon test in ordinal data. Statistics in
medicine 15(6), 631–645 (1996)

30. Horvitz, E.: Principles of mixed-initiative user interfaces. In: Conference on Human
Factors in Computing Systems (CHI), pp. 159–166 (1999)

31. Hutchins, E.: Cognition in the Wild. MIT Press (1995)
32. Kerievsky, J.: Refactoring to Patterns. Pearson Higher Education (2004)
33. Kersten, M., Murphy, G.C.: Using task context to improve programmer productivity.

In: Foundations of Software Engineering (FSE), pp. 1–11 (2006)
34. Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software development

teams. In: ICSE, pp. 344–353 (2007)
35. Ko, A.J., Latoza, T.D., Burnett, M.M.: A practical guide to controlled experiments of

software engineering tools with human participants. ESE 20(1), 110–141 (2015)
36. Ko, A.J., LaToza, T.D., Hull, S., Ko, E.A., Kwok, W., Quichocho, J., Akkaraju, H.,

Pandit, R.: Teaching explicit programming strategies to adolescents. In: Symposium on
Computer Science Education (SIGCSE), pp. 469–475 (2019)

37. Ko, A.J., Myers, B.: Extracting and answering why and why not questions about java
program output. Transactions on Software Engineering and Methodology (TOSEM)
20(2), 4 (2010)

38. Ko, A.J., Myers, B.A.: Designing the whyline: a debugging interface for asking questions
about program behavior. In: Conference on Human Factors in Computing Systems
(CHI), pp. 151–158 (2004)

39. Ko, A.J., Myers, B.A.: A framework and methodology for studying the causes of software
errors in programming systems. J. of Visual Languages & Computing 16(1-2), 41–84
(2005)

40. Ko, A.J., Myers, B.A.: Finding causes of program output with the java whyline. In:
Conference on Human Factors in Computing Systems (CHI), pp. 1569–1578. ACM
(2009)

41. Labouvie-Vief, G., Gonda, J.N.: Cognitive strategy training and intellectual perfor-
mance in the elderly. Journal of Gerontology 31(3), 327–332 (1976)

40 LaToza, Arab, Loksa, and Ko

42. LaToza, T.D., Garlan, D., Herbsleb, J.D., Myers, B.A.: Program comprehension as
fact finding. In: European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), pp. 361–370 (2007)

43. Li, P.L., Ko, A.J., Zhu, J.: What makes a great software engineer? In: ICSE, pp. 700–710
(2015)

44. Locke, E.A., Frederick, E., Lee, C., Bobko, P.: Effect of self-efficacy, goals, and task
strategies on task performance. Journal of applied psychology 69(2), 241 (1984)

45. Loksa, D., Ko, A.J.: The role of self-regulation in programming problem solving process
and success. In: Conference on International Computing Education Research (ICER),
pp. 83–91 (2016)

46. Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M.M.: Program-
ming, problem solving, and self-awareness: effects of explicit guidance. In: Conference
on Human Factors in Computing Systems (CHI), pp. 1449–1461 (2016)

47. Martin Fowler Kent Beck, J.B.W.O.D.R.: Refactoring: Improving the Design of Existing
Code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

48. McCartney, R., Eckerdal, A., Mostrom, J.E., Sanders, K., Zander, C.: Successful stu-
dents’ strategies for getting unstuck. In: Conference on Innovation and Technology in
Computer Science Education, pp. 156–160 (2007)

49. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific lan-
guages. ACM Computing Surveys 37(4), 316–344 (2005)

50. Metzger, R.C.: Debugging by thinking: A multidisciplinary approach. Digital Press
(2004)

51. Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., Zander, C.: De-
bugging: The good, the bad, and the quirky – a qualitative analysis of novices’ strategies.
In: Symposium on Computer Science Education (SIGCSE), pp. 163–167 (2008)

52. Pothier, G., Tanter, É.: Back to the future: Omniscient debugging. IEEE Software 26(6)
(2009)

53. Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a growing
field. In: Conference on Human Factors in Computing Systems (CHI), pp. 1403–1412
(2011)

54. Reason, J.: Human Error. Cambridge University Press (1990). DOI 10.1017/
CBO9781139062367

55. Retelny, D., Bernstein, M.S., Valentine, M.A.: No workflow can ever be enough: How
crowdsourcing workflows constrain complex work. Proc. ACM Hum.-Comp. Interact. 1
(2017)

56. Rist, R.S.: Program structure and design. Cognitive Science 19(4), 507–561 (1995)
57. Robillard, M.P., Coelho, W., Murphy, G.C.: How effective developers investigate source

code: an exploratory study. Trans. on Software Engineering 30(12), 889–903 (2004)
58. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A review

and discussion. Computer Science Education 13(2), 137–172 (2003)
59. Roehm, T., Tiarks, R., Koschke, R., Maalej, W.: How do professional developers com-

prehend software? In: International Conference on Software Engineering (ICSE), pp.
255–265 (2012)

60. Sackman, H., Erikson, W.J., Grant, E.E.: Exploratory experimental studies comparing
online and offline programming performance. Communications of the ACM (CACM)
11(1), 3–11 (1968)

61. Salinger, S., Prechelt, L.: Understanding Pair Programming: The Base Layer. BoD–
Books on Demand (2013)

62. Schoenfeld, A.H.: Episodes and executive decisions in mathematical problem solving.
In: Annual Meeting of the American Educational Research Association. ERIC (1981)

63. Sears, A., Jacko, J.A.: The human-computer interaction handbook: fundamentals, evolv-
ing technologies and emerging applications. CRC press (2007)

64. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Upper Saddle River, NJ (1996)

65. Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., Erdogmus, H.: What do we
know about test-driven development? IEEE Software 27(6), 16–19 (2010)

66. Sillito, J., Murphy, G.C., De Volder, K.: Asking and answering questions during a pro-
gramming change task. IEEE Trans. Softw. Eng. 34(4), 434–451 (2008)

Explicit Programming Strategies 41

67. Simon, H.A.: Theories of bounded rationality. Decision and organization 1(1), 161–176
(1972)

68. Suchman, L.A.: Plans and situated actions: The problem of human-machine communi-
cation. Cambridge university press (1987)

69. Von Mayrhauser, A., Vans, A.M.: Program comprehension during software maintenance
and evolution. Computer 28(8), 44–55 (1995)

70. Wieringa, D., Moore, C., Barnes, V.: Procedure writing: principles and practices. IEEE
(1998)

71. Xie, B., Nelson, G.L., Ko, A.J.: An explicit strategy to scaffold novice program tracing.
In: Symposium on Computer Science Education (SIGCSE), pp. 344–349 (2018)

72. Zamli, K.Z.: Process modeling languages: A literature review. Malaysian Journal of
Computer Science 14(2), 26–37 (2001)

73. Zeller, A.: Why programs fail: a guide to systematic debugging. Elsevier (2009)
74. Zhang, J., Norman, D.A.: Representations in distributed cognitive tasks. Cognitive

Science 18(1), 87 – 122 (1994)

	1 Introduction
	2 Background
	3 Explicit Programming Strategies
	4 Formative Evaluation
	5 Threats to validity
	6 Discussion
	7 Conclusion

