Empirical Software Engineering (2020) 25:4427-4471
https://doi.org/10.1007/510664-020-09835-6

®

Check for
updates

Software engineering whispers: The effect of textual
vs. graphical software design descriptions on software
design communication

Rodi Jolak' & . Maxime Savary-Leblanc? - Manuela Dalibor® . Andreas Wortmann3 -
Regina Hebig' - Juraj Vincur? - Ivan Polasek? - Xavier Le Pallec? - Sébastien Gérard® -
Michel R. V. Chaudron'

Published online: 10 September 2020
© The Author(s) 2020, corrected publication 2020

Abstract

Context Software engineering is a social and collaborative activity. Communicating and
sharing knowledge between software developers requires much effort. Hence, the quality
of communication plays an important role in influencing project success. To better under-
stand the effect of communication on project success, more in-depth empirical studies
investigating this phenomenon are needed.

Objective We investigate the effect of using a graphical versus textual design description
on co-located software design communication.

Method Therefore, we conducted a family of experiments involving a mix of 240 software
engineering students from four universities. We examined how different design represen-
tations (i.e., graphical vs. textual) affect the ability to Explain, Understand, Recall, and
Actively Communicate knowledge.

Results We found that the graphical design description is better than the textual in pro-
moting Active Discussion between developers and improving the Recall of design details.
Furthermore, compared to its unaltered version, a well-organized and motivated textual
design description—that is used for the same amount of time—enhances the recall of design
details and increases the amount of active discussions at the cost of reducing the perceived
quality of explaining.

Keywords Software engineering - Software design - Software modeling - UML -
Communication - Knowledge sharing - Graphical representation - Textual representation -
Family of experiments

Communicated by: Daniel Amyot

b4 Rodi Jolak
rodi.jolak @cse.gu.se

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09835-6&domain=pdf
http://orcid.org/0000-0001-5656-9253
mailto: rodi.jolak@cse.gu.se

4428 Empirical Software Engineering (2020) 25:4427-4471

1 Introduction

Software engineering is a social activity and requires intensive communication and collab-
oration between developers. In large companies, developers work in different development
teams and collaboratively communicate with many stakeholders. In such a setting, the qual-
ity of communication between the stakeholders plays an important role in reducing the
overall teams’, and thus projects’, development effort. In a multiple-case study on chal-
lenges and efforts of model-based software engineering approaches, Jolak et al. (2018)
analyzed the distribution of efforts over different development activities in two software
engineering projects. Interestingly, they found that communicating and sharing knowledge
dominates the effort spent by developers. The effort on communication, as Jolak et al. found,
is actually more than all of the efforts that developers spent in any of the other observed
development activities, such as, requirements analysis, design, coding, testing, integration,
and deployment.

Furthermore, poorly defined software applications (due to miscommunication between
stakeholders) can affect the final structure and/or behavior of these applications. This is in
line with Jarboe (1996) and Kortum et al. (2017) who consider that the quality of com-
munication does influence developers’ activity experience and achievement, and therefore
customer’s satisfaction.

The aforementioned studies underline the importance of communication in Software
Engineering (SE). They also highlight the need to study communication in-depth to deter-
mine elements or criteria of its efficiency and effectiveness. The study we present in this
article is inline with this concern: we investigate how different software architecture design
representations affect the communication of design knowledge. In particular, we compare
textual vs. graphical representations. In contrast to a fextual representation, a graphical rep-
resentation provides a two-dimensional visuospatial description of information reflecting
the actual spatial configurations of the parts of a process or system (Tversky 2018). With
respect to knowledge communication, we look into the following communication aspects:

1. Explaining: or knowledge donating, communicating the personal intellectual capital
from one person to others (De Vries et al. 2006).

2. Understanding: or knowledge collecting, receiving others’ intellectual capital (De Vries
et al. 20006).

3. Recall: or memory recall, recognizing or recalling knowledge from memory to produce
or retrieve previously learned information (Anderson LW et al. 2001).

4. Collaborative Interpersonal Communication (Soller 2001), which includes:

(a) Active Discussion: questioning, informing, and motivating others.

(b) Creative Conflict: arguing and reasoning about others’ discussions.

(c) Conversation Management: coordinating and acknowledging communicated infor-
mation.

1.1 Rationale

Kauffeld and Lehmann-Willenbrock (2012) suggested that effective team communica-
tion and information flow are prerequisites for the success of software development
projects. In a study on requirements practices in start-ups, Gralha et al. (2018) identi-
fied knowledge management and communication as increasingly important strategies for
risk mitigation and prevention. As a consequence, research concerning different factors

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4429

influencing the degree and way in which people communicate and share their knowledge is
actually relevant for maximizing the aforementioned advantages.

Graphical descriptions encode and present knowledge differently from textual descrip-
tions. In particular, they provide a visuospatial representation of information, and can recraft
these information into a multitude of forms by using fundamental graphical elements, such
as dots and lines, nodes and links (Tversky 2018). Moreover, graphical descriptions encour-
age spatial inferences (e.g., inferences about the behavior, causality, and function of a
system) to substitute for and support abstract inferences (Bobek and Tversky 2016).

This is inline with Moody (2010), who states that graphical and textual knowledge
representations are differently processed by the human mind. Empirical evidence on how
graphical descriptions affect developer’s achievement and development productivity is still
underwhelming, as reported by Hutchinson et al. (2011). Moreover, Melia et al. (2016)
report that the software engineering field lacks a body of empirical knowledge on how dif-
ferent representations (graphical vs. textual) could provide support for improving software
quality and development productivity.

In this study, we focus on design knowledge communication/transfer between two soft-
ware developers, where, by using a graphical vs. textual software design description, one
developer is taking the role of design Explainer (i.e., design knowledge owner), and one
developer is taking the role of design Receiver (i.e., design knowledge receiver). Rus et al.
(2002) reported that greatest challenge of companies is to retain tacit knowledge, mainly,
but also explicit knowledge (e.g., models).

Companies, such as Ericsson Software Technology' and sd&m,? started initiatives —
Ericsson’s initiative is called “Experience Engine”— to exchange knowledge between
developers by connecting two individuals, a problem owner and experience communicator.
The problem owner is the employee who requires information or support to solve a specific
problem and the experience communicator is the employee who has in-depth knowledge of
the problem domain. Having been connected, the experience communicator has to educate
the problem’s owner on how to solve it. The aforementioned initiatives illustrate that our
study has a practical relevance.

1.2 Objective and Contribution

We planned and conducted a family of experiments with a goal to understand and com-
pare the effect of using a Graphical Software Design description (GSD) versus a Textual
Software Design description (TSD) on software design communication.

Through this, we contribute to the body of empirical knowledge on the practical use of
graphical versus textual software design descriptions. Such knowledge might lead to achiev-
ing more effective software design communication, which in turn would help in reducing
the total effort of software development activities.

Consequently, we address the research objective by answering the following question:

— R.Q.1 How does the representation of software design (graphical vs. textual) influence
[Communication Aspect]?

Where the investigated [Communication Aspect]s are the following: (1) Design Explain-
ing, (2) Design Understanding, (3) Design Recall, (4) Active Discussion, (5) Creative Con
ict, and (6) Conversation Management. We first understand how each software design

Uhttps://www.ericsson.com
Zhttps://www.capgemini.com

@ Springer

https://www.ericsson.com
https://www.capgemini.com

4430 Empirical Software Engineering (2020) 25:4427-4471

representation (i.e., graphical/textual) affect the six aspects of communication that we
described previously (i.e., explaining, understanding, recall, active discussion, creative con-
flicts, and conversation management). Then, we compare the effect of using the graphical
vs. textual software design description on the considered communication aspects. To address
certain threats to external validity, we also compare the effect of using a cohesive® and moti-
vated* TSD versus less cohesive and unmotivated TSD on software design communication.
In particular, we address the following research question:

— R.Q.2 Does using a cohesive and motivated TSD in uence [Communication Aspect]?

Where the investigated [Communication Aspect]s are the following: (1) Design Explain-
ing, (2) Design Understanding, (3) Design Recall, (4) Active Discussion, (5) Creative
Conflict, and (6) Conversation Management.

The remainder of this paper is organized as follows: We discuss the related work in
Section 2. We describe the family of experiments in Section 3. We present the results in
Section 4. We discuss the results and threats to validity in Section 5. Finally, we conclude
and describe the future work in Section 6.

2 Related Work

Effective communication depends on various factors, such as personality (Cruz et al. 2015),
distance (Jolak et al. 2018), or knowledge representation (graphical vs. textual) (Heijstek
et al. 2011; Melia et al. 2016; Sharafi et al. 2013).

In a recent study on design activities of co-located and distributed collaborative software
design (Jolak et al. 2018), the authors investigate whether advanced technologies for dis-
tributed communication can replace personal meetings. The main result is that co-located
face-to-face meetings remain relevant as facial reactions and body language are often not
transmitted by current communication software. This is partly due to technical challenges,
such as unstable or slow Internet connection, that affect communication results.

In contrast to that study, our family of experiments does not investigate distributed
communication and is conducted without the use of communication tool-support

to mitigate the effects of technical challenges.

Melid et al. (2016) describe an experiment in which students perform maintenance tasks
on a graphical model and on a textual model. The authors investigate whether a model’s
syntax affects subjective and objective performance and whether the notation influences
developer satisfaction. Objective performance is measured by the number of correct answers
in the task whereas the subjective performance is the performance as perceived by the devel-
oper. In the experiment, participants were divided into two groups, one group worked with
a model for selling tickets, the other group had a model for organizing online courses. Par-
ticipants received the models in textual and in a graphical notation and were asked to find 5
errors in each notation. They also received 5 tasks in which they had to extend and modify
each model. Participants using the textual notation performed significantly better in finding
errors in the domain model and also spent less time until finishing the task. Nonetheless, par-
ticipants preferred to work with the graphical notation. The authors believe this to originate

3 Cohesive: documented information or knowledge that are well-organized.
4Motivated: augmented with design rationale.

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4431

from the fact that students learn graphical modelling languages such as UML as stereotypes
for domain models whereas less attention is given to textual modelling languages.

In another study, the authors measure how well participants extract the required informa-
tion (such as architectural design decisions) from different media (Heijstek et al. 2011). The
researchers collected participant-specific information in two questionnaires, filmed partici-
pants during tasks, and asked them to think out loud. The experiment is comprised of four
architectures, out of which each consisted of a graphical and a textual description. Partic-
ipants (students and professional developers) were asked three questions per architecture.
The authors observed that no notation was clearly superior in communicating architecture
design decisions. Nonetheless, participants tended to first look at the graphical notation
before reading the text. The authors attribute this to the clarity of the graphic representation,
which enables participants to grasp the structure of the model more quickly.

In a case study on comparing graphical versus textual representations, the researchers
measure the accuracy and time spent to solve three requirement comprehension tasks
(Sharafi et al. 2013). The study does not indicate results concerning accuracy (both nota-
tions yield correct results), but participants spent less time when working with textual
requirements. Participants preferred to work with the graphical representation nonetheless.
Also, when working with a combination of graphical and textual representations, the study
measured the best results concerning time and accuracy.

Other research investigated a combined usage of textual and graphical representations
(Liskin 2015). The researcher interviewed 21 practitioners to find out how developers work
with different requirements artifacts of various granularity and notation and how they han-
dle scattered information. The researcher found out which artifacts the practitioners used
and which problems they encountered. A share of 70% of the interviewees reported issues
when working with multiple artifacts. The main shortcomings were inconsistencies and the
additional effort for documenting.

In contrast to our research, the studies described in (Heijstek et al. 2011; Liskin 2015;
Melié et al. 2016; Sharafi et al. 2013) do not observe communication based on using graph-
ical and textual representations, but how well both notations are suited to share information.
Therefore, more research concerning both notations as a base for explaining and discussing
software architectures is required.

Other related research aims to find out if drawing improves the recall ability, compared
to making textual notes (Meade et al. 2018). The participants of this research were divided
into two groups, younger and older adults, to measure whether the notation influences both
groups in the same way. Participants were told 30 nouns, one after the other, and asked to
either draw or to note the items textually. Afterwards, they were asked to recall and list all
items. For the drawn nouns both groups performed equally well, but for the textual words,
young adults performed better. This indicates that a graphical notation can compensate for
the age-related deficit.

To summarize the related work section, Table 1 provides a brief comparison between the
research objectives of our study and related work.

3 Experimental Design
This section describes the protocol that is used to perform the experiments and analyze the

results. In particular, we report the experiment according to the guidelines suggested by
Jedlitschka et al. (2008).

@ Springer

4432 Empirical Software Engineering (2020) 25:4427-4471

Table 1 Research objectives of our study and related work

Work Objectives

Heijstek et al. (2011) Study the effect of using a graphical vs. textual on extracting design
decisions information.

Jolak et al. (2018) Study the effect of distance on communication

Liskin (2015) Study the use of different requirement artifacts in practice.

Meade et al. (2018) Study the effect of drawings vs. textual notes on memory recall.

Melia et al. (2016) Study the effect of using a graphical vs. textual notation on domain

models maintenance.

Sharafi et al. (2013) Study the effect of using a graphical vs. textual representation on
requirement comprehension.

Our Study Study the effect of using a graphical vs. textual software design
description on face-to-face design communication.

3.1 Family of Experiments

Easterbrook et al. (2008) highlighted that controlled experiments help to investigate testable
hypotheses where one or more independent variables are manipulated to measure their effect
on one or more dependent variables. A family of experiments facilitates building knowledge
and extracting significant conclusions through the execution of multiple experiments pursu-
ing the same goal. Basili et al. (1999) reported that families of experiments can help to (i)
generalize findings across studies and (ii) contribute to important and relevant hypotheses
that may not be suggested by individual experiments.

We planned and conducted a family of experiments based on the methodology of Wohlin
et al. (2012). Our family of experiments are between-subject designs to minimize learning
effects and transfer across conditions. The family of experiments consists of one original
experiment and three external replications involving 240 participants in total (See Table 2).

The original experiment (OExp) was conducted at the University of Gothenburg involv-
ing a mix of 50 B.Sc. and M.Sc. Software Engineering students. In OExp, we study the
effect of using a graphical software design description (GSD) vs. textual software design
description (TSD) on software design communication. The first replication (REP1) was
conducted at RWTH Aachen University with 36 M.Sc. and Ph.D. SE students. The second
replication (REP2) was conducted at the University of Lille involving 94 M.Sc. SE stu-
dents. REP1 and REP2 replicated the original experiment as accurately as possible (strict
replications (Basili et al. 1999)). The third replication (REP3) was conducted at the Slovak
University of Technology with 60 B.Sc. and M.Sc. SE students. REP3 varied the manner
in which the original experiment was conducted, so that certain threats to external validity
were addressed. More specifically, REP3 is a replication that varies a variable intrinsic to
the object of study (Basili et al. 1999): we study the effect of using a graphical (GSD) vs.
altered- textual software design description (A-TSD) on software design communication.
More details regarding this variation are provided in Section 3.5.

The experiment material and communication language in OExp, REP1, and REP3 were
in English. In contrast, the experimental material and communication language in REP2
(which was conducted at the University of Lille, France) were in French. The gender dis-
tribution in each experiment is also shown in Table 2. The majority of the participants are
males (79%).

@ Springer

4433

Empirical Software Engineering (2020) 25:4427-4471

pringer

A's

sugisog paredwo) @D
uoneordoy 101IS 1 Y'S

%1T ove [e10L, uonsanQ) Yoreasay O
%S1 09 SRpMIS IS 81/CI/E] ysi3ug A3ojouyda], Jo AysIoAIUN) YEAO[S SLV 'SA dSD ON (TO¥) ¢day
%9C 6 SJuApmIS IS 81/21/€0 youaly J[II'T JO ASIOATUN dSL 'sA dsD SOK (1'0¥) zday
BLI 9¢ SwEpmMS 'AUd® OSIN 8I/01/ST usnSug Ayiszoatun) uoyoey HLMYI dSL 'sA dsD SOK (10 1499
%TT 0S SWepmS IS oS 8I/0I/IT UsHSug ANSIOATU[) SINQUATROD) % s1owey) dSL 'sA dsH - (10 dxd0o

SO[RWR # syuedionied Ae ‘Jue IXU0D ‘ad 'S O aidxg

sjuowLrodxa Jo AJiwey oy, g d|qeL

4434 Empirical Software Engineering (2020) 25:4427-4471

3.2 Scope

Developers intensively communicate ideas, decisions, progress, and updates throughout the
software development life-cycle. In this study, we focus on investigating co-located, face-
to-face software design communication.

Design communication plays a fundamental role in transferring software design deci-
sions (i.e., instructions for software construction) from architects/analysts to programmers
or other stakeholders. Also, the quality of these communications might play an important
role in shaping the overall structure and behaviour of software products.

In co-located teams, developers usually communicate face-to-face. In distributed teams,
developers use other communication channels, such as video conferencing systems. Jolak
et al. (2018) found that co-located software design discussions are more effective than
distributed design discussions. Moreover, Storey et al. (2017) stated that face-to-face
communication is one of the most important and preferred communication channel for
collaborative software development. Indeed, with face-to-face communications, developers
can receive feedback quickly which facilitates discussing through complex issues, such as
design decisions. Thus, we investigate co-located face-to-face communication, as this type
of communication is widely preferred and would therefore contribute to the generalizability
of our results.

Modeling languages can be (i) of general-purpose and applied to any domain, such as
the Unified Modeling Language (UML) or (ii) domain-specific and designed for a specific
domain or context, such as the Domain Specific Languages (DSLs). Brambilla et al. (2012)
stated that UML is widely known and adapted, and comprises a set of different diagrams for
describing a system from different perspectives. Dobing and Parsons (2006) found that the
use of UML class diagrams substantially exceeds the use of any other UML diagram (use
case, sequence, activity, etc.). Thus, in order to increase the generalizability of the results of
this study we chose to represent the graphical software design description by a UML class
diagram.

3.3 Participants

The population for this study was intended to match two prerequisites: (i) having a basic
knowledge in UML (especially UML class models), (ii) and being able to understand and
communicate in the experiment language. The target group in this case is the entire group
of people who posses the aforementioned criteria: students who took an academic course
in UML modeling, professional software developers, architects, etc. However, the portion
of the population to which we had reasonable access is a subset of the target population.
In particular, the accessible population for this family of experiments was the group of
B.Sc. and M.Sc. Software Engineering (SE) students at the universities where the authors
teach SE courses. The sampling approach was convenience sampling. On the one hand, this
sampling approach is easy and readily available. On the other hand, the sample produced
by convenience sampling might not represent the entire population (i.e., threat to external
validity or generalizability of the results). To increase the external validity of the results,
we recruited a mix of 240 B.Sc. and M.Sc. SE students from four universities to take a part
in a family of experiments. Previously in Section 3.1 (Table 2), we provided details on the
participants in this family of experiments.

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4435

3.4 Experimental Treatments

The participants of each experiment were randomly assigned to two treatments or groups:

— Group G: participants in this group had to discuss a software design as represented by
a graphical description (UML class diagram).

— Group T: participants in this group had to discuss the same software design, but as
represented by a textual description.

Furthermore, the participants of each group were randomly assigned one specific role:

— Explainer: this role consisted in: (i) understanding the design representation, and (ii)
explaining it to a Receiver.

— Receiver: this role consisted in understanding the software design based on the
discussion with an Explainer.

Having the roles assigned, we randomly formed 120 Explainer-Receiver pairs. These
pairs were involved in discussing a design case which we detail in the next Section 3.5.

3.5 Design Case and Graphical vs. Textual Descriptions

We created a design case for our family of experiments. The design case describes a
structural view of a mobile application of a fitness center, the Fitness Paradise.

This fitness center gives its clients the opportunity to book facilities and activities. The
featured application enables clients to consult the schedule of activities, manage bookings,
keep track of payments, and visualize performance data when available. We believe that the
selected design case relies on a familiar domain, Sport and Gym, from everyday life which
is quite popular and easy to understand without prior knowledge.

To introduce the Explainers with the design case, we created a design case specification
document which describes the fitness center and lists the features of the mobile application
in natural language.

5

3.5.1 Design Descriptions

We played the role of the designer/architect and created the two design representations
(i.e., GSD and TSD). The GSD and TSD provide the same information and describe one
structural design of the Fitness Paradise app. The two design descriptions only differ in the
way they represent the design (i.e., graphical vs. textual).

— GSD. We created the UML class diagram® of the design case. The diagram includes 28
classes (21 model entities, 3 controllers, and 4 views) and 30 relationships. We chose
to use the Model View Controller (MVC) design pattern for structuring the design, as
this pattern is well known by the participants of the experiments. The entities of each
part of the MVC were given a specific color. The model entities have a yellow color,
the controllers are in blue, and the views are in green.

Shttp://rodijolak.com/SE_Whispers/Design_Case.pdf
Shttp://rodijolak.com/SE_Whispers/GSD.pdf

@ Springer

http://rodijolak.com/SE_Whispers/Design_Case.pdf
http://rodijolak.com/SE_Whispers/GSD.pdf

4436 Empirical Software Engineering (2020) 25:4427-4471

The colors were added to the entities in the GSD in order to mimic the characteristic
of structured textual document (which we describe next) in facilitating a visual
distinction between different sections (i.e., the three parts of the MVC).

— TSD. For EXP, REP1, and REP2, each element of the GSD was systematically used
to create exactly one corresponding element (e.g., one paragraph or sentence) in the
textual description, thus to maintain a one-to-one correspondence between GSD and
TSD. In other words, we were thoroughly keen to make both the graphical and textual
designs present the exact same amount of information or design knowledge in order to
control eventual bias due to a different amount of information.

The textual description” was arranged into two main structured sections. In the first
section, we orderly described the entities of each module of the MVC: First the entities
of the model part, then the entities of the controller part, and last the entities of the
view part. In the second section, we described the relationships between the entities
following the same appearance order of the entities.

— Altered TSD. In REP3, we used an altered TSD8 to know whether or not a motivated
and cohesive TSD could affect design communication differently from the original
TSD.

(i) Motivated: We added an introduction to the original textual description, including
a rationale of the chosen design pattern (i.e., MVC).

(ii) Cohesive: The textual design description was organized differently. In particular,
the description of the relationships of each entity was moved and placed right after the
description of the entity. In this way, information regarding each entity and its relation-
ships are close to each other, instead of being distant/remote (i.e., located on different
pages), as in the original textual description.

3.6 Tasks

The main task of this family of experiments was inspired by the Chinese Whispers (or The
Telephone) game. In this game, players form a line, and the first player comes up with a
message and whispers it to the ear of the second person in the line. The second player repeats
the message to the third player, and so on. When the last player is reached, they announce
the message they heard to the entire group.

In contrast, we created a message (i.e., a software design representation), and asked the
first player (i.e., the Explainer) to first understand the message then explain it to the second
player (i.e., the Receiver). After that, the players (i.e., Explainers and Receivers) have to
announce the message (i.e., via answering a post-task questionnaire). Finally, the original
message (i.e., the software design representations) is compared with the final version (i.e.,
knowledge of Explainers and Receivers).

The main task of the experiments reflects common scenarios in software engineering
industry where developers collaborate, communicate, and exchange knowledge in order to
create software. For example, the main task reflects a common knowledge-transfer scenario
between a software architect (i.e., Explainer) who owns knowledge on the structure and
behavior of the software system and a software developer (i.e., Receiver) who needs to
receive and understand the knowledge of the architect in order to start coding. Moreover,

7http://rodijolak.com/SE_Whispers/TSD.pdf
8http://rodijolak.com/SE_Whispers/Altered_TSD.pdf

@ Springer

http://rodijolak.com/SE_Whispers/TSD.pdf
http://rodijolak.com/SE_Whispers/Altered_TSD.pdf

Empirical Software Engineering (2020) 25:4427-4471 4437

knowledge communication is especially important when new employees enter a company
and struggle to learn the existing tacit knowledge. In this direction, our task reflects the
scenario of onboarding of novice developers by experienced developers (e.g., Ericsson’s
“Experience Engine” initiative (cf. section 1)).

In addition to the main task, we added two secondary tasks to collect complementary
data, such as participants’ design experience and communication skills that are also needed
for data analysis and results’ discussion.

For the study, the participants had to perform the following three tasks:

1. Answer the pre-task questionnaire. All participants have to answer the pre-task ques-
tionnaire based on the group they are assigned to. No time-limit is imposed for this
task. We noted the required time for this step during the experiments and found that it
takes 15 minutes on average.

The pre-task questionnaire is developed to collect participants’ design experiences
and communication skills based on self-evaluations. The questions in the pre-task ques-
tionnaire varyaccording to the role of the participant (Explainer vs. Receiver) and
his/her group (G vs. T).

— G-Explainer: participants belonging to this subset have to answer questions
on (i) familiarity with software design and UML modeling, (ii) how good are
they in understanding and sense-making® of UML models, an English/French
conversation, and explaining their knowledge to others.

— G-Receiver: participants belonging to this subset have to answer questions on (i)
familiarity with software design and UML modeling, (ii) how good are they in
understanding and sense-making of UML models, an English/French conversation,
and building knowledge from conversing with others.

— T-Explainer: participants belonging to this subset have to answer questions on (i)
familiarity with software design, (ii) how good are they in reading, understanding,
and sense-making of an English/French text, understanding and sense-making of
an English/French conversation, and explaining their knowledge to others.

— T-Receiver: participants belonging to this subset have to answer questions on
(i) familiarity with software design, (ii) how good are they in understanding and
sense-making of an English/French conversation, and building knowledge from
conversing with others.

2. Discuss the Design (i.e., transfer design knowledge). Each Explainer receives a
design case specification plus either a GSD or TSD, based on Explainer’s group (G
or T). The Explainer has to read and understand the received artifacts, as good as
he/she can, in 20 minutes (defined based on to the pilot studies, see Section 3.7.1).
The Explainers are allowed to individually ask questions to experiment supervisors to
clarify issues related to the design, if required.

After 20 minutes, the Explainers give the design case specification back to the super-
visors, but keep the design description (GSD or TSD). Each Explainer is randomly
paired with a Receiver from the same group. Then, each Explainer-Receiver pair is
given 12 minutes (defined based on to the pilot studies, see Section 3.7.1) to discuss the
design, where the Explainer has to explain the design and the Receiver has to under-
stand the design. The Receivers can unhesitatingly ask questions. Moreover to help the
understanding process, Receivers are allowed to take notes during the discussion, but

9Developing the understanding of a concept by connecting it with existing knowledge

@ Springer

4438 Empirical Software Engineering (2020) 25:4427-4471

all notes are collected by the supervisors before the next task. This is because two of the
communication aspects, Understanding and Recall, that we measure require the par-
ticipants to, respectively, apply and remember the design knowledge without using the
design descriptions or the notes that they took during the discussions.

3. Answer the post-task questionnaire. All participants have to answer the post-task
questionnaire based on their groups. No time-limit is imposed for this task. We also
noted the required time for this step and found that it takes 15 minutes on average.

The first part of the post-task questionnaire is developed to collect participants’ self-
evaluations of their experiences just after the design discussion. The questions vary
according to the role of the participant (Explainer vs. Receiver) and his/her group (G
vs. T).

— G-Explainer: participants belonging to this subset have to answer questions on (i)
how good they are in remembering UML models, (ii) how well they did under-
stand and explain the design, and (iii) how much diagrams did help them in
understanding and explaining the design.

— G-Receiver: participants belonging to this subset have to answer questions on
(i) how good they are in remembering UML diagrams, (ii) how well they did
understand the design from the discussion with the Explainer, and (iii) how much
diagrams did help them in understanding the design.

— T-Explainer: participants belonging to this subset have to answer questions on (i)
how good they are in remembering a English/French text, (ii) how well they did
understand and explain the design, and (iii) in case they could have used them, how
much diagrams would have helped in understanding and explaining the design.

— T-Receiver: participants belonging to this subset have to answer questions on (i)
how good they are in remembering a English/French text, (ii) how well they did
understand the design from the discussion with the Explainer, and (iii) in case they
could have used them, how much diagrams would have helped in understanding
the design.

The second part of the post-task questionnaire evaluates participants’ understanding
and recall abilities.

To measure the Recall, we formulated ten questions!® challenging participants’
recall abilities. Two of these questions are open requiring free-text answers, six ques-
tions are multiple-choice questions which require the participants to choose only one
choice, and two questions are check-boxes questions which require to select one or
more answers from the available.

To measure the Understanding, we formulated three questions!! focusing on MVC
design maintenance (using maintenance questions to measure understanding is moti-
vated in Section 4.3). In each question we introduce a design maintenance (i.e.,
evolution) scenario and suggest four ways to address it. The three questions are
multiple-choice questions which require the participants to choose only one choice from
4 provided choices.

To evaluate the answers of the participants on recall and understanding questions,
we defined grading rules that can be consulted online'?.

Ohttp://rodijolak.com/SE_Whispers/Recall_Q.pdf
Uhttp://rodijolak.com/SE_Whispers/Understanding_Q.pdf
Zhttp://rodijolak.com/SE_Whispers/Grading_Rules.pdf

@ Springer

http://rodijolak.com/SE_Whispers/Recall_Q.pdf
http://rodijolak.com/SE_Whispers/Understanding_Q.pdf
http://rodijolak.com/SE_Whispers/Grading_Rules.pdf

Empirical Software Engineering (2020) 25:4427-4471 4439

Remark. In REP2 (University of Lille), the pre- and post-task questionnaires, design case
specification, GSD, and TSD were translated to French, as the SE course that the partici-
pants are frequenting is in French. During the translation process, each word was carefully
chosen to match the semantics of the original English textual description as close as possi-
ble. To maintain a strict replication, after the translation process we thoroughly did review
the aforementioned artifacts and ensured that the amount of information/knowledge they
convey is the same as provided by the artifacts used in the original experiment (OExp).

3.7 Variables and Hypotheses

The goal of this study is to compare between the effect of using GSD versus TSD on
software design communication.

The only independent variable and manipulated factor is the design description. This
variable is nominal and corresponds to two treatments/groups: G group using GSD and T
group using TSD.

In this study, we consider six dependent variables (See Table 3). These variables
correspond to the six communication aspects which we described in the introduction.

The original experiment and replications were conducted under the same environment
conditions and by following a well-defined protocol to ensure that the impact of any other
variable on the results is relatively negligible.

For OExp, REPI1, and REP2, we formulate and study the following null Hy and
alternative hypotheses Hy:

HEXP{ : The design description [has no impact]o/[has impact], on EXP.
HUNDG : The design description [has no impact]o/[has impact], on UND.
HREC‘S : The design description [has no impact]p/[has impact], on REC.
HAD‘S : The design description [has no impact]p/[has impact], on AD.
HCC{ : The design description [has no impact]o/[has impact], on CC.
HCMg : The design description [has no impact]o/[has impact], on CM.

REP3 varies one variable intrinsic to the object of study (i.e., the independent variable
TSD). Accordingly, we study the following null Hp and alternative hypothesis H{ :

° HTSDS : A motivated and cohesive TSD [has no impact]p/[has impact], on the
communication aspect.

3.7.1 Experiment Procedure

Before presenting the experiment procedure, we would like to highlight that we conducted
several pilot studies, 2 in the university of Gothenburg, 1 in Aachen university, 1 in Lille
university, and 1 in the Slovak university. To cover the treatments of our study, each pilot
study involved 2 Explainer-Receiver pairs (B.Sc., M.Sc., or PhD students in SE). One pair
was assigned to the G group using a graphical design description, and the second pair was
assigned to the T group using a textual design description. These pilot studies helped us in:

— Designing a research protocol and assessing whether or not it is realistic and workable,
especially in estimating the time that is required by: (i) the Explainer to understand
the design (20 minutes), and (ii) the Explainer and Receiver to discuss the design (12
minutes).

— Identifying logistical problems and determining what resources (e.g, supervisors,
software, and rooms) are needed for the actual experiments.

@ Springer

Empirical Software Engineering (2020) 25:4427-4471

4440

1 01) woiy sanfeA (IND+DD+AV)/IND SUONESIIAUOD) PIPIOIIY Ul SIOUALINIOQ Fununo) aAn23(qO oney (JND)13IN UONBSIIAUOD)

1 01) woiy saneA (IND+ID+AV)/DD SUOTBSIOAUOD) PAPIOIIY U SIOUALINIOQ Fununo) EINIREI () oney (DD) 11Ju0) 2ANBAD

[01 0 woliy saneA (IND+DD+AV)/AV SUOTBSIOAUOD) PAPIOIIY U SIOUALINIOQ Fununo) EINIREI () oney (@V) uoISSNoSI(] 2ANIY
SjuIod ()] XeJA 01 () WOIJ 2103S [BI0], suonsanQ) (oY 1 EINIRE] () [eAIaIUL O 189y

SIUI0J € XA O} () WOIJ 2109G [e10], SUOT)SaNQ) DUBUNUIRIN € aA193[qO [eATaIu] (ANN) Surpueisiopun

poon) KI9A - 1004 AI19A 9[edS 11T Jutod-¢ (suondad1ag) suonsond) ¢ EINSRETI TN [eurpiQ (dXA) Sururedxg
9[EOS JUSUIAINSLIA JUSWINISU] JUSUIAINSBIA 90In0g Amseay J[qerrep juopuado(

JUQWIAINSLAW puk sa[qerLrea juopuadoq € ajqel

prlnger

N's

Empirical Software Engineering (2020) 25:4427-4471 4441

Pre-task Design case Post-task
Questionnaire specifications Questionnaire
® @ .' w &
Explainer Explainer ‘\ Explaine \ Explainer
- ¢ He
D o
Textual OR Graphical
design

Recelver Receiver Recelver

Pre-task RECORDING Post-task

Questionnaire DISCUSSION Questionnaire

1 PRE-TASK REFLECTION EXPLANATION POST-
QUESTIONNAIRES ON THE ARTIFACT OF THE ARTIFACT QUESTIONNAIRES

Fig. 1 The four main steps of the experimentation procedure

— Training the supervisors of the experiments.

The experiment procedure was created to define the process of the experiment and to
ensure strict replications of the original experiment.
Figure 1 presents the four main steps of the experimentation procedure:

— Step 1: To anonymize their identity and thus their answers, all participants were ran-
domly assigned an identification number (ID). We asked the participants to bring their
PCs to be able to answer the online pre- and post-task questionnaires. Eduroam Internet
connection was available in the rooms where the experiments were running. Also, we
asked the participants to bring a device to record the discussions (either by download-
ing audio-recording software on their PCs or by using a smart-phone with a recording
application). We booked large university lecture-rooms which can host all Explainer-
Receiver pairs with a sufficient distance between each pair. This helps to reduce voice
interference to a minimum and produce better-quality audio recordings. We randomly
assigned the participants to two groups (G and T). Furthermore, we randomly assigned
each participant one role, Explainer or Receiver. After that, we asked the participants
to answer the pre-task questionnaire.

— Step 2: Once all participants filled the pre-task questionnaire, the Explainers were taken
to a second room where they received the design case specification and the design
description (GSD or TSD). The Explainers were asked to understand the design that
they received as good as they can in 20 minutes. During this time, the Receivers ensured
that their recording software/devices were working as expected.

@ Springer

4442 Empirical Software Engineering (2020) 25:4427-4471

— Step 3: After 20 minutes, we took the design case specification from the Explainers,
but let them keep the assigned design description (GSD or TSD). The Explainers and
Receivers were randomly grouped in pairs in one or two rooms according to the number
of participants and room’s capacity.

The pairs were then informed that, using the design descriptions (GSD or TSD),
Explainers should explain the design to the Receivers in 12 minutes. We also informed
the pairs that Receivers can ask clarification questions to the Explainers. When all par-
ticipants were prepared, we asked the participants to start the audio recorder software
and begin the discussions by introducing themselves (by mentioning the name/ID and
role). This allowed us later to match the discussion records of the participants with their
corresponding answers to the questionnaires.

— Step 4: After 12 minutes, the participants were informed that they should stop the audio
recording. All documents, including Receivers’ draft notes, were collected. Then, we
asked all the participants to answer the post-task questionnaire individually. Lastly, we
asked the participants to rename the audio recordings with their ID numbers and put
the recordings in a USB flash drive that we provided.

3.8 Data Analysis

The data of this study was collected via questionnaires and by audio-recording discus-
sions between Explainers and Receivers. In this section, we describe three types of analysis
procedures that we used:

— Data Set Preparation: To check and organize data collected from different sources and
prepare it for analysis.

— Descriptive Statistics: To describe the basic features of the data by summarizing and
showing measures in a meaningful way such that patterns might emerge from the data.

— Hypothesis Testing: To make statistical decisions by evaluating two mutually exclusive
statements about a population and determining which statement is best supported by
the sample data.

— Meta-Analysis: To obtain a global effect of a factor on a dependent variable by combin-
ing the effect size of different experiments, as well as assessing the consistency of the
effect across the individual experiments (Borenstein et al. 2011).

3.8.1 Data Set Preparation

Data from 14 participants (7 pairs) were eliminated: 1 Explainer-Receiver pair from OExp
as well as REP1, and 5 pairs from REP2. In particular, 5 pairs discussed the design assign-
ment for too short time (less than 2 minutes) and decided to discuss other topics of their
interest for the rest of the time. Moreover, the audio quality of the recorded discussion of 2
pairs was bad and the corresponding data from these pairs was eliminated. The final number
of participants in each experiment is provided in Table 4.

The discussions between Explainers and Receivers were recorded by using either mobile
phones or Audacity, an easy-to-use audio editor and recorder that works on multiple opera-
tive systems'3. We transcribed approximately 23 hours of audio recordings and performed
a manual coding of more than 2000 discussion records between Explainers and Receivers.
For coding the discussions, we used the collaborative interpersonal problem-solving skill

Bhttps://www.audacityteam.org

@ Springer

https://www.audacityteam.org

4443

Empirical Software Engineering (2020) 25:4427-4471

sired / 92T ove [eor,
VIN 0 09 09 €ddd

(9sBD T) UOISSNISIP pap10d31 Jo AJrfenb peg -
(sased) (seInurw g>) SWI} UOISSNISIP 1I0YS 00, - S 18 76 ddd
(senurwr g>) S} UOISSNISIP 1I0YS 00, - 1 143 9¢ 1d9d
uoISSNISIp papIodal Jo Ayfenb peq - I 8 0s dxq0
UoneuilI[y JO UOSeay Sited pajeuriiy §109(Qng Jo # [euL] $109[qng Jo # [entug adxg

syuedronted jo oqunu [eur ¢ a|qel

prlnger

A's

4444 Empirical Software Engineering (2020) 25:4427-4471

Collaborative Problem-Solving Conversation Skills

v .

Conversation Mgnagement Active Discussion Creative Conflict
Maintenance Task Acknowledge Request Inform Motivate Mediate Argue
OPDCE LFTO FIF LQEIETQ LEEFTZ FT O 23939992
c3328 5838 £33 245628 SwsdEo 23 = 58FT22ST
Qcec 8§ Cosa aad 253583 ©9Z5289% =20 > VBITEQALE
D00 23 382 28T sa 8 23] ES 3 oc <} 02 ~8=
soe3T Ba3z3 g S82388 @2 =0 33 s 385 35
>o0>x“ e Rzaz =0 59585 & °Q @ m2 @
Qo= 3 g50° S o 33 33 @ x 3
=35 =2 8@ 335 7] oo
o35 3585 = s @ =
3 5= (= ity oy =) 3 T 5
38 S8S§ 3 3 =0
o3 = e ® S

e D5 o 3
o =2 3

3 o9 8

=S @
w
o

Fig.2 Collaborative interpersonal problem-solving conversation skills (McManus and Aiken 1995)

taxonomy of McManus and Aiken (1995), as presented in Figure 2. This taxonomy cap-
tures the collaborative interpersonal communication aspects; Active Discussion, Creative
Conflict, and Conversation Management, which we described previously in Section 1. For
instance, the following transcribed sentence: “Can you explain why/how?” is a Request for
Clarification which contributes to Active Discussion. Another example: “If... then” refers
to Suppose; one of the categories of Argue which contributes to a Creative Conflict. More
examples are provided online'*.

NVivo!> was used for coding the transcriptions. Prior to coding, we ensured cod-
ing/rating’s reliability by performing two-way mixed Intraclass Correlation Coefficient
(I-C-C) tests with 95% confidence interval on 9% of the data. In particular, three coders/rater
were involved in measuring the I-C-C of the G group and T group of EXP, REP1, and REP2
(I-C-C value is 0,97 for group G and 0,96 for group T). Whereas, two coders/raters were
involved for measuring the I-C-C of the G group and T group of REP3 (I-C-C value is 0,83
for group G and 0,92 for group T). The coding/rating reliability is positive. Indeed, accord-
ing to Koo and Li (2016), I-C-C is good when it is > 0,75 and < 0,90 and excellent when
itis > 0,90. Based on this result, the raters collaboratively continued to code the rest of the
datai.e., 91% of the data.

3.8.2 Descriptive Statistics

By using IBM SPSS'®, we generated descriptive statistics, including Box-plots and Mean
+/- 1SD plots, to analyze the collected data via questionnaires and audio recordings. In
particular, we measured: means, medians, standard deviations, and ranges. These descriptive
statistics help to analyze central tendencies and dispersion.

http://rodijolak.com/SE_Whispers/Problem_Solving_Skill_Taxonomy.pdf
Ihttps://www.qsrinternational.com/nvivo
16https://www.ibm.com/analytics/spss-statistics-software

@ Springer

http://rodijolak.com/SE_Whispers/Problem_Solving_Skill_Taxonomy.pdf
https://www.qsrinternational.com/nvivo
https://www.ibm.com/analytics/spss-statistics-software

Empirical Software Engineering (2020) 25:4427-4471 4445

3.8.3 Hypotheses Testing

In the family of experiments, we wanted to compare two treatments/groups (G and T).
So, we assigned our participants to these two groups by following the between-subjects
design. In this setting, different people test each condition to reduce learning- and transfer-
across-conditions effects. The collected data during the experiments include both interval
and ordinal measures. Moreover, they are not normally distributed. Thus, we used non-
parametric tests.

In particular, the hypotheses that we formulated in Section 3.7 seek to determine whether
two independent samples have the same distribution. Therefore, these hypotheses were
tested by performing the non-parametric independent-samples Mann-Whitney test.

3.8.4 Meta-Analysis

We perform a fixed-effect meta-analysis, as all factors that could influence the effect size
are the same in all the experiments (Borenstein et al. 2011). We use different scales to
measure the communications aspects. Thus, for each experiment (i), we compute the effect
size (G;) by calculating the Hedges’ g metric (Hedges 1981). The assigned weight to each

experiment is:
1
Wi=— (D
. VG[.
where, V, is the within-experiment variance for the ith experiment.

We obtain the global effect size by calculating the weighted mean M:
iy WiGi
i Wi

According to (Hedges 1981), the effect size is small when g > 0,2; medium when g
> 0,5; and large when g > 0,8. We report the result of the meta-analysis by using forest
plots (Borenstein et al. 2011).

M=)

4 Results

In the first part of this section, we report the participants’ perceptions of their design expe-
riences and communication skills (the results of the pre-task questionnaire). After that, we
present the results of the individual experiments and the performed meta-analysis. Finally,
we report the participants’ perceptions of their experience in working with different design
representations (the results of the post-task questionnaire).

4.1 Perceived Design Experience and Communication Skills

The perceived (based on self-evaluations) design experience and communication skills are
detailed here!”. In summary, we find that:

— the participants are somewhat familiar with software design.
— the participants are familiar with software modeling and good in understanding and
sense-making of UML models.

Thttp://rodijolak.com/SE_Whispers/PreTask_Results.pdf

@ Springer

http://rodijolak.com/SE_Whispers/PreTask_Results.pdf

4446 Empirical Software Engineering (2020) 25:4427-4471

— the participants are very good in reading, understanding, and sense-making of textual
documentation.

— the Explainers in the group G are neither poor nor good in explaining their knowledge,
while the Explainers in the group T are good in explaining their knowledge.

— the Receivers of the two groups (G and T) are good in building knowledge from
conversing with others.

There are no statistically significant differences in the perceived design experience and
communication skills between groups G and T in the different experiments. Accordingly,
we assume that the design experience and communication skills of participants are not
influencing the results of this study.

4.2 Individual Experiments

Table 5 shows the descriptive statistics of the studied communication aspects sorted by two
subgroups of studies:

— Subgroup A: including OExp, REP1, and REP2.
— Subgroup B: including REP3.

Considering Subgroup A, we observe that the unbiased estimate of the effect size, based
on the standardized mean difference between group G and T (Hedges’g 1981), is positive
for Explaining, Recall, Active Discussion, and Creative Conflict. This means that there is a
clear tendency in favor of using GSD over TSD. Regarding Understanding, the participants
achieved better results when using TSD in OExp (negative g value). In contrast, the partici-
pants of REP1 and REP2 achieved better results when using GSD. Regarding Conversation
Management, the results show that the participants of all the experiments spent more effort
on conversation management when using TSD.

Considering Subgroup B, we observe that the unbiased estimate of the effect size (i.e.,
Hedges’g) is positive for Explaining, Understanding, and Creative Conflict. This means
that there is a clear tendency in favor of using GSD over Altered-TSD. Regarding Recall
and Active Discussion, the participants achieved better results when using the Altered-
TSD. Moreover, the participants spent more effort on conversation management when using
Altered-TSD.

We tested whether or not the distribution of the communication aspects (i.e., dependent
variables) is the same across the two groups (G and T) by running the Independent-Samples
Mann-Whitney U Test.

Table 6 shows the results of the test. The p-value is the probability of obtaining the
observed results of a test, assuming that the null hypothesis is correct. We set the probability
of type I error (i.e., o, probability of finding a significance where there is none) to 0,05. The
statistical power is the probability that a test will reject a null hypothesis when it is in fact
false. As the power increases, the probability of making a type II error (B-value) decreases.
A power value of 0,80 is considered as a standard for adequacy (Ellis 2010). B-value is used
to estimate the probability of accepting the null hypothesis when it is false.

Considering Subgroup A, we observe in REP1 that there is a statistically significant dif-
ference in Recall between the two groups G and T (p-value = 0,037 < 0,05, statistical power
is 0,554). In REP2, we observe that there is a statistically significant difference in Active
Discussion and in Conversation Management between the two studied groups (p-values =
0,010 and 0,011 < 0,05, statistical powers are 0,694 and 0,705, respectively).

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4447

Table 5 Descriptive statistics

Study ID Dept. GSD TSD
(Subgroup) Var. Mean Median Std. Dev. Mean Median Std. Dev. g*
OExp EXP 3,864 4,000 0,710 3,654 4,000 0,689 0,295
(A) UND 1,545 1,750 0,754 1,808 2,000 0,906 -0,307
REC 5,843 5,535 1,828 5,418 5,205 2,368 0,195
AD 0,512 0,494 0,094 0,461 0,500 0,137 0412
CcC 0,267 0,272 0,053 0,234 0,224 0,080 0,466
CM 0,221 0,209 0,088 0,305 0,244 0,172 -0,580
REP1 EXP 3,900 4,000 0,553 3,563 4,000 1,209 0,365
(A) UND 1,875 2,000 0,741 1,625 1,750 0,806 0,317
REC 6,973 7,165 1,747 5,598 6,125 1,981 0,725
AD 0,457 0,447 0,107 0,409 0,411 0,063 0,505
CcC 0,166 0,189 0,067 0,118 0,121 0,053 0,745
CM 0,377 0,406 0,124 0,473 0,488 0,085 -0,841
REP2 EXP 3,810 4,000 0,634 3,714 4,000 0,708 0,140
UND 1,905 2,000 0,813 1,619 1,500 0,847 0,341
REC 5,876 5,960 1,685 5,537 5,585 1,787 0,193
AD 0,488 0,495 0,068 0,431 0,435 0,074 0,786
CcC 0,267 0,250 0,097 0,265 0,249 0,082 0,020
CM 0,245 0,220 0,086 0,304 0,306 0,056 -0,793
Study ID Dept. GSD Altered-TSD
(Subgroup) Var. Mean Median Std. Dev. Mean Median Std. Dev. g*
REP3 EXP 4,833 5,000 0,379 3,967 4,000 0,964 1,168
(B) UND 1,967 2,000 0,798 1,800 2,000 0,726 0,216
REC 5948 6,160 1,975 6,604 7,080 2,226 -0,336
AD 0,571 0,564 0,078 0,625 0,627 0,110 -0,546
CcC 0,184 0,162 0,069 0,113 0,118 0,058 1,086
CM 0,245 0,232 0,069 0,262 0,255 0,114 -0,179

“Hedges’ g: unbiased estimate of the effect size based on the standardized mean difference (Hedges 1981).

Considering Subgroup B, we observe a statistically significant difference in Explaining
and Creative Conflict between the two studied groups (p-values = 0,000 and 0,017 < 0,05,
statistical powers are 0,991 and 0,800, respectively).

4.3 Meta-Analysis

In this section, we report and discuss the meta-analysis by means of forest plots. The squares
in each forest plot indicate the effect size of each experiment. The size of the squares repre-
sents the relative weight (squares are proportional in size to experiments’ relative weight).
The horizontal lines on the sides of each square represents the 95% confidence interval. The
diamond shows the global effect size (the location of the diamond represents the effect size),
while its width reflects the precision of the estimate (i.e., 95% confidence interval). The plot

@ Springer

4448 Empirical Software Engineering (2020) 25:4427-4471

Table 6 Independent variables Mann Whitney Test

ID Subjects # Mann Whitney Test
(Subgroup) (Sample Size) Dependent Variable p-value Statistical Power — B-value
Explaining 0,367 0,168 0,832
Understanding 0,300 0,179 0,821
OExp 48 Recall 0,501 0,101 0,899
(A) Group G (22) Active Discussion 0,622 0,167 0,833
Group T (26) Creative Conflict 0,140 0,198 0,802
Conversation Mgt. 0,284 0,188 0,812
Explaining 0,519 0,184 0,816
Understanding 0,342 0,151 0,849
REP1 34 Recall 0,037 0,554 0,446
(A) Group G (18) Active Discussion 0,374 0,184 0,816
Group T (16) Creative Conflict 0,110 0,550 0,450
Conversation Mgt. 0,091 0,414 0,586
Explaining 0,636 0,097 0,903
Understanding 0,152 0,332 0,668
REP2 84 Recall 0,350 0,139 0,861
(A) Group G (43) Active Discussion 0,010 0,694 0,306
Group T (41) Creative Conflict 0,990 0,050 0,950
Conversation Mgt. 0,011 0,705 0,295
Explaining 0,000 0,991 0,009
Understanding 0,330 0,127 0,873
REP3 60 Recall 0,115 0,239 0,761
(B) Group G (30) Active Discussion 0,171 0,291 0,709
Group T (30) Creative Conflict 0,017 0,800 0,200
Conversation Mgt. 0,740 0,075 0,925

also shows the values of the effect size, weight, and p-value relative to each experiment and
to the global measure.

Positive values of the effect size indicate that the use of GSD increases/ improves
the effort/quality of the communication aspect, while negative values indicate that using
TSD/Altered-TSD is the increasing/improving condition.

4.3.1 Explaining

Figure 3 shows the forest plot for perceived quality of Explaining in the two subgroups of
studies, A and B. We observe that the effect size values are positive in all the experiments.
This implies that using a GSD has a positive effect on perceived Explaining quality. In other
words, the participants’ level of perceived explaining is better when using the GSD. Despite
this tendency, the global effect size of the studies within Subgroup A is not statistically

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4449

Perceived Quality of Explaining
Study Effect Size Relative p.-Value Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <005
OExp 0,295 29% 0,303 —a
REP1 0,365 21% 0,269 T
REP2 0,140 50% 0,517 L
A 0,233 100% 0,128 -
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,
(REP3) 1,168 100% 0,000 -l
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD

Fig.3 Meta-analysis for the perceived quality of Explaining

significant (p-value is 0,128 > 0,05). In contrast, the global effect size of the study in
Subgroup B is statistically significant (p-value is 0,000 < 0,05).

Observation 1 (Quality of Explaining).

We find that using a GSD has a positive effect on perceived Explaining quality. Con-
sidering Subgroup A, this effect is not statistically significant. Considering Subgroup
B, the effect is statistically significant. This suggests that the perceived quality of
design explaining is better when using a GSD than Altered-TSD.

4.3.2 Understanding and Recall

In a revised Bloom’s taxonomy, Anderson LW et al. (2001) outline a hierarchy of cognitive-
learning levels ranging from remembering of a specific topic, over understanding and
application of such knowledge, to advanced levels of analysis, evaluation, and creation.
Figure 4 shows the hierarchy of the six cognitive learning levels. According to Anderson,
remember is the recalling of the previously learned topic. understand is the ability to grasp
the meaning of the topic by interpreting the knowledge and predicting future trends. Apply
instead, comes on top of understand. It is the ability to use the acquired and comprehended
knowledge in a new and concrete context or situation. In order to measure the quality of
understanding of our experiments’ participants, we formulated three questions on design
maintenance (these questions are provided in Section 3.6) which required the participants
to use/apply their acquired knowledge in a new context (i.e., apply in Anderson’s revised
taxonomy).

The participants in the two groups (G and T) answered ten recall questions. We for-
mulated the recall questions (see Section 3.6) to evaluate how well the participants do
remember the design details after the discussions.

@ Springer

4450 Empirical Software Engineering (2020) 25:4427-4471

Fig.4 Bloom’s taxonomy of
cognitive learning A

| Create ‘

x -

| Evaluate]

| Analyze]

Apply

Understand

| Remember l

Figure 5 shows the forest plot for quality of (a) Understanding and (b) Recall ability
of design details. Regarding the quality of Understanding, the effect size value is negative
for OExp, which means that TSD is the improving condition. For the other experiments
in subgroups A and B the values of the effect size are positive. This implies that using
a GSD in these experiments has a positive effect on the understanding quality. Despite
these tendencies, the global effect size of subgroups A and B is not statistically significant
(p-values are 0,329 and 0,399, respectively). Considering the Recall ability, we observe
that the effect size values in subgroup A are positive. This implies that using a GSD has a
positive effect on the Recall ability. This effect is statistically significant and has a medium
effect size for REP1. Furthermore, the global effect size is statistically significant (p-value
= 0,048 < 0,05). In contrast, the effect size value in subgroup B is negative. This implies
that using a Altered-TSD is the improving condition. However, the effect is not statistically
significant (p-value = 0,191 > 0,05).

Observation 2 (Quality of Understanding).

In OExp, we find that using a TSD has an advantage in improving Understanding.
Whereas in the other experiments (REPI, REP2, and REP3), we find that using a GSD
is the improving condition. Globally, there is no statistically significant difference in
the quality of understanding between the two groups: G and T.

Observation 3 (Recall Ability).

Considering the experiments of Subgroup A, we find that using a GSD has a positive,
statistically significant effect on Recall ability. This suggests that using a GSD during
design communication has an advantage over TSD in improving the recall of design
details. In REP3, we find that using a Altered-TSD has an advantage in improving the
Recall ability. However, the effect is not statistically significant.

4.3.3 Interpersonal Communication

Figure 6 shows the the forest plot for collaborative interpersonal communication dimen-
sions: Active Discussion (AD), Creative Conflict (CC), and Conversation Management
(CM).

Considering AD, we observe that the effect size values of Subgroup A studies are posi-
tive. This implies that using a GSD has a positive effect on the amount of ADs. The global
effect size for AD is statistically significant (p-value = 0,005 < 0,05). The effect size value

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4451

Understanding

Study Effect Size Relative p-Value

X " Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <0,05

OExp -0,307 29% 0,284 —
REP1 0,317 21% 0,337 —
REP2 0,341 50% 0,117 ——
A 0,150 100% 0,329 >
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,
®Ep3y) 0216 100% 0,399 n =
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(a)
Recall

Study Effect Size Relative p-Value

- Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <005

OExp 0,195 29% 0,494 —a—
REP1 0,725 21% 0,032 —
REP2 0,193 50% 0,372 i
A 0,304 100% 0,048 >
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,
(REP3) -0,336 100% 0,191 —_—
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(b)

Fig.5 Meta-analysis for quality of Understanding a and Recall ability b

of Subgroup B study is negative. This implies that using a Altered-TSD is the improving
condition. However, the effect size of the study in Subgroup B is not statistically significant
(p-value = 0,131).

Considering CC, we observe that the effect size values of all the studies are positive. This
implies that using a GSD has a positive effect on the amount of CCs. The global effect size
of Subgroup A is not statistically significant (p-value = 0,162 > 0,05). In contrast, the effect
size of Subgroup B study is statistically significant (p-value = 0,004 < 0,05).

@ Springer

4452 Empirical Software Engineering (2020) 25:4427-4471

Active Discussion (AD)

Study Effect Size Relative p-Value
(Hedges’g) Weight Sig <0,05

Effect Size and 95% Confidence Interval

OExp 0,412 30% 0,303 —_—
REP1 0,505 2% 0272 I A —
REP2 0,786 48% 0,013 =
A 0,612 100% 0,005 —=
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,546 1009 0,13
®EP3) 05 % 0,131 ———
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(a)
Creative Conflict (CC)

Study Effect Size Relative p-Value

" 1 Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <0,05

OExp 0,466 29% 0,245 —_—
REP1 0,745 21% 0,112 I L
REP2 0,020 50% 0,948 L
A 0,300 100% 0,162 -
2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 1,086 1009 0,004
(REP3) X % 0 ——
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(b)

Conversation Management (CM)

Study Effect Size Relative p-Value

" 1 Effect Size and 95% Confidence Interval
(Hedges’g) Weight Sig <005

OExp 0,580 29% 0,151 —
REPI 0,841 22% 0,075 [
REP2 _(,793 49% 0,012 —
A - 0,740 100% 0,001 -
-2,000 -1,000 0,000 1,000 2,000
TSD GSD
B 0,179 100% 0,61
®EP3) 017 o ,615 —l—
-2,000 -1,000 0,000 1,000 2,000
Altered-TSD GSD
(c)

Fig. 6 Meta-analysis for collaborative interpersonal communication

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4453

Considering CM, we observe that the effect size values of all the studies are negative.
This implies that the effort on CM is bigger when using TSD/Altered-TSD. The global
effect size of Subgroup A is medium and statistically significant (p-value = 0,001 < 0,05).
The effect size of the study in Subgroup B is not statistically significant (p-value = 0,615 >
0,05).

Observation 4 (Active Discussion, AD).

We find that a GSD fosters more AD than a TSD. The effect is statistically significant.
This suggests that GSD’ users question, inform, and motivate each other more than
TSD’ users.

Observation 5 (Creative Conflict, CC).

We find that using a GSD has a positive effect on the amount of CC discussions.
This effect is not statistically significant in Subgroup A. In Subgroup B, this effect is
statistically significant. This suggests that GSD’ users argue and reason about others’
discussions more than Altered-TSD’ users.

Observation 6 (Conversation Management, CM).

A GSD requires less CM effort than TSD/Altered-TSD. The effect is statistically sig-
nificant for Subgroup A. This suggests that GSD’ users do less coordination and
acknowledgment of communicated information than TSD’ users.

4.4 Motivated and Cohesive TSD

Falessi et al. (2013) suggested that documentation of software design rationale could support
many software development activities, including analysis and re-design. Tang et al. (2006)
conducted a survey of practitioners to probe their perception of the value of software design
rationale and how they use and document it. They found that practitioners recognize the
importance of documenting design rationale for reasoning about their design choices and
supporting the subsequent implementation and maintenance of systems.

The goal of running REP3 is to know how a motivated and cohesive TSD (as described
previously in Section 3.5.1 — Altered TSD) could influence design communications. To this
end, we used a different TSD in REP3, which includes a rationale that motivates why the
MVC paradigm is selected for structuring the design. Moreover, we organized the infor-
mation/knowledge in the TSD and made it cohesive. In particular, the relationships of each
entity are reported right after describing it, instead of being reported with all the other
relationships in the ‘relationship section’ at the end of the TSD.

To achieve the goal of REP3, we use a fixed-effect subgroup analysis (Borenstein et al.
2011) to determine whether the Altered-TSD variant is more effective than the TSD. In
particular, we compare the mean effect for two subgroups of studies:

— Subgroup A: the experiments that use a TSD (OExp, REP1, and REP2).
— Subgroup B: the experiment that uses a Altered-TSD (REP3).

For each subgroup of studies, we report in Table 7 the mean effect size and variance of
the studied communication aspects. We observe that effect size of REC and AD is lower in
Subgroup B. This indicates that the Altered-TSD is better than TSD in promoting Recall

@ Springer

4454 Empirical Software Engineering (2020) 25:4427-4471

Table 7 Effect size and variance of communication aspects of Subgroup A and Subgroup B

Subgroup A Subgroup B
Dept. Var. Effect size (Hedges’ g) Variance Effect size (Hedges’ g) Variance
EXP 0,233 0,023 1,168 0,076
UND 0,150 0,024 0,216 0,065
REC 0,304 0,024 -0,336 0,066
AD 0,612 0,047 -0,546 0,131
CcC 0,300 0,046 1,086 0,146
CM -0,740 0,048 -0,179 0,127

Ability and Active Discussion. We also observe that the effect size of CM is higher in Sub-
group B. This indicates that the users of Altered-TSD spent less effort on Conversation
Management.

To statistically analyze the difference between TSD and Altered-TSD, we use the Z-test
method (Borenstein et al. 2011). The results of the test are presented in Table 8. We observe
three significant differences at the « level of 0,05 concerning Explaining (EXP), Recall
(REC), and Active Discussion (AD).

For EXP, we find that the two-tailed p-value corresponding to Z = 2,290 is 0,003. This
tells us that the TSD of Subgroup A’ studies is better for Explaining than the Altered-TSD
of Subgroup B’s study. In addition to reporting the test of significance, we report the clinical
significance. The difference in effect size between the two subgroups of studies is Diff=
0,935, and the 95% confidence interval is in the range of 0,190 and 0,715.

For REC and AD, we find that the two-tailed p-value corresponding to Z = 2,136 and
2,740 are 0,033 and 0,006, respectively. This tells us that the Altered-TSD of the Subgroup
B’s study is better than the TSD of Subgroup A’ studies for increasing Active Discussions
and enhancing Recall ability of design details. The differences in REC and AD effect size
between the two subgroups of studies are Diff= 0,639 and 1,158, and the 95% confidence
intervals are in the range of —0, 124, and 0,393 for REC, and in the range of —0,062, and
0,670 for AD.

Table 8 Subgroup analysis of the difference between TSD and Altered-TSD

Statistical Significance Clinical Significance
Dept. Var. Z-test p-value (2-tailed) Abs. ES. Diff. Lower CL Upper CL
EXP 2,960 0,003 0,935 0,190 0,715
UND 0,220 0,826 0,066 -0,091 0,425
REC 2,136 0,033 0,639 -0,124 0,393
AD 2,740 0,006 1,158 -0,062 0,670
CcC 1,794 0,073 0,786 0,122 0,856
CM 1,341 0,180 0,561 -0,952 -0,219

Abs. ES. Diff: Absolute Effect Size Difference
C.L.: Confidence Level

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4455

Observation 7 (Cohesive and Motivated TSD)

Based on empirical findings, we find that a cohesive TSD that motivates the design
choices with rationale increases the amount of active discussions and enhances
the recall ability of design details at the cost of reducing the perceived quality of
explaining.

4.5 Perceived Experience in Working with Different Design Representations

The perceived experience (based on self-evaluations) in working with different design
representations are detailed here'®. In summary, we find that:

— the participants (both Explainers and Receivers) perceive that the design of the system
is very clear.

— the participants perceive that they are good in recalling a conversation.

— the participants in group G perceive that they are good in recalling UML design models.

— the participants in group T perceive that they are good in recalling a textual documen-
tation.

— the Explainers in group G perceive that models are helpful in understanding the design.

— the Explainers in group T perceive that having diagrams would have helped in
understanding the design.

— the Explainers in group G perceive that models are very helpful in explaining the
design.

— the Explainers in group T perceive that having diagrams would have helped in
understanding the design.

— the Receivers in group G perceive that models are helpful in understanding the design.

— the Receivers in group T perceive that having diagrams would have helped in under-
standing the design.

5 Discussion

Our experiments investigate whether design communication between software engineers
can become more effective when using GSD instead of TSD to exchange design informa-
tion. To this end, we investigate whether using a GSD affects six considered communication
aspects (Understanding, Explaining, Recall, Active Discussion, Creative Conflict, and Con-
versation Management) differently from using a TSD (R.Q.1). Moreover, we study whether
a cohesive and motivated TSD (i.e., Altered-TSD) improves design communication (R.Q.2).

Considering Subgroup A, the global effect size of the perceived explaining quality is
positive. This means that using a GSD has a positive effect on the perceived explaining
quality. Similarly, the global effect size of the understanding (i.e., maintenance task) score
is positive, which means that the score of the GSD users is better than the score of TSD
users. Nevertheless, by considering distributions of the scores we neither find a statistically
significant difference in the quality of explaining (Observation 1) nor in the quality of
understanding (Observation 2) between the two groups: G and T.

While analyzing the recorded, and further transcribed, discussions between the Explain-
ers and Receivers, we interestingly observed a difference in the explaining approach

8http://rodijolak.com/SE_Whispers/PostTask_Results.pdf

@ Springer

http://rodijolak.com/SE_Whispers/PostTask_Results.pdf

4456 Empirical Software Engineering (2020) 25:4427-4471

Fig.7 Observed explaining Model Controller View Model Controller View
approaches used in the two
groups: Gand T

Group T Group G

between the Explainers of the two groups. Figure 7 provides an illustration of the observed
explaining approaches in the two groups. On the one hand, the Explainers of a TSD tended
to explain the three modules of the MVC sequentially: Firstly the model entities, then the
controllers, and lastly the views, as these modules are orderly presented in the textual doc-
ument. We think that this trend is intrinsically imposed by the nature of textual descriptions
where the knowledge is presented sequentially on a number of consecutive ordered pages.
On the other hand, the Explainers of the GSD had more freedom in explaining the design.
Indeed according to their explaining preferences, the Explainers of the GSD tended to jump
back and forth between the three MVC modules when explaining the design. Based on this,
we suggest that a GSD has an advantage over the TSD in unleashing Explainers’ expres-
siveness when explaining the design, as well as in helping navigation and getting a better
overview of the design. However, developers might not have this advantage when explain-
ing many GSDs (e.g., many UML diagrams) spread on different pages within a software
design documentation.

We found that using a GSD is better than a TSD for recalling the details of the dis-
cussed design (Observation 3). This is actually inline with Meade et al. (2018), who suggest
that drawing graphical notations brings more recall benefits than writing textual words in
younger and older adults.

Graphical representations are considered better than the textual in representing infor-
mation which deals with relationships between entities (Volter 2011). One of the recall
questions that we used to measure the recall ability of the participants is concerned with
the relationships between the entities of the software architecture design. We compared the
score (interval variable; min is O and max is 1 point) of the two groups on this question. On
average, the users of the graphical representation were slightly better in recalling the rela-
tionships between the entities (G: Mean= 0,506; Std. Dev.= 0,331) vs. (T: Mean= 0,423;
Std. Dev.= 0,347). However, this difference is not statistically significant (Sig.= 0,128 >
0,05; Hedges’ g= 0,244; Power= 0,338).

The Chinese Whispers game is often invoked as a metaphor for miscommunication. In
this game, the first player often fails to recall all the information of the initial message that
she/he receives. Likewise, the second player often fails to recall all the information of the
message that she/he receives from the first player, and so on for the rest of the players. In
the same manner, the Explainers in our experiments failed to recall all the design details
that we asked for in the post-task questionnaire (Mean Score= 3,319; Std. Dev.= 0,855).
The Receivers were, as expected, worse than the Explainers in recalling the design details
(Mean Score= 2,492; Std. Dev.= 0,885). Moreover, we found that the difference in recall
ability betweeen Explainers and Receivers is statistically significant (Sig.= 0,000 < 0,05;
Hedges’ d= 0,946, Power= 0,999).

Based on empirical results, we find that a GSD fosters more Active Discussion (AD) than
TSD (Observation 4), while reducing Conversation Management (CM) at the same time

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4457

(Observation 6). In the skill taxonomy of McManus and Aiken (1995), the communication
activities in the AD category generally aim at helping an active exploration of the discussed
argument by encouraging information requesting, clarification, or elaboration. In contrast,
the branch of CM comprises communication activities that generally contribute less to active
information requesting or clarification, such as acknowledging or coordinating group tasks.
Consequently, we suggest that using a GSD as a basis for software design communication
promotes an active exploration of the communicated designs, which in turn helps to improve
the effectiveness of software design communication.

There is no significant difference in Creative Conflict (CC) discussions between group
G using GSD and group T using TSD (Observation 5). We suggest that the type of design
description does not influence design argumentation and reasoning. Alternatively, we think
that the context, complexity of the design, available knowledge, or the application of reason-
ing techniques might affect the quality of design argumentation and reasoning discussions,
as suggested by Tang et al. (2018).

It is widely assumed that model-based techniques support communicating soft-
ware (Hutchinson et al. 2014). Our findings support such assumption and prove that using
a GSD improves the recall ability of the discussed design details, fosters Active Discussion,
and at the same time reduces less useful conversation on activities management.

We conducted REP3 to better calibrate our findings of the differences between GSD and
TSD. We found that a motivated (i.e., augmented with rationale) and cohesive TSD helps
to enhances the recall of the design details and increases the amount of active discussions
at the cost of reducing the perceived quality of explaining (Observation 7). This finding
is indeed inline with Tang et al. (2010) who stated that discussing the reasons of making
software design choices (i.e. design rationale) positively contributes to the effectiveness of
software design discussions by facilitating communication and design knowledge transfer.
However, we found that adding more details (e.g., rationale) to the TSD adversely influences
the perceived quality of explaining. One explanation for this effect is that the Explainers
did not have enough time to explain the details of the Altered-TSD. For the same reason,
the Receivers might have perceived that the Explainers did not go through the entire textual
description when explaining the software design.

5.1 Threats to Validity

Our family of experiments is subject to threats to their construct validity, internal validity
(causality), external validity (generalizability), and conclusion validity. We highlight these
issues and discuss related study design decisions.

5.1.1 Construct Validity

Constructs validity refers to how well operational measures represent what researchers
intended them to represent in the study in question. In this study, we used a single method
for measuring the impact of different design representation per each communication aspect.
To mitigate this issue, we did not only rely on questionnaires, but also recorded, transcribed,
and later evaluated the communication observed during the experiments. Nonetheless, lever-
aging additional methods to probe the explaining, understanding, recall, and interpersonal
communication skills of the participants might help to better investigate the effects of differ-
ent design representations. Such methods, for instance, might comprise conducting actual
software design or software engineering tasks after receiving the explanation. However, this
would introduce a multitude of other variables (e.g., the programming language or IDE

@ Springer

4458 Empirical Software Engineering (2020) 25:4427-4471

used) that either can be hardly controlled or demand for drastic simplification, thus reducing
our experiments’ generalizability.

Another threat to construct validity could arise from discretizing the measurement of
continuous properties, such as the participants’ familiarity with software design or their
expertise with UML. This challenge has been investigated for balanced Likert and identified
as not compromising generalizability (Ray 1982).

5.1.2 Internal Validity

The questionnaires to evaluate the participants’ performance raise threats to internal valid-
ity themselves: For instance, the participants might interpret the Likert scales we have
used differently, might have avoided extreme responses (central tendency bias), and - as
the participants evaluated their communication skills themselves - might be biased towards
overestimating or underestimating their skills, which might be subject to different effects
on their introspection. To support comprehension and reproduction of results, we use estab-
lished surveys where possible and provide all materials on the experiments’ companion
website. Nonetheless, completely mitigating the potential effects of surveys’ general defi-
ciency requires the development of novel methods to test familiarity and understanding of
UML designs and textual designs, as well as communication skills. While for the latter,
specifically tailored exercises might be feasible to evaluate the skill level, conducting these,
(a) requires unbiased instruments as well and (b) might affect our experiments. A specific
challenge of our family of experiments regarding the questionnaires arises from conducting
the REP2 survey in French, whereas the other experiments used English documents. While
this generally could affect the results, the experimenters of REP2 had the task documents
and questionnaires professionally translated and reviewed to maintain the consistency of the
communicated information.

To mitigate the effect of limited preparation and explanation time — the Explainers had
20 minutes to understand the design and 12 to discuss it with the Receivers — we conducted
multiple pilot studies at all sites prior to the actual experiments to understand how much
time is required. After running the pilot studies, we increased the initially considered 10
minutes of discussion to 12 based on the feedback of the participants of the pilot studies.
Afterwards, we conducted another pilot study that confirmed that both times are considered
suitable for the tasks.

Other challenges to internal validity stem from the selection of our experiments’ partici-
pants. Potential confounding factors include that due to randomly assigning the participants
to the G or T group, certain personality types are prevalent in one of the groups — which
could affect results. By measuring the Big Five factors of personality (Donnellan et al.
2006), we checked that this is not the case: the distribution of the five personality factors
(Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness) is the same
across the two groups.

Similarly, it could have affected our findings that the members of one of the two groups
have significantly more experience with software design than the members of the other
group. The pre-task questionnaire establishes that this is not a problem of our study. Other
issues could have arisen from our participants being unfamiliar with UML designs or textual
designs but the pre-task questionnaire shows that this is not the case. We assume that this
is due to the participants’ educational backgrounds (in which processing textual designs for
exercises or exams is common).

The textual representations used in this research are structured by indentation, index-
ing, and grouping information, which are helpful for information retrieval (Conversy 2014).

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4459

However, these might have positively affected the quality of TSD communication. Simi-
larly, the MVC entities in the graphical representation were highlighted by colors, which
is also helpful for information retrieval (Conversy 2014). This might have also positively
affected the quality of GSD communication. If the descriptions of the entities in TSD were
tangled and if the entities of the GSD were not colored, then the quality of communication
of these two representations might have been different and less efficient. As we use differ-
ent enhancement techniques for GSD and TSD, it is possible that this affected the results of
the comparison. Indeed, the augmentations to the textual representation might yield other
(stronger or weaker) effects than the class diagram coloring. As both, coloring in graphical
models and structuring of textual design documents, is common in industrial practice, we do
not consider this a significant threat over using unstructured text and uncolored diagrams.

Some Receivers of the text group were drawing (informal) class diagrams while being
explained to. Hence, there might be an interaction of both treatments, but with only six
(2.5%) of the Receivers being affected, the effect of this combination of both representations
is negligible.

Another threat might arise from using textual survey questions as the method to inves-
tigate the benefits of textual and graphical designs. Maybe, textual design representations
yielded better answers to the questions because they are syntactically closer than graphical
designs to the textual answers. This threat could be mitigated through leveraging graphical
questions and answers in the surveys. While this would be feasible for the answers, for for-
mulating the questions as graphical class diagrams, this would entail a new syntax which
might yield further threats.

5.1.3 External Validity

Threats to external validity indicate to which extent the results of our study can be gen-
eralized. Due to working at software engineering research and education institutes, we
selected students with strong software engineering backgrounds of our Universities. While
this prevents generalizing results to software developers with different backgrounds (e.g.,
developers in computer vision, artificial intelligence, or robotics), software design aims at
software architecture from which we expect strong software engineering backgrounds.

Also, we conducted our studies with students instead of software design practition-
ers. Hence, the participants involved in our experiments may not represent the general
professional population of software engineering practitioners. While this limits us from
generalizing our findings to other subjects (i.e., domain experts, professional software archi-
tects, industrial practitioners in the field), the differences between students and professional
software developers in performing small tasks are generally very small (Host et al. 2000).
We, therefore, consider our findings as a basis to extend our study to a larger community of
software engineering practitioners.

Another threatening effect is that the population of professional software developers
yield a larger age range than students. With recall abilities changing over time (Craik 2019),
this limits generalization of our results to professional software developers of the same age
range — between 20 and 30 years — than software engineering students and PhD students
(as proposed in (Falessi et al. 2018)).

Moreover, the studies were conducted in educational contexts, i.e., contexts in which
the students usually are evaluated and graded. This generally might have improved their
performance (Hawthorne effect). However, as this applies to both groups, this does not
affect our results.

@ Springer

4460 Empirical Software Engineering (2020) 25:4427-4471

Due to the outline of our experiments as single one-hour sessions and their popular con-
text in sports that are easily relatable, we can exclude threats regarding history or maturation.
The participants could neither have been effected from previous events of the experiment as
there have not been any.

Moreover, as we used the same two textual/graphical notations in all experiments, this
limits generalizability of our results to other textual or graphical representations, i.e., dif-
ferently structured text or differently highlighted class diagrams. This, however, is a threat
independent of the specific choice of representation and demands for studies deploying mul-
tiple (popular) representations — which demands correctly identifying industrially relevant
forms of representation and yields further threats to generalizability.

The use of a single case specification is a threat to the generalizability of the results. The
size, topic, and complexity of the design case specification might affect the communica-
tion quality and the results of the comparison. This threat can be addressed by conducting
replication studies with different design case specifications.

Another challenge to generalizability might arise from the constructs investigated, i.e.,
whether structured textual design documents and colored UML class diagrams actually are
relevant to communicating design decisions in industry. While the use of UML in software
design and engineering is undaunted in various domains (cf. (Liebel et al. 2014; Wortmann
et al. 2019)), so is the use of textual documents to describe software designs (Casamayor
et al. 2012; Wagner and Fernidndez 2015; Palomba et al. 2016). However, using a spe-
cific form of structured text for communicating design decisions limits generalizability
to this form of text. For instance, in requirements engineering, there are different tools
that support capturing textual requirements and design decisions using different textual
representations (Cant et al. 2006) and using these might entail different effects.

Generalizability might also be challenged by the size of documents used of investigation.
There are no studies on the number of classes per class diagram in industrial software engi-
neering projects. However, a report on numbers of classes per class diagram used in different
lectures reports that in 101 diagrams from 5 different courses, the maximum number of
classes per diagram is 40, with the minimum being 3 and the average being 10.75 (Wolf et al.
2013). This might indicate that our design class diagram of 28 classes is a bit more complex
than it would be usual for education (and hence be more realistic regarding industrial chal-
lenges). Another study investigated 100 android applications from open-source repositories
(Shatnawi et al. 2015). Here, only the average size of these applications as 90 classes is
reported. While this does not report how these would be aligned in different class diagrams,
assuming these cover at least three different concerns (e.g., model, view, and controller)
appears reasonable, which would entail 30 classes per class diagram on average and would
be in line with the 28 classes presented in our experiment. Therefore, we consider the size of
the experiments’ class diagrams relevant. For the textual design documents, we are unaware
of any studies on their average size, but due to them containing the same information as
the class diagrams, which are of relevant size, we conclude that these should be as well.
However, this needs further investigation and might challenge the generalizability of our
results. Also, the effect of the number of classes conveyed in both representations might
affect understanding and recall. This also demands for further investigation.

Similar to the threat of using specifically indented and colored documents, the optimal-
ity of their representations might challenge generalizability of our results as it might be
conceivable that there are better suitable textual or graphical representations that lead to
different results. To the best of our knowledge, the best representations of textual design
documents and graphical class diagrams still have to be identified and whether these are
optimal for any domain needs to be investigated. Nonetheless, differently presented textual

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4461

or graphical designs might have yielded different effects. This, however, is a threat to gen-
eralizability that holds for any study investigating a finite number of alternative treatments
where infinitely many are possible and needs to be considered when applying our results.

Also, the experimental conditions (scope, team size, duration, etc.,) might differ from
real-world conditions and limit generalizability of results. Nonetheless, especially in the
use case of onboarding of job newcomers by experienced developers and designers, this
challenge is of practical interest as indicated by Ericsson’s “Experience Engine” initiative
(cf. section 1).

5.1.4 Conclusion Validity

Threats to conclusion validity challenge how reasonable a research or experimental conclu-
sion is. In our study, these threats might arise, mainly, through concluding the existence of
in-existing differences (type I error) and concluding the in-existence of existing differences
(type 1I error).

We conducted hypotheses testing to determine whether two independent variables have
the same distribution. We might have committed type I error and incorrectly rejected the
null hypothesis (false positive), or committed type II error and incorrectly accepted the null
hypothesis (false negative). However, we considered the significance and minimized the risk
of detecting a non-real effect by setting the « value to 0,05. Also, we analyzed the sensitivity
by discussing the effect size and statistical power of our tests.

We underline that a small sample size of experiments yields low statistical power which,
in turn, increases the likelihood of making type II error (accepting the null hypothesis when
it is false). To mitigate this threat, we conducted a family of experiments that aims at max-
imizing the sample size with repeated measures and increasing the statistical power and
precision of the results (Santos et al. 2018).

5.2 Implications

Using GSD to communicate software designs produces more active discussion, less con-
versation management, and better recall. These effects contribute to deepening the active
exploration of the discussed design (Guastello 1998), which is why we consider using GSD
beneficial to communicating software designs. For identification of design errors, textual
descriptions seem to be more efficient (Melid et al. 2016) than GSD. Our findings suggest
the use of GSD as a basis for communicating designs with the objective of transferring
design knowledge, which is in line with the observed benefits of graphical documents on
recall (Meade et al. 2018).

Our findings, however, assume that the textual design document accurately represents the
GSD. Often, however, these natural language documents yield ambiguities or omit details
that can be missed less easily in graphical descriptions. We assume that this can be due to
graphical descriptions, such as UML class diagrams, being accessible for model checking to
identify, e.g., missing associations or missing types. Future work should investigate whether
textual artifacts used in practice indeed represent the underlying design accurately.

With REP3, we investigated the effects of a cohesive and motivated TSD on design
understanding, explaining, recall, and interpersonal communication. As we found a dif-
ference in explaining, recalling, and active discussion between both groups: TSD and
altered-TSD (Observation 7), future research in improving software design communica-
tion should investigate comparing benefits of augmenting GSD with textual motivation and
rationale as well.

@ Springer

4462 Empirical Software Engineering (2020) 25:4427-4471

5.3 Generalization

Generally, we found that communicating design with a GSD yields better discussions and
better recall. We believe that these effects are not limited to software design documents
but transfer to graphical software descriptions in general. While, for instance, UML class
diagrams meant for implementation might differ in the level of detail, but not in the gen-
eral representation. Applying our findings regarding the benefits of (i) GSD over TSD and
(ii) cohesive TSD with rationale to other kinds of software artifacts can yield benefits for
their communication and consumption as well. For instance, as requirements documents
become more complex (Gralha et al. 2018), augmenting these with graphical representa-
tions or rational could, ultimately, improve requirements engineering. Model-based systems
engineering (Ramos et al. 2012) traditionally considers graphical representations. Nonethe-
less, similar improvements could be achieved as the collaborating stakeholders from various
domains could benefit from being provided rationale of design decisions made in other
domains.

There also is research in textual modeling (Holldobler et al. 2018), which leverages tex-
tual models with well-defined semantics for software design and development. As such,
these textual models are in-between GSD and TSD and whether our results translate to
textual software models, such as UML/P class diagrams (Rumpe 2017), needs further
investigation.

Similarly, the observed benefits of GSD are subject to the viewpoint we selected in a
fashion that allows presenting the complete design description (i.e., model) on a single
sheet of paper. For more complex diagrams, this might not scale-up. However, we assume
that the textual design document (currently three sheets of paper) scales-up even worse.
Consequently, we believe that the effects of software design representation on large designs
with hundreds or thousands of elements will be even more prominent.

6 Conclusion and Future Work

We conducted a family of experiments to study the effect of using graphical versus textual
software design descriptions on software design communication. According to (Ander-
son LW et al. 2001; De Vries et al. 2006; Soller 2001), we considered the following
communication aspects:

Explaining: communicating intellectual capital from one person to others.
Understanding: receiving others’ intellectual capital.

® Recall: recognizing or recalling knowledge from memory to produce or retrieve
previously learned information.

® (Collaborative Interpersonal Communication, which includes:

— Active Discussion: questioning, informing, and motivating others.

— Creative Conflict: arguing and reasoning about others discussions.

— Conversation Management: coordinating and acknowledging commu-
nicated information.

Based on empirical findings, we suggest that a graphical software design descriptions
(GSD) improves design-knowledge transfer and communication by:

® promoting Active Discussion between developers,

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4463

® reducing Conversation Management effort, and
® improving the Recall ability of design details.

Furthermore, compared to its unaltered version, a well-organized and motivated textual
design description—that is used for the same amount of time—enhances the recall of design
details and increases the amount of active discussions at the cost of reducing the perceived
quality of explaining.

6.1 Impacts on Practitioners

In a field study of the Software Design process, Curtis et al. (1988) identified broad com-
munication and knowledge sharing as two factors that have effects on software quality
and productivity. According to our findings, we suggest that the use of GSD can help in
improving design-knowledge sharing and communication. Hence, we identify the following
impacts on practitioners:

® Agile Practices.

Agile development practices include several processes in which communica-
tion is at least involved, if not central (Pikkarainen et al. 2008). Daily meetings
are, by definition, the perfect example of agile ceremony which completely relies
on communication. According to Karlstrém and Runeson (2006), holding daily
meetings as a mechanism for design problem solving appeared to have posi-
tive effects on the communication of the design issues. Based on our findings,
introducing GSDs in daily discussions about design decisions would enhance the
communication quality between participants, which in turn could strengthen the
impact of applying agile practices in software engineering projects.

® Reducing Development Efforts.

Multiple studies demonstrated that communication is one of the most time-
consuming tasks in software development, requiring more effort than any other
development activity (Jolak et al. 2018) and taking up to two hours a day per
each individual developer (Wu et al. 2003). As face-to-face communications are
strongly preferred when possible (Storey et al. 2017; Wu et al. 2003), the use
of GSD as a support for design-related communication could be of benefit for
productivity. Minimizing the required effort for communication would provide
developers with more time at disposal as well as reduce developers mental-load,
so they can focus on different tasks.

® Satisfaction and Productivity.

Although there is no notable difference in the perceived quality of explain-
ing between group G and group T, all participants from the two groups reported
that a GSD indeed helped, or would have helped them, in explaining the design.
Accordingly, we think that using GSDs would make the communication of the
design easier and increase the satisfaction of developers. Graziotin et al. (2015)
reported that satisfaction is directly correlated to productivity. So, we suggest the
use of GSD in design meetings in order to increase the productivity of software
development teams.

® Pedagogical medium.

By observing of the explaining approaches in the two groups, we suggested
that a GSD has an advantage over the TSD in helping navigation and getting
a better overview of the design. Even though this requires more investigation,
we suggest that, due to its nature, a GSD provides more adaptability and extra

@ Springer

4464 Empirical Software Engineering (2020) 25:4427-4471

degrees of explaining freedom, which makes it a better pedagogical medium for
face-to-face design knowledge transfer.
® Design Rationale.

Falessi et al. (2013) state that documenting design rationale could support
many software development activities, such as an impact analysis or major
redesign. Tang et al. (2008) find that design reasoning (i.e., discussing rationale)
improves the quality of software design. In this paper, we find that a TSD that
motivates the design choices with rationale can enhance the recall and explain-
ing of its design details. Accordingly, we suggest the producers of software
design tools (graphical or textual) to provide explicit mechanisms for capturing
and retrieving design rationale. Furthermore, we encourage developers to include
design rationale in design documentations to improve design communication,
which in turn should improve the overall communication and collaboration, and
thus the productivity, in SE projects.

6.2 Future Work

One future direction is to replicate the experiment in order to address and minimize the
threats to the validity of our research design and results. For instance, by replicating
the experiment with a more complex graphical or textual software design description, by
changing the order of complexity of the recall and maintenance tasks, or by involving pro-
fessionals. Moreover, to maximize the benefits, another line of research is to investigate
new techniques or approaches that would enhance the effectiveness of software design com-
munication. One example of these approaches is proposed in a study by Tang et al. (2018)
where a reminder card approach was employed to improve software design reasoning dis-
cussions. Another example is proposed by Robillard et al. (2017) who argue that automatic
on-demand documentation generators would effectively support the information needs of
developers.

Acknowledgements We would like to thank Prof. Robert Feldt for his valuable suggestions and inspiring
discussions about this work. Moreover, this work was partially supported by the Scientific Grant Agency of
Slovak Republic (VEGA) under the grant No. VG 1/0759/19 and it is partial result of the project Research
of methods for acquisition, analysis and personalized conveying of information and knowledge, ITMS
26240220039, co-funded by the ERDF.

Funding Open access funding provided by University of Gothenburg.

Compliance with Ethical Standards

Ethical Issues In this study, we considered the major ethical issues according to (Singer and Vinson 2002):
informed consent, beneficence— do not harm, and respect for anonymity and confidentiality.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2020) 25:4427-4471 4465

References

Anderson LW, Krathwohl DR, Airasian PW, Cruikshank KA, Mayer RE, Pintrich PR, Raths J, Wittrock MC
(2001) A taxonomy for learning, teaching, and assessing: A revision of bloom’s taxonomy of educational
objectives, abridged edition. White Plains NY: Longman

Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE Trans
Softw Eng 25(4):456-473

Bobek E, Tversky B (2016) Creating visual explanations improves learning. Cognitive Research:, Principles
and Implications 1(1):27

Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2011) Introduction to meta-analysis John Wiley &
Sons

Brambilla M, Cabot J, Wimmer M (2012) Model-driven software engineering in practice. Synthesis Lectures
on Software Engineering 1(1):1-182

Cant T, McCarthy J, Stanley R (2006) Tools for requirements management: a comparison of telelogic doors
and the hive. Tech. rep. Defence Science and Technology Organisation Edinburg (Australia) Information
Networks DIV

Casamayor A, Godoy D, Campo M (2012) Mining textual requirements to assist architectural software
design: a state of the art review. Artif Intell Rev 38(3):173-191

Conversy S (2014) Unifying textual and visual: a theoretical account of the visual perception of programming
languages. In: Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, pp. 201-212. ACM

Craik FI (2019) Aging and memory: Attentional resources and cognitive control

Cruz S, da Silva FQ, Capretz LF (2015) Forty years of research on personality in software engineering: a
mapping study. Comput Hum Behav 46:94-113

Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems. Commun.
ACM 31(11):1268-1287

De Vries RE, Van den Hooff B, De Ridder JA (2006) Explaining knowledge sharing: the role of team
communication styles, job satisfaction, and performance beliefs. Communication research 33(2):115-
135

Dobing B, Parsons J (2006) How UML is used. Commun ACM 49(5):109-113

Donnellan MB, Oswald FL, Baird BM, Lucas RE (2006) The mini-ipip scales: tiny-yet-effective measures
of the big five factors of personality. Psychological assessment 18(2):192

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering
research. In: Guide to advanced empirical software engineering, pp. 285-311. Springer

Ellis PD (2010) The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of
research results Cambridge University Press

Falessi D, Briand LC, Cantone G, Capilla R, Kruchten P (2013) The value of design rationale information.
ACM Transactions on Software Engineering and Methodology (TOSEM) 22(3):21

Falessi D, Juristo N, Wohlin C, Turhan B, Miinch J., Jedlitschka A, Oivo M (2018) Empirical soft-
ware engineering experts on the use of students and professionals in experiments. Empir Softw Eng
23(1):452-489

Gralha C, Damian D, Wasserman AIT, Gouldo M, Aradjo J (2018) The evolution of requirements practices
in software startups. In: Proceedings of the 40th International Conference on Software Engineering,
pp. 823-833. ACM

Graziotin D, Wang X, Abrahamsson P (2015) Do feelings matter? on the correlation of affects and the self-
assessed productivity in software engineering. Journal of Software:, Evolution and Process 27(7):467—
487

Guastello SJ (1998) Creative problem solving groups at the edge of chaos. The Journal of Creative Behavior
32(1):38-57

Hedges LV (1981) Distribution theory for glass’s estimator of effect size and related estimators. Journal of
Educational Statistics 6(2):107-128

Heijstek W, Kuhne T, Chaudron MRV (2011) Experimental analysis of textual and graphical representations
for software architecture design. In: International symposium on empirical software engineering and
measurement, pp. 167-176. IEEE

Holldobler K, Rumpe B, Wortmann A (2018) Software language engineering in the large: towards composing
and deriving languages. Computer languages, Systems & Structures 54:386—405

Host M, Regnell B, Wohlin C (2000) Using students as subjects—a comparative study of students and
professionals in lead-time impact assessment. Empirical Software Engineering 5(3):201-214

@ Springer

4466 Empirical Software Engineering (2020) 25:4427-4471

Hutchinson J, Whittle J, Rouncefield M (2014) Model-driven engineering practices in industry: Social,
organizational and managerial factors that lead to success or failure. Sci Comput Program 89:144-161

Hutchinson J, Whittle J, Rouncefield M, Kristoffersen S (2011) Empirical assessment of MDE in industry.
In: Proceedings of the 33rd international conference on software engineering, pp. 471-480. ACM

Jarboe S (1996) Procedures for enhancing group decision making. Communication and group decision
making, pp 345-383

Jedlitschka A, Ciolkowski M, Pfahl D (2008) Reporting experiments in software engineering. In: Guide to
advanced empirical software engineering, pp. 201-228. Springer

Jolak R, Ho-Quang T, Chaudron MRV, Schiffelers RRH (2018) Model-based software engineering: A
multiple-case study on challenges and development efforts. In: Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems, pp. 213-223. ACM

Jolak R, Wortmann A, Chaudron MRV, Rumpe B (2018) Does distance still matter? insights from revisiting
collaborative distributed software design. IEEE Software

Karlstrom D, Runeson P (2006) Integrating agile software development into stage-gate managed product
development. Empir Softw Eng 11(2):203-225

Kauffeld S, Lehmann-Willenbrock N (2012) Meetings matter: Effects of team meetings on team and
organizational success. Small Group Res 43(2):130-158

Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability
research. Journal of chiropractic medicine 15(2):155-163

Kortum F, Kliinder J, Schneider K (2017) Don’t underestimate the human factors! exploring team com-
munication effects. In: International conference on product-focused software process improvement,
pp. 457-469. Springer

Liebel G, Marko N, Tichy M, Leitner A, Hansson J (2014) Assessing the state-of-practice of model-based
engineering in the embedded systems domain. In: International conference on model driven engineering
languages and systems, pp. 166—182. Springer

Liskin O (2015) How artifacts support and impede requirements communication. In: International working
conference on requirements engineering: foundation for software quality, pp. 132—147. Springer

McManus MM, Aiken RM (1995) Monitoring computer-based collaborative problem solving. J Interact
Learn Res 6(4):307

Meade ME, Wammes JD, Fernandes MA (2018) Drawing as an encoding tool: Memorial benefits in younger
and older adults. Experimental aging research 44(5):369-396

Melia S, Cachero C, Hermida JM, Aparicio E (2016) Comparison of a textual versus a graphical notation for
the maintainability of mde domain models: an empirical pilot study. Softw Qual J 24(3):709-735

Moody DL (2010) The “physics” of notations: a scientific approach to designing visual notations in soft-
ware engineering. In: 2010 ACM/IEEE 32Nd international conference on software engineering, vol. 2,
pp. 485-486. IEEE

Palomba F, Panichella A, De Lucia A, Oliveto R, Zaidman A (2016) A textual-based technique for smell
detection. In: 2016 IEEE 24Th international conference on program comprehension (ICPC), pp. 1-10

Pikkarainen M, Haikara J, Salo O, Abrahamsson P, Still J (2008) The impact of agile practices on
communication in software development. Empir Softw Eng 13(3):303-337

Ramos AL, Ferreira JV, Barcel6 J (2012) Model-based systems engineering: An emerging approach for mod-
ern systems. IEEE Transactions on Systems, Man, and Cybernetics. Part C (Applications and Reviews)
42(1):101-111

Ray JJ (1982) The construct validity of balanced likert scales. The Journal of Social Psychology 118(1):141—
142

Robillard MP, Marcus A, Treude C, Bavota G, Chaparro O, Ernst N, Gerosa MA, Godfrey M, Lanza M,
Linares-Vasquez M, et al. (2017) On-demand developer documentation. In: 2017 IEEE International
conference on software maintenance and evolution (ICSME), pp. 479-483. IEEE

Rumpe B (2017) Agile modeling with UML: code generation, Testing, Refactoring. Springer International

Rus I, Lindvall M, Sinha S (2002) Knowledge management in software engineering. IEEE software 19(3):26—
38

Santos A, Gémez OS, Juristo N (2018) Analyzing families of experiments in SE: a systematic mapping study
IEEE Transactions on Software Engineering

Sharafi Z, Marchetto A, Susi A, Antoniol G, Gueheneuc YG (2013) An empirical study on the efficiency
of graphical vs. textual representations in requirements comprehension. In: Program comprehension
(ICPC), 2013 IEEE 21st international conference on, pp. 33-42. IEEE

Shatnawi A, Seriai A, Sahraoui H, Al-Shara Z (2015) Mining software components from object-oriented
apis. In: International conference on software reuse, pp. 330-347. Springer

@ Springer

Empirical Software Engineering (2020) 25:4427-4471 4467

Singer J, Vinson NG (2002) Ethical issues in empirical studies of software engineering. IEEE Trans Softw
Eng 28(12):1171-1180

Soller A (2001) Supporting social interaction in an intelligent collaborative learning system. International
Journal of Artificial Intelligence in Education (IJAIED) 12:40-62

Storey MA, Zagalsky A, Figueira Filho F, Singer L, German DM (2017) How social and communication
channels shape and challenge a participatory culture in software development. IEEE Trans Softw Eng
43(2):185-204

Tang A, Aleti A, Burge J, van Vliet H (2010) What makes software design effective? Des Stud 31(6):614—
640

Tang A, Babar MA, Gorton I, Han J (2006) A survey of architecture design rationale. Journal of systems and
software 79(12):1792-1804

Tang A, Bex F, Schriek C, van der Werf JME (2018) Improving software design reasoning—a reminder card
approach. J Syst Softw 144:22-40

Tang A, Tran MH, Han J, Van Vliet H (2008) Design reasoning improves software design quality. In:
International conference on the quality of software architectures, pp. 28-42. Springer

Tversky B (2018) Multiple models. in the mind and in the world. Historical Social Research/Historische
Sozialforschung. Supplement 31:59-65

Volter M (2011) Md*/dsl best practices update march 2011 Update

Wagner S, Ferndndez DM (2015) Analyzing text in software projects. In: The art and science of analyzing
software data, pp. 39-72. Elsevier

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslén A. (2012) Experimentation in software
engineering Springer Science & Business Media

Wolf M, Petridis M, Ma J (2013) Using structural similarity for effective retrieval of knowledge from class
diagrams. In: International conference on innovative techniques and applications of artificial intelligence,
pp. 185-198. Springer

Wortmann A, Barais O, Combemale B, Wimmer M (2019) Modeling languages in industry 4.0: an extended
systematic mapping study Software and Systems Modeling

Wau J, Graham TCN, Smith PW (2003) A study of collaboration in software design. In: 2003 International
symposium on empirical software engineering, 2003. ISESE 2003. Proceedings., pp. 304-313

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Rodi Jolak is a postdoctoral researcher in software engineering at the
joint Department of Computer Science and Engineering of Chalmers
and University of Gothenburg in Sweden. His research activities
focus on software engineering, software architecture, software design
and modeling, human-computer interfaces, and security. Rodi got a
Ph.D. in Software Engineering from the University of Gothenburg,
Sweden 2020. He also practiced his role as a software engineer in
industry for more than two years. See http://www.rodijolak.com for
more.

@ Springer

http://www.rodijolak.com

4468

Empirical Software Engineering (2020) 25:4427-4471

@ Springer

Maxime Savary-Leblanc is a PhD student both in the CARBON
team of the CRIStAL laboratory at the University of Lille and in
the CEA LIST in Saclay. His research activities focus on model-
driven software engineering assisted by artificial intelligence with an
emphasis on related human factors. He obtained a Master of Sci-
ence in Digital System Design and Engineering from the University
of Lille in July 2018 after spending two years working as a mobile
application software engineer in an IT major company.

Manuela Dalibor received her B. Sc. and M. Sc. degrees in com-
puter science from the RWTH Aachen University, in 2015 and
2018. Currently, she is a research assistant and Ph.D. candidate at
the Department of Software Engineering at RWTH Aachen Univer-
sity. Her research interests cover software language engineering and
self-adaptive cyber-physical systems.

Andreas Wortmann is a tenured research associate in RWTH
Aachen University’s Chair for Software Engineering. His research
interests include software engineering, software architectures, model-
driven development, robotics, and software-language engineering. He
received a PhD in software engineering from RWTH Aachen Uni-
versity. He’s a member of IEEE and its Technical Committee on
Software Engineering for Robotics and Automation and serves in the
board of the European Association for Programming Languages and
Systems (EAPLS).

Empirical Software Engineering (2020) 25:4427-4471 4469

Regina Hebig is an associate professor at the Software Engineer-
ing division of the Computer Science and Engineering department of
Chalmers and University of Gothenburg. Her research interests are in
Model-Driven Engineering, Software Processes, Software Evolution
and Software Metrics.

Juraj Vincur received the master’s degree in software engineering in
2015 from the Slovak University of Technology in Bratislava, where
he is currently also working toward the PhD degree. His research
interests include immersive software visualization and programming
learning environments.

Ivan Polasek received PhD. degree in Applied Informatics in 2000
and from 2016 he is associated professor at the Faculty of Informatics
and Information Technology Slovak University of Technology (FIIT
STU) in Bratislava lecturing Software architectures and Object ori-
ented analysis and design. From 1990 he worked or cooperated with
NCR Germany, SCD Wien, Informata Zurich, Gesellschaft fiir Ange-
wandte Informatik Bern and from 1997 he works as a project manager
and a head of the Software Analysis and Design Group in software
company Gratex International.

@ Springer

4470

Empirical Software Engineering (2020) 25:4427-4471

@ Springer

Xavier Le Pallec is Assistant Professor at the Department of Com-
puter Science at Lille University (France) where he received his PhD
in Computer Science in 2002. Since 2007, he is researcher at the
CRIStAL Laboratory. Since 2012, he focused on human factors in
modeling, with a particular interest on visual aspects. His interest
for the Modelia project is to identify how Al can help to software
practitioners from a human factor point of view, i.e., the cogni-
tive dimensions in which AI can be useful and/or the interaction
mechanisms that are necessary to create or evolve it.

Sébastien Gérard is director of research at CEA and he is the
research program leader around the knowledge co-engineering plat-
form of the CEA LIST (http://www-list.cea.fr) software and sytem
engineering department. Working on research issues related to com-
plex and critical system and software design for more than 20 years,
his research interests include correct-by-construction specification
and design of complex systems, model-based engineering of complex
systems and visual modeling language engineering. He is also lead-
ing the open-source project, Papyrus (www.eclipse.org/papyrus), the
UML modeling tools of Eclipse.

Michel R. V. Chaudron is a full professor in the Software Engineering
Division at the joint Department of Computer Science and Engineer-
ing of Chalmers and Gothenburg University in Sweden. Prior to that,
he worked at Leiden University and TU Eindhoven in The Nether-
lands. Prof. Chadron’s research interests are in software architecture,
software design, software modeling and model-driven software devel-
opment with a special interest in empirical studies into software
modeling and design. He has published more than 100 papers in these
areas. He is an active member of several conferences in these areas
including MODELS, Euromicro-SEAA, ESEM, and ICSE.

http://www-list.cea.fr
www.eclipse.org/papyrus

Empirical Software Engineering (2020) 25:4427-4471

4471

Affiliations

Rodi Jolak! © . Maxime Savary-Leblanc? - Manuela Dalibor3 - Andreas Wortmann3 -
Regina Hebig' - Juraj Vincur? - Ivan Polasek? - Xavier Le Pallec? - Sébastien Gérard® -

Michel R. V. Chaudron’

Maxime Savary-Leblanc
maxime.savary-leblanc @univ-lille.fr

Manuela Dalibor
dalibor@se-rwth.de

Andreas Wortmann
wortmann @se-rwth.de

Regina HebigRegina Hebig
regina.hebig@cse.gu.se

Juraj Vincur
fjuraj.vincur @stuba.sk

Ivan Polasek
ivan.polasekg @stuba.sk

Xavier Le PallecXavier Le Pallec
xavier.le-pallec @univ-lille.fr

Sébastien Gérard
sebastien.gerard @cea.fr

Michel R.V. Chaudron

michel.chaudron@cse.gu.se

Chalmers | University of Gothenburg, Gothenburg, Sweden
Lille University, Lille, France

3 RWTH Aachen University, Aachen, Germany

Slovak University of Technology, Bratislava, Slovakia

5 CEA LIST, Palaiseau, France

@ Springer

http://orcid.org/0000-0001-5656-9253
mailto: maxime.savary-leblanc@univ-lille.fr
mailto: dalibor@se-rwth.de
mailto: wortmann@se-rwth.de
mailto: regina.hebig@cse.gu.se
mailto: fjuraj.vincur@stuba.sk
mailto: ivan.polasekg@stuba.sk
mailto: xavier.le-pallec@univ-lille.fr
mailto: sebastien.gerard@cea.fr
mailto: michel.chaudron@cse.gu.se

	Software engineering whispers: The effect of textual vs. graphical software design descriptions on software design communication
	Abstract
	Introduction
	Rationale
	Objective and Contribution

	Related Work
	Experimental Design
	Family of Experiments
	Scope
	Participants
	Experimental Treatments
	Design Case and Graphical vs. Textual Descriptions
	Design Descriptions

	Tasks
	Remark.

	Variables and Hypotheses
	Experiment Procedure

	Data Analysis
	Data Set Preparation
	Descriptive Statistics
	Hypotheses Testing
	Meta-Analysis

	Results
	Perceived Design Experience and Communication Skills
	Individual Experiments
	Meta-Analysis
	Explaining
	Understanding and Recall
	Interpersonal Communication

	Motivated and Cohesive TSD
	Perceived Experience in Working with Different Design Representations

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Implications
	Generalization

	Conclusion and Future Work
	Impacts on Practitioners
	Future Work

	References
	Affiliations

