2103.11777v1 [cs.SE] 22 Mar 2021

arXiv

Noname manuscript No.
(will be inserted by the editor)

Automated Issue Assignment: Results and Insights
from an Industrial Case

Ethem Utku Aktas - Cemal Yilmaz

Received: date / Accepted: date

Abstract Softtech, being a subsidiary of the largest private bank in Turkey,
called IsBank, receives an average of 350 issue reports from the field every day.
Manually assigning the reported issues to the software development teams
is costly and cumbersome. We automate the issue assignments using data
mining approaches and share our experience gained by deploying the resulting
system at Softtech/IsBank. Automated issue assignment has been studied in
the literature. However, most of these works report the results obtained on
open source projects and the remaining few, although they use commercial,
closed source projects, carry out the assignments in a retrospective manner.
We, on the other hand, deploy the proposed approach, which has been making
all the assignments since Jan 12, 2018. This presents us with an unprecedented
opportunity to observe the practical effects of automated issue assignment in
the field and to carry out user studies, which have not been done before in this
context. We observe that it is not just about deploying a system for automated
issue assignment, but also about designing/changing the assignment process
around the system; the accuracy of the assignments does not have to be higher
than that of manual assignments in order for the system to be useful; deploying
such a system requires the development of additional functionalities, such as
detecting deteriorations in assignment accuracies in an online manner and
creating human-readable explanations for the assignments; stakeholders do
not necessarily resist change; and gradual transition can help stakeholders
build confidence.

Ethem Utku Aktas

Softtech Inc., Research and Development Center,
34947 Istanbul, Turkey

E-mail: utku.aktas@softtech.com.tr

Cemal Yilmaz

Faculty of Engineering and Natural Sciences,
Sabanci University,

34956 Istanbul, Turkey

E-mail: cyilmaz@sabanciuniv.edu

2 Ethem Utku Aktas, Cemal Yilmaz

Keywords Bug Triaging - Issue Report Assignment - Text Mining - Machine
Learning - Accountable Machine Learning - Change Point Detection

1 Introduction

IsBankB is the largest private bank in Turkey with 7.5 million digital cus-
tomers, 25 thousand employees, 6566 ATMs (Automated Teller Machines),
and 1314 domestic and 22 foreign branches, providing a large variety of bank-
ing and financial services.

Softtec}EI is an ISO-9001-certified subsidiary of IsBank and the largest
software company of Turkey owned by domestic capital, providing customer-
oriented, business-critical solutions to IsBank by using universally-recognized
lean techniques and agile processes with a diverse set of programming lan-
guages, platforms, and technologies, including COBOL, Java, C#, C++, main-
frame platforms, mobile/wearable platforms, security- and privacy-related tech-
nologies, natural language processing technologies, speech technologies, im-
age/video processing technologies, and artificial intelligence technologies.

When the wide range of software systems maintained by Softtech couple
with the large user base owned by IsBank, who depend on these systems to
carry out their day-to-day businesses, Softtech receives an average of 350 is-
sue reports from the field every day (around 90 thousand reports per year).
The reported issues range from bank clerks having software failures to bank
customers facing software-related problems in any of the bank channels, in-
cluding online, mobile, and ATM. Note that what we refer to as issue reports
in this work are also often referred to as bug reports and problem reports in
the literature.

Most of the reported issues concern business-critical software systems.
Therefore, both Softtech and IsBank need to handle these issues with ut-
most importance and urgency. To this end, two dedicated teams of employees
are employed: one at IsBank with 50 full-time clerks, called IT Help Desk
(IT-HD), and the other at Softtech with 30 full-time employees, called Ap-
plication Support Team (AST). IT-HD clerks collect the issues reported from
the field, resolve the ones that they can (such as the issues addressed by basic
troubleshooting guides), and if not, assign them to the software development
teams at Softtech. AST members, on the other hand, being embedded in the
development teams at Softtech, help the development teams manage the issue
reports assigned to them.

An integral part of this process is to assign the issue reports to the right
development teams; i.e., the ones that are responsible for resolving the reported
issues. In the remainder of the paper, we refer to this task as issue report
assignment (or issue assignment, in short).

It turned out that the manual issue assignments carried out by the IT-HD
clerks were costly and cumbersome, mainly due to the large number of issues

1 https://www.isbank.com.tr
2 https://softtech.com.tr

Automated Issue Assignment: An Industrial Case 3

received on a daily basis and the relatively large number of development teams
that these issues should be assigned to (an average of 53 development teams
at any point given in time). Furthermore, incorrect assignments, were not only
causing friction between IT-HD and AST, but also increasing the turnaround
time for resolutions as the respective issue reports tented to bounce back and
forth between IT-HD and AST until the right development team was located.

In this work, we automate the process of issue assignment by using data
mining approaches and share our experience gained by deploying the resulting
system, called IssueTAG, at IsBank and Softtech, which has been making all
the issue assignments since its deployment on Jan 12, 2018.

Automated issue assignment is indeed not a new idea (Murphy and Cubranic|
2004; [Anvik et al|[2006} [Wang et al|[2008}; [Bhattacharya et al|2012} [Jonsson]
et al.|[2016; Dedik and Rossi|[2016). Most of the existing works, however, re-
port the results obtained on open source projects, such as Eclipse, Mozilla,
and Firefox (Murphy and Cubranic/2004; Anvik et al.[[2006; Wang et al.|2008;
Bhattacharya et al[2012). Our work differs from these works in that we present
an industrial case where we use the issue reports filed for commercial, closed-
source software systems.

We, furthermore, assign issue reports to development teams, rather than to
individual developers — a decision we made based on our discussions with the
IT-HD and AST teams. The former is more practical and realistic in industrial
setups, because the latter does not take into account 1) the current workloads
owned by the individual developers, 2) the changes in the team structures,
such as the developers leaving or joining the teams, and 3) the current status
of developers, such as the developers who are currently on leave of absence.
Therefore, especially in the presence of close-knit development teams, which is
the case with Softtech, assigning issue reports to the development teams help
the teams make more educated decisions as to which team member the report
should be addressed by.

Moreover, rather than carrying out the issue assignments in the context
of a single product, such as Eclipse, Mozilla, and Firefox, where the incoming
issues are assigned to individual software engineers working on the product,
we do the assignments at the level of an entire company (Softtech), which has
489 software products comprised of around 100 millions of lines of code (as
of Feb 3, 2019). That is, we assign issue reports filed for any product owned
by Softtech to the development teams responsible for resolving the reported
issues. This is challenging because with the collection of software products
maintained by Softtech, which heavily interact with each other in a business-
critical environment by sharing many resources, such as databases, file systems,
and GUI screens, the boundaries of the products from the perspective of issue
reporting and management are not clear at all.

There are only few recent studies reporting the results obtained on closed-
source, commercial software projects (Jonsson et al|2016; Dedik and Rossi
[2016} Lin et al.|[2009; Helming et al.[2010). These studies, however, carry out
the assignments in a retrospective and offline manner by simply treating the
actual issue databases as historical data. We have, on the other hand, deployed

4 Ethem Utku Aktas, Cemal Yilmaz

IssueTAG, which presented us with an unprecedented opportunity to observe
the practical effects of automated issue assignment in practice as well as to
carry out user studies, which (to the best of our knowledge) have not been
done before in this context.

First, we observed that it is not just about deploying a data mining-based
system for automated issue assignment, but also about designing/changing
the assignment process around the system to get the most out of it. We, in
particular, made simple, yet effective changes in the manual issue assignment
process employed at IsBank and Softtech (Section .

Second, the accuracy of the assignments does not have to be higher than
that of manual assignments in order for the system to be useful, which is
further validated by the user studies we carried out on actual stakeholders in
the field (Section @ In a nutshell, although the daily assignment accuracy
of IssueTAG was slightly lower than that of manual assignments (0.831 vs.
0.864), it reduced the manual effort required for the assignments by about 5
person-months per year and improved the turnaround time for resolving the
reported issues by about 20% (Section . Furthermore, about 79% of the
stakeholders participated in our user study “agreed” or “strongly agreed” that
the system was useful (Section [5)).

Third, we observed that deploying a data mining-based approach for au-
tomated issue assignments, requires the development of additional function-
alities, which are not necessarily foreseen before the deployment. We have,
in particular, developed two additional functionalities, both of which, to the
best of our knowledge, have not been evaluated before in the context of issue
assignment. One functionality we needed was to monitor the assignment ac-
curacy of the system and detect deteriorations in an online manner, so that
corrective actions, such as recalibrating the models, can be taken in time. To
this end, we have developed a change point detection-based approach (Sec-
tion. Another functionality we needed, which we also did not foresee before
the deployment of IssueTAG, was to create human-readable, non-technical ex-
planations for the assignments made by the system. This was indeed a need
we came to realize when we received several phone calls from the stakeholders
shortly after the deployment of IssueTAG, demanding explanations as to why
certain issue reports (especially, the incorrect-assigned ones) were assigned to
them. Note that this is not a trivial task at all, especially when the underlying
data mining models are not human readable. To this end, we have generated
model-agnostic explanations (Ribeiro et al.|2016) and carried out a user study
to evaluate the quality of these explanations (Section .

Last but not least, we observed that stakeholders do not necessarily re-
sist change. In particular, we did not receive any objection at all to the de-
ployment of IssueTAG. We believe that this was because all the stakeholders
believed that they would benefit from the new system and none of them felt
threatened by it (Section@. We, furthermore, observed that gradual transition
helped stakeholders build confidence in IssueTAG, which, in turn, facilitated
the acceptance of the system (Section [9).

Automated Issue Assignment: An Industrial Case 5

More specifically, the research question we address in this work are:

- RQ1: How do the existing approaches for automated issue assignment com-
pare with each other?

- RQ2: How do the amount and time locality of training data affect the
assignment accuracies?

- RQ3: How does automated issue assignment compare to manual issue as-
signment in practice?

- RQ4: Is IssueTAG perceived as useful by the end-users?

- RQ5: Can the issue assignments made by the underlying data mining model
be explained in a non-technical manner?

- RQ6: Can the deteriorations in the assignment accuracies be automatically
detected in an online manner?

The remainder of the paper is organized as follows: Section 2] describes the
issue assignment process employed at IsBank and Softtech before the deploy-
ment of IssueTAG; Section [3] evaluates the existing approaches for automated
issue assignment on the collection of issue reports maintained by IsBank and
Softtech (RQ1); Section 4| presents the empirical studies we carried out to de-
termine the amount and time locality of the training data required for train-
ing/recalibrating the underlying data mining models(RQ2); Section [5| deploys
IssueTAG and evaluates its effects in practice (RQ3); Section |§| carries out a
user study on the end users of IssueTAG to evaluate whether the deployed
system is perceived as useful (RQ4); Section |7| presents an approach for au-
tomatically generating explanations for the assignments and evaluates it by
conducting a user study (RQ5); Section [§] describes and evaluates a change
point detection-based approach for detecting deteriorations in assignment ac-
curacies (RQ6); Section |§| presents lessons learnt; Section [10| discusses threats
to validity; Section presents related work; and Section concludes with
potential avenues for future work.

2 Case Description

At IsBank and Softtech, the issue reports, as they typically concern business-
critical systems, are handled with utmost importance and urgency. To this end,
two dedicated teams are employed, the sole purpose of which is to manage the
reported issues, namely IT-HD (IT Help Desk) and AST (Application Support
Team).

2.1 IT Help Desk

The IT-HD team is employed at IsBank and it consists of 50 full-time, (mostly)
non-technical clerks, who are internally referred to as Level 1 employees, in-
dicating the level of technical competency they have. When a bank employee
or a bank customer faces with an IT-related issue, they call IT-HD on the

6 Ethem Utku Aktas, Cemal Yilmaz

phone. The IT-HD clerk listens to the issue, collects the details as needed,
records them, and resolves the reported issue right away if it is an issue that
can be resolved by an IT-HD clerk, such as the ones documented in basic trou-
bleshooting guides. If not, the clerk is responsible for dispatching the issue to
the proper entity/unit in the company. In the case of a software-related issue,
the clerk files an issue report to Softtech.

2.2 Issue Reports

An issue report, among other information, such as the date and time of cre-
ation, has two parts: a one-line summary and a description, both of which are
written in Turkish. The former captures the essence of the issue, whereas the
latter describes the issue, including the expected and observed behavior of the
system, and provides information to reproduce the reported issue (Bettenburg
et al.[[2008a). Note that the aforementioned issue reports do not have any field
conveying categorical information, such as product, component, and version
information. The reason is that since the collection of software products main-
tained by Softtech are heavily interacting with each other in a business-critical
environment, sharing many resources, such as databases, file systems, and GUI
screens, the boundaries of the products/components from the perspective of
issue reporting and management are not clear at all. For example, a single
GUI screen can have multiple tabs, each of which is maintained by a different
development team. A single tab can, in turn, have a number of widgets, each
of which is under the responsibility of a different team. Almost all of the GUI
screens interact with the core banking system, which is maintained by a differ-
ent set of development teams. The core can be accessed via different banking
channels, such as online, mobile, ATM, and SMS (Short Message Service),
each of which has a dedicated set of development teams. Last but not least,
financial transactions are typically carried out by using multiple GUI screens,
widgets, and channels, crossing the boundaries of multiple development teams.

2.3 Application Support Team (AST)

The AST team is employed at Softtech and it consists of 30 full-time, Level
2 employees. That is, in terms of technical competency, the AST employees
are somewhere between Level 1 IT-HD clerks and Level 3 software engineers.
AST employees are embedded in development teams, which are consisted of
software engineers. The same AST member can work with multiple develop-
ment teams and a development team can have multiple AST members. The
sole responsibility of an AST member embedded in a development team is to
manage the collection of issue reports assigned to the team. When a new issue
report is assigned to a development team, the AST member embedded in the
team is typically the first one to examine the report. If the AST member can
resolve the reported issue, he/she first resolves it and then closes the report

Automated Issue Assignment: An Industrial Case 7

LEVEL 1
IT HELP DESK

Software
related issue
records

Which team
ould solve it?

Assigned
issue
records

Issue
resolution
process

Returned
issue
records

igned
issue

records

LEVEL 2
APPLICATION SUPPORT TEAM

i

Bug
Tossing

Issue
resolution
process

LEVEL 3 Issue
SOFTWARE DEVELOPERS resolution
process

Bug
Tossing

D : Data l:l: Process
<> : Decision m: Manual Input

Fig. 1: Issue report assignment process before the deployment of IssueTAG.

on behalf of the team. Otherwise, the AST member notifies the development
team about the newly reported issue by, for example, assigning it to a software
engineer in the team or by creating a task for the team and linking it to the
issue report. Note that AST members, although they are not considered to be
software engineers, can still resolve some of the reported issues as not all of
these issues may require changes in the code base. Some issues, for example,
are resolved by running pre-existing scripts, which can automatically diagnose
and fix the problems or by manually updating certain records in the database.
Therefore, the ultimate goal of the AST members is to reduce the workload of
software engineers by resolving the issues that do not require code changes.

2.4 Manual Issue Assignment Process

Before the deployment of IssueTAG, IT-HD clerks, after creating an issue
report, was assigning it to a development team. To this end, they were main-
taining a knowledge base, which was simply comprised of spreadsheets map-
ping certain keywords with development teams. In the presence of an incor-
rect assignment, although the AST member(s) or the software engineers in
the respective development team could reassign the issue to a different team,
the incorrectly assigned reports were often returned back to IT-HD for reas-
signment. Figure [1l| summarizes the assignment process. The issue reports are
managed by using Maximdﬂ at IsBank and by using Jirsﬁ at Softtech.

3 https://www.ibm.com/products/maximo
4 https://www.atlassian.com/software/jira

8 Ethem Utku Aktas, Cemal Yilmaz

2.5 Issues with the Manual Assignment Process

There were a number of issues with the aforementioned process. First, the
learning curve for the IT-HD clerks (especially for the new hires) for excelling
in team assignments was generally steep due to the large number of issue re-
ports received on a daily basis (an average of about 350 issue reports) and
the relatively large number of products and development teams present (more
than 450 products and between 47 and 57 teams at any given point in time).
Second, although IT-HD clerks were using a knowledge base to help with
the assignments, it was maintained in an ad hoc manner, which was error
prone, cumbersome, and time consuming. Last but not least, incorrect as-
signments were not only causing frictions between the IT-HD clerks and the
AST members, but also increasing the turn around time for resolutions as
the incorrectly-assigned issue reports would typically bounce back and forth
between the IT-HD clerks and AST members (bug tossing) until the correct
development team was located, which was causing a great deal of wasted time.

3 Evaluating Existing Issue Assignment Approaches

IsBank and Softtech wanted to improve their current practices. To this end,
we, in this work, automate the issue assignments.

We start with investigating our first research question RQ1: “How do ex-
isting approaches for automated issue assignment compare with each other?”
This is important as the results of this study will determine the approach to
be used in the deployed system.

Note that our goal in this work is neither to propose yet another approach
for automated issue assignment nor to evaluate all existing approaches to de-
termine the best possible approach, but to identify an existing approach that
can produce similar or better assignment accuracies with the manual assign-
ment process employed at IsBank/Softtech and that can be developed and
deployed with as little risk as possible. After all, most of the issue reports
the system will process, concern business-critical software systems. Therefore,
neither IsBank nor Softtech was willing to take too much risk.

3.1 Approach

To carry out the study, we have determined a number of approaches, which
had been shown to be effective for automated issue assignment (Murphy and
Cubranic|2004; |Anvik et al.|2006; Bhattacharya et al.|2012; |Anvik and Murphy
2011} [Jonsson et al.|[2016)). We then empirically evaluated them by using the
issue database, which has been maintained by Softtech since December 2016.

In particular, we cast the problem of issue assignment to a classification
problem where the natural language descriptions in issue reports are analyzed
by using various classification algorithms.

Automated Issue Assignment: An Industrial Case 9

3.1.1 Representing Issue Reports

Given an issue report, we first combine the “description” and “summary”
parts of the report, then tokenize the combined text into terms, and finally
remove the non-letter characters, such as punctuation marks, as well as the
stop words, which are extremely common words of little value in classifying
issue reports (Manning et al.[2010), such as “the”, “a”, and “is.” We opt not
to apply stemming in this work as an earlier work suggests that stemming has
a little effect (if any at all) in issue assignments (Murphy and Cubranic|2004)),
which is also consistent with the results of our initial studies where stemming
slightly reduced the assignment accuracies.

We then represent an issue report as an n-dimensional vector. Each element
in this vector corresponds to a term and the value of the element depicts
the weight (i.e., “importance”) of the term for the report. The weights are
computed by using the well-known #f-idf method (Manning et al.||2010]).

The tf-idf method combines two scores: term frequency (tf) and inverse
document frequency (idf). For a given term ¢ and an issue report r, the term
frequency tf; , is the number of times ¢ appears in 7. The more ¢ appears in
r, the larger tf;, is. The inverse document frequency of ¢ (idf;), on the other
hand, is:

idf, = log(7). (1)
t
where NV is the total number of issue reports and df; is the number of issue
reports, in which ¢ appears. The fewer the issue reports ¢t appears in, the larger
det is.
Given tf; » and idf:, the tf-idf score of the term ¢ for the issue report r is
computed as follows:

tf—idftm = tft,r k ’ldft (2)

Consequently, the more a term ¢ appears in an issue report r and the less it
appears in other issue reports, the more important ¢ becomes for r, i.e., the
larger tf-idf; , is.

3.1.2 Issue Assignments

Once an issue report is represented as an ordered vector of tf-idf scores, the
problem of assignment is cast to a classification problem where the develop-
ment team, to which the issue report should be assigned, becomes the class
to be predicted and the tf-idf scores of the report become the attributes, on
which the classification will be based on.

We train two types of classifiers: level-0 classifiers, each of which is com-
prised of an individual classifier, and level-1 classifiers, which were obtained
by combining multiple level-0 classifiers using stacked generalization — an en-
semble technique to combine multiple individual classifiers (Wolpert||1992).

10 Ethem Utku Aktas, Cemal Yilmaz

All the classifiers we experiment with in this study have been shown to be
effective for automated issue assignment (Murphy and Cubranic|[2004}; Anvik
et al.|[2006}; [Bhattacharya et al]2012; [Anvik and Murphy|[2011} [Jonsson et al.
2016)).

For the level-0 classifiers, we use multinomial naive bayesian (Manning
et al.|[2010)), decision tree (Breiman|2017)), k-nearest neighbor (Manning et al.

2010), logistic regression :Bishop 2006), random forest (Breiman|[2001), and
linear support vector classifiers (SVCs) (Joachims|[1998]).

For the level-1 classifiers, we first train and evaluate our level-0 classifiers
by using the same training and test sets for each classifier. We then use the
prediction results obtained from these level-0 classifiers to train a level-1 classi-
fier, which combines the probabilistic predictions of the level-0 classifiers using
linear logistic regression .

Inspired from (Jonsson et al.|2016), we, in particular, train two types of
level-1 classifiers: BEST and SELECTED. The BEST ensemble is comprised

of k (in our case, k = {3,5}) level-0 classifiers with the highest assignment
accuracies, where as the SELECTED ensemble is comprised of a diversified
set of k (in our case, k = {3,5}) level-0 classifiers, i.e., the ones with different
representation and classification approaches, which are selected regardless of
their classification accuracies, so that errors of individual classifiers can be
averaged out by better spanning the learning space . Note that
the BEST and SELECTED ensembles are not necessarily the same because
the best performing level-0 classifiers may not be the most diversified set of
classifiers. More information on how these ensembles are created can be found
in Section

Furthermore, for the baseline classifier, which we use to estimate the base-
line classification accuracy for our classifiers, we assign all issue reports to the
team that have been assigned with the highest number of issue reports. That
is, our baseline classifier always returns the class with the highest number of
instances as the prediction.

3.2 Evaluation

We have conducted a series of experiments to evaluate the assignment accu-
racies of the level-0 and level-1 classifiers.

3.2.1 Experimental Setup

In these experiments, we used the issue reports submitted to Softtech between
June 1, 2017 and November 30, 2017 as the training set and the issue reports
submitted in the month of December 2017 as the test set. We picked this
time frame because it provided us with a representative data set in terms of
the number of issue reports submitted, the number of teams present, and the
distribution of the reported issues to these teams.

Automated Issue Assignment: An Industrial Case 11

For the aforementioned time frame, we had a total number of 51, 041 issue
reports submitted to 65 different teams. Among all the issue reports of interest
in this section as well as in the remainder of the paper, we only used the
ones that were marked as “closed,” indicating that the reported issues had
been validated and resolved. Furthermore, as the correct assignment for an
issue report, we used the development team that had closed the report. The
remainder of the issue reports were ignored as it was not yet certain whether
these reports were valid or whether the development teams, to which they were
currently assigned, were correct. After this filtering, a total of 47,123 issue
reports submitted to 64 different development teams remained for analysis in
this study.

To create the level-1 classifiers, we combined 3 or 5 individual classifiers,
i.e., k=3 or k =5. We used the latter setting as it was also the setting used
in a recent work (Jonsson et al.|2016). We used the former setting as it was
the best setting we could empirically determine for ensemble learning, i.e., the
one that produced the best assignment accuracies. In the remainder of the
paper, these models are referred to as BEST-3, SELECTED-3, BEST-5, and
SELECTED-5.

The BEST-3 and BEST-5 models were obtained by combining Linear
SVC-Calibrated, Logistic Regression, and K-Neighbours; and Linear SVC-
Calibrated, Logistic Regression, K-Neighbours, Random Forest, and Deci-
sion Tree classifiers, respectively, as these were the classifiers providing the
best assignment accuracies. The SELECTED-3 and SELECTED-5 models,
on the other hand, were obtained by combining Linear SVC-Calibrated, K-
Neighbours, and Multinomial Naive Bayesian; and Linear SVC-Calibrated,
Logistic Regression, K-Neighbours, Random Forest, and Multinomial Naive
Bayesian classifiers, respectively, with the goal of better spanning the learning
space by increasing the diversity of the classification algorithms ensembled.
Note further that to include SVCs in level-1 classifiers, we used calibrated
linear SVCs instead of linear SVCs as we needed to have class probabilities
to ensemble individual classifiers (Ting and Witten||1999)), which are not sup-
ported by the latter.

The classifiers were trained and evaluated by using the scikit-learn
Python library (for level-O classifiers) (Pedregosa et al.|[2011) and mlxtend
(for level-1 classifiers) (Raschkal|2018)) packages. All of the classifiers (unless
otherwise stated) were configured with the default settings and the experi-
ments were carried out on a dual-core Intel(R) Xeon(R) E5-2695 v4 2.10 GHz
machine with 32 GB of RAM running Windows Server 2012 R2 as the oper-
ating system.

3.2.2 Evaluation Framework

To evaluate the quality of the assignments obtained from different classifiers,
we used well-known metrics, namely accuracy and weighted precision, recall,
and F-measure (Manning et al.|2010). Accuracy, which is also referred to as
assignment accuracy in the remainder of the paper, is computed as the ratio

12 Ethem Utku Aktas, Cemal Yilmaz

Table 1: Accuracy (A) and weighted precision (P), recall (R), and F-measure
(F) values obtained from different classification models as well as the training
times of these models.

using training set with using
10-fold cross validation test set
. training

classifier A time p R F A
Baseline 0.10 - 0.01 0.12 0.03 0.12
Multinomial NB 0.47 (+/- 0.01) 3ls 0.70 0.52 0.50 0.52
Decision Tree 0.66 (+/- 0.02) 50m 11 s 064 0.63 0.63 0.63
K-Neighbours 0.73 (+/- 0.02) 1md4s 071 072 071 0.72
Logistic Regression 0.74 (+/- 0.01) 18 m 37 s 0.76 0.74 074 0.74
Random Forest 0.66 (+/- 0.02) 51 m 43 s 0.64 0.65 0.63 0.65
Linear SVC 0.82 (+/-0.01) 3m32s 0.80 0.80 0.80 0.80
Linear SVC-Calibrated | 0.81 (4/- 0.01) 7m 50 s 0.80 0.79 079 0.79
BEST-5 0.67 (4/- 0.02) 2h20m38s | 0.65 0.64 0.64 0.64
SELECTED-5 0.80 (+/- 0.01) 1h49m1lls | 079 078 0.78 0.78
BEST-3 0.81 (+/- 0.01) 56m7s 0.80 0.79 079 0.79
SELECTED-3 0.81 (+/- 0.01) 32m 57 s 0.80 079 079 0.79

of correct issue assignments. Precision for a particular development team (i.e.,
class) is the ratio of the issue reports that are correctly assigned to the team to
the total number of issue reports assigned to the team. Recall for a team is the
ratio of the issue reports that are correctly assigned to the team to the total
number of issue reports that should have been assigned to the team. F-measure
is then computed as the harmonic mean of precision and recall, giving equal
importance to both metrics. Note that each of these metrics takes on a value
between 0 and 1 inclusive. The larger the value, the better the assignments
are. Furthermore, we report the results obtained by both carrying out 10-fold
cross validation on the training data and carrying out the analysis on the test
set.

To evaluate the cost of creating the classification models, we measured the
time it took to train the models. The smaller the training time, the better the
approach is.

3.2.83 Data and Analysis

Table [I] summarizes the results we obtained. We first observed that all the
classifiers we trained performed better than the baseline classifier. While the
baseline classifier provided an accuracy of 0.10 on the training set and 0.12
on the test set, those of the worst-performing classifier were 0.47 and 0.52,
respectively.

We then observed that the SELECTED ensembles generally performed
similar or better than the BEST ensembles, supporting the conjecture that
using diversified set of classifiers in an ensemble can help improve the accura-
cies by better spanning the learning space. For example, while the accuracy
of the BEST-5 ensemble was 0.67 on the training set and 0.64 on the test set,
those of the SELECTED-5 ensemble were 0.80 and 0.78, respectively. Fur-

Automated Issue Assignment: An Industrial Case 13

thermore, the ensembles created by using 3 level-O classifiers, rather than 5
level-0 classifiers, performed slightly better on our data set. For example, while
the accuracy of the SELECTED-5 ensemble was 0.80 on the training set and
0.78 on the test set, those of the SELECTED-3 ensemble were 0.81 and 0.79,
respectively.

Last but not least, among all the classifiers, the one that provided the best
assignment accuracy (as well as the best F-measure) and did so at a fraction of
the cost, was the linear SVC classifier (Table. While the linear SVC classifier
provided an accuracy of 0.82 on the training data set and 0.80 on the test set
with a training time of about three minutes, the runner-up classifiers, namely
the SELECTED-3 and BEST-3 ensembles, provided the accuracies of 0.81 and
0.79, respectively, with a training time of about half an hour or more.

Based on both the assignment accuracies and the costs of training obtained
from various classifiers using our data set, we have decided to employ linear
SVC in IssueTAG. Consequently, all of the results presented in the remainder
of the paper were obtained by using linear SVC classifiers.

4 Time Locality and Amount of Training Data

In this section, we investigate our second research question (RQ2): “How do the
amount and time locality of training data affect the assignment accuracies?”
Note that the results of this study will be used to determine the amount of
training data (e.g., how many issue reports we should use) as well as the
time locality of this data (i.e., how much back in time we should go) required
for preparing the training data every time the underlying classification model
needs to be retrained.

4.1 Approach

To answer these questions, we use the sliding window and cumulative window
approaches introduced in (Jonsson et al.||2016)). More specifically, we conjec-
ture that using issue reports from “recent past” to train the prediction models,
as opposed to using the ones from “distant past”, can provide better assign-
ment accuracies since organizations, products, teams, and issues may change
overtime.

To evaluate this hypothesis, we take a long period of time T (in our
case, 13 months) and divide it into a consecutive list of calendar months
T = [my,ma,...]. For every month m; € T, we train and evaluate a linear
SVC model. To this end, we use all the issue reports submitted in the month
of m; as the test set and all the issue reports submitted in the month of m; as
the training set, where i—j = A, i.e., the sliding window approach in (Jonsson
et al.||2016). Note that given m; and A, m; is the month, which is A months
away from m; going back in time. For every month m; € T, we repeat this
process for each possible value of A (in our case, A € {1,...,12}). By fixing

14 Ethem Utku Aktas, Cemal Yilmaz

Bug Bug Bug Bug Bug Bug
reports reports reporls reports reporls reports
of
Jan.2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017 Jan 2018

RUN1 Tra|n1 1 Tesﬁ
RUN2 Train1-2 Test1
RUN3 Train1-3 Test1
RUN4 Train1-4 Test1
RUN11 Train1-12 Test1
RUN12 Train2-1 Test2

RUN13 Train2-2 Test2

Fig. 2: Overview of the sliding window approach to study the effect of the time
locality of training data on assignment accuracies.

the test set and varying the training sets, such that they come from different
historical periods, we aim to measure the effect of time locality of the training
data on the assignment accuracies.

Figure [2 illustrates the sliding window approach using the period of time
from Jan 1, 2017 to Jan 31, 2018. For example, for the month of Jan 2018, we
train a total of 12 classification models, each of which was trained by using all
the issue reports submitted in a distinct month of 2017 (marked as Trainl-1,
Trainl-2, ..., Trainl-12) and separately test these models using all the issue
reports submitted in the month of Jan, 2018 as the test set (marked as Test1).
We then repeat this process for every month in the time period of interest,
except for Jan 2017 as it does not have any preceding months. That is, for Dec
2017 (marked as Test2), we train and evaluate 11 models (marked as Train2-1,
Train2-2, ...), for Nov 2017, we train and evaluate 10 models, etc.

To evaluate the effect of the amount of training data on the assignment
accuracies, we use a related approach, called the cumulative window approach
(Jonsson et al.|2016]). This approach, as is the case with the sliding window
approach, divides a period of interest T" in to a consecutive list of months
T = [my,ma,...]. Then, for every possible pair of m; € T and A, we train
and evaluate a classification model, where all the issue reports submitted in
the month of m; are used as the test set and all the issue reports submitted
in the preceding A months, ie., {m; € T |1 <i—j < A}, are used as the
training set.

Figure [3|illustrates the approach. For example, for the month of Jan 2018,
we train a total of 12 classification models. The first model is created by using

Automated Issue Assignment: An Industrial Case 15

Bug Bug Bug Bug Bug Bug
reports reports reporls reports reporls reports
of
Jan.2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017 Jan 2018

RUN1 Tra|n1 1 Test1
RUN2 Train1-2 Test1
RUN3 Train1-3 Test1
RUN4 Train1-4 Test1
RUN11 Train1-12 Test1
RUN12 Train2-1 Test2

RUN13 Train2-2 Test2

Fig. 3: Overview of the cumulative window approach to study the effect of the
amount of training data on assignment accuracies.

the previous month’s data (marked as Trainl-1), the second model is created
by using the previous two months’ data (marked as Trainl-2), and the last
model is created by using the previous year’s data (marked as Trainl-12). The
same process is repeated for every possible month in the period of interest.

4.2 Evaluation

We conducted a series of experiments to evaluate the effect of the amount and
time locality of training data on assignment accuracies.

4.2.1 Ezxperimental Setup

In these experiments, we used all the issue reports that were submitted during
the period from Jan 1, 2017 to Jan 31, 2018. The summary statistics for this
data set can be found in Table [2] All told, we have trained and evaluated a
total of 144 linear SVC models for this study. All the experiments were carried
out on the same platform with the previous study (Section [3.2.1).

4.2.2 Bvaluation Framework

We used the assignment accuracies (Section [3.2.2) for evaluations.

16 Ethem Utku Aktas, Cemal Yilmaz

Table 2: Number of issue reports submitted.

of issue reports | # of teams
month submitted assigned

Jan 2017 6364 57
Feb 2017 5038 56
Mar 2017 7188 57
Apr 2017 6623 55
May 2017 6601 56
Jun 2017 6145 56
Jul 2017 6341 53
Aug 2017 6025 54
Sep 2017 5961 54
Oct 2017 6774 52
Nov 2017 7996 54
Dec 2017 7881 49
Jan 2018 7426 51
Total 86363 69

4.2.83 Data and Analysis

Figures [4] and [5]| represent the results we obtained from the sliding window and
cumulative window approach, respectively. In these figures, the vertical and
horizontal axes depict the assignment accuracies obtained and the A values
used in the experiments, respectively. The accuracies associated with a A
value were obtained from the classification models, each of which was created
for a distinct month in the period of interest by using the same A value.
Furthermore, the polynomials in the figures are the second degree polynomials
fitted to the data.

Looking at Figure[d] we first observed that using issue reports from recent
past to train classification models, rather than the ones from distant past,
provided better assignment accuracies; the accuracies tended to decrease as
A increased. For example, while the average assignment accuracy obtained
when A = 1, i.e., when the issue reports submitted in the immediate preceding
months were used as the training sets, was 0.73, that obtained when A = 12,
i.e., when the issue reports submitted in Jan 2017 were used as the training
set for the issue reports submitted in Jan 2018, was 0.52%.

Looking at Figure 5| we then observed that as we went back in time to
collect the training data starting from the immediate preceding months (i.e.,
as A increased in the cumulative window approach), the assignment accuracies
tended to increase first and then stabilized around a year of training data. For
example, while the average accuracy obtained when A = 1, i.e., when the issue
reports submitted only in the immediate preceding months were used as the
training sets, was 0.73%, that obtained when A = 12, i.e., when all the issue
reports submitted in the preceding 12 months were used as the training data
set, was 0.82%.

Based on the results of these studies, to train a prediction model at a given
point in time, we decided to use all the issue reports that have been submitted

Automated Issue Assignment: An Industrial Case 17

Sliding Window Approach

0.75

0.70

o
o
o

Assignment Accuracy (%)
o
a

0.50

0.45

Fig. 4: Assignment accuracies obtained from the sliding window approach.

0.85 Cumulative Window Approach

o
@
=)

Assignment Accuracy
=)
S
&

o
S
=]

0.65

Fig. 5: Assignment accuracies obtained from the cumulative window approach.

in the last 12 months as the training set. Clearly, among all the issue reports
of interest, we filter out the ones that have not yet been closed (Section (3.2.1)).

5 Automated Issue Assignments in Practice

In this section, we investigate our third research question (RQ3): “How does
automated issue assignment compare to manual issue assignment in practice?”
Note that the results of this study will help evaluate the pros and cons of
automated issue assignments in the field.

18 Ethem Utku Aktas, Cemal Yilmaz

5.1 Approach

To deploy IssueTAG at IsBank and Softtech, we carried out a number of
meetings with the IT-HD, AST, and software development teams. In these
meetings, the problems with the manual issue assignment process were dis-
cussed, IssueTAG was presented, and the effect of automating the assignment
process was demonstrated by using the results of a number of preliminary
studies conducted on historical data collected from the field.

One commonly accepted observation, which was made numerous times in
these meetings, was that automating the issue assignment process (i.e., de-
ploying IssueTAG) would also require to modify the other parts of the process
around the deployed system to improve the efficiency and effectiveness of the
entire process to the extent possible.

One refinement suggestion came from us (Process Improvement Team at
Softtech). In our preliminary studies, we observed that wrong assignments
made by IssueTAG were often caused due to the difficulty of distinguishing
related, but different development teams from each other, such as the teams
working on related products or working on different components of the same
product. That is, when an issue report was assigned to a wrong team, the
assignee and the correct team (i.e., the one, to which the report should have
been assigned) were often related to each other, e.g., they were aware of each
other’s works. Consequently, we suggested that in the presence of an incorrect
assignment, rather than returning the issue report to I'T-HD for reassignment,
which was typically the case in the manual assignment process (Section, let-
ting the assignee (e.g., the AST member embedded in the incorrectly assigned
team) do the reassignment, could profoundly speed up the process.

Another refinement suggestion came from the IT-HD management. They
simply suggested to prevent IT-HD clerks from modifying the issue assign-
ments made by IssueTAG. On one hand, this was a natural consequence of
the design decision discussed above in the sense that when the reassignments
are made by the current assignee, IT-HD clerks will not necessarily be aware of
these modifications, thus may not learn from them to improve their assignment
accuracies. On another hand, we observed that IT-HD was actually looking
forward to deferring the responsibility of issue assignments. One reason was
that, especially for the new IT-HD clerks, the learning curve for excelling in as-
signments was generally steep due to the large number of issue reports received
on a daily basis and the relatively large number of development teams present
(Section . In fact, IT-HD was maintaining a knowledge base (comprised
mostly of spreadsheets) to help the clerks with the assignments. However, it
was cumbersome and costly for them to keep this knowledge base up to date.
Nevertheless, incorrect assignments were often causing friction between the
IT-HD clerks and AST members as well as the development teams.

Automated Issue Assignment: An Industrial Case 19

Historical
Data BRug Rg(pcrt
epositol
Bug Report posttory
Retrieval

Retrieval of Bug Report
with

Auto-Assigned
Team Code

Classification

Historical
Data Bug Filtering Bug
(Team Reports Reports
Changes) \-/1/_

Training with

10-fold Cross Model | —_|
Validation ™ A,

Explainer

N

Feature
Change Point Training Feature Extraction
Detection Dataset Extraction

Batch Training
Change
Points

|:|: Process 8: Database D: Model
D : Manual Input D : Data D : Display

Monitoring System

Incoming Bug
Report (Summary
+ Description)

Online System

(Explanation

Explanation System

Fig. 6: High level architecture of IssueTAG.

Table 3: Summary statistics regarding the operations of IssueTAG, starting
from its deployment on Jan 12, 2018 till June 30, 2019.

Item Value
Total number of issue reports assigned 134,622
Average number of issue reports per day 380
Total number of distinct teams 62
Average time it takes to train the model (with one year of data) Tm 42s
Average response time of the system 746 msec
Size of the trained model (trained with one year of data) 588 MB

5.2 Evaluation

We deployed IssueTAG on Jan 12, 2018. The system has been fully operational
since then, making automated assignments for all the issue reports submitted.
Figure[6] presents the overall system architecture. Furthermore, Table[3|reports
some summary statistics regarding the operations of the deployed system.

5.2.1 Deployment Setup

Based on the results of our empirical studies in Section [3] IssueTAG was
configured to use Linear SVC to train the classification models. And, based on
the results obtained in Section {4} the models have been trained by using the
issue reports submitted in the last 12-month time frame. Furthermore, as all
the process improvement suggestions discussed in Section [5.1| were accepted
by all the stakeholders involved, we configured IssueTAG such that once an

20 Ethem Utku Aktas, Cemal Yilmaz

issue report was created by an IT-HD clerk for the first time, the report was
automatically assigned to a development team by the deployed system and
the IT-HD clerk did not have any means of interfering with the assignment
process and/or modifying the assignment.

The system is deployed on a Dual-Core Intel(R) Xeon(R) E5-2695 v4 2.10
GHz machine with 32 GB of RAM running Windows Server 2012 R2 as the
operating system.

5.2.2 Evaluation Framework

To evaluate the quality of the assignments over a period of time, we compute
the assignment accuracy on a daily basis, which we refer to as daily assignment
accuracy. More specifically, the daily assignment accuracy achieved on a day
d, is the ratio of the assignments that are correctly made for the issue reports
opened on the day d. Note that we compute the daily accuracies based on the
dates, on which the issue reports are opened, rather than they are closed. This
is because the automated assignments are made as soon as the issue reports
are created (i.e., opened) by using the underlying classification model, which
was available at the time of the creation.

To evaluate the reduction in the amount of manual effort required for the
issue assignments, we measure the person-months saved by automating the
process. To this end, a survey we conducted on the IT-HD clerks revealed
that, given an issue report, it takes about 30 seconds on average for an IT-
HD clerk to assign the report to a development team, which is mostly spent
for reasoning about the issue report and (if needed) performing a keyword-
based search in the knowledge base. Note that this effort does not include the
effort needed to maintain the knowledge base. Therefore, the actual amortized
manual effort is expected to be higher than 30 seconds. IssueTAG, on the other
hand, requires no human intervention to make an assignment once an issue
report has been created.

To evaluate the effect of the deployed system as well as the improvements
made in the issue assignment process, we compute and compare the solution
times before and after the deployment of IssueTAG. In particular, we define
the solution time for an issue report as the time passed between the report is
opened and it is closed. The shorter the solution times, the better the proposed
approach is. Furthermore, as the characteristics of the reported issues, thus
the solution times, can change over time, we, in the evaluations, compute and
compare the solution times for the issue reports that were opened within two
months before and after the deployment of IssueTAG.

5.2.8 Data and Analysis

Figure [7] presents the daily assignment accuracies achieved between Decem-
ber 2016 and June 2019. The time point 0 in this figure represents the date,
on which the manual issue assignment process as it is described in Section
was started. Furthermore, the vertical dashed lines in the figure represent the

Automated Issue Assignment: An Industrial Case 21

Accuracy
o o =
© © o

o
~

o
o

0 100 200 300 400 500 600
Time

Fig. 7: Daily assignment accuracies achieved between December 2016 and June
2019. The time point 0 represents the date, on which the manual issue assign-
ment process as it is described in Section [2| was started. The vertical dashed
lines represent the points in time where a shift in daily accuracies was automat-
ically detected by our change point detection approach (Section . IssueTAG
was deployed at the third dashed line, i.e., all the accuracies before this line
were obtained by manual assignments, whereas those after were obtained by
auomated assignments. The first dashed line represents the date, on which
significant changes in team responsibilities occurred due to migrating certain
functionalities from mainframes to state-of-the-art platforms. Therefore, the
time gap between the first and second dashed lines (i.e., about 2.5 months)
represent the amount of time it took for the IT-HD clerks to adapt to these
changes.

points in time where a shift in daily accuracies was automatically detected by
the change point detection approach we had developed (Section . IssueTAG
was, indeed, deployed exactly at the 273th time point where the third vertical
dashed line resides. That is, all the accuracies before this dashed line were
obtained by manual assignments, whereas those after were obtained by auto-
matic assignments. The other vertical dashed lines will be discussed below in
this section.

We first observed that after IssueTAG was deployed, the daily assign-
ment accuracies dropped slightly (Figure . More specifically, the average
daily accuracies before and after the deployment were 0.864 (min = 0.691,
max = 0.947, stddev = 0.040) and 0.831 (min =0.752, maz = 0.912,
stddev = 0.027), respectively.

We, however, observed that the accuracy of an automated issue assignment
system does not have to be higher than that of manual assignments in order for
the system to be useful. First, we observed that IssueTAG reduced the manual
effort required for the assignments. In particular, given that it takes an average
of 30 seconds for an IT-HD clerk to assign an issue report to a development
team and an average of 8,000 issue reports are received on a monthly basis,
IssueTAG has been saving 5 person-months yearly, on average (8,000 issue
reports * 30 seconds = 240,000 seconds per month = 5 person-months per
year).

Second, we observed that the deployed system together with the process
improvements we implemented, profoundly reduced the turnaround time for

22 Ethem Utku Aktas, Cemal Yilmaz

closing the issue reports. More specifically, the average solution times before
and after the deployment were 3.26 days and 2.61 days, respectively.

Third, we observed that it can take quite a while for a human stakeholder
to excel in the issue assignment task, which is, in deed, a problem, especially
in the presence of high employee turn over rates. For example, the first ver-
tical dashed line in Figure [7] represents the date on which an integral part
of the core banking system was migrated from mainframes to state-of-the-art
hardware and software platforms. As a result of this migration, the struc-
ture and the responsibilities of the related development teams changed sig-
nificantly. In particular, the responsibilities of one development team working
on mainframes were migrated to 3 development teams working on state-of-
the-art platforms, which consisted of completely different software engineers.
Evidently, the assignment accuracies were affected by this change; the daily
accuracies dropped at the first vertical dashed line (i.e., 55th time point) and
stayed low until the second vertical dashed line (i.e., the 130th time point).
More specifically, the average daily accuracies obtained from the manual as-
signments before the first dashed line, in between the first and second dashed
lines, and after the second dashed line until IssueTAG was deployed at the
third dashed line were, 0.889 (min = 0.825, max = 0.929, stddev = 0.024),
0.819 (min = 0.691, max = 0.900, stddev = 0.039), and 0.879 (min = 0.822,
max = 0.947, stddev = 0.024), respectively. That is, it took the IT-HD clerks
about 2.5 months to adapt to the new development teams. Therefore, this
time frame can be considered to be a lower bound on the amount of time a
new hire would require to learn to make accurate assignments. It is a lower
bound in the sense that only 19% of the issue reports were affected by the
changes in the team responsibilities during the aforementioned period of time
and that the IT-HD clerks already had a great deal of experience; for a new
hire, everything will be new.

Note further that the Oth time point in Figure [7] represents the date, on
which Jira was started to be used for storing and managing the issue reports.
That is, IT-HD clerks had been making manual assignments before this date,
but had different means of managing the reports, which explains the high daily
assignment accuracies event at the Oth time point in the figure. As we didn’t
have any access to the issue databases maintained before the Oth time point,
we used only the issue reports managed by Jira in this research.

6 User Evaluations

In this section, we investigate our fourth research question (RQ4): “Is Issue-
TAG perceived as useful by the end-users?”

6.1 Approach

To carry out the study, we created a survey by following a survey template
frequently used at Softtech. It had a total of 8 questions from two categories:

Automated Issue Assignment: An Industrial Case 23

Table 4: Survey questions used for evaluating IssueTAG.

No Question Type Category
Q1 I know the business requirements that

the system is supposed to meet. Likert scale requirements satisfaction
Q2 The system (as a software product) is reliable. Likert scale requirements satisfaction
Q3 The system is useful. Likert scale requirements satisfaction
Q4 The system reduces the solution times for issue reports. Likert scale product quality
Q5 The issue assignments made by the system are trustworthy. Likert scale product quality
Q6 The system is robust. Likert scale product quality
Q7 I recommend the system to other companies. Likert scale product quality
Q8 What do you like and don’t like about the system?

Do you have any suggestions for improvement? open-ended product quality

requirement satisfaction and product quality. The former category aims to eval-
uate the extent to which the deployed system meets its requirements, whereas
the latter category aims to evaluate the quality of the final product. All ques-
tions, except for the last one, were Likert scale questions each with answer
options: no opinion, 1 - strongly disagree, 2 - disagree, 3 - agree, and 4 -
strongly agree. The last question was an open-ended question. Furthermore,
for the Likert scale questions, we asked the participants to elaborate on their
responses, if they had “disagreed” or “strongly disagreed.” Table [4] presents
the questions we used in the survey.

6.2 Evaluation

We conducted the survey on the AST members. We chose this group of stake-
holders as the recipients of the survey because, being embedded in the devel-
opment teams, they were the direct end-users of IssueTAG. That is, they, as
the first recipients of the issue reports, were the ones to validate whether the
assignments were correct or not and to reassign them as needed. The IT-HD
clerks, on the other hand, could not participate in the survey because they
were not considered to be the end-users of the deployed system in the sense
that they neither made use of the assignments automatically made by the
deployed system nor had a control over them.

6.2.1 Ezxperimental Setup

About half of the AST members (more specifically, 14 out of 30) voluntarily
agreed to participate in the study. The participants filled out the survey online
at their spare time.

0.2.2 Evaluation Framework

For the Likert scale questions, we use the frequencies and the average scores
obtained to quantitatively analyze the results. The average scores were com-
puted as the arithmetic average of the scores with the “no opinion” responses

24 Ethem Utku Aktas, Cemal Yilmaz

Responses to Questions in the Category of "Requirements
Satisfaction"
12

1
10
10
9
4 4
4
2
1 1
o 0o o o 0 0 0
0
Ql Q2 Q3

W 4-Strongly Agree M 3-Agree M 2-Disagree 1-Strongly Disagree No Opinion

®

Number of Participants
()]

N

Fig. 8: Responses to questions in the category of “requirements satisfaction.”

excluded. For the open-ended question, we present the answers we received
(Table @ and qualitatively discuss them.

6.2.3 Data and Analysis

The results of the survey strongly suggest that IssueTAG meets its business
needs with high quality. Regarding the questions in the category of “require-
ments satisfaction,” we observed that the majority of the participants thought
IssueTAG was useful and reliable (Figure . More specifically, all of the par-
ticipants “strongly agreed” or “agreed” to Q1, indicating that they knew the
business requirements that IssueTAG was supposed to meet. And, 92.86% (13
out of 14) of the participants for Q2 and 78.57% (11 out of 14) of the partici-
pants for Q3, responded “agree” or higher. The average scores were 3.71, 3.21,
and 3.69 (out of 4) for these questions, respectively.

Only 1 participant for Q2 and 2 participants for Q3 “disagreed.” The com-
ments that they provided as to why they disagreed are given in Table
Evidently, part of the reason was that these participants were unrealistically
expecting to have perfect assignments (with no incorrect assignments) from
the deployed system.

Regarding the other quality aspects of the system, 100% (14 out of 14) of
the participants for Q4, 78.57% (11 out of 14) for Q5, 92.86% (13 out of 14) for
Q6, and 100% (14 out of 14) for Q7 responded “agree” or higher (Figure@. The
average scores were 3.36, 3.0, and 3.0, and 3.43 (out of 4) for these questions,

Automated Issue Assignment: An Industrial Case 25

12

10

®

No.of Participants
()}

N

0

Responses to Questions in the Category of "Product

10
9
8
6
5
3
2
1 1 1
0 0 0 . .o [0 0 o0
Q4 oL] Q6 Q7

Quality."

10

W 4-Strongly Agree M 3-Agree M 2-Disagree 1-Strongly Disagree No Opinion

Fig. 9: Responses to questions in the category of “product quality.”

Table 5: Comments that the participants provided as to why they “disagreed.”

Question Comment Comment

No No

Q2 1 Due to some keywords [appearing in issue reports], the system
sometimes make incorrect assignments to my team.

Q3 1 In fact, the application is useful. However, in the presence of a
wrong assignment made by the system, reassigning the bug
report to the correct team, especially when we don’t know
which team it should really be assigned to or when the other
team refuses to take the responsibility for the issue report,
causes delays in the process.

Q3 2 The system sometimes makes incorrect assignments.

Q5 1 Ican’t say “I agree” because I sometimes encounter incorrect

assignments.

respectively. Only 1 participant disagreed with Q5, the comment of whose can
be found in Table[5] We, furthermore, observed that all the participants would
recommend the system to other companies; all responded “agree” or higher to
Q7 (Figure E[)

Last but not least, the responses given to the open-ended question Q8
can be found in Table [} All of these comments can be considered as gen-
erally positive. A couple of them actually make some suggestions for future
improvements. For example, the last comment basically suggests that the sys-
tem should provide an explanation as to why a given issue report is assigned

26 Ethem Utku Aktas, Cemal Yilmaz

Table 6: Responses given to the open-ended question Q8.

Comment Comment
No

1 I think that the assignments are made rapidly and accurately. I have not been having any issues with the
system. We [as a team] rarely receive incorrect assignments. I, however, believe that this is normal because
the same words [terms] can be related with multiple development teams. It is quite normal for the system
not being able to distinguish between teams in such situations.

2 Most of the time, the system works for us. Sometimes, however, it assigns irrelevant issue reports to my team.

3 General words, such as “problem”, should not be used by the system when assigning issue reports to
development teams.

4 The system profoundly reduced the loss of time by rapidly assigning issue reports to development teams
with high accuracy.

5 I think that it takes a while for an AI algorithm to learn about new issue reports. Improvements can be made
in this area.

6 I believe that the system had a profound effect on assigning the issue reports to the right development teams.

7 It is a nice and practical system, better results can be obtained with further development. One area for
improvement could be to explain the keywords [terms] used for the assignments.

to the selected development team. As a matter of fact, this request turned out
to be a common one, for which we have developed an automated approach

(Section [7.1]).

7 Explaining Team Assignments

One interesting observation we made after IssueTAG had been deployed was
that, occasionally, especially for incorrect assignments, the stakeholders de-
manded some explanations as to why and how certain issue reports had been
assigned to their teams. This was an issue we didn’t expect to face before de-
ploying the system. As a matter of fact, based on the informal discussions we
had with the stakeholders, we quickly realized that explaining the assignments
could further improve the trust in IssueTAG.

In this section, we develop and empirically evaluate (by conducting a survey
on actual stakeholders) an approach for automatically generating explanations
for the issue assignments made by the underlying classification model, answer-
ing our fifth research question (RQ5): “Can the issue assignments made by the
underlying data mining model be explained in a non-technical manner?”

Note that since the classification models we use, namely the linear SVC
models, are not human-readable, providing such explanations is a non-trivial
task. To the best of our knowledge, there is, indeed, no work in the literature
of automated issue assignment, addressing this problem.

One requirement we have is that the explanations should easily be inter-
preted and understood even by non-technical stakeholders as the recipients of
these explanations are not necessarily technical stakeholders. Another require-
ment is that they should be given in terms of the natural language descriptions
present in the issue reports, so that stakeholders can relate to them.

With all these in mind, we conjecture that providing a list of most in-
fluential (positive or negative) words for an issue assignment together with
their relative impact scores as an explanation for the assignment, could help
stakeholders understand the rationale behind the assignments.

Automated Issue Assignment: An Industrial Case 27

Interestingly enough, we observe that such explanations could also be used
in an interactive manner to enable the stakeholder creating the issue report
to provide feedback to the classification model. Although such human-in-the-
loop assignments are out of the scope of the this paper, we, nevertheless, added
additional questions to our survey to evaluate the plausibility of the idea.

7.1 Approach

We use LIME (Local Interpretable Model-Agnostic Explanations) to auto-
matically produce explanations for the issue assignments made by IssueTAG.
LIME is a model-agnostic algorithm for explaining the predictions of a classi-
fication or regression model (Ribeiro et al.|[2016)). In this work, we, (to the best
of our knowledge) for the first time, use LIME in the context of automated
issue assignment and evaluate it by carrying out a survey on actual stakehold-
ers in the field. Next, we briefly describe the LIME algorithm without any
intention to provide all the mathematics behind it. The interested reader can
refer to (Ribeiro et al.|2016|) for further details.

LIME, in our context, aims to identify a human-interpretable, locally faith-
ful model, which provides qualitative understanding between the terms used
in issue reports and the development teams, to which they are assigned. In
a nutshell, given an issue report, the assignment made for this report, and
the underlying classification model, LIME first represents the report as a bag
of words and samples instances around the report by drawing subsets of the
words in the bag uniformly at random. Then, the samples are weighted by their
proximities to the original issue report and fed to the classification model to
label them. Next, all the samples together with their associated labels are
used to learn a linear model comprised of K terms (in our case, K = 6), which
distinguishes the labels. Finally, the linear model learnt is reported as an ex-
planation for the assignment.

The explanation generated for an assignment is, indeed, a set of K terms
selected from the original issue report together with their relative weights,
indicating the influential terms that either contribute to the assignment or are
evidence against it. Figure presents an example explanation created for an
assignment made by IssueTAG in the field. The vertical axis reports the most
influential terms selected, whereas the horizontal axis denotes their relative
weights. The terms with positive weights depict the terms that contribute to
the assignment, wheres as those with negative weights depict the ones that are
evidence against it. That is, in a sense, the former set of terms vote for the
assignment, whereas the latter ones vote against it in an attempt to change
the assignment.

7.2 Evaluation

We could not simply ask the stakeholders to evaluate each and every expla-
nation created for the issue assignments, which were of interest to them. The

28 Ethem Utku Aktas, Cemal Yilmaz

Table 7: Survey questions related to selected issue reports and their explana-
tions.

No Question Type
Q1 Is the explanation helpful in understanding the assignment? Yes/No
Q2 Given the issue report, the assignment, and the explanation for the assignment,
how would you rate the trustworthiness of the assignment? Likert scale

Q3 Which terms in the explanation make you think that the assignment is not trustworthy? Open ended
Q4 What are the, additional terms that you would like to see in the explanation;

or the terms, the impact factor of which you would like to increase in the explanation,

before you can trust the assignment? Open ended

reason was that there was a large number of issue reports submitted on a
daily basis (Section and that checking out the explanations was optional,
i.e., the stakeholders were not required to have a look at the explanations.
Therefore, forcing the stakeholders to evaluate the explanations as the issue
assignments were made, could have adversely affected their performance.

7.2.1 Ezxperimental Setup

We, therefore, carried out an empirical study with the same participants in-
volved in our survey in Section [6} after having their consensus to voluntarily
participate in this additional study, which were accepted by all of them.

For each participant, we randomly picked 10 issue assignments, which were
handled by the participant in the last week before the study, such that the
ratio of correctly and incorrectly assigned issue reports roughly resembled
the average daily assignment accuracy. When there were less than 10 issue
assignments for a participant, we selected all of the available ones. All told,
we picked a total of 130 issue assignments (10 for each participant, except for
two, for whom we could have only 5 assignments each). Out of all the selected
assignments, 13 (10%) were incorrect.

We then created a questionary for each participant by using the issue as-
signments selected for the participant. For each assignment in the questionary,
we included 1) the issue report, 2) the assignment made by IssueTAG, 3) the
explanation automatically created by the proposed approach, using the 6 most
influential terms involved in the assignment, and 4) four questions (Table (7).

The first two questions, namely Q1 and Q2, were directly concerned with
our main research question in this study, i.e., whether or not the automati-
cally generated explanations could help stakeholders understand the rationale
behind the assignments. Q1 was a “yes” or “no” question, whereas Q2 was
a Likert scale question with answer options: 2 - very trustworthy, 1 - trust-
worthy, 0 - not sure, -1 - untrustworthy, -2 - very untrustworthy. The last
two questions, namely Q3 and Q4, on the other hand, aimed to evaluate the
plausibility of using the explanations to get feedback from the stakeholders
in an attempt to further improve the assignment accuracies. These questions
were open-ended questions, which were conditional on Q2; the participants

Automated Issue Assignment: An Industrial Case 29

140

123

120

100

80

60

Number of Responses

40

20

YES NO

Fig. 10: Responses to Q1: “Is the explanation helpful in understanding the
assignment?”

were asked to answer these questions only when the response to Q2 was either
“untrustworthy” or “very untrustworthy.”

All the explanations were created by using the LIME Python library (Ribeiro
et al.|[2016) with K = 6 — a decision we made based on the maximum number
of terms that we thought a stakeholder could efficiently and effectively reason
about.

7.2.2 Evaluation Framework

For Q1 and Q2, we use the frequencies of responses to quantitatively analyze
the results. For Q3 and Q4 (when answered), we manually investigate how the
feedbacks can be used to further improve the accuracies.

7.2.3 Data and Analysis

Regarding Q1, we observed that participants found 95% (123 out of 130) of
the explanations, each of which was created for a distinct issue assignment,
helpful in understanding the rationale behind the assignments (Figure .
Regarding Q2, based on the explanations created for the correct assign-
ments, the participants found 93% of the assignments (109 out of 117) “trust-
worthy” or “very trustworthy” (Figure . And, for the remaining 7% of the
assignments (8 out of 117), they were “not sure” whether the explanations

30 Ethem Utku Aktas, Cemal Yilmaz

©
o

®
o
~
N

~
o

<)
=]

[
o

N
o

32

Number of responses

N w
o o

=
o
®

0 0

o

2: Very trustworthy 1: Trustworthy 0: Not Sure -1: Untrustworthy -2: Very
untrustworthy

Fig. 11: Responses to Q2 (for the correct assignments): “Given the issue report,
the assignment, and the explanation for the assignment, how would you rate
the trustworthiness of the assignment?”

helped them decide if the assignments were reliable or not. None of the assign-
ments was found “untrustworthy” or “very untrustworthy.”

Interestingly enough, based on the explanations created for the incorrect
assignments, we observed that the participants found 77% of the assignments
(10 out of 13) “trustworthy” or “very trustworthy,” suggesting that given the
same issue reports, these participants would have made the same or similar
mistakes in assigning the reports. We believe that this was because of some
missing information in these issue reports, which was required for accurate
assignments (Figure [12]). Furthermore, the participants were “not sure” about
the trustworthiness of the 15% of the assignments (2 out of 13).

Regarding Q3 and Q4, among all the responses given to Q2, only one was
scored below 0. That is, based on the explanations created for the assignments,
only one of the assignments was found “untrustworthy.” And, this assignment
was, indeed, an incorrect assignment made by IssueTAG.

The explanation created for the aforementioned assignment is given in Fig-
ure [[3h. Given this explanation, the participant argued in her response that
the term “telegram,” which is a domain specific term used when creating a
credit account, was an important term for the issue report at question. There-
fore, it should have positively, rather than negatively, affected the assignment.
As a matter of fact, this argument was also well-aligned with the automati-
cally generated explanation given in Figure [[3h in the sense that “telegram,”

Automated Issue Assignment: An Industrial Case 31

Number of responses
w » w ()] ~

N

[N

0
0

2: Very trustworthy 1: Trustworthy 0: Not Sure -1: Untrustworthy -2: Very
untrustworthy

Fig. 12: Responses to Q2 (for the incorrect assignments): “Given the issue
report, the assignment, and the explanation for the assignment, how would
you rate the trustworthiness of the assignment?”

being a term with a large negative impact, voted against the assignment in
an attempt to change it. It was, however, not strong enough to modify the
outcome.

Interestingly enough, Figure [I[3p presents the explanation created for the
second likely assignment made by the underlying classification model, which
turned out to be the correct assignment. Note that in this assignment, the term
“telegram” had the largest positive impact on selecting the correct team, which
was also suggested by the stakeholder. Therefore, had the participant pre-
sented with the explanations created for the top two most likely assignments,
she could have selected the second assignment, thus increased the assignment
accuracy. Note that the aforementioned type of approaches are beyond the
scope of this work. However, as the results of this study are promising, we, as
a future work, plan to develop “human-in-the-loop” approaches, which lever-
age the automatically created explanations to further improve the assignment
accuracies.

8 Monitoring Deterioration

In this study, we address our sixth research question (RQ6): “Can the deteri-
orations in the assignment accuracies be automatically detected in an online
manner?” This was, indeed, another issue we faced after the deployment of

32 Ethem Utku Aktas, Cemal Yilmaz

number

telegram

which

date

opened

information

—-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

tetearem _

formation -

number

request

date

e -

—0.025 0.000 0.025 0.050 0.075 0.100 0.125 0.150

(b)

Fig. 13: The explanations created for the assignment marked as “untrustwor-
thy” by a participant: a) the explanation created for the original assignment,
which was incorrect and b) the explanation created for the second likely as-
signment, which was correct.

IssueTAG. It is important because such a mechanism not only increases the
confidence of the stakeholders in the system, but also helps determine when
the underlying classification model needs to be recalibrated by, for example,
retraining the model (Sections [314)).

Automated Issue Assignment: An Industrial Case 33

8.1 Approach

One observation we make is that every issue report at Softtech is closed by the
development team, who has fixed the reported issue. Therefore, in the pres-
ence of an incorrect assignment made by IssueTAG, the report is reassigned
and the history of the reassignments is stored in the issue tracking system.
Consequently, at any point in time, the assignment accuracy of IssueTAG can
automatically be computed using the history of the issue reports that have
been closed. Therefore, deteriorations in the accuracy can be analyzed in an
online manner.

To this end, we use an online change point detection approach, called
Pruned Exact Linear Time (PELT) (Killick et al.|2012)). In a nutshell, PELT
is a statistical analysis technique to identify when the underlying model of
a signal changes (Truong et al.|[2018b)). In our context, we feed PELT with a
sequence of daily assignment accuracies (Section as the signal. The output
is a set of points in time (if any) where mean shifts. PELT, being an approach
based on dynamic programming, detects both the number of change points
and their locations with a linear computational cost under certain conditions
(Killick et al.|[2012). Further information can be found in (Killick et al.[2012)
and (Truong et al.[2018b)).

PELT has been used for change point detection in many application do-
mains, including DNA sequence data, financial time series, and oceanographic
data (Hocking et al.|2013; [Lavielle and Ere| 2007} [Killick et al.|[2012)). In this
work, we, on the other hand, use it (to the best of our knowledge) for the first
time in the context of automated issue assignment to detect the deteriorations
in the assignments made by a data mining model.

8.2 Evaluation

We applied the PELT approach to the daily assignment accuracies collected
from the field. PELT detected three change points, each of which was de-
picted by a vertical dashed line in Figure [7] It turned out that these change
points, indeed, coincided with some important events that affected the assign-
ment accuracies, validating the results obtained from the proposed approach.
The first dashed line represents the date, on which significant changes in the
team responsibilities occurred due to migrating certain functionalities from
mainframes to state-of-the-art platforms. The time gap between the first and
second dashed lines (i.e., about 2.5 months) represent the amount of time it
took for the IT-HD clerks to adapt to these changes. And, the third dashed
line represents the date on which IssueTAG was deployed. Further discussion
on these change points can be found in Section

We observed that PELT did not detect any other change point after Issue-
TAG was deployed. We believe that this was because the underlying classifica-
tion model had been regularly retrained at every month as a part of Softtech’s

34 Ethem Utku Aktas, Cemal Yilmaz

policy by using the issue reports submitted in the last 12 months before the
calibration (Section [).

To further evaluate the proposed approach, we, therefore, carried out ad-
ditional experiments where we systematically varied the nature of the deteri-
orations and evaluated whether the proposed approach detected them or not.
Note that controlling the nature of the deteriorations in this study allows us to
reliably evaluate the results, because when the true nature of a deterioration,
such as the exact point in time at which the deterioration occurred, is not
known, which is typically the case with the data collected from the field, the
analysis may suffer from the lack of ground truth. Note further that even if
the underlying classification model is regularly trained, monitoring for dete-
riorations is still relevant as the assignment accuracies can still deteriorate in
between the calibrations.

8.2.1 Experimental Setup

In each experimental setup, we used an ordered sequence of 200 daily as-
signment accuracies. The first 100 of these accuracies came from a normal
distribution representing the accuracies expected from IssueTAG, whereas the
remaining 100 accuracies came from a distribution (or a number of distribu-
tions) representing a deterioration. That is, the change point in each experi-
ment was the 100th time point as the deterioration was introduced after this
point in time.

For each experimental setup, we then mimicked the real-life operations of
IssueTAG. More specifically, given a sequence of 200 daily assignment accura-
cies, we fed them to the proposed approach one daily accuracy after another
in the order they appeared in the sequence. After every daily accuracy, a de-
cision was made whether a deterioration had occurred, and if so, when. We
finally determined how long it took for the proposed approach to detect the
deterioration. For each experimental setup, we repeated the experiments 1000
times.

As an implementation of the PELT approach, we used the ruptures Python
library (Truong et al.[|2018a)). As the penalty level, i.e., the only parameter to
calibrate in PELT, we used the empirically determined value of 0.05. The
penalty level is a mechanism used for guarding against overfitting, determin-
ing to which extent a shift in the accuracies should be considered as a change
point. The larger the penalty level, the fewer (and more significant) change
points are detected.

To model the daily accuracies expected from the system, we used a normal
distribution with mean of 0.85 and standard deviation of 0.025 (i.e., u = 0.85
and o = 0.025), mimicking the daily accuracies of the deployed system ob-
served in the field (Section . To model the deteriorations, we experi-
mented with two types of changes: sudden deteriorations and gradual dete-
riorations. In either case, we used 5-, 10-, 15-, and 20-point drops in daily
accuracies, such that the mean accuracy (i.e., the mean of the distribution,

Automated Issue Assignment: An Industrial Case 35

Accuracy

0 25 50 75 100 125 150 175 200
Time

Fig. 14: An example sequence of daily assignment accuracies showing a sudden
10-point deterioration at the 100th time point.

Accuracy

0 25 50 75 TllOO 125 150 175 200
Fig. 15: An example sequence of daily assignment accuracies showing a gradual
10-point deterioration starting from the 100th time point.

from which the accuracies were drawn) eventually became 0.80, 0.75, 0.70, and
0.65, respectively.

For the sudden deteriorations, we abruptly dropped the mean accuracy
from 0.85 to the requested level (i.e., 0.80, 0.75, 0.70, or 0.65, depending on the
choice) right after the change point at the 100th time point and kept it intact
until and including the 200th time point (i.e., until the end of the experiment).
Figure[I4] presents an example sequence of daily assignment accuracies showing
a sudden 10-point deterioration.

For the gradual deteriorations, on the other hand, the changes were ob-
tained by linearly dropping the mean accuracy starting from right after the
change point at the 100th time point until and including the 200th time point,
such that the mean accuracy at end of the experiment became 0.80, 0.75,
0.70, or 0.65, depending on the choice. For example, if the requested level of
accuracy was 0.80, then starting from the mean accuracy of 0.85, the mean
accuracy would be dropped by 0.05-point each day (5-point drop/100 days)
until it would become 0.80 at the 200th time point. Figure presents an
example sequence of daily assignment accuracies showing a gradual 10-point
deterioration starting from the 100th time point.

36 Ethem Utku Aktas, Cemal Yilmaz

8.2.2 Evaluation Framework

To evaluate the proposed approach, we first determine whether the deterio-
rations are detected or not. If so, we measure detection time as the number
of days past after the change point (i.e., after the 100th time point) until
the deterioration is detected. The smaller the detection time, the better the
proposed approach is.

8.2.3 Data and Analysis

Table (8| presents the data we obtained on the sudden deteriorations used in
the study. We first observed that the proposed approach detected all the dete-
riorations. We then observed that as the deterioration amount increased, the
detection time tended to decrease, i.e., the proposed approach tended to detect
the deteriorations faster. On average, the deteriorations were detected in 1.33,
1.60, 1.84, 2.67 days after there was a 20-, 15-, 10-, and 5-point sudden drop
in the mean assignment accuracies, respectively.

Table [J] presents the data we obtained on the gradual deteriorations. As
was the case with the sudden deteriorations, the proposed approach detected
all the deteriorations and as the deterioration amount (thus, the deteriora-
tion rate) increased, the detection time tended to decrease. Compared to the
sudden deteriorations, however, the detection times for gradual deteriorations
increased, which is to be expected. To better evaluate the quality of the de-
tections, we, therefore, analyzed the mean accuracies that were present when
the deteriorations were detected. We observed that throughout all the exper-
iments, the proposed approach detected the deteriorations before the mean
accuracy dropped more than 5-points (the last column in Table E[)

9 Lessons Learnt

Stakeholders do not necessarily resist change. To deploy IssueTAG,
we carried out a number of meetings with the IT-HD, AST, and software
development teams. One thing we repeatedly observed in these meetings was
that all the stakeholders, although they had some rightful concerns, such as
what if the proposed approach adversely affects the issue-resolution process —

Table 8: Results obtained on sudden deteriorations. The experiments were
repeated 1000 times.

Detection Time
Deterioration min avg max stddev

5-point 1 2.67 6 1.13
10-point 1 1.84 3 0.38
15-point 1 1.60 2 0.49
20-point 1 1.33 2 0.47

Automated Issue Assignment: An Industrial Case 37

Table 9: Results obtained on gradual deteriorations. The experiments were
repeated 1000 times.

Detection Time Minimum Mean Accuracy

Deterioration min avg max stddev at the Point of Detection
5-point 1 31.03 55 13.64 0.8125
10-point 1 20.14 35 8.41 0.8070
15-point 1 15.70 26 6.49 0.8035
20-point 1 13.36 21 4.95 0.8000

a major concern for a company developing business-critical software systems
— were actually willing to automate the process of issue assignments as much
as possible.

We, indeed, had no objection at all. The AST members and the develop-
ment teams were looking forward to reducing the turnaround time for issue
resolutions; the incorrectly assigned issue reports were bouncing back and
forth between the IT-HD clerks and the AST members, causing a great deal
of wasted time. The IT-HD clerks were looking forward to 1) avoiding the
costly and cumbersome process of maintaining a knowledge base about the
development teams and their responsibilities and 2) deferring the responsibil-
ity of making assignments as much as possible since incorrect assignments were
often causing friction with the AST members and the development teams.

Another reason behind the absence of any resistance was that none of the
stakeholders felt threatened by the new system. The IT-HD clerks were still
needed as they were the ones communicating with both the bank costumers
and employees to collect the issues, resolving the ones that they could, and
creating issue reports for the remaining ones. The AST members were still
needed as they were the ones helping the development teams manage the
issue reports. The development teams were still needed as they were the ones
developing the software products.

Gradual transition helps stakeholders build confidence, facilitat-
ing the acceptance of the system. To address the rightful concerns of
the stakeholders regarding the accuracy of the proposed system, we followed
a gradual transition strategy. First, we simply added a single button to the
screen, which the IT-HD clerks used to create the issue reports. We initially
did not modify the assignment process at all in the sense that the use of this
button was optional. If the IT-HD clerk chose to arm the button after creating
an issue report, it would simply display the assignment made by IssueTAG.
The clerk could then accept the assignment as it was or modify it. We ob-
served that 3 months after the deployment of this button, enough confidence
was built among the stakeholders to fully deploy the system.

It is not just about automating the issue assignments, but also
about changing the process around it. One observation we made numer-
ous times during the meetings with the stakeholders was that automating the
issue assignments also requires to modify the other parts of the assignment

38 Ethem Utku Aktas, Cemal Yilmaz

process to improve the efficiency and effectiveness of the entire process to the
extent possible. This was because most of the steps in the assignment process
were dependent on the fact that issue assignments were made by the IT-HD
clerks. Changing this, therefore, necessitated other changes. In particular, we
prevented the IT-HD clerks from modifying the issue assignments made by
IssueTAG and the incorrectly assigned issue reports from being returned back
to the IT-HD clerks for a reassignment. All of these changes were based on the
discussions we had with the stakeholders as well as the analysis of the results
we obtained from a number of feasibility studies (Section [5).

The accuracy of the deployed system does not have to be higher
than that of manual assignments in order for the system to be useful.
Although the assignment accuracy of IssueTAG was slightly lower than that of
manual assignments, it reduced the manual effort required for the assignments
and improved the turnaround time for closing the issue reports. All of these
helped improve the usability of IssueTAG, which was also evident from the
survey we conducted on the stakeholders in the field (Section @

Deploying a data mining-based automated issue assignment sys-
tem requires the development of additional functionalities. When the
issue assignments are automatically made by using a data mining model, the
accuracy of the assignments needs to be monitored and deteriorations need
to be detected in an online manner, so that corrective actions, such as recal-
ibrating the underlying model, can be taken in time. To this end, we have
developed a change point detection-based approach using PELT (Killick et al.
2012) (Section . Furthermore, stakeholders may demand some explanations
as to why certain issue reports (especially the incorrectly assigned ones) have
been assigned to their teams. Note that since the data mining models used for
predicting the assignments are not necessarily readable and interpretable by
human beings (as was the case in this work), generating such explanations can
be a non-trivial task. To this end, we have developed a LIME-based (Ribeiro
et al.[|2016)) approach for automatically generating explanations that can easily
be interpreted even by non-technical stakeholders.

10 Threats to Validity

In this section, we discuss threats to validity.

10.1 Construct Validity

To circumvent the construct threats, we used the well-known accuracy metric
(Manning et al.|2010) throughout the paper to evaluate the quality of the
issue assignments. We have also complemented the accuracy results with other
well-known metrics, namely precision, recall, and F-measure, as we see fit
(Section [3)). We mainly focused on the accuracies because 1) it was the choice
of a recent related work in the literature (Jonsson et al.[2016) and 2) the

Automated Issue Assignment: An Industrial Case 39

assignment accuracies and F-measures (computed by giving equal importance
to both precision and recall) we obtained in the experiments were comparable
(Table [)).

To measure the amount of effort saved by automating the issue assignments
(Section , we used the person-month metric, which is also a well-known
metric to quantify effort in software engineering projects (Pressman/2005).

To measure the effect of the proposed approach on the issue-resolution
process, we compared the average times required to close the issue reports
before and after the deployment of IssueTAG (Section. To this end, we used
the dates and times recorded by the issue report management tool (namely,
Jira). Furthermore, since the characteristics of the reported issues, thus the
times it takes to resolve them, can change over time, we used the issue reports
submitted within two months before and after the deployment of the system
for this purpose.

To further evaluate the usefulness of the deployed system, we carried out a
survey on the actual users of the system (Sections . The survey had both
Likert scale and open-ended questions and about half of the actual users of
the deployed system voluntarily participated in the survey.

Throughout the paper, we used the actual database of issue reports main-
tained by Softtech. Furthermore, all the survey results were obtained from the
actual users in the field. We followed the same approach to evaluate our PELT-
based technique to detect deteriorations in assignment accuracies, which, in-
deed, successfully detected three deteriorations each with a different cause
(Section . To further evaluate the proposed approach, we also carried out
controlled experiments, each of which was repeated 1000 times. We did this
because in the data collected from the field, it was not always possible to de-
termine whether there really were some deteriorations or not, and if so, what
the nature of these deteriorations were. Therefore, the controlled experiments
helped us further evaluate the proposed approach, as in these experiments, we
knew both the nature of the deteriorations (e.g., sudden or gradual) and the
exact point in time where they occurred.

10.2 Internal Validity

To circumvent the internal threats that may be caused by implementation
errors, we used well-known and frequently used libraries. In particular, we
used the Python scikit-learn (Pedregosa et al[|2011) library for preprocess-
ing the issue reports and extracting the features; the scikit-learn (Pedregosa
et al.[2011)) and mlxtend (Raschka|2018) libraries for training the classification
models; the lime (Ribeiro et al.|2016|) library for creating the LIME-based ex-
planations for the assignments; and the ruptures (Truong et al.[|2018a) library
for PELT-based change point detection.

In Section [3] we performed the same preprocessing steps and extracted
the same set of features for all the classification algorithms used in the study.
However, the performances of these classifiers might have been dependent on

40 Ethem Utku Aktas, Cemal Yilmaz

the preprocessing steps used and the features extracted. On the other hand, we
used well-known preprocessing steps, such as tokenization and removal of non-
letter characters as well as stop words and extracted frequently used features,
such as the bag-of-words model.

A related concern is that we used the default configurations of the afore-
mentioned classifiers, except for the k-nearest neighbor and the stacked gen-
eralization classifiers where we used cosine similarity and empirically tuned &
for the former; and logistic regression as the level-1 algorithm together with
the probabilities emitted by the level-O classifiers for the latter. On the other
hand, the performance of these classifiers might have been dependent on the
underlying configurations. Note, however, that optimizing the configurations
for these classifiers could have only generated better accuracies.

In the evaluations, as the correct team for a given issue report (i.e., as
the ground truth), we used the team who actually closed the report. Some
reports, however, might have needed to be processed by multiple teams before
the reported issues could be fixed. Since in these situations, typically the last
team in the chain closed the report, even if the initial assignment of the report
was considered to be correct, it was counted as incorrect when computing
the assignment accuracies. Note, however, that counting such assignments as
correct could have only increased the accuracies.

When computing the amount of manual effort required for issue assign-
ments, we did not take the amount of effort required for maintaining the
knowledge base used by the IT-HD clerks into account. Therefore, the actual
savings in person-months can be larger than the ones reported.

10.3 External Validity

One external threat is that IssueTAG was deployed at Softtech/IsBank only.
Softtech, however, being a subsidiary of IsBank — the largest private bank in
Turkey — is the largest software company of Turkey owned by domestic capital,
maintaining around 100 millions of lines of code with 1.200 employees. Conse-
quently, it shares many characteristics of large software development houses,
especially the ones producing custom, business-critical software systems, such
as having a large, continuously evolving code base maintained by dozens of
development teams involving hundreds of software developers with hundreds
of issue reports filed daily, each of which needs to be addressed with utmost
importance and urgency.

Another possible threat is that issue reports at IsBank (thus, the ones
used in this work) are created by the IT-HD clerks (Section. Although, this
team is a non-technical team, they are specialized in creating issue reports by
listening to the bank customers and employees. Therefore, the quality of the
issue reports used in this study may differ from the ones directly created by,
for example, the end-users of a system. However, many companies, especially
the ones that produce business-critical software systems and that need to deal
with a large number of issue reports, employ similar call centers. Furthermore,

Automated Issue Assignment: An Industrial Case 41

all the issue reports used in this work were written in Turkish. However, we
used simple text processing steps, such as tokenization and removal of non-
letter characters and stop words. Therefore, the proposed approach can also
be used with issue reports written in other languages.

10.4 Conclusion Validity

All the issue reports we used in the experiments were the real issue reports
collected from the field. After the deployment of IssueTAG, once an issue
report was created by an I'T-HD clerk, the assignment was automatically made
by the system. There was no means that the deployed system could be bypassed
or that the assignments made by the system could be changed by an IT-
HD clerk. Note that the AST members could then reassign the issue reports
if needed, in which case the initial assignments made by the system were
considered as incorrect. The number of issue reports closed was an important
performance metric for the AST members as well as for the development teams
at Softtech. Consequently, as a part of the company’s policy, the issue reports
were required to be closed by the development teams, who actually resolved
the reported issues. The stakeholders payed utmost attention to this matter.
Therefore, the assignment accuracies reported in this work, reflect the actual
accuracies obtained by IssueTAG in the field.

To further evaluate the deployed system, we carried out two surveys (Sec-
tions EH@ Although 14 participants were involved in these surveys, these par-
ticipants constituted about half (14 out of 30) of the AST members, who are
the direct end-users of IssueTAG, dealing with the issue reports on a daily
basis.

11 Related Work

Several works in the literature studied the issue assignment problem. These
works use a variety of approaches to make the assignments, including Naive
Bayes classifiers (Murphy and Cubranic [2004; [Anvik et al|2006), Bayesian
Networks (Jeong et al.,[2009), Support Vector Machines (Anvik et al. 2006;
Jonsson et al.||2016]), and information retrieval-based approaches (Chen et al.|
2011} [Kagdi et al|[2012; [Nagwani and Vermal 2012} [Shokripour et al.[2012}
Canfora and Cerulo|2006} |Linares-Vasquez et al.|2012; Xie et al.|2012} Xia et al.|
2013)), Expectation Maximization (Anvik|[2007), Nearest Neighbor classifiers
Anvik and Murphy|2011)), Decision Trees (Ahsan et al.|2009), Random Forests
Ahsan et al|2009), REPTrees (Ahsan et al,|2009), Radial Basis Function
Networks (Ahsan et al|[2009), Neural Networks (Helming et al.|[2010) and
Ensemble-based classification (Jonsson et al.|2016).

These works, except for (Lin et al.|2009; [Helming et al.|2010; |Jonsson et al.|
[2016; Dedik and Rossi|2016), evaluated the proposed approaches by using the
issue databases of open source projects. We, on the other hand, used the issue

42 Ethem Utku Aktas, Cemal Yilmaz

reports filed for commercial, closed-source projects. Although the remaining
works (Lin et al.|2009; [Helming et al.|[2010} |Jonsson et al.|[2016; [Dedik and|
, report on the results obtained on closed-source, commercial soft-
ware projects, they do so by carrying out a retrospective analysis in an offline
manner. We, on the other hand, deployed the proposed approach and shared
both the results we obtained and the lessons we learnt regarding the practical
effects of automated issue assignment in the field. Furthermore, to the best
of our knowledge, our work is the first work carrying out user studies in this
context.

Some of the aforementioned works use natural language explanations present
in issue reports for assignments, such as one-line summary and description
(Murphy and Cubranic| 2004} |Anvik et al,|[2006; [Canfora and Cerulo |2006}
[Ahsan et al.[2009} Baysal et al]2009} [Jeong et al.|[2009; [Lin et al]2009}; [Matter]
let al][2009}; [Helming et al|2010; [Anvik and Murphy| 2011}, [Chen et al|[2011}
[Park et al|2011; [Bhattacharya et al|2012; [Linares-Vasquez et al.|[2012; [Nag-|
wani and Verma) 2012} [Alenezi et al.|2013; [Jonsson et al.[2016}; [Bettenburg
et al|[2008a)). Others also leverage categorical information, such as product,
component, and version (Ahsan et al.|[2009; Lin et al|2009; Park et al. 2011}
|Jonsson et al.|2016).

In this work, we used natural language descriptions present in the issue
reports, more specifically the one-line summaries and descriptions. We did not
use any categorical information, e.g., product, component, and version infor-
mation, because such information was not included in the issue reports; there
were no fields in the issue reporting tool, requesting these types of categori-
cal information. The reason was that with the collection of software products
maintained by Softtech, which heavily interact with each other in a business-
critical environment, sharing many resources, such as databases, file systems,
and GUI screens, the boundaries of the products from the perspective of issue
reporting were not clear at all. Further discussion on this can be found in
Section

Different sources of information have been also used for making the as-
signments. For example, (Tamrawi et al.[2011) model the technical expertise
of individual developers and use these models together with the information
about the developers who recently made changes in the code base. (Wu et al.
infer a social network model of the developers using the comments they
make on historical issue reports as well as the comments automatically gen-
erated at the time of the source code commits, to help with the assignments.
(Baysal et al.|2009) use developers’ preferences as an additional source of infor-
mation, which are expressed by the ratings the developers gave for the issues
they resolved.

We, in this work, deliberately used a single source of information, i.e.,
the natural language descriptions present in the issue reports, to simplify the
design and implementation of the proposed system to the extent possible.
This was a design decision we made to increase the reliability of the proposed
system as the system needed to be deployed, making hundreds of assignments
per day in a business-critical environment. However, we are currently in the

Automated Issue Assignment: An Industrial Case 43

process of figuring out what types of additional sources of information could
be used in an industrial setup to further improve the assignment accuracies.

There are also automated approaches for dealing with various other as-
pects of the issue report management process. One type of approaches aim to
identify duplicate issue reports, which can help developers with 1) figuring out
the number of actual issues reported; 2) assigning priorities; and 3) debugging
(Podgurski et al.|2003]). Generally speaking the problem of duplicate identi-
fication is casted to a clustering problem where similar reports are grouped
together with the assumption that similar descriptions report the same (or
similar) issues (Podgurski et al. [2003} Bettenburg et al.|[2008b; [Wang et al.
2008; [Jalbert and Weimer|2008)).

Other types of approaches mainly focus on better utilizing the available
resources for resolving the reported issues. For example, some approaches aim
to predict the severities of the issues (Lamkanfi et al.|2010; [Menzies and Marcus
2008; [Antoniol et al.|2008} [Pandey et al.[2017)), which, in this context, indicate
the levels of impact the issues have on the development and release process.
Others aim to predict the effort required to resolve the issues (Weiss et al.
2007} |Giger et al.|2010; [Zhang et al.||[2013).

Note that the aforementioned problems, i.e., duplicate detection, severity
identification, and effort prediction are different than the issue assignment
problem addressed in this work. We, however, plan to conduct industrial-
strength studies at IsBank and Softtech to evaluate the efficiency and effec-
tiveness of these approaches.

12 Conclusion and Future Work

In this work, we have developed and deployed a system to automate the process
of issue assignments at Softtech/IsBank. To this end, we first cast the problem
to a classification problem and determined the classifier to be used in the
deployed system by empirically evaluating a number of existing classifiers,
which are known to perform well for the problem at hand, on the actual
database of issues maintained by the company. We then carried out further
studies to determine both the amount and time locality of the historical data
required for training the underlying classification models. We finally deployed
the proposed system by configuring it based on the results we obtained from
these studies.

We observed that 1) it is not just about deploying a data mining-based sys-
tem for automated issue assignment, but also about designing/changing the
assignment process around the system to get the most out of it; 2) the accu-
racy of the system does not have to be higher than that of manual assignments
in order for the system to be useful, which was further validated by the user
studies we carried out on actual stakeholders in the field; 3) deploying such
a system also requires the development of additional functionalities, such as
detecting deteriorations in assignment accuracies in an online manner and cre-
ating human-readable, non-technical explanations for the assignments made,

44 Ethem Utku Aktas, Cemal Yilmaz

for both of which we developed and empirically evaluated different approaches;
4) stakeholders do not necessarily resist change; and 5) gradual transitions can
help stakeholders build confidence, which, in turn, facilitates the acceptance
of the system.

One avenue for future research is to use additional sources of information
to further improve the assignment accuracy; we are, in particular, interested
in developing “human-in-the-loop” type of approaches. Another avenue is to
carry out industrial-strength studies using the deployed system to evaluate
the efficiency and effectiveness of the other related approaches in the field,
including duplicate detection, severity identification, and effort prediction.

References

Ahsan SN, Ferzund J, Wotawa F (2009) Automatic software bug triage system (bts) based
on latent semantic indexing and support vector machine. In: 2009 Fourth International
Conference on Software Engineering Advances, IEEE, pp 216-221

Alenezi M, Magel K, Banitaan S (2013) Efficient bug triaging using text mining. JSW
8(9):2185-2190

Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG (2008) Is it a bug or an
enhancement?: a text-based approach to classify change requests. In: CASCON, vol 8,
pp 304-318

Anvik J (2007) Assisting bug report triage through recommendation. PhD thesis, University
of British Columbia

Anvik J, Murphy GC (2011) Reducing the effort of bug report triage: Recommenders
for development-oriented decisions. ACM Transactions on Software Engineering and
Methodology (TOSEM) 20(3):10

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: Proceedings of the 28th
international conference on Software engineering, ACM, pp 361-370

Baysal O, Godfrey MW, Cohen R (2009) A bug you like: A framework for automated assign-
ment of bugs. In: 2009 IEEE 17th International Conference on Program Comprehension,
IEEE, pp 297-298

Bettenburg N, Just S, Schréter A, Weiss C, Premraj R, Zimmermann T (2008a) What
makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, ACM, pp 308-318

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008b) Duplicate bug reports considered
harmful... really? In: 2008 IEEE International Conference on Software Maintenance,
IEEE, pp 337-345

Bhattacharya P, Neamtiu I, Shelton CR (2012) Automated, highly-accurate, bug assign-
ment using machine learning and tossing graphs. Journal of Systems and Software
85(10):2275-2292

Bishop CM (2006) Pattern recognition and machine learning. springer

Breiman L (2001) Random forests. Machine Learning 45(1):5-32

Breiman L (2017) Classification and regression trees. Routledge

Canfora G, Cerulo L (2006) Supporting change request assignment in open source develop-
ment. In: Proceedings of the 2006 ACM symposium on Applied computing, ACM, pp
1767-1772

Chen L, Wang X, Liu C (2011) An approach to improving bug assignment with bug tossing
graphs and bug similarities. JSW 6(3):421-427

Dedik V, Rossi B (2016) Automated bug triaging in an industrial context. In: 2016 42th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
IEEE, pp 363-367

Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd
International Workshop on Recommendation Systems for Software Engineering, ACM,
pp 52-56

Automated Issue Assignment: An Industrial Case 45

Helming J, Arndt H, Hodaie Z, Koegel M, Narayan N (2010) Automatic assignment of
work items. In: International Conference on Evaluation of Novel Approaches to Software
Engineering, Springer, pp 236-250

Hocking TD, Schleiermacher G, Janoueix-Lerosey I, Delattre O, Bach F, Vert JP (2013)
Learning smoothing models of copy number profiles using breakpoint annotations. BMC
bioinformatics 14:164

Jalbert N, Weimer W (2008) Automated duplicate detection for bug tracking systems. In:
2008 IEEE International Conference on Dependable Systems and Networks With FTCS
and DCC (DSN), IEEE, pp 52-61

Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing graphs. In:
Proceedings of the the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering, ACM,
pp 111-120

Joachims T (1998) Text categorization with support vector machines: Learning with many
relevant features. In: Proceedings of the 10th European Conference on Machine Learning,
Springer-Verlag, ECML’98, pp 137-142

Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P (2016) Automated bug as-
signment: Ensemble-based machine learning in large scale industrial contexts. Empirical
Software Engineering 21(4):1533-1578

Kagdi H, Gethers M, Poshyvanyk D, Hammad M (2012) Assigning change requests to soft-
ware developers. Journal of Software: Evolution and Process 24(1):3-33

Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association 107(500):1590-1598

Lamkanfi A, Demeyer S, Giger E, Goethals B (2010) Predicting the severity of a reported
bug. In: 2010 7th IEEE Working Conference on Mining Software Repositories (MSR
2010), IEEE, pp 1-10

Lavielle M, Ere G (2007) Adaptive detection of multiple change-points in asset price volatil-
ity. Long Memory in Economics

Lin Z, Shu F, Yang Y, Hu C, Wang Q (2009) An empirical study on bug assignment au-
tomation using chinese bug data. In: 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, IEEE, pp 451-455

Linares-Vésquez M, Hossen K, Dang H, Kagdi H, Gethers M, Poshyvanyk D (2012) Triaging
incoming change requests: Bug or commit history, or code authorship? In: 2012 28th
IEEE International Conference on Software Maintenance (ICSM), IEEE, pp 451-460

Manning C, Raghavan P, Schiitze H (2010) Introduction to information retrieval. Natural
Language Engineering 16(1):100-103

Matter D, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a vocabulary-based
expertise model of developers. In: 2009 6th IEEE international working conference on
mining software repositories, IEEE, pp 131-140

Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In:
2008 TEEE International Conference on Software Maintenance, IEEE, pp 346-355

Murphy G, Cubranic D (2004) Automatic bug triage using text categorization. In: Proceed-
ings of the Sixteenth International Conference on Software Engineering & Knowledge
Engineering, Citeseer

Nagwani NK, Verma S (2012) Predicting expert developers for newly reported bugs using
frequent terms similarities of bug attributes. In: 2011 Ninth International Conference
on ICT and Knowledge Engineering, IEEE, pp 113-117

Pandey N, Sanyal DK, Hudait A, Sen A (2017) Automated classification of software issue
reports using machine learning techniques: an empirical study. Innovations in Systems
and Software Engineering 13(4):279-297

Park Jw, Lee MW, Kim J, Hwang Sw, Kim S (2011) Costriage: A cost-aware triage algorithm
for bug reporting systems. In: Twenty-Fifth AAAI Conference on Artificial Intelligence

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pret-
tenhofer P, Weiss R, Dubourg V, et al. (2011) Scikit-learn: Machine learning in python.
Journal of machine learning research 12(Oct):2825-2830

Podgurski A, Leon D, Francis P, Masri W, Minch M, Jiayang Sun, Bin Wang (2003) Auto-
mated support for classifying software failure reports. In: 25th International Conference
on Software Engineering, 2003. Proceedings., pp 465-475

46 Ethem Utku Aktas, Cemal Yilmaz

Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan

Raschka S (2018) Mlxtend: Providing machine learning and data science utilities and exten-
sions to python’s scientific computing stack. J Open Source Software 3(24):638

Ribeiro MT, Singh S, Guestrin C (2016) Why should i trust you?: Explaining the predictions
of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, ACM, pp 1135-1144

Shokripour R, Kasirun ZM, Zamani S, Anvik J (2012) Automatic bug assignment using
information extraction methods. In: 2012 International Conference on Advanced Com-
puter Science Applications and Technologies (ACSAT), IEEE, pp 144-149

Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN (2011) Fuzzy set and cache-based
approach for bug triaging. In: Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, ACM, pp 365-375

Ting KM, Witten IH (1999) Issues in stacked generalization. Journal of artificial intelligence
research 10:271-289

Truong C, Oudre L, Vayatis N (2018a) ruptures: change point detection in python. arXiv
preprint arXiv:180100826

Truong C, Oudre L, Vayatis N (2018b) Selective review of offline change point detection
methods. arXiv preprint arXiv:180100718

Wang X, Zhang L, Xie T, Anvik J, Sun J (2008) An approach to detecting duplicate bug
reports using natural language and execution information. In: Proceedings of the 30th
international conference on Software engineering, ACM, pp 461-470

Weiss C, Premraj R, Zimmermann T, Zeller A (2007) How long will it take to fix this bug?
In: Fourth International Workshop on Mining Software Repositories (MSR’07: ICSE
Workshops 2007), IEEE, pp 1-1

Wolpert DH (1992) Stacked generalization. Neural networks 5(2):241-259

Wu W, Zhang W, Yang Y, Wang Q (2011) Drex: Developer recommendation with k-nearest-
neighbor search and expertise ranking. In: 2011 18th Asia-Pacific Software Engineering
Conference, IEEE, pp 389-396

Xia X, Lo D, Wang X, Zhou B (2013) Accurate developer recommendation for bug resolution.
In: 2013 20th Working Conference on Reverse Engineering (WCRE), IEEE, pp 72-81

Xie X, Zhang W, Yang Y, Wang Q (2012) Dretom: Developer recommendation based on
topic models for bug resolution. In: Proceedings of the 8th international conference on
predictive models in software engineering, ACM, pp 19-28

Zhang H, Gong L, Versteeg S (2013) Predicting bug-fixing time: an empirical study of
commercial software projects. In: Proceedings of the 2013 international conference on
software engineering, IEEE Press, pp 1042-1051

	1 Introduction
	2 Case Description
	3 Evaluating Existing Issue Assignment Approaches
	4 Time Locality and Amount of Training Data
	5 Automated Issue Assignments in Practice
	6 User Evaluations
	7 Explaining Team Assignments
	8 Monitoring Deterioration
	9 Lessons Learnt
	10 Threats to Validity
	11 Related Work
	12 Conclusion and Future Work

