
Empirical Software Engineering
https://doi.org/10.1007/s10664-020-09851-6

Publish or perish, but do not forget your software
artifacts

Robert Heumüller1 · Sebastian Nielebock1 · Jacob Krüger1,2 ·
Frank Ortmeier1

© The Author(s) 2020

Abstract
Open-science initiatives have gained substantial momentum in computer science, and par-
ticularly in software-engineering research. A critical aspect of open-science is the public
availability of artifacts (e.g., tools), which facilitates the replication, reproduction, exten-
sion, and verification of results. While we experienced that many artifacts are not publicly
available, we are not aware of empirical evidence supporting this subjective claim. In
this article, we report an empirical study on software artifact papers (SAPs) published at
the International Conference on Software Engineering (ICSE), in which we investigated
whether and how researchers have published their software artifacts, and whether this had
scientific impact. Our dataset comprises 789 ICSE research track papers, including 604
SAPs (76.6 %), from the years 2007 to 2017. While showing a positive trend towards arti-
fact availability, our results are still sobering. Even in 2017, only 58.5 % of the papers that
stated to have developed a software artifact made that artifact publicly available. As we did
find a small, but statistically significant, positive correlation between linking to artifacts in
a paper and its scientific impact in terms of citations, we hope to motivate the research com-
munity to share more artifacts. With our insights, we aim to support the advancement of
open science by discussing our results in the context of existing initiatives and guidelines.
In particular, our findings advocate the need for clearly communicating artifacts and the use
of non-commercial, persistent archives to provide replication packages.

Keywords Software · Open science · Open source · Artifacts · Publishing

Communicated by: Martin Monperrus

This paper has been awarded the Empirical Software Engineering (EMSE) open science badge.

The work of Jacob Krüger has been supported by the German Research Foundation (SA 465/49-3) and
an IFI fellowship of the German Academic Exchange Service.

Robert Heumüller and Sebastian Nielebock contributed equally to the research reported in this article.

� Robert Heumüller
robert.heumueller@ovgu.de

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09851-6&domain=pdf
http://orcid.org/0000-0002-9906-0323
http://orcid.org/0000-0002-0147-3526
http://orcid.org/0000-0002-0283-248X
http://orcid.org/0000-0001-6186-4142
mailto: robert.heumueller@ovgu.de

Empirical Software Engineering

1 Introduction

Software-engineering research has always been driven by developing concepts and tech-
niques to automate or facilitate the tasks of software developers (Wicks and Dewar 2007;
Ossher et al. 2000). As a consequence, researchers have been building numerous software
artifacts, ranging from analysis scripts for empirical studies, over prototypes to show the
feasibility of a technique, to full-fledged tools that are used in practice. In the context of
this article, software artifacts represent runnable (at least after compiling) programs, devel-
oped by researchers to obtain or analyze their results. This definition does not cover other
types of artifacts (e.g., datasets), and thus is more specific in this regard than some existing
guidelines for publishing artifacts (cf. Section 2).

Software artifacts are important for research, allowing other researchers to replicate
results and to build on previous work, as well as for practical adoption, providing a means
for practitioners to make use of research tools (von Nostitz-Wallwitz et al. 2018a, b; Diebold
and Vetrò 2014; Garousi et al. 2016; Lo et al. 2015). This is additionally highlighted by
numerous conferences adopting tool and demonstration tracks that focus on presenting such
artifacts in a more interactive form than a scientific presentation. Moreover, in recent years,
leading software-engineering venues, for instance, the International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER)1 or the International Conference
on Software Engineering (ICSE),2 explicitly welcomed contributions that replicated, repro-
duced, and critically discussed results derived with such artifacts (Monperrus 2014; Fu and
Menzies 2017).

In parallel to pushing for open science in the context of open-access publications, sev-
eral initiatives have started to promote publicly available software artifacts. For instance,
the Association for Computing Machinery (ACM) introduced badges with defined criteria
to motivate researchers to contribute their artifacts (Boisvert 2016).3 Similarly, the Jour-
nal on Empirical Software Engineering (ESE) launched an open-science initiative (Méndez
Fernández et al. 2019) for any artifact that is connected to its articles.

There are apparent benefits and motivations for making software artifacts available.
However, during our daily work, we observed that it is sometimes complicated to obtain and
reuse software artifacts from others. In the worst case, it is simply impossible to access arti-
facts, forcing us to re-implement them from scratch. This requires additional development
time and raises the issue of how accurately we can reproduce that artifact. Unfortunately,
even the best efforts of publishing artifacts may be in vain, considering that some plat-
forms that are viewed as stable today may vanish or change their policies in the future. For
instance, BitBucket decided to delete all of its Mercurial projects, due to their decreasing
use in software development.4 To avoid such removal of their software artifacts and instead
keep them publicly available over a long period, researchers strive for platforms support-
ing open-science and long-term persistence, for example, as envisioned by the Software
Heritage project (Di Cosmo 2018). Another issue with existing platforms is a missing, con-
sistent procedure for publishing a software artifact, which hampers the ability to replicate or
reuse that artifact. This problem is also stressed by numerous existing guidelines emphasiz-
ing related aspects for publishing artifacts, such as using a non-changeable (i.e., persistent)
archive or adhering to “software-engineering practices” (cf. Section 2).

1https://saner2020.csd.uwo.ca/negativerestrack
2https://2019.icse-conferences.org/track/icse-2019-ROSE-Festival
3https://www.acm.org/publications/policies/artifact-review-badging
4https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket

https://saner2020.csd.uwo.ca/negativerestrack
https://2019.icse-conferences.org/track/icse-2019-ROSE-Festival
https://www.acm.org/publications/policies/artifact-review-badging
https://bitbucket.org/blog/sunsetting-mercurial-support-in-bitbucket

Empirical Software Engineering

All of the aforementioned issues indicate that the research community faces several open
questions to scope and improve the current practices of publishing artifacts. In this article,
we report an empirical analysis of research papers published at ICSE from 2007 to 2017.
With our study, we answer the following research questions:

RQ1 What is the prevalence of software artifact papers at ICSE?s
RQ2 How have the artifacts from those papers been published?
RQ3 What is the impact of publishing software artifacts?

To answer RQ1, we analyzed the ratio of software artifact papers (SAPs) to all papers pub-
lished at ICSE in the investigated time frame. We define SAPs as papers in which the authors
report a software artifact that they developed specifically for the described research. While
being only an indirect measure for the prevalence of SAPs at ICSE, answering this ques-
tion provides insights into the importance and value of open-science, artifact publishing,
and corresponding guidelines for the software-engineering community at ICSE. For RQ2,
we investigated four properties, which we derived from existing guidelines (cf. Section 2),
for each SAP that we identified. The results are valuable to understand previous practices
and current trends of publishing artifacts, indicating whether the software-engineering com-
munity does (in practice) accept the push for openness and advances in this regard. Finally,
with RQ3, we analyzed whether making artifacts publicly available has made a difference
in terms of citations as a measure of scientific impact. This research question led us to
our provocative title, but its main intention is to motivate researchers (similar to badges),
highlighting that artifact availability has the potential to increase the quality and impact of
research. From our observations, we derived four important lessons that we discuss in the
context of existing guidelines.

Overall, we contribute the following with this article:

– We provide a comparison of existing open-science initiatives in terms of the properties
they define for publishing software artifacts.

– We analyzed 789 papers that have been published at ICSE research tracks from 2007
until 2017. Based on this analysis, we address three questions, namely: (RQ1) how
many software artifacts have been reported in the papers; (RQ2) whether and how these
artifacts have been published; and (RQ3) whether publishing software artifacts changed
the impact (in terms of citations) of the corresponding papers.

– From our findings, we derive lessons learned that can help SAP authors avoid pit-
falls, and which substantiate and complement existing artifact publishing guidelines
(cf. Section 5.2).

– We provide a public replication package comprising our dataset and all analysis scripts
on Zenodo.5

Our findings are important for research and practice alike. First, while most of the research
community seems to already share the feeling that too few software artifacts are pub-
lished, to the best of our knowledge, we are the first to provide empirical evidence from
a large-scale study on this topic. Second, we provide insights on publishing artifacts that
are currently not covered by existing initiatives on open-science, which could be improved
based on our results. Third, we highlight how researchers can increase the impact of their
research, motivating them to openly publish their software artifacts as far as possible.
Fourth, with an increase of publicly available software artifacts, it will be easier to test

5https://doi.org/10.5281/zenodo.3935612

https://doi.org/10.5281/zenodo.3935612

Empirical Software Engineering

and build on research, facilitating the adoption of research in practice, and promoting trust
between both areas.

Within this article, we compare eight existing guidelines for publishing software artifacts,
from which we identified 14 properties that are considered important for artifact publish-
ing (cf. Section 2). In Section 3, we describe our methodology for collecting and analyzing
ICSE papers as well as their respective metadata. We explain how we classified papers
based on their metadata and four of the properties we identified from guidelines. Using this
classification, we investigated our research questions (cf. Section 4). In Section 5, we dis-
cuss possible reasons why software artifacts are not openly published based on the literature
and our own experiences; and present our lessons learned to complement and refine exist-
ing guidelines. Then, we report possible threats to the validity of our study (cf. Section 6),
describe related work (cf. Section 7), and conclude our main results (cf. Section 8).

2 Artifact Publishing Guidelines

Open-science initiatives, institutions, conferences, researches, and publishers have devel-
oped processes and guidelines for publishing software artifacts. For the purpose of this
article, we classified six types of guidelines (based on eight concrete guidelines) that have
been launched by major computer-science publishers, venues, and organizations, namely:

– The ACM badges3 (Boisvert 2016)
– The ESE OpenScience initiative6 (Méndez Fernández et al. 2019)
– The Journal of Open Source Software (JOSS) (Katz et al. 2018) and the Journal of

Open Research Software (JORS)7

– The guideline by Wilson et al. (2017)
– The NASA Open Source Software Projects8

– The artifact-evaluation process of the International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS)9 and the International
Conference on Computer-Aided Verification (CAV)10 as employed in 2019

We chose these guidelines because they represent recent initiatives in computer science and
software engineering. In particular, these guidelines provide a publicly available description
of their process and allow a broad insight into current efforts towards open science. Note
that for simplicity, we have grouped the journals JOSS and JORS as well as the conferences
TACAS and CAV, because they differ only in details with respect to the properties we ana-
lyzed. We emphasize that this list of guidelines is not complete. For example, several private
organizations, such as Microsoft,11 Facebook,12 or Netflix,13 publish their scientific tools
as open-source artifacts. However, we were not able to find the respective guidelines, and,
similar to BitBucket, private organizations may decide to remove or transfer these artifacts
at any point in time for any reason.

6https://github.com/emsejournal/openscience/
7https://openresearchsoftware.metajnl.com/about/editorialpolicies/
8https://code.nasa.gov/
9https://conf.researchr.org/track/etaps-2019/tacas-2019-papers#Artifact-Evaluation
10http://i-cav.org/2019/artifacts/
11https://www.microsoft.com/en-us/research/tools/
12https://github.com/facebookresearch
13https://netflix.github.io/

https://github.com/emsejournal/openscience/
https://openresearchsoftware.metajnl.com/about/editorialpolicies/
https://code.nasa.gov/
https://conf.researchr.org/track/etaps-2019/tacas-2019-papers#Artifact-Evaluation
http://i-cav.org/2019/artifacts/
https://www.microsoft.com/en-us/research/tools/
https://github.com/facebookresearch
https://netflix.github.io/

Empirical Software Engineering

Table 1 Overview of what properties the guidelines we consider in this article demand. We emphasize the
properties that we were concerned with in our analysis in bold

Properties Guidelines

ACM ESE JOSS Wilson NASA TACAS

VACSROJ

Runnable Software

Documentation

(Unique) Identifier

Accessible Archive

Persistent Archive

Special Distribution

License

Experimental Data

Small Test Data

Open Issues List

SE Practices

Law and Regulations

List of Contributers

Special Requirements

Based on the guidelines, we derived four properties that we analyzed for each SAP. We
display an overview of the main properties that software artifacts have to fulfill to adhere to
each guideline in Table 1. This list of properties was compiled in two steps. First, a prelimi-
nary list was extracted by the second author from the guidelines’ respective documents and
web pages. Second, in a discussion based on this preliminary list, we identified the main
properties by merging redundant properties and removing noise. Our goal was to ensure
that the distilled properties were well-suited for depicting the requirements of the original
guidelines. In the following, we discuss each guideline in detail, followed by a summary of
all properties from Table 1, and an explanation on how we selected the four main properties
for our analysis.

ACM Badges The ACM badges have been introduced as a means to award, and thus moti-
vate, authors of accepted papers for making their software artifacts accessible and their
results replicable. Several findings have shown that badges are an effective mechanism to
increase the amount of open data in science, for example, in psychology (Kidwell et al.
2016) and medicine (Rowhani-Farid et al. 2017). First experiences from the ACMMultimedia
Systems Conference (MSC), which applies badges since 2017, also support that observa-
tion for software artifacts (Thomee et al. 2018). Leading software-engineering venues, such
as ICSE and the Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), have also introduced ACM badges.

Conferences can offer up to three categories of badges: “Artifacts Evaluated,” “Artifacts
Available,” and “Results Validated.” Papers awarded with the badge “Artifact Evaluated”—
which further distinguishes between “Functional” and “Reusable”—provide complete and
executable software, the experimental data, as well as appropriate documentation. In addi-
tion, the badge “Artifact Available” considers whether the software is actually accessible,

Empirical Software Engineering

meaning that it is uploaded to an archive and linked with a unique identifier, usually a
Digital Object Identifier (DOI). The badge “Results Validated” considers whether the results
of a paper have been “Replicated,” meaning that others produced the same results from
the original artifact, or “Reproduced,” meaning that others produced the same results with
an independent re-implementation. We remark that conferences that offer these badges can
also adapt and strengthen the requirements. For example, conferences can enforce the pub-
lication of artifacts in a persistent (non-deletable) archive, such as Zenodo,14 Figshare,15 or
Software Heritage (Di Cosmo 2018).

ESE OpenScience Initiative In 2019, ESE started an initiative to increase the number
of open-source artifacts that are published based on the articles accepted at the jour-
nal (Méndez Fernández et al. 2019). In particular, ESE requires that authors publish the
source code in a persistent archive with an open-source license. Furthermore, the authors
have to adhere to the FAIR-principle,16 meaning that artifacts should be findable with a
unique and persistent identifier (e.g., a DOI), acccessible for machines and humans through
interfaces, interoperable for machines to execute the artifact, and reusable through a proper
documentation and references to additional data. Similar to ACM, ESE offers badges (i.e,
“Open Data” and “Open Material”) from the open-science framework.17

JOSS/JORS In 2016, the Journal of Open Source Software (JOSS) has been introduced to
support the publication of software-artifact articles. For the review process, JOSS expects
both, the article and the corresponding software, to be available via publicly accessible Git-
based repositories. The reviewers then evaluate whether the described artifact is executable,
documented, offers example data, and adheres to common software-engineering practices,
for instance, the existence of automatic tests.18 After acceptance, the artifact is stored in a
persistent and publicly accessible archive, and is then referred to by its DOI.

The Journal of Open Research Software (JORS) published its first articles in 2013. It
accepts so-called software meta-papers, which aim to complement research papers and to
facilitate software reuse by describing artifacts in depth (e.g., their purpose, architecture).
Particularly, JORS’ publicly available review criteria assume a runnable software to be per-
sistently available in a suitable repository with some kind of unique identifier, such as a DOI
or other URI. The journal further asks for an open license, small test data, and a minimal
amount of software quality.

Guideline by Wilson et al. In their article, Wilson et al. (2017) describe practices for sci-
entists conducting research with computing systems. They target not only the publication
of artifacts, but describe also how to manage raw data, organize a software research project,
and collaborate with other researchers. Regarding the publication of artifacts, the authors
suggest that these as well as the experimental data should be given a unique identifier. Wil-
son et al. (2017) also emphasize the importance of structuring and testing the code, and
providing useful documentation. In addition, they recommend using archives with version
control and explicit numbers to retrieve particular versions. To provide confidence for other
researchers, authors should provide a usage license as well as a public list of open issues,
for example, in an issue tracking system.

14https://zenodo.org/
15https://figshare.com/
16https://www.force11.org/fairprinciples
17https://osf.io/tvyxz/wiki/1.%20View%20the%20Badges/
18https://joss.readthedocs.io/en/latest/submitting.html

https://zenodo.org/
https://figshare.com/
https://www.force11.org/fairprinciples
https://osf.io/tvyxz/wiki/1.%20View%20the%20Badges/
https://joss.readthedocs.io/en/latest/submitting.html

Empirical Software Engineering

NASA Open Source Software Projects Within their open-source initiative, researchers at
NASA can publish their artifacts. For this purpose, they contact a software release author-
ity (SRA) that checks the artifacts regarding specified constraints, and that supports the
researchers in publishing their artifacts. The publishing procedure includes a compliance
check with laws and regulations (e.g., proper licensing, export control) as well as further
requirements (e.g., security concerns). Besides the source code, SRAs also check the exis-
tence and the quality of the documentation, the experimental data, whether all involved
developers are mentioned, and whether the software was properly tested. Finally, the artifact
is uploaded to a GitHub repository and included into NASA’s software catalog.19

TACAS/CAV In 2019, TACAS and CAV included an artifact evaluation session. To prepare
for this session, authors had to create a special replication package as a virtual machine
(VM). Within this package, the authors had to include their code, a user manual, and all
necessary dependencies. In particular, the artifact should be able to run solely within the
VM and without a network connection. Since some calculations require a lot of computation
power and time, authors should also provide smaller test data for fast replications. Moreover,
TACAS demanded to specify a valid license.

Summary of Guideline Properties Based on the guidelines (cf. Table 1), we identified 14
different properties that are important when publishing software artifacts. All guidelines
assume a runnable software, that is, the artifact can be executed by an external researcher
or reviewer at least in a predefined environment in a described manner. Moreover, all guide-
lines expect some kind of documentation, varying from simple text files to full manuals,
containing information on the installation, compilation, configuration, and usage of the arti-
fact. A unique identifier describes some means of unambiguously identifying a software
artifact. While, in theory, any unique “calling name” (e.g. “eclipse”) for an artifact could
be used, this uniqueness is hard to guarantee. Therefore, it is best to provide an absolute
URI or even a DOI. Such a link allows researchers and reviewers to retrieve exactly that
artifact with which the research results were obtained, without having to resort to internet
searches. An accessible archive refers to a code repository that is publicly available through
the world wide web. These may range from locally hosted version control systems up to sys-
tems hosted by private and public organizations. Orthogonal, a persistent archive is a code
repository that ensures high degrees of longevity and immutability of artifacts. For exam-
ple, Zenodo is hosted by the CERN Data Centre with the support of the EU and ensures
accessibility as well as immutability based on DOIs. While all guidelines ask to publish an
artifact as open source, some guidelines demand a special kind of distribution for an artifact,
namely particular virtual machines. This is usually motivated by the purpose of reusing the
artifact (e.g., for replication). A statement regarding the use of a specific license is usually
required since developers and researchers need to know the conditions under which they are
allowed to reuse the artifact. Moreover, it is good practice to add input data either as small
test data or experimental data, such as benchmarks. Such data helps to replicate the results
as well as to compare new artifacts against the same dataset. An open issues list describes a
list of known problems (e.g., bugs or edge cases that are not handled) or potential extensions
of the artifact. Contributors can use this list as starting point for improving or extending the
software, to suggest new features, or to report bugs. So, an issue tracking system also ful-
fills this criterion. Some guidelines expect some degree of software engineering practices to

19https://software.nasa.gov/

https://software.nasa.gov/

Empirical Software Engineering

be employed, ranging from code styles, over commenting, to automated test cases for val-
idation. Law and regulations requirements are usually required by organizations and deal
with aspects of licensing, ownership, and export control. A single guideline (i.e., NASA)
requires a list of contributors comprising explicitly the developers of the software artifact,
while the other guidelines expect a list of authors that can include both, contributors to
the software artifact and the corresponding paper. This is useful to contact the respective
researchers in cases of further questions. Finally, some special requirements may be rele-
vant for an organization, such as security concerns. We can see that in particular the last
three properties are concerned with legal issues and responsibilities, which are especially
important for organizations—and thus not surprisingly part of the NASA guidelines.

Selection of Analyzed Properties During our analysis, we could not assess all identified
properties, since some are hardly measurable (e.g., appropriate documentation), some
would take too much time to evaluate for 789 papers (e.g., runnable software), and some
were already extensively analyzed in previous works, for example, datasets (Poldrack and
Poline 2015; Sicilia et al. 2017) and licensing (Schreiber and Haupt 2017; Almeida et al.
2017; Méndez Fernández et al. 2019). In particular, we did not check the quality of the arti-
facts, namely the existence of runnable software and the documentation. Since we are not,
and cannot be, domain experts for all of these artifacts, we can hardly measure the quality
or the level of replicability of all software artifacts. Usually, specialized researchers conduct
such comparative studies against tailored benchmarks, for instance, as for code-smell detec-
tion (Fernandes et al. 2016) or code-clone detection (Bellon et al. 2007; Roy et al. 2009).
Moreover, running artifacts requires knowledge of a variety of programming languages,
build systems, and benchmarks as well as a correct parametrization of such artifacts. Sev-
eral properties (i.e., open issue list, SE practices, licensing, law and regulations, list of
contributers, special requirements) are also not related to the availability of the artifacts,
which is why we did not investigate these.

We split the guidelines’ accessible archive property into two properties for our analy-
sis. So, we investigated: First, whether the authors linked to their artifact using some form
of URI. Second, whether the artifact was actually available at the target of that URI (e.g.,
downloadable or usable as a web application). Ensuring this property is a precondition for
any quality check, since an artifact that is unavailable cannot be assessed. We also analyzed
the proportion of SAPs with (unique) identifiers, since these greatly facilitate identifying
the exact artifact associated with an SAP. However, since most artifacts did not have a guar-
anteed unique identifier, we first counted named artifacts. Then, we approximated an upper
boundary for the unique identifier property by counting the number of SAPs that provided a
name or a URI. We further analyzed the types of websites used to see whether these changed
over time and, in particular, to gain insights on the degree to which persistent archives
were already in use. Finally, we analyzed the distribution types, because researches may
have different motivations to reuse software artifacts, such as simple replications, compar-
isons to their own artifact, or extensions of the existing artifact. These use cases require
different kinds of distributions, even though, in theory, source code should usually support
all of them. In the next section, we explain the details of how we assessed these properties.

3 Methodology

In this section, we explain the methodology we employed for our analysis. We elaborate on the
main steps of our data acquisition, authorship-based community clustering, and classification.

Empirical Software Engineering

3.1 Data Acquisition

Our analysis is based on SAPs published at ICSE research tracks. Regarding our research
questions, we decided to study ICSE publications in a representative period of eleven years
from 2007 to 2017, deliberately excluding the most recent publications from 2018 and 2019
(at the time of the investigation, which started before ICSE 2019 took place), due to the
likely bias regarding the citation analysis. To improve comparability and to eliminate other
sources of bias, we limited our analyses to full papers in the main research track of ICSE.
Using the dblp computer science bibliography,20 the Scopus API,21 and the Crossref API,22

we automatically retrieved the meta data, abstracts, and citation counts of 792 papers. Later
on, we removed three papers that were falsely attributed to the research track. We found two
of these while comparing the dataset with original conference websites and final reports of
the program committees. The third paper, we found during the validation step, which we
describe in Section 3.3.

To investigate the four properties (i.e., accessible, persistent archive, unique identifier,
and distribution type), we extracted information from all papers, which we used to classify
them according to the criteria we define in Section 3.3. Particularly, we checked whether the
papers claimed to have a software artifact (i.e., being an SAP). In such a case, we further col-
lected the web-links (i.e., URIs) linking to the software artifacts (if provided). Using these
web-links, we were able to check whether the linked archive was accessible and whether
the artifact was available through that link. Note that we only accepted web-links linking
to the artifact rather than to a general description of the paper or the artifact without access
to it. Moreover, we also identified the type of the web page to assess the persistence of the
archive. During our analysis, we noticed that most authors did not provide a unique identi-
fier for their artifacts, but rather an artifact name. As unique identifiers have only recently
been adopted for artifacts and are still not strictly enforced, we considered an artifact name
as a weak surrogate for an identifier. For example, many research papers use the name of an
artifact when referring to a particular paper or artifact, and therefore identify the respective
artifact. Still, since, for example, simple scripts are usually not named, we also considered
whether artifacts were linked via a URI, which we also considered as a unique identifier.
We also documented in what form the artifact was distributed, if the artifact was available
through the identified web-link.

For our envisioned citation impact analysis, we needed to establish comparability
between different papers by normalizing the Crossref citation counts. Otherwise, the results
would be heavily biased by the ages of the papers in the compared sets (older papers are
more likely to have higher citation counts than more recent ones). To address this issue,
we adapted the average relative citation (arc) metric (Hutchins et al. 2016; Piwowar et al.
2018). The arc score normalizes the citation count of an ICSE paper by the average citation
count of all ICSE papers from that year. Let Px be the set of papers published in year x of
ICSE; then, for any paper p ∈ Px , the arc score is defined as:

arc(p) = citationCount (p)
∑

p′∈Px
citationCount (p′)

|Px |

20https://dblp.uni-trier.de/
21https://dev.elsevier.com/
22https://www.crossref.org/services/metadata-delivery/rest-api/

https://dblp.uni-trier.de/
https://dev.elsevier.com/
https://www.crossref.org/services/metadata-delivery/rest-api/

Empirical Software Engineering

Consequently, an arc score greater than one indicates that a paper’s citations are above
average for that year, while values equal to or below one indicate average or below-average
citations.

3.2 Authorship-Based Community Clustering

Before the actual analysis, we performed an authorship-based clustering of papers for two
reasons: First, the clustering allowed us to analyze the publication behavior within sub-
communities of ICSE, as opposed to ICSE in general. Second, we hypothesized that we
could increase the efficiency of the manual classification by assigning clusters of related
papers to the same analyst, facilitating the detection of similarities in paper structures,
related software artifacts, and means of publishing artifacts—generally benefiting our man-
ual analysis. While we did not evaluate to what degree the clustering actually sped up our
analysis, the impressions of the analysts strongly supported this claim.

The choice of the similarity metric is crucial for any clustering since it has the greatest
impact on what the detected clusters actually represent. As authorship-based similarity met-
ric, we selected the Jaccard-similarity: Let A and B be the sets of authors of two papers,
then the similarity is defined as:

sim(A,B) = |A ∩ B|
|A ∪ B|

Independent of the concrete clustering algorithm, this metric attempts to find clusters that
share large proportions of authors between their papers.

Next, we evaluated two standard graph clustering algorithms, Spectral Clustering (von
Luxburg 2007) and Girvan Newman Clustering (Girvan and Newman 2002), on our dataset,
relying on the Scipy, Scikit-Learn, and NetworkX libraries for the implementations (Virtanen
et al. 2020; Pedregosa et al. 2011; Hagberg et al. 2008). Using the eigengap heuristic (von
Luxburg 2007), we estimated the number of clusters to be 209, which we then used to
initialize both clustering algorithms. Using the adjusted mutual information score (Vinh
et al. 2009), we compared the two resulting clusterings and determined a high correlation
(0.86) between both algorithms. A qualitative inspection of the largest clusters supported
this result. Due to the discovered similarity of both clusterings, in the remainder of the
article, we only refer to the results of the Girvan Newman algorithm.

3.3 Classification

Next, we describe our process for manually classifying the 789 publications in our dataset.
First, we split the dataset into three batches of approximately the same number of papers,
one for each analyst (i.e., the first three authors of this paper). Instead of assigning papers to
each analyst by random or by years, we assigned entire clusters to each analyst in a round-
robin scheme. Then, we performed two rounds of classification to analyze the individual
publications regarding the aforementioned properties. Finally, we validated the results of
the classification, during which the three analysts crosschecked another batch of randomly
selected papers for each year and each other analyst.

In the first round of classification, we analyzed only the papers from 2007 and 2017, and
used the gathered insights to refine our method and agree on a final classification scheme.
For example, one insight was that a distinction between no artifact, preliminary artifact,

Empirical Software Engineering

and consolidated artifact for the property artifact maturity was too vague—mainly due to
researchers’ inconsistent wording even within a single paper. So, we changed the value for
this property to the binary artifact claimed. During the second round, we classified our
entire dataset using the refined scheme, and the ACM Digital Library to retrieve the full-text
papers.

Due to the total number of papers in this study, reading each paper completely would have
been infeasible. Instead, we performed a heuristic search consisting of three steps. When a
definitive answer regarding the properties could be derived from the first and second step,
the third step was not executed. In the first step, the analysts carefully read the abstract.
Second, they skimmed other likely sections, particularly the contributions, the evaluation,
and the conclusion. Third, they performed a targeted search for keywords indicative of the
artifact claimed and link available properties (we list these keywords in the property defi-
nitions at the end of this section). Afterwards, the analysts closely examined the context in
which the keywords appeared to rule out false-positives, for example, when the use of the
keyword “implementation” was not related to a software artifact belonging to the paper.

For validation, we conducted a crosscheck for which each analyst reviewed two addi-
tional, randomly selected papers per other analyst and year. Consequently, we validated a
total of 132 classified papers (44 per analyst; 16.6% of all papers). If the two analysts dis-
agreed, they discussed the issue and corrected the classification if necessary. In Table 2, we
provide an overview of the classification errors we found during this validation step. More-
over, we found one paper to be falsely attributed to the research track, and we thus removed
it from the following evaluation. In summary, the sample of papers that we validated
suggests an error rate of less than 10 % for the classification.

In the following, we elaborate on the four properties derived from the guidelines, as well
as two additional properties that do not originate from the existing guidelines (cf. Section 2).
The first two, paper type and artifact claimed, represent properties of the SAP, rather than
the artifact itself.

Paper Type Besides assessing whether a paper is an SAP (and thus implies an artifact), we
also classified each paper into one of four categories:

– Conceptual / Guideline – Papers that introduce, for example, new concepts, guidelines,
and best-practices, and reason about their effectiveness based on experiences or logic.

– Empirical Study – Papers that use empirical methods to improve the understanding
of the status quo, rather than the effectiveness of some new technique. The latter, we
considered to be technical contributions (for example, if a paper evaluates a new algo-
rithm by applying it to existing benchmarks and comparing it to other state-of-the-art
techniques).

Table 2 Classification errors we
found during the validation

Empirical Software Engineering

– Experience Report – Papers that report on experiences in a subjective, non-empirical
way. For example, these can be reports about the practical application of an existing
method, process, or tool.

– Technical Contribution – Papers that focus on new methods or algorithms. If such
a paper uses an empirical study to evaluate its contribution, we still labeled it as a
technical contribution (cf. Empirical Study).

Artifact Claimed (Keywords for Searching: tool, prototype, implementation) For this cate-
gory, we analyzed whether a paper claimed to have an associated software artifact or not. In
this study, we considered a software artifact to be a runnable software program (at least after
compiling) that researchers developed specifically to obtain or analyze their results. Thus,
we did not consider other research artifacts, such as pure datasets, interviews, or guidelines
as artifacts. As aforementioned, we aimed to further distinguish the implementation matu-
rity, but most papers are vague on this distinction or even contradict either themselves or
previous papers on the same software artifacts. For instance, the same paper may refer to an
artifact as prototype and as industry-ready tool.

Artifact Name If a software artifact was named by the authors of a paper, we extracted
that name as a proxy for the identifier property. Essentially, there are two categories for this
property: We could either identify a name or not.

Artifact Availability (Keywords for Searching: available, download, http, ftp, ://) Within
this category, we were concerned with the accessibility property, analyzing whether an SAP
contains a link that references a web resource in the form of a URI for the software artifact.
Note that this also encompasses DOIs, since they are a specific type of URIs. If present, we
documented the links and categorized each SAP as follows:

– Non-linked artifact: The paper does not contain a link to its artifact.
– Linked, but non-available artifact: The paper contains a link to its artifact, but we could

not download or use it from there.
– Available artifact: The paper contains a link and we could still download or use the

artifact from the referenced archive.

Note that in contrast to artifact evaluation guidelines, such as of ICSE 2020,23 we did not
expect the artifacts to be uploaded to a certain persistent archive, but rather to be accessible
via a web resource as determined in the following.

Type of Website In this category, we analyzed the persistence property. To this end,
we documented the type of website on which a software artifact was available (or not),
evaluating to what extent this had an impact on accessibility. We defined three categories:

– Personal: The website is a personal one (e.g., of an author or exclusively for making
the software artifact available) that was not hosted by an institution or an organization.

Example: https://www.jenn-doe.com/project
– Academic / Institutional: The website is hosted by a company, university, or a project

(e.g., Eclipse Marketplace) and encompasses artifacts developed by this institution or
within this project.

Example: https://www.atlantis-university.edu/˜jenndoe/project

23https://2020.icse-conferences.org/track/icse-2020-Artifact-Evaluation#Call-for-Submissions

https://2020.icse-conferences.org/track/icse-2020-Artifact-Evaluation#Call-for-Submissions

Empirical Software Engineering

– Open-Source Repositories: The website is an open-source repository hosted by an orga-
nization, such as GitHub or BitBucket, which provide a service to make source code
publicly available for developers or organizations.

Example: https://code-repo.com/jenndoe/project

Initially, we planned to have a fourth category identifying persistent archives, such as
Zenodo. Such archives prohibit to change the artifact after publication and link it with a
unique identifier. However, during our analysis, we found only a single artifact linked to
such a persistent archive. Therefore, we integrated this paper into the class of Open-Source
Repositories, since such persistent repositories provide a similar service for hosting artifacts.

Distribution Type Finally, we investigated the distribution property, for which we defined
four ranked categories of how researchers distributed their artifacts (if the artifact was
available):

1. Source code: The artifact was available as source code, allowing others to modify and
build it.

2. Binary: The artifact was available as compiled binaries or as web application, but not
as source code.

3. Container: The artifact was a container, such as a virtual machine or Docker container,
from which the software artifact could be used.

4. On demand: The artifact was not available for download, but it was stated that interested
researchers should contact an author.

If an artifact was provided in multiple distribution types, we classified it as the highest type.
Overall, we defined six properties to classify each paper. In Section 4, we describe the

results of our analysis of the classified dataset, based on which we provide insights into our
research questions.

4 Evaluation

The evaluation took place between May 20th 2019 and August 9th 2019. From the initial
792 papers, we excluded three that were falsely associated with the research track (one
technical briefing, one short paper, and one keynote). So, our final dataset comprised 789
papers.

The following section is structured according to our three research questions. First, we
analyze the proportion of SAPs (Section 4.1). Second, we investigate how authors have
published their software artifacts and how this behavior evolved (Section 4.2). Finally,
we evaluate the impact of publishing software artifacts by utilizing our citation analysis
(Section 4.3).

4.1 Prevalence of Software Artifact Papers (RQ1)

For the 11 years of ICSE we analyzed, 2007 had the lowest number of papers (49), and 2016
had the highest number (101). During the manual assessment of the papers, the analysts
first discriminated the SAPs from the remaining papers (cf. Section 3). In Fig. 1, we show
the proportion of SAPs and non-SAPs per year. Overall, a majority of 604 papers (76.6 %)
are SAPs according to our definition, leaving a remainder of 185 papers without a software
artifact. This also underpins the importance of software artifacts in the research area of

Empirical Software Engineering

Fig. 1 Relative and absolute frequencies of SAPs per year

software engineering. Considering the proportion of SAPs, we can see that it remained
fairly constant over the years, with SAPs always representing the majority—ranging from
69.6 % (in 2008) up to 83.9 % (in 2012). The lowest absolute number of SAPs (35) has
been published in 2007. We conclude that for every year of ICSE we analyzed, the majority
of authors claimed or implied that they created a software artifact for the purpose of their
research.

Furthermore, we considered how SAPs are distributed between different paper types.
In Fig. 2, we can see that technical contributions are the most common paper type in

our dataset (72.4 % of all papers). Also, they have by far the highest proportion of SAPs
(550 / 571, 96.3 %) and the majority of SAPs originate from technical papers (91.1 %).
Papers of the other types are far less commonly SAPs (ranging from 16.7 % for con-
ceptional and guidelines to 25.9 % for empirical studies). We conclude that technical

Fig. 2 Absolute frequency of SAPs per paper type

Empirical Software Engineering

papers are the most frequent paper type for SAPs, with two other types of papers (i.e.,
conceptual/guidelines and experiences) being almost negligible.

Using our authorship-based clustering, we detected research communities within ICSE.
We found that 165 of 209 automatically detected communities (78.9 %) published at least
one SAP. We conclude that the majority of researchers have either actively taken part in
writing SAPs or have likely come in contact with SAPs developed by their peers.

4.2 How Software Artifacts are Published (RQ2)

Since the majority of ICSE papers and communities apparently relies on creating software
artifacts to produce their results, we next analyzed if and how these artifacts have been
published.

First, we analyzed whether the authors of an SAP provide a link to their artifact in their
paper. For each SAP, the analysts searched for the presence of a URI that points to an
online resource for the respective artifact. In total, in 289 of 604 SAPs (47.8 %), the authors
provided such a link. However, only 163 (27 % of all SAPs) of the artifacts were actually
available through these links. We conclude that only slightly more than a quarter of ICSE
SAPs have artifacts that are (still) readily available through their links, facilitating validation
and allowing others to build on their results.

While the overall number of available artifacts is sobering, we determined a positive
trend in recent years. In Table 3 and Fig. 3, we depict the absolute and relative frequen-
cies of linked and available artifacts for SAPs per year. We can see that the proportion of
linked artifacts increased from 8.6 % in 2007 to 71.7 % in 2017. The proportion of avail-
able artifacts increased from 5.7 % to 58.5 % during the same period. We approximated the

Table 3 Frequency of linked and available software artifacts described in SAPs per year

Year #Software Artifact Papers #Linked Artifacts #Available Artifacts

2007 35 3 2

2008 39 13 5

2009 39 19 5

2010 41 15 7

2011 48 25 10

2012 73 33 20

2013 66 29 14

2014 71 38 21

2015 68 37 23

2016 71 39 25

2017 53 38 31

� 604 289 163

Empirical Software Engineering

Fig. 3 Relative frequency of SAPs with linked/available software artifacts and linear regressions of the
proportion of linked (dashed line) and available artifacts (solid line)

trends with the two linear regressions we display in Fig. 3. Both lines are almost parallel
with slopes of approximately −4.02 % for linked artifacts (dashed line) and −4.04 % for
available artifacts (solid line).

In our analysis, we noticed many broken links (i.e., the particular website was offline).
However, the nearly identical slopes in Fig. 3 surprised us. Usually, we would have assumed
some constant rate of link-decay similar to the “comatoseness” term introduced by Koehler
(2002), which should lead to different slopes. We emphasize that we cannot directly map
the results of the link decay study to the percentage of available software artifacts, since
we did not check whether the link was accessible, but rather whether we could download
(or use in case of web-apps) the software artifact from there. Further research is needed
to clarify whether this is an indication of an unknown factor compensating the link decay
or just a coincidence resulting from noisy data. Some linked websites simply described
their research results without actually offering artifacts for download. Curiously, we also
found one website that the authors had prepared for housing their artifacts, but which was
apparently forgotten after the conference—which was more than five years ago. Nonethe-
less, we conclude that the awareness for publishing artifacts is increasing within the ICSE
community.

We also considered the communities that we identified through our clustering (cf.
Section 3.2). 123 of the 165 communities that published at least one SAP (74.5 %), had at
least one SAP with a non-linked artifact and 141 (85.5 %) had at least one SAP with a non-
available artifact. When considering only those communities that had at least two SAPs,
the numbers change to 80 papers out of 91 (87.9 %) for linked artifacts and to 86 out of
91 (94.5 %) for available artifacts. We conclude that the problem of low artifact availability
does unfortunately prevail throughout most research communities.

Note that this community analysis heavily relies on the qualitative insights we obtained
while reviewing the papers, and during which we recognized that the authorship-based com-
munity clustering achieved a reasonable result in terms of identifying communities (i.e.,
collaborating authors). We deliberately do not name clusters, since our intention is not to

Empirical Software Engineering

point at any sub-community or even particular researchers, but rather to show that non-
linked and not-available software artifacts appear in many sub-communities in software
engineering—asking for the whole community to act and improve current practices. More-
over, we emphasize that this analysis should be replicated and extended in future work,
using additional information apart from author names (e.g., session information from con-
ferences) or more specialized techniques, such as topic modeling, to find more fine-grained
communities.

For the 289 artifacts for which we identified a link, we further classified the type of
website on which these artifacts were published. In general, the majority of artifacts are
linked on academic or institutional websites (196), followed by open-source repositories
(75), and personal websites (17). One paper provides its artifact’s source code directly as
an appendix to the paper. However, as we can see in Fig. 4, the proportion of open-source
repositories has increased from 6.7 % in 2010 up to 65.8 % in 2017, while the proportion
of academic and institutional websites has decreased. Note that we found only one artifact
that is linked to a persistent storage archive, Zenodo, which we also classified as an open-
source repository. We conclude that open-source repositories gain more and more attention
towards publishing artifacts.

Regarding the distribution type, we considered those 163 artifacts that were available.
Investigating the distribution type is important, as source code enables other authors to
verify or adapt the implementation, while binary or container distributions may facilitate the
replication of results. In general, the majority of artifacts that are still available have been
published as source code (115), followed by binaries (38). Six artifacts seem to be available
on demand, while only four are provided in a container. Over the years (cf. Fig. 5), the
proportion of artifacts published as source code has always been highest, ranging from 50
to 100 %. So, we conclude that ICSE authors contribute their software artifacts mostly as
source code.

Next, we analyzed to what extent authors named their artifacts, which makes it easier
to refer to others’ contributions and facilitates searching for the software artifacts online.
In our analysis, we found that 413 of 604 (68.3 %) SAPs named their artifact using some
“calling name”. Note that except for 2007 (only 45.7 %), the majority of artifacts published

Fig. 4 Relative frequency of website types linked from SAPs

Empirical Software Engineering

Fig. 5 Relative frequency of distribution types of available software artifacts

each year has a name. We also wanted to provide an upper bound for the state of imple-
mentation concerning the unique identifier property demanded by common guidelines. For
this purpose, we considered “calling names” as well as provided URIs as surrogates for true
unique identifiers. Using this definition, we found that 77.8 % of SAPs have an identifier
that can be used to reference or search for the artifact. We emphasize that our definition of
software artifacts has a significant influence on this statistic and it should be kept in mind
when interpreting these numbers. While it is common to name fully-fledged tools or pro-
totypes for new techniques, researchers rarely name their analysis scripts, which we also
count as artifacts. Consequently, we conclude that most researchers at ICSE seem to intend
to make their software artifacts uniquely identifiable.

4.3 Impact of Publishing Artifacts (RQ3)

We investigated whether different artifact-publishing behaviors could be associated with
higher or lower scientific impact of the respective SAPs in terms of citations. For this pur-
pose, we analyzed the average relative citation scores (arc) we introduced in Section 3.
Using arc as a normalized citation count, we compared between groups of papers including
different publication years. In particular, we were interested in possible differences between
the following groups of papers, for which we depict distributions in the respective figures:

– Those with linked artifacts and those without (Fig. 6)

Empirical Software Engineering

Fig. 6 Distribution of arc for linked artifacts (— → Median, X → Mean)

– Those with available artifacts and those without (Fig. 7)
– Those with named artifacts and those without (Fig. 8)

We considered these groups interesting, since linked and available artifacts facilitate reuse,
which could increase the number of citations of those papers. Furthermore, naming an arti-
fact simplifies finding software artifacts online, or requesting them from a corresponding
author.

Based on the three box plots we depict, we cannot visually determine significant differ-
ences between the groups. However, the mean and median values of the groups (cf. Table 4)
differ. The respective arc values for SAPs with linked, available, and named artifacts are
consistently higher than their counterparts. We conducted a Kruskal-Wallis test (one-way

Fig. 7 Distribution of arc for available artifacts (— → Median, X → Mean)

Empirical Software Engineering

Fig. 8 Distribution of arc for named artifacts (— → Median, X → Mean)

ANOVA on ranks)24 with a significance level of α = 0.05 to check whether these dif-
ferences are significant. The Kruskal-Wallis test is suitable for our analysis, as it does not
require a normal distribution, and because we consider only one factor per test. We did not
find any significant differences between the groups of available/non-available artifacts as
well as for named/non-named artifacts. However, for the differences in the mean arc values
of linked and non-linked artifacts, the test results show a significant difference. To quan-
tify this effect, it is recommended to compute the effect size. Since we are dealing with
potentially non-gaussian data, we used Cliff’s δ and computed its confidence interval for
α = 0.05 (Hogarty and Kromrey 1999; Kitchenham et al. 2017). Cliff’s δ is denoted as

δ = Pr{X > Y } − Pr{X < Y }
where Pr{X > Y } describes the probability of a randomly selected value of group X (e.g.,
arc of a paper with a linked artifact) being greater than a randomly selected value of another
group Y (e.g., arc of a paper with a non-linked artifact)—and vice versa for Pr{X < Y }.
In our case, this value is δ ≈ 0.10 with the 95 % confidence interval of [0.008, 0.192].
With regard to the respective guidelines (Kitchenham et al. 2017), this indicates a small,
but positive effect on the arc, and thus on the scientific impact (with respect to the citation
counts). This is also supported by the respective mean and median values of the arc of linked
artifacts (cf. Table 4). We argue that this outcome is reasonable, considering that the link
may not be working anymore, but most likely has worked when the paper first appeared
and influenced other researchers. So, we conclude that making software artifacts publicly
available, and providing other researchers with a link to guide them to the artifact, positively
affects the impact of research.

24This test usually refers to the comparison of two or more independent groups. We also ran the more specific
Mann-Whitney-U test, achieving the same results.

Empirical Software Engineering

Table 4 Mean and median arc values of SAPs with linked, available, and named artifacts

arc Artifact linked arc Artifact available arc Artifact named

mean median mean median mean median

no 0.915 0.601 0.935 0.667 0.926 0.619

yes 1.028 0.770 1.061 0.735 0.989 0.694

5 Discussion

Our findings show that the vast majority of artifacts from SAPs published at ICSE in the
studied years are not readily available. In the first part of this section, we discuss possible
reasons and hurdles that prevent researchers from publishing artifacts. For reasons explained
in Section 2, we did not gather data on why artifacts were not made available in our empir-
ical study. Nevertheless, this is an important aspect when analyzing artifact publishing
behavior, so we draw on related work as well as on our own experiences as researchers in
the software-engineering domain.

In the second part of the section, we derive lessons learned based on our findings and
impressions from this empirical study. These can serve two main purposes. First, they can
help authors of SAPs by pointing out some pitfalls. Second, they underpin the importance
of the properties demanded by artifact-publishing and open-science guidelines.

5.1 Reasons Not to Publish Artifacts

Open science and especially artifact availability suffer from a variety of similar issues as
open-access publishing (Swan 2006; Haupt et al. 2018; Méndez Fernández et al. 2019).25

– Properly publishing an artifact requires a lot of initial (e.g., documentation, packag-
ing) and maintenance effort (e.g., updating information when an author’s affiliation
changes). This requires much time and is usually not awarded (Méndez Fernández et al.
2019).

– Additional efforts occur when authors submit their software artifacts to venues with a
double-blind review process. While double-blind reviews can reduce reviewing biases
(Le Goues et al. 2018) and are preferred by a majority of authors (Prechelt et al. 2018),

25Carina Haupt also gave a talk (in German) on impediments regarding the publishing of software arti-
facts: https://media.ccc.de/v/gpn18-41-publish-your-research-warum-ffentlich-finanzierte-forschung-nicht-
verffentlicht-wird.

https://media.ccc.de/v/gpn18-41-publish-your-research-warum-ffentlich-finanzierte-forschung-nicht-verffentlicht-wird
https://media.ccc.de/v/gpn18-41-publish-your-research-warum-ffentlich-finanzierte-forschung-nicht-verffentlicht-wird

Empirical Software Engineering

the authors also have to anonymize their artifacts and data (Méndez Fernández et al.
2019).26

– Researchers may be unaware or uninterested in the benefits of publishing arti-
facts (Haupt et al. 2018).

– Selecting a suitable software license is simple when publishing artifacts that have been
developed from scratch. However, this selection can become extremely complicated
when several, potentially contradicting licenses of the artifact’s components must be
considered (Schreiber and Haupt 2017; Almeida et al. 2017; Méndez Fernández et al.
2019).

– Similarly, some authors and research institutions may have copyright concerns, which
prevent them from publishing their artifact as open source.

– Other legal restrictions, such as conflicts with personal-data protection regulations
like the General Data Protection Regulation (GDPR) in Europe, can be an additional
obstacle (Méndez Fernández et al. 2019).27

– Researchers, especially in software engineering, may also be ashamed of their source
code. While we are generally aware of what constitutes “good” software, prototypes
and proofs-of-concept are seldom up to these standards. Researchers may, therefore,
decide to not publish these “prototypical” software artifacts.

– Software artifacts are occasionally published after paper acceptance, for instance,
because they may require additional consolidation and polishing to be understand-
able and useful to others. Due to the pressure of approaching submission deadlines,
researchers may decide to postpone such “cosmetic” tasks until acceptance. While
badges provide an incentive to publish artifacts immediately with the paper, the decision
if and when to publish artifacts remains with the authors.

– Researchers may understandably withhold an artifact for some time if it is part of a
larger project that has not yet been published in its entirety.

Usually, developing high-quality artifacts, providing user manuals, and proper documen-
tation, as well as maintaining an artifact’s availability is paired with a lot of effort. Some
institutions, such as NASA (cf. Section 2), provide different resources to support these pro-
cesses. However, not all universities and research institutions have the means to provide
such support.

5.2 Lessons Learned

An important point we want to stress is that we do not blame any author for not
publishing their artifacts. As we have shown in the previous section, there are several
important and valid reasons for not publishing artifacts. Instead, we want to motivate the
software-engineering community to further support initiatives like the ACM Badges or ESE
OpenScience initiative. To support authors and such initiatives, we now discuss our lessons
learned and their potential implications to improve current practices.

Clearly Communicate Artifacts Some authors did not clearly express whether they imple-
mented an artifact or not. Although from our perspective, it was often very unlikely that

26Daniel Graziotin gave an example of how to disclose data for double-blind reviews at: https://ineed.coffee/
5205/
27https://github.com/emsejournal/openscience/

https://ineed.coffee/5205/
https://ineed.coffee/5205/
https://github.com/emsejournal/openscience/

Empirical Software Engineering

the research was performed in a completely manual way, some papers failed to communi-
cate whether a software artifact was implemented to produce the described results. A good
way to provide this clarity is to name artifacts and to avoid vague terms like “approach”
or “algorithm” when referring to software artifacts. If researchers want to express that an
implementation is still in an early stage, we believe it should be consistently referred to
as a prototype. Our findings show that more than two-thirds of all analyzed papers named
their artifacts. However, software is very mutable, and simple naming does not guarantee
that the correct version of an artifact can be retrieved. For this reason, and as suggested by
several guidelines, we stress the usage of unique identifiers to refer to particular versions of
software artifacts.

Your Weblinks will Break Even though we found a positive trend regarding the avail-
ability of artifacts at ICSE, we have also identified a group of linked artifacts (between
18.4 % in 2017 and 73.7 % in 2009) that were unavailable. Mostly, this was due to links
being orphaned as authors changed their affiliations without properly forwarding to the new
sites. While there is a trend towards publishing in open-source repositories, their long-term
availability is questionable. Prominent examples are Google Code,28 and, most recently,
the discontinuation of BitBucket’s Mercurial support.4 Therefore, the software-engineering
community and research institutions should—as suggested by guidelines, strive for per-
sistent, optimally non-commercial archival repositories. As shown in previous work, such
repositories can be expected to have a significantly longer half-life duration than ordinary
URLs (Koehler 2004). In our study, we found only a single artifact that has been published
in such a persistent archive, namely Zenodo. This, however, may merely be a result of our
investigated time frame. Future studies should look at the adoption of persistent archives in
more recent years.

Source Code, Binaries, or ...? We have seen that the majority of artifacts has been pub-
lished as source code. However, within the guidelines exist varying priorities regarding the
type of distribution. We believe that this should depend on the purpose for which an arti-
fact is published. When aiming to replicate results, it is more important to have a prepared
environment with all necessary dependencies (e.g., in a software container), as well as the
compiled artifact and suitable test data. Having only the source code can impose additional
effort for the compilation and resolution of dependencies. However, if the goal is to build on
an existing artifact, access to the source code is usually the only viable solution. Thus, pro-
viding the artifact as source code, and pre-compiled binaries in a ready-to-use environment
like a virtual machine or container would be the most flexible solution. In our analysis, we
found that only a negligible proportion of software artifacts was made available as contain-
ers. We encourage the software-engineering community to further adopt such practices, as
present in the related work (cf. Section 7).

Embrace Replications Several conferences and journals have introduced the concept of
badges to indicate that authors made their artifacts available for replication, or that others
were already able to replicate the results. A particular problem with such badges is that
they only represent the state of the artifact at the time of publication or review. Therefore,
we denote these badges as static. We have doubts concerning the longevity of such static
badges, for example, because the respective programming languages or frameworks may

28https://opensource.googleblog.com/2015/03/farewell-to-google-code.html

https://opensource.googleblog.com/2015/03/farewell-to-google-code.html

Empirical Software Engineering

become outdated and disappear. Moreover, researchers may find issues in artifacts a long
time after the badges were granted. We argue that the community should further encourage
and recognize papers that replicate research results, not only the paper that contributed the
results in the first place. An alternative concept could be living badges that could become a
valuable feature of persistent storage archives. These badges could be updated over time, for
example, when a certain number of independent research groups could reliably replicate the
results for an artifact or when positive results were achieved by applying the tool to different
data sets. Such badges could also link to new versions of the artifact including new features
or important bug fixes contributed by the original authors or other researchers. For the sake
of replication, we believe that existing guidelines do not sufficiently address some questions
of how the long-term replicability of research can be ensured. As an example, even if an
artifact is available years after the SAP’s publication, it may no longer be executable because
of irretrievable dependencies to outdated compilers, frameworks, or operating systems. To
avoid this, publishing artifacts and dependencies bundled in a container may be the best
option.

6 Threats to Validity

In our analysis, we made assumptions that may threaten the validity of our results. Following
a common guideline (Wohlin et al. 2012), we consider threats to construct, internal, and
external validity.

6.1 Construct Validity

Construct validity regards problems in the methodology (e.g., that our metrics do not prop-
erly represent the properties we wanted to measure). Some potential threats concern the
way we measured the availability of artifacts. Since we considered only ICSE publications,
it may be possible that artifacts that were referenced, but not linked in an ICSE SAP, were
actually introduced and linked to in papers published at other venues. Depending on how
frequently this happens in practice, it may affect the validity of our results. However, in
such cases, we would expect the authors to explicitly cite the relevant papers as well as the
correct version information for the artifacts.

If no link is offered, researchers may still successfully search the web (e.g., on the web-
site of the research group) or contact the corresponding author to ask for the artifact. To
assess the efficiency of web searches, we checked a subset of 107 named artifacts that we
classified as not available, using the complete set of one analyst and the papers from the
years 2007, 2008, 2016, and 2017 of another analyst. By searching on GitHub, personal,
and academic websites, we were able to retrieve 17 artifacts (≈ 16 % of the 107 SAPs).
As the search process was fairly unstructured and yielded few results, we did not include
it in our evaluation. Furthermore, we refrained from contacting the corresponding authors
of the 441 SAPs for which we did not find an artifact for practical reasons. Nevertheless,
our results show that most artifacts cannot be found directly through links in the papers, but
require additional search effort. Also, since there is usually no version information about
the artifact in a paper, researchers cannot be certain whether they retrieved the exact arti-
fact with which the results were obtained. Note that this may also be true for non-persistent
archives, as these may keep several versions of one artifact.

Another threat is that we did not check all properties we found in existing guidelines
(cf. Table 1). In particular, we did not check whether artifacts were runnable and did not

Empirical Software Engineering

replicate the results. Thus, our results only provide an upper bound; the real number of
replicable results may be lower. Moreover, as we discuss in Section 7, there exist additional
impact assessments besides citation counts. For example, we did not measure the industrial
impact or the assessed impact in a qualitative manner. However, citation counts are generally
accepted in research and can be efficiently determined for our dataset of 789 papers. Finally,
our clustering method may not properly capture actual research communities, which would
impact the validity of these analyses.

6.2 Internal Validity

When analyzing papers manually, there definitely is a subjective factor, because when
human analysts interpret text, they may put emphasis on different factors or simply make
mistakes. To mitigate this threat, we validated the classifications of 132 (16.6 %) papers as
explained in Section 3.3. As expected, we made some mistakes during the classification.
However, the error rate of less than 10 % in the validated set of papers indicates that our
results are nevertheless likely to be valid.

Another threat to the internal validity is that we trusted the dblp, Scopus, and CrossRef
databases to be correct as well as complete in their representation of ICSE. In terms of com-
pleteness, we validated the number of 789 ICSE research track publications listed in dblp
by comparing it to the final reports of the program committees, the conference proceedings,
and the conference programs. Combined, these sources indicate that the total number of
relevant publications should have been 795. We cannot be sure whether our way of count-
ing, dblp’s index, or the conference reports are at fault here. However, since this concerns
only six potential papers, we believe that the difference is statistically negligible and did
not necessitate further analyses. Since, for the vast majority of SAPs, we showed that their
artifacts are not available, the relevance of our results is still apparent. Finally, our citation
counts may be inaccurate, due to missing citations in CrossRef. However, this threat would
also remain for any other source for the citation counts. CrossRef has the advantage that it
is not limited, for example, to a single publisher.

6.3 External Validity

Since we analyzed only ICSE papers, we cannot directly adapt our results to other scien-
tific areas outside of computer-science or even outside of software engineering. Considering
software engineering, however, ICSE is arguably the most established conference with a
high quality standard. Thus, our results may not be directly transferable, but—except for
specialized journals—we would assume that ICSE is representative for our community.
Nevertheless, we call for additional research on comparing artifact-publishing behavior
across different software-engineering venues.

7 RelatedWork

Publishing and Using Software in Science Due to increased computation power and more
intuitive user interfaces paired with a vast amount of data for analysis, several scientific dis-
ciplines employ software artifacts to produce their research results. This improves the ability
to replicate results, clarify the solution, and may lead to more citations (Pradal et al. 2013;
Lowndes et al. 2017). However, (Joppa et al. 2013) found that the majority of scientists
select artifacts based on recommendations, well-respected authors, or simplicity of usage.

Empirical Software Engineering

Only 8 % performed a solid validation, even though processes (Liu and Salganik 2019) and
automatic support (Giannoulatou et al. 2014) for artifacts exist. When researchers use arti-
facts, they usually reference them. This is problematic if the original author does not clarify
the exact version. Moreover, researchers are more likely to refer to citable papers than to
the artifact website (Li et al. 2019). Simple availability of code and experimental data is not
always sufficient to replicate results. So, researchers have suggested several technical solu-
tions, such as, software containers like Docker (Boettiger 2015), cloud platforms (Trautsch
et al. 2018), or electronic papers like ActivePapers (Hinsen 2014), which is similar to
Jupyter notebooks.29 In addition to the guideline of (Wilson et al. 2017), several other guide-
lines discuss how software artifacts should be developed and published (Jörg et al. 2016;
Benureau and Rougier 2018; de Souza et al. 2019) or discuss necessary skills for researchers
to publish their artifacts (Hampton et al. 2017; Johanson and Hasselbring 2018). Moreover,
experience reports from other disciplines like geography, ecology, and bioinformatics pro-
vide insights into publishing or replicating results with software artifacts (Lowndes et al.
2017; Kim et al. 2018; Konkol et al. 2019).

Work on Open-Access Papers and Data Publishing software artifacts is closely related to
the topics of open access and open data. Studies show that open-access papers are cited
earlier (Kurtz and Brody 2006) and are correlated with higher citation counts (Antelman
2004; Piwowar et al. 2018; Lewis 2018). Surveys also determined that researchers have a
positive view and are willing to provide their papers and data publicly (Swan 2006; Laakso
and Polonioli 2018). This correlates with our detected trend of more and more artifacts being
linked in the last decade of ICSE. Finally, there exist guidelines for publishing and managing
open data (Kratz and Strasser 2014; Poldrack and Poline 2015), and studies that indicate the
positive effect of badges on publicly accessible data (Kidwell et al. 2016; Rowhani-Farid
et al. 2017). In an experience report on Zenodo, (Sicilia et al. 2017) provide insights on how
communities work with such shared data.

Work on Impact and Transfer Analysis While the citation count is a common metric
for research impact, it is not the only one. (Agarwal et al. 2016) present several metrics
for assessing the impact of researchers, papers, and venues. Other researchers consider
impact more qualitatively, as it cannot always be expressed purely by numbers. For exam-
ple, (Morton 2015) introduced a framework tailored to social sciences. Some researchers
define impact based on adoption in practice. Therefore, related work analyzed how research
should be conducted and presented to be usable in industry (Schröter et al. 2017; von
Nostitz-Wallwitz et al. 2018b).

Analysis of Software-Engineering Research Our work aligns to other studies on software-
engineering research. These studies present critical self-reflections of researchers’ practices
and actions, and aim to rectify them. In the past, studies analyzed realistic empirical
software-engineering studies (Sjøberg et al. 2002), the role of structured abstracts (Bud-
gen et al. 2008), whether students represent a valid surrogate for professionals in empirical
studies (Salman et al. 2015), usage of threats to validity (Siegmund et al. 2015; Schröter
et al. 2017), the correctness of study results (Jørgensen et al. 2016), trending software-
engineering research (Garousi and Mäntylä 2016), the effectiveness of double-blind reviews

29https://jupyter.org/

https://jupyter.org/

Empirical Software Engineering

in software engineering (Le Goues et al. 2018), and negative factors in software-analytics
research (Menzies and Shepperd 2019).

Despite all the aforementioned efforts, we are not aware of any paper that empirically
analyzes to what extent researchers publish their software artifacts. Our impact measure
(citation analysis) is similar to other works, but the scope and purpose of our study are
unique. Consequently, our work is orthogonal to existing studies and provides valuable
insights, especially for researchers.

8 Conclusion

In this article, we presented the results of the first large-scale empirical study on the evolu-
tion, status, and scientific impact of publishing software artifacts at ICSE. To this end, we
classified 789 research-track papers from 2007 to 2017. We analyzed (1) the prevalence of
SAPs, (2) if and how researchers made their artifacts available, and (3) the scientific impact
of artifact publication.

Roughly 76.6 % of the publications we analyzed are SAPs according to our definition,
and a similar ratio applies to each year of ICSE. While we have found that the number
of linked and available artifacts seems to linearly increase, our results still show a large
potential for improvement, as only 58.5 % of the artifacts in the most recent, analyzed year
(2017) are actually available through a link. We found a statistically significant, but small,
positive correlation between linking software artifacts in SAPs and the scientific impact of
these papers in terms of citations. This indicates that making an artifact available, increases
the chance of receiving more scientific attention.

In this study, we only looked at ICSE, as it is arguably the number one software-
engineering conference and has been in this position for many years. However, we are
certain that studying and comparing artifact availability at other venues and in particular
with respect to recent developments could provide further valuable insights. For example,
the adoption of artifact badges and persistent, archival repositories are particularly interest-
ing, since their aim is to change the artifact publishing behavior in the scientific community.
Another related subject for future research is the evolution of open-science guidelines and
how these can be enhanced. Therefore, we plan to investigate the impact of these trends.
Also, we see potential for expanding the community-based analysis with more refined clus-
tering algorithms or with concepts such as LDA topic modeling. These could lead to more
tangible interpretations of communities. Finally, we plan to analyze available repositories
and archives to understand their support for long-term persistence and open science, ideally
leading to a definition of requirements in the form of a checklist.

Acknowledgements We would like to thank the reviewers at ESE for their detailed and invaluable feed-
back, Prof. Daniel Katz for clarifications on the JOSS and JORS journals, as well as Dr. Christian Braune for
his expertise in clustering and intelligent data analysis.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

http://creativecommonshorg/licenses/by/4.0/

Empirical Software Engineering

References

Agarwal A, Durairajanayagam D, Tatagari S, Esteves SC, Harlev A, Henkel R, Roychoudhury S, Homa S,
Puchalt NG, Ramasamy R, Majzoub A, Dao Ly K, Tvrda E, Assidi M, Kesari K, Sharma R, Banihani S,
Ko E, Abu-Elmagd M, Gosalvez J, Bashiri A (2016) Bibliometrics: tracking research impact by selecting
the appropriate metrics. Asian J Androl 18(2):296–309. https://doi.org/10.4103/1008-682X.171582

Almeida DA, Murphy GC, Wilson G, Hoye M (2017) Do software developers understand open source
licenses? In: Proc. 25th Int. Conf. Program Compr. (ICPC). IEEE, pp 1–11. https://doi.org/10.1109/
ICPC.2017.7

Antelman K (2004) Do open-access articles have a greater research impact? Coll Res Libr 65(5):372–382.
https://doi.org/10.5860/crl.65.5.372

Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and evaluation of clone detection
tools. IEEE Trans Softw Eng 33(9):577–591. https://doi.org/10.1109/TSE.2007.70725

Benureau FCY, Rougier NP (2018) Re-run, repeat, reproduce, reuse, replicate: transforming code into
scientific contributions. Front Neuroinform 11:69: 1–8. https://doi.org/10.3389/fninf.2017.00069

Boettiger C (2015) An introduction to docker for reproducible research. SIGOPS Oper Syst Rev 49(1):71–79.
https://doi.org/10.1145/2723872.2723882

Boisvert RF (2016) Incentivizing reproducibility. Commun ACM 59(10):5–5. https://doi.org/10.1145/
2994031

Budgen D, Kitchenham BA, Charters SM, Turner M, Brereton P, Linkman SG (2008) Presenting software
engineering results using structured abstracts: a randomised experiment. Empir Softw Eng 13(4):435–
468. https://doi.org/10.1007/s10664-008-9075-7

de Souza MR, Haines R, Vigo M, Jay C (2019) What makes research software sustainable? An inter-
view study with research software engineers. In: Proc. 12th Int. Work. Coop. Hum. Asp. Softw. Eng.
(CHASE). IEEE, pp 135–138. https://doi.org/10.1109/CHASE.2019.00039

Di Cosmo R (2018) Software heritage: collecting, preserving, and sharing all our source code. In: Proc. 33rd
Int. Conf. Autom. Softw. Eng. (ASE). ACM, pp 1–2. https://doi.org/10.1145/3238147.3241985

Diebold P, Vetrò A (2014) Bridging the gap: SE technology transfer into practice: study design and
preliminary results. In: Proc. 8th Int. Symp. Empir. Softw. Eng. Meas. (ESEM). ACM, pp 1–4.
https://doi.org/10.1145/2652524.2652552

Fernandes E, Oliveira J, Vale G, Paiva T, Figueiredo E (2016) A review-based comparative study of bad
smell detection tools. In: Proc. 20th Int. Conf. Eval. Assess. Softw. Eng. (EASE). ACM, pp 18:1–18:12.
https://doi.org/10.1145/2915970.2915984

Fu W, Menzies T (2017) Revisiting unsupervised learning for defect prediction. In: Proc. 11th Eur.
Softw. Eng. Conf./Found. Softw. Eng. (ESEC/FSE). ACM, pp 72–83. https://doi.org/10.1145/3106237.
3106257

Garousi V, Mäntylä MV (2016) Citations, research topics and active countries in software engineering: a
bibliometrics study. Comput Sci Rev 19:56–77. https://doi.org/10.1016/j.cosrev.2015.12.002

Garousi V, Petersen K, Ozkan B (2016) Challenges and best practices in industry-academia collabo-
rations in software engineering: a systematic literature review. J Inf Softw Technol 79:106–127.
https://doi.org/10.1016/j.infsof.2016.07.006

Giannoulatou E, Park SH, Humphreys DT, Ho JW (2014) Verification and validation of bioinformatics
software without a gold standard: a case study of BWA and Bowtie. BMC Bioinform 15(16):S15.
https://doi.org/10.1186/1471-2105-15-S16-S15

Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci
99(12):7821–7826. https://doi.org/10.1073/pnas.122653799

Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using
NetworkX. In: Proc. 7th Python Science Conf. (SciPy), pp 11–15

Hampton SE, Jones MB, Wasser LA, Schildhauer MP, Supp SR, Brun J, Hernandez RR, Boettiger
C, Collins SL, Gross LJ, Fernández DS, Budden A, White EP, Teal TK, Labou SG, Aukema JE
(2017) Skills and knowledge for data-intensive environmental research. Bioscience 67(6):546–557.
https://doi.org/10.1093/biosci/bix025

Haupt C, Schlauch T, Meinel M (2018) The software engineering initiative of DLR: overcome the obstacles
and develop sustainable software. In: Proc. 13th Int. Work. Softw. Eng. Science (SE4Science). ACM,
pp 16–19. https://doi.org/10.1145/3194747.3194753

Hinsen K (2014) Activepapers: a platform for publishing and archiving computer-aided research. F1000Res
3(289):1–26. https://doi.org/10.12688/f1000research.5773.3

Hogarty KY, Kromrey JD (1999) Using SAS to calculate tests of Cliff’s delta. In: Proc. SAS Users’ Group
Int. (SUGI), pp 1389–1393

https://doi.org/10.4103/1008-682X.171582
https://doi.org/10.1109/ICPC.2017.7
https://doi.org/10.1109/ICPC.2017.7
https://doi.org/10.5860/crl.65.5.372
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2994031
https://doi.org/10.1145/2994031
https://doi.org/10.1007/s10664-008-9075-7
https://doi.org/10.1109/CHASE.2019.00039
https://doi.org/10.1145/3238147.3241985
https://doi.org/10.1145/2652524.2652552
https://doi.org/10.1145/2915970.2915984
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1145/3106237.3106257
https://doi.org/10.1016/j.cosrev.2015.12.002
https://doi.org/10.1016/j.infsof.2016.07.006
https://doi.org/10.1186/1471-2105-15-S16-S15
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1093/biosci/bix025
https://doi.org/10.1145/3194747.3194753
https://doi.org/10.12688/f1000research.5773.3

Empirical Software Engineering

Hutchins BI, Yuan X, Anderson JM, Santangelo GM (2016) Relative citation ratio (RCR): a new
metric that uses citation rates to measure influence at the article level. PLOS Biol 14(9):1–25.
https://doi.org/10.1371/journal.pbio.1002541

Johanson A, Hasselbring W (2018) Software engineering for computational science: past, present, future.
Comput Sci Eng 20(2):90–109. 10.1109/MCSE.2018.108162940

Joppa LN, McInerny G, Harper R, Salido L, Takeda K, O’Hara K, Gavaghan D, Emmott S (2013) Troubling
trends in scientific software use. Science 340(6134):814–815. https://doi.org/10.1126/science.1231535

Jörg F, Heiland J, Himpe C, Saak J (2016) Best practices for replicability, reproducibility and reusability
of computer-based experiments exemplified by model reduction software. AIMS Math 1(3):261–281.
https://doi.org/10.3934/Math.2016.3.261

Jørgensen M, Dybå T, Liestøl K, Sjøberg DI (2016) Incorrect results in software engineering experiments:
How to improve research practices. J Syst Softw 116:133–145. https://doi.org/10.1016/j.jss.2015.03.065

Katz DS, Niemeyer KE, Smith AM (2018) Publish your software: introducing the. Journal of Open Source
Software (JOSS). Comput Sci Eng 20(3):84–88. https://doi.org/10.1109/MCSE.2018.03221930

Kidwell MC, Lazarević LB, Baranski E, Hardwicke TE, Piechowski S, Falkenberg LS, Kennett C, Slowik
A, Sonnleitner C, Hess-Holden C, Errington TM, Fiedler S, Nosek BA (2016) Badges to acknowledge
open practices: a simple, low-cost, effective method for increasing transparency. PLOS Biol 14(5):1–15.
https://doi.org/10.1371/journal.pbio.1002456

Kim YM, Poline JB, Dumas G (2018) Experimenting with reproducibility: a case study of robustness in
bioinformatics. GigaScience 7(7):1–8. https://doi.org/10.1093/gigascience/giy077

Kitchenham BA, Madeyski L, Budgen D, Keung J, Brereton P, Charters SM, Gibbs S, Pohthong A
(2017) Robust statistical methods for empirical software engineering. Empir Softw Eng 22(2):579–630.
https://doi.org/10.1007/s10664-016-9437-5

Koehler W (2002) Web page change and persistence—a four-year longitudinal study. J Am Soc Inf Sci Tec
53(2):162–171. https://doi.org/10.1002/asi.10018

Koehler W (2004) A longitudinal study of web pages continued: a consideration of document persistence.
Inf Res 9(2), http://InformationR.net/ir/9-2/paper174.html

Konkol M, Kray C, Pfeiffer M (2019) Computational reproducibility in geoscientific papers: insights from
a series of studies with geoscientists and a reproduction study. O Int J Geogr Inf Sci 33(2):408–429.
https://doi.org/10.1080/13658816.2018.1508687

Kratz J, Strasser C (2014) Data publication consensus and controversies. F1000Res 3(94):1–21.
https://doi.org/10.12688/f1000research.3979.3

Kurtz M, Brody T (2006) The impact loss to authors and research. In: Jacobs N (ed) Open access: key
strategic, technical and economic aspects, Chandos. https://eprints.soton.ac.uk/40867/

Laakso M, Polonioli A (2018) Open access in ethics research: an analysis of open access availability and
author self-archiving behaviour in light of journal copyright restrictions. Scientometrics 116(1):291–317.
https://doi.org/10.1007/s11192-018-2751-5

Le Goues C, Brun Y, Apel S, Berger E, Khurshid S, Smaragdakis Y (2018) Effectiveness of anonymization
in double-blind review. Commun ACM 61(6):30–33. https://doi.org/10.1145/3208157

Lewis CL (2018) The open access citation advantage: does it exist and what does it mean for libraries? Inform
Technol Libr 37(3):50–65. https://doi.org/10.6017/ital.v37i3.10604

Li K, Chen PY, Yan E (2019) Challenges of measuring the impact of software: an examination of the lme4
R package. J Informetrics 13(1):449–461. https://doi.org/10.1016/j.joi.2019.02.007

Liu D, Salganik M (2019) Successes and struggles with computational reproducibility: lessons from the
fragile families challenge. Socius 5:1–21. https://doi.org/10.1177/2378023119849803

Lo D, Nagappan N, Zimmermann T (2015) How practitioners perceive the relevance of software engineering
research. In: Proc. 10th Eur. Softw. Eng. Conf./Found. Softw. Eng. (ESEC/FSE). ACM, pp 415–425.
https://doi.org/10.1145/2786805.2786809

Lowndes JSS, Best BD, Scarborough C, Afflerbach JC, Frazier MR, O’Hara CC, Jiang N, Halpern BS (2017)
Our path to better science in less time using open data science tools. Nat Ecol Evol 1(6):0160: 1–7.
https://doi.org/10.1038/s41559-017-0160

Méndez Fernández D, Graziotin D, Wagner S, Seibold H (2019) Open science in software engineering.
arXiv:1904.06499

Méndez Fernández D, Monperrus M, Feldt R, Zimmermann T (2019) The open science initiative of the
empirical software engineering journal. Empir Softw Eng 24(3):1057–1060. https://doi.org/10.1007/
s10664-019-09712-x

Menzies T, Shepperd M (2019) Bad smells in software analytics papers. J Inf Softw Technol 112:35–47.
https://doi.org/10.1016/j.infsof.2019.04.005

Monperrus M (2014) A critical review of automatic patch generation learned from human-written patches:
essay on the problem statement and the evaluation of automatic software repair. In: Proc. 36th Int. Conf.
Softw. Eng. (ICSE). ACM, pp 234–242. https://doi.org/10.1145/2568225.2568324

https://doi.org/10.1371/journal.pbio.1002541
https://doi.org/10.1126/science.1231535
https://doi.org/10.3934/Math.2016.3.261
https://doi.org/10.1016/j.jss.2015.03.065
https://doi.org/10.1109/MCSE.2018.03221930
https://doi.org/10.1371/journal.pbio.1002456
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1002/asi.10018
http://InformationR.net/ir/9-2/paper174.html
https://doi.org/10.1080/13658816.2018.1508687
https://doi.org/10.12688/f1000research.3979.3
https://eprints.soton.ac.uk/40867/
https://doi.org/10.1007/s11192-018-2751-5
https://doi.org/10.1145/3208157
https://doi.org/10.6017/ital.v37i3.10604
https://doi.org/10.1016/j.joi.2019.02.007
https://doi.org/10.1177/2378023119849803
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1038/s41559-017-0160
http://arxiv.org/abs/1904.06499
https://doi.org/10.1007/s10664-019-09712-x
https://doi.org/10.1007/s10664-019-09712-x
https://doi.org/10.1016/j.infsof.2019.04.005
https://doi.org/10.1145/2568225.2568324

Empirical Software Engineering

Morton S (2015) Progressing research impact assessment: a contributions approach. Res Eval 24(4):405–419.
https://doi.org/10.1093/reseval/rvv016

Ossher H, Harrison W, Tarr P (2000). In: Proc. 22nd Int. Conf. Softw. Eng. (ICSE). ACM, pp 261–277.
https://doi.org/10.1145/336512.336569

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Piwowar H, Priem J, Larivière V, Alperin JP, Matthias L, Norlander B, Farley A, West J, Haustein S (2018)
The state of OA: a large-scale analysis of the prevalence and impact of open access articles. PeerJ
6:e4375. https://doi.org/10.7717/peerj.4375

Poldrack RA, Poline JB (2015) The publication and reproducibility challenges of shared data. Trends Cogn
Sci 19(2):59–61. https://doi.org/10.1016/j.tics.2014.11.008

Pradal C, Varoquaux G, Langtangen HP (2013) Publishing scientific software matters. J Comput Sci
4(5):311–312. https://doi.org/10.1016/j.jocs.2013.08.001

Prechelt L, Graziotin D, Méndez Fernández D (2018) A community’s perspective on the status and future of
peer review in software engineering. J Inf Softw Technol 95:75–85. https://doi.org/10.1016/j.infsof.2017.
10.019

Rowhani-Farid A, Allen M, Barnett AG (2017) What incentives increase data sharing in health and medical
research? a systematic review. Research Integrity and Peer Review 2:4:1–10. https://doi.org/10.1186/
s41073-017-0028-9

Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detection techniques
and tools: a qualitative approach. Sci Comput Program 74(7):470–495. https://doi.org/10.1016/j.scico.
2009.02.007

Salman I, Misirli AT, Juristo N (2015) Are students representatives of professionals in software engineer-
ing experiments? In: Proc. 37th Int. Conf. Softw. Eng. (ICSE). IEEE, pp 666–676. https://doi.org/10.
1109/ICSE.2015.82

Schreiber A, Haupt C (2017) Sharing knowledge about open source licenses at DLR. In: Proc. 13th Int.
Symp. Open Collab. (OpenSym). ACM, pp 26:1–26:4. https://doi.org/10.1145/3125433.3125470

Schröter I, Krüger J, Ludwig P, Thiel M, Nürnberger A, Leich T (2017) Identifying Innovative doc-
uments: Quo vadis? In: Proc. 19th Int. Conf. Enterp. Inf. Syst. (ICEIS). ScitePress, pp 653–658.
https://doi.org/10.5220/0006368706530658

Schröter I, Krüger J, Siegmund J, Leich T (2017) Comprehending studies on program comprehension. In:
Proc. 25th Int. Conf. Program Compr. (ICPC). IEEE, pp 308–311. https://doi.org/10.1109/ICPC.2017.9

Sicilia MA, Garcı́a-Barriocanal E, Sánchez-Alonso S (2017) Community curation in open dataset
repositories: insights from Zenodo. Procedia Comput Sci 106:54–60. https://doi.org/10.1016/j.procs.
2017.03.009

Siegmund J, Siegmund N, Apel S (2015) Views on internal and external validity in empirical software engi-
neering. In: Proc. 37th Int. Conf. Softw. Eng. (ICSE). IEEE, pp 9–19. https://doi.org/10.1109/ICSE.
2015.24

Sjøberg DIK, Anda B, Arisholm E, Dybå T, Jørgensen M, Karahasanovic A, Koren EF, Vokác M (2002)
Conducting realistic experiments in software engineering. In: Proc. 1st Int. Symp. Empir. Soft. Eng.
(ISESE). IEEE, pp 17–26. https://doi.org/10.1109/ISESE.2002.1166921

Swan A (2006) The culture of open sccess: researchers’ views and responses. In: Jacobs N (ed) Open access:
key strategic, technical and economic aspects, Chandos. http://eprints.soton.ac.uk/id/eprint/262428

Thomee B, Riegler M, Fd Simone, Simon G (2018) Sharing and reproducibility in ACM SIGMM.
SIGMultimedia Rec 10(2):1:1–1:1. https://doi.org/10.1145/3264706.3264707

Trautsch F, Herbold S, Makedonski P, Grabowski J (2018) Addressing problems with replicability and valid-
ity of repository mining studies through a smart data platform. Empir Softw Eng 23(2):1036–1083.
https://doi.org/10.1007/s10664-017-9537-x

Vinh NX, Epps J, Bailey J (2009) Information theoretic measures for clusterings comparison: is a cor-
rection for chance necessary? In: Proc. 26th Int. Conf. Mach. Learn. (ICML). ACM, pp 1073–1080.
https://doi.org/10.1145/1553374.1553511

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P,
Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Jarrod Millman K, Mayorov N, Nelson ARJ,
Jones E, Kern R, Larson E, Carey C, Polat I, Feng Y, Moore EW, Vand erPlas J, Laxalde D, Perktold
J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van
Mulbregt P, Contributors SciPy (2020) Scipy 1.0: fundamental algorithms for scientific computing in
Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. https://doi.org/10.1007/
s11222-007-9033-z

https://doi.org/10.1093/reseval/rvv016
https://doi.org/10.1145/336512.336569
https://doi.org/10.7717/peerj.4375
https://doi.org/10.1016/j.tics.2014.11.008
https://doi.org/10.1016/j.jocs.2013.08.001
https://doi.org/10.1016/j.infsof.2017.10.019
https://doi.org/10.1016/j.infsof.2017.10.019
https://doi.org/10.1186/s41073-017-0028-9
https://doi.org/10.1186/s41073-017-0028-9
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1109/ICSE.2015.82
https://doi.org/10.1145/3125433.3125470
https://doi.org/10.5220/0006368706530658
https://doi.org/10.1109/ICPC.2017.9
https://doi.org/10.1016/j.procs.2017.03.009
https://doi.org/10.1016/j.procs.2017.03.009
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ISESE.2002.1166921
http://eprints.soton.ac.uk/id/eprint/262428
https://doi.org/10.1145/3264706.3264707
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1145/1553374.1553511
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z

Empirical Software Engineering

von Nostitz-Wallwitz I, Krüger J, Leich T (2018a) Towards improving industrial adoption: the choice of
programming languages and development environments. In: Proc. 5th Int. Work. Softw. Eng. Res. Ind.
Pract. (SER&IP). ACM, pp 10–17. https://doi.org/10.1145/3195546.3195548

von Nostitz-Wallwitz I, Krüger J, Siegmund J, Leich T (2018b) Knowledge transfer from research to industry:
a survey on program comprehension. In: Proc. 40th Int. Conf. Softw. Eng. (ICSE). ACM, pp 300–301.
https://doi.org/10.1145/3183440.3194980

Wicks MN, Dewar RG (2007) Controversy corner: a new research agenda for tool integration. J Syst Softw
80(9):1569–1585. https://doi.org/10.1016/j.jss.2007.03.089

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK (2017) Good enough practices in scientific
computing. PLOS Comput Biol 13(6):1–20. https://doi.org/10.1371/journal.pcbi.1005510

Wohlin C, Runeson P, Höst M, Ohlsson MC (2012) Experimentation in software engineering. Springer,
Berlin. https://doi.org/10.1007/978-3-642-29044-2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Robert Heumüller is a Ph.D. student at Otto-von-Guericke Uni-
versity of Magdeburg, where he also received his B.Sc. and M.Sc.
degrees in Computer Science. In January 2016 he joined the Chair
of Software Engineering, to research on automated software engi-
neering, model-driven software development, and domain-specific
languages.

Sebastian Nielebock is a Ph.D. student at the Otto-von-Guericke
University of Magdeburg. He received his B.Sc. and M.Sc. degrees
in Computer Systems in Engineering from there as well. Since Octo-
ber 2013 he is a member of the Chair of Software Engineering. His
research focuses on empirical and automated software engineering,
i.e., programming language analysis, automated error detection, and
automated program repair.

https://doi.org/10.1145/3195546.3195548
https://doi.org/10.1145/3183440.3194980
https://doi.org/10.1016/j.jss.2007.03.089
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1007/978-3-642-29044-2

Empirical Software Engineering

Jacob Krüger is a PhD student and associated researcher at the
Databases and Software Engineering work group of the Otto-von-
Guericke University Magdeburg, currently visiting the University
of Toronto in Canada. He received his M.Sc. degree in Business
Informatics at the Otto-von-Guericke University in 2016, has been
working as research associate at the Harz University of Applied Sci-
ences Wernigerode, and visited Chalmers University of Technology
— University of Gothenburg in Sweden. His research focuses on
feature-oriented software development, with particular interests on
software evolution, program comprehension, and human factors.

FrankOrtmeier is a full professor and head of the “Chair of Software
Engineering (CSE)” at the Otto-von-Guericke University of Magde-
burg, Germany. He received his Ph.D. degree from the University
of Augsburg in 2005. After three years employed as a Post-Doc in
Augsburg, he became an associate professor for “Computer Systems
in Engineering” in Magdeburg in 2008. Since 2013 he is holding
the Chair fo Software Engineering at OvGU. Currently, he is leading
several research projects, coordinating the Bachelor’ degree program
“Computer Systems in Engineering” as well as the Master’s degree
program “Digital Engineering”. He is a founding member of the uni-
versity’s Center for Digital Engineering, Management and Operations
(CeDEMO). His research is driven by the idea of improving engi-
neering tasks with methods from computer science – with a special
focus on methods from Software Engineering, formal specification
techniques, mobile assistance, and robotics.

Affiliations

Robert Heumüller1 · Sebastian Nielebock1 · Jacob Krüger1,2 ·
Frank Ortmeier1

Sebastian Nielebock
sebastian.nielebock@ovgu.de

Jacob Krüger
jacob.krueger@ovgu.de

Frank Ortmeier
frank.ortmeier@ovgu.de

1 Otto-von-Guericke University Magdeburg, Magdeburg, Germany
2 University of Toronto, Toronto, ON, Canada

http://orcid.org/0000-0002-9906-0323
http://orcid.org/0000-0002-0147-3526
http://orcid.org/0000-0002-0283-248X
http://orcid.org/0000-0001-6186-4142
mailto: sebastian.nielebock@ovgu.de
mailto: jacob.krueger@ovgu.de
mailto: frank.ortmeier@ovgu.de

	Publish or perish, but do not forget your software artifacts
	Abstract
	Introduction
	Artifact Publishing Guidelines
	ACM Badges
	ESE OpenScience Initiative
	JOSS/JORS
	Guideline by Wilson et al.
	NASA Open Source Software Projects
	TACAS/CAV
	Summary of Guideline Properties
	Selection of Analyzed Properties

	Methodology
	Data Acquisition
	Authorship-Based Community Clustering
	Classification
	Paper Type
	Artifact Claimed
	Artifact Name
	Artifact Availability
	Type of Website
	Distribution Type

	Evaluation
	Prevalence of Software Artifact Papers (RQ1)
	How Software Artifacts are Published (RQ2)
	Impact of Publishing Artifacts (RQ3)

	Discussion
	Reasons Not to Publish Artifacts
	Lessons Learned
	Clearly Communicate Artifacts
	Your Weblinks will Break
	Source Code, Binaries, or ...?
	Embrace Replications

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Publishing and Using Software in Science
	Work on Open-Access Papers and Data
	Work on Impact and Transfer Analysis
	Analysis of Software-Engineering Research

	Conclusion
	References
	Affiliations

