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Abstract

A simple but important task during the analysis of a textual requirements specification
is to determine which statements in the specification represent requirements. In principle,
by following suitable writing and markup conventions, one can provide an immediate and
unequivocal demarcation of requirements at the time a specification is being developed.
However, neither the presence nor a fully accurate enforcement of such conventions is
guaranteed. The result is that, in many practical situations, analysts end up resorting to after-
the-fact reviews for sifting requirements from other material in a requirements specification.
This is both tedious and time-consuming. We propose an automated approach for demar-
cating requirements in free-form requirements specifications. The approach, which is based
on machine learning, can be applied to a wide variety of specifications in different domains
and with different writing styles. We train and evaluate our approach over an independently
labeled dataset comprised of 33 industrial requirements specifications. Over this dataset, our
approach yields an average precision of 8§1.2% and an average recall of 95.7%. Compared
to simple baselines that demarcate requirements based on the presence of modal verbs and
identifiers, our approach leads to an average gain of 16.4% in precision and 25.5% in recall.
We collect and analyze expert feedback on the demarcations produced by our approach for
industrial requirements specifications. The results indicate that experts find our approach
useful and efficient in practice. We developed a prototype tool, named DemaRQ, in support
of our approach. To facilitate replication, we make available to the research community this
prototype tool alongside the non-proprietary portion of our training data.
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1 Introduction

Requirements specifications (RSs) are arguably the most central artifacts to the require-
ments engineering process. An RS lays out the necessary characteristics, capabilities, and
qualities of a system-to-be (van Lamsweerde 2009). RSs are typically intended for a diverse
audience, e.g., users, analysts and developers. To facilitate comprehension and commu-
nication between stakeholders who have different backgrounds and expertise, RSs are
predominantly written in natural language (Berry et al. 2003; Mich et al. 2004; Pohl 2010;
Zhao et al. 2020).

The structure and content of a (textual) RS vary, depending on the requirements elab-
oration and documentation methods used. In general, an RS is expected to provide, in
addition to the requirements, a variety of other information such as the system scope and
environment, domain properties, concept definitions, rationale information, comments, and
examples (van Lamsweerde 2009; Pohl 2010). A common problem during the analysis of
an RS is telling apart the requirements from the other information.

Being able to distinguish requirements from the rest of an RS — that is, from non-
requirements (Winkler and Vogelsang 2018) — is important for multiple reasons: First,
requirements are typically the basis for development contracts (Arora et al. 2016). Making
the requirements explicit helps avoid later disputes about contractual obligations. Second
and from a quality standpoint, it is common to hold requirements to higher standards than
non-requirements, considering the potentially serious implications of vagueness and ambi-
guity in the requirements (Berry et al. 2003; Pohl and Rupp 2011). Naturally, to be able
to give extra scrutiny to the requirements, the analysts need to know where the require-
ments are located within a given RS. Finally, having the requirements explicated is essential
for better supporting requirements verification and validation tasks, e.g., the specifica-
tion of acceptance criteria and test cases, which are directly linked to the requirements
(Pohl 2010).

The most immediate solution that comes to mind for distinguishing requirements from
non-requirements in an RS is through leveraging the writing and markup conventions that
may have been applied while writing the RS. Examples of these conventions include using
modal verbs (e.g., “shall” and “will”) in requirements sentences and prefixing requirements
with identifiers. Despite being simple and common in practice, such conventions do not
lead to a reliable solution for recognizing between requirements and non-requirements. For
instance, for an arbitrary given RS, one may neither know which conventions, if any, have
been applied, nor be able to conclusively ascertain whether the conventions of choice have
been applied consistently and unambiguously. Further, conventions per se do not protect
against some important errors that may occur during requirements writing, e.g., the inadver-
tent introduction of new requirements while providing clarification or justification for other
requirements.

Running Example. To illustrate, consider the example in Fig. 1. This example shows a
small excerpt of a customer RS concerned with a space rover navigation system. To
facilitate illustration, we have slightly altered the excerpt from its original form. The
requirements in this excerpt, as identified by a domain expert, are the segments marked
R1-R7 and shaded green. The non-requirements are marked N1-N5. As we argue next,
one cannot accurately recognize the requirements in this excerpt through applying simple
heuristics.
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The intuition of selecting as requirements only sentences with modal verbs is not
good enough, because some requirements, e.g., R4, R6, and R7, have none. Further,
non-requirements too may contain modal verbs, e.g., “will” in N5. Similarly, selecting
as requirements only sentences prefixed with alphanumeric patterns can be inaccurate,
since these patterns may not have been used consistently or may be overlapping with
other structural elements, e.g., section headings. In our example, R1, R4, R6, and R7
have unique alphanumeric identifiers, but the numbering scheme is the same as that used
for sectioning the text. At the same time, R2 and R3 are items in a simple enumerated
list; and, RS has no numbering at all. Another simple heuristic, namely filtering out seg-
ments marked as supplementary material via such cue phrases as “Note:”, can lead to
both missed requirements — in our example, R5 — as well as numerous false positives —
in our example, N1-N4.

As the example of Fig. 1 highlights, the seemingly simple task of separating require-
ments from non-requirements in an RS cannot be addressed accurately through easy-to-
automate heuristics. Doing the task entirely manually is not an attractive alternative due
to being very tedious and time-consuming.

% (®1)3.1.1 Controller Requirements

[
]
E 3.1.1.1 The rover navigation controller shall provide interfaces for on-
' board control, and remote control by the operations team.

i Ease of use and control for all functions.

]

]

]

1. When in remotely controlled mode, the speed must be limited by
Hij the rover navigation controller to 3 km/h with a target speed of 5 km/h.
This is because in the remote controlled mode, there is a likely delay
= 20ms in information transfer from the controller to the operations
centre.

2. For the on-board control, the rover navigation controller should
limit the speed to 5 km/h with a target speed of 10 km/h.
Observe that the speed is higher in on-board control as the navigation

@ is based on real front views, side-camera views, and the sensory

' information.
3.1.1.2 When receiving commands from multiple sources, the rover

—— navigation controller prioritizes and arbitrates the commands received

P —

:' from all sources to ensure that the most appropriate source is used.
S s Note: This is intended to avoid situations where rover controller will
' receive contradictory commands from multiple sources. The
[ . M . . . .
— navigation controller shall maintain a copy on-board of all the priority

constraints of all sources.

3.1.1.3 A safe mode switch is available to turn the remote control off @
when the latency or jitter is too high.

3.1.1.4 An emergency stop switch is provided on-board to interrupt all
functions and movements immediately, even if the rover is in the
-p remotely controlled mode. ;==z----=---==-=-=-------2_c------------- v
! Non-requirement @ RequirementE

- o e e e

rmmmccccccccca—-

Fig. 1 Excerpt from a Textual Requirements Specification
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Usage Scenarios. In this article, we develop a practical, accurate, and fully automated
approach for requirements demarcation in textual RSs. By requirements demarcation,
we mean recognizing and precisely delimiting the text segments that represent require-
ments and non-requirements. Our approach is in direct response to an industrial need
presented to us by a leading requirements tool vendor and our collaborating partner,
QRA Corp (https://qracorp.com). An internal market study by QRA suggests that prac-
titioners frequently have to review large RSs, particularly customer-provided ones, in
search of requirements. Some common situations necessitating such reviews are as fol-
lows: (1) A company wishing to respond to a complex call for tender has to draw up an
informed estimate about development costs, usually under tight time constraints. Doing
so usually entails going through various unstructured or loosely structured tender docu-
ments containing both user requirements and supplementary information (Falkner et al.
2019). The ability to quickly and accurately spot the requirements in tender documents
is key to arriving at competitive and yet profitable bids; (2) In many contexts, require-
ments are contractually binding. The stakeholders thus need to systematically negotiate
the requirements and define the obligations for each party; this naturally leads to the
need for making the requirements statements in RSs explicit; and (3) One may want to
import an unstructured or loosely structured RS into a requirements management (RM)
tool such as IBM DOORS (2020). In such a case, knowing where are the requirements
statements is a direct prerequisite for document segmentation and transitioning to a struc-
tured format. In light of the above usage scenarios, our collaborating partner has shown
interest in a technology that would help requirements engineers more efficiently identify
the requirements in complex textual specifications.

Much work has been done in the RE community on automating the identification
and classification of requirements-related information in textual documents (Winkler
and Vogelsang 2018; Falkner et al. 2019). However, and as we argue more precisely
in Section 6, none of the existing strands of work lead to a general-purpose require-
ments demarcation solution. The novelty of our approach is in simultaneously (1) being
domain- and terminology-independent, (2) requiring no user input about the structure or
content of the RS needing to be processed, and (3) placing no restrictions on the types of
requirements that can be identified. Achieving these characteristics is paramount in our
context, noting that the ultimate goal of our partner is to offer a push-button requirements
demarcation technology that can be used by a diverse set of clients and over RSs written
in a variety of styles.

Contributions. We employ machine learning (ML) to devise an automated approach for
requirements demarcation. Our ML classification model is based on generic features that
can be applied to a wide range of RSs irrespective of the specific template, terminology
and style used. Our ML features take into consideration some common conventions that
may have been applied during RS writing (illustrated in Fig. 1). However, the features do
not take the presence or consistent application of these conventions for granted. Instead,
the features introduce several more advanced criteria based on the syntactic and semantic
properties of textual statements. These additional criteria lead to a more accurate clas-
sification of requirements and non-requirements than when conventions are considered
alone. To account for these criteria, our approach relies on information extraction via
natural language processing (NLP).
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Our approach focuses exclusively on free-form (unrestricted) RSs; we do not address
structured RS types such as use-case descriptions and user stories. This decision was
motivated by the prevalence of free-form RSs in practice (Mich et al. 2004). While our
approach is not limited to free-form RSs, it is not necessarily optimized for structured
RSs, since it does not envisage ML features for picking up on any specific structural
restrictions. This said, we believe requirements demarcation is less likely to need an ML-
based solution when RSs are sufficiently structured; for such RSs, the structure in itself
is often sufficient for a rule-based identification of requirements and non-requirements.

We empirically evaluate our approach using a dataset of 33 industrial RSs from 14 dif-
ferent application domains and originating from 20 different organizations. These RSs,
which were labeled either directly by industry experts or by an independent, trained anno-
tator (non-author), collectively contain 8046 requirements and 12673 non-requirements.
We exploit this dataset following standard procedures for ML algorithm selection and
tuning, training, and testing. When applied to an RS, no portion of which has been
exposed during training, our approach yields an average precision of 81.2% and average
recall of 95.7%. In comparison, our approach leads to an average improvement of 16.4%
in precision and 25.5% in recall vis-a-vis simple baselines that recognize requirements
based on the presence of modal verbs and requirements identifiers. Our evaluation fur-
ther examines the execution time of our approach, showing that the approach is practical
for both batch analysis and interactive demarcation. To study the practical usefulness of
our approach, we elicit expert feedback from four practitioners on RSs demarcated by the
approach. The results indicate that the experts in our study have a positive opinion about
the efficacy of our requirements demarcation approach. The experts further recognize
that our approach brings to their attention important information that they may otherwise
overlook. While promising, the results of our expert interview surveys are only indica-
tive. More studies are required in the future to more definitively assess the usefulness of
our approach in practice.

We developed a tool, named DemaRQ, which implements our requirements demarca-
tion approach. DemaRQ enables users to directly identify the requirements in an input
RS using the best ML classification model emerging from our empirical evaluation. This
tool, alongside the non-proprietary RSs we use for training, are publicly available at
https://sites.google.com/view/demarq.

This article is an extension of a previous conference paper (Abualhaija et al. 2019)
published at the 27th IEEE International Requirements Engineering conference (RE’19).
The current article enhances both the technical aspects and the empirical evaluation of
our approach, compared to the conference version. Specifically, we introduce a post-
processing step aimed at improving the accuracy of requirements demarcation; this is
discussed in Section 3. We complement our evaluation dataset with three additional RSs,
and perform surveys with industry experts on these RSs; this is discussed in Section 5.2.2.
The surveys provide insights about how practicing engineers perceive of the usefulness of
our approach for requirements demarcation. Finally, we provide, in Section 4, an in-depth
technical description of our prototype tool.

Structure. Section 2 provides background. Section 3 presents our approach. Section 4
discusses tool support. Section 5 describes our empirical evaluation. Section 6
compares with related work. Section 7 discusses threats to validity. Section 8 concludes
the article.
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2 Background

In this section, we review the machine learning and natural language processing background
for our approach.

2.1 Machine Learning

Our approach is based on supervised ML, meaning that it requires labeled data for train-
ing. Our labeled data is made up of RSs whose different segments have been marked by
human experts as being requirements or non-requirements. Supervised techniques are cate-
gorized into classification and regression (Goodfellow et al. 2016); the former is aimed at
predicting categorical outputs, and the latter — at predicting real-valued outputs. What we
are concerned with, namely distinguishing between requirements and non-requirements, is
a binary classification problem. In our evaluation (Section 5), we empirically examine sev-
eral alternative ML classification algorithms in order to determine which one is the most
accurate for our purpose.

ML classification algorithms typically attempt to minimize misclassification, giving
equal treatment to different types of misclassification. That is, in a binary classification
problem with classes A and B, misclassification of an element of class A as B or the mis-
classification of an element of class B as A are treated equally. However, in many problems,
like ours, the costs associated with the two misclassification types are not symmetric. For
instance, in medical diagnosis, the cost of falsely misdiagnosing a healthy person (false
positive) could be an unnecessary escalation, whereas the cost of falsely misdiagnosing as
healthy an actual patient (false negative) is postponed or failed treatment. Clearly, the cost
of two misclassifications is not symmetrical. Similarly, the cost of misclassifying a non-
requirement as a requirement (false positive) is considerably less than that of misclassifying
a requirement as a non-requirement (false negative). The rationale here is that, as long as
false positives are not too many, the effort of manually discarding them is a compelling
trade-off for better recall, i.e., the ability to identify all the requirements (Berry 2017).

ML can be tuned to take account of misclassification costs either (1) during training or
(2) after training. The former strategy is known as cost-sensitive learning and the latter —
as cost-sensitive classification (Goodfellow et al. 2016). In our approach, we employ cost-
sensitive learning, which is generally considered to be the more effective of the two (Witten
et al. 2016). We note that cost-sensitive learning may also be used for addressing class
imbalance: the situation where data instances for certain classes are much more prevalent
than for others. Neither of our classes — requirement and non-requirement — are under-
represented in our dataset (see Section 5). We use cost-sensitive learning exclusively for
mitigating, as much as possible, false negatives.

In Section 5, we experiment with several ML classification algorithms to determine the
most accurate alternative for our problem. We further discuss the effectiveness of using
cost-sensitive learning, when we consider the costs associated with false positives (FPs) and
false negatives (FNs) to be different.

The process of designing features based on the characteristics that distinguish differ-
ent classes in a classification problem is called feature engineering (Manning et al. 2008).
For text classification, this process involves human craft and of course requires knowledge
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about the problem at hand. There are also automated feature generation methods reported
in the state of the art for text classification. However, these methods rely heavily on the ter-
minology in the documents, e.g., using the Bag Of Words (BOW) model (Aggarwal 2018),
and are thus domain-dependent. We elaborate more on how we designed our domain- and
terminology-independent features set in Section 3.

2.2 Natural Language Processing

Natural language processing (NLP) is concerned with the computerized understanding,
analysis, and production of human-language content (Jurafsky and Martin 2009; Indurkhya
and Damerau 2010). In this article, we employ three main NLP technologies: (1) con-
stituency parsing for delineating the structural units of sentences, notably Noun Phrases
(NPs) and Verb Phrases (VPs), (2) dependency parsing for inferring grammatical dependen-
cies between the words in sentences, e.g., subject-object relations, and (3) semantic parsing
for building a representation of the meaning of a sentence based on the meaning of the
sentence’s constituents.

Semantic parsing relies on lexical resources such as WordNet (Miller 1995) for infor-
mation about words’ senses (meanings) and the relations between these senses. In this
article, our use of semantic parsing is limited to distinguishing different sentences based
on the semantic category of their verbs. For this purpose, we use WordNet’s categorization
of verbs (Princeton University 2010). We are specifically interested in the following verb
classes:

(1) cognition, referring to verbs that describe reasoning or intention, e.g., “think”, “ana-
lyze” and “believe”; (2) action, referring to verbs that describe a motion or change, e.g.,
“go” and “fall”, and (3) stative, referring to verbs that describe the state of being, e.g., “is”
and “has”. Including cognition verbs is motivated by recent work on argumentation min-
ing (Habernal et al. 2014; Habernal and Gurevych 2017) and the relevant applications on
mining user opinions from products and software reviews (Kurtanovic and Maalej 2017b).
It is common to use cognition verbs in an argumentative context (Fetzer and Johansson
2010). In the RE field, Kurtanovic and Maalej (2017b) mine user reviews for explicit argu-
ments by relying on the syntactic structure of sentences in which there exist purpose or
reason clauses. Following this earlier work, we use cognition verbs to capture the sen-
tences that provide rationale or reasoning around requirements. Including action and
stative verbs is inspired by Rolland and Proix (1992) who used Fillmore’s basic English verb
types (Cook 1989) (in addition to other information) for creating conceptual specifications
from NL statements.

NLP-based analysis is typically performed using a pipeline of NLP modules. Fig. 2
shows the pipeline we use in our work. The first module in the preprocessing group of mod-
ules is the Tokenizer, which breaks the input text — in our case, an RS — into tokens. The
tokens may be words, numbers, punctuation marks, or symbols. The second preprocessing
module, the Sentence Splitter, splits the text into sentences based on conventional delim-
iters, e.g., period. The third preprocessing module, the POS Tagger, assigns part-of-speech
(POS) tags, e.g., noun, verb, and adjective, to each token. The results from the preprocess-
ing steps constitute the input to the three parsing techniques, outlined earlier. The output of
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Fig.2 Our NLP pipeline

the NLP pipeline is a set of annotations (metadata) attached to the elements within the input
RS. These annotations are exploited by our approach as we explain next.

3 Approach

Figure 3 presents an overview of our approach. The input to the approach is a textual RS.
We treat each RS as a collection of sentences. By sentence, we do not necessarily mean a
grammatical sentence, but rather a text segment that has been marked as a “sentence” by
the Sentence Splitter module of the NLP pipeline in Fig. 2. According to this definition,
the excerpt of Fig. 1 has 12 sentences: N1-N5 and R1-R7. Our unit of classification is a
sentence as per the above definition.

As mentioned earlier, the classification is binary with the two classes being requirement
and non-requirement. In the remainder of the article, given the binary nature of classifica-
tion, we refer to each sentence as a requirement candidate. The output of the approach is a
demarcated RS; this is the input RS where each requirement candidate has been marked as
either a requirement or a non-requirement.

The approach works in four phases, labeled 1-4 in Fig. 3. In the first phase, we run the
NLP pipeline of Fig. 2 on the input RS and further derive certain document-level metadata
related to frequencies, e.g., the distribution of different modal verbs in the RS. In the sec-
ond phase, we construct a feature matrix for classification, using the NLP results and the
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frequency information obtained from the first phase. In the third phase, we perform the clas-
sification using ML. In the fourth and final phase, we process and refine the classification
results through post-processing. The rest of this section elaborates the four phases of our
approach.

3.1 Parsing the Requirements Specification

The first phase of our approach is to execute the NLP pipeline of Fig. 2. The Sentence Split-
ter module of the pipeline yields the requirement candidates, with the other modules in the
pipeline providing part-of-speech, syntactic and semantic annotations for the requirement
candidates. Upon the completion of the execution of the NLP pipeline, we compute the
following frequency-related metadata using the NLP-generated annotations: (1) the most
frequent modal verb in the RS, (2) the top 1% most frequent noun phrases, and (3) frequency
levels for the different identifier patterns used within the RS.

To infer the identifier patterns (id patterns, for short), we first extract all the alphanu-
merics in the RS. We then replace in each alphanumeric any sequence of digits with d, any
lower-case character with ¢, and any upper case character with C. The id patterns are the
distinct shapes obtained from this replacement. For instance, in our example of Fig. 1, we
infer three id patterns: “d.d.d” from N1, “d.d.d.d” from R1, R4, R6, and R7 and “d.” from
R2 and R3. We count the occurrences of each pattern within the entire RS. We then ascribe
to each pattern one of the following frequency levels: high, medium, low. A pattern has high
frequency if its number of occurrences divided by the total number of occurrences of all
the patterns falls within [%, 1]. A pattern has medium frequency if the above ratio is within
[%, %), and low frequency if the ratio is within (0, %). We note that the exact shapes of the
id patterns are of no interest to us, considering that these shapes invariably differ across dif-
ferent RSs. We are interested in the id patterns and their frequencies due to the following
general intuition: A requirement candidate containing an occurrence of a frequent id pattern
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is more likely to be a requirement than a non-requirement. A precise realization is presented
later (see idPatternFrequency in Table 1).

The output of the parsing phase is as follows: (1) the requirement candidates represent-
ing the units to classify, (2) NLP annotations for the elements of individual requirement
candidates , and (3) certain RS-wide frequency metadata as discussed above. This output is
used for building a feature matrix (Phase 2 of Fig. 3).

3.2 Building an ML Feature Matrix

Feature Engineering. Our feature design has been driven by the need to keep the features
generic, i.e., the features should not rely on the domain, terminology, content, or format-
ting of any particular RS. To meet this criterion, we orient our features around structural
and semantic properties that are meaningful irrespective of the exact characteristics of
an individual RS. Following the practices of designing linguistic and stylistic features
in NLP applications (Stamatatos 2009), we designed our features in an iterative manner.
The first author, who has a strong background in linguistics, analyzed three RSs from
different domains, and created the first set of features. This set was then refined in an
iterative manner.

Features. Table 1 lists our features followed by an illustrating example based on the
excerpt in Fig. 1. These features are computed for every requirement candidate. The table
is divided into four sub-tables, each of which represents a feature category as we elabo-
rate next. For each feature, the table provides an id, short name, type, description, and an
intuition. We organize the features into four categories:

—  The token-based features (Tok1-Tok6) are based on the token-level information in a
requirement candidate.

— The syntactic features (Syn1-Syn8) are derived from the syntax-related informa-
tion in a requirement candidate, e.g., POS tags, phrasal structure, and grammatical
dependency relations.

—  The semantic features (Sem1-Sem3) are derived from the semantic categories of the
verbs in a requirement candidate. These categories were defined in Section 2.2.

— The frequency-based features (Frq1-Frq3) are derived for each cand based on the
document-wide frequency metadata discussed in Section 3.1 as well as the syntax-
related information within that particular requirement candidate.

The output of this phase is a feature matrix where the rows represent the requirement
candidates within the input RS and where the columns represent the 20 features listed in
Table 1.

Example (Feature Computations) Below, we exemplify our proposed features using the
excerpt shown in Fig. 1. To facilitate explanation, we have selected from Fig. 1 some of the
requirement candidates and repeated them in the same order as they appear in that figure.
For each selected candidate, we explain the relevant features.

N1 3.1.1 Controller Requirements

Tokl: numTokens = 7; because the tokenizer returns 7 tokens: {“3”, “.’, “17, “”,
“1”, “Controller”, “Requirements’}.

Tok2: numAlphabetics = 2; because there are only two alphabetic tokens, namely
“Controller” and “Requirements”.

Tok3: numOneCharTokens = 5; as per the results of the tokenizer above.

Tok4:  startsWithld = TRUE; because N1 starts with the id: “3.1.1”.
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Table 1 Features for learning

ID Feature (Type)

Description (D) & Intuition (I)

(a) Token-based features

Tok1 numTokens (Numeric)

Tok2 numAlphabetics (Numeric)

Tok3 numOneCharTokens (Numeric)
Tok4 startsWithId (Boolean)

Tok5 startsWithTriggerWord (Boolean)
Tok6 hasUnits (Boolean)

(b) Syntactic Features

Synl hasVerb (Boolean)

Syn2 hasModalVerb (Boolean)
Syn3 hasNPModel VP (Boolean)
Syn4 startsWithDetVerb (Boolean)
Syn5 hasConditionals (Boolean)

@ Springer

(D) Number of tokens in a requirement candidate.
(I) A requirement candidate that is too long or too
short could indicate a non-requirement.

(D) Number of alphabetic words in a requirement
candidate. (I) Few alphabetic words in a requirement
candidate could indicate a non-requirement.

(D) Number of one-character tokens in a require-
ment candidate. (I) Too many one-character tokens
in a requirement candidate could indicate a non-
requirement, e.g., section headings.

(D) TRUE if a requirement candidate starts with
an alphanumeric segment containing special charac-
ters such as periods and hyphens, otherwise FALSE.
(I) Alphanumeric segments with special characters
could indicate identifiers for requirements.

(D) TRUE if a requirement candidate begins with a
trigger word (“Note”, “Rationale”, “Comment”), oth-
erwise FALSE. (I) A trigger word at the beginning
of a requirement candidate is a strong indicator for a
non-requirement.

(D) TRUE if a requirement candidate contains some
measurement unit, otherwise FALSE. (I) According
to several domain experts consulted throughout our
work, the presence of measurement units increases
the likelihood of a requirement candidate being a
requirement.

(D) TRUE if a requirement candidate has a verb per
POS tags, otherwise FALSE. (I) A requirement can-
didate without a verb is unlikely to be a requirement.

(D) TRUE if a requirement candidate has a modal
verb, otherwise FALSE. (I) The presence of a modal
verb is a good indicator for a requirement candidate
being a requirement.

(D) TRUE if a requirement candidate contains a
sequence composed of a Noun Phrase (NP) followed
by a Verb Phase (VP) that includes a modal verb, oth-
erwise FALSE. (I) The intuition is the same as that
for Syn2. Syn3 goes beyond Syn2 by capturing the
presence of the NP preceding a modal VP. This NP
typically acts as a subject for the VP.

(D) TRUE if a requirement candidate, excluding head
alphanumeric patterns / trigger words, begins with a
pronoun or determiner followed by a verb, otherwise
FALSE. (I) This is a common natural-language con-
struct for justification and explanation, and thus could
indicate a non-requirement.

(D) TRUE if a requirement candidate has a con-
ditional clause, otherwise FALSE. (I) Conditional
clauses are more likely to appear in requirements than
non-requirements.
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Table1 (continued)

D Feature (Type)

Syn6 hasPassive Voice (Boolean)
Syn7 hasVBToBeAdj (Boolean)
Syn8 isPresentTense (Boolean)

(c) Semantic Features

Seml hasCognitionVerb (Boolean)
Sem2 hasActionVerb (Boolean)
Sem3 hasStative Verb (Boolean)

(d) Frequency-based Features

Frql idPatternFrequency (Enumeration)
Frq2 hasMFModal Verb (Boolean)
Frq3 hasHFNP (Boolean)

(D) TRUE if a requirement candidate has passive
voice through some dependency relation, otherwise
FALSE. (I) Requirements not containing modal verbs
may be specified in passive voice.

(D) TRUE fif, in requirement candidate, there is some
form of the verb “to be” appearing as root verb fol-
lowed by an adjective, otherwise FALSE. (I) The
pattern described is more likely to appear in require-
ments.

(D) TRUE if a requirement candidate has some root
verb which is in present tense, otherwise FALSE.
(I) Sometimes, requirements are written in present
tense rather than with modal verbs.

(D) TRUE if a requirement candidate has some verb
conveying reasoning or intention, otherwise FALSE.
(I) Reasoning and intention are a common character-
istic for non-requirements.

(D) TRUE if a requirement candidate has some verb
conveying motion or change of status, otherwise
FALSE. (I) Action verbs are common in requirements
for describing behaviors and state changes.

(D) TRUE if a requirement candidate has some stative
verb, otherwise FALSE. (I) Stative verbs are common
in requirements for describing system properties.

(D) Maximum frequency level (high, medium, low)
associated with the identifier pattern with which a
given requirement candidate starts. If a requirement
candidate does not start with an alphanumeric pattern,
the returned value is NA (not applicable). (I) A fre-
quent id pattern in a requirement candidate is likely to
signify a requirement. This is because alphanumeric
are prevalently used for marking requirements.

(D) TRUE if a requirement candidate contains the
most frequent modal verb of the RS, otherwise
FALSE. (I) While a consistent application of modal
verbs cannot be guaranteed, the most frequent modal
verb is a strong indicator for requirements.

(D) TRUE if a requirement candidate contains a
highly frequent (top 1%) NP in the RS, otherwise
FALSE. (I) Highly frequent NPs (after stopword
removal) often signify core concepts, e.g., the system
and its main components. These concepts are more
likely to appear in requirements.
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R3

R4

NS

RS

R6

R7

2. For the on-board control, the rover navigation controller should limit the speed to
5 km/h with a target speed of 10 km/h.

Tok6: hasUnits = TRUE; because R3 contains the unit: “km/h”.

Synl: hasVerb = TRUE; because R3 contains a verb.

Syn2: hasModalVerb = TRUE; because of the modal verb: “should”.

Syn3: hasNPModalVP = TRUE; because the NP-modal-VP has a match in
R3: “The rover navigation controller should limit”.

Sem2: hasActionVerb = TRUE; because of the verb: “limit”.

Frq3: hasHFNP = TRUE; because R3 contains the most frequent NP in Fig. 1
which is: “rover navigation controller”.

Frql: idPatternFrequency = low; according to the id frequencies in Fig. 1.

Frq2: hasMFModalVerb = FALSE; because “shall” is the most frequent modal
verb in Fig. 1.

3.1.1.2 When receiving commands from multiple sources, the rover navigation con-
troller prioritizes and arbitrates the commands received from all sources to ensure that
the most appropriate source is used.

Syn5: hasConditionals = TRUE; because R4 has a conditional clause: “When
receiving commands from multiple sources”.

Syn8:  isPresentTense = TRUE; because of the root verb: “prioritizes”.

Frql: idPatternFrequency = medium; according to the id frequencies in Fig. 1.

Note: This is intended to avoid situations where rover coltroller will recieve contra-
dictory commands from multiple sources.

Tok5:  startsWithTriggerWord = TRUE; because N5 starts with: “Note”.

Syn4:  startsWithDetVerb = TRUE; because when the trigger word “Note:” is
excluded from the head of NS5, the remainder begins with a determiner
followed by a verb: “This is”.

Seml: hasCognitionVerb = TRUE; because of the verb: “intended”.

The navigation controller shall maintain a copy on-board of all the priority constraints
of all sources.

Sem3: hasStativeVerb = TRUE; because of the verb: “maintain”.
Frql: idPatternFrequency = NA; because R5 has no id.

3.1.1.3 A safe mode switch is available to turn the remote control off when the latency
or jitter is too high.

Syn7: hasVBToBeAdj = TRUE; because R6 includes: “is available”.

3.1.1.4 An emergency stop switch is provided on-board to interrupt all functions and
movements immediately, even if the rover is in the remotely controlled mode.

Syn6:  hasPassiveVoice = TRUE; because R7 contains: “is provided”.

3.3 Classifying Requirements and Non-requirements

Classification is done by applying a pre-trained classification model to the feature matrix
from the second phase of our approach. The output of classification is a demarcation of the
requirements and non-requirements in the input RS.
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For training, we use a collection of industrial RSs (see Section 5). The training set was
created by (1) individually subjecting each RS in the collection to the first and second
phases of our approach, (2) having independent experts manually label the requirement
candidates in each RS, and (3) merging the (labeled) data from the individual RSs into a
single (training) set.

Selecting the most effective ML classification algorithm and tuning it are addressed by
the first research question (RQ1) in our evaluation, presented in Section 5.

3.4 Post-processing and Refinement of the Results

The classifier in Step 3 predicts for each requirement candidate whether it is likely to be
a requirement or non-requirement. In this post-processing step, we refine the results of the
classifier by performing list detection as described next.

In the list detection refinement, we parse the textual RS and look for any list environment,
which usually contains two components: a header and sub-items. In most cases, the sub-
items are short phrases that do not constitute a grammatical sentence. Nevertheless, both
headers and sub-items are considered as separate sentences in our approach because the unit
of analysis is the sentence given by the NLP Sentence Splitter module.

List detection marks the beginning and the end of a list environment and, with this
information, it is possible to connect the different sub-items to their corresponding header
component. The intuition behind this post-processing step is to reduce the number of missed
(parts of) requirements. Our post-processing step works as follows: if the header of a list
environment has been marked as a requirement by the classifier, then all of the connected
sub-items of that list environment are also marked as requirements.

While this post-processing step can reduce the number of false negatives, the step can
potentially lead to an increase in the number of false positives. For example, when the header
of a list is a false positive, including the list’s sub-items is likely to introduce additional false
positives. Despite this potential trade-off, our experiments, conducted for this article, sug-
gest that list environments are more common within requirements than non-requirements.
This makes the post-processing step worthwhile, especially considering the importance of
high recall in our context.

4 Tool Support

We implemented our approach into a tool named “Demarcator for
ReQuirements” (DemaRQ). Our tool has four main components corresponding to the steps
in our approach (see Fig. 3). The tool architecture is depicted in Fig. 4. Our implementation
builds on the Apache UIMA framework.!

(1) Document parsing. The first component expects an RS as an input, as explained in
Section 3. All the input RSs we used in this article were either PDF or MS-Word
files. We transformed the PDF ones into MS-Word using Adobe Acrobat Export
PDF. The MS-Word reader in this component can be re-implemented for other types
of textual documents. The different components can be easily plugged in or out of
our pipeline as needed thanks to the flexibility of UIMA. In this component, we
have two main methods, namely: extract_sentences and compute_frequency_metadata.

Thttps://uima.apache.org/
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Fig.4 Tool overview

We extract the text from the input MS-Word RS using Aspose API (AsposeWords
2018). In particular, we use Aspose.Words for Java, since our tool is Java-based.
Then, we run the LanguageToolSegmenter provided in the DKPro toolkit (Eckart
de Castilho and Gurevych 2014) for tokenization and sentence splitting to get the
sentences from the text. While parsing the document, we also compute the fre-
quency metadata that will be needed to extract the frequency-based features in the
next component. Two frequency-based features require some syntactic information
as follows. Computing hasMFModalVerb requires the POS-tags of the words, and
hasHFNP requires the phrasal analysis of the sentences produced by a text chun-
ker. For both syntactic analyses, we use OpenNLP (Apache OpenNLP 2017). The
last feature, idPatternFrequency, requires the tokenization results only. This com-
ponent returns a list of sentences representing the input RS and the frequency
metadata.

(2) Feature extraction. The second component is computing the different categories of
our features for each requirement candidate (that corresponds to a sentence) in the
input RS. The token-based features require the results of the tokenizer only. One
token-based feature (hasUnits) uses a predefined list, namely the list of measure-
ment units (Cunningham et al. 2013). We use Dictionary Annotator provided in DKPro
for looking up the measurements list in the sentences. For computing the syntactic
features, in addition to the POS-tagger and text chunker, we need the constituency
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parser for hasConditionals and the dependency parser for hasPassiveVoice, hasVBTo-
BeAdj, and isPresentTense. Our syntactic pipeline employs Berkeley (Petrov et al.
2006) for constituency parsing and Malt (Nivre et al. 2006) for dependency pars-
ing. Semantic features require information about the verb categories. We extract this
information from the lexical file names provided in WordNet using the Java-based
API: extJIWN (Walenz and Didion 2011). The first frequency-based feature (idPat-
ternFrequency) is computed as explained in Section 3 using the frequency metadata
created for all id patterns in the first component (Document Parsing). The two remain-
ing frequency-based features require the same prior operational pipeline as the one
used for computing the frequency metadata in the previous component: tokenizer,
POS-tagger, and chunker. For each requirement candidate, we compare the syntactic
information extracted from this particular requirement candidate with the frequency
metadata from the previous component. Note that the latter two frequency-based
features (hasMFModalVerb, hasHFNP) are Boolean. This component returns a fea-
ture matrix containing the computed feature vectors with unknown predicted classes
(denoted as “?”) for each requirement candidate in the RS. The feature matrix is saved
in an ARFF file (Witten et al. 2016) to be used as input for the classification step,
explained next.

Requirement candidates classification. This component expects a pre-trained model
(Random Forest with cost sensitive learning in our case) and an ARFF file created in
the previous component. We use the Java-based WEKA API (Witten et al. 2016) for
both creating the pre-trained model as well as classifying the requirement candidates
into requirements or non-requirements. The results of this component is then the same
AREFF file where the unknown class values are replaced with the predicted class for
each requirement candidate (“Requirement” or “Non-requirement”).

Post-processing. In this component, we first detect list environments in the original
RS. If the list environment corresponds to an automatically generated list by MS-Word,
then this can be detected using the Aspose API during parsing. Otherwise, we detect
list environments as explained in Section 3. Table 2 provides a summary of the used
APIs. The names of the APIs are text anchors that lead to the relevant websites.

5 Evaluation

In this section, we empirically evaluate our requirements demarcation approach.

Table 2 The APIs and libraries in our tool

Task Library

Document parsing Aspose.Word for Java
Tokenization LanguageToolSegmenter
POS-Tagging Apache OpenNLP

Text chunking Apache OpenNLP
Constituency parsing Berkeley Parser
Dependency parsing Malt Parser

Semantic parsing ext)WNL

ML-based classification WEKA
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5.1 Research Questions (RQs)
Our evaluation aims to answer the following RQs:

RQI1. Which ML classification algorithm yields the most accurate results? Our require-
ments demarcation approach can be implemented using several alternative ML
classification algorithms. RQ1 identifies the most accurate alternative. We use
a z-test (Dietterich 1998) to test differences in proportions and verify which
ML-classification algorithm performs significantly better than the others.

RQ2. What are the most influential ML features for requirements demarcation? Table 1
listed our features for learning. RQ2 examines and provides insights about which of
these features are the most important for requirements demarcation.

RQ3. How effective is our approach for requirements demarcation on previously
unseen RSs? Building on the result of RQI, RQ3 assesses the accuracy of our
approach over previously unseen RSs.

RQ4. Whatis the execution time of our approach? To be applicable, our approach should
run within practical time. RQ4 investigates whether this is the case.

RQ5. Is there any good tradeoff for reducing execution time without a major negative
impact on demarcation quality? In an interactive mode where analysts submit new
RSs or change them and want immediate feedback, response time is a key consid-
eration. In RQS5, we look into the tradeoff between the cost of computing different
features and the benefits gained in return. This enables us to determine whether we
can leave out some expensive-to-compute features without significantly degrading
the quality of demarcation.

RQ6. Do practitioners find our approach useful in practice? For our approach to be
adopted in practice, the practitioners need to find the requirements demarcation
results produced by our approach useful. RQ6 aims to analyze the practitioners’
perspective on expected benefits.

5.2 Data Collection Procedure

Our data collection focused on procuring a representative set of free-form RSs and demar-
cating these RSs. We gathered 33 industrial RSs from 14 application domains, including,
among others, information systems, automotive, healthcare, aviation, aerospace, ship-
ping, telecommunications, and networks. These RSs originate from a total of 20 different
organizations.

Among the 33 RSs, 30 RSs were manually demarcated for training the ML classification
model in our approach (Step 3 of Fig. 3), and for answering RQ1-RQ5. The data collection
procedure details for manual demarcation are presented in Section 5.2.1. The remaining
three RSs were demarcated automatically using our approach in order to address RQ6. A
panel of experts from two different industry partners reviewed these automatically demar-
cated RSs as a part of three interview surveys. The overall survey protocol is covered in
Section 5.2.2.

5.2.1 ML Data Curation and Preparation

Among the 30 manually demarcated RSs, 12 had their requirements already marked by
our industry partner in collaboration with the respective system clients. The requirements
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in the remaining 18 RSs were marked by a paid, professional annotator (non-author).
The annotator’s background is in linguistics with a specialization in English writing
and literature. Before starting her work on these 18 RSs, the annotator received two
half-day courses on requirements specification by one of the researchers (an author).
Anticipating that some statements in the RS would not be conclusively classifiable as
a requirement or non-requirement, the researchers explicitly instructed the annotator to
favor the requirement class whenever she was in doubt as to whether a statement was
a requirement or non-requirement. This decision was motivated by the need to min-
imize missed requirements (false negatives) in our automated solution. In addition to
training, the annotator spent ~40 hours reading the IEEE 29148 standard (International
Organization for Standardization 2011) and the relevant chapters of two requirements
engineering textbooks (van Lamsweerde 2009; Pohl 2010). Our third-party annotator anno-
tated the 18 RSs over the course of a 10-week, full-time internship. She needed six full
working days, as mentioned above, for training and reading the references on require-
ments. The remaining 44 days were spent on the annotation task. The 18 RSs contained
between one and 270 pages (40 pages on average), corresponding to 211000 requirement
candidates in total.

In the next step and using the NLP Sentence Splitter module discussed in Section 2, we
transformed each RS into a set of sentences. We recall from Section 3 that these sentences,
referred to as requirement candidates, are the units for classification. Applying sentence
splitting to the 30 RSs resulted in a total of 18306 requirement candidates. We mapped
these requirement candidates onto the manually identified requirements regions as per the
annotations provided by our industry partner and third-party annotator. Specifically, any
requirement candidate whose span intersected with a (manually specified) requirements
region was deemed as a requirement. All other requirement candidates were deemed as non-
requirements. This process led to 7351 requirement candidates marked as requirements and
10955 requirement candidates marked as non-requirements.

As a quality measure and since our third-party annotator was not a software specialist,
two researchers (authors) independently verified her work. In particular, the two researchers
examined a random subset of the content pages of the 18 RSs processed by the annotator
and marked the requirements in these pages. This subset, which was divided almost equally
between the two researchers, accounted for ~20% of the content of the underlying RSs
and contained ~2200 requirement candidates. The interrater agreement between the anno-
tator and the two researchers was computed using Cohen’s Kappa (x) (Cohen 1960). A
requirement candidate counted as an agreement if it received the same classification by the
annotator and a researcher, and as a disagreement otherwise. The obtained « scores were,
respectively for the two researchers: 0.87 (“strong agreement”) and 0.91 (“almost perfect
agreement”) (McHugh 2012). The disagreements were almost exclusively over requirement
candidates that, due to the annotator’s lack of domain expertise, could not be classified
with adequate confidence. Since no notable anomalies were detected during verification,
the annotator’s results were accepted without modification.

We partition the requirement candidates into a training set, 7, and a validation set, E.
We use T for training a classification model and E for evaluating the trained model. Fol-
lowing standard best practices, we set the split ratio between T and E to 9:1, subject to the
condition that no RS should contribute requirement candidates to both 7 and E. This con-
dition is essential for ensuring the realism of our validation: in practice, our approach will
be applied to RS no parts of which have been exposed to the approach during training. Due
to the above condition, a sharp 9:1 split could not be achieved; our goal was thus getting
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the number of requirement candidates in E to be as close as possible to 10% of the total
number of requirement candidates. To further increase the validity and generalizability of
our results, we enforced the following additional criteria: (1) The RSs in £ must all have
distinct origins (sources) and distinct application domains, (2) The RSs in E must have dif-
ferent origins than those in 7. Our split strategy resulted in an E with four RSs, RS1 to
RS4, as described in Table 3. We refer back to these RSs when answering RQ3. The four
RSs contain 2145 requirement candidates, of which 663 are requirements and 1482 are non-
requirements. These RSs constitute 11.7% of the requirement candidates in our dataset (9%
of all requirements and 13.5% of all non-requirements).

5.2.2 ExpertInterview Survey

We conducted three interview surveys with experts to assess their perception of the use-
fulness of our approach in practice. The survey material consist of three RSs (RS5-RS7),
automatically demarcated by our tool as described in Section 3. Table 4 shows an overview
of RS5-RS7. For each RS, the table reports the total number of pages in the RS, the number
of relevant (demarcated) pages in the RS (explained later), and the number of requirement
candidates in the RS marked as “Requirement” or “Non-requirement” by our approach.

For RS5 and RS6, the interview surveys were conducted with an expert from our indus-
trial partner in the aerospace domain. For RS7, three experts from our collaborating partner,
QRA Corp, participated in the interview survey. The four experts across the three interview
surveys have a collective experience of more than 30 years in requirements engineering and
specification.

Using Likert scales, our survey was designed to elicit information from experts over four
statements (Statement 1-4) and two follow-up statements (Statement 1-F and Statement 2-
F) listed in Fig. 5. The experts were asked to rate the Statements 1-4 on each page in the
RS. The experts’ feedback for these statements was solicited on a per-page basis to have a
consistent unit of analysis, irrespective of the number of candidates demarcated on a given
page. Statement 1-F and 2-F were asked as follow-up to Statements 1 and 2, depending
on the experts’ answers. We note that the phrase “automated support” in the questionnaire
refers to our demarcation approach.

Statement 1 concerns false negatives or missed requirements. For each missed require-
ment, the experts answered a follow-up statement: Statement 1-F. In most requirements
automation tasks, such as requirements demarcation which is the focus of our work, finding
a missed correct answer can be difficult (Berry 2017). Statement 1-F captures the experts’
perception of the ease of identifying missed requirements, given the cues provided by our

Table 3 The RSs in our validation Set (E)

Id Description of the RS Number of requirements Number of non-requirements
RS1 Requirements for a sensor-based 112 250
industrial control system
RS2 Requirements for standardizing the 139 348
structure of defense contracts
RS3 Requirements for an astronomical 173 509
observatory
RS4 Requirements for a space explo- 239 375

ration vehicle (rover)
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Table 4 The RSs evaluated in our expert interview surveys

1d RS5 RS6 RS7

RS Description Requirements for a deep Requirements for an air Requirements for a library
space spacecraft mission traffic management sys- resource management sys-

tem tem

Total pages 45 51 20

Demarcated pages 37 46 13

Candidates marked

by the tool as:

Requirement 281 294 113

Non-requirement 674 818 226

approach. For example, had our approach missed the demarcation of R6 as a requirement
in Fig. 1, it would have been relatively easy for an expert to spot the missing demarcation,
given the cues conveyed by the surrounding demarcations.

Statement 2 concerns false positives, i.e., demarcated non-requirement candidates. For
each such candidate, the experts answered Statement 2-F, which informs us about whether
the false positive provides any useful information about the system under consideration.
For example, in Fig. 1, both N1 and N3 are non-requirements, but N3 certainly provides
more important information about the system than N1, and is likely to trigger discussions
among stakeholders during requirements quality assurance activities, such as reviews and
inspections.

Statement 3 gathers the experts’ perception about the efficiency of requirements demar-
cation when using automated support. Statement 4 addresses the likelihood of experts
missing out on a requirement or important information when working without automated
support. As discussed in Section 1, requirements might be unintentionally defined in parts
of an RS where experts do not expect to find requirements, e.g., R5 in Fig. 1 is defined
within the supplementary information segment of R4. Statement 4 is targeted at exam-
ining such cases, where experts could potentially overlook — when working within their
usual time budget and without automated assistance — requirements or otherwise important
information.

Statement 1. On this page, indicate all requirements which have not been demarcated by the automated support.
Statement 1-F. (Asked for each missed requirement) The cues conveyed by the surrounding demarcations from
the automated support led me to easily spot the missed requirement.

1 Strongly Agree U Agree 4 Neutral U Disagree U Strongly Disagree

Statement 2. On this page, indicate all demarcated candidates which are not requirements.

Statement 2-F. (Asked for each candidate deemed non-requirement) The demarcated candidate is not
a requirement, but provides useful information that would warrant further discussion.

U Strongly Agree U1 Agree U Neutral U Disagree U Strongly Disagree

Statement 3. On this page, | would do the demarcation faster with the cues conveyed by the surrounding
demarcations from the automated support than without the automated support.

1 Strongly Agree U Agree O Neutral U Disagree U Strongly Disagree 1 Not Relevant
Statement 4. On this page, given my time budget in daily practice, it is likely that | would have missed some
important information if | had done the demarcation manually.

O Strongly Agree 1 Agree U Neutral U Disagree U Strongly Disagree 1 Not Relevant

Fig.5 Expert Interview Survey Questionnaire
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Each survey was conducted in a single session. Each session was restricted to a maximum
duration of two hours to avoid interviewee fatigue. Given the limited availability of experts
and time restrictions, all experts were provided with the demarcated RS at least two days in
advance and were asked to familiarize themselves with the demarcated RS content. At the
beginning of each session, we explained all the statements in Fig. 5 to the experts, along with
examples. For Statements 1 and 2, experts answered by identifying false negatives and false
positives, respectively. For Statements 1-F, 2-F, 3 and 4, the experts rated the statements on a
five-point Likert scale (Likert 1932). For those pages of the RS which clearly did not contain
requirements, such as table of contents and glossary pages, the experts were provided with
the additional option of choosing “Not Relevant” for Statements 3 and 4. The results from
these pages have been excluded from our analysis in RQ6 as well as from the second column
of Table 4.

To ensure that experts had a clear understanding of each statement, they were asked
to verbalize their rationale for the first five pages they reviewed. In the interview sur-
vey of RS7, the experts further explained their rationale whenever they disagreed among
themselves. The results of our interview surveys are explained in the discussion of RQ6.

We note that our expert interview surveys are exploratory in nature. Ideally, for the inter-
view surveys to be considered as confirmatory, one would need to interview many experts
from diverse domains. In our research, however, conducting interview surveys at a large
scale was infeasible, noting the need for participants who are experts not only in require-
ments engineering but also in the subject matter of specific RSs. We performed our interview
surveys with experts who individually had at least five years of experience in requirements
engineering and who, in addition, had considerable familiarity with the underlying RSs.
To mitigate risks related to expert errors and to increase confidence in our survey results,
our interview surveys cover RSs that have a reasonably large number of requirement candi-
dates (at least 20 pages and more than 100 requirement candidates, as shown in Table 4). In
other words, each expert reviewed the performance of our approach on a large number of
requirement candidates.

5.3 Characteristics of Collected Data

Training Set. 'We created our training set from 26 RSs varying in size from one page to
270 pages, with a total of 16161 requirement candidates. The domains covered in the
training set are diverse and include information systems, automotive, healthcare, aviation,
aerospace, maritime, telecommunications, control systems, and networks. Eight RSs pro-
vide no ids to distinguish requirements from non-requirements. Since we use proprietary
documents, we provide more details about the distribution of the most influential features
in the following.

—  hasMFModalVerb: 5239 candidates contain the most frequently used modal verb in
the RSs, of which 120 are non-requirements, while 10922 do not contain the most
frequent modal verb, of which 1569 are requirements.

—  hasModalVerb: 6798 candidates contain modal verbs, of which 913 are non-
requirements, while 9363 candidates do not contain modal verbs, of which 803 are
requirements.

—  hasNPModalVP: 6736 candidates contain the sequence “a noun phrase followed
by a modal verb followed by a verb phrase”, of which 900 are non-requirements;
whereas 9425 candidates do not contain the sequence, of which 852 are
requirements.
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—  numAlphabetics: this is a numeric feature, with minimum, maximum, and mean val-
ues of 0, 92, 14, respectively. Note that a part of the table of content or a part of the
RS title might contain no alphabetical words.

—  numTokens: this is another numeric feature with minimum, maximum and mean val-
ues of 0, 163 and 17. Note that a requirement candidate which contains an equation
can easily have > 100 tokens.

Test Set. The four RSs we used for evaluation differ in domain (as shown by Table 3)
and structure as we discuss next. RS1 contains 19 pages in which the requirements are
preceded with id patterns in the form of “Cdd” (see Section 3 for more details about
how we derive alphanumeric patterns). There are a lot of conditional (if-)statements and
no list environments within the requirements or the non-requirements. The percentage
of requirements containing (different) modal verbs is 61%. We note that RS1 is a spe-
cial case where both requirements and non-requirements are well-structured. In RS1,
the non-requirements that are outside the requirements section are not prefixed with
structural elements like IDs, not even for the section headers. Within the requirements
section, all non-requirements are preceded with trigger words (e.g., “Rationale”). These
characteristics have a significant impact on demarcation accuracy for RS1, as shown
in Section 5. RS2 contains 25 pages where requirements (as well as non-requirements)
can be preceded with id patterns in the form of “d.d(.d)” (the third digit for hierarchical
requirements). This id pattern is the same as the one used for section headers and other
structural elements in the RS; in other words, ids can be prefixes for non-requirements
too. There are few list environments starting with (c) ids. The percentage of require-
ments with modal verbs is 60%. RS3 has 39 pages, 12 of which provide supplementary
information. The requirements are structured using ids of the form “CC-CCC-ddd”. The
percentage of requirements that contain modal verbs is 65%. Out of the total number
of requirements, 8% contain list environments. Finally, RS4 contains 26 pages where
the requirements are organized using id patterns of the form “[CC-CCC-CCC-ddd]”.
The percentage of requirements with modal verbs is 62%. The document contains about
10% of its requirements within list environments, some of which are nested lists. List
environments are also used within non-requirements.

Expert Survey Documents. The three RSs used in our expert interview surveys are from
two different domains: RS5 and RS6 are from the aerospace domain and RS7 is from
the information systems domain, as shown in Table 4. We had the following criteria in
mind while selecting these RSs: (i) we wanted to evaluate our approach on RSs for which
we would have direct access to the domain experts for conducting our surveys; (ii) we
were interested in RSs that were reasonably large (> 10 pages), but not too large. Our
approach needs to be executed on reasonably large documents to be deemed beneficial
in practice by experts. However, we also had to take into consideration the time required
by experts to analyze an RS and answer our questionnaire during the survey; and (iii) we
wanted to cover RSs with distinct structures. All three RSs vary significantly in terms of
the use of identifiers in requirements, use of lists, and supplementary information in the
documents, e.g., introduction and project scope information.

5.4 Metrics for the Evaluation of ML Classification Models
We use standard metrics, Accuracy (A), Precision (P) and Recall (R) (Witten et al. 2016),

for evaluating ML classification models. Accuracy is computed as the ratio of requirement
candidates correctly demarcated as requirement and non-requirement to the total number of
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requirement candidates. Precision is the ratio of requirement candidates correctly classified
as requirement to all requirement candidates classified as requirement. Recall is the fraction
of all requirements correctly demarcated. In our context, we seek very high recall to mini-
mize the risk of missed requirements and acceptable precision to ensure that analysts would
not be overwhelmed with false positives.

Formulas used in this evaluation. We define TP and TN are the number of true positives and
true negatives, i.e., correctly classified instances of requirements and non-requirements.
FP is the number of false positives, i.e., non-requirements predicted as requirements, and
FN is the number of false negatives, i.e., the requirements classified as non-requirements.

(TP +TN)

Accuracy = D
(TP +TN + FP + FN)
. TP

Precision = ———— )

(TP + FP)

TP
Recall = ———— 3
(TP + FN)

5.5 Evaluation Procedures

The procedures used for answering the RQs are as follows:

Algorithm Selection. ML classification algorithms can be broadly categorized into mathemat-
ical, hierarchical, and layered algorithms (Suthaharan 2016). In our evaluation, we consid-
ered, from each of these three categories, widely used and recommended algorithms (Louri-
das and Ebert 2016). Specifically, we consider and compare five ML algorithms: Logistic
Regression and Support Vector Machine (mathematical category), Decision Tree and Ran-
dom Forest (hierarchical category), and Feedforward Neural Network (layered category).
All algorithms are tuned with optimal hyperparameters that maximize classification
accuracy over 7. For tuning, we apply multisearch hyperparameter optimization using
random search (Reutemann et al. 2018; Bergstra and Bengio 2012). The basis for tuning
and comparing the algorithms is ten-fold cross validation on 7'. In ten-fold cross valida-
tion, a given dataset is randomly split into ten equal subsets. Nine subsets are used for
training and the last subset for evaluation. The procedure is repeated ten times for pre-
dicting on all subsets. The ML algorithm that yields the best average accuracy across the
ten folds is selected.

We further examine the usefulness of cost-sensitive learning, discussed in Section 2.1.
To do so, we run the ten-fold cross validation procedure above both with and without
cost-sensitive learning. For cost-sensitive learning, we assign false negatives double the
cost (penalty) of false positives. The algorithm selection procedure is used for answering
RQLI.

Feature Importance Analysis. We assess the importance of the features of Table 1 using
information gain (IG) (Witten et al. 2016) computed on 7. Intuitively, IG measures,
in our case, how efficient a given feature is in discriminating requirements from non-
requirements. A higher IG value signifies a higher discriminative power. IG is used for
answering RQ?2.

Model Validation. We evaluate the best-performing ML algorithm by training it on the
RSs in T and applying the resulting classification model for demarcating the RSs in E.
This procedure is used for answering RQ3.

@ Springer



Empirical Software Engineering (2020) 25:5454-5497 5477

Comparison with Baselines. Our approach is useful only if it outperforms simple auto-
mated solutions that are based on writing and markup conventions. To this end, we
compare against five baseline solutions. These are: (B1) marking as requirement any
requirement candidate containing a modal verb; (B2) marking as requirement any
requirement candidate containing the most frequent modal verb of the underlying RS;
(B3) marking as requirement any requirement candidate beginning with an alphanumeric
pattern; (B4) taking the union of the results from B1 and B3; and (B5) taking the union
of the results from B2 and B3. Our comparison with these baselines is performed over E
and discussed as part of RQ3.

Tradeoff Analysis. As stated in Section 5.1 (RQS5), we are interested in assessing the
benefits of our features against the execution time incurred by them. Noting that NLP
dominates the execution time of our approach, we examine alternative ways of simplify-
ing our NLP pipeline. Naturally, the exclusion of any NLP module comes at the expense
of some features no longer being computable. The question is whether the quality degra-
dation that results from not using certain features is acceptable. Since the alternatives to
consider are few, we investigate the tradeoffs through exhaustive analysis. Specifically,
we group our features based on their prerequisite NLP modules and compute the classifi-
cation evaluation metrics for different combinations of feature groups. We then determine
whether any of the combinations leads to tangible reductions in execution time without
compromising classification quality. This tradeoff analysis, which is meant at answering
RQS5, is done via ten-fold cross validation over our entire dataset (7' U E).

5.6 Discussion

Below, we answer the RQs posed in Section 5.1.

RQ1. Table 5 shows the accuracy, precision, and recall results for the five ML classifi-
cation algorithms considered. These results were computed on the training set (7)
through ten-fold cross validation, both with and without cost-sensitive learning,
denoted CSL and —CSL, respectively. All algorithms had tuned hyperparameters.
To improve readability, in this and all the subsequent tables that report on classifi-
cation quality, we highlight in bold the best accuracy, precision, and recall results.
From Table 5, we conclude that Random Forest presents an advantage over the
alternatives across all three metrics. This is further confirmed by the hypothesis
test below. We answer the remaining RQs using Random Forest as our classification
algorithm.

Hypothesis Test. A common statistical test used for checking the difference
between two proportions is the z-test (Dietterich 1998). In our case, we conduct
z-tests to compare the error rates of each pair of algorithms—denoted as X 4 and
X p with error rates p4 and pp below. The error rate is the proportion of require-
ment candidates misclassified by an algorithm. This means that, if algorithm X 4
is applied on a set with n requirement candidates, then p4 is computed as the
number of requirement candidates misclassified by X4 (i.e., requirements that
are wrongly classified by X4 as non-requirements, and vice versa) divided by
n. To conduct the z-tests, we first train the five classifiers on 90% of our train-
ing set; the selection of this 90% from the entire training set is random. We then
apply the resulting classifiers to the remaining 10% of the data (comprised of
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Table 5 ML algorithm selection results (RQ1)

—-CSL CSL

Feedforward Neural Network Accuracy(%) 88.9 85.6

Precision(%) 84.3 76.5

Recall(%) 90.0 94.3

Decision Tree Accuracy(%) 92.9 92.1

Precision(%) 91.1 86.9

Recall(%) 91.7 95.4

Logistic Regression Accuracy(%) 92.8 92.5

Precision(%) 92.1 87.3

Recall(%) 90.4 95.7

Random Forest Accuracy(%) 94.4 93.7

Precision(%) 94.3 88.9

Recall(%) 91.9 96.9

Support Vector Machine Accuracy(%) 92.1 91.4

Precision(%) 90.1 87.5

Recall(%) 91.0 92.4

1616 requirement candidates). The hypotheses that we want to test are:

Hy : ps = pp (null hypothesis)
Hy : pa # pB

For comparisons with Random Forest, the z-scores and p-values resulting from
our tests are summarized in Table 6. The results indicate that, at the 0.05 signif-
icance level, the null hypothesis is rejected in all comparisons. Moreover, we
performed a one-way ANOVA test on the accuracy, precision and recall results
across the ten-folds involved in cross validation and for all classification algo-
rithms. The null hypothesis is that the means of the different algorithms for the
different metrics are equal. This additional test results in a p-value<0.001 for all
considered metrics, and hence supports the rejection of the null hypothesis. We
conclude that, for requirements demarcation, empirical evidence suggests that
the error rate of Random Forest is (statistically) significantly less than that of the
other algorithms considered in our analysis.

Table 6 Z-test results for random forest

Test  pa PB Mis-classified Mis-classified z-score  p-value
by X4 by Xp
1 Random forest ~ Feedforward 87 232 —8551 0
neural network
Random forest ~ Decision tree 87 117 —2.17 0.003
Random forest  Logistic regression 87 114 —1.967  0.0492
Random forest ~ Support vector 87 135 —3.338  0.0008

machine
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RQ2.

Fig. 6 lists the features of Table 1 in descending order of information gain (IG).
Based on the results in this figure, the most influential features are hasMF-
ModalVerb, hasModalVerb, hasNPModal VP, hasVerb, numAlphabetics, and
numTokens. The top-three features — hasMFModalVerb, hasModalVerb, and has-
NPModalVP — all have to do with modal verbs.

The high IG scores of these three features is a clear indication that taking note
of the presence or absence of modal verbs is essential for telling requirements apart
from non-requirements. The next group of important features — hasVerb, numAl-
phabetics, and numTokens — are targeted at excluding non-requirements. With the
exception of startsWithld and startsWithDetVerb, all the remaining features turn out
to be useful, albeit to a lesser extent than the most important features discussed
above. Nevertheless, when considered collectively, these less important features still
have considerable influence on classification.

The IG score of zero obtained for startsWithld indicates that the mere pres-
ence of (alphanumeric) identifiers is not a useful factor for classifying requirements
and non-requirements. This observation can be explained by the fact that many
non-requirements, e.g., section headers, may be numbered too. While identifiers
per se are not useful for requirements demarcation, the aggregation of iden-
tifier information with frequencies turns out to be important, as indicated by
the IG score of idPatternFrequency. The second and last feature with an IG
score of zero is startsWithDetVerb, indicating that the linguistic pattern repre-
sented by this feature does not contribute to distinguishing requirements from
non-requirements.

hasMFModalVerb
hasModalVerb -/
hasNPModalVP
hasVerb
numAlphabetics
numTokens
hasStativeVerb
idPatternFrequency
hasHFNP
numOneCharToken
hasPassiveVoice
hasActionVerb

hasVBToBeAdj
hasCognitionVerb
hasConditionals
startsWithTriggerWord
isPresentTense
hasUnits

startsWithid . .
startsWithDetVerb Information Gain (IG)

0.0 0.1 0.2 03 04 0.5 0.6

Fig.6 Feature Importance (RQ2)
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RQ3.

In summary, the results of Fig. 6 provide evidence that all but two of our
features (startsWithld and startsWithDetVerb) indeed play a role in requirements
demarcation, thus confirming the majority of the intuitions presented in Table 1.
Table 7 shows the accuracy, precision, and recall results obtained by training Ran-
dom Forest (RF) — the best classification algorithm from RQ1 — over the training
set (T'), and then applying the learned classification model to the validation set (E),
i.e., RS1-RS4 in Table 3. Like in RQ1, we trained the model both with and without
cost-sensitive learning (CSL and —CSL). To enable comparison, the table further
shows the results from applying to RS1-RS4 the five baseline solutions discussed
in Section 5.5 (Comparison with Baselines).

We observe from Table 7 that our classification model (1) outperforms all the
baselines in terms of accuracy, irrespective of whether cost-sensitive learning is
used or not, (2) outperforms all the baselines in terms of recall, when trained with
cost-sensitive learning. As for precision, B2 performs better than our classification
model on three of the RSs (RS2, RS3, and RS4). However, B2 has a considerably
lower recall: on average, compared to the classification model with cost-sensitive
learning, B2 has 13.4% better precision but 45.7% worse recall; and compared to
the model without cost-sensitive learning, B2 is better by 6.5% in terms of precision
but worse by 36.1% in terms of recall. Similarly, B1 has better precision on one of
the RSs (RS2) than our classification model with cost-sensitive learning (difference
of 10.1%); nevertheless, B1’s recall is much lower (difference of 32.3%).

Table 7 Model validation results (RQ3)

RS1 RS2 RS3 RS4

RF (—CSL) Accuracy(%) 95.6 92.4 92.1 87.5
Precision(%) 100 85.4 83.5 84.6

Recall(%) 85.7 88.5 87.3 82.2

RF (CSL) Accuracy(%) 99.7 88.1 89.6 88.3
Precision(%) 100 71.2 72.8 80.6

Recall(%) 99.1 97.8 94.2 91.6

Bl Accuracy(%) 63.8 85.8 84.3 67.3
Precision(%) 44.0 81.3 70.6 57.3

Recall(%) 62.5 65.5 65.3 62.3

B2 Accuracy(%) 81.2 84.4 87.1 82.4
Precision(%) 92.3 97.0 91.3 97.8

Recall(%) 429 46.8 54.3 56.0

B3 Accuracy(%) 82.0 52.8 81.8 79.2
Precision(%) 66.9 29.0 62.1 71.8

Recall(%) 83.0 453 72.8 76.6

B4 Accuracy(%) 58.6 61.6 79.8 64.7
Precision(%) 41.8 41.7 56.5 52.9

Recall(%) 86.6 86.3 88.4 84.1

BS5 Accuracy(%) 80.9 61.0 83.9 81.1
Precision(%) 65.0 40.2 63.5 72.9

Recall(%) 83.0 74.8 85.5 82.0
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In light of the above and given that, in our context, recall takes precedence over
precision as argued before, we can conclude the following: None of the base-
line solutions provide a compelling alternative to our ML-based approach. At
the same time, we note that our better results are by no means a refutation of the
common-sense intuition behind the baselines. Indeed, our approach incorporates
the baselines through closely related features. In particular, hasModalVerb and
hasNPModalVP relate to B1, hasMFModalVerb to B2, and startsWithld and idPat-
ternFrequency to B3. As we discussed in RQ2, all our features except startsWithld
and startsWithDetVerb are relevant. The main observation from our analysis is there-
fore that no individual baseline or combination of baselines is adequate without
considering in tandem the more nuanced characteristics of the content in RS.

As noted in Section 5.5, we use cost-sensitive learning for giving more weight
to recall than precision. Qur approach without cost-sensitive learning has an
average precision of 88.1% and average recall of 86.1% over RS1-RS4. Cost-
sensitive learning increases recall to 95.7% (gain of 9.6%) while decreasing
precision to 81.2% (loss of 6.9%). In absolute terms, this amounts to trading 59
fewer missed requirements (false negatives) for 80 non-requirements misclassified
as requirements (false positives). While the impact of cost-sensitive learning on
manual effort is difficult to quantify without a user study and is not addressed in
this article, the engineers at our industry partner favored using cost-sensitive
learning: they perceived the effort of filtering the additional false positives to be a
reasonable price to pay for missing less requirements. In comparison to the five
baseline solutions, our approach with cost-sensitive learning has, on average,
16.4% better precision and 25.5% better recall.

When employed with cost-sensitive learning, step 3 of our approach (Fig. 3)
misclassifies as non-requirement a total of 34 requirements across RS1-RS4. The
post-processing (step 4 in our approach) of the classification results reduces the
number of false negatives to 21. In our experiments, the post-processing step intro-
duced no further false positives. Although there is no guarantee in general that
the number of false positives will not be increased by post-processing, our exper-
iments support the hypothesis that the list environment appears less often within
non-requirements. Table 8 shows the results after performing post-processing on
our test set.

We analyzed all the misclassifications in order to determine their root causes.
We identified three root causes, as shown in Table 9. Each row in the table
explains one of the causes, illustrates it with an example, and reports the number of
misclassifications attributable to that cause.

For the seven cases in row 1, our approach demarcated only one part of the
requirement that spans over multiple sentences. In practice, when an analyst reviews
the automatically generated demarcations, these incomplete cases are relatively easy
to spot and fix, as witnessed in our interview surveys, discussed later in RQ6.

Table 8 Post-processing results (RQ3)

RS1 RS2 RS3 RS4

RF (CSL) Accuracy(%) 99.7 88.3 90.0 89.6
Precision(%) 100 71.2 72.8 80.6

Recall(%) 99.1 98.6 95.9 95.2
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Table 9 Root causes for false negatives

Cause

Explanation

Count

1) Loss of context

2) NLP errors

3) Conservative ground truth

The units of analysis in our approach are sentences. A
requirement that is specified over multiple sentences
would constitute multiple classification units. Some-
times, one unit within such requirements is correctly
classified whereas the remaining unit(s) might not be,
resulting in misclassification.

Example: In the requirement below, we have two
sentences (requirement candidates).

candidate; The control interface shall be tolerant &
function, if the round-trip latency < 250ms. The
interface further needs to be tolerant to the jitter
conditions specified in AD1-OPC11. | candidate,

We correctly demarcate candidate; as requirement,
but miss candidate; (one false negative).

NLP techniques are not fully accurate and make mis-
takes. This is particularly true when these techniques
are confronted with statements that significantly dif-
fer from normal text, e.g., statements with numerous
abbreviations or statements beginning with complex
labels. NLP errors may lead to incorrect feature
extraction and thus classification errors.

Example: we miss the following requirement
because our NLP pipeline does not process it cor-
rectly. “3.2.2.4.1 Default Ramp Angle - The default
ramp andle (REF27 in SD 119) for the controller
should, upon ACK, be set to 34°.”

As noted in Section 5.2.1, our third-party annotator
was instructed to favor the requirement class when
in doubt. In our error analysis, we observed border-
line situations where automated classification could
well be correct, but did not match the deliberately
conservative ground truth.

Example: The following sentence is a requirement in
our ground truth but is classified as non-requirement
by our approach. “The decision to retain any sin-
gle=point failures of any severity level in the design is
subkect to formal approavals on a case-by-case basis,
with a detailed analysis for each failure.”

Nonetheless, we elected to count these cases as false negatives. The eight cases in
row 2 are unavoidable due to NLP seldom being fully accurate. The six cases in
row 3 are marginal situations where we could not decide whether the automated
classification was at fault or the manual annotations (ground truth) were overly
conservative. Again, we found it more sensible to treat these cases as false negatives.
RQ4. We answer RQ4 using a computer with a 3GHz dual-core processor and 16GB
of memory. We consider the execution time of our approach both from a solution
provider’s perspective and from a user’s perspective. Both the provider and the user
need to run the first two phases of our approach, namely, document parsing and
feature matrix construction as explained in Section 3. In the case of the provider,
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these two phases will be executed on a large corpus of already annotated RSs for
the purpose of model training. In the case of the user, the two phases are applied
over an individual RS in preparation for the third phase of the approach, namely
classification.

Over our training set (7)) which is composed of 16161 requirement candidates,
the first two phases of the approach took 27.3 minutes to run, i.e., an average of
~101 milliseconds per requirement candidate. Training the classification model
took negligible time (16 seconds). The training execution time does not include
the time required to curate and annotate our training documents. As discussed in
Section 5.2.1, our third-party annotator spent a total of 352 hours on annotating
our training RSs, equivalent to an average annotation time of 1.92 minutes per
requirement candidate. The training execution and annotation time is acceptable
from the provider’s standpoint, since training is a one-off and performed only
occasionally as the training set is revised or expanded.

From the user’s standpoint, performing the first two phases of our approach over
the validation set (E) led to the following results: 37 seconds for RS1, 50 sec-
onds for RS2, 72 seconds for RS3, and 67 seconds for RS4; these RSs collectively
contain 2145 requirement candidates giving an average processing time of *~105
milliseconds per requirement candidate. The time required for the third phase, i.e.,
classification, was negligible (<1 second per RS). Based on these results, if we
assume an average of 30 requirement candidates per page in an RS, the end user
should anticipate ~3 seconds of processing time per page. Such an execution time
is adequate for batch (offline) processing on an RS. In RQ5, we attempt to opti-
mize the execution time in order to make our approach more suitable for interactive
analysis.

Complexity. We discuss the (theoretical) computational complexity of our
approach based on Stanford CoreNLP (Manning et al. 2014) — one of the
most common NLP toolkits covering the NLP pipeline required by our
approach (Hirschberg and Manning 2015) — and the Random Forest implemen-
tation in WEKA (Breiman 2001). Let n be the number of sentences in the input
RS and m be the length of a sentence. Then, tokenization, sentence splitting
and POS-tagging, which are the first steps in the NLP pipeline (see Fig. 2),
require linear time with respect to the sentence length, i.e, have a complexity
of O(n * m) (Manning et al. 2014). Constituency parser requires cubic time
with respect to the sentence length, i.e., a complexity of O(n % m?), while the
dependency parser can be much faster with a complexity of O(n % m?) (Cov-
ington 2001). Semantic parsing is limited to looking up, for a given sentence,
the semantic categories of the verbs as given by WordNet. The complexity of
this implementation is most often discussed based on the time needed to get a
response on a query from WordNet (Geller et al. 1997). In our experiments, this
response time equals to one millisecond per requirement candidate. Training a
Random Forest (RF) model has a time complexity of O(r xd *n? xlog n) whereas
classifying using a pre-trained RF model requires O(r * d), where r is the num-
ber of randomized trees, d is the maximum depth of the tree and » is the number
of training examples (Louppe 2014).

The analysis performed above indicates that there are two dominant complex-
ity factors: constituency parsing and training the RF model on a large number of
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requirement candidates. First, we note that m — the cubic term in the time com-
plexity of constituency parsing — tends to be small in our document collection and
can thus be regarded as a constant. This is in fact true for the vast majority of NL
documents, noting that arbitrarily long sentences are virtually absent. This said,
constituency parsing is still expensive since m> would still be a large coefficient.
Therefore, in RQS5, we analyze through experimentation the effect of excluding
constituency parsing from the NLP pipeline and show that such an exclusion
would not drastically affect accuracy. Second, and with regard to training the RF
model, we note that this training needs to be performed only occasionally when-
ever the training set is updated. Since this can be done offline (e.g., overnight),
we believe that the computation time can be afforded. Therefore, overall, we do
not anticipate difficulties in terms of computational complexity over RSs.

RQ5. To compute the token-based features of Table 1, one needs to execute

only the preprocessing portion of the NLP pipeline in Fig. 2. The syntactic and
frequency-based features additionally require constituency and dependency pars-
ing; whereas the semantic features additionally require semantic parsing (but not
constituency or dependency parsing). These prerequisite relations induce four
groups of features: (1) only token-based features, denoted Tok, (2) the combina-
tion of token-based, syntactic and frequency-based features, denoted TokSynFrq,
(3) the combination of token-based and semantic features, denoted TokSem, and
(4) all features, denoted All.

In Table 10, we show for each group of features the results of ten-fold cross
validation over our entire dataset alongside the time it took to run the prerequisite
NLP modules and compute the features in that group. Following the conclusions
from RQ1 and RQ3, we use Random Forest with cost-sensitive learning for clas-
sification. The execution times reported in the table are averages per requirement
candidate and given in milliseconds. We observe that 7ok and TokSem are inex-
pensive to compute and achieve good recall. However, these two feature groups
lead to drastically lower precision — by a factor of 20% — than TokSynFrq and
All. At the same time, TokSynFrq is not a better alternative than All either, since
it slightly reduces classification quality while offering no tangible speedup.

The fact that syntactic and frequency-based features explain most of the exe-
cution time prompted a followup investigation. In particular, we looked into
whether the exclusion of any of these features would allow us to make the NLP
pipeline more efficient, without significantly impacting classification quality. We
observed that there is only one feature, Syn5, requiring a constituency parse tree.
To compute the remaining syntactic features and the frequency-based features
that rely on syntactic analysis (hasMFModalVerb and hasHFNP), one can replace

Table 10 Demarcation quality vs. execution time (RQ5)

Tok (1.2 ms/c) TokSynFrq TokSem (2 ms/c)  All (102 ms/c) All-{Syn5}
(101 ms/c)

(49 ms/c)!
RF Accuracy(%) 79.9 93.5 80.9 93.8 93.6
(CSL) Precision(%) 67.6 88.4 68.8 88.9 88.6
Recall(%) 95.7 96.4 96.0 96.5 96.4
IBest Tradeoff
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Table 11 Results of interview surveys

RS5 RS6 RS7
Demarcated pages 37 46 13
Candidates marked as requirement 281 394 113
True positives 213 359 93
False negatives’ 1 8 1
False positives* 68 35 20
Precision(%) 75.8 91.1 82.3
Recall (%) 99.5 97.8 98.9

TResults of Statement 1. On this page, indicate all requirements which have not been demarcated by the
automated support

Results of Statement 2. On this page, indicate all demarcated candidates which are not requirements

constituency parsing with text chunking (shallow parsing) (Ramshaw and Marcus
1999). Text chunking has already been shown to be a robust and accurate alterna-
tive to constituency parsing for extracting the atomic-phrase structure of textual
requirements (Arora et al. 2015, 2017). Based on the RQ2 results, Syn5 (has-
Conditionals) contributes very little to classification. Excluding Syn5 and using
text chunking instead of constituency parsing thus provides a good trade-
off for speedup. Using this configuration, denoted All—{Syrn5} in Table 10,
we reduce the execution time from 102 to 49 milliseconds per requirement
candidate with negligible impact on classification quality. We believe that the
improved execution time is sufficient for an interactive mode of use, considering
that, at any point in time, the user will be reviewing at most a handful of pages
of an RS. Assuming 30 requirement candidates per page, our tradeoff solution
reduces the execution time from 3 seconds to 1.5 seconds per page.

RQ6. Table 11 and Figs. 7 and 8 summarize the results from our three expert inter-
view surveys, conducted by following the procedure described in Section 5.2.2.
Table 11 provides overall statistics from the surveys, showing for each RS the
number of demarcated pages on which the experts provided feedback, the num-
ber of requirement candidates demarcated, the number of candidates classified
as requirement by experts (true positives), the number of requirements missed
by our approach (false negatives), the number of candidates classified as a non-
requirement by experts (false positives), and the corresponding precision and
recall results.

Figures 7 and 8 depict, using barcharts, the expert feedback elicited for State-
ments 2-F, 3 and 4 of the survey questionnaire (Fig. 5). Each of the five bars
plotted in Figs. 7, 8a, and b correspond to the participants’ feedback on RS5, RS6
and RS7, respectively. We recall from Section 5.2.2 that one expert participated
in the surveys for RS5 and RS6, and three experts participated in the survey for
RS7. We further note that the barchart in Fig. 7 for Statement 2-F results is based
on 68, 35 and 20 data points for RS5-RS7, respectively. The data points corre-
spond to the number of false positives identified by the experts in Statement 2.
The barcharts in Fig. 8 for Statements 3 and 4 are based on 37, 46 and 13 data
points for RS5-RS7, respectively, and represent the number of pages in the RSs
on which the experts provided feedback.
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information that would warrant further discussion.

Fig. 7 Barchart for expert survey interview results of Statement 2-F
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With regard to Statement 1, the experts identified a total of ten (148+-1) false nega-
tives in three surveys. Further, the experts classified as requirement 213 requirement
candidates in RS5, 359 requirement candidates in RS6 and 93 requirement can-
didates in RS7, i.e., a total of 665 true positives in RS5-RS7. The overall recall
of our approach on RS5-RS7 is 98.5%. For each of the fen false negatives, the
experts answered the follow-up Statement 1-F (Statement 1-F. “The cues conveyed
by the surrounding demarcation from the automated support led me to easily spot
the missed requirement.”). Given the small number of false negatives, the response
distribution for Statement 1-F is not shown in a barchart. In RSS5, the expert
strongly agreed that the surrounding demarcation from the automated support
did help in identifying the only false negative. Similarly in RS7, all three experts
responded to Statement 1-F with “Strongly Agree” for the sole missed require-
ment. In RS6, for eight false negatives, the expert responded once with “Agree”,
twice with “Neutral”, and five times with “Disagree”. Overall for Statement 1-F
in three surveys, the experts (strongly) agreed thrice. In all three cases, the missed
requirement candidate was part of a requirement specified over multiple sen-
tences. As shown in row 1 of Table 9, our approach correctly demarcated a part
of the requirement but not all the sentences in the requirement. Partially missed
requirements were easy to spot for the experts. The expert in the survey for RS6
disagreed with Statement 1-F when the requirements missed were significantly
different in structure from the other candidates demarcated on the page, making
the missed requirements difficult to spot just through a quick glance on the page.
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(b) Statement 4 Results

Fig.8 Results for Statements 3 and 4
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With regard to Statement 2, the experts classified as non-requirement a total
of 123 candidates (68+35+20), i.e., false positives, in three interview surveys.
The overall precision of our approach computed over RS5-RS7 is 84.7%.
For the followup Statement 2-F, we had 163 responses in total, i.e., 68 responses
for RSS5, 35 responses for RS6, and 60 (3 * 20) responses for RS7 — as we had
three expert participants. In RS5 and RS6, the expert strongly agreed or agreed
in 29.1% (30/103) of the cases, was neutral in 14.6% (15/103) of the cases, and
disagreed or strongly disagreed in the remaining 56.3% (58/103) of the cases that
the false positives captured important information about the system under con-
sideration. For RS7, the three experts collectively agreed (or strongly agreed) in
30% (6/20) of the cases, and collectively disagreed in 40% (8/20) of the cases for
Statement 2-F. However, they had a difference of opinion over the remaining six
false positives. The difference was primarily due to subjectivity about the impor-
tance of the information captured in these non-requirements. Overall, when
considering all the responses for Statement 2-F in our survey, the experts
perceived more than 42% of the non-requirement candidates demarcated
by our approach as containing important information, that could warrant
further discussions among system stakeholders.

With regard to Statement 3, we had 122 (37 4+ 46 + 3 % 13) responses in total.
Of these, in surveys over RS5 and RS6, the expert (strongly) agreed in 71.1%
(59/83) of the cases that the automated support helps improve their efficiency.
The expert was neutral in 16.9% (14/83) and disagreed or strongly disagreed in
12% (10/83) of the cases. In RS7, the three experts collectively agreed or strongly
agreed in 46.1% (6/13) and disagreed or strongly disagreed in 23.1% (3/13) of
the cases. For the remaining four pages in RS7, the experts had a difference
in opinion on whether automated support is indeed helpful in improving their
efficiency for requirements demarcation on these pages. Overall, in more than
67 % of the responses for Statement 3, the experts agreed or strongly agreed
that our approach helps them demarcate requirements more efficiently. For
approximately 5% of all the pages considered, the experts felt that the output
from the approach is misleading and it would take them more time to demarcate
the requirements with automated support than without. In a post-mortem anal-
ysis, we realized that the experts had such perception mainly for pages where
all candidates demarcated on the page were classified as false positive in State-
ment 2, and the response for most of these false positives in Statement 2-F was
“Disagree” or “Strongly Disagree”.

With regard to Statement 4, similar to Statement 3, we had 122 responses in
total over RS5-RS7. For this statement, we were particularly interested in posi-
tive responses, i.e., when experts (strongly) agreed that our approach helps them
locate information or requirements that they might otherwise overlook. If they
did not agree with Statement 4, it simply meant that they would have spotted the
requirement with or without the automated support. In surveys for RS5 and RS6,
out of 83 responses, the expert strongly agreed or agreed in 24% (20/83) of the
cases, and was neutral in 8.4% (7/83) of the cases. In RS7, the experts collec-
tively agreed on only one page. Overall in three surveys, in 24.5% (30/122) of
the responses, the experts agreed or strongly agreed with Statement 4. The
experts rationalized their positive responses by claiming that they did not expect
to find requirements on the page and could have, in all likelihood, missed the
important information had it not been demarcated by our approach.
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6 Related Work

ML has been utilized as a way to provide computerized assistance for several require-
ments engineering tasks, e.g., trace link generation (Asuncion et al. 2010; Cleland-Huang
et al. 2010; Sultanov and Hayes 2013; Guo et al. 2017; Wang et al. 2019), require-
ments identification and classification (Cleland-Huang et al. 2007; Winkler and Vogelsang
2016; Kurtanovi¢ and Maalej 2017a; Dalpiaz et al. 2019; Winkler et al. 2019), prioritiza-
tion (Perini et al. 2013), ambiguity detection (Yang et al. 2010; Yang et al. 2012), relevance
analysis (Arora et al. 2019), and review classification (Maalej et al. 2016; Kurtanovic and
Maalej 2017b). The application of ML over textual requirements is almost always pre-
ceded by some form of NLP. Zhao et al. (2020) present a comprehensive overview of
the applications of NLP in RE research. Among the research strands employing ML and
NLP jointly for requirements analysis, our work most closely relates to the ones con-
cerned with requirements identification and classification. Below, we compare with these
strands.

Winkler and Vogelsang (2016) and Winkler and Vogelsang (2018) propose an approach
based on deep learning (Goodfellow et al. 2016) for addressing the same problem
that we address: requirements demarcation. They train their classifier on word embed-
dings (Mikolov et al. 2013) from requirements documents in the automotive domain. While
we pursue the same general objective as Winkler and Vogelsang’s, our solution is dif-
ferent in two key respects: First, Winkler and Vogelsang focus on requirements stored
in IBM DOORS (2020). This enables them to narrow demarcation to distinguishing a
requirement from the additional material related to that very requirement. In contrast,
we deal with free-form RSs, meaning that we have no a-priori knowledge about the
association between a requirement and its surrounding material. Second, and more impor-
tantly, Winkler and Vogelsang train their model over a specific domain (automotive),
whereas our approach is domain-independent. Falkner et al. (2019) propose an ML-based
approach for identifying requirements in request for proposals (RFPs) related to railway
safety. They train their classifier on unique words in documents. This approach, just like
Winkler and Vogelsang’s, is trained on domain-specific documents. Therefore, it cannot
process, due to the nature of the training data, documents from arbitrary domains the way
our approach can.

There are several threads of work where ML and NLP are used together for require-
ments identification and classification tasks other than demarcation. Ott (2013) uses ML
techniques trained on token-level information for automatically grouping requirements
that belong to the same topic, e.g., temperature or voltage in automotive requirements.
Cleland-Huang et al. (2007) build an iterative classifier for automated classification of
non-functional requirements. The classifier learns how key indicator terms in textual
requirements map onto different categories such as performance and security. Casamayor
et al. (2010), Riaz et al. (2014), and Li et al. (2018) propose similar techniques based
on keywords to predict categories for different requirements. Guzman et al. (2017) and
Williams and Mahmoud (2017) mine requirements from twitter feeds through a com-
bination of ML and NLP preprocessing. Rodeghero et al. (2017) use ML alongside
lightweight NLP for extracting user-story information from transcripts of developer-client
conversations.

The approaches discussed above are based primarily on the frequency statistics and
the token/phrase-level characteristics of the underlying textual descriptions. Kurtanovi¢
and Maalej (2017a) additionally use syntactic criteria obtained from constituency and
dependency parsing for distinguishing functional and non-functional requirements and
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further classifying non-functional requirements into sub-categories. Dalpiaz et al. (2019)
further build upon the findings of Kurtanovi¢ and Maalej (2017a) to perform func-
tional and non-functional requirements classification using dependency parsing and lists of
commonly-used verbs. Our combination of token-based, frequency-based and syntactic fea-
tures as well as the use of these features in tandem with semantic ones is novel. As our
empirical results in Section 5 indicate (see RQ?2), all feature types are influential for an
accurate differentiation of requirements and non-requirements.

7 Threats to Validity

There are two angles to the validity of our empirical work in this article: (1) the validity of
the (analytical) experimentation conducted to answer RQ1-RQ5, and (2) the validity of the
interview surveys undertaken to answer RQ6. The validity concerns most pertinent to the
former are internal, construct and external validity; and, the validity concerns most pertinent
to the latter are conclusion and external validity.

7.1 Validity of our Experimentation Study

Internal Validity. Bias was the main internal validity threat that we had to counter in
our experimentation. To mitigate bias risks, the manual classification of our dataset,
as we discussed in Section 5.2, was done entirely by either experts or a trained third-
party (non-author). These individuals had no exposure to our demarcation tool, and
were thus not influenced by its results. Until the demarcation approach was finalized
and fully implemented, the researchers had no knowledge of the content of the RSs
in the validation set other than the application domains and the numbers of require-
ments and non-requirements in these RSs; this minimal information about the validation
set was necessary for planning our experimental procedures (see Section 5.5). Another
potential threat to internal validity is our approach overfitting on the training data.
We mitigated this threat by applying ten-fold cross validation for algorithm selec-
tion, and testing the model on RSs no parts of which had been revealed to the model
during training.

Construct Validity. We treated requirements demarcation as a binary classification prob-
lem. We do not account for uncertainty, i.e., situations where a human oracle is unable
to make a conclusive decision. In our evaluation, as noted in Section 5.2, we asked the
annotator involved to err on the side of caution and, when in doubt, favor the require-
ment class over the non-requirement class. This choice is consistent with the nature
of our classification problem and the need to prioritize recall over precision, as dis-
cussed in Section 2.1. Second, our units of classification are sentences. This means that
we treat individual requirements spanning over multiple sentences as multiple require-
ments. Adapted notions of precision and recall may need to be defined, if multi-sentence
requirements happen to be dominant; this was not the case in our dataset where such
requirements were infrequent.

External Validity. Our experimentation was based on a relatively large dataset with the
RSs in the dataset originating from a variety of sources and domains. The results
obtained over our validation data is reflective of real-world conditions, particularly
in that the classification model is confronted with RSs no portion of which has
been revealed to the model during training. These factors combined with our con-
sistently strong accuracy results provide confidence about the generalizability of our
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approach. That said, a broader examination of requirements specification practices would
be beneficial for further fine-tuning our feature set and conducting more thorough
evaluations.

7.2 Validity of our Interview Survey Study

Conclusion Validity. An important threat to conclusion validity in surveys is limited sur-
vey duration. In our survey, this threat is most relevant for Statement 1 (see Fig. 5), which
is rather time-consuming to assess. To mitigate this threat, we provided experts with
the demarcated RSs at least two days before conducting the actual survey. The experts
were asked to familiarize themselves with the demarcated content, and to identify non-
demarcated information that they deemed important. Additionally and during the survey
sessions, we made sure that the experts were not rushed; the experts were free to take
as much time as they needed to browse through the RSs pages and identify any missed
requirements.

External Validity. 'We conducted our interview surveys with four experts from two differ-
ent domains and using three RSs with different structures. The consistency seen in the
experts’ feedback about the benefits of our approach is encouraging. Nonetheless, we
acknowledge that the number of experts in our survey study is small. We were unable
to gain access to a larger pool of experts because, as we have also observed in the
past (Arora et al. 2015, 2017, 2019), senior engineers are commonly the ones who are in
charge of requirements engineering activities; these engineers are small in number and
further, due to their lack of availability, are difficult to solicit for time-consuming stud-
ies such as our interview surveys. Considering the small scale of our survey study, our
survey results should be viewed only as suggestive and not conclusive. At the same time,
we note the fact that we have been able to engage real engineers over real requirements
documents, thus increasing the credibility of our survey results.

8 Conclusion

We proposed a machine learning-based approach for distinguishing requirements statements
from other material in textual requirements specifications. The main characteristic of our
approach is that it is applicable to a wide variety of requirements specifications without
needing any input from the user. The features that we use for learning are based on lin-
guistic and frequency information that are generalizable and meaningful irrespective of the
domain and terminology of individual requirements specifications. To calculate these fea-
tures for the statements in a given requirements specification, we employed a combination
of natural language processing techniques. We empirically evaluated our approach using a
dataset made up of 33 industrial requirements specifications. The results indicate that our
approach has an average precision of 81.2% and average recall of 95.7%. We compared
the effectiveness of our approach against several intuitive baselines, and demonstrated that
our approach offers major benefits over these baselines. Furthermore, and using interview
surveys, we collected feedback from subject-matter experts about our approach. The sur-
vey results suggest that our approach is useful in practice. The experts further found our
approach to be a useful aid for identifying important information in RSs that may otherwise
be overlooked. Our approach is supported by a prototype tool, named DemaRQ. This tool
and the non-proprietary parts of our dataset are publicly available at https:/sites.google.
com/view/demarq.
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Our current approach is based on binary classification. In reality, deciding between
requirements and non-requirements is not always a clear-cut choice even for experts. In
the future, we would like to provide more detailed information about the automatically
predicted demarcations, e.g., through color coding, so that the analysts can know how
conclusive the predictions are. A definitive evaluation of our approach which considers
uncertainty would require user studies. Another direction for future work is to broaden the
applicability of our approach beyond requirements specifications. While we do not foresee
issues that would limit our current features to only requirements specifications, additional
features may be necessary for accurately handling other types of requirements-relevant doc-
uments, e.g., product descriptions and calls for tenders. Further, the effectiveness of our
approach over such documents needs to be evaluated via new empirical studies.
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