Empirical Software Engineering (2020) 25:4833-4872
https://doi.org/10.1007/510664-020-09870-3

®

Check for
updates

An empirical investigation of relevant changes
and automation needs in modern code review

Sebastiano Panichella’ © . Nik Zaugg?

Published online: 13 September 2020
© The Author(s) 2020

Abstract

Recent research has shown that available tools for Modern Code Review (MCR) are still far
from meeting the current expectations of developers. The objective of this paper is to inves-
tigate the approaches and tools that, from a developer’s point of view, are still needed to
facilitate MCR activities. To that end, we first empirically elicited a taxonomy of recurrent
review change types that characterize MCR. The taxonomy was designed by performing
three steps: (i) we generated an initial version of the taxonomy by qualitatively and quantita-
tively analyzing 211 review changes/commits and 648 review comments of ten open-source
projects; then (ii) we integrated into this initial taxonomy, topics, and MCR change types of
an existing taxonomy available from the literature; finally, (iii) we surveyed 52 developers
to integrate eventually missing change types in the taxonomy. Results of our study highlight
that the availability of new emerging development technologies (e.g., Cloud-based technolo-
gies) and practices (e.g., Continuous delivery) has pushed developers to perform additional
activities during MCR and that additional types of feedback are expected by reviewers. Our
participants provided recommendations, specified techniques to employ, and highlighted the
data to analyze for building recommender systems able to automate the code review activ-
ities composing our taxonomy. We surveyed 14 additional participants (12 developers and
2 researchers), not involved in the previous survey, to qualitatively assess the relevance and
completeness of the identified MCR change types as well as assess how critical and feasible
to implement are some of the identified techniques to support MCR activities. Thus, with
a study involving 21 additional developers, we qualitatively assess the feasibility and use-
fulness of leveraging natural language feedback (automation considered critical/feasible to
implement) in supporting developers during MCR activities. In summary, this study sheds
some more light on the approaches and tools that are still needed to facilitate MCR activ-
ities, confirming the feasibility and usefulness of using summarization techniques during
MCR activities. We believe that the results of our work represent an essential step for meet-
ing the expectations of developers and supporting the vision of full or partial automation in
MCR.

Communicated by: Xin Peng

P4 Sebastiano Panichella
panc @zhaw.ch

Extended author information available on the last page of the article.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09870-3&domain=pdf
http://orcid.org/0000-0003-4120-626X
mailto: panc@zhaw.ch

4834 Empirical Software Engineering (2020) 25:4833-4872

Keywords Code review process and practices - Empirical study - Automated software
engineering.

1 Introduction

Modern Code Review (MCR) (Bacchelli and Bird 2013) represents a variant of the tradi-
tional code review (CR) process, whose main characteristic is to be informal and supported
by tools. Nowadays, MCR is a widely applied practice in both open-source and industrial
systems (Bacchelli and Bird 2013), and recent work empirically investigated its process out-
comes (Mclntosh et al. 2014; Kononenko et al. 2015), its available tools (Bacchelli and Bird
2013; Bosu et al. 2017), or proposed solutions to automate some of its activities (Barnett
et al. 2015; Zhang et al. 2015; Thongtanunam et al. 2015; Panichella et al. 2015; Chatley
and Jones 2018).

During MCR, developers are usually interested in improving the quality of submitted
patches (Rigby and German 2006; Beller et al. 2014) by fixing bugs (MclIntosh et al. 2014),
adhering to conventions/coding styles or by making the source code easier to be maintained
(Rigby 2011; Balachandran 2013), to meet user expectations (Zhou et al. 2020; Grano et al.
2018; Panichella et al. 2015). In this process, a developer, author of the code under review,
asks other developers (i.e., the reviewers) to inspect her/his code. In this context, studies
performed in the past demonstrated that inspections are also useful for improving the quality
of further artifacts (different from the testing and production code (Spadini et al. 2018))
such as requirements (Fusaro et al. 1997; Porter and Votta 1998) and design (Parnas and
Weiss 1985).

MCR is generally supported by tools aiding developers during various activities. For
example, the Gerrit (Gerrit 2014) tool is widely used by open-source projects to support the
management of the MCR process, while CheckStyle (CheckStyle 2014) and PMD (PMD
2014) are popular tools used for detecting defects (e.g., Vulnerabilities (Di Penta et al.
2009)) and design issues (e.g., The high coupling between objects) in the code under review.

Recent research produced further tools to support, in different ways, decisions and
actions of MCR: recommender systems (i) selecting appropriate peer reviewers to evaluate
a given patch (Balachandran 2013; Zanjani et al. 2016; Ouni et al. 2016) and approaches to
automatically (ii) decompose code review change-sets (Barnett et al. 2015), recommending
the files to focus on during a review (Baum et al. 2017), or to simply detect potential mis-
takes (Zhang et al. 2015). However, according to recent research (Bacchelli and Bird 2013;
Spadini et al. 2018), outcomes of available tools and prototypes are still far from meeting
the current expectations of developers in modern code review (Bacchelli and Bird 2013;
Panichella et al. 2015; Spadini et al. 2018).

The objective of this paper is to investigate the approaches and tools that, from a
developer point of view, are still needed to facilitate MCR activities (in the introduction,
we refer to CR, but the whole work concern MCR challenges). To the best of
our knowledge, very few studies investigated at the same time (i) the most recurrent or crit-
ical code review changes (later referred to as code review change types)
developers have to deal with and (ii) the approaches and/or tools that are still needed to
automate or accommodate such changes. Indeed, while previous studies mainly investigated
the usage and/or the limits of existing tools for code review (Bacchelli and Bird 2013; Spa-
dini et al. 2018; Panichella et al. 2015; Beller et al. 2014), this paper puts its attention on the
specific changes that developers actually perform in code reviews, investigating the poten-
tial automation that is needed for supporting such changes. In this context, it is important to

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4835

clarify that with code review changes (or code review change types) we explicitly refer to the
actual “changes that developers perform to address the received code review comments”.

We believe that this investigation has the potential to fill the gap between the current
needs of practitioners and the available research tools and prototypes for MCR. To that end,
in this paper we address the following research questions:

1. RQ\: What types of changes occur during MCR?

We first empirically elicited a taxonomy of the most critical and recurrent MCR change
types that characterize reviews and investigated the types of MCR changes that, accord-
ing to the developers involved in our study, could (or should) be automated. The
taxonomy was designed by performing three steps: (i) we generated an initial version
of the taxonomy by qualitatively and quantitatively analyzing 211 review changes and
648 review comments of 10 open-source projects; then (ii) we integrated into this ini-
tial taxonomy, topics and MCR change types from an existing taxonomy available from
the literature; finally, (iii) we surveyed 52 developers
to integrate eventual missing MCR change types.

2. RQ»: What are the emerging automation needs of developers in MCR? This research
question is a follow-up of the previous one. However, while in RQ; we look at the types
of changes that occur during the MCR process, here we investigate the data, approaches
and tools that developers would need to accommodate the identified MCR change types.
Hence, we asked our survey participants (52 developers) to specify (i) the most critical
and/or important review change types they usually perform in MCR; and the (ii) type
of automation that they would need (or envision) to accommodate these review change

types.

Results of our study highlight that the availability of new emerging development tech-
nologies (e.g., Cloud-based technologies) and practices (e.g., Continuous Delivery and
Continuous Integration) has pushed developers to perform additional activities or tasks dur-
ing MCR (e.g., The need to fix licensing and security issues). As a consequence, additional
types of feedback are expected by reviewers, and novel approaches and tools are needed by
developers acting as authors of changed code during code inspection activities and tasks.

Most (98%) surveyed developers believe that (i) certain code review activities or tasks
(e.g., Defects detection) are difficult to automate, while others (e.g., License header gener-
ation) could (or should) be possibly automated by novel recommender systems for MCR.
96% of our study participants provided insights on the types of approaches and tools they
would need in the context of MCR,

sharing recommendations, specifying techniques to employ, and highlighting the data
to analyze for building recommenders able to automate code review activities. Interest-
ingly, potential automation is needed for example to handle licensing and security issues, or
supporting changes in non-source code artifacts (e.g., Continuous delivery and integration
configuration files, files for runtime configuration, static analysis tools configuration files,
etc.).

To complement the results of the previous analysis, we surveyed 14 additional participants
(12 developers and 2 researchers), not involved in the aforementioned survey, to qualita-
tively assess the relevance and completeness of the identified MCR change types as well
as assessing how critical and feasible to implement are some of the identified techniques to
support MCR activities. This study motivated the usage of specific techniques over others
to support MCR.

Among the various proposals, most developers also recommended to implement solutions
based on customized approaches leveraging machine learning, Natural Language Parsing

@ Springer



4836 Empirical Software Engineering (2020) 25:4833-4872

(NLP) and data mining techniques modeling the MCR problems with the notion of anti-
patterns and change metrics. Hence, in the context of our work (RQ2), we also discuss
qualitatively, with a study involving 21 additional developers, the perceived usefulness of
leveraging summarization techniques for modeling the MCR problems with the notion of
anti-patterns and change metrics. This additional study has the only goal to investigate the
feasibility of this research direction, to make an initial concrete step toward semi-automated
tools for MCR activities.
Paper contributions. The contributions of this paper can be summarized as follows:

1. aqualitative and quantitative investigation on the types of MCR changes performed by
developers, this via repository analysis and a survey involving developers.

2. anempirically elicited Code Review chAnges Model (CRAM), i.e., a taxonomy of MCR
changes grouped in high- and low-level categories.

3. aqualitative and quantitative investigation on the data, approaches, and tools that, from
a developer’s point of view, are still needed to facilitate MCR activities.

4. finally, we also discuss qualitatively the potential (perceived) feasibility/usefulness of
using summarization techniques for modeling the MCR problems with the notion of
anti-patterns and change metrics, to support MCR activities.

We believe that this work represents a relevant step toward the definition of tools meeting
the emerging expectations of authors and reviewers in modern inspection processes, and
thus supporting the vision of full or partial automation in MCR (Bacchelli and Bird 2013;
Spadini et al. 2018)

Replication package. We make publicly available a replication package!

with (i) material and working data sets of our study, (ii) complete results of the survey;
and (iii) the leveraged raw-data for replication purposes.

Paper structure. Section 2 details the study definition and planning, the data extraction
process and the evaluation methodology adopted to answer our research questions. Section 3
discusses the results, while threats to its validity are discussed in Section 4. Section 5 dis-
cusses the related literature concerning studies on code review in general and MCR in
particular, while Section 6 concludes the paper and outlines directions for future work.

2 Research Methodology

The goal of our study is to provide more information on the types of changes developers
perform in MCR activities and investigate the approaches and tools that, from a devel-
oper’s point of view, are still needed to facilitate MCR tasks. This section describes the
methodology adopted to answer our research questions.

2.1 Approach Overview
Figure 1 depicts the research approach we followed to answer our research questions, which

consists of four steps:

1. Inception Phase: First of all, we performed an inception phase aimed at enriching our
knowledge about the studied problem, thus collecting information about the specific
MCR change types. We generated an initial taxonomy of MCR change types by (i)

Thttps://doi.org/10.5281/zenodo.3679402

@ Springer


https://doi.org/10.5281/zenodo.3679402

Empirical Software Engineering (2020) 25:4833-4872 4837

il [ * Code Review I Historical
Data - % .5 CR Change Data
(s e > Predicting Auto-fixes
= 0 * Source Code > e
2N = x
l'l.ii'l « Human / Social :
: —> i
X z
> CR p
................... > Auto-fixes l
CR B
Metrics I_—-Q_‘
& o Recommendations
Patterns
Taxonomy & Other
== Code Review :
A ti
Previous CR Taxonomies Change Types utomation
Inception Taxonomy Automation Recommendations,
Phase Definition Needs in MCR Techniques and Solutions

Fig. 1 Overview of Research Approach

analyzing comments and changes reported by developers during MCR activities of 10
open source projects; and (ii) integrating into this initial taxonomy the change types
reported in the validated categorization scheme by Beller ef al. (Beller et al. 2014).

2. Taxonomy Definition (RQ1): We surveyed 52 developers to validate and get feedback
on the taxonomy defined during the inception phase. Specifically, we manually ana-
lyzed the feedback gathered from our participants and added, modified and expanded
the categories of the initial taxonomy. The output of this phase consisted of the Code
Review chAnges Model (CRAM), i.e., a taxonomy of MCR changes grouped in high-
and low-level categories (described in Table 4). To complement the results of this
analysis, we surveyed 14 additional participants (12 developers and 2 researchers),
not involved in the aforementioned survey, to qualitatively assess the relevance and
completeness of the identified MCR change types.

3. Automation Needs in MCR (RQ,): We asked our study participants about the pro-
cess and practices applied to handle the MCR change types composing CRAM, asking
at the same time what tools they use or what tools they would need for handling
such changes/problems. The output of this phase consisted of the analysis of feedback
we received by the participants and the selection of most relevant comments for our
investigation (RQ»).

4. Recommendations, Techniques, and Solutions (R(Q>): In this phase, we first of all
focused our effort on clustering the selected feedback in a formal way, summarizing
the most interesting information from participants (RQ-). Thus, the first output of this
phase consisted in the

MCR-Request (MCR-REcommendations, TechniQUEs, and SoluTions) model,
i.e., a taxonomy summarizing the current developers’ automation needs, the recommen-
dations, the techniques, and the solutions envisioned by developers to automate MCR
activities. To complement the results of this analysis, we interviewed 14 additional par-
ticipants (12 developers and 2 researchers), not involved in the aforementioned survey,
to qualitatively assess how critical and feasible to implement are some of the identi-
fied techniques to support MCR activities. This study motivated the usage of specific
techniques over others to support MCR.

@ Springer



4838 Empirical Software Engineering (2020) 25:4833-4872

2.2 Inception Phase

Analysis of MCR commits and comments. To gain more understanding on the specific
code review change types occurring in MCR we collected the MCR comments and changes
from the history of ten Java open source projects, namely Eclipse Acceleo (Aacceleo 2018),
Eclipse CDT (Eclipse CDT 2018), Eclipse Amalgam (Amalgam 2018), Eclipse BPEL
(Eclipse BPEL 2018), Eclipse Cbi (Eclipse Cbi 2018), Eclipse EGit (Eclipe EGit 2018),
Eclipse PDE (Eclipse PDE 2018), Egit Training (Egit-training 2018) JGit (JGit 2018), and
M2e (M2e 2018).

The main characteristics of the projects are reported in Table 1. The observed period
considered was between 2012 and 2017. There are three reasons that pushed us to select
such time window: (i) we wanted to observe the history of projects within a specific time
frame, so that the probability that similar MCR changes and tools used among developers
or investigated project was higher; (ii) Observing a reasonable past time window ensure that
all review comments are addressed by the authors in MCR; (iii) we wanted to observe at
least a period of 5 years for each project (in some cases the projects life was shorter, and
in that case we were able to observe/analyze the whole history of them. It is important to
mention that the ten projects in Table 1 were mainly chosen by considering the following
selection criteria:

—  Projects sample size compared to previous studies: Compared to our work, Beller et al.
(Beller et al. 2014) manually analyzed only two OSS projects. We targeted 10 projects
to make our results potentially more generalizable.

— Availability and diversity: As first criterion project were selected based on the availabil-
ity of review information (e.g., Evolution of patches stored MCR commits, reviewers
comments of patches, amount of reviewers comments > 50 in the history) through
Gerrit, and their different domain and size.

—  Projects used in previous studies: Among the selected projects, we also selected
projects that were also considered in previous work (e.g., The one from the Eclipse
ecosystems from (Panichella et al. 2015)).

Table 1 Characteristics of the analyzed projects

Project Observed # of review # of reviews # of
Period changes comments KLOC
Acceleo 2015-03-2017-03 56 243 622
Amalgam 2015-07-2017-03 4 4 26
Bpel 2012-10-2012-12 1 2 219
Cbi 2015-07-2017-03 1 1 13
Cdt 2012-05-2017-03 70 192 1,600
Egit-github 2012-02-2017-07 25 55 200
Egit-pde 2012-02-2012-03 1 17 531
Egit-training 2012-03-2016-03 3 3 195
JGit 2012-09-2017-03 1 1 212
M2e 2014-03-2017-03 49 130 3
Total - 211 648 3621

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4839

As a first step, we initially selected, among all code review commits (or changes) in our
dataset, the ones reporting explicit reviewers’ comments on the quality of patches. This step
was needed to investigate the actual changes in code reviews that were performed by authors
(i.e., developers) of a code change to address the comments of reviewers. Furthermore, we
cleaned our dataset; removing review comments contained in abandoned patches. Hence,
two authors of this work, by applying grounded theory (Wagner 1968), manually analyzed
648 reviewers’ comments related to 211 MCR review commits, focusing on the comments
that could be relevant to our study (i.e., the one mentioning the changes to perform to
improve the patch code or other artifacts). In doing so, the two coders also verified whether
the MCR changes performed by authors of patches actually addressed the reviewers’ com-
ments. Thus they shared a spreadsheet to encode, using a short sentence or description, the
specific changes proposed by reviewers and implemented in MCR commits. Specifically,
while reporting a new sentence, the coders checked whether the sentence matched/fitted a
change type reported in sentences previously defined; if not, a new MCR change type was
added. In total, 631 reviewers’ comments were analyzed and 17 were deemed unhelpful or
ambiguous by the authors.

It is important to note that we adopted grounded theory to built the initial taxonomy, act-
ing as if no prior work has built a previous (i.e., we did not know the detail of the taxonomy
of Beller et al. (Beller et al. 2014)). This step was needed to investigate the MCR changes
that are missing in the taxonomy proposed by Beller et al.. Thus, the initial taxonomy was
then merged with the one by Beller et al., by adding the new discovered categories/elements
(see Section 3.1). This required to perform a further open coding process to make the merge
between the two taxonomies.

By scrutinizing the aforementioned set of MCR comments and commits the coders iden-
tified a total of 15 initial potential MCR change types, and logically grouped them in an
initial taxonomy of 3 high- and 15 low-level categories of changes. During the validation
step, the level of agreement between first and second coders was 82% (disagreements were
discussed and fixed). The grouped review commits and comments and this initial version of
the taxonomy are shared as one of the appendices of our replication package.

Integration of existing taxonomies. As reported in the related work (Section 5), Beller
et al. (Beller et al. 2014) manually analyzed changes taking place in reviewed code from
two OSS projects and classified them into evolvability changes and functional changes, as
reported in their validated categorization scheme. To verify the completeness of the initial
taxonomy, which emerged via manual analysis of code review data of the projects reported
in Table 1, we performed a one to one matching between elements in our taxonomy and
the one composing the scheme by Beller ef al. (Beller et al. 2014). We observed that some
MCR change types composing the initial taxonomy were also present in the one by Beller
et al., while others were not. Thus, we split, merged and refactored categories coming from
the schema by Beller ef al. and the previously elicited categories and integrated and com-
bined them into a new taxonomy. Also in this case, this improved version of the taxonomy is
available as one of the appendices of our replication package. However, we highlight (with
different colors) in Table 4 and Table 5, that report the final taxonomy (obtained by integrat-
ing also the feedback received from developers, as explained in Section 2.3), the categories
that were present in the scheme by Beller ef al. and the ones that were not.

2.3 Taxonomy Definition & Automation Needs in MCR

To verify the taxonomy’s saturation, i.e., its capability to cover all possible MCR changes,
we performed a survey involving 52 developers (we invited more than 200 participants

@ Springer



4840 Empirical Software Engineering (2020) 25:4833-4872

and around 23% of them participated in the study) to understand (i) whether the taxonomy
was considered by them as exhaustive and/or complete (RQq); (ii) what type of feed-
back developers usually receive or expect in code reviews (RQp); and (iii) what tools they
need or envision to support relevant MCR changes (RQ7). Our survey was implemented
using Google Forms*. The structure of our questionnaire consisted of 18 questions, which
included 6 multiple-choice (MC), and 12 open (O) questions. We decided to have sev-
eral open questions in the survey to receive less biased answers from the participants, thus
allowing the developers to leave further and personalized comments.

We have grouped the questions reported in Table 2 into three topics: (i) Background, (ii)
Taxonomy Evaluation, and (iii) Automation Needs. The Background questions provided
us with demographic information (reported in Section 3.1). However, for brevity, we omit
these questions in the table, providing the full survey information in the replication package.
The questions in the other two sections, Taxonomy Evaluation, and Automation Needs, rep-
resent the core part of the survey, aimed at understanding code review practices and related
automation needs.

The Taxonomy Evaluation section was aimed at assessing the taxonomy completeness
(RQq) and to investigate the type of feedback developers usually receive/expect in code
reviews (RQp). To reach this goal, contextually to the five questions of section Taxonomy
Evaluation (Q1.1-Q1.5), we shared two images of the taxonomy and also a link to the full
taxonomy where they could have adjusted it and send it back (described in Section 3.1).
Again the shared pictures are available in our replication package. In this stage of the survey,
developers could evaluate the taxonomy and suggest further categories to integrate into
it (Q1.2), describing also the feedback they usually expect/receive by reviewers in MCR
(Q1.3-Q1.5).

To derive the final version of the taxonomy we proceeded as follows. At first, one of the
authors (the second author) of the work performed an iterative content analysis (Khalid et al.
2015) of the feedback provided by participants (see EMSE_MCR_2019/survey_raw_data in
the replication package). Thus, she started with an empty list of MCR change type cat-
egories and carefully analyzed each feedback provided by the developers. Each time she
found a new MCR change type category to add to the taxonomy obtained after the inception
phase, a new category was added to the connected list and each feedback as developers often
referred to similar types was labeled with the matching categories (we provide this labeled
dataset in our replication package). After this step, the initial categorization was refined per-
forming another interaction involving one of the other authors (the first author) of this paper
who double-checked each category and removed potential redundant categories in the list.
Finally, the new emerged categories were added to the taxonomy obtained from the previ-
ous phase. The final version of the taxonomy, that we called (CRAM Code Review chAnges
Model), is provided in Table 4 and discussed in Section 3.1.

To complement the results reported in these tables, in a second survey, we surveyed 14 addi-
tional participants (we invited 20 participants in total considering our direct contact lists, and
12 developers and 2 researchers actually were able to participate in the study), not involved
in the aforementioned survey, to qualitatively assess the relevance and completeness of the
identified MCR change types composing CRAM. Among our participants, all of them have
> 4 years of development experience and use/used advanced tools for supporting MCR
(e.g., Gerrit, static analysis tools). To perform such an evaluation, we shared to the partici-
pants the MCR change types composing the designed CRAM and clarified the meaning of

Zhttps://gsuite.google.com/products/forms/

@ Springer


https://gsuite.google.com/products/forms/

4841

Empirical Software Engineering (2020) 25:4833-4872

S 0 $9°70 ut pauonuaw sad£) a3uryd MIIAI Ip0D AY) JO JuIXly pue uond3Jep Yy yoroidde nok pinom Moy 170

S 0 (S1001 £q PaXIJ J0/pue pajoajap A[[eonewioine aq pinod sad£) aSueyo MarAal 9pod YITYA 970

S 0 {,SNSSI [eIN)ONIS JO UOT)IJAP puk SUIXI) Y} J0J UOISIAUS NOA Op UOHBWIOINE JO PUDy JBYA\ [SFde)

4S 0 (,5nssT KIS JO UOT0AP pue SUTXI Y} JOJ UOISIAUS NOA Op UOHLWOINE JO Puny JBYA\ 70

4S 0 {,SONSST UOTIBIUSWNIO( JO UOTOAP pue SUIXIF ) JOJ UOTSIAUD NOA Op UOTIRWOINE JO PULY JeUYA ¢70

S 0 ($9o10e1d MIIARI 9p0d SUTIBWOINE IOF UOISIAUS NOA Op UOHBWOINE JO PULY JBYA 770

S o) {MOTAQI 9POD SULINP S[00}-ISPUAWWOIAI WOIJ J02dXo NOA P[nom JOeqpad) JO Pury Jeym 120 SPIIN UonBUIOINY

S o) {SMITAAI 9p0d FuLnp $19dO[AIP JOY)O WOIJ AT A[[ensSn NOA OP JOrqPAJ JO PUIy IBYM S10

4S 0 {SMIIARI 9p0d urnp s19do[aAdp Jay10 woj 10adxa noA op Yorqpasy Jo pury Jeyp 710

S 0 {,SMITAQI 9POD JPISUT JSOUW 3} 1220 so1do] /sa1103a18d 9FURYD) YIIYA €10

4S O+OIN {SMQTARI 9POJ UT INOJ0 Jey) SASURYD [[8 SIOA0D AWOUOXR) ) SA0(] 710

49 0 {MATADI 9POJ © ST JeU A '10 uonen[eAy AWOUoXe],
“dsoy # adAL, uonsonQ) pazLewwng fail uonods

(romsue uadQ :0 ‘oo10y) S[dnnA :DIN) ‘suonsanb Loaing g ajqel

pringer

A's



4842 Empirical Software Engineering (2020) 25:4833-4872

them. After this preliminary clarification/explanation stage, we asked the participants to rate
the relevance and completeness of the identified MCR change types composing CRAM, by
asking the following questions:

—  Qg: What is the perceived relevance of the following change topic occurring in MCR?
Likertscale intensity from 1 (Low) to 5 (High).

—  Qc: What is the perceived completeness of the following change type occurring in
MCR? Likertscale intensity from 1 (Low) to 5 (High).

The Automation Needs section (Q2.1-Q2.7) was focused on (i) understanding which
tools developers would need during MCR (Q2.1 and Q2.2), with a particular focus on recur-
rent (Panichella et al. 2015) or critical changes (or problems) occurring in MCR tasks
(Q2.3-Q2.5); and (ii) how developers would approach the automatic detection and fixing of
MCR change types required to perform in order to improve a submitted patch (Q2.6 and
Q2.7).

We performed also, in this case, an iterative content analysis (Khalid et al. 2015) of the
feedback provided by the participants. Thus, one of the authors of the work (the first author)
started with three empty lists and carefully analyzed each feedback provided by the develop-
ers. The three empty lists were respectively related to the recommendations, the techniques,
and the solutions envisioned by the developers for automating MCR activities. Thus, each
time the author found a new recommendation, e.g., On how to collect the data or which data
to analyze for automating MCR, the feedback was added to the recommendations list. When
the developers mentioned a specific technique to employ or described how the solutions to
automate a given change should work (e.g., A specific auto-fixing strategy for detecting and
fixing documentation defects (Zhou et al. 2017; Zhou et al. 2018)), we added elements in
the techniques and the list of the solutions. After this step, the three lists were refined per-
forming another interaction involving one of the other authors (the second author) of this
paper who double-checked each emerged category and removed potential redundant cate-
gories in the lists. We discuss the results and findings achieved by collecting the feedback of
participants and related to Q2.1-Q2.7 in Section 3.2. To complement the results of the previ-
ous analysis, we surveyed 14 additional participants (the same we involved in the evaluation
of MCR change types), not involved in the aforementioned survey, to qualitatively assess
how critical and feasible to implement are some of the identified techniques to support
MCR activities. This study motivated the usage of specific techniques over others to support
MCR. Among our participants, all of them have > 4 years of development experience and
use/used advanced tools for supporting MCR (e.g., Gerrit, static analysis tools). To perform
such an evaluation, we shared to the participants the identified techniques to support MCR
activities and clarified the meaning of them. After this preliminary clarification/explanation
stage, we asked the participants to rate the critical and feasible to implement the identified
techniques to support MCR activities, by asking the following questions:

—  Qc: How critical is the identified techniques to support MCR activities? Likertscale
intensity from 1 (Low) to 5 (High).

—  Qpr: How feasible to implement is the identified techniques to support MCR activities?
Likertscale intensity from 1 (Low) to 5 (High).

Finally, as anticipated before, we discuss the potential of leveraging summarization
techniques to support MCR practices.

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4843

3 Results
3.1 RQq: Types of changes occuring in modern code reviews

To investigate MCR practices and achieve a complete taxonomy of MCR change types, as a
first step, we advertised the study on social media channels to acquire study participants. To
address more participants outside academia, we also applied opportunistic sampling (Gibbs
et al. 2007) to find open source contributors performing code inspection in their working
practices.

The first survey we made was available for two months to maximize the number of
collected answers and we invited more than 200 direct contacts to fill out the questionnaire
described in Section 2.3. In total, we received 52 responses, with a return rate of about
23%. Table 3 lists demographic information about our survey participants. Interestingly,
among our participants, we had 31 (61.5%) industrial and open-source developers. The
self-estimation of their development experience highlight that most of the developers rated
themselves as “very good” (32.7%) or “excellent” (46.2%) programmers. Moreover, around
30% of them have 2-8 years of development experience, and around 67% more than 8. It is
important to mention that, even if not obliged, all developers that participated in the study
filled the non-mandatory open questions.

As reported in Section 4, we asked (Q1.1-2 in Table 2) our study participants to provide
us feedback on the initial taxonomy obtained after the inception phase (see Section 3.1). As
results, only 28% of developers claimed (Q1.2) that the proposed taxonomy was incomplete,
reporting a total of 17 sentences related to additional (not reported in the previous version
of the taxonomy) tasks, activities or changes occurring during MCR. The encoding of such
sentences resulted in the identification of a total of three additional change types (high-
lighted in BLUE in Table 4), not previously found in the inception phase. These categories

Table 3 Information about the Survey Participants

Participants Profile Nr. (%)

Industrial Developer 50%

Open Source Developer 11.15%

Senior Researcher 19.2%

CS Student 9.6%

Other 9.6%

Team Size Projects Size [LoC]

1-5 38% 1,000-300,000 66 %

5-10 14% 300,000-1,000,000 15%

10-15 10% >1,000,000 19%

>15 38%

Experience (Years) Experience (Rate)

<2 1.9% Poor 1.9%

2-5 11.5% Fair 0%

5-8 19.2% Good 19.2%

>8 67.3% Very Good 32.7%
Excellent 46.2%

@ Springer



4844

Empirical Software Engineering (2020) 25:4833-4872

Table 4 Code Review chAnges Model (CRAM) - Part I. Full version of the CRAM model, with all
descriptions, available in the Appendix at the end of the paper

@ Springer

ARTIFACT AcTiviTy CATEGORY Toric DETAILED CHANGE
- Textual Documenta-
tion: Issues concerning the (D.1) - Naming.
Produc- Maintain- documentation through
tion ability textual representation, (D.2) - Comments.
such as naming of classes,
& & method, variables. This (D.8) - License Header: Is-
also includes license head- sues regarding missing or wrong
Test Code Perfective Document-| ers, typos in either inline license headers ins:de source-files.
Mainten- ation (D) comments or Javadoc
(Modification | ance (D.4) - Typos: Spelling mis-
occurring in takes in the documentation
production
and test (D.5) - Other.
code)
- Language Supported (D.6) - Immutability.
Documentation: Docu-
mentation through state- (D.7) - Visibility (Modifiers).
ments/elements that the
programming language
offers  (e.g., java public
modifier to document that
it is accessible from the
outside)
(S.1) - Brackets & Braces.
(S.2) - Indentation.
(S.8.) - Blank Lines.
Style (S) S.4) - Long Lines.
S.5) - Whitespace Usage.
S.6) - Grouping.
(S.7) - Commented out code: re-
move code that is commented out
(also TODO and FIXME)
- Re-implementation: (STR.1) - Semantic Duplica-
Structural defects require tion.
an alternative implementa-
tion method. For example, (STR.2) - Semantic Dead Code.
replacing the program’s
array data structure with (STR.3) - Change Function.
a vector and knowing
the existence of prebuilt
functionality that could (STR.4) - Standard Coding
be used instead of a self- Conventions.
programmed implementa-
tion would be considered (STR.5) - New Functionality.
a solution approach de-
fect. Therefore, solution (STR.8) - Strings (Wording): Is-
approach defects are not sues regarding contents of strings,
about re-organizing exist- badly composed strings
ing code but rethinking
Struc- the current solution and (STR.7) - Logging: Add the abil-
ture implementing it in a dif- ity to methods for logging results or
(STR) ferent way. errors

(STR.8) - Testing: Issues regard-
ing test coverage, wrong/inappro-
priate tests, additional tests etc.

- Organization: Defects
that can be fixed by ap-
plying structural modifica-
tions to the software. Mov-
ing a piece of functionality
from module A to module
Bhis a possible strategy for
this.

(STR.9) - Imports: Issues with
wrong or missing or unused import
statements

(STR.10) - Move Functional-
ity.

(STR.11) - Long Sub Routine.
(STR.12) - Dead Code.

(STR.13) - Duplication / Re-
dundant Code.
STR.14) - Complex Code /
implification.

(STR.15) - Statement Issue.
(STR.16) - Consistency.

(STR.17) - Architectural
changes: code reviews often result
in a change to the system architec-
ture, like splitting an interface into
two distinct interfaces, introducing
abstractions, or the inclusion of
design patterns




Empirical Software Engineering (2020) 25:4833-4872 4845

Table4 (continued)

Interface (1)
(I.1) - Function Call.

Function- (1.2) - Parameter.
ality/
Corrective Togl
gic (L)
Mainten- (L.1) - Compare

ance
(L.2) - Computation.

(L.3) - Wrong Location.

(L.4) - Algorithm/Perfor-
mance.

Resource (R)
(R.1) - Variable Initialization.

(R.2) - Memory Management.

(R.3) - Data & Resource Ma-
nipulation.

(R.4) - Security: Issues related to
the application’s/software’s secu-
rity aspects

(R.5) - Concurrency: Issues
regarding concurrency

Check (C)
C.1) - Check Function.
C.2) - Check Variable.

(C.8) - Check User Input.

Larger Defects (LD)
(LD.1) - Completeness.

(LD.2) - GUL

(LD.3) - Check outside code
/ Domino Effects.

were integrated into the final set of MCR change types composing CRAM. For more infor-
mation, the intermediate taxonomies, and all codified developers’ feedback are available in
the replication package.

Table 4 and Table 5 provide an overview of CRAM. It is important to mention that, for
reason of space, the full version of Table 4 (i.e., with all descriptions) is provided in the
Appendix at the end of the paper. To facilitate the understanding of this taxonomy/model,
in these tables, we grouped each MCR change type according to different high- and low-
level dimensions: (i) artifact type involved in the change (e.g., Test and production code or
configuration files); (ii) type of MCR activities/changes performed (e.g., Perfective and cor-
rective maintenance); (iii) specific MCR change categories associated to each activity (e.g.,
Changes related to artifacts structure, their logic and/or resource utilization); and finally, (iv)
the detailed topics and fine-grained changes associated with each MCR change category.
Moreover, Tables 4 and 5 highlight with different colours the detailed MCR change types
emerged during the inception and the taxonomy definition phases (described in Section 2).
Specifically, (i) in BLACK are highlighted MCR changes types that overlapped with the
schema by Beller et al. (2014); (ii) in RED are highlighted the categories emerged during
the manual analysis of MCR commits and comments of ten open source projects and that
were not present in the schema by Beller et al. (see Section ); (iii) in BLUE are highlighted
the additional change types suggested by the developers and that were not present in the
taxonomy emerged after the inception phase.

It is important to mention that, most (78%) developers (Q1.1) reported that MCR prac-
tices represent a useful way for facilitating the team knowledge transfer as well as to
improve the overall quality and performance of the code under review. This preliminary
finding is consistent with the results by Bacchelli and Bird (2013). However, we also dis-
covered that, compared to the schema by Beller et al. (2014), new emerging change types
characterize MCR activities and that novel tools are needed to support such activities.

@ Springer



4846 Empirical Software Engineering (2020) 25:4833-4872

Table 5 Code Review chAnges Model (CRAM) - Part 11

ARTIFACT AcCTIVITY

Other Changes (0.1) Commit Message: Changes in the commit mes-
sage of a submitted patch. Mostly related to wrong de-
scription of the change or not capturing all changes.

Changes not typically found in
source-code files (.java, .py, .cpp (0.2) Continuous Integration / Continuous Deliv-
etc.) which are nonetheless essen- | ery configurations: Changes to configuration files con-
tial to the runtime of a project cerning the Continuous Integration or Continuous Deliv-
ery pipeline/setup.

(0.3) Automated Static Analysis Tools configura-
tions: Changes in the configuration of Linters, Check-
ers, Recommenders used in the project (e.g., Checkstyle,
PMD, FindBugs etc.)

(0O.4) Language or Framework specific: Changes to
files native to the used programming language. For exam-
ple MANIFEST for Java.

(0O.5) External Software Documentation: Changes to
the external Software Documentation files

(0.6) Runtime Configurations: docker-configs, ansible
playbooks, delivery configs etc.

(0.7) Other: Includes changes to XML, Scripts,
README files, HTML files and Version Control

As reported in Table 4, CRAM includes MCR changes related to the structure, documenta-
tion and style of the test and production code. Other changes are performed to fix issues related
to the way existing or added functionalities are implemented in the patch under review, such as
interface (issues related to the communication with a different part of the system), the logic of
the code, its resource allocation/consumption, wrong/incomplete checks of values assigned to
code elements, and different types of defects. In addition, in Table 5 are reported further MCR
change types related to the modifications made by developers in non-source-code artifacts
which are, in some cases, also essential to the runtime of a project: (i) configuration files
related to the continuous integration and continuous delivery processes, and static analysis
tools; (ii) language or framework specific files; (iii) changes to external software documen-
tation; (iv) other files related to runtime configurations (e.g., Docker files); (v) committed
files; and (vi) other artifacts (e.g., README files).

Documentation (D), Style (S) and Structural (STR) changes/issues are, as reported
by 60% of our study participants, very recurrent in both traditional and MCR. According
to the schema by Beller et al. (2014), most documentation changes are needed to fix issues
concerning (ii) missing, wrong, incomplete Javadocs and inline comments (D.1); and (ii)
inconsistent naming applied in documentation and code (e.g., Variables) of the system (D.2).
During the inception phase, we also found that developers in MCR also carefully review and
change, when needed, the license headers (D.3) and fix potential typos (D.4) in either inline
comments or Javadocs. Interestingly, these MCR change types (D.3-4) were not present
in the schema by Beller et. al.. Our study participants also claimed that “fools like PMD,
Checkstyle already detect some of such problems (D.4)”, e.g. Typos, “but are not always
so accurate”. In addition, reviewing and/or updating the header of Java classes represent an
“important task to avoid licensing issues” (Vendome et al. 2018) and avoid that the software
documentation is in general “not updated or incomplete”.

Coding Style best practices concern the way the code is written and appear to developers,
e.g., Code indentation (S.2), the usage of whitespace (S.5), and blank lines (S.3). We found,

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4847

during the inception phase, changes not present in the schema by Beller et al. (2014) and
related to the removal of commented out code as well as TODO and FIXME comments
(S.7). However, also in this case, our study participants claimed that “fools for this already
exists, like PMD and Checkstyles” (Panichella et al. 2015).

Structural defects require alternative implementations and/or refactoring operations in
both test and production code. As reported by Beller et al. (2014), (i) re-implementation
changes (STR.1-5) can involve the need to remove or modify semantic dead code (STR.2)
and semantic duplications (STR.1) as well as the need to improve the code according
to coding conventions (STR.4), to remove function calls to deprecated functions (STR.3)
or to facilitate the evolvability (STR.5) of the code under review; instead, (ii) organiza-
tional changes (STR.10-13, STR.15-16) are related to defects that can be fixed by applying
structural modifications (e.g., Refactorings) to the software. Further re-implementation or
organizational changes/issues (STR.6-8, STR.9 and STR.17), not included in the schema
by Beller et. al., are related to (STR.6) strings badly composed, (STR.9) wrong/missing
imports, and bad testing practices (e.g., Low test coverage, inappropriate tests, the need
of additional tests, etc.). Complementarily, our participants highlighted as additional CR
change type the need to add methods for (STR.7) logging results or errors. Moreover, they
also reported that code reviews often result in (STR.17) architectural changes to the sys-
tem, like splitting an interface into two distinct interfaces, introducing abstractions, or the
inclusion of design patterns.

As we can see from Table 4, during the inception phase, we found that developers in
MCR try to address (R.5) concurrency problems, while in the taxonomy phase, developers
strongly highlighted the relevance of (L.4) performance, (R.2-3) resource consumption, and
(R.4) security issues (e.g., They claimed that reviewers in MCR should provide answers to
questions like “have added a performance bug in my change? - have I added a security
bug in my change?”). This finding is interesting because in previous work by Bacchelli and
Bird (2013), security and performance aspects were not relevant aspects to discuss in MCR.
As reported by a cloud developer that participated in the study, this result can be explained
by the emerging need to ensure in MCR “the quality of [...] cloud applications, in terms of
performance, security and software quality” (Martin and Panichella 2019).

The new emerging MCR changes (or issues) concerning test and production code are
related to the need to fix (i) licensing and security issues, (ii) strings badly composed
and wrong/missing imports; (ii) potential typos in either inline comments or Javadocs;
(iii) the removal of commented out code; (iv) the application of bad testing practices;
and finally, the handling (iv) of architectural changes to the system.

Changes in non-source-code artifacts reported in Table 5 represent the set of MCR
change types that were not present in the schema by Beller Beller et al. (2014) and emerged
in both inception and taxonomy phases. Some of the emerged problems are related to
sub-optimal configuration of continuous delivery and integration files (O2) that led to
sub-optimal instantiations of the continuous delivery (CD) and continuous integration (CI)
pipelines. Further MCR change types are related to the modifications made by developers
on (i) configuration files of (0.3) static analysis tools (SATs) to improve their performance
and effectiveness; (ii) (0.4) language or framework specific files; (iii) O.5) external soft-
ware documentation; (iv) files responsible for O.6) runtime configurations (e.g., Docker
files); (v) O.1) commit messages to improve their quality; and (vi) O.7) other artifacts (e.g.,
Scripting and README files). The aforementioned findings are also very interesting, since,
differently from previous research (Bacchelli and Bird 2013), reviewers in MCR also care

@ Springer



4848 Empirical Software Engineering (2020) 25:4833-4872

about CD and CI topics and practices, something that needs further investigations in future
research.

The new emerging MCR modifications related to non-source-code artifacts concern
changes on continuous delivery and integration configuration files, files for runtime
configuration, static analysis tools configuration files, and other non-source-code
artifacts (e.g., Commits and external software documentation).

In summary, it is interesting to highlight how most of the novel MCR change types
(highlighted in BLUE or RED) in Table 4 and Table 5 are related to changes or issues
that developers perform or have to deal with because of the availability of new emerging
development technologies (e.g., Cloud-based technologies) and practices (e.g., Continuous
Delivery and Continuous Integration). For instance, the management of CD/CI pipelines
(Duvall et al. 2007; Duvall 2010; Zampetti Fiorella 2020) and SATs configurations (Bal-
achandran 2013; Panichella et al. 2015) represent an important task to improve both
developer productivity and development practices in modern software systems (Humble and
Farley 2010; Savor et al. 2016; Balachandran 2013; Vassallo et al. 2018). This has pushed
developers to perform additional activities or tasks during code MCR, with the aim at
reviewing, re-thinking, and changing software artifacts impacting the CD and CI processes
as well as the effectiveness/performance of static analysis tools (Vassallo et al. 2018).

Most of novel MCR change types composing CRAM are related to changes or issues
that developers perform or have to deal with because of the availability of new emerg-
ing development technologies (e.g., Cloud-based technologies) and practices (e.g.,
Continuous Delivery and Continuous Integration).

In the next section, we discuss the contemporary developers’ automation needs to support
the activities composing CRAM.

3.2 RQ;: Emerging automation needs in MCR
3.2.1 Emerging Developers’ Automation Needs in MCR

Table 6 reports the changes that our participants consider the most frequent during MCR,
Table 10 reports the feedback that developers would like to receive from reviewers, and
finally, Table 9 summarizes the feedback that they actually receive in code reviews. By
looking at Table 6 it is possible to observe that, according to our study participants, the most
frequent change topics occurring in MCR are related to the structure (e.g., Re-factorings,
and reorganizations) of test and production code and the software documentation. Other
MCR changes types (e.g., Changes in the logic and the style of the code of the patch under
review) rarely occur, covering each of them less than 8% of the MCR topics, and all together
correspond to around 27% of the total MCR changes performed to a patch.

As mentioned previously, in Table 4 and Table 5 we discuss the MCR change types
that emerged during our investigation, while in Table 6 we show the changes that survey
participants considered occurring frequently during MCR. To investigate the extent to which
there is any inconsistency between the actual change distribution and participants’ mental
model in Table 6, we selected the 211 review commits and analyzed them manually. Table 7
allows to visually observe whether there is a match between the analyzed MCR changes and
the changes that, in our first survey, the participants considered occurring frequently during
peer reviews and reported this in the paper. Results in the table show that, consistently

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4849

s Q0 et (S aresory | Count | %

on developers judgment Structure 126 48_4 %
Documentation 64 24.6%
Logic 18 7.1%
Style 19 7.1%
Resource 17 6.7%
Interface 9 3.6%
Check 3 1.2%
Larger Defects 3 1.2%
Other Changes 1 0.2%
Total 260 100%

to Table 6, most frequent changes occurring in the observed MCR commits are related
to the structure (e.g., Re-factorings, and reorganizations) of test and production code and
the software documentation. Interestingly, Other Changes account for 15% of all changes,
which represent the top-3 most frequent change type occurring in MCR. Other categories
are rarely happening, consistently with what is reported in Table 6.

In Table 6 we discuss the MCR change types that the developers consider the most fre-
quent during MCR, while in Table 7 we report the one that are the most frequent in the 211
manually analyzed commits. To complement the results reported in these tables, in a second
survey, we surveyed 14 additional participants (we invited 20 participants in total consid-
ering our direct contact lists, and 12 developers and 2 researchers actually were able to
participate in the study), not involved in the aforementioned survey, to qualitatively assess
the relevance and completeness of the identified MCR change types composing CRAM.
Among our participants, all of them have > 4 years of development experience and use/used
advanced tools for supporting MCR (e.g., Gerrit, static analysis tools). To perform such an

Table 7 Frequent change topics occurring in the 211 MCR manually analyzed commits. Note that in the
table, the second column has a total count of 632, as 623 are the files changed in the 211 MCR commits

Sub-category MCR Changes Count %
Structure 251 40%
Documentation 149 24%
Other Changes 93 15%
Logic 38 6%
Style 37 6%
Resource 35 6%
Interface 19 3%
Check 6 1%
Larger Defects 4 1%
Total 632 100%

@ Springer



4850 Empirical Software Engineering (2020) 25:4833-4872

evaluation, we shared to the participants the MCR change types composing the designed
CRAM and clarified the meaning of them. After this preliminary clarification/explanation
stage, we asked the participants to rate the relevance and completeness of the identified
MCR change types composing CRAM. From Table 8 and Fig. 2 it is possible to observe that
relevance of MCR change types does not match the frequency of reported changes in Table 6
and Table 7. Specifically, the top relevant MCR change types are Logic, Structure, Other
Changes, and Documentation, with average Likert-scale intensity > 3.14. Other problems
are considered less relevant by our participants, with Check MCR change type considered
as the least important. In terms of CRAM completeness, we can observe, from Table § and
Fig. 2, that most participants consider most of MCR change types exhaustive, with Likert-
scale intensity always > 4.43. From the qualitative comments of participants, we learned
that “the elements in ”Other changes” are in a high-level complete, but they can be detailed
in future investigations”. On the other side, other participants are “pretty satisfied by the
completeness of the taxonomy”, however they “think that companies developing software
in other fields (e.g., E-Health) could present rather different MCR challenges”.

The results in Table 9 highlight how the feedback developers receive from reviewers are
highly consistent with the changes they actually perform (Table 6). However, looking at both
Table 9 and Table 10, it is also evident that the feedback developers receive from reviewers
are often not satisfactory, i.e., rarely meet all the current expectations of developers during
MCR, as reported by one of our study participants: “many of the problems we face during
code review are related to the miss-match between expectations and outcomes of a code
review [...] reviewers provide feedback that are not exhaustive or timely reported. This often
makes code reviews unproductive”. Interestingly, feedback on structural and documenta-
tion aspects are less prevalent in Table 10 than in Table 9, while comments related to the
Functionality (e.g., Performance and resources) and Other Changes categories are, nowa-
days, more important for developers. For example, 8% of participants stated that they would
like to receive CD/CI and SATs configuration comments, while only 1% of them receive
such feedback. This general result highlights the new emerging activities and expectations
characterizing MCR, and that more exhaustive feedback from reviewers is required (Fig. 3).

Envisioned approaches. Our survey participants provided more than 400 comments on
the automation needs (Q2.1-7) characterizing MCR. Hence, for reason of space, in Table
11 we summarize the top-most recurrent solutions/approaches proposed by the developers
(Q2.1-7), with a particular focus on the new MCR change types emerged in the empiri-
cal investigation of RQ;. Table 11 summarizes the approaches/solutions (Q2.1-7) that are
needed to support developers in contemporary MCR activities. We clustered the proposed

Table 8 Average Perceived Relevance/Completeness of change topics occurring in MCR. Likert-scale inten-
sity from 1 (Low) to 5 (High) was used to measure perceived relevance and completeness of MCR change

types

Sub-category Avg. Perceived Relevance Avg. Perceived Completeness
Logic 4.50 4.57

Structure 4.07 5

Other Changes 3.36 4.43
Documentation 3.14 5

Larger Defects 2.36 4.71

Resource 2.36 4.86

Style 1.57 5

Interface 1.50 4.79

Check 1.00 4.79

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4851

T T T T T T T T
Logic Structure Other Changes Documentation Large Defects Resource Style Interface Check

Fig.2 Average Perceived Relevance of change topics occurring in MCR

solutions in column three of Table 11, as developers often referred to similar types as
developers often referred to similar types of automated solutions.

The most frequent MCR categories for which further automated approaches would be
needed are Documentation (56), Style (40), Structure (29), Functionality (19), and Other
Changes (9). In particular, 46 comments have been provided by developers for the Docu-
mentation category. For this category, developers believe that to facilitate MCR would be
very helpful to conceive advanced automation able to detect and fix issues related to the
incomplete/inconsistent documentation with respect to the source code. Researchers in
the literature are recently exploring this problem (Zhou et al. 2017), but still no automa-
tion was tested in the context of code reviews. In other cases, our participants would need
approaches that generate directly the required documentation/comments (including the
license header), integrating into the automation also the detection/fixing of potential (also

Table9 Q1.5: Feedback received in MCR

Category Ranking Sub-categories

Documentation | 20 Cases (21.1%) | Naming (1), Typos (1), no cate-
gory (18)

Functionality 26 Cases (27.4%) | Check (2), Interface (1), Larger
Defects (4), Logic (11), Perfor-
mance (2), Resources (2), Secu-
rity (3), no category (1

Other 4 Cases (4.2%) -

Other Changes 1 Case (1.1%) -

Structure 28 Cases (29.5%) | Architectural Changes (4), Com-
plex Code (3), Duplication (1),
Standard Coding Conventions
(3), Testing (4), no category (13)

Style 16 Cases (16.8%) no category

Total 95 100%

@ Springer




4852 Empirical Software Engineering (2020) 25:4833-4872

Table 10 Q1.4: Expected feedback in MCR

Category Ranking Sub-categories

Documentation | 14 Cases (11.4%) | no sub-category

Functionality 45 Cases (36.6%) | Check(3), Completeness (2),
Data Resource Manipulation

3), Interface (4), Large Defects
3), Logic (12), Performance (7),
Resource (7), Security (4)

Other 7 Cases (5.69%) no subcategory

Other Changes | 9 Cases (7.3%) Automated Static Analysis Tools
configurations (3), Continuous
Integration/Continuous Delivery
configurations (2), Runtime Con-
?g)urations (2), no subcategory
2

Structure 34 Cases (27.6%) | Architectural Changes (5), Com-
plex Code (7), Logging (1), Du-
plication (1), Standard Coding
Conventions (2), Testing (6), no
subcategory (12)

Style 14 Cases (11.4%) | no subcategory

Total 123 100%

grammar) typos. More fine-grained recommender systems are expected for both Docu-
mentation and Style categories, and are related to renaming recommendations, and the
identification and fixing of coding style issues of the patch under review. However, some
developers also reported that tools like Checkstyle could be sufficient to handle some of the
style issues.

Regarding structural MCR changes, developers would be interested in refactoring rec-
ommendations for both test and production code. For instance, a developer mentioned in
the survey the need for refactoring recommendations “of tests not based only on coupling

T T T T T T T T T
Logic Structure Other Changes Documentation Large Defects Resource Style Interface Check

Fig.3 Average Perceived Completeness of change topics occurring in MCR

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4853

Table 11 RQ2: Developers’ Envisioned Solutions

Category Detailed Change Abstracted Solution
31 - Automatically detecting and fizing
documentation issues (documentation incomplete
- General (32) : ; ;
y or inconsistent with the source code)
- Comments (3) . g X
. 4 - Generation and replacement of inconsistent
Documentation (56) ]
documentation/comments
. 12 - Renaming suggestions based on standard
Naming (12) . .
naming used in the codebase
Typos (5) 5- Am%omatic spell checking (also grammar)
and fixing
License Header (1) 1 - Generating License Header
27 - Evaluate Style Consistency with the style
adapted by the team and auto-fix the style issues
Style (40) . o i .
13 - Use existing tools for these issues, e.g.,
PMD and CheckStyle
- Refactoring (8) 19 - Detection of duplicated, unused, (semantic)
- Duplicated, (Semantic) dead, and deprecated code
Structure (29) Dead, Unused, and 8 - Refactoring suggestions for test and production
Deprecated Code (19) code
- Architecture violations (2) 2 - Detect architectural violations
- Performance (4) 12 - Auto-fixz of performance, resource issues
Functionality (19) - Resource (11) 5 - Detect security issues
- Security (4) 3 - Performance and resource analysis
- CD/CI configurations (4) 4 - Recommend/improve CD/CI configurations
Other Changes (9) - SATs configurations (2) 3 - Recommend/improve runtime configurations
- Runtime configurations (3) | 2 - Recommend/improve SATs configurations

concepts but also encapsulating the need of having explicitly separated testing performance
from functional testing, this to facilitate for example the test of “different properties of
microservices of a cloud application”. Moreover, another participant mentioned the need
to have timely feedback about the “test/code smells (bad design choices) added” in the
patch under review, e.g., “feedback auto-generated based on test/code smells notions,
providing an overview on overall test/code quality and readability”. 1t is interesting to
observe also that, automated tools are also needed for the detection of duplicated, unused,
(semantic) dead, deprecated code (“highlight dead code, unreachable code, and suggest
refactoring options [...] for duplicates”), and architecture violations (“did I have introduced
imperfections at the level of Architecture?”).

As summarized in Table 11, there is a huge demand from developers of tools able to
detect (and possibly generate patches for fixing) performance, resource consumption and
security issues. For instance, a participant of our study reported: “... a company producing
self-driving cars, in [...] code review will require also to observe potential security and or
testing issues”. Moreover, from the results of RQ;, we observe how most of novel MCR
change types composing CRAM are related to changes or issues that developers perform or
have to deal with because of the availability of new emerging development technologies and
practices. This also influenced the type of approaches that developers would need for the
category Other changes: tools for recommending, improving, monitoring CD/CI, runtime
and SATSs configurations.

In Table 11, we discuss the MCR tools that developers consider important to develop to
support MCR activities. To complement the results reported in this table, with a second sur-
vey, we surveyed 14 additional participants (the same involved in the evaluation of CRAM

@ Springer



4854 Empirical Software Engineering (2020) 25:4833-4872

change types relevance and completeness), to qualitatively assess the criticality (or rele-
vance) and feasibility to implement the solutions identified in Table 11. To perform such an
evaluation, we shared to the participants the MCR change types composing the designed
CRAM and the identified solutions to automate them, thus clarified the meaning of them.
After this preliminary clarification/explanation stage, we asked the participants to rate the
criticality and feasibility to implement the identified solutions in Table 11. Table 12 report
the solutions identified in Table 11, highlighting, for each solution, its id, the description,
the level of criticality for MCR, the feasibility to implement it, and who of the partici-
pants in MCR benefits from it. From the table the most critical solutions to implement
to support MCR are S1-2 (Documentation), S5 (License Header), S11 (Auto-fix of perfor-
mance, resource issues), S12 (Detect security issues), and S14 (Recommend/improve CD/CI
configurations). Other solutions are considered less relevant by our participants, with S4
(Automatic spell checking and fixing) and S8 (Detection of duplicated, unused, dead, and
deprecated code) considered as the least important. In terms of feasibility to implement
such solutions, most participants consider S1-2 (Documentation), S3 (Renaming sugges-
tions based on standard naming used in the codebase), S4 (Automatic spell checking and
fixing), and S8 (Detection of duplicated, unused, dead, and deprecated code) with Likert-
scale intensity always > 3.93. This means that only S1-2 (Documentation) solutions are
considered enough relevant and, at the same time, feasible to implement.
From the qualitative comments of participants, we learned that “Some of the problem here,
header, doc, renaming, etc. could be easily fixed and grouped together. Asats (Automated
static analysis tools) is by far the one in configuration that can be addressed”. From the
other side, other participants claim that “Resourse and security are the most difficult, there
rest could require work, but still can be addressed”, however, they also believe that “we are
far from making automated configurations”.

Recommendations, techniques, and data. Tables 13, 14 and 15 report the techniques
to adopt, the MCR data to analyze and the recommendations to follow to implement the
approaches/solutions described in Table 11. We got further concrete recommendations from

Table 12 RQ2: Criticality and Feasibility of Proposed Solutions

ID Solution | Abstracted Solution Criticality Feasibility | Used by

S1 Automatically detecting and fixing docu- 3.71 4.36 Author/Reviewer
mentation issues

S2 Generation and replacement of inconsis- 3.79 4.07 Author/Reviewer
tent documentation/comments

S3 Renaming suggestions based on standard 1.93 4.00 Author
naming used in the codebase

S4 Automatic spell checking and fixing 1.64 3.93 Author

S5 Generating License Header 3.57 3.07 Author

S6 Evaluate Style Consistency with the style 2.21 3.36 Author
adopted by the team and autofix the style
issues

S7 Use existing tools for these issues 2.50 2.50 Author

S8 Detection of duplicated, unused, (seman- 1.43 4.29 Author/Reviewer
tic) dead, and deprecated code

S9 Refactoring suggestions for test and pro- 2.64 2.79 Author
duction code

S10 Detect architectural violations 2.57 2.21 Reviewer

S11 Auto-fix of performance, resource issues 3.79 2.07 Author

S12 Detect security issues 4.50 2.36 Author/Reviewer

S13 Performance and resource analysis 2.43 2.36 Author

S14 Recommend /improve CD/CI configura- 4.00 3.00 Author/Reviewer
tions

S15 Recommend /improve runtime configura- 3.07 2.14 Author/Reviewer
tions

S16 Recommend/improve SATs configura- 3.29 3.64 Author/Reviewer
tions

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4855

Table 13 RQ2: Developers’ Recommendations

Recommendations
Tasoneny: Kghlavel Learn fro.m past data Finc? patterns | Check against
(code review changes) | (antipatterns) codebase
#mentions by participants 68 134 11
Documentation 0 7 3
Functionality 18 19 0
Other 25 54 4
Other Changes 3 27 2
Structure 14 16 1
Style 8 11 1

Table 14 RQ2: Developers’ Techniques

Taxonomy high-level
#Mer.xt'nons by | b i Functionali Other | Other Changes | Structure | Style
participants
Machine Learning 48 1 8 18 9 5 4
(predictions)
NLP 31 4 7 10 5 2 3
(Text Mining)
Data 24 1 3 10 5 3 2
Mining
Techni i
ques Static Code 35 3 8 8 8 5 3
Analysis
Dynamic Code 18 1 7 4 3 2 1
Analysis
Summarization ° 0 5 2 1 1 0
Techniques
Reg.ez ° 1 0 4 2 0 2
parsing
Manual 4 0 0 2 1 0 1
Analysis
Literature ° 0 0 0 0 0 0
(state of the art)
Integrate 1 9 1 4 2 1 1
into IDE
Use ezisting a7 3 ) 22 11 2 9
Tools
Rely on 3 0 3 0 0 0 0
Compiler

Table 15 RQ2: Developers’ Data

Taxonomy high-level
# m-eizntwns by Documentation | Functionality | Other Other Structure | Style
participants Changes
Metrics 38 5 13 10 2 4 4
Change 24 1 3 10 5 3 2
metrics
Dat
_ES Code 16 0 0 8 4 3 1
metrics
OO-metrics 4 0 0 2 1 1 0
Natural 0 0 0 0 0 0 0
language
Code 9 2 3 2 1 0 1
documentation
No data 126 14 12 14 43 21 22
specified

@ Springer



4856 Empirical Software Engineering (2020) 25:4833-4872

developers. We decided to not stress too much the discussion on this part, as not surpris-
ingly findings we achieved from the analysis of the developers’ recommendations (they are
available in the replication package).

Table 13, most participants suggest studying potential patterns and anti-patterns charac-
terizing Documentation changes, and checking for inconsistencies between documentation
and code. Similar recommendations are made for non-source code files modified according
to the Other Changes high-level category.

For what concern Documentation issues, most developers recommend to perform a man-
ual analysis to investigate patterns and anti-patterns and change/documentation metrics,
then leverage NLP techniques or machine learning techniques (in combination with static
code analysis) to model and find/predict incomplete or inconsistent documentation with
respect to the source code.

Our participants recommended for Other Changes issues (i) to study patterns and anti-
patterns characterizing non-source code artifacts from historical data, then (ii) observe with
data mining and machine learning techniques the impact of such anti-patterns in the devel-
opment process and practices (e.g., Trends in change/code metrics, build failures, etc.), and
finally (iii) leveraging NLP and summarization techniques (Haiduc et al. 2010; Moreno and
Marcus 2018; Panichella 2018) to provide more context about the detected issues, and rec-
ommending the changes to perform to fix them. For other categories in our taxonomy, we
also received many interesting recommendations, and it is interesting to observe that most
participants mentioned the need to implement solutions based on customized approaches
leveraging machine learning, NLP and data mining techniques modeling the problems with
the notion of anti-patterns, and change metrics. More important, as reported in Table 12,
they are also the most critical and feasible to implement. Thus, in the next section, we dis-
cuss the feasibility and the potential of using NLP-based techniques namely summarization
techniques, to facilitate MCR activities.

3.2.2 The Role of Summarization Techniques in MCR activities

It is interesting to observe that for all categories in Table 14 none of the participants men-
tioned the possibility to use an existing technique from the literature, but rather implement
solutions based on customized approaches leveraging machine learning, NLP and data min-
ing techniques modeling the MCR problems with the notion of anti-patterns, and change
metrics. For instance, as reported in the previous section, one of the participant mentioned
the need to have timely feedback about the:

“... test/code smells (bad design choices) added” in the patch under review, e.g., ‘“feed-
back auto-generated based on test/code smells notions, providing an overview on
overall test/code quality and readability”.

In this context, it is important to mention that open source tools for MCR management
such as Gerrit, allow adding inline comments to source or test code, so that authors of
code under inspection can actually improve it more easily.’> We argue that summarization
techniques (Panichella et al. 2016; Panichella 2018) can complement current techniques
related to the analysis and detection of test smells (Deursen et al. 2001; Palomba et al.
2016; Tsantalis and Chatzigeorgiou 2009) in the context of MCR, thus enhancing such a

3 See for example the Gerrit Review UI https://gerrit-review.googlesource.com/Documentation/user-review-
ui.html

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4857

feature. In particular, we believe that combining test/code smells analysis (Tsantalis and
Chatzigeorgiou 2009; Deursen et al. 2001; Palomba et al. 2016) and summarization tech-
niques (Moreno and Marcus 2017) can help developers to have a better awareness of test
suites quality, with inline comments automatically generated by tools, instead of humans
(the reviewers). In the next section, we qualitatively validate/evaluate the feasibility of this
research direction, proposing a trivial approach to address this challenge.

3.2.1.1 AN APPROACH FOR UNIT TESTS QUALITY ASSESSMENT IN MCR

In this section, we elaborate an approach designed to automatically generate test case
summaries (Moreno and Marcus 2017; Panichella et al. 2016) of the portion of code of each
individual test that is affected by structural (Tsantalis and Chatzigeorgiou 2009; Deursen
et al. 2001; Bavota et al. 2015) and textual (Palomba et al. 2016) smells. This approach
can be used to generate MCR comments automatically and integrated in MCR management
tools such as Gerrit. We notice that existing approaches on code or test summarization (Srid-
hara et al. 2010; Moreno et al. 2013; McBurney and McMillan 2014; De Lucia et al. 2012;
Panichella et al. 2016) generate static summaries of the source or test code without taking
into account which part of the code is affected by test/code smells, and these techniques
have been never used in the context of MCR activities. The approach we designed consists
of three steps, elaborated later in this section: (1) Smell Detection, (2) Summary Generation,
and (3) Description Augmentation.

SMELL DETECTION

In this step, the proposed approach takes as input the production code and the test
code of a given project and detects (a task performed by DECOR (Moha et al. 2010) and
TACO(Palomba et al. 2016)) the smells affecting the analyzed project. During the detection
phase, DECOR first finds the list of files that are to be examined. These are either all JAR
files or all fest class files of the project. After this preparation step, DECOR goes through
the list of detected classes and examines the model for anti-patterns using a set of structural
rules and metrics (Moha et al. 2010). Differently from DECOR, which analyzes a system
at the structural level, TACO detects smells in the code by leveraging techniques based on
textual analysis. TACO detects smells by evaluating textual information that is contained in
various elements of the source code and by computing the textual similarity between such
code elements. It is important to mention that in our preliminary evaluation, we focus on
the generation and qualitative evaluation of summaries related to two types of smells (Moha
et al. 2010):

- LONGPARAMETERLIST: a method with more than 3-4 parameters. This smell might
be introduced after the merging of several types of algorithms in a single method and
can be fixed with various refactoring operations, e.g., ReplaceParameterWithMethodCall,
IntroduceParameterObject (Fowler 2002). - LONGMETHOD: A method (or a test method)
contains too many LOC. Generally, any method longer than ten lines of code is a symptom
of a bad design choice. This smell can be fixed with various refactoring operations, e.g.,
ExtractMethod, IntroduceParameterObject., etc. (Fowler 2002).

SUMMARY GENERATION

The proposed approach generates natural language phrases for describing the underlying
portion of the code affected by smells by implementing an approach inspired by the well-
known Software Word Usage Model (SWUM) proposed by Hill et al. (2009). The basic idea
behind the SWUM is that actions, themes, and secondary arguments can be derived from an
arbitrary portion of test and production code, this information can be used to link linguistic
information to programming language structure and semantics. For instance, method sig-
natures (including method name, type, and parameters) usually contain verbs, nouns, and
prepositional phrases that can be expanded in order to generate readable natural language

@ Springer



4858 Empirical Software Engineering (2020) 25:4833-4872

sentences. For example, verbs in method names are considered by SWUM as the actions
while the theme can be found in the rest of the name. The descriptions are generated, as done
in previous work (Haiduc et al. 2010), with natural language templates (Haiduc et al. 2010)
(shared in our replication package) that are augmented by the information that is gathered
from the smell detection process.

Smell Description. The summaries generated by our approach are composed of the
smell specifications and categorizations by Fowler (2002), Deursen et al. (2001), Méntylad
et al. (2003) and Meszaros (2010). The long smell descriptions are used at the class level,
while short smell descriptions are for method-level comments. The smell descriptions have
the purpose of highlighting the design problems to the developer, by providing a detailed
description of the detected smells. We believe that this can facilitate developers during the
test/code quality assessment steps of MCR, thus, spotting the potential problems caused
by the smell as well as the localization of the cause of the smell. The shorter method
descriptions further assist in localizing the cause of a smell.

Quantitative Description. We provide to the developer with quantitative descriptions
related to the occurrences of the smells in the project. First of all, our approach reports
how dominant a type of the smell is in the test class compared to all types of smells
detected in that test class, this according to the following formula: Dy, = 100 x

smellOccurrences Of Typed hen it provides information on how often this smell is frequent

allSmell Occurences 10 InProi
compared to all the smells found in the project: Fyen = 100 x e écc'lc;er"eiffm';ng;/:ﬁfa.

Finally, it displays how frequent is this smell in the test class compared to all the smell
occurrences in the project: Cypir = 100 x S2eliOccurencesof tapetlyClass

The following example shows the template we used to display to developers the
quantitative description:

“This method accounts/These methods account for < Dgyenn > % of all found problems
in this test class. This smell represents < Fge11 > % of all found problems in the project
with < Cgpmetr > % occurring in this test.”

DESCRIPTION AUGMENTATION

In this final step, the original JUnit test classes are enriched with the above-generated
descriptions, which are aggregated at the test class and test method-levels.

Test Suite Level Summaries consist of four elements: a) a description concerning the
found smells; b) a detailed description of the smell(s); ¢) and a quantitative description of
the frequency of the smell in the test class and the whole project. Figure 4 displays part of the
smell descriptions generated for the class UtilCacheTest from Apache OFBiz. The different
elements of the descriptions outlined above are highlighted with appropriate colors.

Test method-level Summaries. method-level comments are used to narrow down the
root of the problem. Those comments are generated for Method Smells, i.e., problems whose
source of the smell is a method. Method descriptions consist of one element, i.e., the short

3]

4|

51

6] c) * This method accounts for 50% of all found problems
71 * in this test class. This smell represents 28.85%

8| * of all found problems in the project with 6.67%

9l * occurring in this test.

101 ok /

Fig.4 Part of Test Suite Level Summaries for UtilCacheTest.java

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4859

2|
3|

Fig.5 Part of Test method-level Summaries (for UtilCacheTest.assertKey())

description of the smell, observed in Fig. 5, which presents the method descriptions for
UtilCacheTest::asserKey() from Apache OFBiz.
3.2.1.2 QUALITATIVE EVALUATION OF THE APPROACH IN THE CONTEXT OF MCR
Evaluation. To evaluate the (perceived) usefulness of the proposed approach we
formulated the following question:

—  RQ2i Are test case summaries enriched by test smell information considered useful by
developers? Our objective is to investigate whether test smell summaries are considered
useful by developers to better understand test case quality during MCR activities.

Study Context. The context of this exploratory study consists of (i) objects, i.e., Java
classes and Test Cases extracted from a Java open-source project, and (ii) participants
analyzing the selected objects, i.e., professional developers, researchers, and students.
Specifically, the object system is Apache OFBiz *. From this project, we selected four Java
classes: (i) FlexibleStringExpander that expands String values that contain Unified
Expression Language syntax; (ii) TimeDuration, which implements an immutable rep-
resentation of a period of time; (iii) FlexibleMapAccessor that can be used to flexibly
access Map values; and (iv) UtilCache, which consists in a generalized caching utility.
Clearly, we considered also the related test cases:

"FlexibleStringExpanderTests", "TimeDurationTests",
"UtilCacheTests" and "FlexibleMapAccessorTest". We selected the afore-
mentioned Java/test classes since they are non-trivial, but it is feasible to analyze them
within 30 minutes. Moreover, they do not require to examine (too many) other classes in
the project. Table 16 and Table 17 detail the characteristics of the Java/test classes used in
the experiment.

To recruit participants for our study we sent email invitations to developers and
researchers in our contacts list. In total, we sent out 53 invitations (25 researchers and 28
developers). As reported in Table 18, 21 subjects (40%) decided to perform the experi-
ment: 8 were professional developers, 13 were students or senior researchers. Considering
all participants, most (71%) of them had at least 2-5 years (up to 10 years) of prior experi-
ence in software testing and Java programming. Among the 13 involved students or senior
researchers, 5 were Master students, 6 PhD students, and 2 senior researchers.

Experimental Procedure. The experiment was conducted offline, i.e., we have sent via
email to the participants the required experimental material with instructions about the tasks
to perform. During the tasks the participants were guided via Google Forms >, this also to
collect information about the performed activities. The emails, surveys and experimental
material we shared to the participants can be found in our replication package. Specifically,
we send to each participant an experiment package composed by (i) a pre-questionnaire
(to collect information about the profile and experience of each participant), (ii) surveys
with instructions and materials to perform the tasks, and (iii) a post-questionnaire. Before

4 https://ofbiz.apache.org/
3 https://docs.google.com/forms

@ Springer


https://docs.google.com/forms

4860 Empirical Software Engineering (2020) 25:4833-4872

Table 16 Java classes of Apache OFBiz

Class LOC Methods
FlexibleStringExpander 728 51
TimeDuration 399 24
UtilCache 792 58
FlexibleMapAccessor 235 14

the study, we explained to the participants the expected tasks: two code review tasks, each
involving two pairs of Java and test classes.

Tasks assignment. Each participant received two tasks: (i) one task included two Java
class and the two corresponding JUnit test cases (one of them enriched with the test smell
summaries); (ii) the second task consisted of two Java class and the two corresponding JUnit
test cases (one of them enriched with the test smell summaries). To evaluate the usefulness
of the proposed approach, for each task, we provide the summaries to a balanced set of
participants:

— group A (with 10 participants) received the first test class with summaries while for the
second test class the summaries were not provided;

— group B (with 11 participants) received the first test classes without summaries while
the second one was enriched with test case summaries.

Tasks description. Before starting the experiment, each participant filled a pre-study
questionnaire to collect information about their programming and testing experience. After
filling the questionnaire, they could start performing the first task by relying on the
workspace (provided via email) containing the required project data (i.e., the Java and test
classes). The stated goals were (i) to inspect the test cases, and (ii) to detect, with a special
focus on the removal of LONGPARAMETERLIST and LONGMETHOD smells. To facilitate
this task we provided a document (included in the replication package) describing the notion
of test/code smells, the types of smells potentially affecting test cases and the recommended
refactoring operations to remove them.

In the instructions, we accurately explain that the generated JUnit test cases need to be
maintained and updated according to the provided notion of test/code smells. Hence, partic-
ipants were asked to read the available test suite and to change the test cases to (eventually)
remove the detected test smells. For each pair of Java and test classes participants were
instructed to spend no more than 30 minutes. In total the expected duration of the experi-
ment is a bit longer of two hours, including the completion of the two tasks and the filling
of all questionnaires.

The participants had the possibility to finish earlier each task if they believed that all
smells were detected. After the experiment, we asked the subjects to fill a post-experiment
survey. We used it for collecting qualitative insights and feedback.

Table 17 Test cases of Apache OFBiz

Class LOC Tot. Test Smells LongParameterList LongMethod
FlexibleStringExpanderTests 332 2 1 1
TimeDurationTests 177 2 1 1
UtilCacheTests 429 2 1 1
FlexibleMapAccessorTest 189 2 1 1

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4861

Table 18 Experience of Study Participants

Programming Exp. Absolute # Testing Exp. Absolute #
5 months-2 years 3 (14.30%) 5 months-2 years 6 (28.60%)
2-5 years 8 (38.10%) 2-5 years 6 (28.60 %)
5-7 years 2 (9.50%) 5-7 years 3 (14.30%)
7-10 years 6 (28.60%) 7-10 years 4 (19.00%)
> 10 years 2 (9.50%) > 10 years 2 (9.50%)
= 9 (100%) 9 (100%)

Research Method. At the end of each task the participants filled the post-task surveys
while, after the whole experiment, they filled also the post-experiment questionnaire, pro-
viding us information about the perceived usefulness and relevance of the provided test
smell summaries during the performed MCR tasks.

Perceived test cases summaries usefulness and comprehensibility. At the end of the
experiment, we asked specific questions to our study participants with the aim to inves-
tigate the perceived comprehensibility and usefulness of provided summaries during the
performed code review tasks. It is important to mention that the majority of participants
believe that the tasks were reasonably difficult to perform (95% of participants) but they
had enough time to complete them (71.40% of participants).

As reported in Table 19 the participants evaluated (in Q1 — 3) the comprehensibility of
descriptions provided by our approach using a Likert scale intensity from very-low to very-
high. Results of Q1 highlight that 81% of participants believe that in general, the provided
descriptions are easy to read and understand. Moreover, when asking the same question
regarding descriptions at the test method and test suite levels (Q2 — 3), the perceived read-
ability of generated summaries is high or very high for 90% — 95% of them. Interestingly,
looking at the results of Q4 — 5 (see Table 19), around 95% of developers considered the
test smell summaries (when available) as a relevant source of information to perform the
tasks (Q5) and to be more aware on the analyzed test suite quality (Q4). In addition, around

Table 19 Raw data of the post-experiment questionnaire

Questions Disagree No Strong Agree
Fully Partial Opinion Partially Fully
Ql1: Do you easily understand 0% 9.50% 9.5% 14.30% 66.70%

and relate the generated descrip-
tions with the code?

Q2: Is it difficult to understand 57.10% 33.30% 0% 4.80% 4.80%
the test method-level descrip-

tions?

Q3: Is it difficult to understand 61.90% 33.30% 0% 4.80% 0%

the test suite level descriptions?

Q4: Are the generated Test 4.80% 0% 0% 47.60 % 47.60%

Smell Summaries useful to
be more aware of the gen-
eral test quality?

Q5: The task without 4.80% 0% 9.50% 57.10% 28.60%
the  generated  com-
ments/descriptions is

prohibitively difficult?

@ Springer



4862 Empirical Software Engineering (2020) 25:4833-4872

85% of participants also believe that performing the tasks without the generated comments
would be prohibitively difficult.

RQ2,: According to human judgments the generated test smell summaries are (i)
easy to understand and are (ii) perceived as a useful source of information to
perform code review tasks aimed at improving the test suite quality.

As confirmation of this general finding, we received positive feedback from many par-
ticipants, such as “the combination of class and method descriptions are useful” and “the
descriptions at the class level provide a good overview of the test suite problems.”

Even if the overall judgment of participants was positive, we also got several suggestions
for improvement:

—  The relevance of the test suite and method-level summaries: our participants
believe that it “useful to have the comment in the actual place where the smells
are located” and that “ descriptions at both levels serve important purposes”.
However, they also think that “ it was a bit of a nuisance having to scroll back
to the top to see the Suggestion”.

— Unnecessary or redundant information: developers of our study were con-
cerned by the fact that “the descriptions are a little bit redundant in general”
and that in some cases the “description of the method arguments is unneces-
sary”.

— Information to integrate into the summaries: as important feedback, some
participants suggested to “leverage the extracted static information and
descriptions for guiding the fixing with potential patches” and to provide
“suggestions on how to split the code to reduce the size of the method. For
instance, if some (parameter) values are redundant and may be deduced from
other parameter values”.

4 Threats to Validity

Threats to construct validity concern the design of our study. We advertised the survey
through social media channels and by opportunistic sampling, and thus we could not avoid
the lack of conscientious responses. Also, given the evaluation of the survey, some responses
included imprecisions: in fact, some answers given were superficial or incomplete. In order
to mitigate these threats, ambiguous and incomplete answers were discarded during the eval-
uation of the survey. In particular, in the replication package, folder RQ2_automation_needs/
(files Q2.1-Q2.5_evaluation_survey.xlsx and Q2.6-0Q2.7 evaluation_survey.xlsx), we provide
information about the number of discarded answers.

Another threat to construct validity are the steps involved in the development of CRAM,
as this involved manual classification of code review changes and the qualitative analysis of
the feedback gathered in the survey. Indeed, there is a level of subjectivity involved when
deciding if a feedback or review change belongs to a certain category. To alleviate some of
these threats we based CRAM on three different sources of change type information: (i) man-
ual classification of commits/comments of ten different Java open source projects, where
each of them was double-checked by two authors of the paper (case of disagreements were
further discussed and resolved); (ii) integration of an existing taxonomy from literature; and
(iii) the feedback from developers, which was again reviewed by one other author.

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4863

Threats to internal validity concern factors that could have influenced the results of our
study. A primary threat exists concerning the definition of our taxonomy, as some categories
of review changes could be missing or even overlap with others. To mitigate this threat we
grouped the taxonomy into high and low-level categories in order to minimize the risk of an
incomplete taxonomy.

Threats to external validity concern the generalization of our findings. Indeed, our inves-
tigation of review changes is limited to ten Java open source projects (all within the Eclipse
ecosystem), and 52 developers participants. We alleviated some of these threats by choos-
ing projects with different domains and sizes. However, we also observe that the dataset
consists in projects having in some cases 1 review change because of the filtering step
described in the design section. Thus, for future work, we plan to extend the study with fur-
ther projects, to further limit this identified threat. Moreover, participants in our study have
different backgrounds and most of them have more than 8 years of programming experience
and more than 60% of them have an industrial profile. Finally, the dataset we studied was
limited, consisting of less than 700 review comments obtained from Gerrit, which might
restrict the generalisability of our findings in settings such as other programming languages,
projects and reviews. However, MCR comments, changes and developers’ comments were
complementary sources, combined to provide a more complete view of MCR practices.

5 Related Work

This section discusses related literature investigating modern code review process and
practices, as well as approaches and tools to support code review activities and tasks.

5.1 Modern Code Review Process and Practices

To the best of our knowledge, Rigby et al. (Rigby and German 2006; Rigby et al. 2008;
Rigby 2011) are the first that empirically investigated the use of code reviews in open-source
projects.

In this context, Weillgerber er al.(Weiligerber et al. 2008) found that, in general, the
probability of a patch to be accepted is about 40%, while Baysal et al.(Baysal et al. 2012)
discovered that patches submitted by casual contributors have a higher probability to be
not reviewed compared to the patches submitted by core contributors. Nurolahzade et
al.(Nurolahzade et al. 2009) confirmed such findings and showed that reviewers also try to
identify and eliminate immature patches.

Other work focused on how developers perform code reviews in industrial and FLOSS
projects (Méntyld and Lassenius 2009; Bacchelli and Bird 2013). Méntyla et al.(Méntyld
and Lassenius 2009) analyzed the code review activities of commercial and FLOSS projects,
discovering that the type of defects fixed in code reviews are related in most cases to non-
functional aspects of the software. Bacchelli and Bird (Bacchelli and Bird 2013) studied the
code review process across different teams at Microsoft and found that the available tools
for code review do not always meet developers’ expectations. Our work is, in principle,
very close to the one of Bacchelli ef al. (Bacchelli and Bird 2013), as we are interested in
filling the gap between expectations and outcomes of code review tools, (i) by studying the
types of changes addressed during a code review; (ii) investigating the automated support
that developers need or expect during code review activities.

Recent work studied the relevant social dynamics characterizing the code review process
(Mclntosh et al. 2014; Kononenko et al. 2015; Bavota and Russo 2015; Bosu et al. 2017).

@ Springer



4864 Empirical Software Engineering (2020) 25:4833-4872

First of all, McIntosh et al.(Mclntosh et al. 2014) studied developer participation during

code review and discovered that the degree of freedom that reviewers have impacted both

reviewing environments and software quality. Following this line of research, Kononenko

et al.(Kononenko et al. 2015) confirmed the importance of code review participation,
highlighting that

reviewer workload/experience, and participation impact the quality of the code review
process. Other work identified important aspects impacting software quality during code
review activities, separating them in technical and non-technical factors (Baysal et al. 2016;
Kemerer and Paulk 2009).

Finally, researchers investigated the characteristics of high quality (Efstathiou and
Spinellis 2018; Rahman et al. 2017) or fair reviews (German et al. 2018; Kononenko et al.
2016; Bosu et al. 2015) as well as the actual defects and problems developers actually fix
during code reviews (Mintyld and Lassenius 2009; Beller et al. 2014). A very close work
to ours is the one by Beller et al. (Beller et al. 2014) where the authors manually classified
over 1,400 changes taking place in reviewed code from two OSS projects into a validated
categorization scheme, classifying them into evolvability changes and functional changes.

Our taxonomy is not only more fine-grained compared to the one proposed in previous
work, but

according to our study participants, is more complete. It is important to mention that
other less recent works have developed approaches for analyzing and classifying change
types based on code revisions (Fluri and Gall 2006), analyze API change evolution (Dig and
Johnson 2006), or more in general the project history of projects(Kim et al. 2006). Similar
tools could be used in the future to develop some of the envisioned solutions.

5.2 Automation in Modern Code Review

Recent research proposed tools, and or strategies to automate some decisions and actions
during code reviews (Barnett et al. 2015; Zhang et al. 2015; Balachandran 2013; Zanjani
et al. 2016; Ouni et al. 2016; Hannebauer et al. 2016; Thongtanunam et al. 2015; Panichella
etal. 2015; Vassallo et al. 2018; Chatley and Jones 2018; Shi et al. 2019), as well as proposed
methods to evaluate them (Host and Johansson 2000).

The use of static analysis SATSs to find defects (whether or not they may cause failure)
is a common practice for software developers (Flanagan et al. 2002; Kim and Ernst 2007;
Wagner et al. 2005; Thung et al. 2012), and recent research investigated its usage in the
context of code review (Panichella et al. 2015; Vassallo et al. 2018) compared to other
development contexts (Beller et al. 2016; Zampetti et al. 2017).

Advanced approaches have been proposed to support coding or collaborative activities
concerning the code review process (Barnett et al. 2015; Menarini et al. 2017; Baum et al.
2017; Balachandran 2013; Zanjani et al. 2016; Paixao et al. 2018). First of all, to help
authors improving their patches, researchers proposed techniques based on textual, static
and/or historical analysis to recommend appropriate peer reviewer(s) for evaluating a given
patch (Balachandran 2013; Zanjani et al. 2016; Ouni et al. 2016; Hannebauer et al. 2016;
Thongtanunam et al. 2015) In addition, to help both reviewers and authors coding/reviewing
activities, Barnett et al. proposed an approach to automatically decompose code review
change-sets (Barnett et al. 2015), while Baum et al. proposed a strategy to recommend
the files to focus on during a review (Baum et al. 2017). The Human-computer interaction
(HCI) community also has done some studies that investigate the effectiveness of static
analysis tools to peer code reviewssfrom developers’ perspective (Henley et al. 2018; Singh
et al. 2017), which complement the view of the aforementioned works. Finally, Zang et

@ Springer



Empirical Software Engineering (2020) 25:4833-4872 4865

al. (Zhang et al. 2015) presented an interactive approach for inspecting systematic changes
that, by matching a generalized template against the codebase, summarizes similar changes
and detects potential mistakes.

In summary, similarly to previous empirical research, this work investigates MCR-
practices. Compared to our work, Beller er al. (Beller et al. 2014) manually analyzed only
two OSS projects, which makes our work more generalizable. Differently by Beller et al.
(Beller et al. 2014), we also validated and extended the taxonomy by surveying developers,
discovering further unexplored MCR changes (see Section 3) influenced by new emerging
development technologies (e.g., Cloud-based technologies) and practices (e.g., Continuous
delivery). Moreover, differently from Beller et al. (Beller et al. 2014), we investigated, via
content analysis of responses from survey participants, (i) the types of feedback develop-
ers usually accept/receive in MCR, (ii) the types of tools they need or envision to automate
contemporary MCR practices/tasks, and (iii) the data to use and the recommendations to
follow in building such tools. Finally, we also propose an automated tool to support MCR
practices, which was inspired by the study participants’ feedback.

6 Conclusions

This paper empirically investigated approaches and tools that, from a developer’s point
of view, are still needed to facilitate MCR activities. In a first step, we elicited a taxon-
omy, called CRAM, characterizing the most critical and recurrent change types in MCR by:
(i) quantitatively and qualitatively analyzing code review changes in ten Java open-source
projects; (ii) integrating an existing taxonomy from literature by Beller et al. (Beller et al.
2014) and (iii) conducting a survey with 52 developers to find missing change types in our
taxonomy (CRAM), investigating also current developer’s automation needs regarding newly
emerged review changes and activities.

Results of our study indicate that CRAM captures code review changes that were not
considered in previous taxonomies, and that most of them are related to the availability of
new emerging technologies (e.g., Cloud-based technologies) and practices (e.g., Continuous
Delivery and Continuous Integration).

In addition, our study provides valuable insights on ways MCR activities can be
facilitated by novel tools and approaches.

As future work, we plan to experiment with further automated approaches supporting MCR
activities, by considering other developers’ insights found in our empirical investigation.

Acknowledgments The authors would like to thank Antonello Reale (Fifth Beat®) and all developers and
researchers that participated to the qualitative investigation of this study. We also thank all reviewers and the
editors for the useful feedback, addressing their comments allowed us to make the contributions of this work
more coherent and complete

Funding Open access funding provided by ZHAW Zurich University of Applied Sciences.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

Shttps://fifthbeat.com/

@ Springer



4866

Empirical Software Engineering (2020) 25:4833-4872

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the

copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

Appendix

Table 20

Code Review chAnges Model (CRAM) - Part I

ARTIFACT AcTvity CATEGORY Toric DETAILED CHANGE
- Textual Documentation:
Issues concerning oc- | (D.1) - Naming: Problems relating to software clement (e.g., methods, classes, variables,
Produc- Maintain- mentation through textual | otc) names that do not conform to the naming policy of the project.
tion ability
(D.2) - Commonts: Explanations of complex code fragments, classes, methods. Is-
& & sues include wrongly placed comments, missing comments, missing or wrong Javadoc ete
Tost D o
Codo Mainten- | ation (D) | Jav D.3) - License Header: lssues regarding missing or wrong license headers inside
nce source-files.
(Modificatiop
occurrin (D.4) - Typos: Spelling mistakes in the documentation
in produe-
tion and
test code)
- L (D.6) - Not declaring a variable to be immutable when it should have
Documentation:  Docu- | been or declaring it immutable when it should have not be
mentation through stat
D.7) - Visibility (Modiflers): Software clement (e.g. method, variable) has too
much or too restricted visibility -
accessible from the outside)
(8,1) - Brackets & Braces: .. single statement after a conditional branch
(S.2) - Indentation: consistent indentation of the cox
(S.8.) - Blank Lines: excess of blank lines or too l'cw blank lines or wrong split of lines
Style (S) S.4) - Lony o statement too long, over a specific amount of characters
S'5) - Whitespace Usage: usages nk spaces in the co.
S;8) ; Grouping: grouping of methods with related functionality or adding class variables
at the boginning of the clas
(§7ug5) Commented out code: remove codo that is commented out (also TODO and
Re-implementation: TR.1) - Semantic Duplication: Code structures that have a similar intention but are
Structural defects require an | implemented syntactically differont
alternative implementation
method. For example, re- | (STR.2) - Semantic Dead Code: Code fragments that are executed, but they do
placin; program’s array | not serve any meaningful purpose and/or have no effect on the result
data structure with a vector
and knowing the existence of | (STR.3) - Change Function: Change function call to another function because it
prebuilt functionality that | uses old or deprecated functions
ould be used instead of a
self-programmed implemen- | (STR.4) - Us for
o Hould be Comsidored | Stead of roturn values, oo predofned constants instead of magic mumbers, buntin data
solution approach defect. | structures instead of own implementation etc.
Therefore, ution  ap-
proach defects are not about | (STR.5) - Ne to ensure e.g., create
Foorganizing oxisting codo | now classes, methods to make code more maintainable
but rethink e current
solution and implementing | (STR.6) - Strings (Wording): Issues regarding contents of strings, badly composed
Struc- it in a different way. strings
ture
(STR) (STR.7) - Logging: Add the ability to methods for logging results or errors
(STR.8) - Testing: Issues regarding test coverage, wrong/inappropriate tests, additional
tests ote.
- Organization: Defects | (STR.9) - Imports: Issues with wrong or missing or unused import statements
that can be fixed by apply-
ing structural modifications | (STR.10) - move functions, part of functions, or other
to the software. Firbiotod Bt S A R A TS
picce of functionality from
module A to module B is a | (STR.11) - Long Sub Routine: split long and complex functions into multiple functions
possible strategy for this.
(STR.12) - Dead Code: remove code that is never reached and executed
(STR.13) - Duplication / Redundant Code: remove duplicate code or code that is not
(STR.14) - Complex Code / or rewrite i to
make it more understandable
(STR.15) - Statement Issue: splitting, or otherwise a st
inside a function
(STR:16) - Consistoncy: Means the necd to keep code consistent in a sense that similar
lemients op n a similar fashion and s symmetrical. For example,
Shmilar tasks n aimilar classcs ShoUId have similar Toplomontations
(STR1T) - Architectural changos: codo reviews ofton result in o change to the system
architecture, like spli an interface into two distinct interfaces, introducing abstrac-
Hions, or the Incluston of dosign pattor
Tnterface (1)
(1.1) - Function Call: call to another part of system or library is incorrect or missing
Function- (1.2) - Parametor: function call or other interaction has incorrect or missing pa-
ality/ rameters
Corrective
Logic (L)
ance (L.1) - © mistake in a ison stat ¢
(L.2) - Computation: computations produce incorrect results
(L:3) - Wrong Location: correct operation is porformed, but it is done too soon
or too
(L.4) - Algorithm/Performance: inefficient algorithm is used
(R)
(R.1) - Variable Initialization: Variables are left uninitialized prior to use. Uninitialized
variables may contai e and using such variable for comparison or calculation
produces arbitrary results.
(R.2) - Memory Management: Mistake is made in handling the system memory.
(R:3) - Data & Resourco Manipulation: Defocts related to manipulating or re-
casing data or other resources.
(R.4) - Security: Issues related to the application’s/software’s security aspects
(R.5) - Concurrency: Issues regarding concurrency
Check (C)

(C.1) - Check Function: when in a function-call is also a need to check that the value
returned is valid and that no error occurres
(C.2) - Check Variable: there is a need to check variable

(C.8) - Check User Input: the need to validate user input

Larger Defects (LD)

(LD.1) - Complete

(LD.2) - GUL Defects in the user interface code relating to the consistency of the
user-interface, and to the options made possible to the user in each situation.

(LD.3) - Check outside code / Domino Effects: Defects that required that part
of the application cade that was not under review to be checked, as it was likely to contain
incorrect code based on the current review.

s: partially implemented feature

@ Springer



http://creativecommonshorg/licenses/by/4.0/

Empirical Software Engineering (2020) 25:4833-4872 4867

Table 21 Code Review chAnges Model (CRAM) - Part I

ARTIFACT AcCTIVITY

Other Changes (0.1) Commit Message: Changes in the commit mes-
sage of a submitted patch. Mostly related to wrong de-
scription of the change or not capturing all changes.

Changes not typically found in
source-code files (.java, .py, .cpp | (0O.2) Continuous Integration / Continuous Deliv-
etc.) which are nonetheless essen- | ery configurations: Changes to configuration files con-
tial to the runtime of a project cerning the Continuous Integration or Continuous Deliv-
ery pipeline/setup.

(0.3) Automated Static Analysis Tools configura-
tions: Changes in the configuration of Linters, Check-
ers, Recommenders used in the project (e.g., Checkstyle,
PMD, FindBugs etc.)

0.4) Language or Framework specific: Changes to
les native to the used programming language. For exam-
ple MANIFEST for Java.

(0.5) External Software Documentation: Changes to
the external Software Documentation files

(0.6) Runtime Configurations: docker-configs, ansible
playbooks, delivery configs etc.

(0.7) Other: Includes changes to XML, Scripts,
README files, HTML files and Version Control

References

Aacceleo (2018) https://www.eclipse.org/acceleo

Amalgam (2018) http://www.eclipse.org/modeling/amalgam/

CheckStyle (2014) http://checkstyle.sourceforge.net

Eclipe EGit (2018) http://www.eclipse.org/egit/

Eclipse BPEL (2018) http://www.eclipse.org/bpel/

Eclipse Cbi (2018) https://git.eclipse.org/r/cbi/org.eclipse.cbi

Eclipse CDT (2018) http://www.eclipse.org/cdt/

Eclipse PDE (2018) http://www.eclipse.org/pde/

Egit-training (2018) https://git.eclipse.org/r/sandbox/egit-training

Gerrit (2014) https://code.google.com/p/gerrit/

JGit (2018) http://www.eclipse.org/jgit/

M2e (2018) https://git.eclipse.org/r/m2e/m2e-core

PMD (2014) http://pmd.sourceforge.net

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the International Conference on Software Engineering (ICSE), pp. 712-721

Balachandran V (2013) Reducing human effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In: 35th International Conference on Software Engineer-
ing, ICSE 13, San Francisco, CA, USA, May 18-26, 2013, pp. 931-940. https://doi.org/10.1109/ICSE.
2013.6606642

Barnett M, Bird C, Brunet J, Lahiri SK (2015) Helping developers help themselves: Automatic decomposi-
tion of code review changesets. In: 37Th IEEE/ACM international conference on software engineering,
ICSE 2015, florence, italy, may 16-24, 2015, volume 1, pp. 134—144

Baum T, Schneider K, Bacchelli A (2017) On the optimal order of reading source code changes for review. In:
2017 IEEE International Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai,
China, September 17-22, 2017, pp. 329-340. https://doi.org/10.1109/ICSME.2017.28

Bavota G, Qusef A, Oliveto R, Lucia AD, Binkley DW (2015) Are test smells really harmful? an empirical
study. Empir Softw Eng 20(4):1052-1094

Bavota G, Russo B (2015) Four eyes are better than two: on the impact of code reviews on software quality.
In: 2015 IEEE International conference on software maintenance and evolution, ICSME 2015, bremen,
germany, september 29 - october 1, 2015, pp. 81-90

@ Springer


https://www.eclipse.org/acceleo
http://www.eclipse.org/modeling/amalgam/
http://checkstyle.sourceforge.net
http://www.eclipse.org/egit/
http://www.eclipse.org/bpel/
https://git.eclipse.org/r/cbi/org.eclipse.cbi
http://www.eclipse.org/cdt/
http://www.eclipse.org/pde/
https://git.eclipse.org/r/sandbox/egit-training
https://code.google.com/p/gerrit/
http://www.eclipse.org/jgit/
https://git.eclipse.org/r/m2e/m2e-core
http://pmd.sourceforge.net
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/ICSME.2017.28

4868 Empirical Software Engineering (2020) 25:4833-4872

Baysal O, Kononenko O, Holmes R, Godfrey MW (2012) The secret life of patches: a firefox case study. In:
Proceedings of the Working Conference on Reverse Engineering (WCRE), pp. 447-455

Baysal O, Kononenko O, Holmes R, Godfrey MW (2016) Investigating technical and non-technical factors
influencing modern code review. Empir Softw Eng 21(3):932-959

Beller M, Bacchelli A, Zaidman A, Jurgens E (2014) Modern code reviews in open-source projects: which
problems do they fix? In: 11Th working conference on mining software repositories, MSR 2014,
proceedings, may 31 - june 1, 2014, hyderabad, india, pp. 202-211

Beller M, Bholanath R, Mclntosh S, Zaidman A (2016) Analyzing the state of static analysis: a large-scale
evaluation in open source software. In: IEEE 23Rd international conference on software analysis, evolu-
tion, and reengineering, SANER 2016, suita, osaka, japan, march 14-18, 2016 - volume 1, pp. 470—481.
IEEE computer society

Bosu A, Carver JC, Bird C, Orbeck JD, Chockley C (2017) Process aspects and social dynamics of contem-
porary code review: Insights from open source development and industrial practice at microsoft. IEEE
Trans Software Eng 43(1):56-75. https://doi.org/10.1109/TSE.2016.2576451

Bosu A, Greiler M, Bird C (2015) Characteristics of useful code reviews: an empirical study at microsoft. In:
12Th IEEE/ACM working conference on mining software repositories, MSR 2015, florence, italy, may
16-17, 2015, pp. 146-156

Chatley R, Jones L (2018) Diggit: Automated code review via software repository mining. In: 25Th interna-
tional conference on software analysis, evolution and reengineering, SANER 2018, campobasso, italy,
march 20-23, 2018, pp. 567-571

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2012) Using IR methods for labeling source
code artifacts: is it worthwhile? In: IEEE 20Th international conference on program comprehension,
ICPC 2012, passau, germany, june 11-13, 2012, pp. 193-202

Deursen A, Moonen L, Bergh A, Kok G (2001) Refactoring test code. In: Proceedings of the 2nd International
Conference on Extreme Programming and Flexible Processes (XP2001), pp. 92-95

Di Penta M, Cerulo L, Aversano L (2009) The life and death of statically detected vulnerabilities: an empirical
study. Information &, Software Technology 51(10):1469-1484

Dig D, Johnson RE (2006) How do apis evolve? A story of refactoring. Journal of Software Maintenance
18(2):83-107. https://doi.org/10.1002/smr.328

Duvall P, Matyas SM, Glover A (2007) Continuous integration: improving software quality and reducing
risk Addison-Wesley

Duvall PM (2010) Continuous integration patterns and antipatterns. DZone refcard #84 http://bit.ly/I8rfVS

Efstathiou V, Spinellis D (2018) Code review comments: language matters. In: Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging Results, ICSE (NIER)
2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 69-72

Flanagan C, Leino KRM, Lillibridge M, Nelson G, Saxe JB, Stata R (2002) Extended static checking
for java. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 234-245

Fluri B, Gall HC (2006) Classifying change types for qualifying change couplings. In: 14th International
Conference on Program Comprehension (ICPC 2006), 14-16 June 2006, Athens, Greece, pp. 35-45.
IEEE Computer Society. https://doi.org/10.1109/ICPC.2006.16

Fowler M (2002) Refactoring: Improving the design of existing code. In: Extreme programming and agile
methods - XP/agile universe 2002, second XP universe and first agile universe conference chicago, IL,
USA, August, 2002, p. 256

Fusaro P, Lanubile F, Visaggio G (1997) A replicated experiment to assess requirements inspection
techniques. Empir Softw Eng 2(1):39-57

Germéan DM, Robles G, Poo-Caamaiio G, Yang X, Iida H, Inoue K (2018) ”was my contribution fairly
reviewed?”: a framework to study the perception of fairness in modern code reviews. In: Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27
- June 03, 2018, pp. 523-534. http://doi.acm.org/10.1145/3180155.3180217

Gibbs L, Kealy M, Willis K, Green J, Welch N, Daly J (2007) What have sampling and data collection got
to do with good qualitative research? Australian and New Zealand journal of public health 31(6):540-
544

Grano G, Ciurumelea A, Panichella S, Palomba F, Gall HC (2018) Exploring the integration of user feedback
in automated testing of android applications. In: 2018 IEEE 25Th international conference on software
analysis, evolution and reengineering (SANER), pp. 72-83

Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of automated text summarization techniques for
summarizing source code. In: 17Th working conference on reverse engineering (WCRE), october 2010,
beverly, MA, USA, pp. 3544

@ Springer


https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1002/smr.328
http://bit.ly/l8rfVS
https://doi.org/10.1109/ICPC.2006.16
http://doi.acm.org/10.1145/3180155.3180217

Empirical Software Engineering (2020) 25:4833-4872 4869

Hannebauer C, Patalas M, Stunkel S, Gruhn V (2016) Automatically recommending code reviewers based
on their expertise: an empirical comparison. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pp.
99-110

Henley AZ, Mug¢lu K, Christakis M, Fleming SD, Bird C (2018) Cfar: A tool to increase communication,
productivity, and review quality in collaborative code reviews. In: RL Mandryk, M Hancock, M Perry,
AL Cox (eds) Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
CHI 2018, Montreal, QC, Canada, April 21-26, 2018, p. 157. ACM. https://doi.org/10.1145/3173574.
3173731

Hill E, Pollock L, Vijay-Shanker K (2009) Automatically capturing source code context of nl-queries for
software maintenance and reuse. In: International conference on software engineering (ICSE), pp. 232—
242. IEEE

Host M, Johansson C (2000) Evaluation of code review methods through interviews and experimentation. J
Syst Softw 52(2-3):113-120

Humble J, Farley D (2010) Continuous delivery: Reliable Software Releases Through Build, Test, and
Deployment Automation, 1st edn Addison-Wesley Professional

Kemerer CF, Paulk MC (2009) The impact of design and code reviews on software quality: An empirical
study based on PSP data. IEEE Trans Software Eng 35(4):534-550. https://doi.org/10.1109/TSE.2009.
27

Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain about? IEEE
Softw 32(3):70-77

Kim S, Ernst MD (2007) Which warnings should I fix first? In: Proceedings of the joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE), pp. 45-54

Kim S, Pan K, Jr EJW (2006) Micro pattern evolution. In: S Diehl, HC Gall, AE Hassan (eds) Proceedings of
the 2006 International Workshop on Mining Software Repositories, MSR 2006, Shanghai, China, May
22-23, 2006, pp. 40-46. ACM. https://doi.org/10.1145/1137983.1137995

Kononenko O, Baysal O, Godfrey MW (2016) Code review quality: how developers see it. In: Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,
2016, pp. 1028-1038

Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating code review quality: Do
people and participation matter? In: 2015 IEEE International conference on software maintenance and
evolution, ICSME 2015, bremen, germany, september 29 - october 1, 2015, pp. 111-120

Mintyld M, Lassenius C (2009) What types of defects are really discovered in code reviews? IEEE Trans.
Software Eng 35(3):430—448. https://doi.org/10.1109/TSE.2008.71

Mintyld M, Vanhanen J, Lassenius C (2003) A taxonomy and an initial empirical study of bad smells in
code. In: 19Th international conference on software maintenance (ICSM, Amsterdam, The Netherlands,
pp- 381-384

Mintyld MV, Lassenius C (2009) What types of defects are really discovered in code reviews? IEEE
Transactions on Software Engineering (TSE) 35(3):430—448

Martin D, Panichella S (2019) The cloudification perspectives of search-based software testing. In: A. Gorla,
J.M. Rojas (eds.) Proceedings of the 12th International Workshop on Search-Based Software Testing,
SBST@ICSE 2019, Montreal, QC, Canada, May 27, 2019, pp. 5-6. IEEE / ACM. https://doi.org/10.
1109/SBST.2019.00009

McBurney PW, McMillan C (2014) Automatic documentation generation via source code summarization of
method context. In: Proceedings of the International Conference on Program Comprehension (ICPC),
pp- 279-290. ACM

Mclntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review
participation on software quality: a case study of the qt, vtk, and ITK projects. In: Proceedings of the
Working Conference on Mining Software Repositories (MSR), pp. 192-201

Menarini M, Yan Y, Griswold WG (2017) Semantics-assisted code review: an efficient toolchain and a
user study. In: Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017, pp. 554-565

Meszaros G (2010) Xunit test patterns and smells: improving the ROI of test code. In: Companion to
the 25th annual ACM SIGPLAN conference on object-oriented programming, systems, languages, and
applications, SPLASH/OOPSLA 2010, october, reno/tahoe, nevada, USA, pp. 299-300

Moha N, Guéhéneuc Y, Duchien L, Meur AL (2010) DECOR: A method for the specification and detection
of code and design smells. IEEE Trans Software Eng 36(1):20-36

Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2010) Decor: a method for the specification and detection
of code and design smells. IEEE Trans Softw Eng 36(1):20-36

@ Springer


https://doi.org/10.1145/3173574.3173731
https://doi.org/10.1145/3173574.3173731
https://doi.org/10.1109/TSE.2009.27
https://doi.org/10.1109/TSE.2009.27
https://doi.org/10.1145/1137983.1137995
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1109/SBST.2019.00009
https://doi.org/10.1109/SBST.2019.00009

4870 Empirical Software Engineering (2020) 25:4833-4872

Moreno L, Aponte J, Sridhara G, Marcus A, Pollock L, Vijay-Shanker K (2013) Automatic generation of
natural language summaries for java classes. In: International conference on program comprehension
(ICPC), pp. 23-32. IEEE

Moreno L, Marcus A (2017) Automatic software summarization: the state of the art. In: 39Th international
conference on software engineering, ICSE 2017, buenos aires, argentina, may 20-28, 2017, pp. 511-512

Moreno L, Marcus A (2018) Automatic software summarization: the state of the art. In: Proceedings of
the 40th International Conference on Software Engineering: Companion Proceeedings, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, pp. 530-531

Nurolahzade M, Nasehi SM, Khandkar SH, Rawal S (2009) The role of patch review in software evolution: an
analysis of the mozilla firefox. In: Proceedings of the Joint International and Annual ERCIM Workshops
on Principles of Software Evolution IWPSE) and Software Evolution (Evol) Workshops, pp. 9-18

Ouni A, Kula RG, Inoue K (2016) Search-based peer reviewers recommendation in modern code review. In:
2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016, Raleigh,
NC, USA, October 2-7, 2016, pp. 367-377. https://doi.org/10.1109/ICSME.2016.65

Paixao M, Krinke J, Han D, Harman M (2018) CROP: Linking code reviews to source code changes.
In: Proceedings of the 15th International Conference on Mining Software Repositories, MSR 2018,
Gothenburg, Sweden, May 28-29, 2018, pp. 46-49

Palomba F, Panichella A, Lucia AD, Oliveto R, Zaidman A (2016) A textual-based technique for smell
detection. In: 24Th international conference on program comprehension, austin, TX, USA, May, 2016,
pp. 1-10

Panichella S (2018) Summarization techniques for code, change, testing, and user feedback (invited paper).
In: C. Artho, R. Ramler (eds.) 2018 IEEE Workshop on Validation, Analysis and Evolution of Software
Tests, VST@SANER 2018, Campobasso, Italy, March 20, 2018, pp. 1-5. IEEE. https://doi.org/10.1109/
VST.2018.8327148

Panichella S, Arnaoudova V, Penta MD, Antoniol G (2015) Would static analysis tools help developers with
code reviews? In: 22nd IEEE International Conference on Software Analysis, Evolution, and Reengi-
neering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015, pp. 161-170. https://doi.org/10.1109/
SANER.2015.7081826

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can i improve my app?
classifying user reviews for software maintenance and evolution. In: 2015 IEEE International conference
on software maintenance and evolution (ICSME), pp. 281-290

Panichella S, Panichella A, Beller M, Zaidman A, Gall HC (2016) The impact of test case summaries
on bug fixing performance: an empirical investigation. In: 38Th international conference on software
engineering, austin, TX, USA, May, 2016, pp. 547-558

Parnas DL, Weiss DM (1985) Active design reviews: Principles and practices. In: Proceedings, 8th
international conference on software engineering, london, UK, August 28-30, 1985., pp. 132-136

Porter AA, Votta LG (1998) Comparing detection methods for software requirements inspections: a
replication using professional subjects. Empir Softw Eng 3(4):355-379

Rahman MM, Roy CK, Kula RG (2017) Predicting usefulness of code review comments using textual fea-
tures and developer experience. In: Proceedings of the 14th International Conference on Mining Software
Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28, 2017, pp. 215-226

Rigby PC (2011) Understanding open source software peer review: Review processes, parameters and sta-
tistical models, and underlying behaviours and mechanisms. Ph.D. thesis, University of Victoria, BC
Canada

Rigby PC, German DM (2006) A preliminary examination of code review processes in open source projects.
Tech. Rep. DCS-305-1R University of Victoria

Rigby PC, German DM, Storey MD (2008) Open source software peer review practices: a case study of
the apache server. In: Proceedings of the International Conference on Software Engineering (ICSE), pp.
541-550

Savor T, Douglas M, Gentili M, Williams L, Beck K, Stumm M (2016) Continuous deployment at facebook
and OANDA. In: Companion proceedings of the 38th International Conference on Software Engineering
(ICSE Companion), pp. 21-30

Shi S, Li M, Lo D, Thung F, Huo X (2019) Automatic code review by learning the revision of source
code. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pp. 4910-4917. AAAI Press. https://doi.org/10.1609/aaai.v33i01.33014910

Singh D, Sekar VR, Stolee KT, Johnson B (2017) Evaluating how static analysis tools can reduce code
review effort. In: A.Z. Henley, P. Rogers, A. Sarma (eds.) 2017 IEEE Symposium on Visual Languages

@ Springer


https://doi.org/10.1109/ICSME.2016.65
https://doi.org/10.1109/VST.2018.8327148
https://doi.org/10.1109/VST.2018.8327148
https://doi.org/10.1109/SANER.2015.7081826
https://doi.org/10.1109/SANER.2015.7081826
https://doi.org/10.1609/aaai.v33i01.33014910

Empirical Software Engineering (2020) 25:4833-4872 4871

and Human-Centric Computing, VL/HCC 2017, Raleigh, NC, USA, October 11-14, 2017, pp. 101-105.
IEEE Computer Society. https://doi.org/10.1109/VLHCC.2017.8103456

Spadini D, Aniche MF, Storey MD, Bruntink M, Bacchelli A (2018) When testing meets code review: why
and how developers review tests. In: Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 677-687

Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K (2010) Towards automatically generating
summary comments for java methods. In: International conference on automated software engineering,
pp. 43-52

Thongtanunam P, Tantithamthavorn C, Kula RG, Yoshida N, Iida H, Matsumoto K (2015) Who should review
my code? a file location-based code-reviewer recommendation approach for modern code review. In:
22Nd IEEE international conference on software analysis, evolution, and reengineering, SANER 2015,
montreal, QC, Canada, March 2-6, 2015, pp. 141-150

Thung F, Lucia, Lo D, Jiang L, Rahman F, Devanbu PT (2012) To what extent could we detect field defects?
an empirical study of false negatives in static bug finding tools. In: Proceedings of the International
Conference on Automated Software Engineering (ASE), pp. 50-59

Tsantalis N, Chatzigeorgiou A (2009) Identification of move method refactoring opportunities. IEEE Trans.
Software Eng. 35:347-367

Vassallo C, Panichella S, Palomba F, Proksch S, Zaidman A, Gall HC (2018) Context is king: the developer
perspective on the usage of static analysis tools. In: 25Th international conference on software analysis,
evolution and reengineering, SANER 2018, campobasso, italy, march 20-23, 2018, pp. 38-49

Vendome C, German DM, Penta MD, Bavota G, Vasquez ML, Poshyvanyk D (2018) To distribute or not to
distribute?: why licensing bugs matter. In: Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pp. 268-279

Wagner HR (1968) The discovery of grounded theory: Strategies for qualitative research. Social Forces
46(4):555

Wagner S, Jurjens J, Koller C, Trischberger P (2005) Comparing bug finding tools with reviews and tests.
In: Proceedings of the 17th IFIP TC6/WG 6.1 International Conference on Testing of Communicating
Systems, pp. 40-55

Weiligerber P, Neu D, Diehl S (2008) Small patches get in! In: Proceedings of the Working Conference on
Mining Software Repositories (MSR), pp. 67-76

Zampetti F, Scalabrino S, Oliveto R, Canfora G, Di Penta M (2017) How open source projects use static code
analysis tools in continuous integration pipelines. In: Proceedings of the 14th International Conference
on Mining Software Repositories, pp. 334—344. IEEE Press

Zampetti Fiorella VCPSCGGHDPM (2020) An empirical characterization of bad practices in continuous
integration Empirical Software Engineering

Zanjani MB, Kagdi HH, Bird C (2016) Automatically recommending peer reviewers in modern code review.
IEEE Trans. Software Eng 42(6):530-543. https://doi.org/10.1109/TSE.2015.2500238

Zhang T, Song M, Pinedo J, Kim M (2015) Interactive code review for systematic changes. In: 37Th
IEEE/ACM international conference on software engineering, ICSE 2015, florence, italy, may 16-24,
2015, volume 1, pp. 111-122

Zhou Y, Gu R, Chen T, Huang Z, Panichella S, Gall HC (2017) Analyzing apis documentation and code to
detect directive defects. In: Proceedings of the 39th International Conference on Software Engineering,
ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pp. 27-37. https://doi.org/10.1109/ICSE.2017.
11

Zhou Y, Su Y, Chen T, Huang Z, Gall HC, Panichella S (2020) User review-based change file localization
for mobile applications IEEE Trans Softw Eng 1-1

Zhou Y, Wang C, Yan X, Chen T, Panichella S, Gall HC (2018) Automatic detection and repair recommen-
dation of directive defects in java api documentation IEEE Trans Softw Eng 1-1

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1109/VLHCC.2017.8103456
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1109/ICSE.2017.11
https://doi.org/10.1109/ICSE.2017.11

4872 Empirical Software Engineering (2020) 25:4833-4872

Affiliations

Sebastiano Panichella’ © . Nik Zaugg?

Nik Zaugg
nik.zaugg @bf.uzh.ch

Institute of Applied Information Technology (InIT), Zurich University of Applied Science,
Winterthur Switzerland

University of Zurich, Zurich, Switzerland

@ Springer


http://orcid.org/0000-0003-4120-626X
mailto: nik.zaugg@bf.uzh.ch

	An empirical investigation of relevant changes and automation needs in modern code review
	Abstract
	Introduction
	Research Methodology
	Approach Overview
	Inception Phase
	Taxonomy Definition & Automation Needs in MCR

	Results
	RQ1: Types of changes occuring in modern code reviews
	RQ2: Emerging automation needs in MCR
	Emerging Developers' Automation Needs in MCR
	The Role of Summarization Techniques in MCR activities


	Threats to Validity
	Related Work
	Modern Code Review Process and Practices
	Automation in Modern Code Review

	Conclusions
	Appendix: 
	References
	Affiliations


