
https://doi.org/10.1007/s10664-020-09914-8

A comprehensive study of bloated dependencies
in the Maven ecosystem

César Soto-Valero1 ·NicolasHarrand1 ·MartinMonperrus1 ·Benoit Baudry1

Accepted: 23 September 2020
© The Author(s) 2021

Abstract
Build automation tools and package managers have a profound influence on software devel-
opment. They facilitate the reuse of third-party libraries, support a clear separation between
the application’s code and its external dependencies, and automate several software develop-
ment tasks. However, the wide adoption of these tools introduces new challenges related to
dependency management. In this paper, we propose an original study of one such challenge:
the emergence of bloated dependencies. Bloated dependencies are libraries that are pack-
aged with the application’s compiled code but that are actually not necessary to build and run
the application. They artificially grow the size of the built binary and increase maintenance
effort. We propose DEPCLEAN, a tool to determine the presence of bloated dependencies in
Maven artifacts. We analyze 9,639 Java artifacts hosted on Maven Central, which include a
total of 723,444 dependency relationships. Our key result is as follows: 2.7% of the depen-
dencies directly declared are bloated, 15.4% of the inherited dependencies are bloated, and
57% of the transitive dependencies of the studied artifacts are bloated. In other words, it is
feasible to reduce the number of dependencies of Maven artifacts to 1/4 of its current count.
Our qualitative assessment with 30 notable open-source projects indicates that developers
pay attention to their dependencies when they are notified of the problem. They are willing
to remove bloated dependencies: 21/26 answered pull requests were accepted and merged
by developers, removing 140 dependencies in total: 75 direct and 65 transitive.

Keywords Dependency management · Software reuse · Debloating · Program analysis

1 Introduction

Software reuse, a long time advocated software engineering practice (Naur and Randell
1969; Krueger 1992), has boomed in the last years thanks to the widespread adoption of
build automation and package managers (Cox 2019; Soto-Valero et al. 2019). Package man-
agers provide both a large pool of reusable packages, a.k.a. libraries, and systematic ways to

Communicated by: Gabriele Bavota

� César Soto-Valero
cesarsv@kth.se

1 KTH Royal Institute of Technology, Stockholm, Sweden

/ Published online: 25 March 2021

Empirical Software Engineering (2021) 26: 45

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09914-8&domain=pdf
https://orcid.org/0000-0003-0541-6411
https://orcid.org/0000-0002-2491-2771
https://orcid.org/0000-0003-3505-3383
https://orcid.org/0000-0002-4015-4640
mailto: cesarsv@kth.se

declare what are the packages on which an application depends. Examples of such package
management systems include Maven for Java, npm for Node.js, or Cargo for Rust. Build
tools automatically fetch all the packages that are needed to compile, test, and deploy an
application.

Package managers boost software reuse by creating a clear separation between the
application and its third-party dependencies. Meanwhile, they introduce new challenges
for the developers of software applications, who now need to manage those third-party
dependencies (Cox 2019) to avoid entering into the so-called “dependency hell”. These
challenges relate to ensuring high quality dependencies (Salza et al. 2019), keeping the
dependencies up-to-date (Bavota et al. 2015), or making sure that heterogeneous licenses
are compatible (Wu et al. 2017).

Our work focuses on one specific challenge of dependency management: the exis-
tence of bloated dependencies. This refers to packages that are declared as dependencies
for an application, but that are actually not necessary to build or run it. The major
issue with bloated dependencies is that the final deployed binary file includes more
code than necessary: an artificially large binary is an issue when the application is
sent over the network (e.g., web applications) or it is deployed on small devices (e.g.,
embedded systems). Bloated dependencies could also embed vulnerable code that can be
exploited, while being actually useless for the application (Gkortzis et al. 2019). Overall,
bloated dependencies needlessly increase the difficulty of managing and evolving software
applications.

We propose a novel, unique, and large scale analysis of bloated dependencies. So far,
research on bloated dependencies has been only touched with a study of copy-pasted depen-
dency declarations by McIntosh et al. (2014), and a study of unused dependencies in the
Rust ecosystem by Hejderup et al. (2018). Our previous work gives preliminary results on
this topic in the context of Java (Harrand et al. 2019). Yet, there is no systematic analy-
sis of the presence of bloated dependencies nor about the importance of this problem for
developers in the Java ecosystem.

Our work focuses on Maven, the most popular package manager and automatic build
system for Java and languages that compile to the JVM. In Maven, developers declare
dependencies in a specific file, called the POM file. In order to analyze thousands of arti-
facts on Maven Central, the largest repository of Java artifacts, manual analysis is not a
feasible solution. To overcome this problem, we have developed DEPCLEAN, a tool that per-
forms an automatic analysis of dependency usage in Maven projects. Given an application
and its POM file, DEPCLEAN collects the complete dependency tree (the list of dependen-
cies declared in the POM, as well as the transitive dependencies) and analyzes the bytecode
of the artifact and all its dependencies to determine the presence of bloated dependencies.
Finally, DEPCLEAN generates a variant of the POM in which bloated dependencies are
removed.

Armed with DEPCLEAN, we structured our analysis of bloated dependencies in two
parts. First, we automatically analysed 9,639 artifacts and their 723,444 dependencies.
We found that 75.1% of these dependencies are bloated. We identify transitive depen-
dencies and the complexities of dependency management in multi-module projects as the
primary causes of bloat. Second, we performed a user study involving 30 artifacts, for
which the code is available as open-source on GitHub and which are actively maintained.
For each project, we used DEPCLEAN to generate a POM file without bloated dependen-
cies and submitted the changes as a pull request to the project. Notably, our work yielded
21 merged pull requests by open-source developers and 140 bloated dependencies were
removed.

(2021) 26:Empir Software Eng 4545 Page 2 of 44

To summarize, this paper makes the following contributions:

– A comprehensive study of bloated dependencies in the context of the Maven package
manager. We are the first to quantify the magnitude of bloat on a large scale (9,639
Maven artifacts) showing that 75.1% of dependencies are bloated.

– A tool called DEPCLEAN to automatically analyze and remove bloated dependencies
in Java applications packaged with Maven. DEPCLEAN can be used in future research
on package management as well as by practitioners.

– A qualitative assessment of the opinion of developers regarding bloated dependencies.
Through the submission of pull requests to notable open-source projects, we show that
developers care about removing dependency bloat: 21/26 of answered pull requests
have been merged, removing 140 bloated dependencies.

The remainder of this paper is structured as follows. Section 2 introduces the key con-
cepts about dependency management with Maven and presents an illustrative example.
Section 3 introduces the new terminology and describes the implementation of DEPCLEAN.
Section 4 presents the research questions that drive our study, as well as the methodology
followed. Section 5 covers our experimental results for each research question. Sections 6
and 7 provide a comprehensive discussion of the results obtained and present the threats
to the validity of our study. Section 8 concludes this paper and provides future research
directions.

2 Background

We provide an overview of the Maven package management system and of the essential
terminology. We illustrate these concepts with a concrete example.

2.1 Maven DependencyManagement Terminology

Maven is a popular package manager and build automation tool for Java projects and other
languages that compile to the JVM (e.g., Scala, Kotlin, Groovy, Clojure, or JRuby). Maven
relies on a specific build file, known as the POM (acronym for “Project Object Model”),
where developers specify information about the project, its dependencies and its build pro-
cess. POM files can inherit from a base POM, known as the Maven parent POM. The
inheritance and declaration of dependencies is a design decision of developers.

Maven Project A Maven project includes source code files and build files. It can be a
single-module, or a multi-module project. The former has a single POM file, which includes
all the dependencies and build instructions to produce a single artifact (JAR file). The latter
allows to separately build multiple artifacts in a certain order through a so-called aggregator
POM. In multi-module projects, developers can define a parent POM that specifies the
dependencies used by all the modules.

Maven Artifact We refer to artifacts as compiled Maven projects that have been deployed
to a binary code repository. A Maven artifact is typically a JAR file that is uniquely iden-
tified with a triplet (G:A:V), G, the groupId, identifies the organization that develops the
artifact,A, the artifactId, is the name of the artifact, and V corresponds to its version. Maven
Central is the most popular public repository to host Maven artifacts.

(2021) 26:Empir Software Eng 45 Page 3 of 44 44

Dependency Resolution Maven resolves dependencies in two steps: (1) based on the POM
file(s), it determines the set of required dependencies, and (2) it fetches dependencies that
are not present locally from external repositories such as Maven Central. Maven constructs
a dependency tree, that captures all dependencies and their relationships. Given one artifact,
we distinguish between three types of Maven dependencies: direct dependencies that are
explicitly declared in the POM file; inherited dependencies, which are declared in the parent
POM; and transitive dependencies obtained from the transitive closure of direct and inher-
ited dependencies. Dependency version management is a key feature of the dependency
resolution, which Maven handles with a specific dependency mediation algorithm.1

2.2 A Brief Journey in the Dependencies of the JXLS Library

We illustrate the concepts introduced previously with one concrete example: JXLS,2 an
open source Java library for generating Excel reports. It is implemented as a multi-
module Maven project with a parent POM in jxls-project, and three modules: jxls,
jxls-examples, and jxls-poi.

Listing 1 shows an excerpt of the POM file of the jxls-poi module, version 1.0.15. It
declares jxls-project as its parent POM (lines 1− 5) and a direct dependency towards
the poi Apache library (lines 10–14). Figure 1 depicts an excerpt of its Maven dependency
tree (we do not show testing dependencies here, such as JUnit, to make the figure more
readable). Nodes in blue, pink, and yellow represent direct, inherited, and transitive depen-
dencies, respectively, for the jxls-poi artifact (as reported by the dependency:tree
Maven plugin).

Listing 1 Excerpt of the POM
file corresponding to the module
jxls-poi of the multi-module
Maven project JXLS

The library jcl-over-slf4j declares a dependency towards slf4j-api,
version 1.7.12, which is omitted by Maven since it is already added from the
jxls-project parent POM. On the other hand, JXLS declares dependencies to ver-
sion 1.7.26 of jcl-over-slf4j and slf4j-api, but the lower version 1.7.12 was

1https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html.
2http://jxls.sourceforge.net

(2021) 26:Empir Software Eng 4545 Page 4 of 44

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://jxls.sourceforge.net

Fig. 1 Excerpt of the dependency tree of the multi-module Maven project JXLS (dependencies used for
testing are not shown for the sake of simplicity)

chosen over it since it is nearer to the root in the dependency tree and, by default,
Maven resolves version conflicts with a nearest-wins strategy. Once Maven finishes
the dependency resolution, the classpath of jxls-poi includes the following arti-
facts: poi, commons-codec, commons-collections4, commons-jexl,
commons-logging, jxls, commons-jex13, commons-beanutils,
commons-collections, logback-core, jcl-over-slf4j, and slf4j-api.
The goal of our work is to determine if all the artifacts in the classpath of Maven projects
such as jxls-poi are actually needed to build and run those projects.

3 Bloated Dependencies

In this section, we introduce the idea of bloated dependency, which is the fundamental
concept presented and studied in the rest of this paper. We describe our methodology to
study bloated dependencies, as well as our tools to automatically detect and remove them
from Maven artifacts.

Dependencies among Maven artifacts form a graph, according to the information
declared in their POMs. This graph has been introduced in our previous work about the
Maven Dependency Graph (MDG) (Benelallam et al. 2019). The MDG is defined as
follows:

Definition 1 (Maven Dependency Graph) The MDG is a vertex-labelled graph, where ver-
tices are Maven artifacts (uniquely identified by their G:A:V coordinates), and edges repre-
sent dependency relationships among them. Formally, the MDG is defined as G = (V, E),
where:

(2021) 26:Empir Software Eng 45 Page 5 of 44 44

– V is the set of artifacts in the Maven Central repository
– E ⊆ V ×V represent the set of directed edges that determine dependency relationships

between each artifact v ∈ V and its dependencies

3.1 Novel Concepts

Each artifact in the MDG has its own Maven Dependency Tree (MDT), which is the
transitive closure of all the dependencies needed to build the artifact, as resolved by Maven.

Definition 2 (Maven Dependency Tree) The MDT of an artifact v ∈ V is a directed acyclic
graph of artifacts, with v as the root node, and a set of edges E representing dependency
relationships between them.

In this work, we introduce the novel concept of bloated dependency as follows:

Definition 3 (Bloated Dependency) An artifact p is said to have a bloated dependency
relationship εb ∈ E if there is a path in its MDT, between p and any dependency d of p,
such that none of the elements in the API of d are used, directly or indirectly, by p.

To reason about the bloated dependencies of an artifact, we introduce a new data
structure, called the Dependency Usage Tree (DUT) as follows.

Definition 4 (Dependency Usage Tree) The DUT of an artifact a, defined as DUTa =
(V, E,∇), is a tree, whose nodes are the same as the Maven Dependency for a and which
edges are all of the (a, ai), for all nodes ai ∈ DUTa . A labeling function ∇ assigns each
edge one of the following six dependency usage types:∇ : E → {ud, ui, ut, bd, bi, bt} such
that:

∇(〈p, d〉) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ud, if d is used and it is directly declared by p

ui, if d is used and it is inherited from a parent of p

ut, if d is used and it is resolved transitively by p

bd, if d is bloated and it is directly declared by p

bi, if d is bloated and it is inherited from a parent of p

bt, if d is bloated and it is resolved transitively by p

It is to be noted that, in the case of transitive dependencies, ∇ assigns the bt label to the
relationship (a, ai) if and only if two conditions hold: 1) a does not use any member of ai ,
and 2) none of the artifacts in the tree need to use ai to fulfill the requirements of a.

Given a Maven artifact a we build both the MDTa and the DUTa . Both trees include
exactly the same set of nodes, but the edges are different. In the MDTa , an edge (a1, a2)
exists when the POM of a1 declares a dependency towards a2. In the DUTa , all edges start
from a, and an edge (a, a1) means that a1 is an artifact in the MDTa . In the case a1 is not

(2021) 26:Empir Software Eng 4545 Page 6 of 44

a direct dependency of a, then the edge (a, a1) does not exist in the MDTa , yet we need to
model it, since it is the relation (a, a1) that can be bloated or used.

3.2 Example

Figure 2 illustrates the dependency usage tree for the example presented in Fig. 1. Analyz-
ing the bytecode of jxls-poi, we find no references to any API member of the direct
dependencies commons-jexl (explicitly declared in the POM) and sl4j (inherited from
its parent POM). Therefore, these dependency relationships are labelled as bloated-direct
(bd) and bloated-inherited (bi) dependencies, respectively.

Now let us consider the dependency to commons-codec. In the MDT of jxls-poi
(cf. Fig. 1), we observe that commons-codec is a transitive dependency of jxls-poi,
through poi. From the perspective of bloat, what we want to know is the following:
is commons-codec necessary to build and run jxls-poi? Therefore, we are inter-
ested in the relationship between jxls-poi and commons-codec, which we model
in the DUT of jxls-poi (cf. Fig. 2). To answer the question of usage we need two
analyses. First, an analysis of the bytecode of jxls-poi reveals that it does not use
commons-codec directly. Second, we observe that jxls-poi uses some members
of poi, and that these members of poi do not use commons-codec. So, we con-
clude that the relationship between jxls-poi and commons-codec is bloated, and
the corresponding edge is labelled bt. It is important to note that a bloated transitive
dependency relationship between jxls-poi and commons-codec does not mean that
commons-codec is bloated for poi, but only for the subpart of poi that is necessary
for jxls-poi. Table 1 summarizes the labelling of all the dependency relationships of
jxls-poi.

Fig. 2 Dependency Usage Tree (DUT) for the example presented in Fig. 1. Edges are labelled according to
Definition 4 to reflect the usage status between jxls-poi and each one of its dependencies

(2021) 26:Empir Software Eng 45 Page 7 of 44 44

Table 1 Contingency table of the different types of dependency relationships studied in this work for the
example presented in Fig. 2

Used Bloated

Direct poi, jxls commons-jexl

Inherited jcl-over-sl4j sl4j-api

Transitive commons-beanutils,logback-core, commons-logging, commons-collections,

commons-collections4 commons-codec, commons-jexl3

3.3 DEPCLEAN: A Tool for Detecting and Removing Bloated Dependencies

For our study, we design and implement a specific tool called DEPCLEAN. An overview
of DEPCLEAN is shown in Fig. 3, it works as follows. It receives as inputs a built
Maven project and a repository of artifacts, then it extracts the dependency tree of

Fig. 3 Overview of the tool DEPCLEAN to detect and remove bloated dependencies in Maven projects.
Rounded squares represent artifacts, circles inside the artifacts are API members, arrows between API mem-
bers represents bytecode calls between artifacts, arrows between artifacts represent dependency relationships
between them

(2021) 26:Empir Software Eng 4545 Page 8 of 44

the projects and constructs a DUT to identify the set of dependencies that are actu-
ally used by the project. DEPCLEAN has two outputs: (1) it returns a report with the
usage status of all types of dependencies, and (2) it produces an alternative version
of the POM file (POMd) with all the bloated dependencies removed (i.e., the XML
node of the bloated dependency is removed). DEPCLEAN does not perform any mod-
ifications to the source code, bytecode, or configurations files in the project under
consideration.

Algorithm 1 details the main procedure of DEPCLEAN. The algorithm receives as
input a Maven artifact p that includes a set of dependencies in its dependency tree,
denoted as DT , and returns a report of the usage status of its dependencies and a
debloated version of its POM. Notice that DEPCLEAN computes two transitive closures:
over the Maven dependency tree (line 2) and over the call graph of API members
(line 3).

The algorithm first copies the POM file of p, resolving all its direct and transitive depen-
dencies locally, and obtaining the dependency tree (lines 1 and 2). If p is a module of a
multi-module project, then all the dependencies declared in its parent POM are included
as direct dependencies of p. Then, the algorithm proceeds to construct a set with the
dependencies that are actually used by p (line 3).

Algorithm 2 explains the bytecode analysis. The detection component statically analyzes
the bytecode of p and all its dependencies to check which API members are being refer-
enced by the artifact, either directly or indirectly. Notice that it behaves differently if the
included artifact is a direct, inherited, or a transitive dependency. If none of the API mem-
bers of a dependency d ∈ DT are called, even indirectly via transitive dependencies, then
d is considered to be bloated, and we proceed to remove it.

(2021) 26:Empir Software Eng 45 Page 9 of 44 44

In Maven, we remove bloated dependencies in two different ways: (1) if the bloated
dependency is explicitly declared in the POM, then we remove its declaration clause directly
(line 9 in Algorithm 1), or (2) if the bloated dependency is inherited from a parent POM or
induced transitively, then we excluded it in the POM (line 11 in Algorithm 1). This exclusion
consists in adding an <exclusion> clause inside a direct dependency declaration, with
the groupId and artifactId of the transitive dependency to be excluded. Excluded dependen-
cies are not added to the classpath of the artifact by way of the dependency in which the
exclusion was declared.

DEPCLEAN is implemented in Java as a Maven plugin that extends the
maven-dependency-analyzer3 tool, which is actively maintained by the Maven
team and officially supported by the Apache Software Foundation. For the construction of
the dependency tree, DEPCLEAN relies on the copy-dependencies and tree goals of
the maven-dependency-plugin. Internally, DEPCLEAN relies on the ASM4 library

3http://maven.apache.org/shared/maven-dependency-analyzer
4https://asm.ow2.io

(2021) 26:Empir Software Eng 4545 Page 10 of 44

http://maven.apache.org/shared/maven-dependency-analyzer
https://asm.ow2.io

to visit all the .class files of the compiled projects in order to register bytecode calls
towards classes, methods, fields, and annotations among Maven artifacts and their depen-
dencies. For example, it captures all the dynamic invocations created from class literals
by parsing the bytecodes in the constant pool of the classes. DEPCLEAN defines a cus-
tomized parser that reads entries in the constant pool of the .class files directly, in case
it contains special references that ASM does not support. This allows the plugin to stati-
cally capture reflection calls that are based on string literals and concatenations. Compared
to maven-dependency-analyzer, DEPCLEAN adds the unique features of detecting
transitive and inherited bloated dependencies, and to produce a debloated version of the
POM file. DEPCLEAN is open-source and reusable from Maven Central, the source code is
available at https://github.com/castor-software/depclean.

4 Experimental Methodology

In this section, we present the research questions that articulate our study. We also describe
the experimental protocols used to select and analyze Maven artifacts for an assessment of
the impact of bloated dependencies in this ecosystem.

4.1 Research Questions

Our investigation of bloated dependencies in the Maven ecosystem is composed of four
research questions grouped in two parts. In the first part, we perform a large scale
quantitative study to answer the following research questions:

– RQ1: How frequently do bloated dependencies occur? With this research question,
we aim at quantifying the amount of bloated dependencies among 9,639 Maven arti-
facts. We measure direct, inherited and transitive dependencies to provide an in-depth
assessment of the dependency bloat in the Maven ecosystem.

– RQ2: How do the reuse practices affect bloated dependencies? In this research
question, we analyze bloated dependencies with respect to two distinctive aspects
of reuse in the Maven ecosystem: the additional complexity of the Maven depen-
dency tree caused by transitive dependencies, and the choice of a multi-module
architecture.

The second part of our study focuses on 30 notable Maven projects and presents the qual-
itative feedback about how developers react to bloated dependencies, and to the solutions
provided by DEPCLEAN. It is guided by the following research questions:

– RQ3: To what extent are developers willing to remove bloated-direct dependen-
cies? Direct dependencies are those that are explicitly declared in the POM. Hence,
those dependencies are easy to remove since it only requires the modification of a
POM that developers can easily change. In this research question, we use DEPCLEAN

to detect and fix bloated-direct dependencies. Then, we communicate the results to the
developers. We report on their feedback.

– RQ4: To what extent are developers willing to exclude bloated-transitive dependen-
cies? Transitive dependencies are those not explicitly declared in the POM but induced
from other dependencies. We exchange with developers about such cases. This gives
unique insights about how developers react to excluding transitive dependencies from
their projects.

(2021) 26:Empir Software Eng 45 Page 11 of 44 44

https://github.com/castor-software/depclean

4.2 Experimental Protocols

4.2.1 Protocol of the Quantitative Study (RQ1 & RQ2)

Figure 4 shows our process to build a dataset of Maven artifacts in order to answer RQ1
and RQ2. Steps and focus on the collection of a representative set, according to the
number of direct dependencies, of Maven artifacts: we sample our study subjects from the
whole MDG, then we resolve the dependencies of each study subject. In steps and , we
analyze dependency usages with DEPCLEAN and compute the set of metrics to answer RQ1
and RQ2.

Filter Artifacts In the first step, we leverage the Maven Dependency Graph (MDG) from
previous research (Benelallam et al. 2019), a graph database that captures the complete
dependency relationships between artifacts in Maven Central at a given point in time.
Figure 5a shows the distribution of the number of direct dependencies of the artifacts with
at least one direct dependency in the MDG. The number of direct dependencies is a repre-
sentative measure that reflects the initial intentions of developers with respect to code reuse.
We select a representative sample that includes 14,699 Maven artifacts (Fig. 5b). Repre-
sentativeness is achieved by sampling over the probability distribution of the number of
direct dependencies per artifact in the MDG, per the recommendation of Shull (2007, Chap-
ter 8.3.1). From the sampled artifacts, we select as study subjects all the artifacts that meet
the following additional criteria:

– Public API: The subjects must contain at least one .class file with one or more public
methods, i.e., can be reused via external calls to their API.

– Diverse: The subjects all have different groupId and artifactId, i.e., they belong to
different Maven projects.

Fig. 4 Experimental framework used to collect artifacts and analyze bloated dependencies in the Maven
ecosystem

(2021) 26:Empir Software Eng 4545 Page 12 of 44

Artifacts

100 100.5 101 101.5 102 102.5 103

(a)

Artifacts

100 100.5 101 101.5 102 102.5 103

(b)

Artifacts

100 100.5 101 101.5 102 102.5 103

(c)

Fig. 5 Distribution of the number of direct dependencies of the artifacts at the different stages of the data
filtering process

– Reused: The subjects are used by at least one client via direct declaration.
– Complex: The subjects have at least one direct dependency with compile scope, i.e., we

can analyze the dependency tree and the reused artifacts.
– Latest: The subjects are the latest released version at the time of the experiment

(October, 2019).

After this systematic selection procedure, we obtain a dataset of 9,770 Maven artifacts.
The density of artifacts with a number of direct dependencies in the range [3, 9] in our
dataset (Fig. 5c) is higher than in the MDG (Fig. 5a). This is a direct consequence of
our selection criteria where artifacts must have at least one direct dependency with com-
pile scope. This filter removes artifacts that contain only dependencies that are not shipped
in the JAR of the artifact (e.g., test dependencies). Therefore, the 9,770 artifacts used as
study subjects are representative of the artifacts in Maven Central that include third-party
dependencies in the JAR.

Resolve Dependencies In the second step, we download the binaries of all the selected
artifacts and their POMs from Maven Central and we resolve all their direct and transitive
dependencies to a local repository. To ensure the consistency of our analysis, we discard
the artifacts that depend on libraries hosted in external repositories. In case of any other
error when downloading some dependency, we exclude the artifact from our analysis. This
occurred for a total of 131 artifacts in the dataset obtained in the first step.

Table 2 shows the descriptive statistics about the 9,639 artifacts in our final dataset
for RQ1 and RQ2. The dataset includes 44,488 direct, 180,693 inherited, and 498,263
transitive dependency relationships (723,444 in total). We report about their depen-
dencies with compile scope, since those dependencies are necessary to build the
artifacts. Columns #C, #M, and #F give the distribution of the number of classes,
methods, and fields per artifact (we count both the public and private API mem-
bers). The size of artifacts varies, from small artifacts with one single class (e.g.,
org.elasticsearch.client:transport:6.2.4), to large libraries with thou-
sands of classes (e.g., org.apache.hive:hive-exec:3.1.0). In total, we analyze

(2021) 26:Empir Software Eng 45 Page 13 of 44 44

Table 2 Descriptive statistics of the 9,639 Maven artifacts selected to conduct our quantitative study of
bloated dependencies (RQ1 & RQ2)

API Members Dependencies

#C #M #F #D #I #T

Min. 1 1 0 1 0 0

1st-Q 10 63 21 2 0 6

Median 32 231 75 4 2 20

3rd-Q 111 891 279 7 18 59

Max. 47,241 435,695 129,441 148 453 1,776

Total 2,397,879 22,633,743 6,510,584 44,488 180,693 498,263

the bytecode of more than 30 millions of API members. Columns #D, #I, and #T
account for the distributions of direct, inherited, and transitive dependencies, respectively.
com.bbossgroups.pdp:pdp-system:5.0.3.9 is the artifact with the largest
number of declared dependencies in our dataset, with 148 dependency declarations in its
POM file, while be.atbash.json:octopus-accessors-smart:0.9.1 has the
maximum number of transitive dependencies: 1,776. The distributions of direct and transi-
tive dependencies are notably different: typically the number of transitive dependencies is
an order of magnitude larger than direct dependencies, with means of 20 and 4, respectively.

Dependency Usage Analysis This is the first step to answer RQ1 and RQ2: collect the
status of all dependency relationships for each artifact in our dataset. For each artifact, we
first unpack its JAR file, as well as its dependencies. Then, for each JAR file, we analyze
all the bytecode calls to API class members using DEPCLEAN. This provides a Dependency
Usage Tree (DUT) for each artifact, on which each dependency relationship is labeled with
one of the six categories as we illustrated in Table 1: bloated-direct (bd), bloated-inherited
(bi), bloated-transitive (bt), used-direct (ud), used-inherited (ui), or used-transitive (ut).

Collect Dependency Usage Metrics This last step consists of collecting a set of metrics
about the global presence of bloated dependencies. We define our analysis metrics with
the goals of studying 1) the dependency usage relationships in the DUT (RQ1), and 2) the
complexity resulting from the adoption of the multi-module Maven architecture (RQ2).

In RQ1, we analyze our dataset as a whole, looking at the usage status of dependency
relationships from two perspectives:

– Global distribution of dependency usage. This is the normalized distribution of each
category of dependency usage, over each dependency relationship of each of the 9,639
artifacts in our dataset.

– Distribution of dependency usage type, per artifact. For each of the six types of depen-
dency usage, we compute the normalized ratio over the total number of dependency
relationships for each artifact in our dataset.

In RQ2, we analyze how the specific reuse strategies of Maven relate to the presence of
bloated dependencies. First, we use the number of transitive dependencies and the height of
the dependency tree as a measure of complexity. The former measure is guided by the fact
that transitive dependencies are more difficult to handle by developers; the latter measure is

(2021) 26:Empir Software Eng 4545 Page 14 of 44

guided by the idea that dependencies that are deeper in the dependency tree are more likely
to be bloated. We use the following metrics:

– Bloated dependencies w.r.t. the number of transitive dependencies. For each artifact that
has at least one transitive dependency, we determine the relation between the ratio of
transitive dependencies and the ratio of bloated dependencies.

– Bloated-transitive dependencies w.r.t. to the height of the dependency tree. Given an
artifact and its Maven dependency tree, the height of the tree is the longest path between
the root and its leaves. To compute this metric, we group our artifacts according to
the height of their tree. The maximum dependency tree height that we observed is 14.
However, there are only 152 artifacts with a tree higher than 9. Therefore, we group all
artifacts with height ≥ 9. For each subset of artifact with the same height, we compute
the size of the subset and the distribution of bloated-transitive dependencies of each
artifact in the subset.

Second, we distinguish the presence of bloated dependencies between single and multi-
module Maven projects, according to the following metrics:

– Global distribution of dependency usage in a single or multi-module project.We present
two plots that measure the distribution of each type of dependency usage in the set
of single and multi-module projects. It is to be noted that the plot for single-module
projects does not include bloated-inherited (bi) and used-inherited (ui) dependencies
since they have no inherited dependencies.

– Distribution of dependency usage type, per artifact, in a single or multi-module project.
We present two plots that provide six distributions each: the distribution of each type of
dependency usage type for artifacts that are in a single-module or multi-module project.

4.2.2 Protocol of the Qualitative Study (RQ3 & RQ4)

In RQ3 and RQ4, we perform a qualitative assessment of the relevance of bloated depen-
dencies for the developers of open-source projects. We systematically select 30 notable
open-source projects hosted on GitHub to conduct this analysis. We query the GitHub API
to list all the Java projects ordered by their number of stars. Then, we randomly select a set of
projects that fulfil all the following criteria: (1) we can build them successfully with Maven,
(2) the last commit was at the latest in October 2019, (3) they declare at least one depen-
dency in the POM, (4) they have a description in the README about how to contribute
through pull requests, and (5) they have more than 100 stars on GitHub.

Table 3 shows the selected 30 projects per those criteria, to which we submitted at least
one pull request. They are listed in decreasing order according to their number of stars on
GitHub. The first column shows the name of the project as declared on GitHub, followed
by the name of the targeted module if the project is multi-module. Notice that in the case of
jenkins we submitted two pull requests targeting two distinct modules: core and cli.
Columns two to four describe the projects according to its category as assigned to the cor-
responding released artifact in Maven Central, the number of commits in the master branch
in October 2019, and the number of stars at the moment of conducting this study. Columns
five to seven report about the total number of direct, inherited, and transitive dependencies
included in the dependency tree of each considered project.

(2021) 26:Empir Software Eng 45 Page 15 of 44 44

Table 3 Maven projects selected to conduct our qualitative study of bloated dependencies (RQ3 & RQ4)

Project Description Dependencies

Category #Commits #Stars #D #I #T

jenkins [core] Automation Server 29,040 14,578 51 2 87

jenkins [cli] Automation Server 29,040 14,578 17 2 0

mybatis-3 [mybatis] Relational Mapping 3,145 12,196 23 0 51

flink [core] Streaming 19,789 11,260 14 10 34

checkstyle [checkstyle] Code Analysis 8,897 8,897 18 0 36

auto [common] Meta-programming 1,081 8,331 8 0 24

neo4j [collections] Graph Database 66,602 7,069 8 2 21

CoreNLP NLP 15,544 6,812 23 0 45

moshi [moshi-kotlin] JSON Library 793 5,731 14 0 21

async-http-client [http-client] HTTP Client 4,034 5,233 29 16 130

error-prone [core] Defects Detection 4,015 4,915 44 0 35

alluxio [core-transport] Database 30,544 4,442 6 14 73

javaparser [symbol-solver-logic] Code Analysis 6,110 2,784 3 0 8

undertow [benchmarks] Web Server 4,687 2,538 10 0 19

wc-capture [driver-openimaj] Webcam 629 1,618 3 0 84

teavm [core] Compiler 2,334 1,354 9 0 9

handlebars [markdown] Templates 916 1,102 6 0 13

jooby [jooby] Web Framework 2,462 1,083 23 0 68

tika [parsers] Parsing library 4,650 929 81 0 67

orika [eclipse-tools] Object Mapping 970 864 3 0 3

spoon [core] Meta-programming 2,971 840 16 2 59

accumulo [core] Database 10,314 763 26 1 51

couchdb-lucene Text Search 1,121 752 25 0 112

jHiccup Profiling 215 519 4 0 1

subzero [server] Cryptocurrency 158 499 6 0 100

vulnerability-tool [shared] Security 1,051 324 6 4 2

para [core] Cloud Framework 1,270 310 47 2 112

launch4j-maven-plugin Deployment Tool 316 194 7 0 61

jacop CP Solver 1,158 155 7 0 9

selenese-runner-java Interpreter 1,688 117 23 0 148

commons-configuration Config library 3,159 100 31 0 49

We answer RQ3 according to the following protocol: 1) we run DEPCLEAN, we build
the artifact with the debloated POM file, 2) if the project builds successfully, we analyze the
project to propose a relevant change to the developers per the contribution guidelines, 3) we
propose a change in the POM file in the form of a pull request, and 4) we discuss the pull

(2021) 26:Empir Software Eng 4545 Page 16 of 44

Fig. 6 Example of commit removing the bloated-direct dependency
org.apache.httpcomponents:httpmime in the project Undertow

request through GitHub. Figure 6 shows an excerpt of the diff of such a change in the POM
file. We note that the submitted pull requests contain a small modification in a single file:
the POM.

In the first step of the protocol, we use DEPCLEAN to obtain a report about the usage of
dependencies. We analyze dependencies with both compile and test scope. Once a bloated-
direct dependency is found, we remove it directly in the POM and proceed to build the
project. If the project builds successfully after the removal (all the tests pass), we submit the
pull request with the corresponding change. If after the removal of the dependency the build
fails, then we consider the dependency as used dynamically and do not suggest removing
it. In the case of multi-module projects, with bloated dependencies in several modules, we
submitted a single pull request per module.

For each pull request, we analyze the Git history of the POM file to determine when
the bloated dependency was declared or modified. Our objective is to collect information in
order to understand how the dependencies of the projects change during their evolution. This
allows us to prepare a more informative pull request message and to support our discussion
with developers. We also report on the benefits of tackling these bloated dependencies by
describing the differences between the original and the debloated packaged artifact of the
project in terms of the size of the bundle and the complexity of its dependency tree, when
the difference was significant. Each pull request includes an explanatory message. Figure 7
shows an example of the pull request message submitted to the project Undertow.5 The
message explains the motivations of the proposed change, as well as the negative impact of
keeping these bloated dependencies in the project.

To answer RQ4, we follow the same pull request submission protocol as for RQ3. We
use DEPCLEAN to detect bloated-transitive dependencies and submit pull requests suggest-
ing the addition of the corresponding exclusion clauses in each project POM. Figure 8
shows an example of a pull request message submitted to the project Apache Accumulo6,
while Fig. 9 shows an excerpt of the commit proposing the exclusion of the transitive
dependency org.apache.httpcomponents:httpcore from the direct dependency
org.apache.thrift:libthrift in its POM.

Additional information related to the selected projects and the research methodology
employed is publicly available as part of our replication package at https://github.com/
castor-software/depclean-experiments.

5https://github.com/undertow-io/undertow
6https://github.com/apache/accumulo

(2021) 26:Empir Software Eng 45 Page 17 of 44 44

https://github.com/castor-software/depclean-experiments
https://github.com/castor-software/depclean-experiments
https://github.com/undertow-io/undertow
https://github.com/apache/accumulo

Fig. 7 Example of message of a pull request sent to the project Undertow on GitHub

Fig. 8 Example of message in a pull request sent to the project Apache Accumulo on GitHub

Fig. 9 Example of commit excluding the bloated-transitive dependency
org.apache.httpcomponents:httpcore in the project Apache Accumulo

(2021) 26:Empir Software Eng 4545 Page 18 of 44

5 Experimental Results

We now present the results of our in-depth analysis of bloated dependencies in the Maven
ecosystem.

5.1 RQ1: How Frequently do Bloated Dependencies Occur?

In this first research question, we investigate the status of all the dependency relationships
of the 9,639 Maven artifacts under study.

Figure 10 shows the overall status of the 723,444 dependency relationships in our dataset.
The x-axis represents the percentages, per usage type, of all the dependencies considered
in the studied artifacts. The first observation is that the bloat phenomenon is massive:
543,610 (75.1%) of all dependencies are bloated, they are not needed to compile and run
the code. This bloat is divided into three separate categories: 19,673 (2.7%) are bloated-
direct dependency relationships (explicitly declared in the POMs); 111,649 (15.4%) are
bloated-inherited dependency relationships from parent module(s); and 412,288 (57%) are
bloated-transitive dependencies. Figure 10 shows that 75.1% of the relationships (edges
in the dependency usage tree) are bloated dependencies. Note that this observation does
not mean that 543,610 artifacts are unnecessary and can be removed from Maven Central.
The same artifact can be present in several DUTs, i.e., reused by different artifacts, but be
part of a bloated dependency relationship only in some of these DUTs, and part of a used
relationship in the other DUTs.

Figure 11 shows the overall status of the dependencies with respect to the type of the
dependency relationship (direct, inherited, and transitive). We observe that approximately
1/3 of direct dependencies are bloated (34.23%), whereas inherited and transitive depen-
dencies have a higher percentage of bloat (61.79% and 82.5% of bloat, respectively). These
results indicate that artifacts with inherited and transitive dependencies are more likely to
have more bloated dependencies. They also confirm that transitive dependencies are the
most susceptible to bloat.

In the following, we illustrate the three types of bloated dependency relationships with
concrete examples.

Bloated-Direct We found that 2.7% of the dependencies declared in the POM file
of the studied artifacts are not used at all via bytecode calls. Recall that detect-
ing this type of bloated dependencies is good, because they are easy to remove

Fig. 10 Ratio per usage status of the 723,444 dependency relationships analyzed. Raw counts are inside
parentheses below each percentage

(2021) 26:Empir Software Eng 45 Page 19 of 44 44

Fig. 11 Ratio per dependency type of bloated and used dependencies of the 723,444 dependency relation-
ships analyzed

by developers with a single change in the POM file of the project under con-
sideration. As an example, the Apache Ignite7 project has deployed an artifact:
org.apache.ignite:ignite-zookeeper:2.4.0, which contains only one class
in its bytecode: TcpDiscoveryZookeeperIpFinder, and it declares a direct depen-
dency in the POM towards slf4j, a widely used Java logging library. However, if we
analyze the bytecode of ignite-zookeeper, no call to any API member of sl4j exists,
and therefore, it is a bloated-direct dependency. After a manual inspection of the commit
history of the POM, we found that sl4j was extensively used across all the modules of
Apache Ignite at the early stages of the project, but it was later replaced by a dedicated
logger, and its declaration remained intact in the POM.

Bloated-Inherited In our dataset, a total of 4,963 artifacts are part of multi-module Maven
projects. Each of these artifacts declares a set of dependencies in its POM file, and
also inherits a set of dependencies from a parent POM. DEPCLEAN marks those inher-
ited dependencies are either bloated-inherited or used-inherited. Our dataset includes a
total of 111,649 dependency relationships labeled as bloated-inherited, which represents
15.4% of all dependencies under study and 61.8% of the total of inherited depen-
dencies. For example, the artifact org.apache.drill:drill-protocol:1.14.0
inherits dependencies commons-codec and commons-io from its parent POM
org.apache.drill:drill-root:1.14.0, however, those dependencies are not
used in this module, and therefore they are bloated-inherited dependencies.

Bloated-Transitive In our dataset, bloated-transitive dependencies represent the major-
ity of the bloated dependency relationships: 412,288 (57%). This type of bloat is a
natural consequence of the Maven dependency resolution mechanism, which automat-
ically resolves all the dependencies whether they are explicitly declared in the POM
file of the project or not. Transitive dependencies are the most common type of depen-
dency relationships, having a direct impact on the growth of the dependency trees. This
type of bloat is the most common in the Maven ecosystem. For example, the artifact

7https://github.com/apache/ignite

(2021) 26:Empir Software Eng 4545 Page 20 of 44

https://github.com/apache/ignite

Listing 2 Code snippet of the class VerbDefinitionDropFilter present in the artifact
org.apache.streams:streams-filters:0.6.0. The library com.google.guava:guava:
20.0 is included in its classpath via transitive dependency and called from the source code, but no
dependency towards guava is declared in its POM

org.eclipse.milo:sdk-client:0.2.1 ships the transitive dependency gson in
its MDT, induced from its direct dependency towards bsd-parser-core. However, the
part of bsd-parser-core used by sdk-client does not call any API member of
gson, and therefore it is a bloated-transitive dependency.

In the following, we discuss the dependencies that are actually used. We observe that
direct dependencies represent only 3.4% of the total of dependencies in our dataset. This
means that the majority of the dependencies that are necessary to build Maven artifacts are
not declared explicitly in the POM files of these artifacts.

It is interesting to note that 85,975 of the dependencies used by the artifacts under
study are transitive dependencies. This kind of dependency usage occurs in two differ-
ent scenarios: (1) the artifact uses API members of some transitive dependencies, without
declaring them in its own POM file; or (2) the transitive dependency is necessary to provide
a functionality to another, actually used dependency, in the dependency tree of the artifact.

Listing 3 Code snippet of the class AuditTask present in the artifact org.duracloud:auditor:
4.4.3. The library org.codehaus.jackson:jackson-mapper-asl:1.6.2 is used indirectly
through the direct dependency org.duracloud:common-json:4.4.3

We now discuss an example of the first scenario based on the
org.apache.streams:streams-filters:0.6.0 artifact from the Apache

(2021) 26:Empir Software Eng 45 Page 21 of 44 44

Fig. 12 Distributions of the six types of dependency usage relationships for the studied artifacts. The thicker
areas on each curve represent concentrations of artifacts per type of usage

Streams8 project. It contains two classes: VerbDefinitionDropFilter and
VerbDefinitionKeepFilter. Listing 2 shows part of the source code of the class
VerbDefinitionDropFilter, which imports the class PreCondition from
library guava (line 2) and uses its static method checkArgument in line 8 of method
process. However, if we inspect the POM of streams-filters, we notice that
there is no dependency declaration towards guava. It declares a dependency towards
streams-core, which in turn depends on the streams-utils artifact that has a
direct dependency towards guava. Hence, guava is a used-transitive dependency of
streams-filters, called from its source code.

Let us now present an example of the second scenario. Listing 3 shows an excerpt of
the class AuditTask included in the artifact org.duracloud:auditor:4.4.3,
from the project DuraCloud.9 In line 6, the method getPropsSerializer
instantiates the JaxbJsonSerializer object that belongs to the direct depen-
dency org.duracloud:common-json:4.4.3. This object, in turn, creates
an ObjectMapper from the transitive dependency jackson-mapper-asl.
Hence, jackson-mapper-asl is a necessary, transitive provider for
org.duracloud:auditor:4.4.3.

Figure 12 shows the distributions of dependency usage types per artifact. The figure
presents superimposed log-scaled box-plots and violin-plots of the number of dependency
relationships corresponding to the six usage types studied. Box-plots indicate the stan-
dard statistics of the distribution (i.e., lower/upper inter-quartile range, max/min values, and
outliers), while violin plots indicate the entire distribution of the data.

We observe that the distributions of the bloated-direct (bd) and bloated-transitive (bt)
dependencies vary greatly. Bloated-direct dependencies are distributed between 0 and 1
(1st-Q and 3rd-Q), with a median of 0; whereas the second ranges between 2 and 41 (1st-
Q and 3rd-Q), with a median of 11. These values are in line with the statistics presented in

8https://streams.apache.org
9https://duraspace.org

(2021) 26:Empir Software Eng 4545 Page 22 of 44

https://streams.apache.org
https://duraspace.org

Table 2, since the number of direct and transitive dependencies in general differ approxi-
mately by one order of magnitude. Overall, from the 9,639 Maven artifacts studied, 3,472
(36%) have at least one bloated-direct dependency, while 8,305 (86.2%) have at least one
bloated-transitive.

On the other hand, the inter-quartile range of bloated-direct (bd) dependencies is more
compact than the used-direct (ud). In other words, the dependencies declared in the POM
are mostly used. This result is expected, since developers have more control over the edition
(adding/removing dependencies) of the POM file of their artifact.

The median number of used-transitive (ut) dependencies is significantly lower than the
median number of bloated-transitive (bt) dependencies (2, vs. 11). This suggests that the
default dependency resolution mechanism of Maven is suboptimal with respect to ensuring
minimal dependency inclusion.

The number of outliers in the box-plots differs for each usage type.
Notably, the bloated-direct dependencies have more outliers (in total, 25 arti-
facts have more than 100 bloated-direct dependencies). In particular, the artifact
com.bbossgroups.pdp:pdp-system:5.0.3.9 has the maximum number of
bloated-direct dependencies: 133, out of the 147 declared in its POM. The total number of
artifacts with at least one bloated-direct dependency in our dataset is 2,298, which repre-
sents 23.8% of the 9,639 studied artifacts.

5.2 RQ2: How do the Reuse Practices Affect Bloated Dependencies?

In this research question, we investigate how the reuse practices that lead to these distinct
types of dependency relationships are related to the bloated dependencies that emerge in
Maven artifacts.

Figure 13 shows the distributions, in percentages, of the direct, inherited, and transitive
dependencies for the 9,639 studied artifacts. The artifacts are sorted, from left to right, in
increasing order according to their ratio of direct dependencies. The y-axis indicates the
ratio of each type of dependency for a given artifact. First, we observe that 4,967 arti-
facts belong to multi-module projects. Among these artifacts, the extreme case (far left of
the plot) is org.janusgraph:janusgraph-berkeleyje:0.4.0, which declares
only 1.4% of its dependencies in its POM, while the 48.6% of its dependencies are inher-
ited from parent POM files, and 50% are transitive. Second, we observe that the ratio of
transitive dependencies is not equally distributed. On the right side of the plot, 879 (9.1%)
artifacts have no transitive dependency (they have 100% direct dependencies). Mean-
while, 5,561 (57.7%) artifacts have more than 50% transitive dependencies. The extreme

(2021) 26:Empir Software Eng 45 Page 23 of 44 44

Fig. 13 Distribution of the percentages of direct, inherited, and transitive dependencies for the 9,639 artifacts
considered in this study

case is org.apereo.cas:cas-server-core-api-validation:6.1.0, with
77.6% transitive dependencies.

In summary, the plot in Fig. 13 offers a big picture of the distribution of the three types of
dependency usage in our dataset. The inherited and transitive dependencies are a significant
phenomenon in Maven: 8,742 (90.7%) artifacts in our dataset have transitive dependen-
cies, and 51.5% of artifacts belong to multi-module projects. This observation confirms the
results of the previous section, most of the bloated dependencies in our dataset are either
transitive (57%) or inherited (15.4%).

5.2.1 Transitive Dependencies

Figure 14 plots the relation between the ratio of transitive dependencies and the ratio of
bloated dependencies. Each dot represents an artifact. Dots have a higher opacity in the
presence of overlaps.

The key insight in Fig. 14 is that the larger concentration of artifacts is skewed to the
top right corner, indicating that artifacts with a high percentage of transitive dependencies
also tend to exhibit higher percentages of bloated dependencies. Indeed, both variables are
positively correlated, according to the Spearman’s rank correlation test (ρ = 0.65, p-value
< 0.01).

Fig. 14 Relation between the percentages of transitive dependencies and the percentage of bloated depen-
dencies in the 9,639 studied artifacts

(2021) 26:Empir Software Eng 4545 Page 24 of 44

Fig. 15 Distribution of the percentages of bloated-transitive dependencies for our study subjects with respect
to the height of the dependency trees. Height values greater than 10 are aggregated. The bar plot at the top
represents the number of study subjects for each height

Figure 15 shows the distribution of the ratio of transitive bloated dependencies according
to the height of the dependency tree. The artifact in our dataset with the largest height
is top.wboost:common-base-spring-boot-starter:3.0.RELEASE, with a
height of 14. The bar plot on top of Fig. 15 indicates the number of artifacts that have the
same height. We observe that most of the artifacts have a height of 4: 2,226 artifacts in total.
Considering the number of dependencies, this suggests that the dependency trees tend to be
wider than deep. This is direct consequence of the automatic dependency management by
Maven: any dependency that already appears at a level closer to the root will be omitted by
Maven if it is referred to at a deeper level.

Looking at the 58 artifacts with height ≥ 9, we notice that most of
them belong to multi-module projects, and declare other modules in the same
project as their direct dependencies. This is a regular practice of multi-module
projects, which allows to release each module as an independent artifact. Mean-
while, this increases the complexity of dependency trees. For example, artifact
org.wso2.carbon.devicemgt:org.wso2.carbon.apimgt.handlers:3.0.192
is the extreme case of this practice in our dataset, with two direct dependencies towards
other modules of the same project that in turn depend on other modules of this project.
As a result, this artifact has 342 bloated-transitive and 87 bloated-inherited dependencies,
a dependency tree of height 11, and is part of a multi-module project with a total of 79
modules released in Maven Central.

The plot in Fig. 15 shows a clear increasing trend of bloated-transitive dependencies as
the height of the dependency tree increases. Indeed, both variables are positively correlated,
according to the Spearman’s rank correlation test (ρ = 0.54, p-value ¡ 0.01). For artifacts
with a dependency tree of height greater than 9, at least 28% of their transitive dependen-
cies are bloated, while the median of the percentages of bloated-transitive dependencies for
artifacts with height larger than 5 is more than 50%.

This finding confirms and complements the results of Fig. 14, showing that the height
of the dependency tree is directly related to the occurrence of bloat. However, the height of
the tree may not be the only factor that causes the bloat. For example, we hypothesize that
number of transitive dependencies is another essential factor.

(2021) 26:Empir Software Eng 45 Page 25 of 44 44

In order to validate this hypothesis, we perform a Spearman’s rank correlation test
between the number of bloated-transitive dependencies and the size of the dependency tree,
i.e., the number of nodes in each tree. We found that there is a significant positive correla-
tion between both variables (ρ =0.67, p-value < 0.01). This confirms that the actual usage
of transitive dependencies decreases with the increasing complexity of the dependency tree.
This result is aligned with our previous study that suggest that most of the public API
members of transitive dependencies are not used by its clients (Harrand et al. 2019).

In summary, our results point to the excess of transitive dependencies as one of the
fundamental causes of the existence of bloated dependencies in the Maven ecosystem.

5.2.2 Single-Module vs. Multi-Module

Let us investigate on the differences between single and multi-module architectures with
respect to the presence of bloated dependencies. Figure 16 compares the distributions
of bloated and used dependencies between multi-module and single-module artifacts in
our dataset. We notice that, in general, multi-module artifacts have slightly more bloat
than single-module, precisely 3.1% more (the percentage of bloat in single-module is
5.8% + 67.3% = 73.1% vs. 0.9% + 24.2% + 51.1% = 76.2% in multi-module). More
interestingly, we observe that a majority of the inherited dependencies are bloated: 24.2%
of the dependencies among multi-module project are bloated-inherited (bi), while only 15%
are used-inherited (ui). This suggests that most of the dependencies inherited by Maven
artifacts that belong to multi-module artifacts are not used by these modules.

We observe that the percentage of bloated-direct dependencies in multi-module artifacts
is very small (0.9%) in comparison with single-module (5.8%). Meanwhile, the percentage
of bloated-transitive dependencies in single-module (67.3%) is larger than in multi-module
(51.1%). This is due to the “shift” of a part of direct and transitive dependencies into
inherited dependencies when using a parent POM. Indeed, the “shift” from direct to
inherited is the main motivation for having a parent POM: to have one single declara-
tion of dependencies for many artifacts instead of letting each artifact manage their own
dependencies.

Fig. 16 Comparison between multi-module and single-module artifacts according to the percentage status of
their dependency relationships. Raw counts are inside parentheses below each percentage

(2021) 26:Empir Software Eng 4545 Page 26 of 44

This “shift” in the nature of dependencies between single and multi-module artifacts
is further emphasized in Fig. 17. This plot shows superimposed log scaled box-plots and
violin-plots comparing the distributions of the number of distinct dependency usage types
per artifact, for single-module (top part of the figure) and multi-module (bottom part).

We observe that multi-module artifacts have less bloated-direct (1st-Q = 0, median
= 0, 3rd-Q = 0) and less bloated-transitive (1st-Q = 2, median = 9, 3rd-Q = 40),
compared to single-modules, as shown in Fig. 17. However, multi-module artifacts
have a considerably larger number of bloated-inherited dependencies instead (1st-Q
= 1, median = 5, 3rd-Q = 20). The extreme case in our dataset is the artifact
co.cask.cdap:cdap-standalone:4.3.4, with 326 bloated-inherited dependen-
cies in total.

In summary, the multi-module architecture in Maven projects contributes to limit redun-
dant dependencies and facilitates the consistent versioning of dependencies in large projects.
However, it introduces two challenges for developers. First, it leads to the emergence of
bloated-inherited dependencies because of the friction of maintaining a common parent
POM file: it is more difficult to remove dependencies from a parent POM than from an
artifact’s own POM. Second, it is more difficult for developers to be aware of and under-
stand the dependencies that are inherited from the parent POM. This calls for better tooling
and user interfaces to help developer grasp and analyze the inherited dependencies in multi-
module projects, in order to detect bloated dependencies. To our knowledge, this type of
tools is absent in the current Java dependency management ecosystem.

Fig. 17 Comparison between multi-module and single-module projects according to their distributions of
dependency usage relationships

(2021) 26:Empir Software Eng 45 Page 27 of 44 44

5.3 RQ3: To what Extent are Developers Willing to Remove Bloated-Direct
Dependencies?

In this research question, our goal is to see how developers react when made aware of
bloated-direct dependencies in their projects. We do this by proposing the removal of
bloated-direct dependencies to lead developers of mature open-source projects, as described
in Section 4.2.2.

Table 4 shows the list of 19 pull requests submitted. Each pull request proposes the
removal of at least one bloated-direct dependency in the POM. We received response from
developers for 17 pull request. The first and second columns in the table show the name of
the project and the pull request on GitHub. Columns three and four represent the number of
bloated dependencies removed in the POM and the total number of dependencies removed
from the dependency tree with the proposed change, including transitive ones. The last
column shows the status of the pull request (accepted, accepted with changes,
rejected, or pending). The last row represent the acceptance rate calculated with respect
to the projects with response, i.e., the total number of dependencies removed divided by
the number of proposed removals. For example, for project undertow we proposed the
removal of 6 bloated dependencies in its module benchmarks. As a result of this change,
17 transitive dependencies were removed from the dependency tree the module.

Overall, from the pull requests with responses from developers, 16/17 were accepted
and merged. In total, 75 dependencies were removed from the dependency trees of the
projects. This result demonstrates the relevance of handling bloated-direct dependencies for
developers, and the practical usefulness of DEPCLEAN.

Let us now summarize the developer feedback. First, all developers agreed on the impor-
tance of refining the projects’ POMs. This is reflected in the positive comments received.
Second, their quick responses suggest that it is easy for them to understand the issues asso-
ciated with the presence of bloated-direct dependencies in their projects. In 8/17 projects,
the response time was less than 24 hours, which is an evidence that developers consider this
type of improvement as a priority.

Our results also provide evidence of the fact that we, as external contributors to those
projects, were able to identify the problem and propose a solution using DEPCLEAN. In the
following, we discuss four cases of pull requests that are particularly interesting and the
feedback provided by developers.

5.3.1 Jenkins

DEPCLEAN detects that jtidy and commons-codec are bloated-direct dependen-
cies present in the modules core and cli of jenkins. jtidy is an HTML syntax
checker and pretty printer. commons-codec is an Apache library that provides an API to
encode/decode from various formats such as Base64 and Hexadecimal.

Developers were reluctant to remove jtidy due to their concerns of affect-
ing the users of jenkins, which could be potential consumers of this depen-
dency. After further inspection, they found that the class HTMLParser of the
nis-notification-lamp-plugin10 project relies on jtidy transitively for per-
forming HTML parsing.

10https://github.com/jenkinsci/nis-notification-lamp-plugin

(2021) 26:Empir Software Eng 4545 Page 28 of 44

https://github.com/jenkinsci/nis-notification-lamp-plugin

Ta
bl
e
4

L
is
to

f
pu
ll
re
qu
es
ts
pr
op
os
in
g
th
e
re
m
ov
al
of

bl
oa
te
d-
di
re
ct
de
pe
nd
en
ci
es

cr
ea
te
d
fo
r
ou
r
ex
pe
ri
m
en
ts

Pr
oj
ec
t

Pu
ll-
re
qu
es
tU

R
L
(h
ttp

s:
//g

ith
ub
.c
om

/)
R
em

ov
ed

de
pe
nd

en
ci
es

PR
*

#D
To

ta
l

j
e
n
k
i
n
s

[
c
o
r
e
,

c
l
i
]

je
nk
in
sc
i/j
en
ki
ns
/p
ul
l/4

37
8

2
2

m
y
b
a
t
i
s
-
3

[
m
y
b
a
t
i
s
]

m
yb
at
is
/m

yb
at
is
-3
/p
ul
l/1

73
5

2
4

f
l
i
n
k

[
c
o
r
e
]

ap
ac
he
/f
lin

k/
pu
ll/
10
38
6

1
1

c
h
e
c
k
s
t
y
l
e

ch
ec
ks
ty
le
/c
he
ck
st
yl
e/
is
su
es
/7
30
7

1
4

n
e
o
4
j

[
c
o
l
l
e
c
t
i
o
n
s
]

ne
o4
j/n

eo
4j
/p
ul
l/1

23
39

1
2

C
o
r
e
N
L
P

st
an
fo
rd
nl
p/
C
or
eN

L
P/
pu
ll/
96
5

1
1

a
s
y
n
c
-
h
t
t
p
-
c
l
i
e
n
t

[
h
t
t
p
-
c
l
i
e
n
t
]

A
sy
nc
H
ttp

C
lie
nt
/a
sy
nc
-h
ttp

-c
lie
nt
/p
ul
l/1

67
5

1
12

e
r
r
o
r
-
p
r
o
n
e

[
c
o
r
e
]

go
og
le
/e
rr
or
-p
ro
ne
/p
ul
l/1

40
9

1
1

a
l
l
u
x
i
o

[
c
o
r
e
-
t
r
a
n
s
p
o
r
t
]

A
llu

xi
o/
al
lu
xi
o/
pu
ll/
10
56
7

1
11

j
a
v
a
p
a
r
s
e
r

[
s
y
m
b
o
l
-
s
o
l
v
e
r
-
l
o
g
i
c
]

ja
va
pa
rs
er
/ja
va
pa
rs
er
/p
ul
l/2

40
3

2
9

u
n
d
e
r
t
o
w

[
b
e
n
c
h
m
a
r
k
s
]

un
de
rt
ow

-i
o/
un
de
rt
ow

/p
ul
l/8

24
6

17

h
a
n
d
l
e
b
a
r
s

[
m
a
r
k
d
o
w
n
]

jk
na
ck
/h
an
dl
eb
ar
s.
ja
va
/p
ul
l/7

19
1

1

j
o
o
b
y

jo
ob
y-
pr
oj
ec
t/j
oo
by
/p
ul
l/1

41
2

1
1

c
o
u
c
h
d
b
-
l
u
c
e
n
e

rn
ew

so
n/
co
uc
hd
b-
lu
ce
ne
/p
ul
l/2

79
3

3

j
H
i
c
c
u
p

gi
lte
ne
/jH

ic
cu
p/
pu
ll/
42

1
1

s
u
b
z
e
r
o

[
s
e
r
v
e
r
]

sq
ua
re
/s
ub
ze
ro
/p
ul
l/1

22
1

4

v
u
l
n
e
r
a
b
i
l
i
t
y
-
t
o
o
l

[
s
h
a
r
e
d
]

SA
P/
vu
ln
er
ab
ili
ty
-a
ss
es
sm

en
t-
to
ol
/p
ul
l/2

90
1

1

l
a
u
n
c
h
4
j
-
m
a
v
e
n
-
p
l
u
g
i
n

lu
ka
sz
le
na
rt
/la
un
ch
4j
-m

av
en
-p
lu
gi
n/
pu
ll/
11
3

2
4

j
a
c
o
p

ra
ds
z/
ja
co
p/
pu
ll/
35

2
4

A
cc
ep
ta
nc
e
ra
te

–
25

/
26

75
/
79

16
/
17

*S
ta
tu
s
of

th
e
pu
ll
re
qu
es
t:

A
cc
ep
te
d.

A
cc
ep
te
d
w
ith

ch
an
ge
s.

R
ej
ec
te
d.

Pe
nd
in
g

(2021) 26:Empir Software Eng 45 Page 29 of 44 44

https://github.com/
jenkinsci/jenkins/pull/4378
mybatis/mybatis-3/pull/1735
apache/flink/pull/10386
checkstyle/checkstyle/issues/7307
neo4j/neo4j/pull/12339
stanfordnlp/CoreNLP/pull/965
AsyncHttpClient/async-http-client/pull/1675
google/error-prone/pull/1409
Alluxio/alluxio/pull/10567
javaparser/javaparser/pull/2403
undertow-io/undertow/pull/824
jknack/handlebars.java/pull/719
jooby-project/jooby/pull/1412
rnewson/couchdb-lucene/pull/279
giltene/jHiccup/pull/42
square/subzero/pull/122
SAP/vulnerability-assessment-tool/pull/290
lukaszlenart/launch4j-maven-plugin/pull/113
radsz/jacop/pull/35

Developers also pointed out the fact that there is no classloader isolation in jenkins,
and hence all dependencies in its core module automatically become part of its public
API. A developer also referred to issues related to past experiences removing unused depen-
dencies. He argued that external projects have depended on that inclusion and their builds
were broken by such a removal. For example, the Git client plugin of jenkins mistak-
enly included Java classes from certain Apache authentication library. When they removed
the dependency, some downstream consumers of the library were affected, and they had to
include the dependency directly.

Consequently, we received the following feedback from an experienced developer of
jenkins:

We’re not precluded from removing an unused dependency, but I think that the project
values compatibility more than removal of unused dependencies, so we need to be
careful that removal of an unused dependency does not cause a more severe problem
than it solves.

After some discussions, developers agreed with the removal of commons-codec in
module cli. Our pull request was edited by the developers and merged to the master branch
one month after.

5.3.2 Checkstyle

DEPCLEAN identifies the direct dependency junit-jupiter-engine as bloated. This
is a test scope dependency that was added to the POM of checkstyle when migrating
integration tests to JUnit 5. The inclusion of this dependency was necessary due to the dep-
recation of junit-platform-surefire-provider in the Surefire Maven plugin.
However, the report of DEPCLEAN about this bloated-direct dependency was a false posi-
tive. The reason for this output occurs because junit-jupiter-engine is commonly
used through reflective calls that cannot be captured at the bytecode level.

Althoughthis pull request was rejected, developers expressed interest in DEPCLEAN,
which is encouraging. They also proposed a list of features for the improvement of our
tool. For example, the addition of an exclusion list in the configuration of DEPCLEAN for
dependencies that are known to be used dynamically, improvements on the readability of the
generated report, and the possibility of causing the build process to fail in case of detecting
the presence of any bloated dependency. We implemented each of the requested functional-
ities in DEPCLEAN. As a result, developers opened an issue to integrate DEPCLEAN in the
Continuous Integration (CI) pipeline of checkstyle, in order to automatically manage
their bloated dependencies.11

5.3.3 Alluxio

DEPCLEAN detects that the direct dependency grpc-netty, declared in the module
alluxio-core-transport is bloated. Figure 18 shows that this dependency also
induces a total of 10 transitive dependencies that are not used (4 of them are omitted by
Maven due to their duplication in the dependency tree). Developers accepted our pull request
and also manifested their interest on using DEPCLEAN for managing unused dependencies
in the future.

11https://github.com/checkstyle/checkstyle/issues/7307

(2021) 26:Empir Software Eng 4545 Page 30 of 44

https://github.com/checkstyle/checkstyle/issues/7307

Fig. 18 Transitive dependencies induced by the bloated-direct dependency grpc-netty in the dependency
tree of module alluxio-core-transport. The tree is obtained with the dependency:treeMaven
goal

5.3.4 Undertow

DEPCLEAN detects a total of 6 bloated-direct dependencies in the benchmarks module
of the project undertow: undertow-servlet, undertow-websockets-jsr,
jboss-logging-processor, xnio-nio, jmh-generator-annprocess, and
httpmime. In this case, we received a rapid positive response from the developers two
days after the submission of the pull request. Removing the suggested bloated-direct
dependencies has a significant impact on the size of the packaged JAR artifact of the
undertow-benchmarks module. We compare the sizes of the bundled JAR before and
after the removal of those dependencies: the binary size reduction represents more than
1MB. It is worth mentioning that this change also reduced the complexity of the depen-
dency tree of the module.

5.4 RQ4: To what Extent are Developers Willing to Exclude Bloated-Transitive
Dependencies?

In this research question, our goal is to see how developers react when made aware of
bloated-transitive dependencies. We do this by proposing the exclusion of bloated-transitive
dependencies to them, as described in Section 4.2.2.

Table 5 shows the list of 13 pull requests submitted. Each pull request proposes the
exclusion of at least one transitive dependency in the POM. We received response from
developers for 9 pull requests. The first and second columns show the name of the project
and the pull request on GitHub. Columns three and four represent the number of bloated-
transitive dependencies explicitly excluded and the total number of dependencies removed
in the dependency tree as resulting from the exclusion. The last column shows the status of
the pull request (accepted, rejected, or pending). The last row represents the accep-
tance rate with respect to the projects with response. For example, for the project spoon
we propose the exclusion of four bloated-transitive dependencies in its core module. As a

(2021) 26:Empir Software Eng 45 Page 31 of 44 44

result of this change, 31 transitive dependencies were removed from the dependency tree of
this module.

Overall, from the pull requests with responses from developers, 5 were accepted and 4
were rejected. In total, 65 bloated dependencies were removed from the dependency trees
of 5 projects. We notice that the accepted pull requests involve those projects for which
the exclusion of transitive dependencies also represents the removal of a large number of
other dependencies from the dependency tree. This result suggests that developers are more
careful concerning this type of contribution.

As in RQ3, we obtained valuable feedback from developers about the pros and cons of
excluding bloated-transitive dependencies. In the following, we provide unique qualitative
insights about the most interesting cases and explain the feedback obtained from developers
to the research community.

5.4.1 Jenkins

DEPCLEAN detects the bloated-transitive dependencies constant-pool-scanner and
eddsa in the module core of jenkins. These bloated dependencies were induced
through the direct dependencies remoting and cli, respectively. In the message of the
pull request, we explain how their exclusion contributes to make the core of jenkins
slimmer and its dependency tree clearer.

Although both dependencies were confirmed as unused in the core module of
jenkins, developers rejected our pull request. They argue that excluding such dependen-
cies has no valuable repercussion for the project and might actually affect its clients, which
is correct. For example, constant-pool-scanner is used by external components,
e.g., the class RemoteClassLoader in the remoting12 project relies on this library to
inspect the bytecode of remote dependencies.

As shown in the following quote from an experienced developer of Jenkins, there is a
consensus on the usefulness of removing bloated dependencies, but developers need strong
facts to support the removal of transitive dependencies:

Dependency removals and exclusions are really useful, but my recommendation
would be to avoid them if there is no substantial gain.

5.4.2 Auto

DEPCLEAN reports on the bloated-transitive dependencies listenablefuture and
auto-value-annotations in module auto-common of the Google auto project.
We proposed the exclusion of these dependencies and submitted a pull request with the
POM change.

Developers express several concerns related to the exclusion of these dependencies. For
example, a developer believes that it is not worth maintaining exclusion lists for dependen-
cies that cause no problem. They point out that although listenableFuture is a single
class file dependency, its presence in the dependency tree is vital to the project, since it
overrides the version of the guava library that have many classes. Therefore, the inclusion
of this dependency is a strategy followed by guava to narrow the access to the interface
ListenableFuture and not to the whole library.13

12https://github.com/jenkinsci/remoting
13https://groups.google.com/forum/#!topic/guava-announce/Km82fZG68Sw/discussion

(2021) 26:Empir Software Eng 4545 Page 32 of 44

https://github.com/jenkinsci/remoting
https://groups.google.com/forum/#!topic/guava-announce/Km82fZG68Sw/discussion

Ta
bl
e
5

L
is
to

f
pu
ll
re
qu
es
ts
pr
op
os
in
g
th
e
ex
cl
us
io
n
of

bl
oa
te
d-
tr
an
si
tiv

e
de
pe
nd
en
ci
es

Pr
oj
ec
t

Pu
ll-
re
qu
es
tU

R
L
(h
ttp

s:
//g

ith
ub
.c
om

/)
E
xc
lu
de
d
de
pe
nd
en
ci
es

PR
*

#T
To

ta
l

j
e
n
k
i
n
s

[
c
o
r
e
]

je
nk
in
sc
i/j
en
ki
ns
/p
ul
l/4

37
8

2
2

a
u
t
o

[
c
o
m
m
o
n
]

go
og
le
/a
ut
o/
pu
ll/
78
9

2
2

m
o
s
h
i

[
m
o
s
h
i
-
k
o
t
l
i
n
]

sq
ua
re
/m

os
hi
/p
ul
l/1

03
4

3
3

s
p
o
o
n

[
c
o
r
e
]

IN
R
IA

/s
po
on
/p
ul
l/3

16
7

4
31

m
o
s
h
i

[
m
o
s
h
i
-
k
o
t
l
i
n
]

sq
ua
re
/m

os
hi
/p
ul
l/1

03
4

3
3

w
c
-
c
a
p
t
u
r
e

[
d
r
i
v
e
r
-
o
p
e
n
i
m
a
j
]

sa
rx
os
/w
eb
ca
m
-c
ap
tu
re
/p
ul
l/7

50
1

1

t
e
a
v
m

[
c
o
r
e
]

ko
ns
ol
et
yp
er
/te
av
m
/p
ul
l/4

39
1

2

t
i
k
a

[
p
a
r
s
e
r
s
]

ap
ac
he
/ti
ka
/p
ul
l/2

99
1

2

o
r
i
k
a

[
e
c
l
i
p
s
e
-
t
o
o
l
s
]

or
ik
a-
m
ap
pe
r/
or
ik
a/
pu
ll/
32
8

1
2

a
c
c
u
m
u
l
o

[
c
o
r
e
]

ap
ac
he
/a
cc
um

ul
o/
pu
ll/
14
21

3
3

p
a
r
a

[
c
o
r
e
]

E
ru
di
ka
/p
ar
a/
pu
ll/
69

1
20

s
e
l
e
n
e
s
e
-
r
u
n
n
e
r
-
j
a
v
a

vm
i/s
el
en
es
e-
ru
nn
er
-j
av
a/
pu
ll/
31
3

2
9

c
o
m
m
o
n
s
-
c
o
n
f
i
g
u
r
a
t
i
o
n

ap
ac
he
/c
om

m
on
s-
co
nf
ig
ur
at
io
n/
pu
ll/
40

2
9

A
cc
ep
ta
nc
e
ra
te

–
11

/
27

65
/
75

5/
9

*S
ta
tu
s
of

th
e
pu
ll
re
qu
es
t:

A
cc
ep
te
d.

R
ej
ec
te
d.

Pe
nd
in
g

(2021) 26:Empir Software Eng 45 Page 33 of 44 44

https://github.com/
jenkinsci/jenkins/pull/4378
google/auto/pull/789
square/moshi/pull/1034
INRIA/spoon/pull/3167
square/moshi/pull/1034
sarxos/webcam-capture/pull/750
konsoletyper/teavm/pull/439
apache/tika/pull/299
orika-mapper/orika/pull/328
apache/accumulo/pull/1421
Erudika/para/pull/69
vmi/selenese-runner-java/pull/313
apache/commons-configuration/pull/40

On the other hand, developers agree that auto-value-annotations is bloated.
However, they keep it, arguing that it is a test-only dependency, and they prefer to keep
annotation-only dependencies and let end users exclude them when desired.

The response from developers suggests that bloated dependencies with test scope are
perceived as less harmful. This is reasonable since test dependencies are only available
during the test, compilation, and execution phases and are not shipped transitively in the
JAR of the artifact. However, we believe that although it is a developers’ decision whether
they keep this type of bloated dependency or not, the removal of testing dependencies is
regularly a desirable refactoring improvement.

5.4.3 Moshi

DEPCLEAN detects that the bloated-transitive dependency kotlin-stdlib-common
is present in the dependency tree of modules moshi-kotlin,
moshi-kotlin-codegen, and moshi-kotlin-tests of project moshi. This
dependency is induced from a common dependency of these modules: kotlin-stdlib.

Developers rejected our pull requests, arguing that excluding such transitive depen-
dency prevents the artifacts from participating in the proper dependency resolu-
tion of their clients. They suggest that clients interested in reducing the size of
their projects can use specialized shrinking tools, such as ProGuard,14 for this
purpose.

Although the argument of developers is valid, we believe that delegating the task of
bloat removal to their library clients imposes an unnecessary burden on them. On the other
hand, recent studies reveal that library clients do not widely adopt the usage of dependency
analysis tools for quality analysis purposes (Nguyen et al. 2020).

5.4.4 Spoon

DEPCLEAN detects that the transitive dependencies org.eclipse.core.resources,
org.eclipse.core.runtime, org.eclipse.core.filesystem, and
org.eclipse.text org.eclipse.jdt.core are bloated. All of these
transitive dependencies were induced by the inclusion of the direct dependency
org.eclipse.jdt.core, declared in the POM of coremodule of the spoon library.

Table 6 shows how the exclusion of these bloated-transitive dependencies has a positive
impact on the size and the number of classes of the library. As we can see, by excluding
these dependencies the size of the jar-with-dependencies of the core module of
spoon is trimmed from 16.2MB to 12.7MB, which represents a significant reduction in
size of 27.6%. After considering this improvements, the developers confirmed the relevance
of this change and merged our pull request into the master branch of the project.

5.4.5 Accumulo

DEPCLEAN detects the bloated-transitive dependencies listenablefuture,
httpcore and netty in the core module of Apache accumulo. These dependencies
were confirmed as bloated by the developers. However, they manifested their concerns
regarding their exclusion, as expressed in the following comment:

14https://www.guardsquare.com/en/products/proguard

(2021) 26:Empir Software Eng 4545 Page 34 of 44

https://www.guardsquare.com/en/products/proguard

Table 6 Comparison of the size and number of classes in the bundled JAR of the core module of spoon,
before and after the exclusion of bloated-transitive dependencies

JAR Size(MB) #Classes

Before 16.2 7,425

After 12.7 5,593

Reduction(%) 27.6% 24.7%

I’m not sure I want us to take on the task of maintaining an exclusion set of transitive
dependencies from all our deps POMs, because those can change over time, and we
can’t always know which transitive dependencies are needed by our dependencies.

After the discussion, developers decided to accept and merge the pull request. Overall,
developers considered that the proposal is a good idea. They suggest that it would be better
to approach the communities of each of the direct dependencies that they use, and encour-
age them to mark those dependencies as optional, thus they would not be automatically
inherited by their users.

5.4.6 Para

DEPCLEAN detects the bloated-transitive dependency flexmark-jira-converter.
This dependency is induced through the direct dependency flexmark-ext-emoji,
declared in the core module of the para project. Our further investigation on the Maven
dependency tree of this module revealed that this bloated dependency adds a total of 19
additional dependencies to the dependency tree of the project, of which 15 are detected as
duplicated by Maven.

Because of this large number (19) of bloated-transitive dependencies removed, develop-
ers accepted the pull request and merged the change into the master branch of the project
the same day of the pull request submission.

6 Discussion

In this section, we discuss the implications of our findings and the threats to the validity of
the results obtained.

(2021) 26:Empir Software Eng 45 Page 35 of 44 44

6.1 Implications of Results

Our results indicate that most of the dependency bloat is due to transitive dependencies and
the Maven dependency inheritance mechanism. This suggests that the Maven dependency
resolution strategy, which always picks the dependency that is closer to the root of the tree,
may not be the best selection criterion for minimizing transitive dependency bloat. The offi-
cial Maven dependency management guidelines15 encourage developers to take control over
the dependency resolution process via explicit declaration of dependencies in the POM file.
This is a good practice to provide better documentation for the project and to keep one’s
artifact dependencies independent of the choices of other libraries down the dependency
tree. Dependencies declared in this way have priority over the Maven mediation mecha-
nism, allowing developers to have a clear knowledge about which library version they are
expecting to be used through transitive dependencies. However, since backward compati-
bility is not always guaranteed, having fixed transitive dependency versions, and therefore
non-declared dependencies, still remains as a widely accepted practice. In this context, the
introduction of the module construct in Java 9 provides a higher level of aggregation above
packages. This new language element, if largely adopted, may help to reduce the transitive
explosion of dependencies. Indeed, this mechanism enables developers to fine tune public
access restrictions of API members, explicitly declaring what set of functionalities a mod-
ule can expose to other modules. This leads to two benefits: (1) it enables reuse declaration
at a finer grain than dependencies, and (2) it makes the debloat techniques described in this
work safer as it constrains reflection to white-listed modules.

Our results show that even notable open-source projects, which are maintained by devel-
opment communities with strict development rules, are affected by dependency bloat.
Developers confirmed and removed most of the reported bloated-direct dependencies
detected by DEPCLEAN. However, they are more careful about excluding bloated-transitive
dependencies. The addition of exclusion clauses to the POM files is perceived by some
developers as an unnecessary maintainability burden. Interestingly, our quantitative results
indicate that bloated-transitive dependency relationships represent the largest portion of
bloated dependencies, yet, our qualitative study reveals that these bloated relationships are
also the ones that developers find the most challenging to handle and reason about. Overall,
this work opens the door to new research opportunities on debloating POMs and other build
files.

6.2 Threats to Validity

In the following, we discuss construct, internal and external threats to the validity of our
study.

Construct Validity The threats to construct validity are related to the novel concept of
bloated dependencies and the metrics utilized for its measurement. For example, the DUT
constructed by DEPCLEAN could be incomplete due to issues during the resolution of the
dependencies. We mitigate this threat by building DEPCLEAN on top of Maven plugins to
collect the information about the dependency relationships. We also exclude from the study
those artifacts for which we were unable to retrieve the full dependency usage information.

15https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

(2021) 26:Empir Software Eng 4545 Page 36 of 44

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

It is possible that developers repackage a library as a bundle JAR file along with its
dependencies, or copy the source code of dependencies directly into their source code,
in order to avoid dependency related issues. Consequently, DEPCLEAN will miss such
dependencies, as they are not explicitly declared in the POM file. Thus, the analysis of
dependencies can underestimate the part of bloated dependencies. However, considering the
size of our dataset and the feedback obtained from actively maintained projects, we believe
that these corner cases do not affect our main results.

Internal Validity The threats to internal validity are related to the effectiveness of DEP-
CLEAN to detect bloated dependencies. The dynamic features of the Java programming
language, e.g., reflection or dynamic class loading present particular challenges for any
automatic analysis of Java source code (Landman et al. 2017; Lindholm et al. 2014). Since
DEPCLEAN statically analyzes bytecode, anything that does not get into the bytecode is not
detected (e.g., constants, annotations with source-only retention police, links in Javadocs),
which can lead to false positives. To mitigate this threat, DEPCLEAN can detect classes
or class members that are created or invoked dynamically using basic constructs such
as class.forName("someClass") or class.getMethod("someMethod",
null).

To evaluate the impact of this limitation in practice, we ran DEPCLEAN on 10 addi-
tional popular projects. The experiment consists in running the test suite of the projects
with the debloated version of the POM files, i.e., relying on dynamic analysis as a vali-
dation mechanism. Table 7 shows the results obtained after running the test suite of the
version of the project without bloated dependencies. The first column shows the URL of the
project on GitHub, the second and third columns represent the number bloated-direct and
bloated-transitive dependencies detected by DEPCLEAN, and the fourth column is the result
of the test (pass, or fail). As we observe, 9/10 projects pass the test suite, and only
one project fails: raft-java. We found that the reason of the failure was the dependency
org.projectlombok:lombok:1.18.4, which heavily relies on reflection and other
dynamic mechanisms of Java. To prevent the occurrence of false positives, the users of DEP-
CLEAN can add dependencies that are known to be used only dynamically to an exclusion
list. Once added this dependency to the exclusion list of DEPCLEAN, it is not considered as
bloated, and all the tests pass with the other bloated dependencies removed.

Table 7 Evaluation of the results of DepClean by checking if all the test pass after the removal of bloated
dependencies

URL (https://github.com/) #bd #bt Test result

pf4j/pf4j 3 3

apilayer/restcountries 5 13

modelmapper/modelmapper 2 14

xtuhcy/gecco 0 3

yaphone/itchat4j 1 1

electronicarts/ea-async 0 7

twitter/hbc 0 1

skyscreamer/JSONassert 0 1

wenweihu86/raft-java 2 8

liaochong/myexcel 0 2

(2021) 26:Empir Software Eng 45 Page 37 of 44 44

https://github.com/
pf4j/pf4j
apilayer/restcountries
modelmapper/modelmapper
xtuhcy/gecco
yaphone/itchat4j
electronicarts/ea-async
twitter/hbc
skyscreamer/JSONassert
wenweihu86/raft-java
liaochong/myexcel

External Validity The relevance of our findings in other software ecosystems is one threat
to external validity. Our observations about bloated dependencies are based on Java and
the Maven ecosystem and our findings are restricted to this scope. More studies on other
dependency management systems are needed to figure out whether our findings can be
generalized. Another external threat relates to the representativeness of the projects consid-
ered for the qualitative study. To mitigate this threat, we submitted pull requests to a set of
diverse, mature, and popular open-source Java projects that belong to distinct communities
and cover various application domains. This means that we contributed to improving the
dependency management of projects that are arguably among the best of the open-source
Java world, which aims to get as strong external validity as possible.

7 RelatedWork

In this work, we propose the first systematic large-scale analysis of bloat in the Maven
ecosystem. Here, we discuss the related works in the areas of software debloating and
dependency management.

7.1 Analysis andMitigation of Software Bloat

Previous studies have shown that software tends to grow over time, whether or not there is
a need for it (Holzmann 2015; Quach et al. 2017). Consequently, software bloat appears as
a result of the natural increase of software complexity, e.g., the addition of non-essential
features to programs (Brooks 1987). This phenomenon comes with several risks: it makes
software harder to understand and maintain, increases the attack surface, and degrades the
overall performance. Our paper contributes to the analysis and mitigation of a novel type of
software bloat: bloated dependencies.

Celik et al. (2016) presented MOLLY, a build system to lazily retrieve dependencies in
CI environments and reduce build time. For the studied projects, the build time speed-up
reaches 45% on average compared to Maven. DEPCLEAN operates differently than MOLLY:
it is not an alternative to Maven as MOLLY is, but a static analysis tool that allows Maven
users to have a better understanding and control about their dependencies.

Yu et al. (2003) investigated the presence of unnecessary dependencies in header files
of large C projects. Their goal was to reduce build time. They proposed a graph-based
algorithm to statically remove unused code from applications. Their results show a reduction
of build time of 89.70% for incremental builds, and of 26.38% for fresh builds. Our work
does not focus on build performance, we analyze the pervasiveness of dependency bloat
across a vast and modern ecosystem of Maven packages.

In recent years, there has been a notable interest in the development of debloating tech-
niques for program specialization. The aim is to produce a smaller, specialized version of
programs that consume fewer resources while hardening security (Azad et al. 2019). They
range from debloating command line programs written in C (Sharif et al. 2018), to the spe-
cialization of JavaScript frameworks (Vázquez et al. 2019) and fully fledged containerized
platforms (Rastogi et al. 2017). Most debloating techniques are built upon static analy-
sis and are conservative in the sense that they focus on trimming unreachable code (Jiang
et al. 2016), others are more aggressive and utilize advanced dynamic analysis techniques
to remove potentially reachable code (Heath et al. 2019). Our work addresses the same
challenges at a coarser granularity. DEPCLEAN removes unused dependencies, which is,
according to our empirical results, a significant cause of program bloat.

(2021) 26:Empir Software Eng 4545 Page 38 of 44

Qiu et al. (2016) empirically show evidence that a considerable proportion of API mem-
bers are not widely used, i.e., many classes, methods, and fields of popular libraries are
not used in practice. (Pham et al. 2016) implement a bytecode based analysis tool to learn
about the actual API usage of Android frameworks. Hejderup (2015) study the actual usage
of modules and dependencies in the Rust ecosystem, and propose PRÄZI, a tool for con-
structing fine-grained call-based dependency networks (Hejderup et al. 2018). Lämmel et al.
(2011) perform a large-scale study on API usage based on the migration of AST code seg-
ments. Other studies have focused on understanding how developers use APIs on a daily
basis (Roover et al. 2013; Bauer et al. 2014). Some of the motivations include improv-
ing API design (Myers and Stylos 2016; Harrand et al. 2019) and increasing developers
productivity (Lim 1994). All these studies hint at the presence of bloat in APIs. To sum
up, our paper is the first empirical study that explores and consolidates the concept of
bloated dependencies in the Maven ecosystem, and is the first to investigate the reaction of
developers to bloated dependencies.

Program slicing (Horwitz et al. 1988; Sridharan et al. 2007; Binkley et al. 2019) is
a program analysis technique used to compute the subset of statements (“slice”) that
affect the values of a given program. Static slicing removes unused code by computing a
statement-based dependence graph and identifies the statements that are directly or transi-
tively reachable from a seed on the graph. DEPCLEAN uses a similar approach for debloat,
where the slices are bytecode calls between dependencies computed by backtracking usages
between the artifact and its dependencies.

7.2 DependencyManagement in Software Ecosystems

Library reuse and dependency management has become mainstream in software develop-
ment. McIntosh et al. (2012) analyze the evolution of automatic build systems for Java (ANT
and Maven). They found that Java build systems follow linear or exponential evolution pat-
terns in terms of size and complexity. In this context, we interpret bloated dependencies as a
consequence of the tendency of build automation systems of evolving towards open-ended
complexity over time.

Decan et al. (2019, 2017) studied the fragility of packaging ecosystems caused by
the increasing number of transitive dependencies. Their findings corroborate our results,
showing that most clients have few direct dependencies but a high number of transitive
dependencies. They also found that popular libraries tend to have larger dependency trees.
However, their work focuses primarily on the relation between the library users and their
direct providers and does not take into account the inherited or transitive dependencies of
those providers. We are the first, to the best of our knowledge, to conduct an empirical anal-
ysis of bloated dependencies in the Maven ecosystem considering both, users and providers,
as potential sources of software bloat.

Bezemer et al. (2017) performed a study of unspecified dependencies, i.e., dependen-
cies that are not explicitly declared in the build systems. They found that these unspecified
dependencies are subtle and difficult to detect in make-based build systems. Seo et al.
(2014) analyzed over 26 millions builds in Google to investigate the causes, types of errors
made, and resolution efforts to fix the failing builds. Their results indicate that, inde-
pendent of the programming language, dependency errors are the most common cause
of failures, representing more than two thirds of fails for Java. Based on our results, we
hypothesize that removing dependency bloat would reduce spurious CI errors related to
dependencies.

(2021) 26:Empir Software Eng 45 Page 39 of 44 44

Jezek and Dietrich (2014) describe, with practical examples, the issues caused by tran-
sitive dependencies in Maven. They propose a static analysis approach for finding missing,
redundant, incompatible, and conflicting API members in dependencies. Their experiments,
based on a dataset of 29 Maven projects, show that problems related to transitive depen-
dency are common in practice. They identify the use of wrong dependency scopes as a
primary cause of redundancy. Our quantitative study extends this work to the scale of the
Maven Central ecosystem, and provides additional evidence about the persistence of the
dependency redundancy problem.

Callo Arias et al. (2011) performed a systematic review about dependency analysis solu-
tions in software-intensive systems. Bavota et al. (2015) studied performed an empirical
study on the evolution of declared dependencies in the Apache community. They found
that build system specifications tend to grow over time unless explicit effort is put into
refactoring them. Our qualitative results complement previous studies that present empir-
ical evidence that developers do not systematically update their dependency configuration
files (McIntosh et al. 2014; Kula et al. 2018).

8 Conclusion

In this work, we presented a novel conceptual analysis of a phenomenon originated from
the practice of software reuse, which we coined as bloated dependencies. This type of
dependency relationship between software artifacts is intriguing: from the perspective of
the dependency management systems that are unable to avoid it, and from the standpoint of
developers who declare dependencies but do not use them in their applications.

We performed a quantitative and qualitative study of bloated dependencies in the Maven
ecosystem. To do so, we implemented a tool, DEPCLEAN, which analyzes the bytecode of
an artifact and all its dependencies that are resolved by Maven. As a result of the analysis,
DEPCLEAN provides a report of the bloated dependencies, as well as a new version of its
POM file which removes the bloat. We use DEPCLEAN to analyze the 723,444 dependency
relationships of 9,639 artifacts in Maven Central. Our results reveal that 75.1% of them
are bloated (2.7% are direct dependencies, 15.4% are inherited from parent POMs, and
57% are transitive dependencies). Based on these results, we distilled two possible causes:
the cascade of unwanted transitive dependencies induced by direct dependencies, and the
dependency heritage mechanism of multi-module Maven projects.

We complemented our quantitative study of bloated dependencies with an in-depth qual-
itative analysis of 30 mature Java projects. We used DEPCLEAN to analyze these projects
and submitted the results obtained as pull request on GitHub. Our results indicated that
developers are willing to remove bloated-direct dependencies: 16 out of 17 answered pull
requests were accepted and merged by the developers in their code base. On the other hand,
we found that developers tend to be skeptical regarding the exclusion of bloated-transitive
dependencies: 5 out of 9 answered pull requests were accepted. Overall, the feedback from
developers revealed that the removal of bloated dependencies clearly worth the additional
analysis and effort.

Our study stresses the need to engineer, i.e., analyze, maintain, test POM files. The feed-
back from developers shows interest in DEPCLEAN to address this challenge. While the tool
is robust enough to analyze a variety of real-world projects, developers now ask questions
related to the methodology for dependency debloating, e.g., when to analyze bloat? (in every
build, in every release, after every POM change), who is responsible for debloat of direct

(2021) 26:Empir Software Eng 4545 Page 40 of 44

or transitive dependencies? (the lead developers, any external contributor), how to properly
managing complex dependency trees to avoid dependency conflicts? These methodological
questions are part of the future work to further consolidate DEPCLEAN.

Acknowledgments This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Funding Open Access funding provided by Royal Institute of Technology

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Azad BA, Laperdrix P, Nikiforakis N (2019) Less is more: Quantifying the security benefits of debloat-
ing web applications. In: Proceedings of the 28th USENIX conference on security symposium, SEC,
pp 1697–1714, USA, USENIX Association

Bauer V, Eckhardt J, Hauptmann B, Klimek M (2014) An exploratory study on reuse at Google. In: Proceed-
ings of the 1st International workshop on software engineering research and industrial practices, SERIP.
ACM, New York, pp 14–23

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2015) How the apache community upgrades
dependencies: An evolutionary study. Empir Softw Eng 20(5):1275–1317

Benelallam A, Harrand N, Soto-Valero C, Baudry B, Barais O (2019) The Maven dependency graph: a tem-
poral graph-based representation of Maven Central. In: 16th international conference on mining software
repositories (MSR). IEEE/ACM, Montreal

Bezemer C.-P., McIntosh S, Adams B, German DM, Hassan AE (2017) An empirical study of unspecified
dependencies in make-based build systems. Empir Softw Eng 22(6):3117–3148

Binkley D, Gold N, Islam S, Krinke J, Yoo S (2019) A comparison of tree-and line-oriented observational
slicing. Empir Softw Eng 24(5):3077–3113

Brooks FP (1987) No silver bullet: Essence and accidents of software engineering. Computer 20(4):10–19
Callo Arias TB, van der Spek P, Avgeriou P (2011) A practice-driven systematic review of dependency

analysis solutions. Empir Softw Eng 16(5):544–586
Celik A, Knaust A, Milicevic A, Gligoric M (2016) Build system with lazy retrieval for java projects. In:

Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of software
engineering, FSE,. ACM, New York, pp 643–654

Cox R (2019) Surviving software dependencies. Commun ACM 62(9):36–43
Decan A, Mens T, Claes M (2017) An empirical comparison of dependency issues in OSS packaging ecosys-

tems. In: 2017 IEEE 24th international conference on software analysis, evolution and reengineering,
SANER, pp 2–12

Decan A, Mens T, Grosjean P (2019) An empirical comparison of dependency network evolution in seven
software packaging ecosystems. Empir Softw Eng 24(1):381–416

Gkortzis A, Feitosa D, Spinellis D (2019) A double-edged sword? Software reuse and potential security
vulnerabilities. In: Reuse in the big data era. Springer International Publishing, pp 187–203

Harrand N, Benelallam A, Soto-Valero C, Barais O, Baudry B (2019) Analyzing 2.3 million Maven
dependencies to reveal an essential core in APIs. arXiv:1908.09757

Heath B, Velingker N, Bastani O, Naik M (2019) PolyDroid: Learning-driven specialization of mobile
applications. arXiv:1902.09589

Hejderup J (2015) In dependencies we trust: How vulnerable are dependencies in software modules? PhD
thesis, Delft University of Technology

(2021) 26:Empir Software Eng 45 Page 41 of 44 44

http://creativecommonshorg/licenses/by/4.0/
http://arxiv.org/abs/1908.09757
http://arxiv.org/abs/1902.09589

Hejderup J, Beller M, Gousios G (2018) PRÄZI: From package-based to precise call-based dependency
network analyses. Delft University of Technology

Holzmann GJ (2015) Code inflation. IEEE Softw 1(2):10–13
Horwitz S, Reps T, Binkley D (1988) Interprocedural slicing using dependence graphs. SIGPLAN Not

23(7):35–46
Jezek K, Dietrich J (2014) On the use of static analysis to safeguard recursive dependency resolution. In:

2014 40th EUROMICRO conference on software engineering and advanced applications, pp 166–173
Jiang Y, Wu D, Liu P (2016) JRed: Program customization and bloatware mitigation based on static analysis.

In: 2016 IEEE 40th annual computer software and applications conference (COMPSAC), vol 1, pp 12–21
Krueger CW (1992) Software reuse. ACM Comput Surv 24(2):131–183
Kula RG, German DM, Ouni A, Ishio T, Inoue K (2018) Do developers update their library dependencies?

Empir Softw Eng 23(1):384–417
Lämmel R, Pek E, Starek J (2011) Large-scale, AST-based API-usage analysis of open-source java projects.

In: Proceedings of the 2011 ACM symposium on applied computing, SAC ’11. ACM, New York,
pp 1317–1324

Landman D, Serebrenik A, Vinju JJ (2017) Challenges for static analysis of java reflection - literature review
and empirical study. In: 2017 IEEE/ACM 39th international conference on software engineering (ICSE),
pp 507–518

Lim WC (1994) Effects of reuse on quality, productivity, and economics. IEEE Softw 11(5):23–30
Lindholm T, Yellin F, Bracha G, Buckley A (2014) The java virtual machine specification. Pearson Education
McIntosh S, Adams B, Hassan AE (2012) The evolution of java build systems. Empir Softw Eng 17(4):578–

608
McIntosh S, Poehlmann M, Juergens E, Mockus A, Adams B, Hassan AE, Haupt B, Wagner C (2014)

Collecting and leveraging a benchmark of build system clones to aid in quality assessments. In: Compan-
ion proceedings of the 36th international conference on software engineering, ICSE Companion 2014.
Association for Computing Machinery, New York, pp 145–154

Myers BA, Stylos J (2016) Improving API usability. Commun ACM 59(6):62–69
Naur P., Randell B. (eds) (1969) Software engineering: Report of a conference sponsored by the NATO

Science Committee, Garmisch, Germany, 7–11 Oct. 1968, Brussels, Scientific Affairs Division, NATO.
Newcastle University, Newcastle upon Tyne

Nguyen PT, Di Rocco J, Di Ruscio D, Di Penta M (2020) CrossRec: Supporting software developers by
recommending third-party libraries. J Syst Softw 161:110460

Pham HV, Vu PM, Nguyen TT et al (2016) Learning API usages from bytecode: A statistical approach. In:
Proceedings of the 38th international conference on software engineering. ACM, pp 416–427

Qiu D, Li B, Leung H (2016) Understanding the API usage in Java. Info Softw Technol 73:81–100
Quach A, Erinfolami R, Demicco D, Prakash A (2017) A multi-OS cross-layer study of bloating in user pro-

grams, kernel and managed execution environments. In: Proceedings of the 2017 workshop on forming
an ecosystem around software transformation. ACM, pp 65–70

Rastogi V, Davidson D, De Carli L, Jha S, McDaniel P (2017) Cimplifier: Automatically debloating contain-
ers. In: Proceedings of the 2017 11th Joint meeting on foundations of software engineering, ESEC/FSE
2017. ACM, New York, pp 476–486

Roover CD, Lämmel R, Pek E (2013) Multi-dimensional exploration of API usage. In: 21st International
conference on program comprehension, ICPC, pp 152–161

Salza P, Palomba F, Di Nucci D, De Lucia A, Ferrucci F (2019) Third-party libraries in mobile apps.
Empirical Software Engineering

Seo H, Sadowski C, Elbaum S, Aftandilian E, Bowdidge R (2014) Programmers’ build errors: A case study
(at Google). In: Proceedings of the 36th international conference on software engineering, ICSE 2014.
ACM, New York, pp 724–734

Sharif H, Abubakar M, Gehani A, Zaffar F (2018) TRIMMER: Application specialization for code debloat-
ing. In: Proceedings of the 33rd ACM/EEE international conference on automated software engineering,
ASE 2018. ACM, New York, pp 329–339

Shull F, Singer J, Sjøberg DI (2007) Guide to advanced empirical software engineering. Springer, Berlin
Soto-Valero C, Benelallam A, Harrand N, Barais O, Baudry B (2019) The emergence of software diversity

in Maven Central. In: 16th international conference on mining software repositories, MSR 2019. ACM,
New York, pp 1–10

Sridharan M, Fink SJ, Bodik R (2007) Thin slicing. In: Proceedings of the 28th ACM SIGPLAN conference
on programming language design and implementation, PLDI’07. Association for Computing Machinery,
New York, pp 112–122

Vázquez H, Bergel A, Vidal S, Pace JD, Marcos C (2019) Slimming Javascript applications: An approach
for removing unused functions from Javascript libraries. Inf Softw Technol 107:18–29

(2021) 26:Empir Software Eng 4545 Page 42 of 44

Wu Y, Manabe Y, Kanda T, German DM, Inoue K (2017) Analysis of license inconsistency in large
collections of open source projects. Empir Softw Eng 22(3):1194–1222

Yu Y, Dayani-Fard H, Mylopoulos J (2003) Removing false code dependencies to speedup software build
processes. In: Proceedings of the 2003 conference of the centre for advanced studies on collaborative
research, CASCON. IBM Press, pp 343–352

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

César Soto-Valero is a Ph.D. student in Software Engineering at
KTH Royal Institute of Technology, Sweden. His research work
focuses on leveraging static and dynamic program analysis tech-
niques to mitigate software bloat. César received his MSc degree and
BSc degree in Computer Science from Universidad Central “Marta
Abreu” de Las Villas, Cuba.

Nicolas Harrand is a Ph.D. student in Software Engineering at
KTH Royal Institute of Technology, Sweden. His current research
is focused on automatic software diversification. Nicolas studied
Computer Science and Applied Mathematics in Grenoble, France.

(2021) 26:Empir Software Eng 45 Page 43 of 44 44

Martin Monperrus is a Professor of Software Technology at KTH
Royal Institute of Technology. He was previously an associate pro-
fessor at the University of Lille and an adjunct researcher at Inria. He
received a Ph.D. from the University of Rennes and a Master’s degree
from the Compiègne University of Technology. His research lies in
the field of software engineering with a current focus on automatic
program repair, program hardening, and chaos engineering.

Benoit Baudry is a Professor of Software Technology at KTH Royal
Institute of Technology in Stockholm, Sweden. He received his Ph.D.
in 2003 from the University of Rennes and was a research scientist
at INRIA from 2004 to 2017. His research is in the area of software
testing, code analysis, and automatic diversification. He has led the
largest research group in software engineering at INRIA, as well as
collaborative projects funded by the European Union, and software
companies.

(2021) 26:Empir Software Eng 4545 Page 44 of 44

	A comprehensive study of bloated dependencies in the Maven ecosystem
	Abstract
	Introduction
	Background
	Maven Dependency Management Terminology
	Maven Project
	Maven Artifact
	Dependency Resolution

	A Brief Journey in the Dependencies of the Jxls Library

	Bloated Dependencies
	Novel Concepts
	Example
	DepClean: A Tool for Detecting and Removing Bloated Dependencies

	Experimental Methodology
	Research Questions
	Experimental Protocols
	Protocol of the Quantitative Study (RQ1 & RQ2)
	Filter Artifacts
	Resolve Dependencies
	Dependency Usage Analysis
	Collect Dependency Usage Metrics

	Protocol of the Qualitative Study (RQ3 & RQ4)

	Experimental Results
	RQ1: How Frequently do Bloated Dependencies Occur?
	Bloated-Direct
	Bloated-Inherited
	Bloated-Transitive

	RQ2: How do the Reuse Practices Affect Bloated Dependencies?
	Transitive Dependencies
	Single-Module vs. Multi-Module

	RQ3: To what Extent are Developers Willing to Remove Bloated-Direct Dependencies?
	Jenkins
	Checkstyle
	Alluxio
	Undertow

	RQ4: To what Extent are Developers Willing to Exclude Bloated-Transitive Dependencies?
	Jenkins
	Auto
	Moshi
	Spoon
	Accumulo
	Para

	Discussion
	Implications of Results
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Analysis and Mitigation of Software Bloat
	Dependency Management in Software Ecosystems

	Conclusion
	References

