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Abstract
Statistical fault localization is an easily deployed technique for quickly determining candi-
dates for faulty code locations. If a human programmer has to search the fault beyond the top
candidate locations, though, more traditional techniques of following dependencies along
dynamic slices may be better suited. In a large study of 457 bugs (369 single faults and 88
multiple faults) in 46 open source C programs, we compare the effectiveness of statistical
fault localization against dynamic slicing. For single faults, we find that dynamic slicing
was eight percentage points more effective than the best performing statistical debugging
formula; for 66% of the bugs, dynamic slicing finds the fault earlier than the best perform-
ing statistical debugging formula. In our evaluation, dynamic slicing is more effective for
programs with single fault, but statistical debugging performs better on multiple faults. Best
results, however, are obtained by a hybrid approach: If programmers first examine at most
the top five most suspicious locations from statistical debugging, and then switch to dynamic
slices, on average, they will need to examine 15% (30 lines) of the code. These findings hold
for 18 most effective statistical debugging formulas and our results are independent of the
number of faults (i.e. single or multiple faults) and error type (i.e. artificial or real errors).
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1 Introduction

In the past 20 years, the field of automated fault localization (AFL) has found considerable
interest among researchers in Software Engineering. Given a program failure, the aim of
fault localization is to suggest locations in the program code where a fault in the code causes
the failure at hand. Locating a fault is an obvious prerequisite for removing and fixing it;
and thus, automated fault localization brings the promise of supporting programmers during
arduous debugging tasks. Fault localization is also an important prerequisite for automated
program repair, where the identified fault locations serve as candidates for applying the
computer-generated patches (Le Goues et al. 2012; Nguyen et al. 2013; Kim et al. 2013; Qi
et al. 2014).

The large majority of recent publications on automated fault localization fall into the
category of statistical debugging (also called spectrum-based fault localization (SBFL)), an
approach pioneered 18 years ago (Jones et al. 2002; Zheng et al. 2003; Liblit et al. 2005). A
recent survey (Wong et al. 2016) lists more than 100 publications on statistical debugging.
The core idea of statistical debugging is to take a set of passing and failing runs, and to
record the program lines which are executed (“covered”) in these runs. The stronger the
correlation between the execution of a line and failure (say, because the line is executed only
in failing runs, and never in passing runs), the more we consider the line as “suspicious”.

As an example, let us have a look at the function middle, used in Jones et al. (2002)
to introduce the technique (see Fig. 1). The middle function computes the middle of three
numbers x, y, z; Fig. 1 shows its source code as well as statement coverage for few
sample inputs. On most inputs, middle works as advertised; but when fed with x = 2, y =
1, and z = 3, it returns 1 rather than the middle value 2. Note that the statement in Line 8 is
incorrect and should read m = x. Given the runs and the lines covered in them, statistical
debugging assigns a suspiciousness score to each program statement—a function on the
number of times it is (not) executed by passing and failing test cases. The precise function
it uses differs for each statistical debugging technique. Since the statement in Line 8 is

Fig. 1 Statistical debugging illustrated (Jones and Harrold 2005): The middle function takes three values
and returns that value which is greater than or equals the smallest and less than or equals the biggest value;
however, on the input (2, 1, 3), it returns 1 rather than 2. Statistical debugging reports the faulty Line 8 (in
bold red) as the most suspicious one, since the correlation of its execution with failure is the strongest
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executed most often by the failing test case and least often by any passing test case, it is
reported as most suspicious fault location.

Statistical debugging, however, is not the first technique to automate fault localization.
In his seminal paper titled “Programmers use slices when debugging” (Weiser 1982), Mark
Weiser introduced the concept of a program slice composed of data and control dependen-
cies in the program.Weiser argued that during debugging, programmers would start from the
location where the error is observed, and then proceed backwards along these dependencies
to find the fault. In a debugging setting, programmers would follow dynamic dependencies
to find those lines that actually impact the location of interest in the failing run. In our exam-
ple (Fig. 2), they could simply follow the dynamic dependency of Line 15 where the value of
m is unexpected, and immediately reach the faulty assignment in Line 8. Consequently, on
the example originally introduced to show the effectiveness of statistical debugging (Fig. 1),
the older technique of dynamic slicing is just as effective (see Fig. 2).

Thus, we investigate the fault localization effectiveness of the most effective statistical
debugging formulas against dynamic program slicing. A few researchers have empirically
evaluated the fault localization effectiveness of different slicing algorithms (Zang et al.
2007, 2005). However, they did not compare the effectiveness of slicing to that of statisti-
cal debugging. To the best of our knowledge, this is the first empirical study to evaluate the
fault localization effectiveness of program slicing versus (one of) the most effective statisti-
cal debugging formulas. This is also one of the largest empirical studies of fault localization
techniques, evaluating hundreds of faults (707) in C programs.

In this paper, we use four benchmarks with 35 tools, 46 programs and 457 bugs to com-
pare fault localization techniques against each other. This set of bugs comprises of 295 real
single faults, 74 injected single faults, and 88 injected multiple faults containing about four

Fig. 2 Dynamic slicing illustrated (Jones and Harrold 2005): The middle return value in Line 15 can stem
from any of the assignments to m, but only those in Lines 3 and 8 are executed in the failing run. Following
back the dynamic dependency immediately gets the programmer to Line 8, the faulty one
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faults per program, on average. In total, we had 707 program faults. Our takeaway findings
are as follows:

1. Top ranked locations in statistical debugging can pinpoint the fault. If one is only
interested in a small set of candidate locations, statistical debugging frequently pin-
points the faults, it correctly localizes 33% of faults after inspecting only the single
most suspicious code location. It outperforms dynamic slicing in the top 5% of the most
suspicious locations, by localizing faults in twice as many buggy programs as dynamic
slicing. In our experiments, looking at only the top 5% of the most suspicious code
locations, statistical debugging would reveal faults for 6% of all buggy programs, twice
as many as slicing (3% of buggy programs). This result is important for automatic pro-
gram repair (APR) techniques, as the search for possible repairs can only consider a
limited set of candidate locations; also, the repair attempt is not necessarily expected to
succeed.

2. If one must fix a (single-fault) bug, dynamic slicing is more effective.1 In our exper-
iments, dynamic slicing is 62% more likely to find the fault location earlier than
statistical debugging, for single faults. In absolute terms, locating faults along dynamic
dependencies requires programmers to examine on average 21% of the code (40 LoC);
whereas the most effective statistical debugging techniques require 26% (51 LoC). Not
only is the average better; the effectiveness of dynamic slicing also has a much lower
standard deviation and thus is more predictable. Both features are important for human
debuggers, as they eventually must find and fix the fault: If they follow the dynamic
slice from the failing output, they will find the fault quicker than if they examine loca-
tions whose execution correlates with failure. Moreover, dynamic slicing needs only the
failing run, whereas statistical debugging additionally requires multiple similar passing
runs. Although dynamic slicing is more effective on single faults, statistical debugging
performs better on multiple faults (see RQ7).

3. Programmers can start with statistical debugging, but should quickly switch to
dynamic slicing after a few locations. In our experiments, it is a hybrid strategy that
works best: First consider the top locations of statistical debugging (if applicable), and
then proceed along the dynamic slice. In our experiments, the hybrid approach is sig-
nificantly more effective than both slicing and statistical debugging. For most errors
(98%), the hybrid approach localizes the fault within the top-20 most suspicious state-
ments, in contrast, both slicing and statistical debugging will localize faults for most
errors (98%) after inspecting about five times as many statements (100 LoC). Notably,
the hybrid approach is more effective than statistical debugging and dynamic slicing,
regardless of the error type (real/artificial) and the number of faults (single/multiple) in
a buggy program (see RQ6 and RQ7, respectively).

The remainder of this paper is organized as follows. After introducing dynamic slicing
and statistical debugging in Section 2, this paper makes the following key contributions:

1. Section 3 presents a hybrid approach that merges both dynamic slicing and statistical
debugging into a strategy, where the developer switches to slicing after investigating a
handful of the most suspicious statements reported by statistical debugging.

1In our evaluation, dynamic slicing is more effective than SBFL on single faults. However, other factors such
as multiple faults (see RQ7), test generation (Yang et al. 2017), test reduction (Yu et al. 2008) and program
sizes may influence its effectiveness (see RQ6 and Section 6).
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2. We describe our evaluation setup (Section 4) and empirically evaluate the fault local-
ization effectiveness of dynamic slicing, statistical debugging and our hybrid approach
(RQ1 to 5 in Section 5).

3. We conduct an empirical study on the effect of error type and the number of faults on
the effectiveness of AFL techniques. We examine the difference between evaluating
an AFL technique on real vs. artificial faults (RQ6 in Section 5), as well as single vs.
multiple faults (RQ7 in Section 5).

In Section 6, we discuss the limitations and threats to the validity of this work. Section 7
and Section 8 present future work and related work, respectively. Finally, Section 9 closes
with conclusion and consequences.

The contributions and findings of this paper are important for debugging and repair stake-
holders. Programmers, debugging tools and automated program repair (APR) tools need
effective fault localization techniques, in order to reduce the amount of time and effort spent
(automatically) debugging and fixing errors. These findings enable APR tools, debuggers
and programmers to be effective and efficient in bug diagnosis and bug fixing.

2 Background

In this section, we provide background on the two main AFL techniques evaluated in this
paper, namely program slicing and statistical debugging.

2.1 Program Slicing

More than three decades ago, Mark Weiser (1982, 1981) noticed that developers localize
the root cause of a failure by following chains of statements starting from where the failure
is observed. Starting from the symptomatic statement s, where the error is observed, devel-
opers would identify those program locations that directly influence the variable values or
execution of s. This traversal continues transitively, until the root cause of the failure (i.e.,
the fault) is found. This procedure allows developers to investigate those parts of the pro-
gram involved in the infected information-flow in reversed order towards the location where
the failure is first observed.

2.2 Static Slicing

Weiser developed program slicing as the first automated fault localization technique (Weiser
1982). A programmer marks the statement where the failure is observed (i.e., the failure’s
symptom) as slicing criterion C. To determine the potential impact of one statement onto
another, the program slicer first computes the Program Dependence Graph (PDG) for the
buggy program.

The PDG is a directed graph with nodes for each statement and an edge from a node s to
a node s′ if

1. statement s′ is a conditional (e.g., an if-statement) and s is executed in a branch of s′
(i.e., the values in s′ control whether or not s is executed), or

2. statement s′ defines a variable v that is used at s and s may be executed after s′ without v
being redefined at an intermediate location (i.e., the values in s′ directly influence the
value of the variables in s).
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The first condition elicits control dependencewhile the second elicits data dependence. The
PDG essentially captures the information-flow among all statements in the program. If there
is no path from node n to node n′, then the values of the variables at n have definitely no
impact on the execution of n′ or its variable values.

The static program slice (Weiser 1981; Tip 1995) computed w.r.t. C consists of all state-
ments that are reachable from C in the PDG. In other words, it contains all statements that
potentially impact the execution and program states of the slicing criterion. Note that static
slicing only removes those statements that are definitely not involved in observing the fail-
ure at C. The statements in the static slice may or may not be involved. Static program slices
are often very large (Binkley et al. 2007).

2.3 Dynamic, Relevant, and Execution Slicing

A dynamic program slice (Korel and Laski 1988; Agrawal and Horgan 1990) is computed
for a specific failing input t and is thus much smaller than a static slice. It is able to cap-
ture all statements that are definitely involved in computing the values that are observed at
the location where the failure is observed for failing input t . Specifically, the dynamic slice
computed w.r.t. slicing criterion C for input t consists of all statements whose instances
are reachable from C in the Dynamic Dependence Graph (DDG) for t . The DDG for t

is computed similarly as the PDG, but the nodes are the statement instances in the exe-
cution trace π(t). The DDG contains a separate node for each occurrence of a statement
in π(t) with outgoing dependence edges to only those statement instances on which this
statement instance depends in π(t) (Agrawal and Horgan 1990). However, an error is not
only explained by the actual information-flow towards C. It is important to also inves-
tigate statements that could have contributed towards an alternative, potentially correct
information-flow.

The relevant slice (Agrawal et al. 1993; Gyimóthy et al. 1999) computed for a failing
input t subsumes the dynamic slice for t and also captures the fact that the fault may be in not
executing an alternative, correct path. It adds conditional statements (e.g., if-statements)
that were executed by t and if evaluated differently may have contributed to a different value
for the variables at C. It requires computing (static) potential dependencies. In the execution
trace π(t), a statement instance s potentially depends on conditional statement instance b if
there exists a variable v used in s such that (i) v is not defined between b and s in trace π(t),
(ii) there exists a path σ from ϕ(s) to ϕ(b) in the PDG along which v is defined, where ϕ(b)

is the node in the PDG corresponding to the instance b, and (iii) evaluating b differently
may cause this untraversed path σ to be exercised. Qi et al. (2013) proved that the relevant
slice w.r.t. C for t contains all statements required to explain the value of C for t .

The approximate dynamic slice (Agrawal et al. 1990; Korel and Laski 1988) is computed
w.r.t. slicing criterion C for failing input t as the set of executed statements in the static slice
w.r.t. C. The approximate dynamic slice subsumes the dynamic slice because there can be
an edge from an instance s to an instance s′ in the DDG for t only if there is an edge from
statement ϕ(s) to statement ϕ(s′) in the PDG. The approximate dynamic slice subsumes
the relevant slice because it also accounts for potential dependencies: Suppose instance s

potentially depends on instance b in execution trace π(t). Then, by definition there exists a
path σ from ϕ(s) to ϕ(b) in the PDG along at least one control- and one data-dependence
edge (via the node defining v); and if ϕ(s) is in the static slice, then ϕ(b) is as well. Note that
the approximate dynamic slice is (1) easier to compute than dynamic slices (static analysis),
(2) significantly smaller than the static slice, and still (3) as “complete” as the relevant slice.
In summary, dynamic slice ⊆ relevant slice ⊆ approximate dynamic slice ⊆ static slice.

(2021) 26:Empir Software Eng 5151 Page 6 of 45



Figure 3a and b show the static and the dynamic slice for the middle program, respec-
tively. The slicing criterion was chosen as the return statement of the program—that state-
ment where the failure is observed. As test case, we chose the single failing test case x =
2, y = 1, and z = 3. In this example, the approximate dynamic slice matches exactly the
dynamic slice. For our evaluation, we implemented approximate dynamic slicing, and in
our evaluation results and discussions we refer to approximate dynamic slicing as “dynamic
slicing”.

2.4 Statistical Debugging

Almost two decades ago, Jones et al. (2002) introduced the first statistical debugging
technique—TARANTULA, quickly followed by Zheng et al. (2003) and Liblit et al. (2005).
The main idea of statistical debugging is to associate the execution of a particular program
element with the occurrence of failure using so-called suspiciousness measures. Program
elements (like statements, basic blocks, functions, components, etc.) that are observed more
often in failed executions than in correct executions are deemed as more suspicious. A
program element with a high suspiciousness score is more likely to be related to the root
cause of the failure. An important property of statistical debugging is that apart from mea-
suring coverage, it requires no specific static or dynamic program analysis. This made it
easy to implement and deploy, in particular as part of several automated program repair
techniques (Le Goues et al. 2012; Nguyen et al. 2013; Kim et al. 2013; Qi et al. 2014),
which first consider the highest ranked, most suspicious elements as patch location. Using a
more effective debugging technique thus directly increases the effectiveness of such repair
techniques.

Figure 4 shows the scores computed for the executable lines in our motivating example.
The statement in Line 8 is incorrect and should read m = x; instead. This statement is
also the most suspicious according to all three statistical fault localization techniques in
the example. Notice that only twelve (12) lines are actually executable. Evidently, in this

8 6

15

11 13

12

10

7

5

4

2

8

15

7

5

4

2

(a) (b) 

Fig. 3 Slicing Example: Nodes are statements in each line of the middle program (see Fig. 1). Control-
dependencies are shown as dashed lines while data dependencies are shown as concrete lines
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Fig. 4 Statistical Fault Localization Example: Scores for the faulty line 8 are in bold red

example from Jones and Harrold (2005), the faulty statement is also the most suspicious for
these three statistical fault localization techniques.2

In this paper, we focus on four sets of measures consisting of 18 statistical fault local-
ization formulas; namely seven human-generated optimal measures, three most popular
measures, four Genetic Programming (GP) evolved measures and four measures targeted at
single bug optimality.

1. Human-generated measures: The first set of measures includes two DStar (D∗)
formulas and five formulas which have been theoretically proven to be optimal and
found to be the most effective in existing studies (Xie et al. 2013b). These formulas
include Wong1, Russel Rao, Binary, Naish1 and Naish2 (Wong et al. 2007,
2012, 2013; Russel et al. 1940; Naish et al. 2011). For the DStar algorithm, we have
selected “star” (∗) values two and three (i.e., D∗ = {D2,D3}) which have been demon-
strated to be the most effective values for single and multiple faults, respectively (Wong
et al. 2012, 2013). The other five measures were selected in a theoretical evaluation
of over 50 formulas and recommended as the only optimal formulas to be applied for
statistical fault localization (Xie et al. 2013a, b).

2. Popular measures: These measures are the most popular statistical fault localiza-
tion measures, Tarantula, Ochiai, and Jaccard (Jones et al. 2002; Abreu et al.
2006, 2007; Chen et al. 2002). They have been used in recent automated program
repair (APR) techniques and have been shown to improve the effectiveness of program
repair (Nguyen et al. 2013; Assiri and Bieman 2017).

3. Genetic Programming (GP) evolved measures: These measures are GP-evolved
formulas, which have been found to be human-competitive (comparable to human-
generated measures) and theoretically maximal (i.e., the best performing measures),
namely GP02, GP03, GP13 and GP19 (Yoo 2012).

2The scores for the faulty statement in Line 8 are tarantula(s8) = 1
1 /

(
1
1 + 1

5

)
, ochiai(s8) = 1√

1(1+1)
,

and naish2(s8) = 1 − 1
1+4+1 .
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4. Single Bug Optimal measures: These statistical formulas are optimized for pro-
grams containing a single bug, based on the observation that if a program contains
only a single bug, then all failing traces cover that bug (Naish and Lee 2013). These
measures have been empirically demonstrated to be optimal in a large-scale com-
parison of 157 measures. The single bug optimal measures in our study include
m9185, Kulczynski2 LexOchiai and Pattern-Similarity. In particular,
LexOchiai and Pattern-Similarity measures perform best overall (Lands-
berg 2016; Landsberg et al. 2015).

3 A Hybrid Approach

Even though dynamic slicing is generally more effective than statistical debugging, we
observe that statistical debugging can be highly effective for some bugs, especially when
inspecting only the top most suspicious statements. For instance, statistical debugging can
pinpoint a single faulty statement as the most suspicious statement for about 40% of the
errors in IntroClass and SIR, i.e. a developer can find a faulty statement after inspect-
ing only one suspicious statement (see Fig. 8). This is further illustrated by the clustering of
some points in the rightmost corner below the diagonal line of the comparison charts (see
Fig. 7).

In this paper, we assume that a programmer in the end has to fix a bug, and a viable
“alternative” method is following the dependencies by (dynamic) slicing. To this end,
we investigate a hybrid fault localization approach which leverages the strengths of both
dynamic slicing and statistical debugging. The goal is to improve on the effectiveness of
both approaches by harnessing the power of statistical correlation and dynamic program
analysis. The hybrid approach first reports the top most suspicious statements (e.g. top
five statements) before it reports the statements in the dynamic slice computed w.r.t. the
symptomatic statement.

The concept of examining only the top most suspicious statements is also backed by user
studies on statistical fault localization. In a recent survey (Kochhar et al. 2016), Kochhar
et al. found that three quarter of surveyed practitioners would investigate no more than the
top-5 ranked statements—which should contain the faulty statement at least three out of
four times—before switching to alternative methods. This is also confirmed by the study
of Parnin and Orso (2011), who observed that programmers tend to transition to tradi-
tional debugging (i.e., finding those statements that impact the value of the symptomatic
statement) after failing to locate the fault within the first N top-ranked most suspicious
statements. This transition is exactly what the hybrid approach provides.

Specifically, the hybrid approach proceeds in two phases. In the first phase, it reports
the top N (e.g. N = 5) most suspicious statements, obtained from the ordinal ranking3

of a statistical fault localization technique. Then, if the fault is not found, it proceeds to
the second phase where it reports the symptom’s dynamic backward dependencies. In the
second phase, we only report statements that have not already been reported in the first
phase.4

3In ordinal ranking, lines with the same score are ranked by line number.
4This is to avoid duplication of inspected statements, i.e. avoid double inspection.
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4 Evaluation Setup

Let us evaluate the effectiveness of all three fault localization techniques and the influ-
ence of the number of faults and error type on the effectiveness of these AFL techniques.
Specifically, we ask the following research questions:

• RQ1: Effectiveness of Dynamic Slicing: How effective is dynamic slicing in fault
localization, i.e. localizing fault locations in buggy programs?

• RQ2: Effectiveness of Statistical Debugging: Which statistical formula is the most
effective at fault localization?

• RQ3: Comparing Statistical Debugging and Dynamic Slicing: How effective is the
most effective statistical formula in comparison to dynamic slicing?

• RQ4: Sensitiveness of the Hybrid Approach: How many suspicious statements
(reported by statistical debugging, i.e. Kulczynski2) should a tool or developer inspect
before switching to slicing?

• RQ5: Effectiveness of the Hybrid Approach: Which technique is the most effective
in fault localization? Which technique is more likely to find fault locations earlier?

• RQ6: Real Errors vs. Artificial Errors: Does the type of error influence the effective-
ness of AFL techniques? Is there a difference between evaluating an AFL technique on
real or artificial errors?

• RQ7: Single Fault vs Multiple Faults: What is the effect of the number of faults on
the effectiveness of AFL techniques? Is there a difference between evaluating an AFL
technique on single or multiple fault(s)?

In this paper, we evaluate the performance of statistical debugging, dynamic slicing and
the hybrid approach in the framework of Steimann et al. (2013) where we fix the granular-
ity of fault localization at statement level and the fault localization mode at one-at-a-time
(except for multiple faults in RQ7). In this setting with real errors and real test suites, the
provided test suites may not be coverage adequate, e.g. they may not execute all program
statements. Fault localization effectiveness is evaluated as relative wasted effort based on
the ranking of units in the order they are suggested to be examined (see Section 4.4 for more
details).

4.1 Implementation

Let us provide implementation details for each AFL technique in this paper.

4.1.1 Dynamic Slicing Implementation

The approximate dynamic slice is computed using Frama-C,5 gcov, git-diff, gdb,
and several Python libraries. Given the preprocessed source files of a C program, Frama-C
computes the static slices for each function and their call graphs as DOT files. The gcov-
tool determines the executed/covered statements in the program. The git-diff-tool
determines the changed statements in the patch and thus the faulty statements in the pro-
gram. The gdb-tool allows to derive coverage information even for crashing inputs and
to determine the slicing criterion as the last executed statement. Our Python script inter-
sects the statements in the static slice and the set of executed statements to derive the

5http://frama-c.com/
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approximate dynamic slice. We use the Python libraries pygraphviz,6 networkx,7

and matplotlib8 to process the DOT files and compute the score for the approximate
dynamic slice.

4.1.2 Statistical Debugging Implementation

The statistical debugging tool was implemented using two bash scripts with several stan-
dard command line tools, notably gcov,9 git-diff10 and gdb.11 The differencing tool
git-diff identifies those lines in the buggy program that were changed in the patch. If the
patch only added statements, we cannot determine a corresponding faulty line. Some errors
were thus excluded from the evaluation. The code coverage tool, gcov identifies those lines
in the buggy program that are covered by an executed test case. When the program crashes,
gcov does not emit any coverage information. If the crash is not caused by an infinite loop,
it is sufficient to run the program under test in gdb and force-call the gcov-function from
gdb to write the coverage information once the segmentation fault is triggered. This was
automated as well. However, for some cases, no coverage information could be generated
due to infinite recursion. Gcov also gives the number of executable statements in the buggy
program (i.e., |P |).12 Finally, our Python implementation of the scores is used to compute
the fault localization effectiveness.

4.1.3 Hybrid Approach Implementation

The hybrid approach is implemented simply as a combination of both tools. If the top-
N most suspicious statements do not contain the fault, the dynamic slicing component is
informed about the set of statements already inspected in the first phase. Given the unranked
suspiciousness score of every executable statement in the program, the hybrid fault localizer
performs an ordinal ranking of all statements. It then determines the proportion of the top N

rank of suspicious statements, based on the N value of the hybrid approach. For instance,
a hybrid approach with N = 5 takes the five topmost suspicious statements. Then, it deter-
mines the highest ranked faulty statement in the rank of all suspicious statements. If the
faulty statement is in the top N suspicious positions (e.g. third position), then it reports the
number of statements in the top ranked positions up till the faulty statement, as a proportion
of all executable program statements.

In the case that the suspicious statement is not in the top N suspicious positions (e.g.
seventh position), then it proceeds to slicing and reports the cardinality of the set union of
all N top ranked statements and the number of inspected statements in the slice before the
first faulty statement.

6https://pygraphviz.github.io/
7https://networkx.github.io/
8http://matplotlib.org/
9https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
10https://git-scm.com/docs/git-diff
11https://www.gnu.org/software/gdb/documentation/
12The executable statements refers to statements for which coverage information are obtainable by Gcov, in
particular, all program statements except spaces, blanks and comments.
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4.2 Metrics andMeasures

Odds Ratio ψ . To establish the superiority of one technique A over another technique B, it
is common to measure the effect size of A w.r.t. B. A standard measure of effect size and
widely used is the odds ratio (Grissom and Kim 2005). It “is a measure of how many times
greater the odds are that a member of a certain population will fall into a certain category
than the odds are that a member of another population will fall into that category” (Grissom
and Kim 2005). In our case, let “A is successful” mean that fault localization technique A

is more effective than fault localization technique B and let a be the number of successes
for A, b the number of successes for B, and n = a + b the total number of successes. Then,
the odds ratio ψ is calculated as

ψ =
(

a + ρ

n + ρ − a

)/ (
b + ρ

n + ρ − b

)

where ρ is an arbitrary positive constant (e.g., ρ = 0.5) used to avoid problems with zero
successes. There is no difference between the two algorithms when ψ = 1, while ψ > 1
indicates that technique A has higher chances of success. For example, an odds ratio of five
means that fault localization technique A is five times more likely to be successful (i.e.,
more effective as compared to B) at fault localization than B.

The Mann-Whitney U -test is used to show whether there is a statistical difference
between two techniques (Mann and Whitney 1947). In general, it is a non-parametric test of
the null hypothesis that two samples come from the same population against an alternative
hypothesis, especially that a particular population tends to have larger values than the other.
Unlike the t-test it does not require the assumption that the data is normally distributed.
More specifically, it shows whether the difference in performance of two techniques is
actually statistically significant.

A cumulative frequency curve is a running total of frequencies. We use such curves to
show the percentage of errors that require examining up to a certain number of program
locations. The number of code locations examined is plotted on a log-scale because the
difference between examining 5 to 10 locations is more important than difference between
examining 1005 to 1010 locations.

4.3 Objects of Empirical Analysis

Programs and Bugs We evaluated each fault localization technique using 45 C programs
containing hundreds of (369) errors and thousands of (9012) failing tests (cf. Table 1). These
programs were collected from four benchmarks, in particular, three benchmarks containing
real world errors, namely IntroClass, Codeflaws and CoREBench, and one benchmark with
artificial faults, namely the Software-artifact Infrastructure Repository (SIR). We selected
these benchmarks of C programs to obtain a large variety of bugs and programs. Each bench-
mark contains a unique set of programs containing errors introduced from different sources
such as developers, students, programming competitions and fault seeding (e.g. via code
mutation). These large set of bugs allows us to rigorously evaluate each fault localization
technique. The following briefly describes each benchmark used in our evaluation:

1. Software-artifact Infrastructure Repository (SIR) is a repository designed for the
evaluation of program analysis and software testing techniques using controlled exper-
imentation (Hutchins et al. 1994). It contains small C programs, with seeded errors and
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Table 1 Details of subject programs

Benchmark Tool Avg. size #Errors #Fail. #Pass.

(error type) (program) (LoC) tests tests

SIR tcas 65.1 37 1356 58140

(Artificial) print tokens 199 3 184 12206

print tokens2 199.5 8 2031 30889

tot info 125 18 1528 17408

schedule 160.5 4 690 9910

schedule2 139.2 4 116 10724

IntroClass checksum 11.3 3 7 41

(Real; Students) digits 17.4 3 16 32

grade 16.1 8 30 114

median 13.5 2 8 18

smallest 13.2 2 16 16

syllables 11.6 2 12 20

Codeflaws WTLW (71A) 10.3 11 60 61

(Real; Competitions) HQ9+ (133A) 10.9 18 270 1260

AG (144A) 24.5 13 302 202

IB (478A) 8.6 20 31 329

TN (535A) 61.2 9 118 778

Exam (534A) 17.5 12 108 68

Holidays (670A) 12.8 9 662 1118

DC (495A) 14.5 13 96 279

VBT(336A) 13.6 14 108 309

PP(509B) 21.2 16 84 98

DHHF (515B) 29.5 15 127 707

HVW2 (143A) 17.5 16 124 707

Ball Game (46A) 10 8 114 148

WE (31A) 14.4 14 187 200

LM (146B) 29.5 11 116 355

SG (570B) 7.5 11 69 531

WD (168A) 7.7 9 132 254

Football (417C) 13.2 13 64 352

MS (218A) 16.5 10 156 156

Joysticks (651A) 12.6 8 66 246

CoREBench core. (cut) 306 4 4 6

(Real; Developers) core. (rm) 110 1 1 63

core. (ls) 1605.5 2 2 73

core. (du) 315 1 1 28

core. (seq) 219.7 3 3 5

core. (expr) 321 1 1 1

core. (copy) 897 1 1 59

find (parser) 119.3 3 3 286

find (ftsfind) 211.5 2 2 183

find (pred) 825 2 2 235

(2021) 26:Empir Software Eng 51 Page 13 of 45 51



Table 1 (continued)

Benchmark Tool Avg. size #Errors #Fail. #Pass.

(error type) (program) (LoC) tests tests

grep (dfasearch) 181.5 2 2 46

grep (savedir) 64 1 1 15

grep (kwsearch) 77 2 2 46

grep (main) 853.5 2 2 45

Total 35 (46) 369 9012 148767

test suites containing thousands of failing tests. In particular, this benchmark allows for
the controlled evaluation of the effects of large test suites on debugging activities.

2. IntroClass is a collection of small programs written by undergraduate students in a
programming course (Le Goues et al. 2015). It contains six C programs, each with tens
of instructor-written test suites. This benchmark allows for the evaluation of factors that
affect debugging in a development scenario, especially for novice developers.

3. Codeflaws is a collection of programs from online programming competitions held
on Codeforces.13 These programs were collected for the comprehensive evaluation of
debugging tools using different types of errors. It contains 3902 errors classified across
40 defect classes in total (Tan et al. 2017). In particular, this benchmark allows for the
evaluation of fault localization techniques on different defect types.

4. CoREBench is a collection of 70 real errors that were systematically extracted from the
repositories and bug reports of four open-source software projects: Make, Grep, Findu-
tils, and Coreutils (Böhme and Roychoudhury 2014).14 These projects are well-tested,
well-maintained, and widely-deployed open source programs for which the complete
version history and all bug reports can be publicly accessed. All projects come with
an extensive test suite. CoREBench allows for the evaluation of fault localization tech-
niques on real world errors (unintentionally) introduced by developers. It has been used
in several debugging studies, including a study that investigates how developers debug
and fix real faults (Böhme et al. 2017).

Table 1 lists all the programs and bugs investigated in our study. We use six programs
each from the SIR and IntroClass benchmarks. This includes tcas—this program is the
most well-studied subject according to a recent survey on fault localization (Wong et al.
2016). We selected 20 programming competitions from Codeflaws, including popular and
difficult contests, such as “Tavas and Nafas (535A)” and “Lucky Mask (146B)”. From
CoREBench, we used three projects, namely the Coreutils, Grep and Find project.
Notably, all projects in CoREBench come from the GNU open source C programs, in
particular, these three projects contain a total of 103 tools. Due to code modularity, the
program size for a single tool (e.g. cut in coreutils) contains a few hundred LoC
(about 306 LoC), however, the entire code base for CoREBench is fairly large. For instance,
Coreutils, Grep and Find have 83k, 18k and 11k LoC, respectively (Böhme and Roy-
choudhury 2014). For each benchmark, we exempted programs where Frama-C could not
construct the Program Dependence Graph (PDG). For instance, because it cannot handle

13https://codeforces.com/
14http://www.comp.nus.edu.sg/∼release/corebench/
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Table 2 Details of multiple faults

Benchmark Tool # Buggy #Faults #Failing #Passing

(error type) programs tests tests

SIR-MULT tcas 37 144 19973 39523

(Mutated) print tokens 3 11 12074 316

print tokens2 8 28 27630 5290

tot info 18 64 16667 2269

schedule 4 17 9673 927

schedule2 4 16 8616 2224

IntroClass -MULT checksum 1 4 15 1

(Mutated) digits 2 7 30 2

grade 5 22 67 23

median 2 8 13 13

smallest 1 4 8 8

syllables 3 13 34 14

Total 88 338 94800 50610

some recursive or variadic method calls. In addition, we excluded an error if no coverage
information could be generated (e.g., infinite loops) or the faulty statement could not be
identified (e.g., omission faults where the patch only added statements).

Single Faults For our evaluation (all RQs except RQ7), we used buggy programs collected
from four well-known benchmarks, where programs contained only a single fault. To deter-
mine single faults in our bug dataset, for each program, we executed all tests available for
a project on the fixed version of the program, in order to determine if there are any fail-
ing test cases that are unrelated to the bug at hand. Our evaluation revealed that our dataset
contained mostly single bugs (368/369 = 99.7%). Almost all buggy program versions had
exactly one fault, except for a single program—Codeflaws version DC 495A. For all
benchmarks, only this program contained multiple faults, i.e. more than one fault. This dis-
tribution of single faults portrays the high prevalence of single faults and single-fault fixes
in the wild (Perez et al. 2017).

Multiple Faults To evaluate the effectiveness of all three fault localization techniques on
multiple faults (see RQ7), we automatically curated a set of multiple faults using mutation-
based fault injection. This is in line with the evaluation of multiple faults in previous
works (Abreu et al. 2009b; Zheng et al. 2006; DiGiuseppe and Jones 2011; Wong et al.
2013; Wong et al. 2012).15 We automatically mutated the original passing version of each
program until we have a buggy version containing between three to five faults. In particular,
we performed logical and arithmetic operator mutation on each passing version of the pro-
grams contained in the SIR and IntroClass benchmarks. Table 2 provides details of the
buggy programs with multiple faults, the number of faults, as well as the number of failing
and passing test cases. For each fault contained in the resulting program, we store the failing

15To the best of our knowledge, there is no known benchmark of real-world programs containing multiple
faults.
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test case(s) that expose the bug, as well as the corresponding patches for each fault and all
faults. In total, we collected 88 programs with multiple faults containing 338 injected faults,
in total. Each program in this dataset contained about four unique faults, on average. Specif-
ically, we collected 74 and 14 programs from the SIR and IntroClass benchmarks, and
injected a total of 280 and 58 faults in each benchmark, respectively. The programs con-
taining multiple faults are called SIR-MULT and IntroClass-MULT, respectively (see
Table 2).

Minimal Patches The user-generated patches are used to identify those statements in the
buggy version that are marked faulty. In fact, Renieris and Reiss (2003) recommend identi-
fying as faulty statements those that need to be changed to derive the (correct) program that
does not contain the error. For each error, only patched statements are considered faulty. All
bugs in our corpus are patched with at least one statement changed in the buggy program,
all omission bugs are exempted. Omission bugs require special handling since they are quite
difficult to curate, localize and fix. Collecting patches and fault locations for omission bugs
is difficult because their patches are similar to the implementation of new features. A faulty
code location is unclear for omission bugs (in the failing commit), this makes them even
more difficult to evaluate for typical AFL techniques, including statistical debugging and
dynamic slicing (Lin et al. 2018).

Slicing Criterion All aspects of dynamic slicing can be fully automated. To this end, as the
slicing criterion we chose the last statement that is executed or the return statement of the
last function that is executed. For instance, when the program crashes because an array is
accessed out of bounds, the location of the array access is chosen as the slicing criterion. In
our implementation, the slicing criterion is automatically selected by a bash script running
gdb.

Passing and Failing Test Cases All programs in our dataset come with an extensive test
suite which checks corner cases and that previously fixed errors do not re-emerge. For
statistical debugging, we execute each of these (passing) test cases individually to collect
coverage information. For dynamic slicing, we perform slicing for each failing test case.

In summary, for our automated evaluation, we used 457 errors in dozens of programs
from four well-known benchmarks (see Tables 1 and 2). Our corpus contained 46 different
programs in 35 software tools. Each faulty program in our corpus had about 11 bugs, 257
failing test cases and thousands (4250) of passing test cases, on average. For single faults,
we have 295 real faults and 74 injected faults. Meanwhile, we have 88 buggy programs
containing multiple faults, each program contains about four faults, on average.

4.4 Measure of Localization Effectiveness

We measure fault localization effectiveness as the proportion of statements that do not need
to be examined until finding the first fault. This allows us to assign a score of 0 for the worst
performance (i.e., all statements must be examined) and 1 for the best. More specifically,
we measure the score = 1 − p where p is the proportion of statements that needs to be
examined before the first faulty statement is found. Not all failures are caused by a single
faulty statement. In a study of Böhme and Roychoudhury, only about 10% of failures were
caused by a single statement, while there is a long tail of failures that are substantially more
complex (Böhme and Roychoudhury 2014). Focusing on the first faulty statement found,
the score measures the effort to find a good starting point to initiate the bug-fixing process
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rather than to provide the complete set of code that must be modified, deleted, or added to
fix the failure. Wong et al. (2016) motivates this measure of effectiveness and presents an
overview of other measures.

4.4.1 General Measures

Ranking All three fault localization techniques presented in this paper produce a ranking.
The developer starts examining the highest ranked statement and goes down the list until
reaching the first faulty statement. To generate the ranking for statistical debugging, we
list all statements in the order of their suspiciousness (as determined by the technique),
most suspicious first. To generate the ranking for approximate dynamic slicing , given the
statement c where the failure is observed, we rank first those statements in the slice that can
be reached from c along one backward dependency edge. Then, we rank those statements
that can be reached from c along two backward dependency edges, and so on. Generally,
for all techniques, the score is computed as

score = 1 − |S|
|P |

where S are all statements with the same rank or less as the highest ranked faulty statement
and P is the set of all statements in the program. So, S represents the statements a developer
needs to examine until finding the first faulty one.16

Multiple Statements, Same Rank In most cases there are several statements that have the
same rank as the faulty statement. For all our evaluations, we employ ordinal ranking, in
order to effectively determine the top N most suspicious statements for each technique.
This is necessary to evaluate the fault localization effectiveness of each technique, if a
developer is only willing to inspect N most suspicious statements (Kochhar et al. 2016). In
ordinal ranking, lines with the same score are re-ranked by line numbers.17 This is in agree-
ment with evaluations of fault localization techniques in previous work (Wong et al. 2016;
Pearson et al. 2017; Kochhar et al. 2016).

Multiple Faults, Expense Score For multiple faults, we measure fault localization effec-
tiveness using the expense score (Yu et al. 2008). The expense score is the percentage of
the program (statements) that must be examined to find the first fault, in particular, the first
faulty statement in the first localized fault, using the ranking given by the fault localization
technique. It is similar to the score employed for single faults, and it has been employed in
previous evaluations of multiple faults, such as Wong et al. (2012, 2013). Formally:

expense score = |S|
|P | ∗ 100

where S are all statements with the same rank or less as the highest ranked faulty state-
ment for the first fault found and P is the set of all executable statements in the program.
So, S represents the statements a developer needs to examine until finding the first faulty

16Note that all executable program statements are ranked in the suspiciousness rank, executable statements
that are not contained in the dynamic slice are ranked lowest.
17Ranking ties are broken in ascending order, i.e. if both lines 10 and 50 have the same score, then line
number 10 is ranked above line number 50.
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statement, for the first localized fault. The assumption is that it is the first fault that the
developer would begin fixing, thus, finding the first statement suffices for the diagnosis
of all faults (Yu et al. 2008). In our evaluation of multiple faults, the fault localization
effectiveness score is computed similarly to single faults as

scoremult = 1 − (expense score/100)

4.4.2 Dynamic Slicing Effectiveness

We define the effectiveness of approximate dynamic slicing, the scoreads according to
Renieris and Reiss (2003) as follows. Given a failing test case t , the symptomatic state-
ment c, let P be the set of all statements in the program, let ζ be the approximate dynamic
slice computed w.r.t. c for t , let kmin be the minimal number of backward dependency edges
between c and any faulty statement in ζ , and let DS∗(c, t) be the set of statements in ζ that
are reachable from c along at most kmin backward dependency edges. Then,

scoreads = 1 − |DS∗(c, t)|
|P |

Algorithmically, the scoreads is computed by (i) measuring the minimum distance kmin

from the statement c where the failure is observed to any faulty statement along the back-
ward dependency edges in the slice, (ii) marking all statements in the slice that are at
distance kmin or less from c, and (iii) measuring the proportion of marked statements in the
slice. This measures the part of code a developer investigates who follows backward depen-
dencies of executed statements from the program location where the failure is observed
towards the root cause of the failure.

In the approximate dynamic slice in our motivating example (Fig. 3), we have
scoreads = 1 − 1

12 = 0.92. The slicing criterion is c = s15. The program size is |P | = 12.
The faulty statement s8 is ranked first. Statements s7 and s2 are both ranked third accord-
ing to modified competition ranking.18 Statements s5 and s4 are ranked fourth and fifth,
respectively, while the remaining, not executed (but executable) statements are ranked 12th.

4.4.3 Statistical Debugging Effectiveness

We define the effectiveness of a statistical fault localization technique, the scoresf l as
follows. Given the ordinal ranking of program statements in program P for test suite T

according to their suspiciousness as determined by the statistical fault localization method,
let rf be the rank of the highest ranked faulty statement and P is the set of all statements in
the program. Then,

scoresf l = 1 − rf

|P |
Note that scoresf l = 1−EXAM-score where the well-known EXAM-score (Jones and Har-
rold 2005; Abreu et al. 2009a) gives the proportion of statements that need to be examined
until the first fault is found. Intuitively, the scoresf l is its complement assigning 0 to the

18In this case, when several statements have the same rank as the faulty statement, we made the conservative
assumption that a developer finds the faulty statement among other statements with the same rank.
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worst possible ranking where the developer needs to examine all statements before finding
a faulty one.

For instance, scoresf l = 1 − 1
12 = 0.92 for our motivating example and all consid-

ered statistical debugging techniques. All statistical debugging techniques identify the faulty
statement in Line 8 as most suspicious. So, there is only one top-ranked statement (Rank 1).
But there are six statements with the lowest rank (Rank 12). If the fault was among one of
these statements, the programmer might need to look at all statements of our small program
middle before localizing the fault.

4.4.4 Hybrid Approach Effectiveness

We define the effectiveness of the hybrid approach, the scorehyb as follows. Let R be the set
of faulty statements, H be the N most suspicious statements—sorted first by suspiciousness
score and then by line numbers and P is the set of all statements in the program. Given the
failing test case t and a statement c that is marked as symptomatic, we have

scorehyb =
{
min(scoresf l, N) if R ∩ H �= ∅
1 − |H ∪ DS∗(c, t)| / |P | otherwise

Essentially, scorehyb computes the score for the statistical fault localization technique if
the faulty statement is within the first N most suspicious statements, and the score for
approximate dynamic slicing while accounting for the statements already reported in the
first phase. For instance, for N = 2 we have scorehyb = 1 − 1

12 = 0.92 for the motivating
example in Fig. 1 since the fault is amongst the N most suspicious statements.

4.5 Infrastructure

We performed the experiments on a virtual machine (VM) running Arch Linux. The VM
was running on a Dell Precision 7510 with a 2.7 GHz Intel Core i7-6820hq CPU and 32 GB
of main memory.

5 Evaluation Results

Let us discuss the results of our evaluation and their implications. All research questions
(RQs) are evaluated using single faults (i.e., RQ1 to RQ6), except for RQ7, which is
evaluated on both single and multiple faults.

5.1 RQ1: Effectiveness of Dynamic Slicing

How effective is dynamic slicing in fault localization? To investigate the fault localization
effectiveness of dynamic slicing, we examined the proportion of statements a developer
would not need to inspect after locating the faulty statement (score in Table 3). Then, we
examine the percentage of errors for which a developer can effectively locate the faulty
statement, if she inspects only N most suspicious statements reported by dynamic slicing
for N ∈ {5, 10, 20, 30} (% Errors Localized in Table 3).

Overall, a single faulty statement is ranked within the first quarter of the most suspicious
program statements reported by dynamic slicing, on average (cf. Table 3). This implies that
a developer (using dynamic slicing) inspects 21% (about 40 LoC) of the executable program
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Table 3 Effectiveness of dynamic slicing on single faults

Benchmark Score % Errors localized

if developer inspects N most suspicious LoC

5 10 20 30

IntroClass 0.83 70.00 100 100 100

Codeflaws 0.78 75.30 92.71 98.79 100

CoREBench 0.85 18.52 18.52 29.63 40.74

Real 0.79 69.73 86.39 92.52 94.56

Artificial (SIR) 0.79 32.43 44.59 55.41 60.81

Avg. (Bugs) 0.774 62.23 77.99 85.05 87.77

statements before locating the fault, on average (i.e., equal to 1− score). This performance
was independent of the source or type of the errors (i.e., real or seeded errors). Dynamic
slicing was particularly highly effective in locating faults for errors in CoREBench and
errors in IntroClass, where it ranks the faulty statements within the top 15% (81 LoC) and
17% (3 LoC) of the program statements, respectively (cf. Table 3).

A developer or tool using dynamic slicing will locate the faulty statement after inspecting
a handful of suspicious statements. In our evaluation, for most errors, the faulty statement
can be identified after inspecting only five to ten most suspicious statements reported by
dynamic slicing. Specifically, the faulty statement is ranked within the top five to ten most
suspicious statements for 62% to 78% of all errors, respectively (cf. Table 3). Notably, a
developer will locate the faulty statement for 55% of artificial errors and 92% of real errors
if she inspects the top 20 most suspicious statements. Overall, most programs (85%) can
be debugged by inspecting the top 30% (58 LoC, on average) of the statements reported
by dynamic slicing. These results demonstrate the high effectiveness of dynamic slicing in
fault localization.

5.2 RQ2: Effectiveness of Statistical Debugging

Which statistical formula is the most effective at fault localization? First, we investigate
the effectiveness of 18 statistical formulas using four benchmarks containing 369 errors (cf.
Table 1). To determine the most effective statistical formula, for each formula, we exam-
ined the proportion of statements a developer would not need to inspect after locating a
single faulty statement (score in Table 4). Figure 5a and b further illustrate the effectiveness
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Table 4 Effectiveness of statistical debugging on single faults

SBFL Formula SIR Intro Code Core Average

family Class flaws bench (Bugs) (Prog.)

Popular Tarantula 0.78 0.76 0.70 0.79 0.709 0.732

Ochiai 0.83 0.76 0.69 0.79 0.709 0.735
Jaccard 0.80 0.76 0.69 0.79 0.702 0.728

Human Generated Naish 1 0.83 0.74 0.69 0.79 0.710 0.733
Naish 2 0.81 0.74 0.69 0.79 0.709 0.731

Russel Rao 0.67 0.59 0.57 0.77 0.602 0.611

Binary 0.69 0.59 0.57 0.77 0.603 0.614

Wong 1 0.67 0.59 0.57 0.77 0.602 0.611

D2 0.73 0.62 0.56 0.80 0.598 0.618

D3 0.75 0.62 0.56 0.80 0.601 0.622

GP Evolved GP 02 0.75 0.72 0.66 0.69 0.668 0.688

GP 03 0.77 0.68 0.63 0.63 0.643 0.663

GP 13 0.81 0.74 0.69 0.79 0.709 0.731
GP 19 0.56 0.69 0.65 0.75 0.631 0.649

Single Bug Optimal PattSim 2 0.85 0.68 0.69 0.76 0.705 0.721

lex Ochiai 0.83 0.74 0.69 0.79 0.710 0.733

m9185 0.83 0.74 0.70 0.79 0.715 0.735

Kulczynski2 0.83 0.76 0.70 0.79 0.713 0.737

Best scores for each (sub)category are in bold; higher scores are better. For instance, Kulczynski2 is the
best performing (single bug optimal) formula for all programs (0.737), on average
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Fig. 5 Effectiveness of each SBFL formula on Single Faults; Results are grouped into bars for each family
showing a the performance of each SBFL formula on each benchmark and b the cumulative results for all
benchmarks using stacked bars
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of the SBFL formulas. Then, for the best performing statistical formula, we inspected the
percentage of errors for which a developer can effectively locate the faulty statement, if she
inspects only N most suspicious statements for N ∈ {5, 10, 20, 30} (% Errors Localized in
Table 5).

Overall, the single bug optimal formulas are the most effective family of statistical formu-
las, they are the best performing formulas across all errors and programs. In particular, on
average, PattSim2 performed best for injected errors (i.e. SIR), while Kulczynski2
outperformed all other formulas for real errors, especially for IntroClass (cf. Table 4).
Bold values in Table 4 indicate the best performing formula for each family and
(sub)category. For instance, Kulczynski2 is the best performing (single bug optimal)
formula for all programs (0.737). The performance of single-bug optimal formulas supports
the results obtained in previous works (Landsberg 2016). This family of statistical formulas
are particularly effective because they are optimized for programs containing a single bug;
based on the observation that if a program contains only a single bug, then all failing traces
cover that bug (Naish and Lee 2013).

The most effective statistical formula is Kulczynski2, it outperformed all other for-
mulas in our evaluation (see Table 4 and Fig. 5a and b). The most effective statistical
formula for each family are Ochiai, Naish 1, GP 13 and Kulczynski2 for the pop-
ular, human-generated, genetically-evolved and single bug optimal families, respectively.
Figure 6a and b compares the performance of the most effective formula in each family. For
instance, in the popular statistical family, Ochiai is the best performing formula, both for
all errors (0.709) and all programs (0.735) (cf. Table 4). Meanwhile, in the single bug opti-
mal family, Kulczynski2 is the best performing formula for all programs (0.737) (cf.
Table 4).

Indeed, a developer using Kulczynski2 will inspect the least number of suspi-
cious program statements before finding the faulty statement. On average, Kulczynski2
required a developer to inspect about 26% (51 LoC) of the program code before finding the
faulty statement. Among all statistical formulas, it has the highest suspiciousness rank for

Table 5 Effectiveness of Kulczynski2 (i.e., the most effective statistical formula) on Single faults

Benchmark Score % Errors Localized

if developer inspects N most suspicious LoC

5 10 20 30

IntroClass 0.76 80.00 85.00 100 100

Codeflaws 0.69 64.37 86.23 97.57 99.19

CoREBench 0.79 22.22 25.93 37.04 48.15

Real 0.72 61.56 80.61 92.18 94.56

Artificial (SIR) 0.83 35.14 41.89 68.92 71.62

Avg. (Bugs) 0.713 56.25 72.83 87.50 89.95
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Fig. 6 Effectiveness of the most effective statistical debugging formula in a each family (bars are grouped
by benchmarks), and b the overall average (i.e., mean) for all benchmarks

40% (14 out of 35) of the programs and 72% (265 out of 369) of all errors. It is also the
most effective statistical formula for localizing real errors.19

A tool or developer using Kulczynski2 will locate the faulty statement after inspect-
ing five to ten most suspicious statements. The faulty statement is ranked within the top five
to ten most suspicious statements for most errors, i.e. 56% to 73% of all errors, respectively
(cf. Table 5). Overall, most programs (60%) can be debugged by inspecting the top 30% (58
LoC) of the suspicious statements reported by Kulczynski2.

Is the difference in the performance of Kulczynski2 statistically significant, in
comparison to the best performing formula for each statistical debugging family? In
our evaluation, the difference in the performance of Kulczynski2 (i.e. the best per-
forming formula) is not statistically significant. Table 6 highlights the statistical tests
comparing Kulczynski2 to the best performing statistical formula in each fam-
ily, i.e. Kulczynski2 vs. {Ochiai, Naish1, GP13}. Notably, the performance of
Kulczynski2 is not statistically significant, in comparison to the best statistical formula
for each family. This is evident from the fact that the odds ratio is less than one (ψ < 1) for
all test comparisons (see Table 6). This suggests that Kulczynski2 has no statistically

19Further evaluations (on single faults) in this paper use Kulczynski2 as the default “statistical
debugging” formula.
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Table 6 Statistical Tests for the most effective Statistical Debugging Formulas; Odds ratio ψ (all ratios are
statistically significant Mann-Whitney U -test< 0.05 for all tests)

Odds ratio ψ (Mann Whitney test score U )

Benchmark Kulczynski2 Kulczynski2 Kulczynski2

vs. Ochiai vs. Naish1 vs. GP 13

SIR 0.2985 (0.0002) 0.0004 (0) 0.0004 (0)

IntroClass 0.0006 (0) 0.0183 (0) 0.0059 (0)

Codeflaws 0.0013 (0) 0.0005 (0) 0.0002 (0)

CoREBench 0.0003 (0) 0.0003 (0) 0.0003 (0)

All Bugs 0.0106 (0) 0.0006 (0) 0.0002 (0)

significant advantage over the best performing statistical formulas in each family; despite
the fact that, in absolute terms, Kulczynski2 outperforms the best formula in each family.

5.3 RQ3: Comparing Statistical Debugging and Dynamic Slicing

How effective is the most effective statistical formula in comparison to dynamic slicing?We
compare the performance of the most effective statistical formula (Kulczynski2) to that
of dynamic slicing (cf. Figs. 7 and 8).

We find that, on average, dynamic slicing is more effective than statistical debugging at
fault localization. Slicing is about eight percentage points more effective than the best per-
forming statistical formula for all programs in our evaluation (cf. Fig. 8, Tables 3 and 5). For
all errors in our study, a programmer using dynamic slicing needs to examine about three-
quarters (78%) of those statements that she would need to examine if she used statistical
debugging.20 This result is independent of the type of errors or program. Figure 8 shows that
dynamic slicing consistently outperforms statistical debugging for each benchmark, with
slicing consistently localizing all faults ahead of statistical debugging.

For two-third of bugs (66%, 243 out of 369 errors), dynamic slicing will find the fault
earlier than the best performing statistical debugging formula. Figure 7 shows a direct com-
parison of the scores computed for slicing and statistical debugging. Each scatter plot shows
for each error the effectiveness score of statistical debugging on the x-axis and the effective-
ness score of slicing on the y-axis. Errors plotted above the diagonal line are better localized
using dynamic slicing. For all benchmarks, the majority of the points are above the diagonal

20Percentage improvement is measured as 1−0.794
1−0.737 . Note that score by itself gives the number of statements

that need not be examined.
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Fig. 7 Direct comparison of fault localization effectiveness between statistical debugging (Kulczynski2) and
dynamic slicing (on single faults) in each benchmark

line which indicates that slicing outperforms statistical debugging in most cases. We can see
that dynamic slicing consistently outperforms statistical debugging across all benchmarks.

To compare the significance of dynamic slicing and statistical debugging, we compute
the odds ratio and conduct a Mann-Whitney U -test (cf. Slicing vs. Kulczynski2 in Table 7).
The odds ratio is in favor of dynamic slicing (ψ > 1) for all projects. In particular, slicing
is 62% more likely to find a faulty statement earlier than statistical debugging, this likeli-
hood is also statistically significant according to the Mann-Whitney test. The statistically
significant odds ratio is explained by slicing being more effective than statistical debugging
in most cases. For instance, slicing is more effective than statistical debugging for 50 out of
74 bugs in the SIR benchmark and for 18 out of 27 bugs in CoREBench.
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Fig. 8 Cumulative frequency of the locations to be examined, for dynamic slicing vs. statistical debugging
vs. the hybrid approach (on single faults) in each benchmark

5.4 RQ4: Sensitiveness of the Hybrid Approach

Howmany suspicious statements (reported by statistical debugging, i.e. Kulczynski2) should
a tool or developer inspect before switching to slicing?We examine the sensitiveness of the
hybrid approach to varying absolute values of N . We evaluate how the number of suspicious

Table 7 Statistical Tests for all three Fault Localization Techniques: Odds ratio ψ (Mann-Whitney U -test
p-values (U ) are in brackets), odds ratio with statistically significant p-values determined by Mann-
Whitney (U -test ) are in bold

Benchmark Odds ratio ψ (Mann whitney test score)

Slicing Slicing Hybrid-2

vs. Kulczynski2 vs. Hybrid-2 vs. Kulczynski2

SIR 4.25 (0.0000) 0.81 (0.2568) 5.44 (0.000)

IntroClass 2.16 (0.1087) 0.68 (0.2713) 0.68 (0.2713)

Codeflaws 1.16 (0.2094) 0.41 (0.000) 1.05 (0.3938)

CoREBench 2.06 (0.0904) 0.06 (0.0000) 16.74 (0.0000)

All Bugs 1.62 (0.0006) 0.42 (0.000) 1.69 (0.0002)
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Fig. 9 Hybrid sensitiveness to different values of N ∈ {2, 5, 10, 15, 20} showing a the cumulative frequency
of locations to be examined for all errors (left), and b the effectiveness score for each benchmark using the
hybrid approach (right)

statements inspected before switching to slicing influences the effectiveness of the hybrid
approach. In particular, we investigated the effect of N values (2, 5, 10, 15, 20) on the
performance of the hybrid approach, in order to determine the optimal number of suspicious
statements to inspect before switching to slicing.

A programmer that switches to slicing after investigating the top five most suspicious
statements can localize more errors than if switching after investigating more suspicious
statements. Figure 9 shows the impact of other values ofN on the effectiveness of the hybrid
approach. Note that the hybrid approach degenerates to dynamic slicing when N = 0 and to
statistical debugging when N is large (e.g., program size). We see that Kochhar’s suggestion
of N = 5 is a good value for our subjects, in particular inspecting at most five statements
before switching to slicing outperforms both slicing and statistical debugging. As we see
in Fig. 10, the hybrid approach with N = 2 and N = 5 outperforms both slicing and
statistical debugging (Kulczynski2). Hence, a developer is most effective if she inspects
at most five most suspicious statements reported by statistical debugging before switching
to slicing.

A tool using our hybrid approach is most effective when inspecting only the top two most
suspicious statements (N = 2) reported by statistical debugging, before switching to slicing.
Hence, we recommend the use of the hybrid approach (with N = 2) for fault localization,
and at most five suspicious statements should be inspected before switching to slicing.21

5.5 RQ5: Effectiveness of the Hybrid Approach

Which technique is the most effective in fault localization? Which technique is more likely to
find fault locations earlier?We now investigate the effectiveness of the hybrid approach, in

21Further evaluations of the hybrid approach use the best values of N (i.e. N = 2 and N = 5).
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Fig. 10 Cumulative frequency of the locations to be examined for the hybrid approach, in comparison to
statistical debugging (Kulczynski2) and dynamic slicing, for all (Single) Faults. As expected, inspecting
only the top two suspicious code locations, Hybrid-2 and statistical debugging perform similarly (localizing
about 39% of errors each); they are outperformed by dynamic slicing (47% of errors localized). However,
inspecting only the top five locations, Hybrid-2 clearly outperforms statistical debugging and dynamic slicing
by localizing 75% of errors, while slicing performs better than statistical debugging (62% vs. 56% of errors)

comparison to slicing and statistical debugging. First, we examine the number of program
statements that need to be inspected to localize all faults for each technique (Fig. 10), as
well as the absolute effectiveness score of each technique (Tables 3, 5 and 8). Then, we
evaluate the likelihood of each technique to find the fault locations earlier than the other
two techniques (Table 7).

Notably, if the programmer is willing to inspect no more than 20 statements, the hybrid
approach will localize the fault location for almost all (98%) of the bugs (cf. Table 8 and
Fig. 10). In contrast, both statistical debugging and slicing can only localize almost all
(98%) faults after inspecting about five times as many statements, i.e. 100 LoC. In fact,

Table 8 Effectiveness of the Hybrid approach with N = 2 (i.e., Hybrid-2)

Benchmark Score % Errors localized

if developer inspects N most suspicious LoC

5 10 20 30

IntroClass 0.83 90.00 100 100 100

Codeflaws 0.80 83.00 97.57 100 100

CoREBench 0.97 59.26 70.37 85.19 85.19

Real 0.83 81.29 95.24 98.64 98.64

Artificial (SIR) 0.94 50.00 72.97 97.30 100

Avg. (Bugs) 0.844 75.00 90.76 98.37 98.91
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if the programmer inspects 20 LoC, slicing and statistical debugging would find the fault
location for about 85% and 88% of the bugs, respectively.

In absolute numbers, the hybrid approach is the most effective fault localization tech-
nique, followed by slicing, which is more effective than statistical debugging (see Table 8,
Figs. 8 and 10). The hybrid approach (N = 2) is about seven percentage points more
effective than slicing, and about fifteen percentage points more effective than statistical
debugging (cf. Tables 3, 5 and 8). Overall, it improves the performance of both slicing and
statistical debugging. For instance, a programmer using the hybrid approach needs to exam-
ine about half (58%) and three-quarter (75%) of those statements that she would need to
examine if she used slicing and statistical debugging, respectively.

We compute the odds ratio and conduct aMann-WhitneyU -test, in order to determine the
significance of the hybrid approach. The odds ratio for all projects is strictly in favor of the
hybrid approach (ψ > 1 in Table 7). Specifically, the hybrid approach is (69%) more likely
to find a faulty statement earlier than statistical debugging (cf. “Hybrid-2 vs. Kulczynski2”
in Table 7). Moreover, a programmer is (42%) less likely to find the fault location early if
she localizes with dynamic slicing instead of the hybrid approach (cf. “Slicing vs. Hybrid-2”
in Table 7).

The statistically significant odds ratio is explained by the hybrid approach being more
effective than slicing and statistical debugging in most cases. The majority of bugs is best
localized by the hybrid approach. For more than half of the bugs (56%, 208 out of 369
errors), the hybrid approach will find the fault earlier than both slicing and statistical
debugging. In particular, for CoREBench, the hybrid approach is more effective than both
techniques for 19 out of 27 bugs, as well as for 33 out of 74 bugs in SIR.

5.6 RQ6: Real Errors vs. Artificial Errors

In this section, we evaluate the effect of error type on the effectiveness of an AFL tech-
nique, in particular, the difference between evaluating AFL techniques on artificial errors
(i.e., SIR22) versus real errors (i.e., IntroClass, Codeflaws and CoREBench). We
examine the performance of each technique on each error type and portray the bias and
differences in such evaluations. For real faults, we also evaluated the effect of program

22The SIR benchmark is the most used subject for the evaluation of AFL techniques, especially statistical
fault localization (Wong et al. 2016).
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size on the effectiveness of an AFL technique. In particular, the difference in the perfor-
mance of these AFL techniques on small programs containing 16 to 18 executable LoC (i.e.
IntroClass and Codeflaws) and large programs with about 540 LoC (CoREBench),
on average (see Table 9). Figures 7 and 8 highlight the difference between evaluating a fault
localization technique on real or artificial errors. Table 9 summarizes the difference in the
effectiveness of each AFL technique when using real or artificial faults, as well as their per-
formance on small or large programs. Tables 3, 5 and 8 also quantify the difference in the
effectiveness of all three AFL techniques (i.e., dynamic slicing, statistical debugging and
the hybrid approach, respectively) on real and artificial faults.

What is the most effective statistical debugging formula for artificial or real faults? In
our evaluation, the error type influences the effectiveness of a statistical debugging formula.
PattSim 2 is the most effective statistical formula for artificial faults (score=0.85), this is
closely followed by Ochiai and Naish 1 with score = 0.83 (see Table 4). Meanwhile,
for real faults, the most effective statistical formulas are Kulczynski2 and Tarantula
with scores 0.76, 0.70 and 0.79 for IntroClass, Codeflaws and CoREBench, respec-
tively (see Table 4). Notably, the most effective formula for artificial faults is not the most
effective formula for real faults. This implies that the error type can influence the perfor-
mance of an AFL technique. Thus, we recommended to always evaluate debugging aids
using real faults.

How does the effectiveness of statistical debugging compare to that of dynamic slicing,
for artificial and real faults? On one hand, dynamic slicing performs worse than statistical
debugging on artificial faults (SIR): A developer (or tool) has to inspect 21% of the pro-
gram to find the fault, in contrast to 18% for Kulczynski2, on average (see Table 9). On the
other hand, dynamic slicing performs better than statistical debugging on real faults (i.e.,
IntroClass, Codeflaws and CoREBench). For real errors, a developer has to inspect
(7%) less statements when using dynamic slicing (18%) compared to slicing (25%). Again,

Table 9 Effectiveness of AFL techniques on Real versus Artificial faults, as well as their effectiveness on
small and large programs containing real faults (N/A = Not applicable)

Benchmark Program size (Avg. # LoC) Percentage (# LoC) of statements

Inspected before locating fault

Slicing Kulczynski2 Hybrid

IntroClass small (15.5) 17% (3) 24% (4) 17% (3)

Codeflaws small (17.7) 23% (4) 31% (5) 20% (3)

CoREBench large (540.4) 15% (80) 21% (112) 3% (14)

Real N/A (200.3) 18% (29) 25% (40) 13% (7)

Artificial (SIR) N/A (148.1) 21% (31) 18% (26) 6% (9)

All Bugs N/A (193.5) 21% (40) 26% (51) 15% (30)
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this shows that the error type has a significant influence on the effectiveness of an AFL
technique.

What is the most effective AFL approach on artificial and real faults? The hybrid
approach is the most effective AFL approach, outperforming both dynamic slicing and sta-
tistical debugging (see Table 9). In particular, depending on the error type, a developer or
tool using the hybrid approach inspects one-third to less than three-quarter (0.3 to 0.7) of
the statements inspected when using dynamic slicing or statistical debugging. This shows
that the effectiveness of the hybrid approach is independent of error type.

We observed that fault localization effectiveness on artificial errors does not predict
results on real faults. In our evaluation, the performance of dynamic slicing and statistical
debugging are different depending on the error type. For instance, Table 9 clearly shows that
dynamic slicing performs better on real faults, while statistical debugging performs better
on artificial faults. This result illustrates that the performance of an AFL technique on arti-
ficial faults is not predictive of its performance in practice. Hence, it is pertinent to evaluate
AFL techniques on real faults rather than artificial faults, this is in line with the findings of
previous studies (Pearson et al. 2017).

Does program size affect the effectiveness of individual statistical debugging formulas?
Does the most effective SBFL formula vary as program size varies, i.e. small versus large
programs? Among real faults, the most effective SBFL formula depends on the program
size. Evidently, the most effective formula for small programs is not the most effective
formula for large programs: For instance, Tarantula and Kulczynski2 performed sig-
nificantly better than DStar on small programs, but DStarwas the most effective formula
for large programs.23 Generally, the effectiveness of individual SBFL formulas varies as
program size varies. Even though some SBFL formulas performed consistently well across
program sizes (e.g. Tarantula and Kulczynski2), others are specialized for specific

23Table 4 shows that Tarantula and Kulczynski2 performed best on small programs with effectiveness
scores 0.76 and 0.70 for IntroClass and Codeflaws, respectively. Despite the fact that DStar performs
best on large programs (i.e. CoREBench) by slightly outperforming Tarantula and Kulczynski2 (0.80
vs. 0.79); it performed significantly worse than Tarantula and Kulczynski2 on small programs, with
effectiveness score 0.62 and 0.56 for IntroClass and Codeflaws, respectively.
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program sizes, e.g. DStar performs better on large programs (CoREBench). These results
suggest that program size influences the effectiveness of individual statistical debugging
techniques.

Does the comparative effectiveness of our AFL techniques (i.e., Hybrid vs. Slicing vs.
SBFL) vary as program sizes varies? For real faults, we investigated if there is a difference
in the comparative effectiveness of our AFL techniques on small or large programs. Among
real faults, the most effective technique is the same across program sizes (see Fig. 7 and
Table 9): Consistently, the hybrid approach performs best and slicing outperforms statistical
debugging, regardless of program size. This observation holds across program sizes, for all
three AFL techniques (see Fig. 8). These results suggest that program size does not influence
the comparative effectiveness of these techniques. In fact, the comparative effectiveness of
these AFL techniques is predictable across program sizes; the hybrid approach performs
best, followed by slicing then statistical debugging (i.e., Kulczynski2).

5.7 RQ7: Single Fault vs. Multiple Faults

In this section, we compare the effectiveness of all three AFL techniques on programs
with multiple faults. Then, we examine the effect of multiple faults on the performance
of each technique and the difference between evaluating an AFL technique on single or
multiple fault(s). In this experiment, we employ the original single-fault versions of the
SIR and IntroClass benchmarks, as well as the multiple-fault versions of the same
benchmarks, called SIR-MULT and IntroClass-MULT, respectively. Table 10 high-
lights the results for single and multiple fault(s) for all AFL techniques, including statistical
debugging, hybrid and dynamic slicing. Figures 11, 12 and 13 illustrate the difference in
the performance of each technique when given programs with a single fault or multiple
faults.

What is the most effective statistical debugging formula for multiple faults? In our eval-
uation, the most effective SBFL formula for multiple faults is Tarantula (0.8269), from
the popular SBFL family. It outperforms the other SBFL formulas (cf. Table 10 and Fig. 12).
For the other statistical debugging families, the most effective formula for multiple faults
are DStar (D2 and D3), GP02 and m9185 for the popular, human-generated and genet-
ically evolved families, respectively (cf. Table 10). The performance of Tarantula is
closely followed by that of the single-bug optimal formulas m9185 (0.8249). However, the
difference in the performance of m9185 and Tarantula is not statistically significant,
i.e. ψ < 1 (odds ratio ψ = 0.14, Mann-Whitney U -test p-value U = 0). Notably, the most
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Table 10 Effectiveness of all AFL techniques on Single and Multiple Faults for SIR and IntroClass
benchmarks

AFL Formula/ SIR MULT IntroClass Average (mean)

technique approach (Single) MULT (Single) Programs Bugs

Popular SBFL Tarantula 0.8214 0.8324 0.8269 0.7878

(0.6907) (0.7464) (0.7186) (0.6266)

Ochiai 0.7796 0.7747 0.7772 0.7560

(0.7337) (0.7464) (0.7401) (0.6514)

Jaccard 0.7720 0.7747 0.7734 0.7532

(0.7029) (0.7464) (0.7247) (0.6342)

Human Generated Naish 1 0.7215 0.7638 0.7426 0.7136

SBFL (0.7399) (0.7448) (0.7423) (0.6682)

Naish 2 0.7484 0.7747 0.7615 0.7404

(0.7207) (0.7464) (0.7336) (0.6596)

Russel Rao 0.7350 0.7586 0.7468 0.7185

(0.6088) (0.6394) (0.6241) (0.6051)

Binary 0.7125 0.7553 0.7339 0.6975

(0.6283) (0.6378) (0.633) (0.6129)

Wong 1 0.7350 0.7586 0.7468 0.7185

(0.6088) (0.6394) (0.6241) (0.6051)

D2 0.7718 0.7747 0.7732 0.7553

(0.7345) (0.7464) (0.7404) (0.6523)

D3 0.7680 0.7747 0.7714 0.7553

(0.7484) (0.7464) (0.7474) (0.6611)

GP Evolved GP 02 0.7633 0.7747 0.7690 0.7498

SBFL (0.6725) (0.7157) (0.6941) (0.6133)

GP 03 0.7473 0.7747 0.7610 0.7402

(0.6813) (0.6169) (0.6491) (0.6285)

GP 13 0.7456 0.7747 0.7602 0.7398

(0.7211) (0.7464) (0.7338) (0.6606)

GP 19 0.7629 0.7558 0.7593 0.7279

(0.4673) (0.6237) (0.5455) (0.4876)

Single Bug PattSim 2 0.7608 0.7747 0.7677 0.7301

Optimal SBFL (0.7537) (0.6544) (0.704) (0.6506)

lex Ochiai 0.7532 0.7747 0.7640 0.7396

(0.7356) (0.7464) (0.741) (0.6646)

m9185 0.8183 0.8315 0.8249 0.7664

(0.7570) (0.7225) (0.7397) (0.6646)

Kulczynski2 0.7885 0.7747 0.7816 0.7588

(0.7572) (0.7464) (0.7518) (0.6689)

Program Slicing Dynamic Slicing 0.8357 0.5487 0.6922 0.7840

(0.7935) (0.8602) (0.8269) (0.7535)
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Table 10 (continued)

AFL Formula/ SIR MULT IntroClass MULT Average (Mean)

technique approach (Single) (Single) Programs Bugs

Hybrid Hybrid-2 0.9627 0.9057 0.9342 0.9457

Approach (0.9358) (0.888) (0.9119) (0.9237)

Hybrid-5 0.9505 0.8406 0.8955 0.9206

(0.9397) (0.814) (0.8768) (0.8974)

Single Fault Scores are in italics and bracketed, i.e. (Single), while Multiple Fault Scores are in normal text.
For multiple faults, the best scores for each (sub)category are in bold; higher scores are better. For instance,
Tarantula is the best performing (popular) statistical debugging formula for all programs with multiple
faults with score 0.8269, on average
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effective single-bug optimal formulas (i.e. m9185) outperformed the human-generated and
genetically evolved formulas (cf. Table 10). This illustrates that single bug optimal formulas
are also effective for multiple faults, despite being specialized for single faults.

For multiple faults, how does the effectiveness of statistical debugging (Tarantula)
compare to that of dynamic slicing and hybrid? Tarantula performs better than dynamic
slicing (0.8269 vs. 0.6922) for multiple faults, our results show that the effectiveness of
slicing is 16% worse than that of Tarantula on multiple faults in the SIR-MULT and
IntroClass-MULT programs (see Table 10). This is despite the fact that dynamic slic-
ing (0.8269) outperforms Tarantula (0.7186) by 15% on single fault programs (i.e., in
SIR and IntroClass benchmarks). Indeed, there is a 13% decrease in the performance
of dynamic slicing on multiple faults. This is evident in Fig. 12a where the performance
of dynamic slicing drops for multiple faults for IntroClass-MULT. This shows that it
is beneficial for an AFL technique to employ coverage data from (numerous) failing test
cases when diagnosing programs with multiple faults. As expected, it is more difficult for
dynamic slicing to diagnose multiple faults: Since a dynamic slice is constructed for only
a single failing test case, it is difficult to account for the effect of multiple faults. Overall,
the performance of the hybrid approach remains superior to that of dynamic slicing and sta-
tistical debugging, regardless of the number of faults present in the program (cf. Table 10,
Figs. 11 and 12).

Given single or multiple faults, does the effectiveness of an AFL technique improve or
worsen? Figure 12a illustrates the difference in the performance of all techniques for single
and multiple faults. Results show that all techniques (except dynamic slicing) perform better
on multiple faults in comparison to single faults, improvements range from two to 11 per-
centage points. Notably, Tarantula’s performance improved by 11% on multiple faults.
Meanwhile, other approaches improved by two to three percentage points, in particular, the
hybrid approach, Kulczynski2 and DStar (D2 and D3). This illustrates that most AFL
approaches—especially SBFL—perform better on multiple faults than single faults (see
Figs. 12a and 13).

Generally, we found that the performance of a technique on programs containing sin-
gle faults does not predict its performance on multiple faults. For instance, although
Kulczynski2 outperformed the other statistical formulas for single faults (0.7518), it is
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outperformed by m9185 for multiple faults (0.7816 vs. 0.8249) (cf. Table 10). This result
is also evident from Fig. 12a and Table 10, where dynamic slicing outperforms statisti-
cal debugging (Kulczynski2) for SIR single faults (0.8269 vs. 0.7518), but statistical
debugging (m9185 and Kulczynski2) clearly outperform dynamic slicing for multiple
faults. These results suggest that the number of faults in the program influences the
effectiveness of an AFL technique.

6 Threats to Validity

We discuss the threats to validity for this fault localization study within the framework of
Steimann et al. (2013).

6.1 External Validity

External validity refers to the extent to which the reported results can be generalized to other
objects which are not included in the study. The most immediate threats to external validity
are the following:

– EV.1) Heterogeneity of Probands. The quality of the test suites provided by the object
of analysis may vary greatly which hampers the assessment of accuracy for practi-
cal purposes. However, in our study the test suites are well-stocked and maintained.
All projects are open source C programs which are subject to common measures of
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quality control, such as code review and providing a test case with bug fixes and feature
additions.

– EV.2) Faulty Versions and Fault Injection. For studies involving artificially injected
faults, it is important to control the type and number of injected faults. Test
cases become subject to accidental fault injection. Some failures may be spurious.
However, in our study we also use real errors that were introduced (unintentionally) by
real developers. Failing test cases are guaranteed to fail because of the error.

– EV.3) Language Idiosyncrasies. Indeed, our objects contain well-maintained open-
source C projects with real errors typical for such projects. However, for instance errors
in projects written in other languages, like Java, or in commercially developed software
may be of different kind and complexity. Hence, we cannot claim generality for all lan-
guages and suggest reproducing our experiments for real errors in projects written in
other languages as well.

– EV.4) Test Suites. The size of a test suite can influence the performance of an AFL
technique. Testing strategies that reduce or increase test suite size such as test reduc-
tion or test generation methods (i.e. removing tests or generating new tests) have been
shown to improve the performance of some AFL techniques (Yang et al. 2017; Yu et al.
2008). We mitigate the effect of test suite size by employing projects with varying test
suite sizes (ranging from tens to tens of thousands of test cases) as provided by our
subject programs. In our evaluation, we do not generate additional tests or remove any
tests from the test suite provided by the benchmarks, in order to simulate the typical
debugging scenario for the software project.

– EV.5) Missing Statements in Slices. Although, there is a risk of discarding faulty state-
ments during program slicing, dynamic slicing rarely miss faulty statements during
fault localization. Reis et al. (2019) found that dynamic slicing reports the faulty state-
ment in the top-ten most suspicious statement 91% of the time. We further mitigate
this risk by first inspecting statements in the dynamic slice before inspecting other exe-
cutable statements. Thus, dynamic slicing (eventually) finds the faulty statement for all
bugs in our evaluation.

6.2 Construct Validity

Construct validity refers to the degree to which a test measures what it claims to be
measuring. The most immediate threats to construct validity are the following:

– CV.1) Measure of Effectiveness. Conforming to the standard (Wong et al. 2016), we
measure fault localization effectiveness as ranking-based relative wasted effort. The
technique that ranks the faulty statement higher is considered more effective. Parnin
and Orso find that “programmers will stop inspecting statements, and transition to tra-
ditional debugging, if they do not get promising results within the first few statements
they inspect” (Parnin and Orso 2011). However, Steimann et al. (2013) insist that one
may question the usefulness of fault locators, but measures of ranking-based relative
wasted effort are certainly necessary for evaluating their performance, particularly in
the absence of the subjective user as the evaluator.

– CV.2) Implementation Flaws. Tools that we used for the evaluation process may be
inaccurate. Despite all care taken, our implementation of the 18 studied statistical
fault localization techniques, or of approximate dynamic slicing, or of the empiri-
cal evaluation may be flawed or subject to random factors. However, we make all
implementations and experimental results available online for public scrutiny.
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7 FutureWork

Fault localization based on dependencies still has much room for improvement. For
instance:

Cognitive load. In our investigation, we did not consider or model the cognitive load it
takes to understand the role of individual statements in context. Since following depen-
dencies in a program is much more likely to stay within same or similar contexts
than statistical debugging, where the ranked suspicious lines can be strewn arbitrar-
ily over the code, we would expect dependency-based techniques to take a lead here.
The seminal study of Parnin and Orso (2011) found that ranked lists of statements are
hardly helping human programmers—let us find out which techniques work best for
humans.

Alternate search techniques. Furthermore, there would be other search strategies along
dependencies (for instance, starting with the input, and progressing forward through
a program; starting at some suspicious or recently changed location; or moving along
coarse-grained functions first, and fine-grained lines later) that may be even more effi-
cient both in terms of nodes visited as well as from the assumed cognitive load. Again,
all this calls for more human studies in debugging.

Experimental techniques. such as delta debugging (Zeller and Hildebrandt 2002) offer
another means to reduce the cognitive load—by systematically narrowing down the
conditions under which a failure occurs. The work of Burger and Zeller (2011) on mini-
mization of calling sequences with delta debugging showed dramatic improvements over
dynamic slicing, reducing “the search space to 13.7% of the dynamic slice or 0.22%
of the source code”. In a recent human study, delta debugging “statistically signifi-
cantly increased programmers efficiency in failure detection, fault localization and fault
correction.” (Hammoudi et al. 2015).

Symbolic techniques. Finally, following dependencies is still one of the simplest meth-
ods to exploit program semantics. Applying symbolic execution and constraint solving
would narrow down the set of possible faults. Model-based debugging (Wotawa et al.
2002) was one of the first to apply this idea in practice; the more recent BUGASSIST work
of Jose and Majumdar “quickly and precisely isolates a few lines of code whose change
eliminates the error.” (Jose and Majumdar 2011).

All these techniques would profit from wider evaluation and assessment; however, they
can also be joined and combined; for instance, one could start with suspicious statements
as indicated by statistical fault localization, follow dependencies from there, and skip influ-
ences deemed impossible by symbolic analysis. What we need, though, is true defects which
we can use to compare the techniques with—and a willingness to actually compare state of
the art techniques, as we do in this paper.

8 RelatedWork

8.1 Evaluation of Fault Localization Techniques

The effectiveness of various fault localization approaches have been studied by several col-
leagues, see Wong et al. (2016). Most papers investigated the effects of program, test and
bug features on the effectiveness of statistical debugging. Abreu et al. (2009a) examined
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the effects of the number of passing and failing test cases on the effectiveness of statistical
debugging, they established that the suspiciousness scores stabilize starting from an average
six (6) failing and twenty (20) passing test cases. Pearson et al. (2017) evaluated the differ-
ence between evaluating fault localization techniques on real faults versus artificial faults,
using two main techniques, namely statistical debugging and mutation-based fault localiza-
tion. Notably, their evaluation results shows that results on artificial faults do not predict
results on real faults for both techniques, and a hybrid technique is significantly better than
both techniques. Keller et al. (2017) and Heiden et al. (2019) evaluated the effectiveness of
statistical fault localization on real world large-scale software systems. The authors found
that, for realistic large-scale programs, the accuracy of statistical debugging is not suitable
for human developers. In fact, the authors emphasize the obvious need to improve statisti-
cal debugging with contextual information such as information from the bug report or from
version history of the code lines. In contrast to our work, none of these papers evaluated the
fault localization effectiveness of program slicing, nor compare the effectiveness of slicing
to that of statistical debugging.

A few approaches have evaluated the effectiveness of dynamic slices in fault localiza-
tion (Zhang et al. 2005, 2007; Li and Orso 2020). In particular, Zhang et al. (2005) evaluated
the effectiveness of three variants of dynamic slicing algorithms, namely data slicing, full
(dynamic) slicing, and relevant slicing. Recently, Li and Orso (2020) proposed the con-
cept of potential memory-address dependence (PMD) to improve the accuracy of dynamic
slicing. Traditional dynamic dependence graphs (DDG) do not account for PMDs since
they are not actual data or control dependencies in the program (Li and Orso 2020). In
particular, PMD-slicer determines the potential memory dependencies in a program and rep-
resents them on the DDG. This allows developers to detect faults that are due to program
assignments that modify the wrong code location. Like our study, these papers also found
that (variants of) program slicing considerably reduces the number of program statements
that need to be examined to locate faulty statements. However, in contrast to our study,
these papers have not empirically compared the performance of dynamic slicing to that of
statistical debugging.

8.2 Improvements of Statistical Fault Localization

Several authors have proposed approaches to improve statistical fault localization. Most
approaches are focused on reducing the program spectra (i.e. the code coverage information)
fed to statistical debugging, sometimes by using delta debugging (Christi et al. 2018), pro-
gram slicing (Alves et al. 2011; Lei et al. 2012; Guo et al. 2018), test generation (Liu et al.
2017), test prioritization (Zhang et al. 2017) or machine learning (Zou et al. 2019; Le et al.
2016). In particular, some techniques apply program slicing to reduce the program spectra
fed to statistical debugging formulas (Shu et al. 2017; Alves et al. 2011; Liu et al. 2016; Lei
et al. 2012; Guo et al. 2018). The popular page rank algorithm has been used to boost statis-
tical debugging effectiveness by estimating the contributions of different tests to re-compute
program spectral (Zhang et al. 2017). Machine learning algorithms (such as learning to
rank) have also been used to improve the effectiveness of statistical debugging (Le et al.
2016; Zou et al. 2019). Besides, BARINEL employs a combination of bayesian reason-
ing and and statistical debugging to improve fault localization effectiveness, especially for
programs with multiple faults (Abreu et al. 2009b). BARINEL combines statistical debug-
ging and model-based diagnosis (MBD), i.e., logic reasoning over a behavioral model to
deduce multiple-fault candidates: The goal is to overcome the high computational com-
plexity of typical MBD. Search-based test generation has also been combined with SBFL,
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in order to improve the performance of statistical debugging for Simulink models (Liu
et al. 2017). However, none of these papers localize faults by following control and data
dependencies in the program, i.e. they do not directly use program slicing as a fault loca-
lization technique.

Zou et al. (2019) found that the combination of fault localization techniques improves
over individual techniques, the authors recommend that future fault localization techniques
should be evaluated in the combined setting. Wotawa (2010) proposed a combination of
model-based debugging and program slicing for fault localization, called slicing hitting set
computation (SHSC). In contrast to our work, SHSC combines slices of faulty variables,
which causes undesirable high ranking of statements executed in many test cases (Hofer and
Wotawa 2012). To address this, Hofer and Wotawa also proposed SENDYS—a combina-
tion of statistical debugging and SHSC to improve the ranking of faulty statements (Hofer
and Wotawa 2012). The focus of this work is to provide fault locations at a finer granular-
ity than program blocks. In contrast to dynamic slicing, SENDYS analyzes the execution
information from both passing and failing test cases and uses statistical debugging results
as a-priori fault probabilities of single statements in SHSC (Hofer and Wotawa 2012).

9 Conclusion and Consequences

As it comes to debugging, dynamic slicing remains the technique of choice for program-
mers. Suspicious statements, as produced by statistical debugging, can provide good starting
points for an investigation; but beyond the top-ranked statements, following dependencies is
much more likely to be effective. As it comes to teaching debugging, as well as for interac-
tive debugging tools, we therefore recommend that following dependencies should remain
the primary method of fault localization—it is a safe and robust technique that will get
programmers towards the goal.

For automated repair techniques, the picture is different. Since current approaches benefit
from a small set of suspicious locations, focusing on a small set of top ranked locations,
as produced by statistical debugging, remains the strategy of choice. Still, automated repair
tools could benefit from static and dynamic dependencies just as human debuggers.

While easy to deploy, the techniques discussed in this paper should by no means be
considered the best of fault localization techniques. Experimental techniques which reduce
inputs (Zeller and Hildebrandt 2002; Hammoudi et al. 2015), or executions (Burger and
Zeller 2011) may dramatically improve fault localization by focusing on relevant parts of the
execution. Grammar-based techniques that debug inputs (Kirschner et al. 2020), generalize
inputs (Gopinath et al. 2020) or determine the circumstances of failure (Kampmann et al.
2020) may provide contextual information for developers during debugging by focusing on
input features that explain failures. Symbolic techniques also show a great potential—such
as the technique of Jose and Majumdar, which “quickly and precisely isolates a few lines of
code whose change eliminates the error” (Jose and Majumdar 2011). The key challenge of
automated fault localization will be to bring the best of the available techniques together in
ways that are applicable to a wide range of programs and useful for real programmers, who
must fix their bugs by the end of the day.

Additional materialAll of our scripts, tools, benchmarks, and results are freely available as an artifact, in or-
der to support scrutiny, evaluation, reproduction, and extension: https://tinyurl.com/HybridFaultLocalization
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