Empirical Software Engineering (2021) 26: 58
https://doi.org/10.1007/510664-021-09947-7

®

Check for
updates

Genetic programming for feature model synthesis:
a replication study

Andreea Vescan' (@ . Adrian Pintea' - Lukas Linsbauer? - Alexander Egyed?

Accepted: 30 December 2020 / Published online: 21 April 2021
© The Author(s) 2021

Abstract

Software Product Lines (SPLs) make it possible to configure a single system based on fea-
tures in order to create many different variants and cater to a wide range of customers
with varying requirements. This configuration space is often modeled using Feature Models
(FMs). However, in practice, the SPL (and consequently the FM) is often created after a set
of variants has already been created manually. Automating the task of reverse engineering a
feature model that describes a set of variants makes the process of adopting an SPL easier.
The genetic programming pipeline is a good fit for feature models and has been shown to
produce good reverse engineering results. In this paper, we replicate the results of such an
existing approach with a larger set of feature models and investigate the effects of various
genetic programming parameters and operators on the results. The design of our replication
experiments employs three perspectives: duplicate the exact conditions using various fea-
tures models, study the interaction of two parameters of the genetic programming approach,
and optimize the values for the population and generation parameters and for the mutation
and crossover operators. Results reinforce the previously obtained outcome, the original
study being confirmed. The relations between the number of features and number of gen-
erations, respectively number of features and size of populations were also investigated and
best values based on obtained results are provided. The current study also aimed to opti-
mize various parameters of the genetic programming approach, the interpretation of those
experiments discovering concrete values.

Keywords Feature models - Replication study - Reverse engineering - Software product
lines

Communicated by: Laurence Duchien, Thomas Thiim and Paul Griinbacher

This article belongs to the Topical Collection: Configurable Systems

P< Alexander Egyed
alexander.egyed @jku.at

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09947-7&domain=pdf
http://orcid.org/0000-0002-9049-5726
mailto: alexander.egyed@jku.at

58 Page2of29 Empir Software Eng (2021) 26: 58

1 Introduction

This paper aims to replicate the results of an existing approach for reverse engineering of
Feature Models (FMs) for Software Product Lines (SPLs) (Linsbauer et al. 2014). SPLs
can provide assistance in providing support for systems that are developed for/with multi-
ple customers in mind - systems that are typically customizable reflect different customer
requirements. Reverse engineering of feature models in the domain of SPLs provides engi-
neering support for the systems developers. However, creating a feature model for an
existing system manually is time-consuming and requires substantial effort. By providing
automated support for the reverse engineering of feature models, developers thus benefit
from reduced effort.

As specified in Linsbauer et al. (2014), “a crucial step in this reverse engineering effort
is obtaining a feature model that denotes all the desired feature combinations”. This feature
model contains all the possible and valid combinations of features. There are various studies
(Haslinger et al. 2011; Acher et al. 2012; Haslinger et al. 2013; Acher et al. 2013; Lins-
bauer et al. 2014; She et al. 2014; Lopez-Herrejon et al. 2015; Assungdo et al. 2016) that
explored this problem, using different approaches from graph based algorithms to search
based techniques. Details regarding those approaches are further provided in Section 2.1 of
this paper.

One of the solutions for this problem is genetic programming pipeline which is described
in Linsbauer et al. (2014), where the authors showed that genetic programming provides a
more accurate representation of the feature models, and that this representation can produce
better reverse engineering results. We underline that a list of feature sets can be expressed
by different feature models, thus the considered feature order influences the obtained
results.

The original work by Linsbauer et al. (2014) provides not only automation but also
empirical evidence about its usefulness. With this replication study, we aim to confirm or
reject their results. We also expand on that work to generalize it further and to reduce the
original threats to validity. Replication studies are an indispensable element of the exper-
imental paradigm: replication in different contexts, at different time and under different
conditions being needed to produce generalized knowledge. But it also has been seen as an
important means of assessing reliability and confidence in empirical findings in previous
studies. Thus, a replication is confirmatory (i.e., increasing the confidence in the results of
earlier replications) or it yields additional knowledge (Juristo and Vegas 2009) to the soft-
ware engineering community (i.e., finding out more about the range of conditions under
which the results hold).

These results require robust replication to assess their validity and to generalize the find-
ings. Replication is a central part of accumulating reliable evidence (Dyba et al. 2005). For
these reasons, this study aims to improved rigor by replicating the original study.

The current study pursues three main research questions: RQ1: Are the original results
of the original study confirmed in other samples?

RQ2: Are there differences in using various numbers for #generations and
#population?

RQ3: Do values for crossover and mutations play a role in obtaining better solutions?

We replicated the original study by Linsbauer et al. (2014) to investigate the obtained
Genetic Programming (GP) solutions for the reverse engineering problems, to find which
are the optimum values for the #generations (number of generations) and #population
(population number), and also to discover the best experiment parameters, i.e. crossover and
mutation of the GP approach.

@ Springer

Empir Software Eng (2021) 26: 58 Page30of29 58

One reason for choosing this paper for replication was the availability of implementation
and data. It was the first study that the authors conducted relating to feature model synthesis
that had a replication package available.

We did not consider an extended version (Assungdo et al. 2016) of the selected
study (Linsbauer et al. 2014) for replication as it takes into account implementation level
dependencies for the optimization and uses multi-objective optimization. Replication of
such a study would be much more difficult and we would need to control for many more
aspects. We wanted to first replicate the initial study (Linsbauer et al. 2014) to get a bet-
ter understanding of the foundations before moving on to other studies and approaches that
build on the fundamental ones.

The replication results confirm the previous obtained results regarding the genetic pro-
gramming approach used for the automatic reverse engineering of feature models. The
obtained results also demonstrate strong relations between number of features and the num-
ber of generations and between number of features and the number of population. The
replication contributes with new information regarding these relations, providing concrete
values for those parameters to run the algorithm with when the number of features increases.
The study also analyzes and scrutinizes the best optimized values for several parameters of
the genetic programming algorithm.

Thus, the results provide strong empirical support for the relevance and importance of
automatic reverse engineering of feature models. Therefore, this study provides a method-
ological basis for replicating automatic feature models reverse engineering studies in
Software Engineering.

The paper is organized as follows: Section 2 briefly describes the notions and concepts
related to feature models, the original study, how to do replication in software engineer-
ing, and presents the motivation for the replication. Section 3 describes in more details our
replication approach, stating the research questions and the steps in our replication design,
followed by the analysis of experiments and the used data analysis. Section 4 presents the
dataset for the replication, the steps for experiments executions and the obtained results.
Section 5 discuss about the threats to validity that can affect the results of our study. The
conclusions of our paper and further research directions are outlined in Section 6.

2 Background

The current section briefly depicts the notions and concepts related to feature models, their
importance and presents various synthesis approaches. The original study is also discussed
in details. A subsection is dedicated to how to conduct replication in Software Engineering,
whereas the last part presents the motivation for this replication.

2.1 Feature Model Synthesis

A feature model is a compact representation of all the products of the Software Product Line
(SPL) in terms of “features”. The variability of software systems is designed with the help
of feature models. A Feature model is composed of a set of boolean constraints, a hierar-
chical tree representation of parent-child relationships that are established between features,
and a constraints set between features. These feature models tell us which combinations
of features are allowed and which combinations are prohibited. Unfortunately, companies
only use this reverse engineering of an SPLs from their existing product variants when the
number of possible configurations of a product is difficult to manage.

@ Springer

58 Page4of29 Empir Software Eng (2021) 26: 58

Feature models are important for changing the variability of a system because these
feature models describe all the possible and valid combinations of features. The features
of a system can be mandatory or optional and can be described with the help of some
labelled boxes which are connected together, forming a tree structure. In a feature model,
each feature has a parent feature except for the root of the tree structure that is always
included in a model.

Several types of relationships can be established between a feature that is considered to
be a child feature and a parent feature. Whenever a parent feature is selected, mandatory
features are also selected unlike the optional features which may or may not be selected
whenever a parent feature is selected. In an “exclusive-or” relationship only one feature is
selected along with the selected parent. In a “inclusive-or” relationship at least one feature is
selected along with the selected parent. Along with these relations between parent and child
features, the so called Cross-Tree Constraints (CTCs) helps to create relationships between
different branches of the feature model.

A Feature Set is a combination of features. This set is valid if all the constraints imposed
by the feature model are respected. A feature set table contains all the valid feature sets of
the feature model. A feature set table therefore represents a set of products, each product
having a different combination of features (i.e., feature set).

Figure 1 shows the Feature Diagram for the “SmartHome” feature model. As mentioned
above, features are described with the help of labelled boxes. The Cross-Tree Constraints
set is exposed under the Feature Diagram. The mandatory features are WindowsControl,
ManualWindows, HeatingControl, UI, InhomeScreen, and the optional features are Auto-
matedWindows, SmartHeating, InternetApp, Security, BurglarAlarm, Siren, Bell, Light,
Notification, Authorization, Authentication, LAN and DoorLock. An inclusive-or relation-
ship can be observed between Siren, Light, Bell and Notification.

Security

TQT
LJ

Manual Automated
Windows Windows

Burglar
Alarm

Manual Smart Inhome Internet
Heating Heating Screen App

L33

Authorization Authentication

—o Mandatory Feature % Or-Relationship

——o0 Optional Feature > Requires

Fig.1 Smart Home with 20 # f eatures

@ Springer

Empir Software Eng (2021) 26: 58 Page50f29 58

2.2 Related Work

Various researchers have found solutions to this reverse engineering problem. Haslinger
etal. (2011) presented an algorithm that reverse engineers only one feature model and which
identifies patterns in the selected and non-selected features. Later, he included Cross-Tree
Constraints (CTCs) that requires and excludes as an extension in another work (Haslinger
et al. 2013). Acher et al. (2012) came up with the proposal to map each feature into a feature
model and build a single merged feature model. This merged feature model contains all the
mapped features as feature models.

In article (Lopez-Herrejon et al. 2012), where reverse engineering of the feature models
was done using Evolutionary Algorithms, two fitness functions were designed to be used.
One is used to describe feature sets but disregards any surplus, and another one is used to
get the desired number of feature sets.

Another approach (Acher et al. 2013) that investigated the synthesis of a feature model
FM from a set of configurations used two main steps: characterise the different meanings of
feature models and identify the key properties allowing to discriminate between them. The
synthesis procedure was able to restitute the intended meanings of feature models based on
inferred or user-specified knowledge.

Andersen et. al. (She et al. 2014) proposed algorithms for synthesis of feature models
using the propositional constraints by deriving symbolic representations of all candidate
diagrams, and deriving instances from this diagrams.

Three standard search based techniques (evolutionary algorithms, hill climbing, and ran-
dom search) with two objective functions were evaluated for the reverse engineering task
regarding feature models in paper (Lopez-Herrejon et al. 2015). The two objective functions
were refined in a third one, an information retrieval measure.

In Assuncdo et al. (2016), authors used a set of feature sets to determine precision, recall
and a dependency graph to compute variability safety of a feature model. This approach
takes a multi-objective perspective and helps us to obtain feature models which repre-
sents the desired feature combinations and also make sure that these combinations are
well-formed, more exactly variability safe.

Dynamic Software Product Line is another approach that is presented in article (Larissa
Luciano Carvalho et al. 2017), but they do not address the problem of reverse engineering
of feature models. The focus is on developing dynamically adaptable software that manages
reconfiguration during execution. This approach aims to reuse components and also aims to
adapt to environment changes or user requests, and is implemented with the help of Object
Oriented Programming (OOP) as well as Aspect Oriented Programming (AOP).

We would like to emphasize that our replication is on a paper (Linsbauer et al. 2014)
that is published earlier than some of the newer work on feature model synthesis that
we mention above. The investigations (Lopez-Herrejon et al. 2015; Assuncdo et al. 2016;
Larissa Luciano Carvalho et al. 2017) that follow this paper improve various aspects of the
approach like: use of various standard search-based techniques with two objective func-
tions for the reverse engineering task of feature models, multi-objective algorithms to obtain
the desired feature combinations under consideration of variability safety, and developing
dynamically adaptable software that manages reconfiguration during execution. The aim
of our replication study is not to improve aspects of the proposed approach but to con-
firm the already obtained results and also to contribute information regarding the relation
between number of features, number of generations and number of populations, providing

@ Springer

58 Page6o0f29 Empir Software Eng (2021) 26: 58

insights into the best optimized values for several parameters of the genetic programming
algorithm.

2.3 The Original Study

We conduct a replication study of the approach in paper (Linsbauer et al. 2014) where the
authors applied genetic programming to the problem of reverse engineering feature mod-
els in the realm of SPLs. They started from a previous work (Lopez-Herrejon et al. 2012)
where they used a genetic algorithm for reverse engineering feature models. In paper (Lins-
bauer et al. 2014), the authors started with a set of 17 feature models of actual SPLs. The
implementation was made using ECJ framework ! for evolutionary computation. For each
of those feature models they computed the respective set of valid feature sets and used these
sets as input for their Genetic Programming (GP) pipeline, Random Search (RS) baseline
and genetic algorithm approach.

After obtaining the results, a statistical analysis was performed using the Wilcoxon
Signed-Rank Test and the obtained results. The test was performed on the average fitness
function values to compare the genetic programming approach against the random search
baseline and also against genetic algorithm approach.

In the end, the test indicated a significant difference between those three approaches and
by comparing the results it was established that genetic programming approach outperforms
the genetic algorithm approach and the random search baseline.

The investigation considered the following GP parameters: Population size 100, Max-
imum number of generations 100, Crossover probability=0.7, Feature Tree Mutation
probability=0.5, and CTCs Mutation probability=0.5.

To compare their results, as a base line, the authors used a Random Search (RS) that just
randomly creates feature models in hopes of finding a good solution. The number of random
tries is set to the product of the maximum number of generations and the population size of
the GP. Thus the number of evaluated candidate feature model individuals is the same for
both approaches that we consider (GP and RS), thus the number of performed evaluations
is:

maxGenerations x populationSize = 100 x 100 = 10000.

The investigation examined also the results considering feature models with different
number of features: 4 models with [6,10] features, 4 models with (10,15] features, 5 models
with (15, 20] features, 4 models with > 20 features.

The GP pipeline that was applied in the original study can also be found in our replica-
tion study. This GP pipeline includes a set of operators like Builder, Selection, Crossover,
Reproduction, Mutation, Breeding that are next described.

2.3.1 Feature Model Representation

In the initial study, as well as in other studies, the Model Driven Engineering (MDE)
approach was used. This approach uses a metamodel to define the structure and semantics
of the models that can be derived from it. The metamodel is provided in Fig. 2. A simplified
version of SPLX metamodel (which is actually a common representation for feature mod-
els) was chosen and describes the structure of a feature model individual. In the metamodel
it can be seen that there is only one feature for the Root and for any other feature node. We

Thttp://cs.gmu.edu/~eclab/projects/ecj

@ Springer

http://cs.gmu.edu/~eclab/projects/ecj

Empir Software Eng (2021) 26: 58 Page70f29 58

riésGroupedFeature

I
groupedFeatyj 1. 5
1.% grdupedFeatures .
I
I
H Alternative H or | :
| — - — J s
b..» bo* P ——
groups groups ! El Atom |} [E Not
| |
I

[Feature i I —
T name : EString Y = |
— ' El Literal
. B Literal]

I *

I

1 clauge

I

childrehFeatyres hildrehFeatured H OrClause 1

|
0.4 0.4 [
[T H Root B Optional) or

_E Mandatory |

"~ H Constraint |

*

|E FeatureMode E ConstraintSet]

Fig.2 Feature model metamodel (Linsbauer et al. 2014)

can also see the Mandatory and Optional child features as well as Alternative and Or group
relations which must have at least one GroupedFeature as a child. Along with these are the
CTCs of a feature model individual.

2.3.2 Fitness Function

This pipeline uses a fitness function based on information retrieval metrics for the Evaluator
to describe the fitness of an individual. To obtain this function, the authors of the original
study defined two auxiliary functions called Precision and Recall. According to the initial
study, Precision is the fraction of the retrieved feature sets that are relevant to the search, and
Recall is the fraction of the feature sets that are relevant to the search that are successsfully
retrieved. Those are calculated using the following expressions:

#contained FeatureSets(sfs, fm)
#featureSets(fm) ’

precision(sfs, fm) =

#contained FeatureSets(sfs, fm)

|sfs]

recall(sfs, fm) =

The “#contained FeatureSets : SFS x FM — N” represents the number of feature
sets received as first argument sfs that are valid according to a feature model fm. The
“#featureSets : FM — N” represents the number of feature sets denoted by a feature
model fm. Fg is a weighted measure of precision and recall. 8 indicates how many times

@ Springer

58 Page 80f29 Empir Software Eng (2021) 26: 58

the recall values weight more in comparison with the precision value. Fg is obtained using
the expression:

(1 + B%) x precision x recall
Fg =

B2 x precision + recall

Every node of a feature model is implemented as a function that manipulates a set of feature
sets in order to compute the final feature sets that are represented by the whole feature
model. This implementation is used to obtain the required metrics.

2.3.3 Operators, Mutation and Crossover

The necessary operators for GP were developed based on the tree structures that are derived
from the metamodel and also on the domain constraints. Those necessary operators are
Builder, Crossover and Mutator.

The Builder creates random feature trees and random CTCs according to the meta-
model and to domain constraints. It was implemented in the oridinal study using the FaMa
(Benavides et al. 2007) and BeTTy (Segura et al. 2012) frameworks.

A feature model individual suffers small random changes made by the Mutator. Accord-
ing to the initial study (Linsbauer et al. 2014), mutations that can be performed are:

— Randomly swaps two features in the feature tree.

— Randomly changes an Alternative relation to an Or relation or vice-versa.

— Randomly changes an Optional or Mandatory relation to any other kind of relation
(Mandatory, Optional, Alternative, Or).

— Randomly selects a subtree in the feature tree and puts it somewhere else in the tree
without violating the metamodel or any of the domain constraints.

Also, the mutations performed on the CTCs, that are applied with equal probability, are:

Adds a new, randomly created CTC (i.e. clause) that does not contradict the other CTCs
and does not already exist.
Randomly removes a CTC (i.e. a clause).

The Crossover deals with the creation of two new individuals(offspring), from two
individuals who belong to the current population (parents). Those new individuals should
maintain desirable traits from both parents.

In the original study, how the crossover operator for feature model individuals works is
described as follows:

— In the first step, the offspring is initialized with the root feature of Parent 1 and the root
feature of Parent 2 is added to the offspring if is different from Parent 1. In this case,
the root feature of Parent 2 is added as a mandatory child feature of its root feature.

— The second step is to cross the levels of the first parent, starting first from the root
node, and add a random number r of features (that are not already contained) to the off-
spring. This is done by appending the features to their respective parent feature already
contained in the offspring, using the same relation type between them.

— In the third step, the second step is repeated but this time using the second parent.

— In the last step is repeated the second step until every feature is contained in the
offspring.

— The second offspring is obtained in the same way but starting with reversed positions
of the parents. Regarding to the crossover for CTCs, the union of CTCs of the two

@ Springer

Empir Software Eng (2021) 26: 58 Page90f29 58

parents is performed and then it is assigned a random subset to the first offspring. The
remaining is assigned to the second offspring.

2.4 Replication in Software Engineering

Experimentation plays a major role in scientific improvement, replication being one of
the essentials of the experimental methods: experiments are repeated aiming to check
their results. Successful replication increases the validity of the outcomes observed in the
experiments.

For an experiment to be considered a replication (Shepperd et al. 2018), the following
elements are required to be fulfilled: the authors must explicitly state which original experi-
ment is being replicated; the purpose of the replication study includes extending the external
validity of the experiment (i.e., adding to our understanding of how the results generalise);
both experiments must have research questions or hypotheses in common (i.e., there are
shared constructs and interventions), and the analysis must contain a comparison of original
and new results with a view to conforming or disconforming the original experiment. Note
that we intentionally avoid judgements such as “successful”. Internal (the replication team
includes members from the original experiment) or external replications (the entire replica-
tion team is independent of the original team) may be performed: some researchers express
a preference for external replications (being more independent but may be unintentionally
less exact).

Other research investigations concerning how to do replications of software engineer-
ing experiments (Carver 2010; Carver et al. 2014) emphasized guidelines that suggest four
types of information to include in a replication report: (1) information about the original
study to provide enough context for understanding the replication; (2) information about
the replication to help readers understand specific important details about replication itself;
(3) comparison of replication results with original study results to illustrate commonalities
and differences in the results obtained, and (4) conclusions across studies to provide readers
with important insights that can be drawn from the series of studies that may not be obvious
from a single study.

The elements of the software engineering experimental configuration are investigated
and established in paper (Goémez et al. 2014). There are four dimensions: operationaliza-
tion, population, protocol, and experimeters. A common conduct is that the authors should
rigorously document their replication designs (Fagerholm et al. 2019).

Dimension: Operationalization. Operationalization describes the act of translating a
construct into its manifestation, thus having cause and effect constructs: cause con-
structs are operationalized into treatments (they indicate how similar the replication is
to the baseline expriment), and effect constructs are operationalized into metrics and
measurement procedures.

Dimension: Population. Replications should also study the properties of experimental
objects. Specifications, design documents, source code, programs are all examples of
experimental objects. Replications examine the limits of the properties of experimental
objects for which results hold.

Dimension: Protocol. The elements of the experimental protocol that can vary in a repli-
cation are: experimental design, experimental objects, guides, measuring instruments and
data analysis techniques.

Dimension: Experimenters. This dimension refers to the people involved in the exper-
iment. A replication (Gémez et al. 2014) should verify whether the observed results

@ Springer

58 Page 100f 29 Empir Software Eng (2021) 26: 58

are independent of the experimenters by varying the people who performed each role
(designer, trainer, monitor, measurer, analyst).

Each stated dimensions will be discussed in the next section, particularly for our replication
design.

Replication in software engineering is of a paramount importance and must be con-
ducted for both confirmatory and discovering additional knowledge of the investigated
method.

2.5 Motivation for the Replication

Conducting a replication study (Dyba et al. 2005) has two main aims: first, to confirm the
results of the original study, and secondly, to generate new knowledge that otherwise would
not be possible to be created.

Thus, our replication further investigates the GP approach and the “behavior” of the algo-
rithm when considering various # features with different characteristics, examining the
relation between #features and #generations, and also between #features and #population,
and also exploring the impact of GP parameters (crossover and mutation) on obtained
solutions.

3 Research Design and Analysis

Our replication approach is detailed in this section, an overview of the replication and fur-
ther, depicting the design of experiments. The replication experiments are detailed, stating
the research questions and the used objects (i.e. feature models) and the steps in our replica-
tion design. Finally, this section presents the used data analysis, the Wilcoxon signed ranks
test (Derrac et al. 2011) and the Taguchi method (Roy 2010).

3.1 Overview

We replicated the original study (Linsbauer et al. 2014) as an operational replication (Juristo
and Vegas 2009) where we changed the replication objects (Gémez et al. 2014) and we
partly varied the researchers (changed populations and experimenters). We used the original
study protocol. This replication design addresses internal and external validity threats of the
original study and adds new information regarding #generations and #populations of the
GP approach, and also regarding the experiment parameters #crossover and #mutation. It
is also worth mentioning that the authors from the original study had here a different role,
they do not conducted the experiments thus the experiments results were not biased consid-
ering this perspective. The original authors use their knowledge to leverage the knowledge
in how to interpret the obtained results. The internal authors did not participate in the design
and execution of the experiments. However, several meetings and discussions took place
online about the original paper and experiments, about the current paper and the design of
experiments, providing suggestions and validation of the proposed objectives. The external
authors performed the execution of experiments, applied the Wilcoxon Signed-Rank Test
and the Taguchi method.

The elements of the software engineering experimental configuration (Gémez et al.
2014), i.e. the four dimensions (operationalization, population, protocol, and experimeters)
are next provided in the context of our replication design.

@ Springer

Empir Software Eng (2021) 26: 58 Page 110f29 58

Dimension: Operationalization. Regarding operationalization, i.e. the cause constructs,
our experimental replications are similar to the baseline experiment in that uses similar
feature models with different number of features: many features models with 10 number
of features and one for each set from (10, 15], (15, 20], and (20, 25].

Dimension: Population. With respect to population, the properties of experimental
objects (i.e. feature models in our case) are considered when designing the experiments.
Each experiment considered features models with various number of features.

Dimension: Protocol. With reference to protocol, some of the elements of the experi-
mental protocol varied in the replication (i.e. other feature models with various number of
features, Taguchi method for genetic programming’s parameters optimization) and some
other did not (i.e. measuring instruments using the same source code, and data analysis
techniques, using Wilcoxon signed ranks test).

Dimension: Experimenters. With regard to experimenters, refering to the people
involved in the experiment, we use a combination of researchers from the original study
and also new researchers. We varied the people who performed each role (experiments
designer, experiments execution and measurements, interpretation).

3.2 Goal Question Metric Model

This section details the research questions and the hypotheses. In order to better express
and define our research questions, we use the Goal Question Metric (GQM) model (Basili
and Rombach 1988). It helps to describe the necessary obligations for setting objectives
before starting any software measurement activity. The GQM approach provides a frame-
work involving several steps: list the major Goals of measurement; select a model that
is connected to the measured entities; from each goal derive the Questions that must be
answered to determine if the goal is met; decide what Metrics, based on the selected model,
must be collected in order to answer the questions.

3.2.1 Goals

— G1: Confirm the original study results by using models with different numbers of
features.

— G2: Determine relations between the number of features and the parameters of the
genetic programming approach (#generations, #population).

— G3: Determine optimized parameter values for the genetic programming approach, i.e.,
#generations, #population, #crossover and #mutation.

3.2.2 Questions

— RQI: Can the original results of the original study be confirmed in other samples,
i.e., with different feature models with similar characteristics (same values for the
parameters #generations, #population, #crossover and #mutation)?

— RQ2: Are there differences in the quality of the obtained solutions when using different
values for the parameters #generations and #population?

— RQ2a) What is the relation between Number of Features and Number of
Generations (#generations)?

— RQ2b) What is the relation between Number of Features and Number of
Individuals (#population)?

@ Springer

58 Page 12 0f 29 Empir Software Eng (2021) 26: 58

— RQ3: Do values for crossover and mutation play a role in obtaining better solutions?

The first research question targets the replication of the original experiments and is thus a
confirmatory replication. The second and third questions are integrated into the exploratory
replication aiming to yield new knowledge about the used method.

3.2.3 Metrics

We use the following four metrics to answer the three research questions.

— MI: Paired Difference (via Wilcoxon signed-rank test).

— M2: Mean Fitness Values of the obtained solutions for GP and RS approaches.
M3.1: Mean of Means (via L4 Taguchi method)

— M3.2: Mean of Means (via L9 Taguchi method, 3 trials)

The first research question will be investigated and analyzed by applying multiple
experiments with different models with 10 features. We then determine if there is a statis-
tically significant difference (metric M1) between the results of the original study and the
replicated results to answer the first research question.

The second research question will be explored by performing experiments with
algorithms run with varying number of features and different values for parameters
#generations and #population.

The third research question is addressed by applying the Taguchi method for the design
of experiments in order to optimize the GP parameters. We investigate the optimized values
for the following parameters: #generations and #population, as well as #mutation and
#crossover.

3.3 Experimental Design, Experimental Objects and Analysis

This section provides details relating to the experiments: the key elements regarding the
design of the experiments, the objects used in the experiments, and the methods used to
analyze the results.

3.3.1 Experimental Design

We conducted a replication study on the paper (Linsbauer et al. 2014) using various
experiments, i.e. three sets of experiments each consisting of other experiments.

Figure 3 sketches the design of our replication experiments: Experiments Set 1) - simple
replication (duplicate the exact conditions), Experiments Set 2) - interaction of 2 param-
eter of the GP approach, and Experiments Set 3) - experiments with aim to optimize the
experimental parameters number of generations, population, crossover and mutation.

We aim to both confirm the original obtained results (thus to produce generalized knowl-
edge) and also to yield additional knowledge by finding out more about the range of
conditions under which the results hold.

Our first attempt to replicate the approach (named Experiments Set 1)) used three
experiments with the following mentioned characteristics:

— Experiment 1.1) 10 models with 10 features;

— Experiment 1.2) 5 models with [5, 10, 15, 20, 25] features;

— Experiment 1.3) one model with 20 features with various number of generations (50,
75, 100, 300, 500, 2500).

@ Springer

Empir Software Eng (2021) 26: 58 Page 130f29 58

The experiments were designed as discussed by Yin (2008). The 1.1) experiment was
done for 10 models, each with 10 features. This experiment was designed as a “simple”
replication discussed by Yin: “Some of the replications might attempt to duplicate the exact
conditions of the original experiment”. The design of the other experiments followed the
procedure of Yin regarding experiments design, i.e. altering “one or two experimental condi-
tions considered unimportant to the original finding” with the aim to see if the finding could
still be duplicated. The 1.2) experiment aimed to investigate how the approach behaved
when increasing the number of features. The 1.3) experiment investigates how the algorithm
behaves when various numbers of generations are used.

Starting from those primary experiments we further investigated deeper aspects of the
approach parameters: Experiment 1.2) and Experiment 1.3) are further extended. The
Experiment 1.2) is extended such that the algorithms will be run with the following con-
figurations: do the experiments also for 50, 75, 300, 500, 1000 regarding #population,
forming thus Experiment 2.2). The Experiment 1.3) is extended such that the algorithms
will be run with the following configurations (do the experiments also for 1000 regarding
#generations and also for: 15, 25 regarding # features), forming thus Experiment 2.1).

Thus, these set of experiments form Experiments Set 2) of this replication study, as
follows:

— Experiment 2.1) 5 models with [5, 10, 15, 20, 25] features with various number of
generations [50, 100, 300, 500, 1000];

— Experiment 2.2) 5 models with [5, 10, 15, 20, 25] features with various number of
population (50, 100, 300, 500, 1000).

We also aim to determine the optimized values for the parameters of the genetic program-
ming approach, i.e. #generations, #population, #crossover and #mutation. Therefore,
these set of experiments form Experiments Set 3) of this replication study, as follows:

— Experiment 3.1) L4 Taguchi method to optimize the #population and #generations
parameters for the genetic programming approach.

— Experiment 3.2) L9 Taguchi method to optimize the following parameters for
the genetic programming approach: #population, #generations, #crossover and
#mutation.

Details about the design of the third experiments set are provided in Section 4.1.3.

No experiments were performed in the original paper to investigate best parameter values
for the genetic programming algorithm. Thus, similar experiments to Experiments set 2
and Experiments set 3 were not performed and discussed in the original paper. We aim to
obtain concrete best values for several parameters: number of generations and the population
number, the mutation and crossover parameters.

Replication Study
Design of Experiments

Experiments Set 1

Experiments Set 2

Experiments Set 3

Simple Replication Inferactions of two poromgfers OpTimichionl of parameters .
#features vs # generations #generations and #population
#features vs # population #mutation and #crossover

Fig.3 Our design of experiments for the replication study

@ Springer

58 Page 14 of 29 Empir Software Eng (2021) 26: 58

Table 1 Feature models with 10
features (source SPLOT (http:// Feature model name Number of features

www.splot-research.org/))

Electric car 10
Example mobile phone 10
Maquina de café 10
Minimalistic PC feature model 10
Mobile media 10
Smart home 10
Smartwatch 10
TV 10
E-SHOP-MM 10
E-SHOP 10

3.3.2 Experimental Objects

Our experiments considered feature models with various number of features. We pro-
vide the set of used feature models in our experiments in the replication package.” The
first experiment considered 10 different feature models, each of them having 10 features.
Table 1 contains the name of the used feature models taken from SPLOT (http://www.
splot-research.org/).

For the second set of conducted experiments, we used various versions of the same
feature model, but modifying the number of features. The basic feature model is from
the source (http://www.splot-research.org/). One of the experiments considered varying the
#generations (while varying also # features) and the other experiment considered vary-
ing the #population (while varying also # features). Different # features were used: 5,
10, 15, 20, 25. For #generations the following values were used: 50, 100, 300, 500, 1000
while for #population we used: 50, 100, 300, 500, 1000.

3.3.3 Analysis of Experiments

For the analysis of the obtained results we have used the Wilcoxon signed ranks test (Derrac
et al. 2011) and the Taguchi method (Roy 2010). This section describes them.

When comparing (Harman et al. 2012) two algorithms, the best fitness values obtained
by the searches concerned are an obvious indicator to how well the optimisation process
performed. Inferential statistics may be applied to discern whether one set of experiments
are significantly different in some aspect from another. Usually we wish to be in a position
to make a claim that we have evidence that suggests that the GP algorithm is better than RS
algorithm.

Wilcoxon Signed Ranks Test The Wilcoxon signed ranks test (Derrac et al. 2011) is used
for answering the following question: do two samples represent two different populations? It
is a nonparametric procedure employed in hypothesis testing situations, involving a design
with two samples. It is a pairwise test that aims to detect significant differences between
two sample means, that is, the behavior of two algorithms. The best fitness value (from the
entire population) was used for comparing the two algorithms.

https://www.cs.ubbcluj.ro/~avescan/publications/ReplicationPackageEMSE.zip

@ Springer

http://www.splot-research.org/
http://www.splot-research.org/
http://www.splot-research.org/
http://www.splot-research.org/
http://www.splot-research.org/
https://www.cs.ubbcluj.ro/~avescan/publications/ReplicationPackageEMSE.zip

Empir Software Eng (2021) 26: 58 Page 150f29 58

The Wilcoxon signed ranks test has two hypothesis:

1. Null hypothesis Hy: The median difference is zero versus.
2. Research hypothesis H;: The median difference is not zero, o« = 0.05.

The steps of the Wilcoxon signed ranks test are: compute W_ (sum of the negative ranks)
and W, (sum of the positive ranks); check if W_ 4+ W, = n(n+1)/2; select the test statistic
(for the two tailed test the test statistic is the smaller of W_ and W,); we must determine
whether the observed test statistic W, supports the Hy or Hj, i.e. we determine a critical
value of W, such that if the observed value of W; is less or equal to critical value W., we
reject Hy in favor to Hj.

Due to stochastic nature of optimisation algorithms, searches must be repeated several
times in order to mitigate against the effect of random variation. How many runs do we
need when we analyze and compare algorithms? In many fields of science (i.e. medicine
and behaviour science) a common rule of thumb (Arcuri and Briand 2011) is to use at
least n = 30 observations. We have also used in our evaluation 30 executions for each
algorithm. We have also used Wilcoxon statistical test to compare the results of the GP and
RS algorithms as in the original study.

Taguchi Method Design Of Experiments (DOE) (Roy 2010) is known as the technique of
defining and investigating all possible conditions in an experiment that involves multiple
factors, technique known also as factorial design.

The relative influence of the factors and interactions between factors included in the
study can be quantitatively determined using the analysis of variance. For a full factorial
design, the number of possible designs, N, is N = L™, where L=number of levels for each
factor and m=number of factors.

For small values of L and m, for example L=2 and m=3, there are 2> possible design
configurations and the analysis could be done with reasonable resources, both money and
time. But when having 15 factor, even with only two levels, a market research for this study
would be unreasonable regarding used resources.

Fractional factorial experiments investigate only a fraction of all possible combinations
but there are several limitations as stated in Roy (2010).

Dr. Genichi Taguchi proposed an innovative method of simplifying and standardizing
fractional factorial designs. Details about the method could be found in Roy (2010), describ-
ing the standardized DOE, the robust design strategy and signal-to-noise analysis (from
multiple-sample tests).

The Taguchi method has the main goal to find optimal parameters to reduce the ran-
domness in stochastic solution-search style algorithms. When the performance and quality
of a product or manipulation are not effected by internal and external disturbances, we
recognize it as the effect of robustness. The quality characteristics (Phadke 1989) of a
produced product are affected by the noise factors X and control factors Z, and the out-
put results Y maybe deviate from the expected target M. The quality characteristics are
changed by the noise factors, so the quality deviates from the target values as represented
in Fig. 4. In order to achieve the expected target, the control factors are adjustable param-
eters. When the Taguchi method is used with genetic programming methods, the control
factors are the population size, the number of generations, crossover rate, and mutation
rate.

Various approaches used the Taguchi methods to tune parameters of multi-objective evo-
lutionary algorithms. The approach in Sadeghi and Niaki (2015) investigates number of

@ Springer

58 Page 16 of 29 Empir Software Eng (2021) 26: 58

X Noise
Factors
M) 4
Signal Response
Factor
z Control
Factors

Fig.4 Effect of control factors and noise factors on quality characteristics (Phadke 1989)

iterations, number of population, probability for crossover and mutations. The Parwananta
et al. (2013) approach conducted a factorial experiment for three parameters (popula-
tion size, crossover and mutation rates) and established them for their two-phase genetic
algorithm for Solving the Paired Single Row Facility Layout Problem.

We have also used the Taguchi methods to obtain the optimized parameters for both
#generations and #population using L4 design (two factors with two level each), and
also L9 design adding the #crossover and #mutation values, with three level each. For the
L4 design we thus considered #population and #generations with values 100 and 300
for each, and for the L9 design we considered #population, #generations #crossover
and #mutation with values 100, 200 and 300 for #population and #generations, for
#crossover the values 0.70, 0.75, 0.80 and for #mutation the values 0.50, 0.60 and 0.70.

4 Replication Results

The steps for experiments executions and the obtained results are provided in this section.
The analysis of the hypotheses and a comparison between original and replicated studies is
scrutinized.

4.1 Experiment Execution

The results of the experiments executions are provided and discussed next. As explained in
Section 3.1 the three sets of experiments were design with different purposes: simple repli-
cation that considered similar features models, the second experiments set investigated the
relations between various characteristics of feature models (number of features and number
of generations and population), and the last one with the aim to optimize parameters of the
genetic programming algorithm.

@ Springer

Empir Software Eng (2021) 26: 58 Page 170f29 58

Table 2 Replication Study of the

original study Paper #FMused [5,10], (10,15] (15,20] (20, 25]
Original study 17 4 4 5 4
This study 14 10 1 1 1

4.1.1 Results of Experiments Set 1

The first set of experiments concerned a simple replication of the original study. Three
different experiments were conducted, each aiming to replicate the original experiments
considering to vary/expand different elements: experiment with models with 10 features,
experiment with models with different number of features, and experiment for the same
model but with different number of generations. Table 2 contains the number of features
models used in the original study and in the replicated study, referring to the number of
contained features. The first experiment in the first set replicates considering 10 models with
10 features, the second and the third experiments consider 5 features models with different
number of features (from 5 to 25).

The first experiment in the first set 1.1) considered 10 models with 10 features each. This
experiment was designed as a “simple” replication discussed by Yin (2008): “Some of the
replications might attempt to duplicate the exact conditions of the original experiment.” For
this experiment we considered #population size of 100 and #generations to be 100, as in
the original study.

Table 3 presents the obtained results. The results of the Wilcoxon statistical test that
compared the results of the GP and RS algorithms concluded that the null hypothesis is
rejected and alternative hypothesis is accepted, thus our findings confirmed the results from
the original paper. We restate here that the best fitness value (from the entire population)
was used for comparing the two algorithms using the statistical test.

The second experiment in the first set 1.2) considered five different models with var-
ious number of features (5, 10, 15, 20, 25). The considered models used as a basis the
SmartHome model, in Fig. 1 the model with 20 features being presented.

Table 4 contains the obtained results for the Wilcoxon statistical test (the best fitness
value from the entire population was used) for the five features models with various number
of features: the null hypothesis is rejected and alternative hypothesis is accepted, thus our
findings confirmed the results from the original paper.

Table 3 Fitness based Wilcoxon

Signed-Rank Test for Experiment ~ Model Wi W-o Wie N Weririec Ho Hi

1.1) with 10 models and 10

features each Electric car 0 465 0 30 120 x v
Example mobile phone 0 465 0 30 120 x v
Magquina de café 0 465 0 30 120 x v
Minimalistic PC feature 0 465 0 30 120 x v
Mobile media 0 465 0 30 120 x v
Smart home 0 465 0 30 120 x v
Smartwatch 0 465 0 30 120 x v
TV 0 465 0 30 120 x v
E-SHOP-MM 0 465 0 30 120 x v
E-SHOP 0 465 0 30 120 x v

@ Springer

58 Page 18 of 29 Empir Software Eng (2021) 26: 58

Table 4 Fitness based Wilcoxon

Signed-Rank Test for Experiment ~ Model We Woo Wiew N Weiie Ho H

1.2) with 5 models with various

features 5 features Smart Home 0O 465 0 30 120 X v
10 features Smart Home 0 465 0 30 120 x Vv
15 features Smart Home 0 465 0 30 120 x Vv
20 features Smart Home 0 465 0 30 120 x Vv
25 features Smart Home 0 465 0 30 120 x v

The third experiment in the first set 1.3) examined for the same model what is the behavior
of the algorithm when using different number of generations: 50, 75, 100, 300, 500, 2500.

Table 5 contains the obtained results for the Wilcoxon statistical test (using the best
fitness value from the entire population) for the Smart Home features model with 20 features
but considering various number of generations: the null hypothesis is rejected and alterna-
tive hypothesis is accepted, thus our findings confirmed the results from the original paper.

Together, the three experiments in the first set confirm the findings in the original study,
i.e. genetic programming provides better reverse engineering results than random search.

4.1.2 Results of Experiments Set 2

This set of experiments investigate the relation between number of features and the number
of generations, and between number of features and the number of population used in the
algorithm, i.e. how is the relation between those parameters.

The first experiment from this set 2.1) considered investigating the relation between the
number of features and the number of used generations. Figure 5 displays the results of the
Experiments Set 2.1), comparing various generations versus various features for the GP and
RS algorithms.

It can be noticed that starting from 10 features the GP approach has better results than
the RS approach, i.e. the average GP fitness values obtained being better than those of RS.
This remark is true for all considered number of generations used.Thus, for each category
of feature models (from 5 to 25 features) the GP values are higher than the RS values.

It should also be stated that starting from 15 features, there is a larger gap between the
quality of the solutions obtained with 100 generations versus 300 generations. And, there is
a clear observation that by increasing the number of generations, the quality of the solutions
also increases. For example, at the last experiment (25 features) there is an increase of the
quality from 50 to 1000 generations.

The second experiment from this set 2.2) considered investigated the relation between
the number of features and the population number.

Table 5 Fitness based Wilcoxon
Signed-Rank Test for Experiment ~ Model-SmartHome-20features Wy W_ Wiey N Weriric Ho Hi

1.3) with the model with 20

features and varying number of 50 generations 0 465 0 30 120 x v
generations 75 generations 0 465 0 30 120 x v
100 generations 0 465 0 30 120 x v
300 generations 0 465 0 30 120 x v
500 generations 0 465 0 30 120 x v
2500 generations 0 465 0 30 120 x v

@ Springer

Empir Software Eng (2021) 26: 58 Page 190f29 58

Number of Population versus
Number of Features

(GP versus RS)
12 4
w 08
® 06 - "0
& g~‘2‘ 1 . = 100
5 5 10 10 15 15 20 20 25 25 = 500

GP RS GP RS GP RS GP RS GP RS = 1000

Considered #features for each algorithm (GP, RS)
Fig.5 Generations versus Features for the two considered algorithms (GP and RS)

Figure 6 presents the results of the Experiment Set 2.2), comparing various population
numbers versus various features for the GP and RS algorithms.

It can be noticed that starting from 10 features the GP approach has better results than the
RS approach, i.e. the average GP fitness values obtained are better than those of RS. This
remark/conclusion/statement is true for all considered numbers of population used. Thus,
from the experiment with 10 features to the experiment with 25 features, the GP solution
achieves higher fitness values than the RS solution.

It should also be stated that starting from 15 features, there is a larger gap between the
quality of the solutions obtained with 100 population number versus 300 population number.
And, there is a clear observation that by increasing the number of population, the quality

Number of Population versus
Number of Features

(GP versus RS)
12 4
1+
"
w 08
® 06 - "0
E 0.4 - = 100
o I I N RN N RN el BN . -0
5 5 10 10 15 15 20 20 25 25 = 500

GP RS GP RS GP RS GP RS GP RS = 1000

Considered #features for each algorithm (GP, RS)

Fig.6 Population versus Features for the two considered algorithms (GP and RS)

@ Springer

58 Page 20 of 29 Empir Software Eng (2021) 26: 58

of the solutions increase also. For example, at the last experiment (25 features) there is an
increase of the quality from 100 to 300 population.

A further novel finding regarding using genetic programming for reverse engineering
feature models concerns the values for the #generations and #population, values obtained
empirically by conducting various experiments. There is a difference in the quality of
the obtained solutions with 100 generations versus 300 generations, respectively solutions
obtained with 100 population versus 300 population.

4.1.3 Results of Experiments Set 3

For this set of experiments we have used the Taguchi method to optimize the parameters: L4
for the #population and #generations and also L9 Taguchi method for the #population,
#generations, #crossover and #mutation parameters with three trials.

L4 Taguchi Method We have conducted the Taguchi method to optimize the #population
and #generations parameters. We have considered two levels for each of the factors, i.e.
100 and 300 as provided in Table 6 for L4 design configuration. For these experiments we
considered one execution of the genetic programming algorithm.

We have applied the method considering three different type of features models: with 15
features, 20 features and 25 features. Figures 7, 8 and 9 contains the results of the Taguchi L4
design for features models with 15, 20 and 25 features models: we plot the main effects for
mean. A line connects the points for each factor. Because the line is not horizontal, there is a
main effect. Different levels of the factor affect the characteristic differently. The best value
by #population and #generations obtained in all experiments is 300, for both parame-
ters. Inspecting Figs. 7, 8 and 9 we may notice that, on average, experimental runs with
#population and #generations of 300 had higher signal-to-noise ratio than experimental
runs with 100.

L9 Taguchi Method We have conducted the Taguchi method to optimize the #population,
#generations, #crossover and #mutation parameters. We have considered three levels
for each of the factors. Table 7 contains the used configuration for the L9 design.

We have applied the method considering three different type of features models: with
15 features, 20 features and 25 features and considering three trials (experiments of the
algorithm). For these experiments to analyze the results we use signal to noise ration (S/N)
that is used for experiments with multiple runs.

Figures 10, 11 and 12 contain the results of the Taguchi L9 design for features models
with 15, 20 and 25 features models. A line connects the points for each factor. Because the
line is not horizontal, there is a main effect. When the line is horizontal, there is no main
effect: each level of the factor affects the characteristic in the same way. The best values
for #population is 300 for reverse engineering features models with 15 features and 25

Table 6 Taguchi L4 method
applied for the #population and ~ Number #population #generations
#generations parameters with

two levels: 100 and 300 1 100 100
2 100 300
3 300 100
4 300 300

@ Springer

Empir Software Eng (2021) 26: 58

Page210f29 58

Mean of Means

1,000

0,995

0,990

0,985

0,980

0,975

0,970

Main Effects Plot for Means

Data Means

population generations

100 300 100 300

Fig. 7 Results of Taguchi L4 design for Feature Models with 15 features

features, but 200 for features models with 20 features:in the first column in all three Figs. 10,
11 and 12 the “highest” point. Regarding the optimized value for the #generations (second
column in all three Figures), we obtained the same value, i.e. 300, regardless the number of
features considered. For #crossover (third column) the optimized value is 0.75 starting with
feature models that have 20 features. For #mutation (fourth column in all three Figures) is
different depending on the type of the feature model (0.7 for feature models with 15 and 20
features, and 0.6 for feature model with 25 features).

Inspecting Figs. 7, 8 and 9 we may notice that, on average, experimental runs with
#population and #generations of 300 had higher signal-to-noise ratio than experimental
runs with 100.

Mean of Means

0,94

0,92

0,90

0,88

0,86

0,84

0,82

0,80

Main Effects Plot for Means
Data Means

population generations

100 300 100 300

Fig.8 Results of Taguchi L4 design for Feature Models with 20 features

@ Springer

58 Page 22 0f29 Empir Software Eng (2021) 26: 58

Main Effects Plot for Means

Data Means
population generations
0,85
[
/
/
0,80 ° 73
7
/ /
0 74
© /i
§ 0,75 // y
s 7 /
< i
3 0,70 '/ /
= /
/ /
/
L4 /
0,65 /
/
0,60
100 300 100 300

Fig.9 Results of Taguchi L4 design for Feature Models with 25 features

The results of the experiments found clear support for the optimized values for var-
ious investigated parameters: #population, #generations, #crossover and #mutation.
The optimized value for the number of generations is 300, whereas for the number of pop-
ulation it varies from 200 to 300 for features models with different number of features.
Regarding #crossover, the results discovered that starting from 20 features, the best value
is 0.75. With respect to #mutation, for feature models with 15 and 20 number of features
the best value is 0.70, whereas for feature models with 25 features the best values is 0.6. As
observed from Figs. 10, 11 and 12, there is a clear distinction for the better values regarding
#population and #generations, i.e. from a flat level at 200 and 300 to an elevated value
to 300 starting with models with 20 features. For #crossover the result is stabilized with
the 20 features and 25 features experiments, i.e. the best obtained value is 0.75. Regard-
ing #mutation, while the number of used features in the experiments increase we obtained
smaller best results for this parameter, i.e. 0.7 for the experiment with 20 features and 0.6
for the experiment with 25 features.

4.2 Research Questions Analysis

This section answers to each of the considered Research Questions using the results of the
conducted experiments.

Table 7 Taguchi L9 method

applied for the #population, Parameter Level 1 Level 2 Level 3

#generations, #crossover and

#mutation parameters with three ~ #population 100 200 300

levels #generations 100 200 300
crossover 0.70 0.75 0.80
mutation 0.50 0.60 0.70

@ Springer

Empir Software Eng (2021) 26: 58

Page 230f29 58

population

0,0

-02

Mean of SN ratios
S
S

-0.5

-0,6

-0,7
200

Main Effects Plot for SN ratios

generations

300

Data Means
crossover mutation
e o »—o o e
/ /
/ / /
/ /
/ / /
/ /
/
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ J"
® [
070 075 080 05 06 07

100 200 300

100
Signal-to-noise: Larger is better
Fig. 10 Results of Taguchi L9 design for Feature Models with 15 features
The first research question that we answer uses the obtained results in the conducted
experiments in set 1, results presented in Section 4.1.1.
Is the original results in the original study confirmed in other samples?
All the experiments rejected the null hypothesis, thus the alternative hypothesis

is accepted. Our findings confirmed the results from the original paper, i.e. genetic

RQ1:
programming finds better solutions than the random search approach for reverse

engineering feature models.

The second research question that we answer uses the obtained results in the
conducted experiments in set 2, results presented in Section 4.1.2.

Main Effects Plot for SN ratios
Data Means
population generations crossover mutation
-0,5
»
06 - / ?
/ / /
-0.7 / / ° /
8 ,. ,// \\\ /,'
= / p \ y
& 08 o i
b4 / y \ /
2 s / /) /
05 W / \
5] / / 2
< / / . s
s / / ©
2 -1,0 / /
/ /
11 / /
/ /
a2 L
°
el
200 300 100 200 300 0.70 075 0.80 0.5 0.6 0.7

100
Signal-to-noise: Larger is better

Fig. 11 Results of Taguchi L9 design for Feature Models with 20 features

@ Springer

58 Page 24 of 29

Empir Software Eng (2021) 26: 58

Main Effects Plot for SN ratios
Data Means

population generations crossover mutation

20 "s"‘ \\\ ¢ ’

Mean of SN ratios
N

25 ° Jf

-3,0
100 200 300 100 200 300 0.70 0.75 0.80 0.5 0.6 0.7

Signal-to-noise: Larger is better

Fig. 12 Results of Taguchi L9 design for Feature Models with 25 features

RQ2:

RQ3:

Are there differences in using various numbers for #generations and

#population?

RQ2a) What is the relation between Number of Features and Number of Genera-
tions?

RQ2b) What is the relation between Number of Features and Number of individ-
uals (population)?

The results obtained in the second set of experiments establish that the GP approach
obtains better results compared to RS approach. Moreover, there is an increment
of the obtained solution quality from 100 to 300 for both #generations and
#population, experimenting with # features larger than 10.
The third research question that we answer uses the obtained results in the
conducted experiments in set 3, results presented in Section 4.1.3.
Do values for crossover and mutations play a role in obtaining better solutions?
The conducted experiments with the Taguchi method for both L4 and L9 designs
revealed that best value for #generations is 300, for #population varies from 200
to 300 based on the number of features, and that for #crossover is 0.75 (starting
from feature models with 20 features), whereas for #mutation the best value is 0.7,
but starting with 25 features the best value is 0.6.

4.3 Result Comparison Between Original and Replicated Studies

The results of this replication remains consistent with the results of the original study.
Therefore we build knowledge to support the original study findings and also provide new
information about the conditions and parameters of the applied method.

This study has validated the result of the original study by executing similar feature
models under the same conditions. The results confirmed the findings in the original study:
the genetic programming algorithm for reverse engineering feature models is better than the
random search algorithm considering feature models with various number of features.

@ Springer

Empir Software Eng (2021) 26: 58 Page 250f29 58

On the other hand, the knowledge built by this study refers to the optimized values for
several parameters of the genetic programming approach. Specifically, we found the fol-
lowing values: for #generations the value is 300, for #population the values are different
depending on the number of features, so either 200 or 300, for #crossover the best value is
0.75 starting with 20 number of features, whereas for #mutation the value is 0.70 around
20 features and 0.60 around 25 features.

5 Threats to Validity

In this section, we address potential threats to the validity of the study and discuss some
bias that may have affected the study results. We also explain our actions to mitigate them.

5.1 Internal Validity

We have identified six threats regarding internal validity. In what follows, we detail them
and discuss how we mitigated them.

One threat to internal validity is the selection of the feature models which are rele-
vant to our approach. Although some of these selected feature models come from the
same domain, they are selected from populations with different characteristics. They have
different number of features and different number of Cross-Tree Constraints.

The second threat to internal validity refers to the algorithm used to compare our
approach. The Random Search baseline randomly creates feature models. Thus the popula-
tion may be again affected.

Another threat to internal validity is maturation. In combination with the number of pop-
ulation, number of generations and number of features, the quality of the solutions also
increases. The replication study did not investigate execution time. As there is a known
trade-off in GP between quality versus time, this is another threat.

The correctness of the implementation is an internal validity threat that has been
addressed by using the implementation and the data that were made available for replication.

With regard to experimenters, refering to the people involved in the experiment, we use
a combination of researchers from the original study and also new researchers. We var-
ied the people who performed each role (experiments designer, experiments execution and
measurements, interpretation).

The internal validity threat referring to the overlap of authors between the original study
and the replication study was addressed by assigning different roles to the authors of the
original study: they did not participate in the design and execution of the experiments, rather
we leveraged their knowledge on how to interpret the obtained results. The external authors
performed the execution of experiments, applied the Wilcoxon Signed-Rank Test and the
Taguchi method.

5.2 External Validity

With regard to external validity, we have distinguished four threats that are detailed next.
The selection of participants can be a threat to external validity. However, the feature
models selected by us proved to be relevant to confirm the initial study.
The variation of the parameters for the algorithms can be another threat to external valid-
ity. By using other parameters one could obtain feature models with other characteristics
which are not favorable. For the first set of experiments we used the same values that were

@ Springer

58 Page 26 of 29 Empir Software Eng (2021) 26: 58

used in the original study (Linsbauer et al. 2014). For the second and third experiments sets
we used different values for generations, population, mutation and crossover.

Regarding the chosen populations for the Taguchi experiments, only three population val-
ues were investigated in the experiments: 100 and 300, respectively 100, 200, 300. With the
largest value we obtained the best solutions, thus leaving open the possibility that increasing
the population size further will improve the results further.

Lack of evaluations for instances of growing size and complexity is also threat. By using
feature models with different number of features, varying in size and complexity, we tried
to address this problem.

5.3 Construct Validity

Linked to construct validity, guessing the hypothesis is a threat. Being a replication study we
can say that for the first set of experiments we expected the null hypothesis to be rejected.
Even if our assumption proved to be true for the first set, we can’t say the same for the
second and third set of experiments due to the variation of the parameters.

6 Conclusion

Building a system with a large set of client requirements by reverse engineering feature
models is time-consuming and requires considerable effort from the developers. Automated
support comes thus to reduce the effort and time.

One of the approaches that produced good reverse engineering results of feature models
is genetic programming. We proposed a replication of this method, using a larger set of
feature models for the exact replication conditions, while also investigating various values
of the genetic programming parameters and operators.

Three perspectives were integrated in the design of our replication experiments: duplicate
the exact conditions using various features models, study the interaction of two parameters
of the genetic programming approach, and optimization of the values for the four operators.

Results emphasize the previously obtained outcome, the original study being confirmed.
The investigation also yields additional knowledge, finding out more about the range of
conditions under which the results hold. There are relations between the number of features
and number of generations, respectively number of features and number of population. Also,
optimization of various parameters of the genetic programming approach was performed.

Acknowledgements We thank the anonymous reviewers for their careful reading of our manuscript and
their many insightful comments and suggestions.

Funding Open access funding provided by Johannes Kepler University Linz.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Empir Software Eng (2021) 26: 58 Page 270f29 58

References

Software product lines online tools. http://www.splot-research.org/. Accessed: 18 May 2019

Acher M, Baudry B, Heymans P, Cleve A, Hainaut JL (2013) Support for reverse engineering and maintain-
ing feature models. In: Proceedings of the Seventh international workshop on variability modelling of
software-intensive systems, VaMoS ’13. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/2430502.2430530

Acher M, Cleve A, Perrouin G, Heymans P, Collet P, Lahire P, Vanbeneden C (2012) On extracting feature
models from product descriptions. https://doi.org/10.1145/2110147.2110153

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: International conference on software engineering, pp 1-10

Assuncdo W, Lopez-Herrejon R, Linsbauer L, Vergilio S, Egyed A (2016) Multi-objective reverse engineer-
ing of variability-safe feature models based on code dependencies of system variants. Empir Softw Eng,
22. https://doi.org/10.1007/s10664-016-9462-4

Basili V, Rombach D (1988) The tame project: towards improvement-oriented software environments. IEEE
Trans Softw Eng 14(6):758-773

Benavides D, Segura S, Trinidad P, Ruiz-cortés A (2007) Fama: Tooling a framework for the automated
analysis of feature models. In: Proceeding of the first international workshop on variability modelling of
softwareintensive systems (VAMOS, pp 129-134

Carver JC (2010) Towards reporting guidelines for experimental replications: a proposal. In: The interna-
tional workshop on replication in empirical software engineering, pp 2-5

Carver JC, Juristo N, Baldassarre MT, Vegas S (2014) Replications of software engineering experiments.
Empir Softw Eng 19(2):267-276. https://doi.org/10.1007/s10664-013-9290-8

Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statisti-
cal tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation 1:3-18

Dyba T, Kitchenham BA, Jorgensen M (2005) Evidence-based software engineering for practitioners. IEEE
Softw 22(1):58-65

Fagerholm F, Becker C, Chatzigeorgiou A, Betz S, Duboc L, Penzenstadler B, Mohanani R, Venters CC
(2019) Temporal discounting in software engineering: a replication study. In: 13Th ACM/IEEE interna-
tional symposium on empirical software engineering and measurement, IEEE, pp 1-12. https://doi.org/
10.1109/ESEM.2019.8870161

Gomez OS, Juristo N, Vegas S (2014) Understanding replication of experiments in software engineering: a
classification. Inform Softw Technol 56(8):1033—1048. https://doi.org/10.1016/j.infsof.2014.04.004

Harman M, McMinn P, de Souza JT, Yoo S (2012) Search based software engineering: Techniques,
taxonomy, tutorial. Empirical Software Engineering and Verification 7007:1-59

Haslinger EN, Lopez-Herrejon RE, Egyed A (2011) Reverse engineering feature models from programs’
feature sets. In: 2011 18Th working conference on reverse engineering, pp 308-312. https://doi.org/10.
1109/WCRE.2011.45

Haslinger EN, Lopez-Herrejon RE, Egyed A (2013) On extracting feature models from sets of valid fea-
ture combinations. In: Cortellessa V, Varré D (eds) Fundamental approaches to software engineering.
Springer, Berlin, pp 53-67

Juristo N, Vegas S (2009) Using differences among replications of software engineering experiments to gain
knowledge. In: 2009 3Rd international symposium on empirical software engineering and measurement,
pp 356-366. https://doi.org/10.1109/ESEM.2009.5314236

Larissa Luciano Carvalho M, Lessa gongalves da Silva M, Gomes G, Santos A, Machado I, Souza ML,
Santana de Almeida E (2017) On the implementation of dynamic software product lines: An exploratory
study. J Syst Softw 136:74-100. 10.1016/j.jss.2017.11.004

Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Feature model synthesis with genetic programming. In:
Le Goues C, Yoo S (eds) Search-based software engineering. Springer International Publishing, Cham,
pp 153-167

Lopez-Herrejon R, Galindo J, Benavides D, Segura S, Egyed A (2012) Reverse engineering feature mod-
els with evolutionary algorithms: An exploratory study. pp 168—182. https://doi.org/10.1007/978-3-642-
33119-0_13

Lopez-Herrejon RE, Linsbauer L, Galindo JA, Parejo JA, Benavides D, Segura S, Egyed A (2015) An assess-
ment of search-based techniques for reverse engineering feature models. J Syst Softw 103:353-369.
https://doi.org/10.1016/j.jss.2014.10.037

Parwananta H, Maghfiroh MFN, Yu VF (2013) Two-phase genetic algorithm for solving the paired single
row facility layout problem. Ind Eng Manag Syst 12:181-189

@ Springer

http://www.splot-research.org/
https://doi.org/10.1145/2430502.2430530
https://doi.org/10.1145/2110147.2110153
https://doi.org/10.1007/s10664-016-9462-4
https://doi.org/10.1007/s10664-013-9290-8
https://doi.org/10.1109/ESEM.2019.8870161
https://doi.org/10.1109/ESEM.2019.8870161
https://doi.org/10.1016/j.infsof.2014.04.004
https://doi.org/10.1109/WCRE.2011.45
https://doi.org/10.1109/WCRE.2011.45
https://doi.org/10.1109/ESEM.2009.5314236
https://doi.org/10.1007/978-3-642-33119-0_13
https://doi.org/10.1007/978-3-642-33119-0_13
https://doi.org/10.1016/j.jss.2014.10.037

58 Page 28 of 29 Empir Software Eng (2021) 26: 58

Phadke MS (1989) Quality engineering using robust design. Prentice Hall

Roy R (2010) A primer on the taguchi method society of manufacturing engineers

Sadeghi J, Niaki STA (2015) Two parameter tuned multi-objective evolutionary algorithms for a bi-objective
vendor managed inventory model with trapezoidal fuzzy demand. Appl Soft Comput 30:567-576

Segura S, Galindo JA, Benavides D, Parejo JA, Ruiz-Cortés A (2012) Betty: Benchmarking and testing on the
automated analysis of feature models. In: Proceedings of the Sixth international workshop on variability
modeling of software-intensive systems, VaMoS ’12. Association for Computing Machinery, New York,
pp 63-71. https://doi.org/10.1145/2110147.2110155

She S, Ryssel U, Andersen N, Wasowski A, Czarnecki K (2014) Efficient synthesis of feature models. Inf
Softw Technol 56(9):1122-1143. https://doi.org/10.1016/j.infsof.2014.01.012

Shepperd M, Ajienka N, Counsell S (2018) The role and value of replication in empirical software
engineering results. Inf Softw Technol 99:120—132. https://doi.org/10.1016/j.infsof.2018.01.006

Yin RK (2008) Case study research : design and methods. SAGE

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Andreea Vescan is an Associate Professor Babes-Bolyai University,
Romania. She obtained the Ph.D. degree in Corﬁputer Science with
cum laude distinction in 2009 from Babes-Bolyai University under
the supervision of Prof. Militon Frentiu. The research and teaching
interests of Dr. Vescan are primarily in formal models for component-
based systems, and verification and validation of software systems.

Adrian Pintea is a Master student at Babe§—Bolyai University, Roma-

nia. He graduated B.Sc. program in Computer Science at Aurel
Vlaicu University in Arad, Romania. The research topic for the bach-
elor’s thesis was the implementation of a 3d game in Unity (game
engine). His main research interests are in Software Product Lines
and Configurable Systems.

@ Springer

https://doi.org/10.1145/2110147.2110155
https://doi.org/10.1016/j.infsof.2014.01.012
https://doi.org/10.1016/j.infsof.2018.01.006

Empir Software Eng (2021) 26: 58

Page290f29 58

Affiliations

Lukas Linsbauer is currently a postdoctoral researcher at the Institute
of Software Engineering and Automotive Informatics at the Technis-
che Universitit Braunschweig in Germany. He received his Doctorate
in 2016 from the Institute for Software Systems Engineering at the
Johannes Kepler University Linz in Austria under the supervision
of Prof. Alexander Egyed and Dr. Roberto Erick Lopez-Herrejon.
His research interests include highly variable and configurable sys-
tems, software product lines, feature-oriented software and systems
development, traceability, and version control systems.

Alexander Egyed heads the Institute for Software Systems Engineer-
ing (ISSE) at the Johannes Kepler University, Austria. He received
his Doctorate from the University of Southern California, USA and
worked many years in industry before joining academia. Dr. Egyed
was recognized among the Top 10 scholars in software engineering
and his work has received numerous awards.

Andreea Vescan' @ . Adrian Pintea' - Lukas Linsbauer? - Alexander Egyed?

Andreea Vescan
avescan@cs.ubbcluj.ro

Adrian Pintea
adrian.pinteal @stud.ubbcluj.ro

Lukas Linsbauer
Llinsbauer @tu-braunschweig.de

Braunschweig, Germany

Computer Science Department, Babes - Bolyai University, Cluj-Napoca, Romania
Institute of Software Engineering and Automotive Informatics, Technische Universitat Braunschweig,

Institute for Software Systems Engineering, Johannes Kepler University, Linz, Austria

@ Springer

http://orcid.org/0000-0002-9049-5726
mailto: avescan@cs.ubbcluj.ro
mailto: adrian.pintea1@stud.ubbcluj.ro
mailto: l.linsbauer@tu-braunschweig.de

	Genetic programming for feature model synthesis: a replication study
	Abstract
	Introduction
	Background
	Feature Model Synthesis
	Related Work
	The Original Study
	Feature Model Representation
	Fitness Function
	Operators, Mutation and Crossover

	Replication in Software Engineering
	Motivation for the Replication

	Research Design and Analysis
	Overview
	Goal Question Metric Model
	Goals
	Questions
	Metrics

	Experimental Design, Experimental Objects and Analysis
	Experimental Design
	Experimental Objects
	Analysis of Experiments
	Wilcoxon Signed Ranks Test
	Taguchi Method

	Replication Results
	Experiment Execution
	Results of Experiments Set 1
	Results of Experiments Set 2
	Results of Experiments Set 3
	L4 Taguchi Method
	L9 Taguchi Method

	Research Questions Analysis
	Result Comparison Between Original and Replicated Studies

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion
	References
	Affiliations

