
Empirical Software Engineering (2021) 26: 72
https://doi.org/10.1007/s10664-021-09964-6

Foreword to the Special Issue on Configurable Systems

Laurence Duchien1 ·Paul Grünbacher2 · Thomas Thüm3

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Welcome to this special issue that includes empirical studies on configurable systems. This
special issue in the Empirical Software Engineering journal is intended to provide the
systems and software product lines community with a valuable collection of high-quality
research articles that explore configurable systems with empirical studies. Particular atten-
tion was paid to research and industrial work carrying out experiments on configuration
steps in the life cycle of system and software product lines. A configurable system is an arti-
fact composed from instances of a set of predefined component types that can be composed
and parameterized. The configuration step requires knowledge representation formalisms
to capture variety and complexity of configurable products, but also acquisition methods
and efficient reasoning algorithms for supporting solution search, to represent, and integrate
user settings, personalization, and optimization. The configuration ends with the deploy-
ment and launches execution steps. This configuration can also change over time, because
of a change of context. This is called reconfiguration.

The majority of articles extend research presented at SPLC, the 23rd International Sys-
tems and Software Product Lines Conference. The conference was held from September 9
to 13, 2019 in Paris, France (Berger et al. 2019).

We received seventeen articles for this special issue. The call was open, but the SPLC
2019 authors were encouraged to prepare a revised and substantially extended version, and
to consider as possible extensions additional practical applications determined by case stud-
ies or experiences, empirical validations, systematic comparisons with other approaches, or

� Laurence Duchien
laurence.duchien@univ-lille.fr

Paul Grünbacher
paul.gruenbacher@jku.at

Thomas Thüm
thomas.thuem@uni-ulm.de

1 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
2 Institute of Software Systems Engineering, Johannes Kepler University Linz, Linz, Austria
3 Institute of Software Engineering and Programming Languages, University of Ulm, Ulm, Germany

Published online: 19 May 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09964-6&domain=pdf
mailto: laurence.duchien@univ-lille.fr
mailto: paul.gruenbacher@jku.at
mailto: thomas.thuem@uni-ulm.de

Empir Software Eng (2021) 26: 72

sound theoretical foundations. The submitted manuscripts were each peer reviewed by three
reviewers. Finally, ten papers were accepted for inclusion in this special issue and six of
them were extended versions of the SPLC 2019 research papers.

Summary of the Papers In their paper titled “Automated Test Reuse for Highly Config-
urable Software”, S. Fischer, G. K. Michelon, R. Ramler, L. Linsbauer, and A. Egyed
focus their research on the testing of configurable software. They report on an experiment
about automatically reusing existing tests in configurable systems and show that they could
directly reuse some tests for different configurations. Their automatically generated test
variants generally yielded better results.

A. Vescan, A. Pintea, L. Linsbauer, and A. Egyed demonstrate that the genetic program-
ming pipeline is a good fit for feature models and has been shown to produce good reverse
engineering results. In their paper “Genetic Programming for Feature Model Synthesis: A
Replication Study”, they replicate the results of such an existing approach with a larger set
of feature models and investigate the effects of various genetic programming parameters
and operators on the results.

C. D. Nascimento Damasceno, M. R. Mousavi, and A. Simao study family model learn-
ing that incorporates principles of feature model analysis and comparison of state-based
models to efficiently merge product models into fresh family models and include new prod-
uct behavior into existing models. In their paper “Learning by Sampling: Evaluating T-wise
Sampling Criteria for Learning Family Models”, the authors argue that the exhaustive anal-
ysis of product families is usually infeasible due to the potentially exponential number of
valid configurations. However, they extend their analysis upon FFSMDiff, an automated
algorithm to learn family models, and report their experience on learning family models
by sampling configurations using 105 products of six product lines expressed in terms of
Mealy machines.

In their paper “Software Product-Line Evaluation in the Large”, R. Lindohf, E. Herzog,
J. Krüger, and T. Berger study the design and implementation of product lines, which
requires substantial upfront investment. Several measurement methods have been proposed
in the literature, with the most prominent one being the Family Evaluation Framework
(FEF). The authors present an experience report of applying the FEF to nine medium to
large-scale product lines in the avionics domain. They discuss how they tailored and exe-
cuted the FEF, together with the relevant adaptations and extensions they needed to perform.
Specifically, they elicited the data for the FEF assessment with 27 interviews over a period
of 11 months.

B. Ramos-Gutiérrez, A. J. Varela-Vaca, J. A. Galindo, M. T. Gómez-López, and D. Bena-
vides present COnfiguration workfLOw proceSS (COLOSSI), an automated technique that
can assist to determine the configuration workflow. This one better fits the configuration
logs generated by user activities given a set of logs of previous configurations and a variabil-
ity model. In their paper “Discovering Configuration Workflows From Existing Logs Using
Process Mining”, the authors validate it on three different scenarios: an ERP configuration,
a Smart Farming, and a Computer Configuration.

M. H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, and L. Paolini propose and
empirically evaluate the efficiency of static analyses for featured transition systems. Tran-
sition systems have been extended several years ago to explicitly model features by means
of featured transition systems. Similar to dead features in feature models and dead code
in programs, such transition systems may contain anomalies. The empirical investiga-
tion demonstrates that dead locks, false-optional transitions, and dead transitions can be
efficiently detected.

72 Page 2 of 3

Empir Software Eng (2021) 26: 72

M. Cashman, J. Firestone, M. B. Cohen, T. Thianniwet, and W. Niu present their
empirical investigation of organic software product lines. In their work, they apply product-
line techniques to the field of synthetic biology. With synthetic biology, organisms are
programmed to perform new functions by synthesizing their DNA. The authors reverse
engineer the variability of an open-source repository with 45k reusable DNA parts. In their
study, they evaluate the applicability of product-line concepts and give recommendations
for other emerging application domains of software product lines.

P. Temple, G. Perrouin, M. Acher, B. Biggio, J.-M. Jézéquel, and F. Roli empirically
assess the quality of adversarial configurations for software product lines. That is, the
authors apply adversarial machine learning to product-line configurations to overcome the
problem that exhaustively generating and testing all configurations is typically not feasible.
While their empirical studies were applied to two product lines, a major technical contri-
bution is how to encode the validity of configurations into the generation of adversarial
configurations.

In the paper “Lightweight, Semi-Automatic Variability Extraction: A Case Study on Sci-
entific Computing”, A. Grebhahn, C. Kaltenecker, C. Engwer, N. Siegmund, and S. Apel
investigate variability in an interesting domain: researchers in scientific computing fre-
quently follow a clone-and-own approach when using frameworks to simulate physical,
chemical, and biological processes. The paper proposes an API-based analysis approach
that recommends appropriate artifacts as possible alternatives for replacing given artifacts.
Such alternative artifacts can speed up performance of the simulation or make it amenable
to other use cases, without modifying the overall structure of the simulation. The authors
evaluate the practicality of their approach in a case study on the DUNE numerics framework
and two simulations from the realm of physical simulations.

E. Kuiter, S. Krieter, J. Krüger, G. Saake, and T. Leich present “variED: An Editor
for Collaborative, Real-Time Feature Modeling”, which supports the scenario of collabo-
rative and real-time editing of feature models. The article provides formal foundations of
collaborative, real-time feature modeling and conflict resolution, including proofs of the
formalization and an implementation of a tool prototype. The article further reports results
of an empirical evaluation assessing the prototype’s feasibility and showing that it is was
perceived as helpful and valuable by users.

Acknowledgements We thank the authors for their excellent manuscripts. We are deeply grateful to the
reviewers of this special section for their time and constructive feedback, which helped to shape the articles.
We are also thankful to the Empirical Software Engineering journal and the Editors-in-Chief, Robert Feldt
and Thomas Zimmermann, for their support throughout the process of preparing this special issue.

References

Berger T, Collet P, Duchien L, Fogdal T, Heymans P, Kehrer T, Martinez J, Mazo R, Montalvillo L, Salinesi
C, Tërnava X, Thüm T, Ziadi T (eds) (2019) Proceedings of the 23rd international systems and software
product line conference, SPLC 2019, volume a, paris, france, september 9-13, 2019. ACM, New York.
https://dl.acm.org/citation.cfm?id=3336294

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 3 of 3 72

https://dl.acm.org/citation.cfm?id=3336294

	Foreword to the Special Issue on Configurable Systems
	Summary of the Papers
	References

