
Empirical Software Engineering (2021) 26: 90
https://doi.org/10.1007/s10664-021-09982-4

Can Offline Testing of Deep Neural Networks Replace
Their Online Testing?

A Case Study of Automated Driving Systems

Fitash Ul Haq1 ·Donghwan Shin1 · Shiva Nejati1,2 · Lionel Briand1,2

Accepted: 26 May 2021
©

Abstract
We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline
testing where DNNs are tested as individual units based on test datasets obtained without
involving the DNNs under test, and online testing where DNNs are embedded into a specific
application environment and tested in a closed-loop mode in interaction with the application
environment. Typically, DNNs are subjected to both types of testing during their develop-
ment life cycle where offline testing is applied immediately after DNN training and online
testing follows after offline testing and once a DNN is deployed within a specific applica-
tion environment. In this paper, we study the relationship between offline and online testing.
Our goal is to determine how offline testing and online testing differ or complement one
another and if offline testing results can be used to help reduce the cost of online testing?
Though these questions are generally relevant to all autonomous systems, we study them in
the context of automated driving systems where, as study subjects, we use DNNs automat-
ing end-to-end controls of steering functions of self-driving vehicles. Our results show that
offline testing is less effective than online testing as many safety violations identified by
online testing could not be identified by offline testing, while large prediction errors gen-
erated by offline testing always led to severe safety violations detectable by online testing.
Further, we cannot exploit offline testing results to reduce the cost of online testing in prac-
tice since we are not able to identify specific situations where offline testing could be as
accurate as online testing in identifying safety requirement violations.

Keywords Deep Learning · Testing · Self-driving Cars

Communicated by: Miryung Kim

This work has received funding from the European Research Council under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 694277), Luxembourg’s
National Research Fund (FNR) under grant BRIDGES2020/IS/14711346/FUNTASY, IEE S.A.
Luxembourg, and NSERC of Canada under the Discovery and Canada Research Chair programmes.
Donghwan Shin was partially supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A6A3A03033444).

� Donghwan Shin
donghwan.shin@uni.lu

Extended author information available on the last page of the article.

/ Published online: 5 July 2021
The Author(s), corrected pulication 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09982-4&domain=pdf
http://orcid.org/0000-0003-2253-9085
http://orcid.org/0000-0002-0840-6449
http://orcid.org/0000-0002-0281-8231
http://orcid.org/0000-0002-1393-1010
mailto: donghwan.shin@uni.lu

Empir Software Eng (2021) 26: 90

1 Introduction

Deep Neural Networks (DNNs) have been widely adopted in many real-world applications,
such as image classification (Ciresan et al. 2012), natural language processing (Sutskever
et al. 2014), and speech recognition (Deng et al. 2013). Recent successes of DNNs on
such practical problems make them key enablers of smart and autonomous systems such as
automated-driving vehicles. As DNNs are increasingly used in safety critical autonomous
systems, the challenge of ensuring safety and reliability of DNN-based systems emerges as
a fundamental software verification problem.

A main distinction between DNN testing (or in general, testing Machine Learning com-
ponents) and traditional software testing is that the process of DNN testing follows a specific
workflow that involves two testing phases, i.e., offline testing and online testing, as shown
in Fig. 1. Offline testing is a necessary and standard step in developing Machine Learn-
ing (ML) models and is applied immediately after training a DNN model. It is used to
ensure that the trained DNN model is sufficiently accurate when applied to new data (i.e.,
test data). Online testing, in contrast, is performed after deploying a DNN into a specific
application (e.g., an automated driving system) and evaluates DNN interactions with the
application environment and users. Specifically, in offline testing, DNNs are tested as a unit
in an open-loop mode. They are fed with test inputs generated without involving the DNN
under test, either manually or automatically. The outputs of DNNs are then typically eval-
uated by assessing their prediction error, which is the difference between the expected test
outputs (i.e., test oracles) and the outputs generated by the DNN under test. In online testing,
however, DNNs are tested within an application environment in a closed-loop mode. They
receive test inputs generated by the environment, and their outputs are, then, directly fed
back into the environment. Online testing evaluates DNNs by monitoring the requirements
violations they trigger, for example related to safety. Given the safety critical nature of many
systems relying on DNNs (e.g., self-driving cars), most online testing approaches rely on
simulators, as testing DNNs embedded into real and operational environment is expensive,
time consuming and often dangerous.

Recently, many DNN testing techniques and algorithms have been proposed in the litera-
ture (Zhang et al. 2020). However, the majority of the existing DNN testing techniques are
either specifically designed for offline testing or even if they could be applied in an online setting,
they are still solely evaluated and assessed in an offline setting. This is partly because offline
testing matches the standard checking of an ML model in terms of prediction accuracy, that does
not require the DNN to be embedded into an application environment and can be readily

Fig. 1 Idealized Workflow of ML testing (Zhang et al. 2020)

90 Page 2 of 30

Empir Software Eng (2021) 26: 90

carried out with either manually generated or automatically generated test data. Given the
increasing availability of open-source data, a large part of offline testing research uses open-
source, manually-generated real-life test data. Online testing, on the other hand, necessitates
embedding a DNN into an application environment, either real or simulated.

Even though online testing is less studied, it remains an important phase for DNN testing
for a number of reasons (Zhang et al. 2020). First, the test data used for offline testing may
not be representative of the data that a DNN should eventually be able to handle when it is
embedded into a specific application. Second, in contrast to offline testing, online testing is
able to assess the DNN interactions with an application environment and can reveal failures
that can only occur with real applied scenarios (e.g., if an accident actually happens in
self-driving cars on real driving scenarios). In other words, while offline testing results are
limited to assessing prediction errors or prediction accuracy, online testing results can be
used to directly assess system-level requirements (e.g., whether or not an accident happened,
or if there is a security breach, or if there is a data loss or communication error).

At a high-level, we expect offline testing to be faster and less expensive than online
testing because offline testing does not require a closed-loop environment to generate test
inputs. However, there is limited insight as to how these two testing modes compare with
one another with respect to their ability to reveal faulty behaviors and most particularly
those leading to safety violations. This, for example, would depend if large prediction errors
identified by offline testing always lead to safety violations detectable by online testing,
or if the safety violations identified by online testing translate into large prediction errors.
Answers to these questions would enable us to better understand the limitations of the two
testing stages and their relationship.

We investigated the above questions in an empirical study and presented the results in
a conference paper (Haq et al. 2020a) published in International Conference on Software
Testing, Verification and Validation (ICST 2020). Though the investigated questions are
generally relevant to all autonomous systems, we performed an empirical study to compare
offline testing and online testing in the context of Automated Driving Systems (ADS). In
particular, our study aimed to ultimately answer the following research question: How do
offline and online testing results differ and complement each other? To answer this question,
we used open-source DNN models developed to automate steering functions of self-driving
vehicles (Udacity 2016a). To enable online testing of these DNNs, we integrated them into
a powerful, high-fidelity physics-based simulator of self-driving cars (TASS International -
Siemens Group 2019). The simulator allows us to specify and execute scenarios capturing
various road traffic situations, different pedestrian-to-vehicle and vehicle-to-vehicle inter-
actions, and different road topologies, weather conditions and infrastructures. As a result, in
our study offline and online testing approaches were compared with respect to the data gen-
erated automatically using a simulator. To ensure that this aspect does not impact the validity
of our comparison, we investigated the following research question as a pre-requisite of the
above question: Can we use simulator-generated data as a reliable substitute to real-world
data for the purpose of DNN testing?

While the above research questions provide insights on the relationship between offline
and online testing results, it is still unclear how we can use offline and online testing together
in practice such that we can minimize cost and maximize the effectiveness of testing DNNs.
As the ML testing workflow in Fig. 1 suggests, offline testing always precedes online test-
ing and given that offline testing is considerably less expensive than online testing, it is
beneficial if we can exploit offline testing results to reduce the cost of online testing by run-
ning fewer tests. In this article, we introduce a new research question to determine if offline

Page 3 of 30 90

Empir Software Eng (2021) 26: 90

testing results can be used to help reduce the cost of online testing? Our goal is to identify
whether we can characterize the test scenarios (conditions) where offline and online testing
results are the same with high probability. To do so, we propose a novel heuristic approach
to infer such conditions from limited number of offline and online testing data in an efficient
and effective way.

The contributions of this article are summarized below:

1. We show that we can use simulator-generated datasets in lieu of real-life datasets for
testing DNNs in our application context. Our comparison between online and offline
testing using such datasets show that offline and online testing results frequently differ,
and specifically, offline testing results are often not able to find faulty behaviors due to
the lack of error accumulation over time. As a result, many safety violations identified
by online testing could not be identified by offline testing as they did not cause large
prediction errors. However, all the large prediction errors generated by offline testing
led to severe safety violations detectable by online testing.

2. We provide a three-step approach to infer (learn) conditions characterizing agree-
ment and disagreement between offline and online testing results while minimizing
the amount of the data required to infer the conditions and maximizing the statistical
confidence of the results.

3. We were not able to infer any conditions that can characterize agreement between
offline and online testing results with a probability higher than 71%. This means that,
in general, we cannot exploit offline testing results to reduce the cost of online testing
in practice.

The first contribution is mainly the result of our first two research questions presented
in our earlier work (Haq et al. 2020a). In this article, we have, however, extended our first
contribution in two ways: First, our earlier work used two ADS DNNs from the Udacity
challenge (Udacity 2016a), namely Autumn and Chauffeur. In this article, we add another
DNN model (Komanda) from the same Udacity challenge to the set of our study subjects
to strengthen our results. We also surveyed other ADS-DNNs from the Udacity challenge
and other sources, but we were not able to find any other suitable study subject candidate
since other public ADS-DNNs are either significantly more inaccurate (higher prediction
errors) than our three selected DNNs or their inputs and outputs were not compatible with
our simulator, and hence, we could not test them in an online setting. Second, in this article,
we provide additional correlation analysis between offline and online testing to support our
results.

The second and third contributions are completely new and have not been presented
before. In addition, in this article, we refine and extend ideas from our previous work and
extend our discussion of the related literature. Through our experiments, we collected both
offline and online testing results for more than 700 test scenarios in total, taking around
350 hours of simulations, resulting in around 50 GB of simulator-generated images. To
facilitate the replication of our study, we have made all the experimental materials, including
simulator-generated data, publicly available (Haq et al. 2020b).

The rest of the paper is organized as follows: Section 2 provides background on DNNs for
autonomous vehicles, introduces offline and online testing, describes our proposed domain
model that is used to configure simulation scenarios for automated driving systems, and
formalizes the main concepts in offline and online testing used in our experiments. Section 3
reports on the empirical evaluation. Section 5 surveys the existing research on online and
offline testing for automated driving system. Section 6 concludes the paper.

90 Page 4 of 30

Empir Software Eng (2021) 26: 90

2 Background

This section provides the basic concepts that will be used throughout the article.

2.1 DNNs in ADS

Depending on the ADS design, DNNs may be used in two ways to automate the driving task
of a vehicle: One design approach is to incorporate DNNs into the ADS perception layer,
primarily to do semantic segmentation (Geiger et al. 2012), i.e., to classify and label each
and every pixel in a given image. The ADS software controller then decides what commands
should be issued to the vehicle’s actuators based on the classification results produced by
the DNN (Pomerleau 1989). An alternative design approach is to use DNNs to perform the
end-to-end control of a vehicle (Udacity 2016a) (e.g., Fig. 2). In this case, DNNs directly
generate the commands to be sent to the vehicle’s actuators after processing images received
from cameras. Our approach to compare offline and online testing of DNNs is applicable to
both ADS designs. In the comparison provided in this article, however, we use DNN models
automating the end-to-end control of the steering function since these models are publicly
available online and have been extensively used in recent studies on DNN testing (Tian et al.
2018; Zhang et al. 2018; Ma et al. 2018; Kim et al. 2019). In particular, we investigate the
DNN models from the Udacity self-driving challenge as our study subjects (Udacity 2016a).
We refer to this class of DNNs as ADS-DNNs in the remainder of the article. Specifically,
an ADS-DNN receives as input images from a front-facing camera mounted on a vehicle,
and generates a steering angle command for the vehicle.

2.2 Test Data Sources

We identify two sources for generating test data for testing ADS-DNNs: (1) real-life driving
and (2) driving simulator.

For our ADS-DNN models, a real-life dataset is a video or a sequence of images captured
by a camera mounted on a vehicle’s dashboard while the vehicle is being driven by a human
driver. The steering angle of the vehicle applied by the human driver is recorded for the
duration of the video and each image (frame) of the video in this sequence is labelled by
its corresponding steering angle. This yields a sequence of manually labelled images to be
used for testing DNNs. There are, however, some drawbacks with test datasets captured

ADS

DNN

Camera Steering angle

Brake & Accelerate

Environment ActionFeedback

Lidar

Fig. 2 Overview of DNN-based ADS

Page 5 of 30 90

Empir Software Eng (2021) 26: 90

from real-life (Kalra and Paddock 2016). Specifically, data generation is expensive, time
consuming and lacks diversity. The latter issue is particularly critical since driving scenes,
driving habits, as well as objects, infrastructures and roads in driving scenes, can vary widely
across countries, continents, climates, seasons, day times, and even drivers.

Another source of test data generation is to use simulators to automatically generate
videos capturing various driving scenarios. There are increasingly more high-fidelity and
advanced physics-based simulators for self-driving vehicles fostered by the needs of the
automotive industry, which increasingly relies on simulators to improve their testing and
verification practices. There are several examples of commercial ADS simulators (e.g.,
PreScan (TASS International - Siemens Group 2019) and Pro-SiVIC (ESI Group 2019)) and
a number of open source ones (e.g., CARLA (Dosovitskiy et al. 2017) and LGSVL (Rong
et al. 2020)). These simulators incorporate dynamic models of vehicles (including vehi-
cles’ actuators, sensors and cameras) and humans as well as various environment aspects
(e.g., weather conditions, different road types, different infrastructures). The simulators are
highly configurable and can be used to generate desired driving scenarios. In our work, we
use the PreScan simulator to generate test data for ADS-DNNs. PreScan is a widely-used,
high-fidelity commercial ADS simulator in the automotive domain and has been used by our
industrial partner. In Section 2.3, we present the domain model that define the inputs used
to configure the simulator, and describe how we automatically generate scenarios that can
be used to test ADS-DNNs. Similar to real-life videos, the videos generated by our simula-
tor are sequences of labelled images such that each image is labelled by a steering angle. In
contrast to real-life videos, the steering angles generated by the simulator are automatically
computed based on the road trajectory as opposed to being generated by a human driver.

The simulator-generated test datasets are cheaper and faster to produce compared to real-
life ones. In addition, depending on how advanced and comprehensive the simulator is, we
can achieve a higher-level of diversity in the simulator-generated datasets by controlling and
varying the objects, roads, weather, and other various features. However, it is not yet clear
whether simulator-generated images can be used in lieu of real images since the latter may
have higher resolution, showing more natural texture, and look more realistic. In this article,
we conduct an empirical study in Section 3 to investigate if we can use simulator-generated
images as a reliable alternative to real images for testing ADS-DNNs.

2.3 DomainModel

Figure 3 shows the domain model capturing the test input space of ADS-DNNs. To develop
the domain model, we relied on two sources of information: (1) the properties that we
observed in the real-world ADS-DNN test datasets (i.e., the Udacity testing datasets (Udac-
ity 2016b)) and (2) the configurable parameters of our simulator. In total, we identified four
main objects, i.e., Road, Vehicle, Weather, and Environment, and 32 attributes characteriz-
ing them, such as Road.type, Vehicle.speed, Weather.type, and Environment.buildings. Each
attribute has a specific data type; for example, the Weather.type attribute is an enumeration
type, having three different weather values (i.e., Snowy, Sunny, and Rainy) as shown in the
definition of Weather.Type in Fig. 3. This means that only one of the three values can be
assigned to Weather.type. Note that, to illustrate the lower diversity in real-world datasets,
the attributes and their values that are observed in the real world are highlighted in bold. For
example, only the Sunny weather is observed in the real-world test datasets.

In addition to objects and attributes, our domain model includes some constraints
describing valid value assignments to the attributes. These constraints mostly capture the
physical limitations and traffic rules that apply to our objects. For example, the vehicle

90 Page 6 of 30

Empir Software Eng (2021) 26: 90

Fig. 3 Complete domain model for scenario generation. The attributes and values that are observed in the
real-world test datasets are highlight in bold

speed cannot be higher than 20km/h on steep curved roads. Constraints may also be used
to capture dependencies between attributes that cannot be specified through the relation-
ships between domain model objects. For example, we define a constraint to indicate that
Weather.condition can only take a value when Weather.type is either Snowy or Rainy. That
is, for Sunny we do not need to specify any weather condition. We have specified these
constraints in the Object Constraint Language (OCL) (Group 2014). The complete OCL
constraints are available in the supporting materials (Haq et al. 2020b).

To produce a simulation scenario (or test scenario) for an ADS-DNN, we instantiate our
domain model in Fig. 3 by assigning concrete values to the attributes of our domain model
such that its OCL constraints are satisfied. Specifically, we can represent each test scenario
as a vector s = 〈v1, v2, . . . , v32〉 where vi is the value assigned to the ith attribute of our
domain model (recall that it contains 32 attributes). We can then initialize the simulator

Page 7 of 30 90

Empir Software Eng (2021) 26: 90

based on the test scenario vectors. The simulator will then generate, for each of the mobile
objects defined in a scenario, namely the ego and secondary vehicles and pedestrians, a
trajectory vector of the path of that object (i.e., a vector of values indicating the positions
and speeds of the mobile object over time). The length of the trajectory vector is determined
by the duration of the simulation. The position values are computed based the characteristics
of the static objects specified by the initial configuration, such as roads and sidewalks, as
well as the speed of the mobile objects.

2.4 Offline Testing

Figure 4 represents an overview of offline DNN testing in the ADS context. Briefly, offline
testing verifies the DNN using historical data consisting of sequences of images captured
from real-life camera or based on a camera model of a simulator. In either case, the images
are labelled with steering angles. Offline testing measures the prediction errors of the DNN
to evaluate test results.

More specifically, let r be a real-life test dataset composed of a sequence of tuples
〈(ir1, θr

1), (ir2, θr
2), . . . , (irn, θ

r
n)〉. For j = 1, . . . , n, each tuple (irj , θ

r
j) of r consists of

an image irj and a steering angle θr
j label. A DNN d, when provided with a sequence

〈ir1, ir2, . . . , irn〉 of the images of r, returns a sequence 〈θ̂ r
1 , θ̂ r

2 , . . . , θ̂ r
n〉 of predicted steering

angles. The prediction error of d for r is, then, computed using two well-known metrics,
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), defined below:

MAE(d, r) =
∑n

i=1|θr
i −θ̂ r

i |
n

RMSE(d, r) =
√

∑n
i=1(θ

r
i −θ̂ r

i)2

n

To generate a test dataset using a simulator, we provide the simulator with an initial config-
uration of a scenario as defined in Section 2.3. We denote the offline test dataset generated
by a simulator for a scenario s by sim(s) = 〈(is1, θs

1), (is2, θ
s
2), . . . , (isn, θ

s
n)〉. The predic-

tion error of d for sim(s) is calculated by the MAE and RMSE metrics in the same way as
MAE(d, r) and RMSE(d, r), replacing r with sim(s).

PredictionsDNNTest Data

Human Drvier Real Car

Domain Model Simulator

(2)

(1)

Fig. 4 Offline testing using (1) real-world and (2) simulator-generated data

90 Page 8 of 30

Empir Software Eng (2021) 26: 90

2.5 Online Testing

Figure 5 provides an overview of online testing of DNNs in the ADS context. In contrast
to offline testing, DNNs are embedded into a driving environment, often in a simulator due
to the cost and risk of real-world testing as we described in Section 2.2. DNNs then receive
images generated by the simulator, and their outputs are directly sent to the (ego) vehicle
models of the simulator. With online testing, we can evaluate how predictions generated
by an ADS-DNN, for an image generated at time t in a scenario, impact the images to be
generated at the time steps after t . In addition to the steering angle outputs directly generated
by the ADS-DNN, we obtain the trajectory outputs of the ego vehicle, which enable us to
determine whether the vehicle is able to stay in its lane.

More specifically, we embed a DNN d into a simulator and run the simulator. For each
(initial configuration of a) scenario, we execute the simulator for a time duration T . The
simulator generates the trajectories of mobile objects as well as images taken from the front-
facing camera of an ego vehicle at regular time steps tδ , generating outputs as vectors of size
m = � T

tδ
�. Each simulator output and image takes an index between 1 to m. We refer to the

indices as simulation time steps. At each time step j , the simulator generates an image isj to

be sent to d as input, and d predicts a steering angle θ̂ s
j which is sent to the simulator. The

status of the ego vehicle is then updated in the next time step j + 1 (i.e., the time duration
it takes to update the vehicle is tδ) before the next image isj+1 is generated. In addition to
images, the simulator generates the position of the ego vehicle over time. Recall that the
main function of our DNN is automated lane keeping. This function is violated when the ego
vehicle departs from its lane. To measure the lane departure degree, we use the Maximum
Distance from Center of Lane (MDCL) metric for the ego vehicle to determine if a safety
violation has occurred. The value of MDCL is computed at the end of the simulation when
we have the position vector of the ego vehicle over time steps, which was guided by our
DNN. We cap the value of MDCL at 1.5 m, indicating that when MDCL is 1.5 m or larger,
the ego vehicle has already departed its lane and a safety violation has occurred. In addition,
we normalize the MDCL values between 0 and 1 to make it consistent with MAE or RMSE.

In this article, we embed the ADS-DNN into PreScan by providing the former with the
outputs from the camera model in input and connecting the steering angle output of the
ADS-DNN to the input command of the vehicle dynamic model.

Domain Model

Image

DNNSimulator

Steering Angle

Ego Car and
Mobile Objects

Behaviors
over Time

Fig. 5 Online testing of ADS-DNNs using simulators

Page 9 of 30 90

Empir Software Eng (2021) 26: 90

3 Experiments

We aim to compare offline and online testing of DNNs by answering the following research
questions:

RQ1: Can we use simulator-generated data as a reliable alternative source to real-world
data? Recall the two sources for generating test data as described in Section 2.2. While
simulator-generated test data is cheaper and faster and is more amenable to input diversifi-
cation compared to real-life test data, the texture and resolution of real-life data look more
natural and realistic compared to the simulator-generated data. In RQ1, we aim to investi-
gate whether, or not, such differences lead to significant inaccuracies in predictions of the
DNN under test in offline testing. The answer to this question will determine if we can rely
on simulator-generated data for testing DNNs in either offline or online testing modes.

RQ2: How frequently do offline and online testing results differ and do they complement
each other? RQ2 is one of the main research questions we want to answer in this paper.
We want to know how the results obtained by testing a DNN in isolation, irrespective of
a particular application context, compare with the results obtained by embedding a DNN
into a specific application environment. The answer to this question will help engineers and
researchers better understand the applications and limitations of each testing mode, and how
they could possibly be combined.

RQ3: Can offline testing results be used to help reduce the cost of online testing? In other
words, can we focus online testing on situations where it is needed, i.e., on situations where
offline and online testing are in disagreement? With RQ3, we investigate whether any offline
testing results can be lifted to online testing to help reduce the amount of online testing
that we need to do. Our goal is to determine whether we can characterize the test scenarios
where offline and online testing behave the same in terms of our domain model elements.
This provides the conditions under which offline testing is sufficient, thus avoiding online
testing, which is much more expensive.

3.1 Experimental Subjects

We use three publicly-available, pre-trained DNN-based steering angle prediction models,
i.e., Autumn (2016), Chauffeur (2016), and (Komanda 2016), that have been widely used in
previous work to evaluate various DNN testing approaches (Tian et al. 2018; Zhang et al.
2018; Kim et al. 2019).

Autumn consists of an image preprocessing module implemented using OpenCV to
compute the optical flow of raw images, and a Convolutional Neural Network (CNN)
implemented using Tensorflow and Keras to predict steering angles. Autumn improved per-
formance by using cropped images from the bottom half of the entire images. Chauffeur
consists of one CNN that extracts the features from raw images and a Recurrent Neural Net-
work (RNN) that predicts steering angles from the previous 100 consecutive images with
the aid of a LSTM (Long Short-Term Memory) module. Similar to Autumn, Chauffeur uses
cropped images, and is also implemented with Tensorflow and Keras. Komanda consists of
one CNN followed by one RNN with LSTM, implemented by Tensorflow, similar to Chauf-
feur. However, the underlying CNN of Komanda has one more dimension than Chauffeur
that is in charge of learning spatiotemporal features. Further, unlike Autumn and Chauffeur,
Komanda uses full images to predict steering angles.

The models are developed using the Udacity dataset (2016b), which contains 33808
images for training and 5614 images for testing. The images are sequences of frames of two
separate videos, one for training and one for testing, recorded by a dashboard camera with

90 Page 10 of 30

Empir Software Eng (2021) 26: 90

20 Frame-Per-Second (FPS). The dataset also provides, for each image, the actual steering
angle produced by a human driver while the videos were recorded. A positive (+) steer-
ing angle represents turning right, a negative (-) steering angle represents turning left, and
a zero angle represents staying on a straight line. The steering angle values are normalized
(i.e., they are between −1 and +1) where a +1 steering angle value indicates 25◦, and a −1
steering angle value indicates -25◦1. Figure 6 shows the actual steering angle values for the
sequence of 5614 images in the test dataset. We note that the order of images in the training
and test datasets matters and is accounted for when applying the DNN models. As shown
in the figure, the steering angles issued by the driver vary considerably over time. The large
steering angle values (more than 3◦) indicate actual road curves, while the smaller fluctua-
tions are due to the natural behavior of the human driver even when the vehicle drives on a
straight road.

Table 1 shows the RMSE and MAE values of the two models we obtained for the Udac-
ity test dataset, as well as the RMSE values reported by the Udacity website (2016a)2. The
differences are attributed to challenges regarding reproducibility, a well-known problem for
state-of-the-art deep learning methods (Pineau 2019) because they involve many parame-
ters and details whose variations may lead to different results. Specifically, even though we
tried to carefully follow the same settings and parameters as those suggested on the Udacity
website, as shown in Table 1, the RMSE and MAE values that we computed differed from
those reported by Udacity. We believe these differences are due to the versions of python
and other required libraries (e.g., tensorflow, keras, and scipy). The precise version infor-
mation for all these were not reported by Udacity. Nevertheless, for all of our experiments,
we consistently used the most stable versions of python and the libraries that were com-
patible with one another. In other words, irrespective of differences in the RMSE values
between the reported and our in Table 1, all of our experiments are internally consistent. To
enable replication of our work, we have made our detailed configurations (e.g., python and
auxiliary library versions), together with supporting materials, available online (Haq et al.
2020b).

While MAE and RMSE are two of the most common metrics used to measure prediction
errors for learning models with continuous variable outputs, we mainly use MAE throughout
this article because, in contrast to RMSE, MAE values can be directly interpreted in terms
of individual steering angle values. For example, MAE(d, r) = 1 means that the average
prediction error of d for the images in r is 1 (25◦). Since MAE is a more intuitive metric for
our purpose, we will only report MAE values in the remainder of this article.

3.2 RQ1: Comparing Offline Testing Results for Real-life Data and
Simulator-generated Data

3.2.1 Setup

We aim to generate simulator-generated datasets closely mimicking the Udacity real-life
test dataset and verify whether the prediction errors obtained by applying DNNs to the
simulator-generated datasets are comparable with those obtained for their corresponding

1This is how Tian et al. (2018) have interpreted the steering angle values provided along with the Udacity
dataset, and we follow their interpretation. We were not able to find any explicit information about the
measurement unit of these values anywhere else.
2Autumn’s RMSE is not presented in the final leaderboard.

Page 11 of 30 90

Empir Software Eng (2021) 26: 90

−1.0

−0.5

0.0

0.5

1.0

0 2000 4000
Image ID

S
te

er
in

g
an

gl
e

(d
eg

/2
5)

Fig. 6 Actual steering angles for the 5614 real-world images used for testing

real-life ones. As explained in Section 3.1, our real-life test dataset is a sequence of 5614
images labelled with their corresponding actual steering angles. If we could precisely
extract the properties of the environment and the dynamics of the ego vehicle from the
real-life datasets, in terms of initial configuration parameters of the simulator, we could per-
haps generate simulated data closely resembling the real-life videos. However, extracting
information from such video images to generate inputs of a simulator is not possible.

Instead, we propose a two-step heuristic approach to replicate the real-life dataset using
our simulator. Basically, we steer the simulator to generate a sequence of images similar to
the images in the real-life dataset such that the steering angles generated by the simulator
are close to the steering angle labels in the real-life dataset.

In the first step, we observe the test dataset and manually identify the information in
the images that correspond to some attribute values in our domain model described in
Section 2.3. We then create a “restricted” domain model by fixing the attribute values in our
domain model to the values we observed in the Udacity test dataset. This enables us to steer
the simulator to resemble the characteristics of the images in the test dataset to the extent
possible. Our restricted domain model includes the attributes and its values that are high-
lighted in bold in Fig. 3. For example, the restricted domain model does not include weather
conditions other than sunny because the test dataset has only sunny images. This guarantees
that the simulator-generated images based on the restricted domain model represent sunny
scenes only. Using the restricted domain model, we randomly generate a large number of
scenarios yielding a large number of simulator-generated datasets.

In the second step, we aim to ensure that the datasets generated by the simulator have
similar steering angle labels as the labels in the real-life dataset. To ensure this, we match
the simulator-generated datasets with (sub)sequences of the Udacity test dataset such that
the similarities between their steering angles are maximized. Note that steering angle is not

Table 1 Accuracies of the subject DNN-based models

Model Reported RMSE Our RMSE Our MAE

Autumn Not Presented 0.049 0.034

Chauffeur 0.058 0.092 0.055

Komanda 0.048 0.058 0.039

90 Page 12 of 30

Empir Software Eng (2021) 26: 90

a configurable attribute in our domain model, and hence, we could not force the simulator
to generate data with steering angle values identical to those in the test dataset by restricting
our domain model. In other words, we minimize the differences by selecting the closest
simulator-generated datasets from a large pool of randomly generated ones. To do this, we
define, below, the notion of “comparability” between a real-life dataset and a simulator-
generated dataset in terms of steering angles.

Let S be a set of randomly generated scenarios using the restricted domain model,
and let r = 〈(ir1, θr

1), . . . , (irk , θ
r
k)〉 be the Udacity test dataset where k = 5614. We

denote by r(x,l) = 〈(irx+1, θ
r
x+1), . . . , (i

r
x+l , θ

r
x+l)〉 a subsequence of r with length l start-

ing from index x + 1 where x ∈ {0, 1, . . . , k}. For a given simulator-generated dataset
sim(s) = 〈(is1, θs

1), . . . , (isn, θ
s
n)〉 corresponding to a scenario s ∈ S, we compute r(x,l) using

the following three conditions:

l = n (1)

x = argmin
x

l∑

j=1

∣
∣
∣θs

j − θr
x+j

∣
∣
∣ (2)

∑l
j=1

∣
∣
∣θs

j − θr
x+j

∣
∣
∣

l
≤ ε (3)

where argminxf (x) returns3 x minimizing f (x), and ε is a small threshold on the average
steering angle difference between sim(s) and r(x,l). We say datasets sim(s) and r(x,l) are
comparable if and only if r(x,l) satisfies the three above conditions (i.e., (1), (2) and (3)).

Given the above formalization, our approach to replicate the real-life dataset r using our
simulator can be summarized as follows: In the first step, we randomly generate a set of
many scenarios S based on the reduced domain model. In the second step, for every scenario
s ∈ S, we identify a subsequence r(x,l) from r such that sim(s) and r(x,l) are comparable.

If ε is too large, we may find that r(x,l) has steering angles that are too different from
those in sim(s). On the other hand, if ε is too small, we may not be able to find a r(x,l) that
is comparable to sim(s) for many scenarios s ∈ S randomly generated in the first step. In
our experiments, we select ε = 0.1 (2.5◦) since, based on our preliminary evaluations, we
can achieve an optimal balance with this threshold.

For each comparable pair of datasets sim(s) and r(x,l), we measure the prediction
error difference for the same DNN to compare the datasets. Specifically, we measure
|MAE(d, sim(s)) − MAE(d, r(x,l))| of a DNN d. Recall that offline testing results
for a given DNN d are measured based on prediction errors in terms of MAE. If
|MAE(d, sim(s)) − MAE(d, r(x,l))| ≤ 0.1 (meaning 2.5◦ of average prediction error
across all images), we say that r(x,l) and sim(s) yield consistent offline testing results for d.

We note that the real-life images in the Udacity test dataset are multicolored or polychro-
matic. However, our preliminary evaluation confirmed that the steering predictions of our
DNN subjects do not change more than 0.006◦ on average when we convert polychromatic
images to monochromatic images in the Udacity test dataset. Hence, we do not attempt to
make the colors of the simulator-generated images similar to that of the real-life images as
color has little impact on the DNN’s predictions.

3If f has multiple points of the minima, one of them is randomly returned.

Page 13 of 30 90

Empir Software Eng (2021) 26: 90

3.2.2 Results

Among the 100 randomly generated scenarios (i.e., |S| = 100), we identified 92 scenarios
that could match subsequences of the Udacity real-life test dataset. Figure 7 shows an exam-
ple comparable pair of r(x,l) (i.e., real dataset) and sim(s) (i.e., simulator-generated dataset)
identified using our two-step heuristic. Specifically, Fig. 7(a) shows the steering angles for
all the images in the example comparable pair. Figures 7(b) and 7(c) show two matching
frames from the pair where the difference in the steering angles is the smallest (i.e., the
40th frames where |θr − θs | = 0). Figures 7(d) and 7(e) show two other matching frames
from the pair where the difference in the steering angles is the largest (i.e., the 112th frames
where |θr − θs | = 0.1115). As shown in the steering angle graph in Fig. 7(a), the simulator-
generated dataset and its comparable real dataset subsequence do not have identical steering
angles. For example, the actual steering angles produced by a human driver have natural
fluctuations whereas the steering angles generated by the simulator are relatively smooth.
The differences in steering angles can also be attributed to the complexity of the real-world
not reflected in the simulator (e.g., bumpy roads). Nevertheless, the overall steering angle

Fig. 7 Example comparable pair of a simulator-generated and real-life datasets

90 Page 14 of 30

Empir Software Eng (2021) 26: 90

patterns are very similar. If we look at the matching frames shown in Figs. 7(d) and 7(c), the
matching frames look quite similar in terms of essential properties, such as road topology
and incoming vehicles on the other lane. Regarding the matching frames shown in Figs. 7(d)
and 7(e), they capture the largest difference in steering angles the comparable pair of real
and simulated datasets. We can note differences between the matching frames regarding
some aspects, such as the shape of buildings and trees. Once again, this is because the com-
plexity and diversity of the real-world is not fully reflected in the simulator. This point will
be further discussed in Section 4.1.

Figure 8 shows, for each of our DNNs, Autumn, Chauffeur, and Komanda, the dis-
tributions of the prediction error differences for the real datasets (subsequences) and the
simulator-generated datasets. For Autumn, the average prediction error difference between
the real datasets and the simulator-generated datasets is 0.027. Further, 95.6% of the com-
parable pairs show a prediction error difference below 0.1 (2.5◦). This means that the
(offline) testing results obtained for the simulator-generated datasets are consistent with
those obtained using the real-world datasets for almost all comparable dataset pairs. The
results for Komanda are similar: the average prediction error difference is 0.023, and 96.7%
of the comparable pairs show a prediction error difference below 0.1 (2.5◦). On the other
hand, for Chauffeur, only 66.3% of the comparable pairs show a prediction error difference
below 0.1. This means that testing results between real datasets and simulator-generated
datasets are inconsistent in 33.71% of the 92 comparable pairs. Specifically, for all the
inconsistent cases, we observed that the MAE value for the simulator-generated dataset is
greater than its counterpart for the real-world dataset. It is therefore clear that the predic-
tion error of Chauffeur tends to be larger for the simulator-generated dataset than for the
real-world dataset. In other words, the simulator-generated datasets tend to be conserva-
tive for Chauffeur and report more false positives than for Autumn and Komanda in terms
of prediction errors. We also found that, in several cases, Chauffeur’s prediction errors are
greater than 0.2 while Autumn’s and Komanda’s prediction errors are less than 0.1 for the

0.00

0.25

0.50

0.75

1.00

Autumn Chauffeur Komanda

M
A

E
 d

iff
er

en
ce

Fig. 8 Distributions of the differences between the prediction errors obtained for the real datasets (subse-
quences) and the simulator-generated datasets

Page 15 of 30 90

Empir Software Eng (2021) 26: 90

same simulator-generated dataset. One possible explanation is that Chauffeur is over-fitted
to the texture of real images, while Autumn is not thanks to the image preprocessing mod-
ule. Nevertheless, the average prediction error differences between the real datasets and the
simulator-generated datasets is 0.080 for Chauffeur, which is still less than 0.1. This implies
that, although Chauffeur will lead to more false positives (incorrect safety violations) than
Autumn and Komanda, the number of false positives is still unlikely to be overwhelming.

We remark that the choice of simulator as well as the way we generate data using our
selected simulator, based on carefully designed experiments such as the ones presented
here, are of great importance. Selecting a suboptimal simulator may lead to many false pos-
itives (i.e., incorrectly identified prediction errors) rendering simulator-generated datasets
ineffective.

The answer to RQ1 is that, for all the subject DNNs, the prediction error differences
between simulator-generated and real-life datasets are less than 0.1 on average. We
conclude that we can use simulator-generated datasets as a reliable alternative to real-
world datasets for testing DNNs.

3.3 RQ2: Comparison between Offline and Online Testing Results

3.3.1 Setup

We aim to compare offline and online testing results in this research question. We ran-
domly generate scenarios and compare the offline and online testing results for each of the
simulator-generated datasets.

For the scenario generation, we use the extended domain model (see Fig. 3) to take
advantage of all the feasible attributes provided by the simulator. Specifically, in Fig. 3,
the gray-colored entities and attributes in bold are additionally included in the extended
domain model compared to the restricted domain model used for RQ1. For example, the
(full) domain model contains various weather conditions, such as rain, snow, and fog, in
addition to sunny.

Let S′ be the set of randomly generated scenarios based on the (full) domain model.
For each scenario s ∈ S′, we prepare the simulator-generated dataset sim(s) for offline
testing and measure MAE(d, sim(s)) for a DNN d. For online testing, we measure
MDCL(d, s). Then we compute the Spearman rank correlation coefficient ρ (rho) between
MAE(d, sim(s)) and MDCL(d, s) to assess the overall correlation between offline and
online testing results. When ρ is 0, it means that there is no monotonic relation between
MAE and MDCL. The closer ρ to 1, the closer the relation between MAE and MDCL to
a perfectly monotonic relation. When ρ is 1, it means that MAE systematically increases
(decreases) when MDCL increases (decreases).

We further compare the offline and online testing results for individual scenarios. How-
ever, since MAE and MDCL are different metrics, we cannot directly compare them.
Instead, we set threshold values for MAE and MDCL to translate these metrics into binary
results (i.e., acceptable versus unacceptable) that can be compared. In particular, we inter-
pret the online testing results of DNN d for a test scenario s as acceptable if MDCL(d, s) <

90 Page 16 of 30

Empir Software Eng (2021) 26: 90

0.7 and unacceptable otherwise. Note that we have MDCL(d, s) < 0.7 when the departure
from the centre of the lane observed during the simulation of s is less than around one meter.
Based on domain expert knowledge, such a departure can be considered safe. We then com-
pute a threshold value for MAE that is semantically similar to the 0.7 threshold for MDCL.
To do so, we calculate the steering angle error that leads to the vehicle deviating from the
centre of the lane by one meter. This, however, depends on the vehicle speed and the time
it takes for the vehicle to reach such deviation. We assume the speed of the vehicle to be 30
km/h (i.e., the slowest vehicle speed when the vehicle is driving on normal roads) and the
time required to depart from the centre of the lane to be 2.7 seconds (which is a conservative
driver reaction time for braking (McGehee et al. 2000)). Given these assumptions, we com-
pute the steering angle error corresponding to a one meter departure to be around 2.5◦. Thus,
we consider the offline testing results of d for s as acceptable if MAE(d, sim(s)) < 0.1
(meaning the average prediction error is less than 2.5◦) and unacceptable otherwise.

3.3.2 Results

Figure 9 shows the comparison between offline and online testing results in terms of MAE
and MDCL values for all the randomly generated scenarios in S′ where |S′| = 90. We
generated 90 scenarios because it is the number of scenarios required to achieve 2-way
combinatorial coverage4 for all the attributes in our extended domain model. The x-axis is
MAE (offline testing) and the y-axis is MDCL (online testing). The dashed lines represent
the thresholds, i.e., 0.1 for MAE and 0.7 for MDCL. In the bottom-right corner of each
diagram in Fig. 9, we show the Spearman correlation coefficients (ρ) between MAE and
MDCL. For our three DNN models, ρ is not zero but less than 0.5, meaning that there are
weak correlations between MAE and MDCL.

In Table 2, we have the number of scenarios classified by the offline and online testing
results based on the thresholds. The results show that offline testing and online testing are
not in agreement for 45.5%, 63.3%, and 60.0% of the 90 randomly generated scenarios
for Autumn, Chauffeur, and Komanda, respectively. Surprisingly, we have only two cases
(one from Autumn and one from Komanda) where the online testing result is acceptable
while the offline testing result is not, and even these two exceptional cases are very close
to the border line as shown in Fig. 9(b), i.e., (0.104, 0.667) for Autumn and (0.109, 0.695)

for Komanda where (x, y) indicates MAE=x and MDCL=y. After analyzing the online
testing results of these two cases in more detail, we found that MDCL was less than the
threshold simply because the road was short, and would have been larger had the road been
longer. Consequently, the results show that offline testing is significantly more optimistic
than online testing for the disagreement scenarios.

Figure 10 shows one of the scenarios on which offline and online testing disagreed. As
shown in Fig. 10(a), the prediction error of the DNN for each image is always less than 1◦.
This means that the DNN appears to be accurate enough according to offline testing. How-
ever, based on the online testing result in Fig. 10(b), the ego vehicle departs from the center
of the lane in a critical way (i.e., more that 1.5 m). This is because, over time, small predic-
tion errors accumulate, eventually causing a critical lane departure. Such accumulation of
errors over time is only observable in online testing, and this also explains why there is no
case where the online testing result is acceptable while the offline testing result is not.

4We use PICT (https://github.com/microsoft/pict) to compute combinatorial coverage.

Page 17 of 30 90

https://github.com/microsoft/pict

Empir Software Eng (2021) 26: 90

Fig. 9 Comparison between offline and online testing results for all scenarios

The answer to RQ2 is that offline and online testing results differ in many cases
(45.5%, 63.3%, and 60.0% of all scenarios for Autumn, Chauffeur, and Komanda,
respectively). We found that offline testing cannot properly reveal safety violations in
ADS-DNNs, because it does not account for their closed-loop behavior. Given the fact
that detecting safety violations in ADS is the ultimate goal of ADS-DNN testing, we
conclude that online testing is preferable to offline testing for ADS-DNNs.

3.4 RQ3: Rule Extraction

3.4.1 Setup

In RQ2, we showed that, for ADS-DNNs, offline prediction errors are not correlated with
unsafe deviations observed during online testing. In other words, offline testing will not
reveal some of the safety violations that can be revealed via online testing. However, offline
and online testing are both essential steps in development and verification of DNNs (Zhang
et al. 2020). A typical workflow for DNN testing is to first apply offline testing, which
is a standard Machine Learning process, and then move to online testing, which is more

90 Page 18 of 30

Empir Software Eng (2021) 26: 90

Table 2 Number of scenarios classified by offline and online testing results

MAE < 0.1 MAE ≥ 0.1 Total

a Autumn

MDCL < 0.7 13 1 14

MDCL ≥ 0.7 40 36 76

Total 53 37 90

b Chauffeur

MDCL < 0.7 18 0 18

MDCL ≥ 0.7 57 15 72

Total 75 15 90

c Komanda

MDCL < 0.7 13 1 14

MDCL ≥ 0.7 53 23 76

Total 66 24 90

expensive and requires engineers to invest significant time on integrating the DNN into a
simulated application environment. The goal of this research question is to provide guide-
lines on how to combine offline and online testing results to increase the effectiveness of
our overall testing approach (i.e., to reveal the most faults) while reducing testing cost. To
achieve this goal, we identify conditions specified in terms of our domain model attributes
(Fig. 3) that characterize when offline and online testing agree and when they disagree. We
seek to derive these conditions for different DNN subjects. Provided with these conditions,
we can identify testing scenarios that should be the focus of online testing, i.e., scenarios
for which offline testing is ineffective, but online testing may reveal a safety violation.

In our work, as discussed in Section 2.3, each test scenario is specified as a vector of
values assigned to the attributes in our domain model. By applying offline and online test-
ing to all test scenario vectors, we can determine if it belongs to the category where offline

Fig. 10 Example inconsistent results between offline and online testing

Page 19 of 30 90

Empir Software Eng (2021) 26: 90

and online testing results are in agreement or not. Using test vectors and their correspond-
ing categories as a set of labelled data instances, we can then generate classification rules
by applying well-known rule mining algorithms, such as RIPPER (Cohen 1995), to learn
conditions on domain model attributes that lead to agreement or disagreement of offline and
online testing results. To be able to learn these conditions with a high degree of accuracy,
however, we need to gather a large collection of labelled data instances including test vec-
tors ideally covering all combinations of value assignments to the attributes of our domain
model. However, the number of all combinations of all the attribute values is more than 232

since we have 32 attributes of enumeration types in our domain model that can take more
than two values. Furthermore, the simulation time on a desktop with a 3.6 GHz Intel i9-
9900k processor with 32 GB memory and graphic card Nvidia GeForce RTX 2080Ti is up
to 20-30 minutes for each scenario depending upon attributes like road length and speed of
ego vehicle. Therefore, it is impossible to cover all the combinations of value assignments
to our domain model attributes.

To be able to learn conditions characterizing agreement and disagreement between
offline and online testing in an effective and efficient way, we propose a three-step heuristic
approach that focuses on learning rules with statistically high confidence while minimizing
the number of test vectors (i.e., value assignments to domain model attributes) required for
learning. Specifically, we incrementally generate new test vectors to be labelled by focus-
ing on specific attributes to minimize the amount of data needed for classification while
increasing statistical significance.

Figure 11 outlines the workflow of the approach. The first step is attribute selection,
which aims to reduce the search space by identifying a subset of attributes correlated with
the differences between offline and online testing results for a DNN. The second step (rule
generation) aims at extracting rules, for a given DNN, based on the selected attributes. The
third step, rule confirmation, seeks to improve the statistical confidence of the extracted
rules. In each of the steps, a minimal number of new data instances are incrementally
generated. The details of the steps are described next:

1. Attribute Selection: In data mining, attribute selection (a.k.a., feature selection) strate-
gies often rely on generating a large number of labelled data instances randomly to
ensure data diversity and the uniformity of their distribution in the search space. Since
labelling data instances (i.e., test vectors) in our work is expensive, we are limited
regarding how many test vectors we can generate and label for the purpose of attribute
selection. Therefore, instead of using a pure random strategy, as the input for our
attribute selection strategy, we use n-way combinatorial testing to generate a relatively
small number of diverse test vectors. The value of n is determined based on our time
budget for labelling data (running test vectors in our work) and the number of attributes
in our domain. In our work, for the purpose of attribute selection, we set n = 2. This
led to generating 90 test vectors to be able to cover the pairwise combination of values
of the 32 attributes in our domain model. For each test vector, we determine whether

1. Attribute
Selection

3. Rule
Confirmation

2. Rule
Generation

All Attributes
in Domain Model

Selected
Attributes

Generated
Rules

Rules with
High Confidence

Fig. 11 Overall workflow of the three-step heuristic approach to extract rules

90 Page 20 of 30

Empir Software Eng (2021) 26: 90

offline and online testing results are in agreement or not, resulting in the binary classi-
fication of our test vectors. We then perform the attribute selection using the Random
Forest algorithm (Genuer et al. 2010). We use the concept of variable importance in
Random Forests to select important attributes in our domain model since it has been
reported to be accurate in general (Archer and Kimes 2008; Genuer et al. 2010). Table 3
shows the selected attributes for each DNN. Six, four, and two attributes are selected
for Autumn, Chauffeur, and Komanda, respectively.

2. Rule Generation: At this step, we trim the set of test vectors generated in the attribute
selection step by hiding, from each vector, the attributes that were not selected in the
previous step. The result is a set of labelled test vectors that only include values for the
important attributes of our domain (i.e., those attributes selected in the previous step).
This set, however, does not necessarily cover different combinations of the values for
the selected attributes. Hence, we enhance this set by generating a number of new test
vectors. We use n-way combinatorial test generation again, but this time we only con-
sider the attributes selected in the previous step in the test generation (i.e., the attributes
that were not selected in step one are simply set a random value). For this step, we
choose n = 3 since we are dealing with a smaller number attributes and are able to gen-
erate more value combinations during the same test time budget. For Komanda, we use
all combinations since we have only two selected attributes. The number of new test
vectors therefore varies depending on the selected attributes for each DNN. The new
test vectors, together with the 90 test vectors generated in the previous step, are used for
rule generation. We extract rules using the RIPPER algorithm (Cohen 1995), yielding a
set of rules for our DNN under analysis. Each generated rule is a tuple (if , label) where
if describes conditions on the values of the selected attributes (e.g., Vehicle.speed > 10
∧ Road.type = Curved) and label describes a class (i.e., agree or disagree). We can
estimate the accuracy of each rule as the number of test vectors labelled by label and
satisfying the if conditions over the number of test vectors satisfying if . Table 4 shows
the rules generated for each DNN. As shown in the table, we obtain three rules for
Autumn, four rules for Chauffeur, and two rules for Komanda. Each rule has an if part,
described as a conjunction of predicates defined over our domain model attributes, and
a label part that can be either agree or disagree. For the accuracy values, we also report
the 95% Confidence Interval (CI). For example, for the second rule of Autumn, the
accuracy value 0.88 ± 0.20 means that the true accuracy value has a 95% probability
of being in the interval [0.68 1.00]. The CI range is quite large since, in our work, we
have minimized the total number of test vectors, and therefore the number of test vec-
tors satisfying the conditions if for each rule can be small. Hence we may not be able
establish reasonably narrow CIs for the accuracy values of the generated rules. To alle-
viate this issue, we use a third step to increase the statistical confidence in the estimated
accuracy of the generated rules.

3. Rule Confirmation: The basic idea is to reduce the CI length by providing more data
instances for each rule. For each rule, we repeatedly generate a data instance satisfying
the if part of the rule until the CI length of the estimated accuracy of the rule with a
95% confidence level is less than a threshold λ. In our experiments, we set λ = 0.2,
meaning ±0.1. Note that we generate new data instances only for the extracted rules
to efficiently reduce the CI length of the rules. The final results after performing the
Rule Confirmation step is shown in Table 5 and will be discussed in the next section
(Section 3.4.2).

Page 21 of 30 90

Empir Software Eng (2021) 26: 90

Table 3 Intermediate Results: Selected Attributes

DNN Selected Attributes

Autumn Road.type, Road.laneLineColor, Road.curbLinePattern,

Vehicle.laneNumber, Vehicle.headLights, Weather.condition

Chauffeur Road.type, Road.roadSpecificProperty, Vehicle.fogLights,

Environment.underlay

Komanda Weather.type, Environment.bulidings

3.4.2 Results

Table 5 shows the rules generated for our three DNN subjects after applying the process
described in Section 3.4.1 and Fig. 11. Note that in contrast to the results reported in Table 4,
the accuracy values in Table 5 are those obtained after applying the rule confirmation step.
For example, for the first rule for Autumn, the accuracy of 0.61 ± 0.10 means that around
61% of the scenarios that satisfy the condition Road.curbLanePattern = Dashed are labelled
with disagree. Thanks to our rule confirmation step, we are able to ascertain the accuracy
levels of rules within a narrower 95% confidence interval. In our work, the rule accuracy
indicates the predictive power of the rule. For example, the second rule for Autumn is highly
accurate and hence predictive (more than 85% of scenarios). Hereafter, for simplicity, we
use the IDs indicated in Table 5 to refer to the rules.

Overall, there is no rule predicting agree with an accuracy above 0.71. This means that
there is no condition with accuracy above 0.71 where offline testing results conform to
online testing results. That is, the test results for scenarios that match the “agree” rule con-
ditions in Table 5 may still differ during offline and online testing with a high probability.
Therefore, based on our results, we are not able to identify conditions that can character-
ize, with a high accuracy, agreement between offline and online testing to help lift offline
testing results to online testing and reduce the amount of online testing needed. Our results,
further, suggest that, at least for ADS-DNNs, we may not be able to find rules that can, in
general, differentiate between offline and online testing behaviors. As can be seen from the
table, there is not much similarity between the rules we have obtained for different DNNs.
This is because these DNNs have different architectures, use different features of the input
images for prediction and are trained differently.

Table 4 Intermediate Results: Generated Rules

DNN Rule Accuracy

Autumn If Road.curbLanePattern = Dashed then disagree 0.58 ± 0.11

If Road.type = Curved then disagree 0.88 ± 0.20

Other than mentioned above then agree 0.65 ± 0.11

Chauffeur If Vehicle.fogLights = True, then agree 0.59 ± 0.13

If Road.type = Straight ∧ Environment.underlay = Pavement then agree 0.90 ± 0.18

If Road.type = Curved then agree 0.70 ± 0.28

Other than mentioned above then disagree 0.76 ± 0.09

Komanda If Weather.type = Rainy ∧ Environment.buildings = False then agree 0.76 ± 0.18

Other than mentioned above then disagree 0.69 ± 0.11

90 Page 22 of 30

Empir Software Eng (2021) 26: 90

Table 5 Rule Extraction Results

DNN ID Rule Accuracy

Autumn A1 If Road.curbLanePattern = Dashed then disagree 0.61 ± 0.10

A2 If Road.type = Curved then disagree 0.95 ± 0.10

A3 Other than mentioned above then agree 0.61 ± 0.10

Chauffeur C1 If Vehicle.fogLights = True, then agree 0.58 ± 0.10

C2 If Road.type = Straight ∧ Environment.underlay = Pavement then agree 0.71 ± 0.10

C3 If Road.type = Curved then agree 0.55 ± 0.10

C4 Other than mentioned above then disagree 0.76 ± 0.09

Komanda K1 If Weather.type = Rainy ∧ Environment.buildings = False then agree 0.59 ± 0.10

K2 Other than mentioned above then disagree 0.67 ± 0.10

However, our observations show that these rules still may provide valuable insights as to
how different DNNs work. When an attribute appears in a rule, it indicates that the attribute
has a significant impact on the DNN output, and hence, this attribute can be used to classify
both the situations where offline testing is as good as online testing (i.e., DNN prediction
errors indeed indicate a safety violation) as well as the dual situations where offline testing
is simply too optimistic. For example, the attributes Weather.type and Environment.buildings
appear only in the conditions for the rules of Komanda. On the other hand, for Chauffeur
and Autumn, the attributes appearing in the rule conditions are related to the road shape
and the road lane patterns. This confirms the fact that Komanda uses full images to predict
steering angles while the Chauffeur and Autumn focus on the road-side views in the images,
as noted in Section 3.1.

Another reason explaining differences across DNNs is that some DNNs are inaccurate
for certain attributes regardless of testing modes, which means that both offline testing and
online testing are capable of detecting the faulty behaviors of these DNNs with a relatively
high probability. For example, we found that Chauffeur is, in general, inaccurate for predict-
ing steering angles for curved roads. Due to this weakness, both offline and online testing
results are in agreement when Road.type is Curved, as shown in C3.

The last reason for differences is that, as shown in RQ1, Chauffeur works relatively
better on real-world images than on simulated images. Since Chauffeur is not effective
with simulated images, it may yield more prediction errors in offline testing, and hence,
offline and online testing results are more likely to be in agreement as “unacceptable”. This
explains why we have three “agree” rules, namely C1, C2 and C3, for Chauffeur while for
other DNNs we have fewer “agree” rules.

The answer to RQ3 is that offline testing results cannot be used to reduce the cost of
online testing as we are not able to identify conditions that characterize, with a high
accuracy, agreement between offline and online testing for all our subject DNNs.

3.5 Threats to Validity

In RQ1, we propose a two-step approach that builds simulator-generated datasets compa-
rable to a given real-life dataset. While it achieves its objective, as shown in Section 3.2.2,
the simulated images are still different from the real images. However, we confirmed that

Page 23 of 30 90

Empir Software Eng (2021) 26: 90

the prediction errors obtained by applying our subject DNNs to the simulator-generated
datasets are comparable with those obtained for their corresponding real-life datasets. Thus,
the conclusion that offline and online testing results often disagree with each other is valid.

We used a few thresholds that may affect the experimental results in RQ2 and RQ3. To
reduce the chances of misinterpreting the results, we selected intuitive and physically inter-
pretable metrics to evaluate both offline and online test results (i.e, prediction errors and
safety violations), and defined threshold values based on common sense and experience.
Further, adopting different threshold values, as long as they are within a reasonable range,
does not change our findings. For example, if we use MAE(d, sim(s)) < 0.05 as a thresh-
old in offline testing results instead of MAE(d, sim(s)) < 0.1, the numbers of scenarios
in Table 2 change. However, it does not change the correlation analysis results and the fact
that we have many scenarios for which offline and online testing results disagree, nor does
it change the conclusion that offline testing is more optimistic than online testing.

Different ADS-DNNs may lead to different results. For example, we may able to identify
conditions that can characterize, with a high accuracy, agreement between offline and online
testing results to lift offline testing results to online testing and reduce the amount of online
testing needed for a specific ADS-DNN. To mitigate such a threat, we tried our best to find
all candidate ADS-DNNs in the literature and selected the three subject ADS-DNNs (i.e.,
Autumn, Chauffeur, and Komanda) that are publicly available and sufficiently accurate for
steering angle predictions.

Though we focused, in our case study, on only two lane-keeping DNNs (steering
prediction)—which have rather simple structures and do not support braking or accelera-
tion, our findings are applicable to all DNNs in an ADS context as long as the closed-loop
behavior of the ADS matters.

4 Discussion

4.1 Online Testing using Simulators

One important purpose of online testing is to test a trained ADS-DNN with the newest
unseen data that potentially appear in the application environments of the ADS-DNN. How-
ever, because simulators cannot express all the complexity and diversity of the real world,
online testing using simulators cannot cover all possible scenarios in the real world. For
example, in the case of online testing using a simulator that cannot express weather changes,
certain safety violations of the ADS-DNN that occurs only in rainy weather cannot be found.

Nevertheless, considering the problems of online testing in the real world, especially
the cost and risk, online testing using a simulator is inevitable. Indeed, according to our
industrial partners in the automotive industry, due to the excessive amount of manpower and
resources required to collect real-world data, it is impossible to gather sufficient and diverse
real-world data. On the other hand, a simulator can generate sufficiently diverse data at a
much lower cost and risk.

Furthermore, simulator-based test input generation has an additional advantage regard-
ing the test oracle problem (Barr et al. 2015). When we use simulators for online testing,
the generation of test oracles is completely automated. For real-life datasets, however, test
oracles may need to be manually specified which is labor-intensive and time-consuming.
For example, for ADS-DNNs, the driver’s maneuvers and the data gathered from the vari-
ous sensors and cameras during online testing in the real world may not contain sufficient

90 Page 24 of 30

Empir Software Eng (2021) 26: 90

information to automatically generate test oracles. In contrast, simulators are able to gen-
erate labeled datasets, from which test oracles can be automated, for various controlling,
sensing, and image recognition applications. But, as expected, the accuracy of test results
and oracles depends on the fidelity of simulators.

4.2 Offline vs. Online Testing: What to Use in Practice?

Experimental results show that offline testing cannot properly detect safety requirements
violations identified in online testing. Offline testing is in fact inadequate to identify faulty
behaviors for ADS-DNNs with closed-loop behavior. In other words, online testing is
essential to adequately detect safety violations in ADS-DNNs, where interactions with the
application environment are important. In particular, online testing using a simulator is
highly recommended if a high-fidelity simulator is available.

However, online testing is not essential in all cases. When testing ADS-DNNs without
closed-loop behavior, offline and online testing results are expected to be similar because
errors are not accumulating over time. For example, in the case of an ADS-DNN that simply
warns the driver instead of directly controlling the steering when necessary, there is no
closed-loop since the DNN’s predictions do not actually control the vehicle, and therefore
offline testing would be sufficient.

4.3 Open Challenges

There are also challenges that need to be addressed in online testing. For example, the higher
the fidelity of a simulator, the more time it takes to simulate, which has direct impact on
the cost of online testing. In particular, when using a search-based technique, online testing
may take a very long time because the simulator must be repeatedly executed for various
scenarios. Therefore, more research is required to reduce the cost of online testing.

Research on high-fidelity simulators is also essential. As discussed in Section 4.1, online
testing using a simulator cannot completely cover all possible scenarios in the real world.
However, by utilizing a simulator higher fidelity, the risk of uncovered scenarios could be
significantly reduced (Shah et al. 2018; Rong et al. 2020). Research on how to lower the
risk through a more systematic approach is also needed.

5 RelatedWork

Table 6 summarizes DNN testing approaches specifically proposed in the context of
autonomous driving systems. Approaches to the general problem of testing machine
learning systems are discussed in the recent survey by Zhang et al. (2020).

In Table 6, approaches for online testing are highlighted grey. As the table shows, most
of existing approaches focus on the offline testing mode only, where DNNs are seen as indi-
vidual units without accounting for the closed-loop behavior of a DNN-based ADS. Their
goal is to generate test data (either images or 3-dimensional point clouds) that lead to DNN
prediction errors. Dreossi et al. (2017) synthesized images for driving scenes by arrang-
ing basic objects (e.g., road backgrounds and vehicles) and tuning image parameters (e.g.,
brightness, contrast, and saturation). Pei et al. (2017) proposed DEEPXPLORE, an approach
that synthesizes images by solving a joint optimization problem that maximizes both neuron

Page 25 of 30 90

Empir Software Eng (2021) 26: 90

Table 6 Summary of DNN testing studies in the context of autonomous driving

Author(s) Testing mode DNN’s role Summary

Dreossi et al. (2017) Offline Object detection Test image generation by arranging
basic objects using greedy search

Pei et al. (2017) Offline Lane keeping Coverage-based label-preserving
test image generation using joint
optimization with gradient ascent

Codevilla et al. (2018) Offline and online Lane keeping Improving the correlation between
offline and online testing results
by selecting an appropriate testing
dataset and suitable offline metrics

Tian et al. (2018) Offline Lane keeping Coverage-based label-preserving
test image generation using
greedy search with simple image
transformations

Tuncali et al. (2018) Online Object detection Test scenario generation using the
combination of covering arrays and
simulated annealing

Wicker et al. (2018) Offline Traffic sign recognition Adversarial image generation using
feature extraction

Zhang et al. (2018) Offline Lane keeping Label-preserving test image gener-
ation using Generative Adversarial
Networks (GANs)

Zhou et al. (2018) Offline Lane keeping Adversarial billboard-image gener-
ation for digital and physical adver-
sarial perturbation

Gambi et al. (2019) Online Lane keeping Automatic virtual road network
generation using search-based Pro-
cedural Content Generation (PCG)

Kim et al. (2019) Offline Lane keeping Improving the accuracy of DNNs
against adversarial examples using
surprise adequacy

Majumdar et al. (2019) Online Object detection, lane
keeping

Test scenario description language
and simulation-based test scenario
generation to cover parameterized
environments

Zhou and Sun (2019) Offline Object detection Combination of Metamorphic Test-
ing (MT) and fuzzing for 3-
dimensional point cloud data

This article Offline and online Lane keeping Comparison between offline and
online testing results and investi-
gate if we can use offline testing
results to run fewer tests during
online testing

coverage (i.e., the rate of activated neurons) and differential behaviors of multiple DNNs
for the synthesized images. Tian et al. (2018) presented DEEPTEST, an approach that gen-
erates label-preserving images from training data using greedy search for combining simple
image transformations (e.g., rotate, scale, and for and rain effects) to increase neuron cov-
erage. Wicker et al. (2018) generated adversarial examples, i.e., small perturbations that are
almost imperceptible by humans but causing DNN misclassifications, using feature extrac-

90 Page 26 of 30

Empir Software Eng (2021) 26: 90

tion from images. Zhang et al. (2018) presented DEEPROAD, an approach that produces
various driving scenes and weather conditions by applying Generative Adversarial Net-
works (GANs) along with corresponding real-world weather scenes. Zhou and Sun (2019)
combined Metamorphic Testing (MT) and Fuzzing for 3-dimensional point cloud data gen-
erated by a LiDAR sensor to reveal erroneous behaviors of an object detection DNN. Zhou
et al. (2018) proposed DEEPBILLBOARD, an approach that produces both digital and physi-
cal adversarial billboard images to continuously mislead the DNN across dashboard camera
frames. While this work is different from the other offline testing studies as it introduces
adversarial attacks through sequences of frames, its goal is still the generation of test images
to reveal DNN prediction errors. In contrast, Kim et al. (2019) defined a coverage criterion,
called surprise adequacy, based on the behavior of DNN-based systems with respect to their
training data. Images generated by DEEPTEST were sampled to improve such coverage and
used to increase the accuracy of the DNN against adversarial examples.

Online testing studies exercise the ADS closed-loop behavior and generate test driving
scenarios that cause safety violations, such as unintended lane departure or collision with
pedestrians. Tuncali et al. (2018) were the first to raise the problem that previous works
mostly focused on the DNNs, without accounting for the closed-loop behavior of the sys-
tem. Gambi et al. (2019) also pointed out that testing DNNs for ADS using only single
frames cannot be used to evaluate closed-loop properties of ADS. They presented ASFAULT,
a tool that generates virtual roads which cause self-driving cars to depart from their lane.
Majumdar et al. (2019) presented a language for describing test driving scenarios in a para-
metric way and provided PARACOSM, a simulation-based testing tool that generates a set
of test parameters in such a way as to achieve diversity. We should note that all the online
testing studies rely on virtual (simulated) environments, since, as mentioned before, test-
ing DNNs for ADS in real traffic is dangerous and expensive. Further, there is a growing
body of evidence indicating that simulation-based testing is effective at finding violations.
For example, recent studies for robotic applications show that simulation-based testing of
robot function models not only reveals most bugs identified during outdoor robot testing,
but that it can additionally reveal several bugs that could not have been detected by outdoor
testing (Sotiropoulos et al. 2017).

There is only one study comparing offline and online testing results by investigating
the correlations between offline and online testing prediction error metrics (Codevilla et al.
2018). The authors found that the correlation between offline prediction and online perfor-
mance is weak, which is consistent with the results of this article. They also found two ways
for improving the correlations: (1) augmenting the testing data (e.g., include images from
three cameras, i.e., a forward-facing one and two lateral cameras facing 30 degrees left and
right, instead of having images from one forward-facing camera) and (2) selecting a proper
offline testing metric (e.g., Mean Absolute Error other than Mean Squared Error). Their
analysis relies on the offline and online testing of DNNs trained by simulator-generated
images, while our DNNs are trained with real-world images. Nevertheless, consistent with
our results, they concluded that offline testing is not adequate. Furthermore, beyond simple
correlations and in order to draw more actionable conclusions, our investigation looked at
whether offline testing was a sufficiently reliable mechanism for detecting safety violations
in comparison to online testing. Last, we investigated whether offline and online testing
results could agree under certain conditions, so as to take advantage of the lower cost of
offline testing in such situations.

Page 27 of 30 90

Empir Software Eng (2021) 26: 90

6 Conclusion

This article presents a comprehensive case study to compare two distinct testing phases of
Deep Neural Networks (DNNs), namely offline testing and online testing, in the context of
Automated Driving Systems (ADS). Offline testing evaluates DNN prediction errors based
on test data that are generated without involving the DNN under test. In contrast, online
testing determines safety requirement violations of a DNN-based system in a specific appli-
cation environment based on test data generated dynamically from interactions between the
DNN under test and its environment. We aimed to determine how offline and online testing
results differ or complement each other and if we can exploit offline testing results to run
fewer tests during online testing to reduce the testing cost. We additionally investigated if
we can use simulator-generated datasets as a reliable substitute to real-world datasets for
DNN testing.

The experimental results on the three best performing ADS-DNNs from the Udacity
Self-Driving Car Challenge 2 (Udacity 2016a) show that simulator-generated datasets yield
DNN prediction errors that are similar to those obtained by testing DNNs with real-world
datasets. Also, offline testing is more optimistic than online testing as many safety violations
identified by online testing could not be identified by offline testing, while large prediction
errors generated by offline testing always led to severe safety violations detectable by online
testing. Furthermore, the experimental results show that we cannot exploit offline testing
results to reduce the cost of online testing in practice since we are not able to identify
specific situations where offline testing could be as accurate as online testing in identifying
safety violations.

The results of this paper have important practical implications for DNN testing, not
only in an ADS context but also in other CPS where the closed-loop behavior of DNNs
matters. Specifically, both researchers and practitioners should focus more on online test-
ing as offline testing is not able to properly determine safety requirement violations of the
DNN-based systems under test.

Considering the expensive cost of online testing, even using a high-fidelity simulator
instead of a real-world environment, our results also call for more efficient online testing
approaches. As part of future work, we plan to develop an approach for automatic test
scenario generation using surrogate models and search-based testing to efficiently identify
safety critical test scenarios for online testing.

90 Page 28 of 30

References

Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance mea-
sures, vol 52. https://doi.org/10.1016/j.csda.2007.08.015. http://www.sciencedirect.com/science/article/
pii/S0167947307003076

Autumn T (2016) Autumn model. https://github.com/udacity/self-driving-car/tree/master/steering-models/
community-models/autumn, Accessed: 2019-10-11

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: A survey.
IEEE Trans Softw Eng 41(5):507–525. https://doi.org/10.1109/TSE.2014.2372785

https://doi.org/10.1016/j.csda.2007.08.015
http://www.sciencedirect.com/science/article/pii/S01679473070 03076
http://www.sciencedirect.com/science/article/pii/S01679473070 03076
https://github.com/udacity/self-driving-car/tree/master/steering-models /community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/steering-models /community-models/autumn
https://doi.org/10.1109/TSE.2014.2372785
http://creativecommons.org/licenses/by/4.0/

Empir Software Eng (2021) 26: 90 Page 29 of 30 90

Cohen WW (1995) Fast effective rule induction. In: Prieditis A, Russell S (eds) Machine
Learning Proceedings 1995, Morgan Kaufmann, San Francisco (CA), pp 115–123
https://doi.org/10.1016/B978-1-55860-377-6.50023-2. http://www.sciencedirect.com/science/article/
pii/B9781558603776500232

Deng L, Hinton G, Kingsbury B (2013) New types of deep neural network learning for speech recognition
and related applications: an overview. In: 2013 IEEE International conference on acoustics, speech and
signal processing, pp 8599–8603 https://doi.org/10.1109/ICASSP.2013.6639344

Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) CARLA: An open urban driving simulator.
In: Proceedings of the 1st annual conference on robot learning, pp 1–16

Dreossi T, Ghosh S, Sangiovanni-Vincentelli A, Seshia SA (2017) Systematic testing of convolutional neural
networks for autonomous driving. arXiv:1708.03309

ESI Group (2019) Esi pro-sivic - 3d simulations of environments and sensors. https://
www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/
esi-pro-sivictm-3d-simulations-environments-and-sensors, Accessed: 2019-10-11

Gambi A, Mueller M, Fraser G (2019) Automatically testing self-driving cars with search-based pro-
cedural content generation. In: Proceedings of the 28th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ACM, New York, NY, USA, ISSTA, 2019 pp 318–328.
https://doi.org/10.1145/3293882.3330566

Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite
Genuer R, Poggi JM, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognit Lett

31(14):2225–2236. https://doi.org/10.1016/j.patrec.2010.03.014. http://www.sciencedirect.com/science/
article/pii/S0167865510000954

Group OM (2014) Object constraint language specification. https://www.omg.org/spec/OCL/, Accessed:
2019-10-11

Haq FU, Shin D, Nejati S, Briand L (2020a) Comparing offline and online testing of deep neural networks:
An autonomous car case study. In: 2020 IEEE International conference on software testing, verification
and validation, p to appear

Haq FU, Shin D, Nejati S, Briand L (2020b) Supporting materials (temporal link for the double-blind review).
http://tiny.cc/Experiment-data, Accessed: 2020-07-26

Kalra N, Paddock SM (2016) Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability? Trans Res Part A Pol Pract 94:182–193.
https://doi.org/10.1016/j.tra.2016.09.010. http://www.sciencedirect.com/science/article/pii/
S0965856416302129

Kim J, Feldt R, Yoo S (2019) Guiding deep learning system testing using surprise adequacy. In: Proceedings
of the 41st international conference on software engineering, IEEE Press, Piscataway, NJ, USA, ICSE
’19, pp 1039–1049 https://doi.org/10.1109/ICSE.2019.00108

Komanda T (2016) Komanda model. https://github.com/udacity/self-driving-car/tree/master/
steering-models/community-models/komanda, Accessed: 2020-04-14

Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y, Zhao J, Wang Y (2018)
Deepgauge: Multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ACM, New York, NY, USA,
ASE, 2018, pp 120–131. https://doi.org/10.1145/3238147.3238202

Majumdar R, Mathur A, Pirron M, Stegner L, Zufferey D (2019) Paracosm: A language and tool for testing
autonomous driving systems. arXiv:1902.01084

McGehee DV, Mazzae EN, Baldwin GS (2000) Driver reaction time in crash avoidance research: Validation
of a driving simulator study on a test track. In: Proceedings of the human factors and ergonomics society
annual meeting 44(20):3–320–3–323 https://doi.org/10.1177/154193120004402026

Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: Automated whitebox testing of deep learning systems. In:
Proceedings of the 26th symposium on operating systems principles, ACM, New York, NY, USA, SOSP
’17, pp 1–18 https://doi.org/10.1145/3132747.3132785

Chauffeur T (2016) Chauffeur model. https://github.com/udacity/self-driving-car/tree/master/
steering-models/community-models/chauffeur, Accessed: 2019-10-11

Ciresan DC, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification.
arXiv:1202.2745

Codevilla F, Lopez AM, Koltun V, Dosovitskiy A (2018) On offline evaluation of vision-based driving
models. In: The european conference on computer vision (ECCV)

Pineau J (2019) Icse 2019 keynote: Building reproducible, reusable, and robust machine
learning software. https://2019.icse-conferences.org/details/icse-2019-Plenary-Sessions/20/
Building-Reproducible-Reusable-and-Robust-Machine-Learning-Software, Accessed: 2019-10-11

https://doi.org/10.1016/B978-1-55860-377-6.50023-2
http://www.sciencedirect.com/science/article/pii/B97815586037 76500232
http://www.sciencedirect.com/science/article/pii/B97815586037 76500232
https://doi.org/10.1109/ICASSP.2013.6639344
http://arxiv.org/abs/1708.03309
https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3d-simulations-environments-and-sensors
https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3d-simulations-environments-and-sensors
https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3d-simulations-environments-and-sensors
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.1016/j.patrec.2010.03.014
http://www.sciencedirect.com/science/article/pii/S01678655100 00954
http://www.sciencedirect.com/science/article/pii/S01678655100 00954
https://www.omg.org/spec/OCL/
http://tiny.cc/Experiment-data
https://doi.org/10.1016/j.tra.2016.09.010
http://www.sciencedirect.com/science/article/pii/S09658564163 02129
http://www.sciencedirect.com/science/article/pii/S09658564163 02129
https://doi.org/10.1109/ICSE.2019.00108
https://github.com/udacity/self-driving-car/tree/master/steering-models /community-models/komanda
https://github.com/udacity/self-driving-car/tree/master/steering-models /community-models/komanda
https://doi.org/10.1145/3238147.3238202
http://arxiv.org/abs/1902.01084
https://doi.org/10.1177/154193120004402026
https://doi.org/10.1145/3132747.3132785
https://2019.icse-conferences.org/details/icse-2019-Plenary-Sessions/20/Building-Reproducible-Reusable-and-Robust-Machine-Learning-Software
https://2019.icse-conferences.org/details/icse-2019-Plenary-Sessions/20/Building-Reproducible-Reusable-and-Robust-Machine-Learning-Software
https://github.com/udacity/self-driving-car/tree/master/steering-models /community-models/chauffeur
http://arxiv.org/abs/1202.2745
https://github.com/udacity/self-driving-car/tree/master/steering-models /community-models/chauffeur

Empir Software Eng (2021) 26: 9090 Page 30 of 30

Shah S, Dey D, Lovett C, Kapoor A (2018) Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In: Hutter M, Siegwart R (eds) Field and service robotics, springer international
publishing, Cham, pp 621–635

Sotiropoulos T, Waeselynck H, Guiochet J, Ingrand F (2017) Can robot navigation bugs be found in simu-
lation? an exploratory study. In: 2017 IEEE International conference on software quality, reliability and
security (QRS), pp 150–159 https://doi.org/10.1109/QRS.2017.25

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Ghahra-
mani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in Neural Information
Processing Systems. 27 Curran Associates Inc. pp 3104–3112

TASS International - Siemens Group (2019) Prescan: Simulation of adas and active safety. https://tass.plm.
automation.siemens.com, Accessed: 2019-10-11

Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: Automated testing of deep-neural-network-driven autonomous
cars. In: Proceedings of the 40th international conference on software engineering, ACM, New York,
NY, USA, ICSE ’18, pp 303–314. https://doi.org/10.1145/3180155.3180220

Tuncali CE, Fainekos G, Ito H, Kapinski J (2018) Simulation-based adversarial test generation for
autonomous vehicles with machine learning components. In: 2018 IEEE intelligent vehicles symposium,
IV pp 1555–1562. https://doi.org/10.1109/IVS.2018.8500421

Udacity (2016a) Udacity self-driving car challenge 2: Using deep learning to predict steering angles. https://
github.com/udacity/self-driving-car/tree/master/challenges/challenge-2, Accessed: 2019-10-11

Udacity (2016b) Udacity self-driving challenge 2, ch2-001 (testing) and ch2-002 (training). https://github.
com/udacity/self-driving-car/tree/master/datasets/CH2, Accessed: 2019-10-11

Wicker M, Huang X, Kwiatkowska M (2018) Feature-guided black-box safety testing of deep neural net-
works. In: Beyer D, Huisman M (eds) Tools and Algorithms for the Construction and Analysis of
Systems. Springer International Publishing, Cham, pp 408–426

Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: Survey, landscapes and horizons. IEEE
Trans Softw Eng 1–1

Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018) Deeproad: Gan-based metamorphic testing and
input validation framework for autonomous driving systems. In: Proceedings of the 33rd ACM/IEEE
international conference on automated software engineering, acm, New York, NY, USA, ASE 2018,
pp 132–142. https://doi.org/10.1145/3238147.3238187

Zhou H, Li W, Zhu Y, Zhang Y, Yu B, Zhang L, Liu C (2018) Deepbillboard: Systematic physical-world
testing of autonomous driving systems. arXiv:1812.10812

Zhou ZQ, Sun L (2019) Metamorphic testing of driverless cars. Commun ACM 62(3):61–67.
https://doi.org/10.1145/3241979

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Pomerleau DA (1989) Alvinn: An autonomous land vehicle in a neural network. In: Advances in neural
information processing systems, pp 305–313

Rong G, Shin BH, Tabatabaee H, Lu Q, Lemke S, Možeiko M, Boise E, Uhm G, Gerow M, Mehta S,
Agafonov E, Kim TH, Sterner E, Ushiroda K, Reyes M, Zelenkovsky D, Kim S (2020) Lgsvl simula-
tor: A high fidelity simulator for autonomous driving. In: 2020 IEEE 23rd International conference on
intelligent transportation systems (ITSC), pp 1–6 https://doi.org/10.1109/ITSC45102.2020.9294422

Affiliations

Fitash Ul Haq1 ·Donghwan Shin1 · Shiva Nejati1,2 · Lionel Briand1,2

Fitash Ul Haq
fitash.ulhaq@uni.lu

Shiva Nejati
shiva.nejati@uni.lu

Lionel Briand
lionel.briand@uni.lu

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
2 University of Ottawa, Ottawa, Canada

https://doi.org/10.1109/QRS.2017.25
https://tass.plm.automation.siemens.com
https://tass.plm.automation.siemens.com
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1109/IVS.2018.8500421
https://github.com/udacity/self-driving-car/tree/master/challenges/chal lenge-2
https://github.com/udacity/self-driving-car/tree/master/challenges/chal lenge-2
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://doi.org/10.1145/3238147.3238187
http://arxiv.org/abs/1812.10812
https://doi.org/10.1145/3241979
http://orcid.org/0000-0003-2253-9085
http://orcid.org/0000-0002-0840-6449
http://orcid.org/0000-0002-0281-8231
http://orcid.org/0000-0002-1393-1010
mailto: fitash.ulhaq@uni.lu
mailto: shiva.nejati@uni.lu
mailto: lionel.briand@uni.lu
https://doi.org/10.1109/ITSC45102.2020.9294422

	Can Offline Testing of Deep Neural Networks Replace Their Online Testing?
	Abstract
	Introduction
	Background
	DNNs in ADS
	Test Data Sources
	Domain Model
	Offline Testing
	Online Testing

	Experiments
	Experimental Subjects
	RQ1: Comparing Offline Testing Results for Real-life Data and Simulator-generated Data
	Setup
	Results

	RQ2: Comparison between Offline and Online Testing Results
	Setup
	Results

	RQ3: Rule Extraction
	Setup
	Results

	Threats to Validity

	Discussion
	Online Testing using Simulators
	Offline vs. Online Testing: What to Use in Practice?
	Open Challenges

	Related Work
	Conclusion
	References
	Affiliations

