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Abstract
Code reviews serve as a quality assurance activity for software teams. Especially for Modern
Code Review, sharing a link during a review discussion serves as an effective awareness
mechanism where “Code reviews are good FYIs [for your information].”. Although prior
work has explored link sharing and the information needs of a code review, the extent to
which links are used to properly conduct a review is unknown. In this study, we performed
a mixed-method approach to investigate the practice of link sharing and their intentions.
First, through a quantitative study of the OpenStack and Qt projects, we identify 19,268
reviews that have 39,686 links to explore the extent to which the links are shared, and
analyze a correlation between link sharing and review time. Then in a qualitative study,
we manually analyze 1,378 links to understand the role and usefulness of link sharing.
Results indicate that internal links are more widely referred to (93% and 80% for the two
projects). Importantly, although the majority of the internal links are referencing to reviews,
bug reports and source code are also shared in review discussions. The statistical models
show that the number of internal links as an explanatory factor does have an increasing
relationship with the review time. Finally, we present seven intentions of link sharing, with
providing context being the most common intention for sharing links. Based on the findings
and a developer survey, we encourage the patch author to provide clear context and explore
both internal and external resources, while the review team should continue link sharing
activities. Future research directions include the investigation of causality between sharing
links and the review process, as well as the potential for tool support.
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1 Introduction

Software code reviews serve as quality assurance for software teams (Huizinga and Kolawa
2007; Rigby and Storey 2011). From being a formal code inspection process conducted by
face-to-face meetings (Fagan 1976), nowadays the Modern Code Review (MCR) process
becomes more flexible with asynchronous collaboration through an online tool (such as
Gerrit,1 Codestriker,2 and ReviewBoard3). These online tools are now widely adopted in
both open source and proprietary software projects (Rigby and Bird 2013; Sadowski et al.
2018). Not only improving the overall quality of a patch (i.e., software changes), Bacchelli
and Bird (2013) also reported that MCR also serves as an effective mechanism to increase
awareness and share information: “Code reviews are good FYIs [for your information].”.

An effective review requires proper understanding. However, it is challenging to iden-
tify and acquire the needed information to have a proper understanding to conduct a review.
This is especially a case for a large software project like OpenStack, which has code reviews
of over 20 million lines of codes that are submitted by over 100,000 contributors spread
more than 600 code repositories (Zhang et al. 2019). Pascarella et al. (2018) find that dur-
ing reviews, reviewers often request additional information about correct understanding,
alternative solution, to improve patch quality. Ebert et al. (2019) report that reviewers often
suffer from confusion due to a lack of information about the intention of a patch (i.e., a
rationale for a change).

Recent work points out that the link shared in the review discussion can be used to
provide information related to a review. Hirao et al. (2019) show that shared links between
reviews can be used to indicate the information about patch dependency, broader context,
and alternative solution. However, the other types of links other than review links were not
studied in the work of Hirao et al. (2019). On the other hand, Jiang et al. (2019) conducted
a quantitative analysis to find developers that share various types of links in ten GitHub
projects. However, this study does not systematically investigate the correlation between the
shared links and the review process, and lacks of qualitative analysis of why these various
types of links are shared.

Based on the findings of prior work (Hirao et al. 2019), we hypothesize that sharing links
may help developers fulfill the information needs. Yet, it is still unclear about what types
of information could be fulfilled by these various types of links. To fill this gap, this work
aims to explore the prevalence of link sharing, systematically investigate the correlation
between link sharing and review time, and qualitatively investigate what are the intentions
of sharing links. In this paper, the intention is defined as the intention of sharing a link to
meet a certain type of information needed during code review. Through a case study of the
OpenStack and Qt projects (two large-scale and thriving open source projects with globally
distributed teams that actively perform code reviews), we identify 19,268 reviews that have
39,686 links shared during review discussions. We formulate three research questions to
guide our study:

– RQ1: To what extent do developers share links in the review discussion? It is not
yet known how a project of repositories uses link sharing in their communities. Using
a sample of well-known OpenStack and Qt projects, we would like to investigate the
trend of link sharing, common domains in the project, and the link target types.

1https://www.gerritcodereview.com/
2http://codestriker.sourceforge.net/
3https://www.reviewboard.org/
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– RQ2: Does the number of links shared in the review discussion correlate with
review time? Prior studies (Baysal et al. 2016; Kononenko et al. 2018) analyzed the
impact of technical and non-technical factors on the review process (e.g., review out-
come, review time). However, little is known about whether or not the practice of
sharing links can be correlated with review time. It is possible that link sharing may
shorten the review time as it provides the required information to a review, which might
help reviewers to conduct a review faster. To address this RQ, we conduct a statisti-
cal analysis using a non-linear regression model to analyze a correlation between link
sharing and review time.

– RQ3: What are the common intentions of links shared in the review discussion?
Previous work (Pascarella et al. 2018) has identified different types of information that
are needed by reviewers when conducting a review. Yet, little is known to what extent
can link sharing meets such information needs. Hence, we aim to investigate the inten-
tion behind link sharing in order to better understand the role and usefulness of link
sharing during reviews.

The key results of each RQ are as follow: For RQ1, our results show that in the past
five years, 25% and 20% of the reviews have at least one link shared in a review discussion
within the OpenStack and Qt. 93% and 80% of shared links are the internal links that are
directly related to the project. Importantly, although the majority of the internal links are
referencing to reviews, bug reports, and source code are also shared in review discussions.
For RQ2, our non-linear regression model results show that the internal link has a signifi-
cant correlation with the code review time. However, the external link is not significantly
correlated, for OpenStack and Qt. Furthermore, we observe that the number of internal
links has an increasing relationship with the review time. For RQ3, we identify seven inten-
tions of sharing links: (1) Providing Context, (2) Elaborating, (3) Clarifying, (4) Explaining
Necessity, (5) Proposing Improvement, (6) Suggesting Experts, and (7) Informing Splitted
Request. Specifically, for the internal links, we observe that the most popular intention is
to provide context. While for the external links, to elaborate the review discussions (i.e.,
provide a reference or related information) is the most common intention.

The results lead us to conclude that link sharing is increasingly used as a mechanism of
sharing information in a code review process, the number of internal links has a positive
correlation with the review time, and the intention of link sharing is often used to pro-
vide context understanding. For patch authors, they should provide a clear context of the
patch by sharing links (i.e., containing implementation related information) for reviewer
teams to better understand a patch. For review teams, link sharing should be encouraged,
as results indicate that it can fulfill information needs and contains crucial knowledge to
assist the author, which will support a more efficient review process. For researchers, with
the increasing usage of links, there is an opportunity for tool support for suggesting shared
links to retrieve useful information for both patch authors and review teams. The study con-
tributions are three-fold: (i) a large quantitative and qualitative study on link sharing on the
MCR process, (ii) a taxonomy of seven intentions of sharing links, and (iii) a full replication
of our study, including the scripts and datasets. 4

The remainder of this paper is organized as follows: Section 2 introduces the background
of the study. Section 3 describes the studied projects, the data preparation, and the analysis
approach for each research question. Section 4 reports the results of our empirical study.

4https://github.com/NAIST-SE/LinkIntentioninCR/
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Section 5 discusses the implications from our findings. Section 6 discloses the threats to
validity and Section 7 presents the related work. Finally, we conclude the paper in Section 8.

2 Motivating Example

We highlight two challenges in identifying information needs in Code Review. The first
challenge is that the rationale to meet information needs is unclear. Prior studies found that
missing a rationale and a lack of familiarity with existing code (e.g., a lack of knowledge
about the code that’s being modified) are the most prevalent reasons for causing discussion
confusion and low reviewer participation in code reviews (Ebert et al. 2019; Ruangwan
et al. 2018). Such confusion can delay the incorporation of a code change into a code base.
Patch description is another vital information to help developers understand the changes.
Tao et al. (2012) stated that one of the most important pieces of information for reviewers
is a description of the rationale of a change. In addition, the description length shares an
increasing relationship with the likelihood of reviewer participation (Thongtanunam et al.
2017). The second challenge is understanding which information is needed to facilitate
the review. As reported by Bacchelli and Bird (2013), understanding is the main challenge
for developers when doing code reviews. The most difficult task from the understanding
perspective is finding defects, immediately followed by alternative solutions. They point
out that context and change understanding must be improved if managers and developers
want to match their needs. Recently, Pascarella et al. (2018) highlights the presence of seven
types of high-level information needs, with the two most prominent being the needs to know
(1) whether a proposed alternative solution is valid and (2) whether the understanding of the
reviewer about the code under review is correct.

To help developers find related changes, the code review tool like Gerrit has provided
functionalities that allow a patch author to share the links of reviews that have related
changes or in the same topics.5 Yet, we observe that developers still share links in the review
discussion. Figure 1 shows three motivating examples of how sharing links in the review
discussion can be a means to fill in the needed information. The first observation is that
various links can be shared in a review discussion to provide information. For instance, as
shown in Fig. 1a, the reviewer Anton Arefiev shared a link of a review in the PatchSet 7
(i.e., the seventh revision of the review #289676) to inform the patch author of the review
#289676 that the review #284160 covered the current review #289676. Figure 1b shows
another example where the reviewer melanle witt shared a link of Python documentation in
a review discussion of the review #207794 in order to improve the coding format.

While the work of Hirao et al. (2019) extensively investigate the review links shared
in code reviews, these motivating examples show that links that point to other information
sources are also shared in code reviews. Hence, in this study, we aim to investigate the
trend and characteristics of shared links in terms of their types (internal or external) and the
kinds of content to which those links point. In this study, we define ‘internal links’ are the
links that are directly related to the project (e.g., review links, bug reports, git repository),
while external links are the links that refer to resources outside the project (e.g., Python
Document).

Apart from the various links, the second observation is that the intentions behind sharing
links can be different even if the shared links have the same type. In Fig. 1a, the intention

5https://gerrit-review.googlesource.com/Documentation/user-review-ui.html
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(a)

(b)

(c)

Fig. 1 Motivating examples of link sharing in MCR process
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of the reviewer of sharing a review link is to point out that the current review #289696 is no
longer necessary. While, in Fig. 1c, although the reviewer also shared a link to the review
#150718, the intention of the reviewer is to help the patch authors clearly understand the
context and code dependency of the current patch.

While the work of Jiang et al. (2019) investigate the different types of links shared in
pull-based review, our motivating examples show that the intention of providing information
can be different even though the types of shared links are the same. Thus, we aim to better
understand the intentions behind link sharing and to what extent can link sharing meet the
information needs of review teams.

3 Case Study Design

In this section, we describe the studied projects and data preparation. Then we present the
analysis approach for each research question.

3.1 Studied Projects

Since we want to study the practice of link sharing, we focus on the projects that use a code
review tool. In this study, we select the projects that use the well-known Gerrit platform,
a review tool that is largely adopted by many open source projects, where the review data
is accessible through REST API. From the range of open source projects that are listed in
the work of Thongtanunam and Hassan (2020), we start with four projects: OpenStack, Qt,
LibreOffice, and Chromium, as these four projects actively perform code reviews through
Gerrit. However, we observe that a large proportion of LibreOffice reviews have only one
reviewer. For the Chromium project, we find that it is not trivial to analyze the shared links
based on their domains (i.e., most are under the google.com domain), since we want to
investigate whether the link is external or not. To gain more insights and avoid potential
errors, we exclude LibreOffice and Chromium from our study. Therefore, in this paper, we
perform a case study on OpenStack and Qt projects.

OpenStack is an open source software project where many well-known organizations
and companies, e.g., IBM, VMware, and NEC, collaboratively develop a platform for cloud
computing. Qt project is developed for creating graphical user interfaces as well as cross-
platform applications that run on various software and hardware platforms, such as Linux,
and Windows.

3.2 Data Preparation

Figure 2 describes an overview of our data preparation. Our data preparation process (DP)
consists of two steps: (DP1) clean dataset and (DP2) extract links.

(DP1) Clean datasets (DP2) Extract links

Review 
Datasets

Cleaned 
Datasets

Fig. 2 An overview of data preparation
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Table 1 Studied projects

OpenStack Qt

Studied Period 11/2011-07/2019 05/2011-07/2019

# Reviews (#Merged/#Abandoned) 58,212 (45,439/12,773) 40,758 (35,284/5,474)

# Reviewers 4,568 1,123

# Reviews with Links 14,655 (25.2%) 4,613 (11.3%)

# Unique Links 26,746 7,518

# Total Links 31,698 7,988

# Links per Review (1st Qu./Median/3rd Qu.) 1/1/2 1/1/2

Percent of Links Shared by Reviewers 62.3% 44.0%

Percent of Links Shared by Authors 37.6% 56.0%

(DP1) Clean dataset For two studied projects, we use the review datasets from the work
of Thongtanunam and Hassan (2020). In order to study the correlation between review pro-
cess duration and the link, we only include the reviews whose status are abandoned or
merged. We exclude reviews with open status, since we can not calculate the review time
of these reviews. Since we want to investigate the trend of links that are shared in review
discussions, we exclude the comments that are posted by automated tools in the discussion
thread. We refer to the documentation of the studied systems,6 to identify the automated
tools that are integrated with the code review tools. In addition, we exclude the reviews
that do not have comments posted by the reviewers (or have only comments posted by the
patch author). Table 1 shows the number of remaining reviews that are studied in this work.
For OpenStack, 58,212 reviews are captured from November 2011 to July 2019. Qt owns
40,758 reviews from May 2011 to July 2019.

(DP2) Extract links To identify the links in the review discussion, we apply regular expres-
sion (i.e., ‘https?://\S+’) to search for hyper links in review discussions. Finally, as shown in
Table 1, we are able to collect 14,655 reviews with 31,698 links and 4,613 reviews including
7,988 links for OpenStack and Qt projects, respectively. Table 1 provides summary statistics
of links per review and whether the links are shared by a patch author or a reviewer. More
specifically, in our datasets, 37.6% of links in OpenStack are shared by the patch authors,
while 62.3% of links are shared by the reviewers. For Qt, 44% of links are shared by the
patch authors, while 56% of links are shared by the patch authors.

3.3 RQ1 Analysis

To answer RQ1: To what extent do developers share links in the review discussion?, we
analyze to which extent of links are shared in three main aspects: (1) the trend of link
sharing, (2) the common domains, and (3) the types of link targets. Below, we describe our
analysis approach for each aspect.

Link Sharing Trend To investigate the trend of link sharing, we examine how often reviews
will have link sharing overtime. Similar to prior work (Hirao et al. 2019), we measure the

6https://docs.openstack.org/infra/manual/developers.html and https://wiki.qt.io/CIOverview
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proportion of reviews that have at least one link shared in the review discussion in an interval
of three months.

Common Domain in the Project To analyze the domain popularity, we first determine
whether the links are internal (i.e., the links that are directly related to the project), or exter-
nal (i.e., the links that refer to the resources outside the projects). To identify whether the
links are internal or external, we manually examine the domain name and its homepage to
determine the links are directly related to the projects (i.e., internal links). More specifically,
for OpenStack, we determine the links with the domain names that have the ‘openstack’,
‘opendev’, keywords (e.g., https://wiki.openstack.org/) as internal links of the Open-
Stack project. We also consider the links under “https://blueprints.launchpad.net/openstack”
and “https://github.com/openstack” as the internal links of the OpenStack project. Similarly,
for Qt, we consider the links with the domain name that has the ‘qt’ keyword as internal
links of the Qt project. We also consider the links under “http://github.com/qt/” as inter-
nal links of Qt. Links that are not identified as internal links will be identified as external
links. Once we identify whether the links are internal or external, we examine the popular
domain for internal and external links. To do so, we measure the frequency of links in each
domain.

Link Target Types To understand what kinds of link targets are referenced in review dis-
cussions, we perform a manual analysis on a statistically representative sample of our link
dataset.

• (I) Representative dataset construction. As the full set of our constructed data is too
large to manually examine their link targets, we then draw a statistically representa-
tive sample. The required sample size was calculated so that our conclusions about the
ratio of links with a specific characteristic would generalize to all links in the same
bucket with a confidence level of 95% and a confidence interval of 5.7 The calculation
of statistically significant sample sizes based on population size, confidence interval,
and confidence level is well established (Krejcie and Morgan 1970). We randomly sam-
ple 379 internal links and 327 external links from the unique links of the OpenStack
project, and 363 internal links and 309 external links of the Qt project. To remove the
threat of links being inaccessible (404), our approach includes verifying each link until
our sample size is reached. To do so, we first randomly select 500 internal candidate
links and 500 external candidate links for each studied project. Then we automatically
verified and filtered out links that are inaccessible. In the end, we filtered out 70 inac-
cessible internal links and 138 inaccessible external links for the OpenStack project,
and 75 inaccessible internal links and 147 inaccessible external links for the Qt project.

• (II) Manual coding. To classify the type of link targets, we perform two iterations of
manual coding. In the first iteration, the first two authors independently coded 50 inter-
nal and external links in the sample. The initial codes were based on the coding scheme
of Hata et al. (2019) which provides the 14 types of link targets in source code com-
ments. However, we found that their codes did not cover all link targets in our datasets.
Hence, the following five codes emerged from our manual analysis in the first iteration:

– Communication channel: links target for the mailing list, chat room.
– GitHub activity: links target for pull requests, commits, and issues.

7https://www.surveysystem.com/sscalc.htm
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– Media: links target for pictures and videos.
– Memo: links target for the personally recorded documentation.
– Review: links target for the code review.

To validate our codes, we perform a second iteration of manual coding. In this iteration,
the three authors of this paper independently coded another 30 internal and external links in
the sample. Then, we measure the inter-rater agreement using Cohen’s Kappa across the 19
types of link targets. The score of the Kappa agreement is 0.83, which is implied as nearly
perfect (Viera et al. 2005). Based on this encouraging result, we divided the remaining
samples into two sets. Then, the first author independently coded the first set and the second
author independently coded the second set.

3.4 RQ2 Analysis

To answer RQ2: Does the number of links shared in the review discussion correlate with
review time?, we perform a statistical analysis using a non-linear regression model to inves-
tigate the correlation between the link sharing and the review process (i.e., review time),
while consider several confounding variables. Similar to the prior studies (Thongtanunam
et al. 2017; Ruangwan et al. 2018), the goal of our statistical analysis is not to predict the
review time, but to understand the associations between the link sharing and the review time.
In this section, we first describe our selected explanatory variables, then we describe our
model construction, and finally, we explain how we analyze the model. Figure 3 presents an
overview of our RQ2 quantitative analysis.

Explanatory Variables Table 2 describes the 14 metrics that are used as explanatory vari-
ables in our model. Since we want to investigate the correlation between link sharing and
the code review time, we count the number of internal links, external links, and the total
links. As prior studies have shown that several factors can have an impact on the review
time (Kononenko et al. 2018; Thongtanunam et al. 2016), we also include 11 variables
shown in Table 2 into our model. Similar to the prior work (Thongtanunam et al. 2017;
McIntosh et al. 2014), we classify a patch where its description contains “doc”, “copyright”,
or “license” words as documentation, while a patch where its description contains “fix”,
“bug”, or “defect” words is classified as bug fixing. The remaining patches are classified as
feature introduction.

For the dependent variable (i.e., review time), we measure the time interval in hours
from the time when the first comment was posted until the time when the last comment was
posted. We did not include the time between the patch was submitted and the first comment
was made because this period of time could be the review waiting time of a patch, which is
not a key focus of this study.

Dependent 
Variable

Explanatory
Variables

Fit non-linear
regression model

Cleaned
Datasets

Metric Computation Model Construction

Assess model
stability

Analyze
explanatory variables

Model Analysis

Fig. 3 An overview of our RQ2 quantitative analysis
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Table 2 The studied explanatory variables

Confounding variables Description

Add The number of added lines by a patch.

Delete The number of deleted lines by a patch.

Patch size The total number of added and deleted lines by a
patch.

Purpose The purpose of a patch, i.e., bug, document, feature.

# Files The number of files what were changed by a patch.

# Revisions The number of review iterations.

Patch author experience The number of prior patches that were submitted by
the patch author.

# Comments The number of messages posted in a review discus-
sion by reviewers and the patch authors, excluding
messages for change updates and the number of inline
comments.

# Author comments The number of messages posted in a review dis-
cussion by the patch author, excluding messages for
change updates and the number of inline comments.

# Reviewer comments The number of messages posted in a review discus-
sion by reviewers, excluding messages for change
updates and the number of inline comments.

# Reviewers The number of developers who posted a comment to
a review discussion.

Link sharing variables Description

# External links The number of external links shared in the general discussion.

# Internal links The number of internal links shared in the general discussion.

# Total links The number of internal and external links shared in
the general discussion.

Model Construction (MC) To investigate the association between link sharing and review
time, we choose the Ordinary Least Squares (OLS) multiple regression model. This tech-
nique allows us to fit the nonlinear relationship between the explanatory variables and the
dependent variable. We adopt the model construction approach of Harrell et al. (1984),
which was also used by Mcintosh et al. (2016). This construction approach also enables
a more accurate and robust fit of the dataset, while carefully considering the potential
for over-fitting. The model construction approach consists of five steps and we explain
below:

(MC1) Estimate budget for degrees of freedom. As suggested by Harrell et al. (1984), we
estimate a budget for the model before fitting our regression model, i.e., the maximum
number of degrees of freedom that we can spend. We spend no more than n

15 degrees
of freedom in our OLS model, where n refers to the number of studied reviews in the
dataset.
(MC2) Normality adjustment. OLS expects that the response variable (i.e., review time)
is normally distributed. Since software engineering data is often skewed, we analyze
the distribution of review time in each studied project before fitting our model. We use
skewness and kurtosis function of the moments R package to check whether or
not our modeled dataset is skewed. If the distribution of review time is skewed (i.e.,
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p-value < 0.05), similar to prior work (Mcintosh et al. 2016), we use a log transfor
mation to lessen the skew in order to better fit the assumption of the OLS technique.
(MC3) Correlation and redundancy analysis. Highly correlated explanatory variables can
interfere with each other when examining the significance of the relationship between
each explanatory variable and the response variable, which potentially leads to spurious
conclusions. Hence, we use the Spearman rank correlation (ρ) to assess the correla-
tion between each pair of metrics. We repeat this process until the Spearman correlation
coefficient values of all pairs of metrics are less than 0.7. Although correlation anal-
ysis reduces collinearity among the explanatory variables, it may not detect redundant
variables (i.e., an explanatory variable that does not have a unique signal from other
explanatory variables). To assure that studied variables provide a unique signal, we use
the redun function of the rms R package to detect the redundant variables and remove
them from our models.
(MC4) Allocating degrees of freedom. After removing highly correlated and redundant
variables, we consider how to allocate degrees of freedom to the remaining variables most
effectively. Similar to prior work (Mcintosh et al. 2016), we use the spearman2 func-
tion of the rmsR package to calculate the Spearmanmultiple ρ2 between the explanatory
and response variables. The larger Spearman multiple ρ2 denotes to the higher potential
of sharing a nonlinear relationship. Thus, variables with larger ρ2 values are allocated
more degrees of freedom than variables with smaller ρ2 values. To avoid the over-fitting
issue, we only allocate three to five degrees of freedom to those variables with high ρ2

values and allocate one degree of freedom (i.e., a linear relationship) to variables with
low ρ2 values.
(MC5) Fitting statistical models. Once we decide the allocation of freedom degrees to
the variables, we construct a non-linear multiple regression model. Similar to prior work
(Mcintosh et al. 2016), we use restricted cubic splines which force the tails of the first and
last degrees of freedom to be linear, to fit our modeled dataset. We use the rcs function
of the rms R package to assign the allocated degress of freedom to each explanatory
variable. Then, we use the ols function of the rms R package to construct the model.

Model Analysis (MA) After the model construction, we assess the goodness of fitting our
models and examine the relationship between the review time and the explanatory variables
especially for the number of internal and external links shared in the review discussions.
We analyze the model using the three steps: (1) assessing the goodness of fit and model
stability, (2) estimating the power of explanatory variables, and (3) examining the relation-
ship between the explanatory variables and the review time. We describe each step in detail
below:

(MA1) Assessing model stability. We use the adjusted R2 (Hastie et al. 2009) to evaluate
how well the model fits the dataset based on the studied metrics. However, the adjusted
R2 can be overestimated if the model is overfit to the dataset. Hence, we use the bootstrap
validation approach to estimate the optimism of the adjusted R2. To do so, we first gen-
erate a bootstrap sample, i.e., a sample with replacement from the original dataset. Then,
we construct a model using the bootstrap sample (i.e., a bootstrap model). The optimism
is a difference in the adjusted R2 values between the bootstrap model when applied to
the original R2 optimism. Finally, we subtract the average R2 optimism from the initial
adjusted R2 value to obtain the optimism-reduced adjusted R2.
(MA2) Estimating the power of explanatory variables. To identify the variables that are
highly correlated with the review time, we estimate the power of explanatory variables
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that contribute to the fit of our model. Similar to prior work (Mcintosh et al. 2016),
we use Wald χ2 maximum likelihood tests to jointly test a set of model terms for each
explanatory variable since these variables are allocated more than one degrees of free-
dom. The larger the χ2 of an explanatory variable is, the larger the contribution that the
variable made to the model. We use the anova function of the rms R package to report
both the Wald χ2 value and its corresponding p-value.
(MA3) Examining relationship. Finally, we examine the direction of the relationship
between each explanatory variable and the review time. To do so, we use the Predict
function of the rms package to plot the estimated review time while varying the value of
a particular explanatory variable and hold the other explanatory variables at their median
values.

3.5 RQ3 Analysis

To answer RQ3: What are the common intentions of links shared in the review discussion?,
we conduct a qualitative analysis to investigate the intention of link sharing. In particular, we
performmanual coding on a representative sample. Note that we use the same representative
sample used in RQ1 (see Section 3.3). Below, we describe our coding scheme and manual
coding process.

Coding scheme of intentions for link sharing We hypothesis that links are shared to fulfill
different information needs. Hence, we use the taxonomy of information needs of Pascarella
et al. (2018) as our initial coding scheme. We rely on their taxonomy because their taxon-
omy is closely relevant to our study, i.e., what kinds of information that was requested by
reviewers during code review in the MCR context, and the taxonomy has been validated
based on a semi-structured interview.

To test how well the taxonomy of information needs of Pascarella et al. (2018) can be
used to classify the intentions of link sharing, we randomly select 50 samples from our
representative datasets and classify them into the taxonomy of information needs. More
specifically, we identify the category of information needs which the share link aims to ful-
fill. This classification is conducted by the two authors of this paper. After the classification,
the first four authors discuss whether the taxonomy of information needs can be used. We
find that the links can be classified into the taxonomy of the information needs of Pascarella
et al. However, we refine the taxonomy to focus on the intentions of link sharing since the
taxonomy of Pascarella et al. focuses on the reviewers’ questions. Table 3 shows the refined
taxonomy of intentions of our work, which is derived from the taxonomy of information
needs of Pascarella et al.

Manual coding process After we refine the taxonomy of intentions for link sharing, we
validate our coding schema by classifying another 30 links of the representative samples
based on our taxonomy. This coding was conducted by the three authors of this paper. Then,
we measure the inter-rater agreement using Cohen’s Kappa. The average Cohen’s Kappa
score is 0.72 which indicates “substantial agreement” (Viera et al. 2005). The somewhat
lower agreement can be explained by the need to extrapolate the intention behind a link from
its context in the review discussion alone, without being able to interview the developer who
added the link. After the validation, we splitted the remaining links into two sets. Then, the
first author independently coded the first set and the second author independently coded
the second set. In total, we manually classify 1,378 links. Note that when we classify the
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Table 3 The taxonomy of intentions for sharing links

Category Description Taxonomy of information needs
(Pascarella et al. 2018)

Providing
Context

The link is shared to provide the additional
information related to the implementation.

Context–Reviewers ask about the infor-
mation aimed at clarifying the context
of a given implementation

Elaborating The link is shared to complete the infor-
mation or references related to the patch.

Rationale–Reviewers ask questions to
get a rationale why the patch was
implemented in a certain way.

Clarifying The link is shared to clarify some doubts
about the review process or to correct the
reviewer’s understanding of the patch.

Correct Understanding–Reviewers ask
questions to confirm the reviewer’s
interpretation/understanding or to cla-
rify doubts.

Explaining
Necessity

The link is shared to inform more suitable
solutions or explain the reasons why the
patch is no longer needed.

Necessity–Reviewers need to know
whether the patch (or a part of it) is
necessary.

Proposing
Improvement

The link is shared to point out an alterna-
tive solution or suggestion improvement.

Suitability of An Alternative Solution–
Reviewers pose a question to discuss
options and alternative solutions to the
implementation of the patch.

Suggesting
Experts

The link is shared to point out to an
expert (other developers) who should be
involved.

Specialized Expertise–Reviewers ask
other reviewers to contribute with
their specialized expertise.

Informing
Splitted
Patches

The link is shared to inform that the patch
has been splitted.

Splittable–Reviewers ask questions to
seek the possibility of splitting the
patch into multiple, separated patches.

links, we also consider the textual content of the comments that contain links and the entire
discussion thread to have a better understanding of the context.

4 Case Study Results

In this section, we present the results for each of our research questions.

4.1 RQ1: To what extent do developers share links in the review discussion?

To answer RQ1, we analyze (1) the trend of link sharing (i.e., how often reviews have
shared links overtime), (2) the common domains of the shared links, and (3) the types of
link targets. Figures 4, 5, and Table 4 show the results of our analysis which is described in
Section 3.3. We now discuss our results below.

Link Sharing Trend In 2015–2019, 25% and 20% of the reviews have at least one link
shared in a review discussion within the OpenStack and Qt, respectively. Figure 4 presents
the proportion of reviews that have at least one link in the review discussion over time. We
find that the proportion of reviews has an increasing trend from 2011 until 2014 for both
OpenStack and Qt. Then the proportion of reviews remains at 20%–30% (OpenStack) and
15%–20% (Qt) from 2014 and onwards. This result suggests that links are commonly shared
in a review discussion for code review.
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Fig. 4 The proportion of reviews that have links in an interval of three months. In 2015-2019, 25% and 20%
of the reviews have at least one link shared in a review discussion within the OpenStack and Qt
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OpenStack
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Fig. 5 The proportion of internal and external links. 93% and 80% of links that are shared in code reviews
are internal links within the OpenStack and Qt

Table 4 The five most common domains in OpenStack and Qt. review.openstack.org and codereview.qt-
project.org are the most common domains within the OpenStack and Qt

Internal External

OpenStack Qt OpenStack Qt

Top 1 review.openstack.org codereview.qt-project.org github.com paste.kde.org

(51%) (79%) (15%) (14%)

Top 2 github.com/openstack bugreports.qt.io docs.python.org github.com

(13%) (6%) (4%) (6%)

Top 3 bugs.launchpad.net testresults.qt.io gist.github.com msdn.microsoft.com

(7%) (4%) (4%) (5%)

Top 4 logs.openstack.org doc.qt.io bugzilla.redhat.com pastebin.kde.org

(6%) (2%) (3%) (3%)

Top 5 wiki.openstack.org wiki.qt.io stackoverflow.com gcc.gnu.org

(4%) (2%) (2%) (3%)
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CommonDomain in the Project 93% and 80% of links that are shared in code reviews are
internal links. Table 4 shows the ratio between internal and external links that are shared in
OpenStack and Qt. We find the majority of links that are shared in the code reviews are inter-
nal links (i.e., links that are directly related to the projects). More specifically, Table 4 shows
that 93% of links shared in OpenStack reviews are internal links, while only 7% of the links
are external links (i.e., not directly related to OpenStack). Qt also has a similar ratio, where
80% of the links shared in Qt reviews are internal, and 20% of the links are external. These
results indicate that links that are often shared in the review discussion are directly related to
the project. In addition, Table 4 shows that the most common domains for the internal links
are review.openstack.org and codereview.qt-project.org, which account for 51% and 79% of
the internal links shared in OpenStack and Qt, respectively. The other common domains of
the internal links shared in OpenStack reviews are github.com/openstack (OpenStack mirror
projects in GitHub), bugs.launchpad.net, log.openstack.org, and wiki.openstack.org, which
account for 30% of the internal links. For Qt, the other four common domains of the inter-
nal links are bugreports.qt.io, testresult.qt.io, doc.qt.io, and wiki.qt.io, which account for
14% of the internal links. On the other hand, the most common domain of external links is
github.com for OpenStack and paste.kde.org for Qt.

Link Target Types We now further examine what kinds of information to which the shared
links are referenced. Based on a manual coding on a statistical representative sample,
Table 5 shows that reviews (a set of code changes) are the most frequently referenced by

Table 5 Frequency of link target types in our representative samples

Internal External

OpenStack Qt OpenStack Qt

Licence – – 0.3% –

Software homepage 1.1% 0.6% 9.2% 3.6%

Specification 2.6% – 2.8% 0.6%

Organization homepage – – 0.6% 0.3%

Tutorial or article 7.1% 5.8% 18.7% 14.6%

API documentation – 2.5% 15.3% 16.5%

Blog post – – 2.8% 1.9%

Bug report 9.2% 9.9% 8.3% 8.4%

Research paper – – 0.3% –

Code 13.5% 4.1% 13.5% 10.4%

Forum thread – 0.8% 0.3% 0.6%

Book content – – 0.6% 1.0%

Q&A thread – – 1.2% 0.6%

Stack Overflow – – 3.1% 1.9%

Communication channel 2.6% 0.3% 4.9% 3.6%

GitHub activity 0.3% – 4.9% 3.6%

Media – – 2.1% 5.5%

Memo 5.8% 1.1% 5.8% 6.5%

Review 55.9% 73.6% – 0.3%

Others 1.8% 1.4% 5.5% 20.1%

The bold target categories are complemented from the work by Hata et al. (2019)
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internal links, which account for 55.9% and 73.6% of the internal links for OpenStack
and Qt, respectively. The other kinds of information that are frequently referenced by the
internal links are bug report (9.2% for OpenStack; 9.9% for Qt), source code (13.5% for
OpenStack; 4.1% for Qt), and tutorial or article (7.1% for OpenStack; 5.8% for Qt). On
the other hands, we find that tutorial or article and API documentation are the two most
frequent targets referenced by external links, which account for 18.7% and 15.3%, and
14.6% and 16.5% the external links shared in OpenStack and Qt, respectively. The other
kinds of information that are frequently referenced by the external links are source code
(13.5% for OpenStack; 10.4% for Qt), and bug report (8.3% for OpenStack; 8.4% for Qt).
This might suggest that the external links often reference to temporary information. Specif-
ically, within the Qt, we observe that 20.1% of external links are classified as Others.
Through the manual analysis, these links are mostly referred to the links that can be acces-
sible but requiring authentication. For example, when we click on the external link https://
paste.kde.org/pgjaet12z, the web page shows that we need to sign in or sign up before
continuing.

RQ1 Summary: In the past five years, 25% and 20% of the reviews have at least
one link shared in a review discussion within the OpenStack and Qt. 93% and 80%
of shared links are the internal links that are directly related to the project. Impor-
tantly, although the majority of the internal links are referencing to reviews, we find
that the links referencing to bug reports and source code are also shared in review
discussions. In addition, we find that the common target types of external links are
tutorial and API documentation.

4.2 RQ2: Does the number of links shared in the review discussion correlate with
review time?

To answer RQ2, we analyze the correlation between link sharing variables and the review
time, using a non-linear regression model. Figure 6 and Table 6 show the results of our
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Fig. 6 The direction of the relationships between the number of internal links and the code review time. The
light grey area shows the 95% confidence interval. It shows that the more internal links are shared during the
discussion, the longer review time will be taken
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Table 6 Review time model statistics

OpenStack Qt

Adjusted R2 0.3737 0.4580

Optimism-reduced adjusted R2 0.3733 0.4573

Overall Wald χ2 34,649 34,358

Budgeted Degrees of Freedom 3,873 2,711

Spent Degrees of Freedom 24 24

Confounding variables Overall Nonlinear Overall Nonlinear

Patch size D.F. † †

χ2

Add D.F. 2 1 2 1

χ2 154∗ ∗ ∗ 153∗ ∗ ∗ 337∗ ∗ ∗ 337∗ ∗ ∗
Delete D.F. 1 – 1 –

χ2 1o 0.53o

Purpose D.F. 2 – 2 –

χ2 276∗ ∗ ∗ 131∗ ∗ ∗
# Files D.F. 2 – 1 –

χ2 31∗ ∗ ∗ 0.34o

Patch author Exp. D.F. 1 – 1 –

χ2 220∗ ∗ ∗ 98∗ ∗ ∗
# Comments D.F. † †

χ2

# Author comments D.F. 3 2 3 2

χ2 1936∗ ∗ ∗ 1679∗ ∗ ∗ 2216∗ ∗ ∗ 1549∗ ∗ ∗
# Reviewer comments D.F. 4 3 3 2

χ2 1360∗ ∗ ∗ 1066∗ ∗ ∗ 4908∗ ∗ ∗ 4036∗ ∗ ∗
# Reviewers D.F. † †

χ2

# Revisions D.F. 3 2 3 2

χ2 3237∗ ∗ ∗ 1847∗ ∗ ∗ 2038∗ ∗ ∗ 1687∗ ∗ ∗

Link sharing variables Overall Nonlinear Overall Nonlinear

# External links D.F. 1 – 1 –

χ2 3o 0.22o

# Internal links D.F. 1 – 1 –

χ2 119∗ ∗ ∗ 78∗ ∗ ∗
# Total links D.F. † †

χ2

Among link sharing variables, # Internal links has a significant correlation with review time, while # External
links does not have
†This explanatory variable is discarded during variable clustering analysis | ρ |≥0.7
–Nonlinear degrees of freedom not allocated

Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:

o p≥0.05; ∗ p<0.05; ∗∗ p<0.01; ∗ ∗ ∗ p<0.001
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model construction and model analysis which is described in Section 3.4. We now discuss
our results below.

Model Construction We first describe our model construction. Table 6 shows the surviv-
ing explanatory variables that are used in our models. Based on the hierarchical clustering
analysis, we remove those explanatory variables that are highly correlated with one another,
i.e., Patch size, # Comments, # Reviewers, and # Total links. For the surviving explanatory
variables, we do not find a redundant variable, i.e., the variable that has a fit with an R2

greater than 0.9 during the redundancy analysis. The budgeted degrees of freedom are then
carefully allocated to the surviving explanatory variables based on their potential for shar-
ing a nonlinear relationship with the response variable as described in Section 3.4. We spent
24 degrees of freedom on OpenStack and Qt models.

Model Analysis We now analyze the goodness of fit of our models. Table 6 shows that our
non-linear regression model achieve an adjustedR2 of 0.3737 (OpenStack) and 0.4580 (Qt).
The adjusted R2 scores are acceptable as our models are supposed to be explanatory not for
the predictive purpose (Moksony 1999). Taking overestimation into account, after applying
the bootstrap techniques with 1,000 iterations, we find that the optimism of an adjusted
R2 is 0.0004 and 0.0007 for OpenStack and Qt models, respectively. The result indicates
that our constructed models are stable and can provide a meaningful and robust amount of
explanatory power.

We now discuss the explanatory power of the variables of interests (i.e., # External links,
# Internal links) and their relationship with the review time. Table 6 shows the explanatory
power (Wald χ2 value) of our explanatory variables that contribute to the fit of our models.
In the table, the ‘Overall’ column shows the Wald χ2 value of the entire model fit that the
explanatory variable contributes to the fit of the model, while the ‘Nonlinear’ column shows
the Wald χ2 value that the nonlinear component of the explanatory variable contributes to
the fit of the model. Taking a look into link sharing variables, the statistics show that there
is no significant correlation between the number of external links and the review time (p-
value >0.05) for both studied projects. On the other hand, we observe that the number of
internal links has a significant correlation with the review time (p-value <0.001). However,
the explanatory power of the number of internal links is not as large as the explanatory
powers of the confounding variables. More specifically, the Wald χ2 values of the number
of internal links account for only 0.4% ( 119

34,649 ; OpenStack) and 0.3% ( 78
34,358 ; Qt), while the

Wald χ2 values of the variables range from 0.4%–10% (OpenStack) and 0.3%–13% (Qt).
These results suggest that the internal link has a relatively weak correlation with the review
time when compared to other variables.

Figure 6 shows the relationship between the number of internal links and the review
time. We find that for both studied projects, the number of internal links has an increasing
relationship with the review time. In other words, the more internal links shared in the
review discussions, it tends to take a longer time for the patch to be reviewed. There are
two possible conjectures that how internal links may contribute in a longer review process.
One potential reason is that developers may spend time on finding the related internal links.
Another possible reason is that since the internal links are closely related to the project
resources, it will take time for developers to pay attention to and understand the project
environment. Although the model shows an increasing relationship, we can not explain the
causality between the internal link count and the review time, since before the internal links
occur, the long review time could have already been taken.
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RQ2 Summary: Our non-linear regression models show that the internal link has
a significant correlation (but relatively weak) with the review time. However, the
external link is not significantly correlated with the review time. Furthermore, we
observe that the number of internal links has an increasing relationship with the
review time.

4.3 RQ3: What are the common intentions of links shared in the review discussion?

To answer RQ3, we analyze (1) the kinds of common intentions of sharing links, and (2)
the frequency of these intentions within our studied projects. Below, we first provide repre-
sentative examples for each intention type, and then we discuss the result of the frequency
of intentions (Fig. 7).

Taxonomy of Common Intentions Seven intentions of sharing links are classified through
our qualitative analysis, which is described in Section 3.5:

(I) Providing Context. This category emerges by grouping discussions in which the links

are shared to provide additional information related to the implementation. The Ex 1,8

shows that the reviewer shared an internal review link for the author to inform the review
team of the dependent patch. During the classification process, we observe that apart
from sharing review links, the developers also share specific log results or screenshots for
review teams to better understand the code change implementation. For instance, in the
Ex 29 the reviewer self came across a test failure. To reduce the confusion, the reviewer
attached an external memo link recorded with the log result for the review team to check.
Note that although the log result is from the CI tool of the studied project, the link that is
shared is not directly related to the project.

Ex 1
Reviewer: Depends on [internal review link].

Ex 2
Reviewer: Hmm, test failures from Jenkins look real, if confusing: [external memo
link].

(II) Elaborating. The category refers to the links that are shared to complete the infor-
mation provided in the review comment or references related to the patch. In this case,
the keywords are usually left on the comments such as “refer to”, “for example”, “for
your information”. We show the following two representative examples to describe the
intention of elaborating regarding internal and external links. In the Ex 3,10 the reviewer
presented his review suggestion, and to complete the opinion, the reviewer as well shared
an internal code link as a reference for the author. For the external link, as shown in the
Ex 4,11 the author shared a Q&A thread link to explain what is the needed HZ value.

8https://codereview.qt-project.org/c/qt/qtbase/+/194731
9https://review.opendev.org/#/c/25515/
10https://review.opendev.org/#/c/75839/
11https://review.opendev.org/#/c/236210/
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Ex 3
Reviewer: I would prefer that you didn’t merge this. Like mentioned in previous
review, if ’import’ is removed and there is no code/comment/docstring, the license
header should be removed as well. Please refer to: [internal doc link]

Ex 4
Author: For example on page [external Q&A thread link] it is well explained for
what is this HZ value needed there.

(III) Clarifying. In this category, the links are shared to clarify some doubts of review
process or to correct the reviewer’s understanding of the patch. We find the clarification
can be claimed from either the reviewer or the patch author aspect. The Ex 5,12 illustrates
the case where the patch author used an internal code link to address the reviewer’s doubts
about the undefined behaviour with the code change. In the Ex 613 the patch author
thought that signed types implicitly converting to unsigned ones was not a problem.
However, the reviewer shared external doc links to explain that it is a true problem that
should be focused on.

Ex 5
Reviewer: What is this fixing? Is there an undefined behaviour i am not seeing?
Author: I probably need to add this to the commit message, but: 1. by fixing it to
QObject, we fix it to a specified size, independent of which class type the member
belonged to (see long explanation in [internal review link].) 2. since it no longer
depends on the class type, the impl() functions are generated based only on the
signal and slot’s arguments, not on the class they are from. This reduces template
bloat. [internal code link].

Ex 6
Author: Signed types implicitly convert to unsigned ones. That’s not a problem.
Reviewer: I think that *is* a problem: going from signed to unsigned is not an
integral promotion [external doc link], but an integral conversion [external doc link]

(IV) Explaining Necessity. This category refers to the links that are shared to inform more
suitable solutions or explain the reasons why the patch is no longer needed. We observe
this category can happen in both internal and external links. For example, as shown in
the Ex 7,14 the reviewer shared a review link and pointed out that the linked review had
already changed network type validation using a simple approach. And further suggested
that the current patch was not really needed. The Ex 815 is related to the shared external
link with the intention of explaining necessity. One developer considered the submitted
change was not sufficient since libproxy already had a fix. At the end of the comment,
the developer shared an external GitHub link to indeed prove that the fix has been done
through this link. Note that the external GitHub link is not directly related to the GitHub
of the studied project.

12https://codereview.qt-project.org/c/qt/qtbase/+/160883
13https://codereview.qt-project.org/c/qt/qtbase/+/186305
14https://review.opendev.org/#/c/22928/
15https://codereview.qt-project.org/c/qt/qtbase/+/200463
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Ex 7
Reviewer: I would prefer that you didn’t merge this
The WIP ml2 patch at [internal review link] changes the network type validation
in the core to simply validate a string. Is anything more really needed?

Ex 8
Author: This change is insufficient. libproxy already has a mutex, so adding another
one won’t solve anything.
* [external GitHub link]

(V) Proposing Improvement. In this category, we group discussions in which the links are
shared to point out an alternative solution or suggestion improvement. As shown in the
Ex 9,16 the reviewer provided the author with an internal GitHub code link and suggested
the author should follow the proposed method. Similarly, the reviewer asked the author
to do something like what the shared long-term memory link did in the Ex 10.17

Ex 9
Reviewer: The compute api loading code and the new hostapi loading code (and
network api loading code for that matter) should follow the method that the volume
api loading code uses here: [internal GitHub code link]

Ex 10
Reviewer: could we do something like that: [external long-term memory link]
... a bit rough but you should get the idea ... get all (without specifying any attr)
layer

(VI) Suggesting Experts. We define this category as the links are shared to point out to

an expert (other developers) who should be involved. In Ex 11,18 the author shared an
internal review link related to the spec change and invited the reviewer named John to
have a review as well. In the Ex 12,19 in order to address the reviewer’s question, the
author used @ to suggest an expert along with an issue link to point out he was an
experienced maintainer regarding such a situation.

Ex 11
Author: Hi John, spec is on review: [internal review link]. Could you please review
it?

Ex 12
Reviewer: Or is it a bug in the protocol?
Author: @psychon (a.k.a Uli Schlachter) who is a maintainer of AwesomeWM has
a good comment regarding the situation with the standard [external GitHub issue
link].

16https://review.opendev.org/#/c/12311
17https://codereview.qt-project.org/c/qt/qtbase/+/126975
18https://review.opendev.org/#/c/219248/
19https://review.opendev.org/#/c/219248/
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Fig. 7 Distribution of seven intentions behind sharing links across the studied projects. The results show
that Providing Context and Elaborating are the most common intentions for internal and external links,
respectively

(VII) Informing Splitted Patches. In this category, the links are shared to inform that the
patch has been splitted. We only find this intention existing behind the internal link shar-
ing. As shown in the Ex 13,20 the reviewer was trying to abandon the current patch and
split it into several small chunks to fulfill the request, along with internal review links.

Ex 13
Reviewer: I’m abandoning this patch as a result of the request to split this review
into smaller chunks - these reviews are [internal review link].

Frequencyof intentions for link sharing We now examine what are the common intentions
for sharing links in the review discussion. Figure 7 shows the distribution of each intention
category within internal and external types for OpenStack and Qt. The figure clearly reveals
that not all the intentions are equally distributed and highlights the presence of a particu-
lar type. Specifically, for internal links (i.e., directly related to the project), we observe that
Providing Context category is the most frequent intention in OpenStack and Qt (128 and
134 links, respectively). The result indicates that internal links are commonly shared in the
review discussion to provide additional information related to the implementation of a patch.
For the external links (i.e., not directly related to the project), we find that the most common
intention is Elaborating in both projects (145 and 115 links, respectively). This finding sug-
gests that external links are commonly shared to complement the information provided in
the review comment. In addition, we observe that (i.e., Informing Splitted Patches and Sug-
gesting Experts) are the least common intentions for link sharing. This observation suggests
that links may not be able to fulfill these information needs.

Upon closer inspection on the review links (i.e., the most common shared link target in
RQ1), as shown in Table 7, we find that the most frequent intention is to provide context,

20https://review.opendev.org/#/c/103167
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Table 7 The three most frequent
intentions of sharing review links Intention OpenStack Qt

Providing Context 40% 40%

Explaining Necessity 23% 18%

Elaborating 19% 16%

accounting for 40% for both OpenStack and Qt project. Through our manual coding, we
observe that such context is usually concerning the patch dependency21 and integration test
environment.22 The second most frequent intention of sharing review links is to explain
necessity, accounting for 23% and 18% for the OpenStack and Qt project, respectively. The
third most frequent intention is to elaborate, i.e., 19% and 16% for the OpenStack and Qt
project, respectively.

RQ3 Summary: We identify seven intentions of sharing links: (1) Providing
Context, (2) Elaborating, (3) Clarifying, (4) Explaining Necessity, (5) Proposing
Improvement, (6) Suggesting Experts, and (7) Informing Splitted Request. We find
that providing context is the most common intention for sharing internal links
and elaborating (i.e., providing a reference or related information) to complement
review comments is the most common intention for sharing external links.

5 Discussions

In this section, we discuss the implications of our analysis results. To gain a further insight
of the perception of sharing links by developers, we conduct a survey study with Open-
Stack and Qt developers. Below, we first present the results of our survey. Then we provide
suggestions to the patch author, review teams, and researchers.

5.1 Developer Feedback

To gain insights into developer perception of link sharing, we sent out a survey23 to Open-
Stack and Qt developers, with the goal to (i) receive feedback on the three study findings,
(ii) solicit developers’ opinions, and (iii) collect insights into the developer experience with
existing functionalities (i.e., related changes, same topic). The survey consists of two lik-
ert scale questions and five open-ended questions. We sent our online survey invitation to
1,871 developers who have shared links in the past based on our studied dataset. The survey
was open from January 22 to February 13, 2021. We received responses from 53 develop-
ers in total. To analyze the responses of the open-ended questions, we use the card sorting
method. Below, we present our survey questions and discuss the survey results.

Feedback on Findings of RQ1 and RQ2 Table 8 shows the feedback on our findings of
RQ1 and RQ2. For the finding of RQ1, forty-eight respondents (90% = 48/53) agreed that

21https://review.opendev.org/#/c/612393/
22https://review.opendev.org/#/c/453537/
23https://forms.gle/hiBameBdGFMhnxNSA
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Table 8 Feedback on findings of RQ1 and RQ2, using the Likert-scale scale below: 1 = Strongly disagree, 2
= Partially disagree, 3 = No opinion, 4 = Partially agree, 5 = Strongly agree

1 2 3 4 5

Finding of RQ1–“Developers often share internal links to ref-
erence reviews, bug reports and source code, while external
links often reference tutorials and API documentation.”

0 3 2 31 17

Finding of RQ2–“A review that has an internal link shared dur-
ing its review discussion is likely to take reviewing time longer
than other reviews.”

3 24 15 11 0

developers often share internal links to reference reviews, bug reports, and source code,
while external links often reference tutorials and API documentation. In the open-ended
questions, six respondents reported that the external link target is also to point out to bug
reports outside the projects. This response is consistent with our analysis results of RQ1 as
well, i.e., bug report is the fourth frequent external link target (see Table 5). Interestingly,
one respondent stated that “This (links) is useful for example for newcomers that may have
missed guidelines or did not found the corresponding bug report when doing submitting a
fix.”.

We found that eleven respondents partially agreed with the finding of our RQ2, while
fifteen respondents did not have opinion and twenty-seven respondents disagreed with
our findings. One of the respondents who agree cited that “Sometime we are not famil-
iar wit the exact context of internal item.”. Eleven respondents who did not agree reported
that the information brought with the shared links is useful and could aid the review
process. For instance, one respondent cited that “Links usually provide a concise and
clear answer compared to trying to explain it in prose.”. Such perception of developers is
consistent with our intuition as stated under the RQ2 Motivation in the Introduction. How-
ever, the analysis result shows an inverse relationship. There could be other confounding
factors that play a role, and future work should further investigate the causality of this
relationship.

Survey on Intentions of Sharing Links In the survey questions, we also asked the respon-
dents to select the intention(s) that they usually use when sharing link. Table 9 shows the
most selected intention of sharing link is to provide context (48/53 = 90% of respondents).
The second most frequent intention from developers was to explain necessity using links
(forty respondents voting), followed by the intention to elaborate (thirty-five respondents
voting). These frequent intentions are overall consistent with our findings of our RQ3, espe-
cially for internal links (see Fig. 7). The least frequent intentions from respondents are to
inform splitted patches (17 respondents) and suggest experts (6 respondents). In regards to
the open-ended feedback, one respondent stated that “Usually when doing a code review, if
an expert should take a look at the review, he will likely be added by one of the reviewer if
not already by the submitter.”.

Survey on Perception of Existing Functionalities of Sharing Related Patch Finally, we
asked the respondents about their experience and perception of the Gerrit functionali-
ties, which provide review links of related changes and the same topic. Out of thirty-five
responses, twenty-four respondents claimed experience in using the functionalities. On the
one hand, fourteen respondents acknowledged the usefulness, especially to find related
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Table 9 Respondents feedback
on the intentions for sharing links Intention Respondent

Count

Providing Context 48

Explaining Necessity 40

Elaborating 35

Clarifying 33

Proposing Improvement 26

Informing Splitted Patches 17

Suggesting Experts 6

Others 3

patches or track dependencies. On the other hand, respondents did express limitations, e.g.,
“It seems useful for seeing what changes are submitted at a similar point in the change his-
tory, but doesn’t seem useful for finding patches that are related by content (e.g., changing
the same feature) but separated by longer periods of time.”.

When we asked about the differences between existing functionalities and the prac-
tice of sharing links in the review discussion, twelve respondents acknowledged how both
approaches can complement each other. For example, one of the respondents commented:
“The tool can help you find information you were already looking for, but the posting of a
link is a communication option to help convey the idea to other people.”.

5.2 Suggestions

Based on the our results of RQs 1-3 and the survey results, we now present our suggestions
of the study.

Suggestions for Patch Authors Our RQ1 shows that the majority of shared links are
directly related to the project. Figure 5 shows that 93% and 80% of shared links are internal
links for OpenStack and Qt, respectively. The link targets are diverse from different loca-
tions with the complexity of projects. As shown in Table 5 from RQ1, we found eleven
different target types. We suggest that in the case of well-documented projects (i.e., Open-
Stack and Qt), patch authors (especially for newcomers or novice developers) should read
the project related guidelines to be familiar with the environment before their submission.
For instance, in the review #37843,24 one reviewer shared a link related to the Ger-
rit Workflow (i.e., https://wiki.openstack.org/wiki/Gerrit Workflow) with the patch author
who was newly to the project, to avoid the broken conflict. This is also supported by the
responses of developers: “This (links) is useful for example for newcomers that may have
missed guidelines or did not found the corresponding bug report when doing submitting
a fix.”.

Through our qualitative analysis in RQ3, the observation suggests that the information
brought by the shared links is helpful as an indicator for review teams to clearly understand

24https://review.opendev.org/#/c/37843
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the patch implementation context. For one example of clarifying intention (Ex 5) shown in
Section 4.3, during the review process, the reviewer got confused about the behaviour of the
fix. To reduce the confusion, the author decided to improve the patch content in the commit
message, along with shared links to supplement further explanation. Another example of
elaborating intention (Ex 4) illustrates that to help the review team better understand what is
HZ value, the patch author shared a Q&A thread link as a reference. One surveyed respon-
dent also suggested that “It could also decrease the review time by making more clear the
intent of the code change.”. Inspired by these examples, we encourage patch authors to pro-
vide more information such as implementation related information via shared links during
their submission, in turn to receive efficient feedback from review teams quicker and reduce
the discussion confusion.

Suggestions for Review Teams Our study indicates that the practice of sharing links can
fulfill various information needs. Seven intentions are classified as shown in Table 3. Our
frequency analysis in RQ3 shows that the links are commonly shared to provide the con-
text, further elaborate, and clarify doubts. Moreover, the information that is shared through
links is also diverse. The example of providing context intention (Ex 2) in Section 4.3 shows
that one reviewer shared an external memo link which was recorded with CI tool test fail-
ure results, in order to solve the confusion among the review team and the patch author.
On the other hand, as shown in the example of explaining necessity intention (Ex 7), the
reviewer noticed that a related patch already changed the network type validation and shared
this review link in the review discussions to suggest that the current patch was no longer
needed. These findings show that sharing links can help developers fulfill the information
needs (the challenges discovered by Pascarella et al.), which potentially saves the reviewer
effort. Thus, we suggest that during the future review process, the review teams should share
links to transfer the needed information for guiding the patch author and the review pro-
cess, especially for the review team that does not adopt such practice. One respondent from
our survey commented that “Links usually provide a concise and clear answer compared
to trying to explain it in prose.” Our suggestion also extends the suggestion of Pascarrella
et al. that in addition to automatic change summarization, sharing links could be another
method to meet the information needs. We believe that such information may help to con-
duct a more efficient review and also assist with mentoring new members to the review
team.

Suggestions for Researchers Our RQ1 results indicate that link sharing is becoming a
popular practice during review discussions in the MCR. Furthermore, Fig. 4 shows that in
the last five years, around 25% and 20% of the reviews have at least one link within the
OpenStack and Qt project. As the practice of linking sharing increases, new opportunities
arise for researchers to develop tool support, especially to recommend related and useful
links for both the patch author and review teams in order to facilitate the review process.
An intelligent tool may reduce the time for developers to find the needed links. We propose
the following three potential features that could be embedded in the future code review tool:
First, the mechanism to automatically recommend related patches can be improved not only
based on the similar change history, but also considering the patch contents. Such limitation
is also pointed by the responses “It seems useful for seeing what changes are submitted
at a similar point in the change history, but doesn’t seem useful for finding patches that
are related by content (e.g., changing the same feature) but separated by longer periods of
time.”. Second, a functionality to detect alternative solution patches (i.e., patches aim to
achieve the same objective) is needed, since our empirical study shows that the second most
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frequent intention of sharing review links is to explain necessity (See Table 7). Third, a
tool to recommend guideline and tutorial related link would be especially useful for novice
developers and help them to be familiar with the project environment. This study also lays
the groundwork for future research on the links shared in the review process to generate
the structural and dynamic properties of the emergent knowledge network, aiming to enable
more effective knowledge sharing within the project.

6 Threats to Validity

We now discuss threats to the validity of our empirical study.

External Validity We perform an empirical study on two projects relying on Gerrit review
tools. Although OpenStack and Qt commonly used in the prior research, the observations
based on this case study may not generalize to other projects or peer review settings such as
the pull-based review process. However, our goal is not to build a theory that can be fit to
all projects, but rather to shed light in some large open-source projects, the links being often
shared in the code reviews to provide the context, elaborate to complement review com-
ments. We only focus on the large open-source projects with distributed teams, since most
of the code review activities are performed through the code review tool (the data is avail-
able). The data or communication recorded in the small or medium team may be incomplete
as they can have in-person communication or using other channels to discuss, like slack.
Nonetheless, additional replication studies would help to generalize our observations. Thus,
in order to encourage future replication studies, our replication package is available online
including the raw review datasets, manually labeled link targets and their intentions, and the
script to construct the non-linear regression model.

Construct Validity We summarize two threats regarding construct validity. First, in the
identification of external and internal links, we apply the keyword search to automatically
split domains into external and internal types. However, cases might occur where some
domains not including any indicated keywords can still belong to internal links. To reduce
such bias, we manually click the domains to validate the correctness carefully.

Second, in our qualitative analysis, especially for intention classification, intentions may
be miscoded due to the subjective nature of our coding approach. To mitigate this threat, we
took a systematic approach to first test our comprehension with 30 samples using Kappa
agreement scores by three separate individuals. Only until the Kappa score reaches more
than 0.7 (i.e., 0.83 for link targets and 0.72 for link intentions), indicating that the agreement
is substantial (0.61–0.80) or almost perfect (0.81–1.00), we were able to complete the rest
of the sample dataset.

Internal Validity Four related threats are summarized. The first threat is concerning the
link extraction. In this study, we only consider the links which are posted in the general
comments. We understand that links can also be shared in the inline comments. However,
the prior work (Hirao et al. 2019) pointed out that the proportions of links in the inline
comments are relatively low, accounting for 18% and 10% for OpenStack and Qt project,
respectively. The analysis of links shared in inline comments may provide further insights,
but may not have a large impact on our findings in this paper.

The second threat is related to the results derived from the statistical models that
we fitted to our data. Though we can observe the correlation between explanatory and
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dependent variables, the causal effects of link sharing on the review time cannot be repre-
sented. Thus, future in-depth qualitative analysis or experimental studies are needed so as
to better understand the reasons and effects of link sharing impact.

The third threat is regarding our factor selection to fit the statistical models. Other fac-
tors might also influence the review time. For instance, the prior study showed that the
code ownership has an impact on the review process (Thongtanunam et al. 2016). Yet, we
take commonly used metrics into account similar to the work conducted by Kononenko
et al. (2018). We are confident that these selected explanatory factors are appropriate to be
considered and measured.

The last threat is concerning the model performance overestimation. An overfit model
may exaggerate spurious relationships between explanatory and response variables. To mit-
igate this concern, we validate our model results using the bootstrap-calculated optimism
with 1,000 iterations.

7 RelatedWork

Link sharing is regarded as one key practice to achieve efficient knowledge. In this section,
we compare and contrast our study to previous research in two parts: first, we consider the
work that analyzes the link sharing in Q&A site and GitHub, then we introduce the work
that investigates the link sharing in code review settings.

7.1 Collective knowledge through links sharing

Link sharing has become an important activity in the area of software engineering, which
encourages developers to exchange knowledge, increases the learning purpose, and mit-
igates potential issues. The value of link sharing has been widely explored in the Q&A
site and GitHub. Gomez et al. (2013) found that a significant proportion of links shared
on Stack Overflow (i.e., the Q&A site for professional and enthusiast programmers) are
referring readers to software development innovations like libraries and tools. Ye et al.
(2017) used the URLs shared in StackOverflow to generate the structural and dynamic
properties of the emergent knowledge network, aiming to enable more effective knowledge
sharing in the community. With the increasing growth of GitHub, 9.6 million links exist
in source code comments across 25,925 repositories (Hata et al. 2019). They identified
more than a dozen different kinds of link targets, with dead links, licenses, and software
homepages being the most prevalent. As the survey conducted by Baltes and Diehl (2019),
40% of participants added a source code comment with a Stack Overflow link to the corre-
sponding question or answer in GitHub projects. They analyzed how often these URLs are
present in Java files and found that developers more often refer to questions, i.e., the whole
thread, than to specific answers. Related to the issue linking, existing studies have demon-
strated the value of such links in identifying complex bugs and duplicate issue reports.
For instance, Boisselle and Adams (2015) reported that 44% of bug reports in Ubuntu are
linked to indicate duplicated work. The results of Zhang et al. (2018) showed that develop-
ers tend to link issues more cross-project or cross-project over time. To ease the recovery
of links, Zhang et al. (2020) proposed iLinker to address the problem of acquiring related
issue knowledge so as to improve the development efficiency. Rath et al. (2018) showed
that on average only 60% of the commits were linked to specific issues and proposed an
approach to detect missing links between commits and issues using process and text-related
features.
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7.2 Link Sharing in Code Reviews

Links are also been studied in peer code review settings. Zampetti et al. (2017) investigated
to what extent and for which purpose developers refer to external online resources when
raising pull requests. Their results indicate that external resources are useful for developers
to learn something new or to solve specific problems. In our work, we find that in addition
to providing resources for learning, external links are often shared to provide context, elab-
orate the review comment, and to clarify doubts. Jiang et al. (2019) found that 5.25% of pull
requests have links in review comments on average in ten GitHub projects. Our finding is
consistent with the work of Jiang et al. (2019). In the MCR context that uses the Gerrit code
review tool, we find that in the past five years, around 25% and 20% of reviews from Open-
Stack and Qt have links in the review discussion. However, in addition to the prevalence,
we further find that the number of internal links has an increasing relationship with review
time through statistical models. Hirao et al. (2019) suggested that review linkage is not
uncommon in six studied software communities. They observed five types of reivew link-
age, such as patch dependency, broader context, alternative solution. Our study expanded
upon the work of Hirao et al. by studying not only review links but all kinds of links. Sim-
ilar to their work, we also find that the internal links (of which the majority are the review
links) are shared to provide implementation context. Nevertheless, our work also shows that
apart from review links, other types of links (e.g., bug reports, source code in GitHub, API
documentation) are also shared in the review discussions.

8 Conclusion

In this paper, we perform an empirical study on two open source projects, i.e., OpenStack
and Qt, to (1) analyze to what extent do developers share links, (2) analyze the correlation
between link sharing and the review time using the statistical model, and (3) investigate
the common intentions of sharing links. Our results show that the majority of shared links
are internal links (directly related to the project), i.e., 93% and 80% for OpenStack and Qt.
We find that although the majority of the internal links are referencing to reviews, the links
referencing to bug reports and source code are also shared in review discussions. Through
the statistical models, our results show that the number of internal links has an increas-
ing relationship with the review time. Regarding the intention classification, we identify
seven intentions behind link sharing, with providing context and elaborating being the most
common intentions for internal and external links.

Our study highlights the role that shared links play in the review discussion and the link
is served as an important resource to fulfill various information needs for patch authors and
review teams. The next logical step would be a deeper study of investigating the causality
of these factors and understanding the reasons why it takes a longer time to complete the
review. Future research directions also include the extension of a more exhaustive study that
investigate the small and medium open-source projects, the in-depth analysis of link sharing
practices (e.g., an impact of links shared by a patch author and reviewers on the review
process), the potential for tool support, and the management of the collective knowledge
within projects.
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