Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

FACER: An API Usage-based Code-example
Recommender for Opportunistic Reuse

Shamsa Abid (= 15030049@Ilums.edu.pk)
Lahore University of Management Sciences

Shafay Shamail
Lahore University of Management Sciences

Hamid Abdul Basit
Prince Sultan University

Sarah Nadi
University of Alberta

Research Article

Keywords: code recommendation, code search engine, software features, APl usage, code clones
Posted Date: March 4th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-260432/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Empirical Software Engineering on August
18th, 2021. See the published version at https://doi.org/10.1007/s10664-021-10000-w.

Page 1/15

https://doi.org/10.21203/rs.3.rs-260432/v1
mailto:15030049@lums.edu.pk
https://doi.org/10.21203/rs.3.rs-260432/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10664-021-10000-w

Abstract

To save time, developers often search for code examples that implement their desired software features.
Existing code search techniques typically focus on finding code snippets for a single given query, which
means that developers need to perform a separate search for each desired functionality. In this paper, we
pro-pose FACER (Feature-driven APl usage-based Code Examples Recommender), a technique that avoids
repeated searches through opportunistic reuse. Specifically, given the selected code snippet that matches
the initial search query, FACER finds and suggests related code snippets that represent features that the
developer may want to implement next. FACER first constructs a code fact repository by parsing the
source code of open-source Java projects to obtain methods’ textual information, call graphs, and
Application Programming Interface (API) usages. It then detects unique features by clustering methods
based on similar APl us-ages, where each cluster represents a feature or functionality. Finally, it detects
frequently co-occurring features across projects using frequent pattern mining and recommends related
methods from the mined patterns. To evaluate FACER, we run it on 120 Java Android apps from GitHub.
We first manually validate that the detected method clusters represent methods with similar functionality.
We then perform an automated evaluation to determine the best parameters (e.g., similarity threshold) for
FACER. We recruit 10 professional developers along with 39 experienced students to judge FACER’s
recommendation of related methods. Our results show that, on average, FACER's recommendations are
80% precise. We also survey a total of 20 professional Android and Java developers to understand their
code search and reuse experiences, and also to obtain their feedback on the usability and usefulness of
FACER. The survey results show that 95% of our surveyed professional developers find the idea of related
method recommendations useful during code reuse.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed.
However, the latest manuscript can be downloaded and accessed as a PDF.

Figures

Page 2/15

public static Imtent getPicklmageChooserIntent(
OHonNull Context context, CharSaquence tltle, boolean includeDocuments) {
List<Intent> allIntents = neW ArrayL1st<>();
PackageManager packageManager = context.getPackageManager();
if (lisExplicitCameraParmissionBequired(context)) {
allIntents.addil] (getCaneralntents (context , packageManager));
}

List<Intent> galleryIntents = getGalleryIntents(
packageManager, Intent.ACTION_GET_CONTENT, includeDocumente);
1T (galleryIntents.size() == 0) {
galleryIntents = getGalleryIntents(packageManager,
Intent.ACTION_PICH, includeDocumenta);

a11Intents.2a0a11(galleryIntants) ;

Intent target;

if (allIntents.ieBapty(l) {
target = new Intent();

} else {
target = alllntents get{allTntents siza() - 1);
gllIntents.removelalllntenta.sizel() - 1);

}
Intent chooserIntent = IDT.EH'I:.I:].'-Eﬂ'E-QChUGSET(EQIEQ'D, [.l[.le};

chooserIntent . putExtra(Intent . EXTRA_TNITIAL_TINTENTS,
allIntente.toArray (new Parcelable[allIntente.size(]]])):
raturn chooserlIntent;

(a) Selected code snippet

privete static Bitmap cropBitmapDbjectWith3cale(Bitmap bitmap, float[] points,
int degreesRotated, boolean fixAapectRatio, int aspectRatiol, int aspectRatioe¥,
float scale)
Rect rect = getRectFromPoints(points, bitmap.getWidth(), bitmap.getHeight(),
fizdspectRatlo, aspectRatloX, aspectRatioY);
MatriE matrlx = new Matrix();
matrix.setScala(scale, scale);
matrix.postRotate{degreashiotated, bltmap.getWidth() / 2, bitmap.getHelight() / 2);
Bitmap Tosult = E1Tmap.CroateEitmap(bltmap, rect.lelt, TeCT.TOP,
rect.wldsh{), rect.helght(), matriz, true);
if (result == bitmap) {
result = bitmap.copy(bitmap.getConfig(), false);

¥
if (degreesfotated W 90 = 0) {
reault = cropForRotatedImage(result, points, rect, degressRotated,
fizAspectRatio, aspectRatioX, aspectRatioY);
}
return result;

(b) Crop image

B0verride
public View getView(inmt i, View view,| ViewGroup TiswGroup)
1
ImageView imageView;
it (view == null) {
int gridWidth = fragment.getScresnWidth() ;
imageView = new ImageView(mContext);
imageView.setLayoutFarams(
new GridView.LayoutParams(gridwWwidth/5 — 30, gridwidth/5 - 30));
imageView. setScaleType (InageView ScaleType . FIT_CENTER) ;
imagaView.setPadding(s, 5, &5, 5);
}elss {imagaView = (ImageView) view;}
Eitmap bmp = getResizedBitmap(loadInage (imageFileNames.get(i)), 200);
imageView.setInageBitmap(bop) ;
return imageView;

(c) Show image in ImageView
Figure 1
Motivating example for code recommendations related to “select image from gallery”. Figure 1a shows

the selected code snippet based on the initial search query and Figures 1b and 1c show code snippets
corresponding to two related features, as recommended by FACER.

Page 3/15

E “Play media file” i
i 1. Feature Query ,| FACER Sear . i | FACER Program | Projects |||
5 Engine ; i | Repo 1 Analyzer 5
| | i —;6, Source Code -
E i Hosting ,f'?i’“[\ ;
| ¥ | Repository g |
E ¥ o sihs gl
s . 1 5{ |
T | | FACER - j API Usage-Based Function .
5 = ||l="]l=" Recommender ' Clone Structures Miner 5
! Related methods i !

{a) Online Recommendations Workflow (b) Offline FACER Repository Building Process

Figure 2

FACER System Components and Workflow

: Step 1:

i Clustering methods by API usage similarity
f?fg—. | S
o=l | '

[Program | _ [Method Calls = i | [
| Analyzer Extraction Method Calls ! | | Repository| APIusage-based Method Clone Groups X
= i Step 2:
:"'__'"—* i "| Cross-project Frequent Pattern Mining
APlUsage | | = ! P -~]
Extraction API Usages {1 —
i API usage-based Method Clone Structures
(a) Extracting keywords, method calls and API usages i (b) Mining API Usage-based Method Clone Structures

Figure 3

Offline FACER Repository Building Components

Page 4/15

Project 1

Projact 2

Chesier of similar methods

public wold startMessurseResult(} {
btAdapter = Blustoothidapter . getDefanlthAdapter(];
EluatoothDevice davice =
bridapter.getlemotalevice (address) ;
try L
bifecket = createBluetoothSccket (device);
} catch (IDExzcaption &) {
eTToTEX1t("Fatal ETTor”,
"In opReaumel) and sockel create falled: ™ =
a.gatMessagal) +
A H

Log.d{"bluetooth”, *.. . Connacting..."];
try {

Log.d{"bluatocth”, "....Commaction ck...®);
} catecn (I0Exception &) {
try {

} eactch (IOExceptlon ez} {
errerExit("Fatal Error”,
"In onResuma() amd UMARlS to closs Co+
“gackat ..." #+
el getHessage() +
R
Leg.d{"blueteath”, *...Creata Seckat...*);

BConnectedThread = neW ConnectedThread(biSocket) ;
mlonnectedThread . stark(};

(b) Method Al from Project 1

public ConnectedThread (BluetoothSocket socket) {

InputStrean topln = null;
DutputStream twplut = null;

4/ Get the BlustoothSocKeT iTpUT ARd OUCPUT STTEARS

try {
tapln = socket.getloputStream();
tEplut = SocKet.getlutputstreami);

} catch (I0DException &) { }
mmInStream = tmplng
mmutstrean = tmplut;

(d) Method Bl from Project 1

Frequent pattem of o0 -0couTing
meathod clones

(a) Abstract Method Clone Structure Across Projects

public volid run} {
Log.1(TAG, "BEGIN mConnectThread SocketType:”
+ m3ocketType):
setlane ("ComnectThrasd” + mIocketTypal;
4 Alvays cancel discovery because
i1t will slow down a connection

// Make a commection to the BlustoothSocket

i

/f This 15 a blocking call and will
Jf only raturn om a succassful
Jf conpection or an exceptlon

} catch (I0Exception =) {
/{ Close the socket
try {

} catch (I0Exception e2) {
Log.e(TAG, "unabls to closal) " +
miocketType +
* socket during connsctiom failure", e2);

1]
CODDect1onFalled() ;
TETUIn;
T
#{ Resat the ConnactThread becausa we're dona
aynchronized (BluetsothChatService this) {
oCenpectIiread = null;

T
connacted (mmSockst, mbevice, mSocketType):
{c) Method A2 from Project 2

public ConnectedThread{BluetoothSocket socket,

Itring socketIyps) {

Log.d(TAG, "create ConnectedThread: " +
socketType):

maSockat = aocket:

InputStream tapln = oull;

OutputSiream tmplut = null;

S/ Get the BluetoothSocket input and

S/output streams

wry {

tmpln = socket.getlnputStream();
tmpdut = gocket . getlutput3tream();

} caten (I0Excaption a) {
Log.o{TAG, "temp sockets not created", e);

maTnStream = tmpln;
mnlutStrean = toplut;
m3tate = STATE_CONMECTED;

(&) Method B2 from Project 2

Figure 4

A real example of a APl Usage-based Method Clone Structure taken from Bluetooth chat projects.
Highlighting shows common APl usages

Page 5/15

Method ID API Call IDs

1 1234

2 123

3 78123

4 11 12 13 24 25

5 26 27 11 28 12 29 13
6 3111321213 33

7 835910

8 891015 16

9 41 42 8 43 9 10

(a) Example method & API Call IDs

Method ID Clone Group ID

1.0

08
I

\ e

06
I

Height

04
7
B
3

2]

(b) Dendrogram obtained by clustering
methods 1 - 9 (c) Resulting clone group for each

method

g

4

5]
O 00 =] & UU = W=
o W W DR = ==

Figure 5

Step 1: Cluster methods by API usage similarity. After this step, each method in our repository has a clone
group ID.

Page 6/15

Project 1D

Clone Group IDs

Ol = W=

1231119
19243
56151819
215226
26123

(a) Example clone group IDs recorded
for each project

Figure 6

Clone Structure ID Clone Group IDs Support

C1 56 2
C2 123 3

(b) Resulting method Clone Structures across
Projects

Step2: Mining frequent patterns of method clones across projects

| [3) Testjava 2

—Im]
-~
public class Test {
——— | 1.Type query and use Ctrl+1 for
© Get Recommendations quick-assist option to get matching
method recommendations
v

| @ FACER 57 |

2. List of top 20 matching

| Enter filter text ﬂ;re

320: connectToDevice
463: connectToDevice
26: connectToDevice
1031: connectToDevice
1161: connectDevic

T7: connectDevice

Related Methods

Enter filter text here \

methods displayed 4. New tab showing selected s
/ method body
| 1161: connectDevice 2
~ll 1@ private void connectDevice(Intent data) { :
2 // Get the device MAC address
3 String address = data.getExtras().getString(
- DevicelListActivity.EXTRA_DEVICE_ADDRESS);
5 // Get the BluetoothDevice object
6 BluetoothDevice device = mBluetoothAdapter.getRemoteDevice(address);
v 7 // Attempt to connect to the device =
— mChatService.connect(device);
3 }
\ l
— | 3. Double-clickmethod name to view its =
method body in a new tab
T |

Figure 7

IT

Stage 1: Method Search

Page 7/15

‘E]Testjwa 2 = n

‘ ~
. public class Test |
//connect to a Bluetooth device
1.Click to get related method
! recommendations against a selected \ >
< | 2. List of top 10 related = method \ :
® FACER 22 | methods shown | P == 0
[Enter filter text here | [1161: chanectDevice [1173: connectionLost 53
2 iB8 il -
SZ&connectToDev.rce A 2 - i e tion was Lost and notify the UI Activ:+ ey
463: connectToDevice 3 w Undo
26: connectToDevice private void connectionLost() { Can't Redo
1031: connectToDevice 1 s // Send a failure message back to the Activity B
1161: connectDevice : Message msg = mHandler.obtainMessage(BluetoothChatActivity. ut
T odna N 2 Bundle bundle = new Bundle();
- g bundle.putString(T O TP R fe paste
Related Methods B msg.setData(bundle); : py R
IEntcr T | 10 mHandler.sendMessage(msg) ; coc!e |nt-oyour Delete
@ 1182: onReceive method body in a new -this. 9H Foidmg °
® 1184: onCreate tab ’:
® 1187: onltemClick vi| I g Tl |

Figure 8

Stage 2: Related Method Recommendations

Page 8/15

" 20 19 " 20 18
o o
5 15 515
2 o 2
g 10 g 10 .
L E— N
g 0 . S B— T_— T g 0 J : - . N
<1 1-10 1120 7180 111-120 <1 1-10 1120 2130 41-50 301-450
Range of Github stars Range of GitHub stars
(a) File Manager Category (b) Music Category
$0] o
S ;%15 10
v
2 2 10
2 2
- 5 ° 1 1 i
g g 0 : e s s
<1 120 21-40 41-60 61-80 81-100 >100 <1 1-10 1120 31440 61-70
Range of GitHub stars Range of Github stars
(c) Weather Category (d) Bluetooth Chat Category

Figure 9

The number of GitHub repositories from the four categories across different ranges of the number of
stars

w001 . e
7507
g
3 5001
(@]
250 1 189
111
of WMMeZEeizri70742, RN A k]
2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
clone group size
Figure 10

Frequencies of clone groups of varying sizes with similarity threshold a = 0.5

Page 9/15

10001 20

7501 o 15+
IS €
3 5001 3 101
&} [&] T

2501 5- 4

113 2
0- -43 14 6 3 1 _2 1 0- - —— ——
01 2 3 4 5 6 7 8 9 0o 1 2 3 4 5 6 7

API calls size diversity API calls size diversity

(a) Frequency of API call size diversity for clone (b) Frequency of API call size diversity for clone
groups of size 2 groups of size 6

Figure 11

Example API call size diversity for clone groups of size 2 and 6

1501
. 1007
c
-]
o
o
50 4440
202123 ;
o lllﬁ---_iiii 2 2 111 i22 A& A1
13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
no. of unique API calls
Figure 12

Distribution of API call size for all the methods from our sampled clone groups in Table 4

Page 10/15

0_

Figure 13

21- 30

3140

41 50

51 60

61 70

71 80

81 90

API calls density precentage range

Method distribution from sampled clone groups based on API call density

Page 11/15

91- 100

over 100

public boolean isNetworkAvallableAndConnected(} {
ConnectivityManager connectivityManager
= {ConnectivityManagar)
mionmtert .getEyatemServ:lce(Cant.ext -CONNECTIVITY_SERVICE);

NetworkInfo networkInfo = cmmecti?it]rh’anager.get.ActilreN’etﬁrorklnfa();
return networkInfo != null &k petworkInfo.isConmected();

{a) Clone Group 1 Method 1

public boclean ieNetworkAwailable({) {
ConnectivityMenager connectivityManager
= [Cnnnect:v:ltyl!anager]
mContext . getSystemService (Context. CONNECTIVITY _SERVICE);
NetworkInfo activeNetworkInfo = comnectivityManager.getActiveNetworkInfo();
return activeletworkInfo != null k& activeNetworkInfo.isConnected();

+
(b) Clone Group 1 Method 2
SEx
* Indicate that the commection was lost and motify the UL Activity.
*f

private void connectionLost() {
// Send a failure message back to the Activity
Message msg = mHandler.cbtainMessage(LanylActivity.MESSACE_TOAST) ;
Bundle bundle = new Bundle();

mag.setData(bundle) ;
wHandler.sendMessage{msg) ;

/{ Btart the service over to restart listening mode
LanylService.thia.atart{);

{c) Clone Group 2 Method 1

private void comnectionLest() {
Magaage mag = handler.obtainMesaage(MainActivity.MESSAGE_TOAST);
Bundle bundle = new Bundled();
bundle.putString("toast®, "Conexrion perdida con el dispositive");
nsg.setlata(bundle) ;
handler.ssndMessags (m=g) ;

// Btart the service over to restart listening meds
ChatController.this.start();

(d) Clone Group 2 Method 2

private vold connectionFailed() {

Messzge msg = handler.obtainMessage(Mainfctivity.MESSAGE TOAST);
Bundle bundle = new Bundle();

bundle.putString{("toast", "Unatle to conmect device");
msg.setDatal(bundle) ;

handler.sendMessage (mag);

// Btart the service over to restart listening mode
ChatController.this.start();

{e) Clone Group 2 Method 3
Figure 14

Examples of evaluated clone groups. Figures 14a-14b show two methods from a clone group of size =
10. Figures 14c-14e show three methods from a clone group of size = 37

Page 12/15

Halpha=0.3 MWalpha=0.5 alpha=0.7 DOalpha=0.9

1.20 8 83 88
20 03 . S
1.20 cnd® ~pd 83 88 L B I I B B
gmml—' DAB— oo o - 100 1 RESs ~NOo 0
100 goS— 2S5 = S S S
= < 0.80 -
S 0.80 o
5 3 0.60
‘5 0.60 &
[H] = -
a 040 a (.40
0.20 - 0.20
0.00 : : . 0.00 A . . .
3 5 10 15 3 5 10 15
Minimum Support Minimum Support
(a) Precision@5 (b) Precision@10
] oo oo
1.20 o B ma%i 2= ee Malpha=0.3 malpha=0.5 alpha=0.7 Dalpha=0.9
100 - ¥Rcg Roeo— 9 oo
c© < © 1.20
£ 0.80 - o
3 1.00 2
2 0.60 o o
U [¥a]
£ 040 & 090 S,
0.20 g 00 " So 2 1 1n
0.00 | | 5 0.40 °© o He 44
' s 0.20 SR oo
10 15 : ’—‘
Minimum Support : ! f
3 5 10 15
Malpha=0.3 mMalpha=05 alpha=0.7 Oalpha=0.0 Minimum Support
(c) Precision@15 (d) SuccessRate
Figure 15

Precision and success rate of recommendations across varying similarity threshold (alpha) and
minimum support(beta)

Page 13/15

Enever Mrarely Msometimes Moften Malways

1. Whenever | need to implement a new feature for the application |
amdeveloping, | start by searching for code examples.

2. When | search for a code example to help me implement a feature, |
find what | am looking for in the results of the first search query.

3.1f | get the desired code after a successful online search, | need to
scarch again for related functionality to proceed with development.

4. While implementing the features of my application, | need to
perform repeated online searches to find code for various features.

5.1 reuse code for various functionalities from my previously developed
applications.

6. While writing code for some feature, | recall that | have written
similar code in the past and want to search for it again.

7. When writing a new application, | find myself reusing multiple
methods which implement different functionality from a single
application I've developed before.

Q
=

10%

-
o
ES
w
£
p-.
=
®

50% 60% 70% 80% 90% 100%

Figure 16

Analysing developer’s code search and reuse practices

mstrongly disagree M disagree mneutral Magree Mstrongly agree

1. The organization of information on the tool screens is clear.

2.1 perceive that this tool can speed up my development.

3.1 would be interested in using this tool.

4. This tool can reduce the need to perform repeated online
searches to find code for various features of an application.

5.Based on my evaluation of the various recommendation
scenarios, on average, the recommender was successfully able to
predict related functionality or set of functionalities.

R

0} 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 17

Analysing developer’s feedback on FACER

Page 14/15

Hl=low M2 m3 m4 m5=high

Rate the usability of this recommendation toolfor
your developmentactivities on a scale of 1-5

Rate the usefulness of these recommendations
based on their ability to provide relevant
functionality for your application on a scale of 1-5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 18
Professional developer's ratings on the usefulness and usability of FACER

Hl=low M2 m3 m4 m5=high

Rate the usefulness of these recommendations to help
youin your development

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 19

Student developer's ratings on the usefulness of FACER

Page 15/15

