
Page 1/15

FACER: An API Usage-based Code-example
Recommender for Opportunistic Reuse
Shamsa Abid 
(

15030049@lums.edu.pk
)

Lahore University of Management Sciences
Shafay Shamail 

Lahore University of Management Sciences
Hamid Abdul Basit 

Prince Sultan University
Sarah Nadi 

University of Alberta

Research Article

Keywords: code recommendation, code search engine, software features, API usage, code clones

Posted Date: March 4th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-260432/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

Version of Record: A version of this preprint was published at Empirical Software Engineering on August
18th, 2021. See the published version at https://doi.org/10.1007/s10664-021-10000-w.

https://doi.org/10.21203/rs.3.rs-260432/v1
mailto:15030049@lums.edu.pk
https://doi.org/10.21203/rs.3.rs-260432/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10664-021-10000-w


Page 2/15

Abstract
To save time, developers often search for code examples that implement their desired software features.
Existing code search techniques typically focus on finding code snippets for a single given query, which
means that developers need to perform a separate search for each desired functionality. In this paper, we
pro-pose FACER (Feature-driven API usage-based Code Examples Recommender), a technique that avoids
repeated searches through opportunistic reuse. Specifically, given the selected code snippet that matches
the initial search query, FACER finds and suggests related code snippets that represent features that the
developer may want to implement next. FACER first constructs a code fact repository by parsing the
source code of open-source Java projects to obtain methods’ textual information, call graphs, and
Application Programming Interface (API) usages. It then detects unique features by clustering methods
based on similar API us-ages, where each cluster represents a feature or functionality. Finally, it detects
frequently co-occurring features across projects using frequent pattern mining and recommends related
methods from the mined patterns. To evaluate FACER, we run it on 120 Java Android apps from GitHub.
We first manually validate that the detected method clusters represent methods with similar functionality.
We then perform an automated evaluation to determine the best parameters (e.g., similarity threshold) for
FACER. We recruit 10 professional developers along with 39 experienced students to judge FACER’s
recommendation of related methods. Our results show that, on average, FACER’s recommendations are
80% precise. We also survey a total of 20 professional Android and Java developers to understand their
code search and reuse experiences, and also to obtain their feedback on the usability and usefulness of
FACER. The survey results show that 95% of our surveyed professional developers find the idea of related
method recommendations useful during code reuse.

Full Text
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed.
However, the latest manuscript can be downloaded and accessed as a PDF.

Figures



Page 3/15

Figure 1

Motivating example for code recommendations related to “select image from gallery”. Figure 1a shows
the selected code snippet based on the initial search query and Figures 1b and 1c show code snippets
corresponding to two related features, as recommended by FACER.



Page 4/15

Figure 2

FACER System Components and Workflow

Figure 3

Offline FACER Repository Building Components



Page 5/15

Figure 4

A real example of a API Usage-based Method Clone Structure taken from Bluetooth chat projects.
Highlighting shows common API usages



Page 6/15

Figure 5

Step 1: Cluster methods by API usage similarity. After this step, each method in our repository has a clone
group ID.



Page 7/15

Figure 6

Step2: Mining frequent patterns of method clones across projects

Figure 7

Stage 1: Method Search



Page 8/15

Figure 8

Stage 2: Related Method Recommendations



Page 9/15

Figure 9

The number of GitHub repositories from the four categories across different ranges of the number of
stars

Figure 10

Frequencies of clone groups of varying sizes with similarity threshold α = 0.5



Page 10/15

Figure 11

Example API call size diversity for clone groups of size 2 and 6

Figure 12

Distribution of API call size for all the methods from our sampled clone groups in Table 4



Page 11/15

Figure 13

Method distribution from sampled clone groups based on API call density



Page 12/15

Figure 14

Examples of evaluated clone groups. Figures 14a-14b show two methods from a clone group of size =
10. Figures 14c-14e show three methods from a clone group of size = 37



Page 13/15

Figure 15

Precision and success rate of recommendations across varying similarity threshold (alpha) and
minimum support(beta)



Page 14/15

Figure 16

Analysing developer’s code search and reuse practices

Figure 17

Analysing developer’s feedback on FACER



Page 15/15

Figure 18

Professional developer’s ratings on the usefulness and usability of FACER

Figure 19

Student developer’s ratings on the usefulness of FACER


