
Empirical Software Engineering (2021) 26: 120
https://doi.org/10.1007/s10664-021-10026-0

Topic modeling in software engineering research

Camila Costa Silva1 ·Matthias Galster1 · Fabian Gilson1

Accepted: 29 July 2021
© The Author(s) 2021

Abstract
Topic modeling using models such as Latent Dirichlet Allocation (LDA) is a text mining
technique to extract human-readable semantic “topics” (i.e., word clusters) from a corpus
of textual documents. In software engineering, topic modeling has been used to analyze
textual data in empirical studies (e.g., to find out what developers talk about online), but
also to build new techniques to support software engineering tasks (e.g., to support source
code comprehension). Topic modeling needs to be applied carefully (e.g., depending on
the type of textual data analyzed and modeling parameters). Our study aims at describ-
ing how topic modeling has been applied in software engineering research with a focus
on four aspects: (1) which topic models and modeling techniques have been applied, (2)
which textual inputs have been used for topic modeling, (3) how textual data was “pre-
pared” (i.e., pre-processed) for topic modeling, and (4) how generated topics (i.e., word
clusters) were named to give them a human-understandable meaning. We analyzed topic
modeling as applied in 111 papers from ten highly-ranked software engineering venues
(five journals and five conferences) published between 2009 and 2020. We found that
(1) LDA and LDA-based techniques are the most frequent topic modeling techniques,
(2) developer communication and bug reports have been modelled most, (3) data pre-
processing and modeling parameters vary quite a bit and are often vaguely reported, and
(4) manual topic naming (such as deducting names based on frequent words in a topic) is
common.

Keywords Topic modeling · Text mining · Natural language processing ·
Literature analysis

Communicated by: Andrea De Lucia

� Camila Costa Silva
camila.costasilva@pg.canterbury.ac.nz

Matthias Galster
mgalster@ieee.org

Fabian Gilson
fabian.gilson@canterbury.ac.nz

1 University of Canterbury, Christchurch, New Zealand

Published online: 6 September 2021/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10026-0&domain=pdf
http://orcid.org/0000-0002-3690-1711
http://orcid.org/0000-0003-3491-1833
http://orcid.org/0000-0002-1465-3315
mailto: camila.costasilva@pg.canterbury.ac.nz
mailto: mgalster@ieee.org
mailto: fabian.gilson@canterbury.ac.nz

Empir Software Eng (2021) 26: 120

1 Introduction

Text mining is about searching, extracting and processing text to provide meaningful insights
from the text based on a certain goal. Techniques for text mining include natural language
processing (NLP) to process, search and understand the structure of text (e.g., part-of-speech
tagging), web mining to discover information resources on the web (e.g., web crawling),
and information extraction to extract structured information from unstructured text and
relationships between pieces of information (e.g., co-reference, entity extraction) (Miner
et al. 2012). Text mining has been widely used in software engineering research (Bi et al.
2018), for example, to uncover architectural design decisions in developer communication
(Soliman et al. 2016) or to link software artifacts to source code (Asuncion et al. 2010).

Topic modeling is a text mining and concept extraction method that extracts topics (i.e.,
coherent word clusters) from large corpora of textual documents to discovery hidden seman-
tic structures in text (Miner et al. 2012). An advantage of topic modeling over other techniques
is that it helps analyzing long texts (Treude and Wagner 2019; Miner et al. 2012), creates
clusters as “topics” (rather than individual words) and is unsupervised (Miner et al. 2012).

Topic modeling has become popular in software engineering research (Sun et al. 2016;
Chen et al. 2016). For example, Sun et al. (2016) found that topic modeling had been used
to support source code comprehension, feature location and defect prediction. Additionally,
Chen et al. (2016) found that many repository mining studies apply topic modeling to textual
data such as source code and log messages to recommend code refactoring (Bavota et al.
2014b) or to localize bugs (Lukins et al. 2010).

Probabilistic topic models such as Latent Semantic Indexing (LSI) (Deerwester et al.
1990) and Latent Dirichlet Allocation (LDA) (Blei et al. 2003b) discover topics in a
corpus of textual documents, using the statistical properties of word frequencies and co-
occurrences (Lin et al. 2014). However, Agrawal et al. (2018) warn about systematic errors
in the analysis of LDA topic models that limit the validity of topics. Lin et al. (2014) also
advise that classical topic models usually generate sub-optimal topics when applied “as is”
to small amounts or short text documents.

Considering the limitations of topic modeling techniques and topic models on the one
hand and their potential usefulness in software engineering on the other hand, our goal is to
describe how topic modeling has been applied in software engineering research. In detail,
we explore the following research questions:

– RQ1. Which topic modeling techniques have been used and for what purpose?
There are different topic modeling techniques (see Section 2), each with their own
limitations and constraints (Chen et al. 2016). This RQ aims at understanding which
topic modeling techniques have been used (e.g., LDA, LSI) and for what purpose stud-
ies applied such techniques (e.g., to support software maintenance tasks). Furthermore,
we analyze the types of contributions in studies that used topic modeling (e.g., a new
approach as a solution proposal, or an exploratory study).

– RQ2. What are the inputs into topic modeling? Topic modeling techniques accept
different types of textual documents and require the configuration of parameters (see
Section 2.1). Carefully choosing parameters (such as the number of topics to be gen-
erated) is essential for obtaining valuable and reliable topics (Agrawal et al. 2018;
Treude and Wagner 2019). This RQ aims at analysing types of textual data (e.g., source
code), actual documents (e.g., a Java class or an individual Java method) and configured
parameters used for topic modeling to address software engineering problems.

120 Page 2 of 62

Empir Software Eng (2021) 26: 120

– RQ3: How are data pre-processed for topic modeling? Topic modeling requires that
the analyzed text is pre-processed (e.g., by removing stop words) to improve the quality
of the produced output (Aggarwal and Zhai 2012; Bi et al. 2018). This RQ aims at
analysing how previous studies pre-processed textual data for topic modeling, including
the steps for cleaning and transforming text. This will help us understand if there are
specific pre-processing steps for a certain topic modeling technique or types of textual
data.

– RQ4. How are generated topics named? This RQ aims at analyzing if and how top-
ics (word clusters) were named in studies. Giving meaningful names to topics may
be difficult but may be required to help humans comprehend topics. For example,
naming topics can provide a high-level view on topics discussed by developers in
Stack Overflow (a Q&A website) (Barua et al. 2014) or by end mobile app users in
tweets (Mezouar et al. 2018). Analysts (e.g., developers interested in what topics are
discussed on Stack Overflow or app reviews) can then look at the name of the topic
(i.e., its “label”) rather than the cluster of words. These labels or names must capture
the overarching meaning of all words in a topic. We describe different approaches to
naming topics generated by a topic model, such as manual or automated labeling of
clusters with names based on the most frequent words of a topic (Hindle et al. 2013).

In this paper, we provide an overview of the use of topic modeling in 111 papers
published between 2009 and 2020 in highly ranked venues of software engineering (five
journals and five conferences). We identify characteristics and limitations in the use of topic
models and discuss (a) the appropriateness of topic modeling techniques, (b) the impor-
tance of pre-processing, (c) challenges related to defining meaningful topics, and (d) the
importance of context when manually naming topics.

The rest of the paper is organized as follows. In Section 2 we provide an overview of
topic modeling. In Section 3 we describe other literature reviews on the topic as well as
“meta-studies” that discuss topic modeling more generally. We describe the research method
in Section 4 and present the results in Section 5. In Section 6, we summarize our findings
and discuss implications and threats to validity. Finally, in Section 7 we present concluding
remarks and future work.

2 Topic Modeling

Topic modeling aims at automatically finding topics, typically represented as clusters of
words, in a given textual document (Bi et al. 2018). Unlike (supervised) machine learning-
based techniques that solve classification problems, topic modeling does not use tags,
training data or predefined taxonomies of concepts (Bi et al. 2018). Based on the frequen-
cies of words and frequencies of co-occurrence of words within one or more documents,
topic modeling clusters words that are often used together (Barua et al. 2014; Treude and
Wagner 2019). Figure 1 illustrates the general process of topic modeling, from a raw cor-
pus of documents (“Data input”) to topics generated for these documents (“Output”). Below
we briefly introduce the basic concepts and terminology of topic modeling (based on Chen
et al. (2016)):

– Word w: a string of one or more alphanumeric characters (e.g., “software” or “manage-
ment”);

– Document d: a set of n words (e.g., a text snippet with five words: w1 to w5);

Page 3 of 62 120

Empir Software Eng (2021) 26: 120

Fig. 1 General topic modeling process

– Corpus C: a set of t documents (e.g., nine text snippets: d1 to d9);
– Vocabulary V : a set of m unique words that appear in a corpus (e.g., m = 80 unique

words across nine documents);
– Term-document matrix A: an m by t matrix whose Ai,j entry is the weight (according

to some weighting function, such as term-frequency) of word wi in document dj . For
example, given a matrix A with three words and three documents as

A1,1 = 5 indicates that “code” appears five times in d1, etc.;
– Topic z: a collection of terms that co-occur frequently in the documents of a corpus.

Considering probabilistic topic models (e.g., LDA), z refers to an m-length vector of
probabilities over the vocabulary of a corpus. For example, in a vector z1 = (code :
0.35; test : 0.17; bug : 0.08),

0.35 indicates that when a word is picked from a topic z1, there is a 35% chance of
drawing the word “code”, etc.;

– Topic-term matrix φ (or T): a k by m matrix with k as the number of topics and φi,j the
probability of word wj in topic zi . Row i of φ corresponds to zi . For example, given a
matrix φ as

0.05 in the first column indicates that the word “code” appears with a probability of
0.5% in topic z3, etc.;

– Topic membership vector θd : for document di , a k-length vector of probabilities of the
k topics. For example, given a vector θdi

= (z1 : 0.25; z2 : 0.10; z3 : 0.08),
0.25 indicates that there is a 25% chance of selecting topic z1 in di ;

– Document-topic matrix θ (or D): an n by k matrix with θi,j as the probability of topic
zj in document di . Row i of θ corresponds to θdi

. For example, given a matrix θ as

120 Page 4 of 62

Empir Software Eng (2021) 26: 120

0.10 in the first column indicates that document d2 contains topic z1 with probability
of 10%, etc.

2.1 Data Input

Data used as input into topic modeling can take many forms. This requires decisions on
what exactly are documents and what the scope of individual documents is (Miner et al.
2012). Therefore, we need to determine which unit of text shall be analyzed (e.g., subject
lines of e-mails from a mailing list or the body of e-mails).

To model topics from raw text in a corpus C (see Fig. 1), the data needs to be con-
verted into a structured vector-space model, such as the term-document matrix A. This
typically also requires some pre-processing. Although each text mining approach (including
topic modeling) may require specific pre-processing steps, there are some common steps,
such as tokenization, stemming and removing stop words (Miner et al. 2012). We discuss
pre-processing for topic modeling in more detail when presenting the results for RQ3 in
Section 5.4.

2.2 Modeling

Different models can be used for topic modeling. Models typically differ in how they model
topics and underlying assumptions. For example, besides LDA and LSI mentioned before,
other examples of topic modeling techniques include Probabilistic Latent Semantic Index-
ing (pLSI) (Hofmann 1999). LSI and pLSI reduce the dimensionality of A using Singular
Value Decomposition (SVD) (Hofmann 1999). Furthermore, variants of LDA have been
proposed, such as Relational Topic Models (RTM) (Chang and Blei 2010) and Hierarchi-
cal Topic Models (HLDA) (Blei et al. 2003a). RTM finds relationships between documents
based on the generated topics (e.g., if document d1 contains the topic “microservices”, docu-
ment d2 contains the topic “containers” and document dn contains the topic “user interface”,
RTM will find a link between documents d1 and d2 (Chang and Blei 2010)). HLDA discov-
ers a hierarchy of topics within a corpus, where each lower level in the hierarchy is more
specific than the previous one (e.g., a higher topic “web development” may have subtopics
such as “front-end” and “back-end”).

Topic modeling techniques need to be configured for a specific problem, objectives and
characteristics of the analyzed text (Treude and Wagner 2019; Agrawal et al. 2018). For
example, Treude and Wagner (2019) studied parameters, characteristics of text corpora and
how the characteristics of a corpus impact the development of a topic modeling technique
using LDA. Treude and Wagner (2019) found that textual data from Stack Overflow (e.g.,
threads of questions and answers) and GitHub (e.g., README files) require different con-
figurations for the number of generated topics (k). Similarly, Barua et al. (2014) argued that
the number of topics depends on the characteristics of the analyzed corpora. Furthermore,
the values of modeling parameters (e.g., LDA’s hyperparameters α and β which control
an initial topic distribution) can also be adjusted depending on the corpus to improve the
quality of topics (Agrawal et al. 2018).

2.3 Output

By finding words that are often used together in documents in a corpus, a topic modeling
technique creates clusters of words or topics zk . Words in such a cluster are usually related in
some way, therefore giving the topic a meaning. For example, we can use a topic modeling

Page 5 of 62 120

Empir Software Eng (2021) 26: 120

technique to extract five topics from unstructured document such as a combination of Stack
Overflow posts. One of the clusters generated could include the co-occurring words “error”,
“debug” and “warn”. We can then manually inspect this cluster and by inference suggest
the label “Exceptions” to name this topic (Barua et al. 2014).

3 RelatedWork

3.1 Previous Literature Reviews

Sun et al. (2016) and Chen et al. (2016), similar to our study, surveyed software engineer-
ing papers that applied topic modeling. Table 1 shows a comparison between our study and
prior reviews. As shown in the table, Sun et al. (2016) focused on finding which software
engineering tasks have been supported by topic models (e.g., support source code compre-
hension, feature location, traceability link recovery, refactoring, software testing, developer
recommendations, software defects prediction and software history comprehension), and
Chen et al. (2016) focused on characterizing how studies used topic modeling to mine
software repositories.

Furthermore, as shown in Table 1, in comparison to Sun et al. (2016) and Chen et al.
(2016), our study surveys the literature considering other aspects of topic modeling such
as data inputs (RQ2), data pre-processing (RQ3), and topic naming (RQ4). Additionally,
we searched for papers that applied topic models to any type of data (e.g., Q&A websites)
rather than to data in software repositories. We also applied a different search process to
identify relevant papers.

Although some of the search venues of these two previous studies and our study overlap,
our search focused on specific venues. We also searched papers published between 2009
and 2020, a period which only partially overlaps with the searches presented by Sun et al.
(2016) and Chen et al. (2016).

Regarding the data analysed in previous studies, Chen et al. (2016) analyzed two aspects
not covered in our study: (a) tools to implement topic models in papers, and (b) how papers
evaluated topic models (note that even though we did not cover this aspect explicitly, we
checked whether papers compared different topic models, and if so, what metrics they used
to compare topic models). However, different to Chen et al. (2016) we analyzed (a) the
types of contribution of papers (e.g., a new approach); (b) details about the types of data and
documents used in topic modeling techniques, and (c) whether and how topics were named.
Additionally, we extend the survey of Chen et al. (2016) by investigating hyperparameters
(see Section 2.1) of topic models and data pre-processing in more detail. We provide more
details and a justification of our research method in Section 4.

3.2 Meta-studies on Topic Modeling

In addition to literature surveys, there are “meta-studies” on topic modeling that address
and reflect on different aspects of topic modeling more generally (and are not considered
primary studies for the purpose of our review, see our inclusion and exclusion criteria in
Section 4). In the following paragraphs we organized their discussion into three parts: (1)
studies about parameters for topic modeling, (2) studies on topic models based on the type
of analyzed data, and (3) studies about metrics and procedures to evaluate the performance
of topic models. We refer to these studies throughout this manuscript when reflecting on the
findings of our study.

120 Page 6 of 62

Empir Software Eng (2021) 26: 120

Table 1 Comparison to previous reviews

(Sun et al.
2016)

(Chen et al.
2016)

This study

Reviewed time range 2003-2015 1999-2014 2009-2020

Search venues 4 journals 6 journals 5 journals

9 conferences 9 conferences 5 conferences

Papers analysed 38 167 111

Analysed data items

Topic modeling technique � � �
Supported tasks Specific (e.g., fea-

ture localization)
Specific and
high-level (e.g.,
feature localization
(specific) under
concept localization
(high-level))

High-level (e.g.,
documentation)

Type of contribution – – �
Tools used – � –

Types of data and documents – – �
Parameters used – Number of topics Number of topics

Hyperparameters

Data pre–processing General analysis Detailed analysis

Topic naming – – �
Evaluation of topic models – � –

Regarding parameters used for topic modeling, Treude and Wagner (2019) performed a
broad study on LDA parameters to find optimal settings when analyzing GitHub and Stack
Overflow text corpora. The authors found that popular rules of thumb for topic modeling
parameter configuration were not applicable to their corpora, which required different con-
figurations to achieve good model fit. They also found that it is possible to predict good
configurations for unseen corpora reliably. Agrawal et al. (2018) also performed experi-
ments on LDA parameter configurations and proposed LDADE, a tool to tune the LDA
parameters. The authors found that due to LDA topic model instability, using standard LDA
with “off-the-shelf” settings is not advisable. We also discuss parameters for topic modeling
in Section 2.2.

For studies on topic models based on the analyzed data, researchers have investigated
topic modeling involving short texts (e.g., a tweet) and how to improve the performance of
topic models that work well with longer text (e.g., a book chapter) (Lin et al. 2014). For
example, the study of Jipeng et al. (2020) compared short-text topic modeling techniques
and developed an open-source library of the short-text models. Another example is the work
of Mahmoud and Bradshaw (2017) who discussed topic modeling techniques specific for
source code.

Finally, regarding metrics and procedures to evaluate the performance of topic mod-
els, some works have explored how semantically meaningful topics are for humans (Chang
et al. 2009). For example, Poursabzi-Sangdeh et al. (2021) discuss the importance of inter-
pretability of models in general (also considering other text mining techniques). Another
example is the work of Chang et al. (2009) who presented a method for measuring the
interpretability of a topic model based on how well words within topics are related and

Page 7 of 62 120

Empir Software Eng (2021) 26: 120

how different topics are between each other. On the other hand, as an effort to quantify the
interpretability of topics without human evaluation, some studies developed topic coher-
ence metrics. These metrics score the probability of a pair of words from topics being found
together in (a) external data sources (e.g., Wikipedia pages) or (b) in the documents used by
the model that generated those topics (Röder et al. 2015). Röder et al. (2015) combined dif-
ferent implementations of coherence metrics in a framework. Perplexity is another measure
of performance for statistical models in natural language processing, which indicates the
uncertainty in predicting a single word (Blei et al. 2003b). This metric is often applied to
compare the configurations of a topic modeling technique (e.g., Zhao et al. (2020)). Other
studies use perplexity as an indicator of model quality (such as Chen et al. 2019 and Yan
et al. 2016b).

4 ResearchMethod

We conducted a literature survey to describe how topic modeling has been applied in soft-
ware engineering research. To answer the research questions introduced in Section 1, we
followed general guidelines for systematic literature review (Kitchenham 2004) and map-
ping study methods (Petersen et al. 2015). This was to systematically identify relevant
works, and to ensure traceability of our findings as well as the repeatability of our study.
However, we do not claim to present a fully-fledged systematic literature review (e.g., we
did not assess the quality of primary studies) or a mapping study (e.g., we only analyzed
papers from carefully selected venues). Furthermore, we used parts of the procedures from
other literature surveys on similar topics (Bi et al. 2018; Chen et al. 2016; Sun et al. 2016)
as discussed throughout this section.

4.1 Search Procedure

To identify relevant research, we selected high-quality software engineering publication
venues. This was to ensure that our literature survey includes studies of high quality and
described at sufficient level of detail. We identified venues rated as A and A∗ for Com-
puter Science and Information Systems research in the Excellence Research for Australia
(CORE) ranking (ARC 2012). Only one journal was rated B (IST), but we included it due
to its relevance for software engineering research. These venues are a subset of venues
also searched by related previous literature surveys (Chen et al. 2016; Sun et al. 2016),
see Section 3. The list of searched venues includes five journals: (1) Empirical Software
Engineering (EMSE); (2) Information and Software Technology (IST); (3) Journal of Sys-
tems and Software (JSS); (4) ACM Transactions on Software Engineering & Methodology
(TOSEM); (5) IEEE Transaction on Software Engineering (TSE). Furthermore, we included
five conferences: (1) International Conference on Automated Software Engineering (ASE);
(2) ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM); (3) International Symposium on the Foundations of Software Engineering /
European Software Engineering Conference (ESEC/FSE); (4) International Conference on
Software Engineering (ICSE); (5) International Workshop/Working Conference on Mining
Software Repositories (MSR).

We performed a generic search on SpringerLink (EMSE), Science Direct (IST, JSS),
ACM DL (TOSEM, ESEC/FSE, ASE, ESEM, ICSE, MSR) and IEEE Xplore (TSE, ASE,
ESEM, ICSE, MSR) using the venue (journal or conference) as a high-level filtering crite-
rion. Considering that the proceedings of ASE, ESEM, ICSE and, MSR are published by

120 Page 8 of 62

Empir Software Eng (2021) 26: 120

ACM and IEEE, we searched these venues on ACM DL and IEEE Xplore to avoid missing
relevant papers. We used a generic search string (“topic model[l]ing” and “topic model”).
Furthermore, in order to find studies that apply specific topic models but do not mention the
term “topic model”, we used a second search string with topic model names (“lsi” or “lda”
or “plsi” or “latent dirichlet allocation” or “latent semantic”). This second string was based
on the search string used by Chen et al. (2016), who also present a review and analysis of
topic modeling techniques in software engineering (see Section 3). We applied both strings
to the full text and metadata of papers. We considered works published between 2009 and
2020. The search was performed in March 2021. Limiting the search to the last twelve years
allowed us to focus on more mature and recent works.

4.2 Study Selection Criteria

We only considered full research papers since full papers typically report (a) mature and
complete research, and (b) more details about how topic modeling was applied. Further-
more, to be included, a paper should either apply, experiment with, or propose a topic
modeling technique (e.g., develop a topic modeling technique that analyzes source code to
recommend refactorings (Bavota et al. 2014b)), and meet none of the exclusion criteria:
(a) the paper does not apply topic models (e.g., it applies other text mining techniques and
only cites topic modeling in related or future work, such as the paper by Lian et al. (2020);
(b) the paper focuses on theoretical foundation and configurations for topic models (e.g., it
discusses how to tune and stabilize topic models, such as Agrawal et al. (2018) and other
meta-studies listed in Section 3.2); and (c) the paper is a secondary study (e.g., a litera-
ture review like the studies discussed in Section 3.1). We evaluated inclusion and exclusion
criteria by first reading the abstracts and then reading full texts.

The search with the first search string (see Section 4.1) resulted in 215 papers and the
search with the second search string resulted in an additional 324 papers. Applying the
filtering outlined above resulted in 114 papers. Furthermore, we excluded three papers from
the final set of papers: (a) Hindle et al. (2011), (b) Chen et al. (2012), and (c) Alipour
et al. (2013). These papers were earlier and shorter versions of follow-up publications; we
considered only the latest publications of these papers (Hindle et al. 2013; Chen et al. 2017;
Hindle et al. 2016). This resulted in a total of 111 papers for analysis.

4.3 Data Extraction and Synthesis

We defined data items to answer the research questions and characterize the selected papers
(see Table 2). The extracted data was recorded in a spreadsheet for analysis (raw data are
available online 1). One of the authors extracted the data and the other authors reviewed it.
In case of ambiguous data, all authors discussed to reach agreement. To synthesize the data,
we applied descriptive statistics and qualitatively analyzed the data as follows:

– RQ1: Regarding the data item “Technique”, we identified the topic modeling tech-
niques applied in papers. For the data item “Supported tasks”, we assigned to each
paper one software engineering task. Tasks emerged during the analysis of papers (see
more details in Section 5.2.2). We also identified the general study outcome in relation
to its goal (data item “Type of contribution”). When analyzing the type of contribution,
we also checked whether papers included a comparison of topic modeling techniques

1https://doi.org/10.5281/zenodo.5280890

Page 9 of 62 120

https://doi.org/10.5281/zenodo.5280890

Empir Software Eng (2021) 26: 120

Table 2 Data extraction form

Item Description RQ

Year Publication year n/a

Author(s) List of all authors n/a

Title Title of paper n/a

Venue Publication venue n/a

Technique Topic modeling technique used RQ1

Supported tasks Development tasks supported by topic modeling (e.g., to predict defects) RQ1

Type of contribution General outcome of study (e.g., a new approach or an empirical exploration) RQ1

Type of data Type of data used for topic modeling (e.g., source code and commit messages) RQ2

Document Documents in corpus, i.e., “instances” of type of data (e.g., Java methods) RQ2

Parameters Topic modeling parameters and their values (e.g., number of topics) RQ2

Pre-processing Pre-processing of textual (e.g., tokenization and stop words removal) RQ3

Topic naming How topics were named (e.g., manual labeling by domain experts) RQ4

(e.g., to select the best technique to be included in a newly proposed approach). Based
on these data items we checked which techniques were the most popular, whether tech-
niques were based on other techniques or used together, and for what purpose topic
modeling was used.

– RQ2: We identified types of data (data item “Type of data”) in selected papers as listed
in Section 5.3.1. Considering that some papers addressed one, two or three different
types of data, we counted the frequency of types of data and related them with the
document. Regarding “Document”, we identified the textual document and (if reported
in the paper) its length. For the data item “Parameters”, we identified whether papers
described modeling parameters and if so, which values were assigned to them.

– RQ3: Considering that some papers may have not mentioned any pre-processing,
we first checked which papers described data pre-processing. Then, we listed all
pre-processing steps found and counted their frequencies.

– RQ4: Considering the papers that described topic naming, we analyzed how generated
topics were named (see Section 5.5). We used three types of approaches to describe
how topics were named: (a) Manual - manually analysis and labeling of topics; (b)
Automated - use automated approaches to label names to topics; and (c) Manual &
Automated - mix of both manual and automated approaches to analyse and name topics.
We also described the procedures performed to name topics.

5 Results

5.1 Overview

As mentioned in Section 4.1, we analyzed 111 papers published between 2009 and 2020 (see
Appendix A.1 - Papers Reviewed). Most papers were published after 2013. Furthermore,
most papers were published in journals (68 papers in total, 32 in EMSE alone), while the
remaining 43 papers appeared in conferences (mostly MSR with sixteen papers). Table 3
shows the number of papers by venue and year.

120 Page 10 of 62

Empir Software Eng (2021) 26: 120

Table 3 Number of papers by venue and year

Year

Venue 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

ASE 0 0 1 1 0 0 0 0 0 0 0 0 2

EMSE 2 0 1 1 3 5 2 3 4 4 4 3 32

ESEC FSE 0 0 0 0 0 1 0 2 1 1 1 1 7

ESEM 0 0 0 0 0 0 0 1 0 3 0 1 5

ICSE 0 1 0 1 2 2 0 1 3 1 1 1 13

IST 0 1 0 0 0 0 2 4 3 2 3 2 17

JSS 0 0 0 0 0 0 1 2 4 2 3 0 12

MSR 1 0 2 0 2 2 2 2 0 1 1 3 16

TOSEM 0 0 0 0 1 1 0 0 0 0 1 0 3

TSE 0 0 0 0 1 1 0 0 1 1 0 0 4

Total 3 2 4 3 9 12 7 15 16 15 14 11 111

5.2 RQ1: Topic Models Used

In this Section we first discuss which topic modeling techniques are used (Section 5.2.1).
Then, we explore why or for what purpose these techniques were used (Section 5.2.2). Finally,
we describe the general contributions of papers in relation to their goals (Section 5.2.3).

5.2.1 Topic Modeling Techniques

The majority of the papers used LDA (80 out of 111), or a LDA-based technique (30 out of
111), such as Twitter-LDA (Zhao et al. 2011). The other topic modeling technique used is
LSI. Figure 2 shows the number of papers per topic modeling technique. The total number
(125) exceeds the number of papers reviewed (111), because ten papers experimented with
more than one technique: Thomas et al. (2013), De Lucia et al. (2014), Binkley et al. (2015),
Tantithamthavorn et al. (2018), Abdellatif et al. (2019) and Liu et al. (2020) experimented
with LDA and LSI; Chen et al. (2014) experimented with LDA and Aspect and Senti-
ment Unification Model (ASUM); Chen et al. (2019) experimented with Labeled Latent
Dirichlet Allocation (LLDA) and Label-to-Hierarchy Model (L2H); Rao and Kak (2011)
experimented with LDA and MLE-LDA; and Hindle et al. (2016) experimented with LDA
and LLDA. ASUM, LLDA, MLE-LDA and L2H are techniques based on LDA.

The popularity of LDA in software engineering has also been discussed by others,
e.g., Treude and Wagner (2019). LDA is a three-level hierarchical Bayesian model (Blei
et al. 2003b). LDA defines several hyperparameters, such as α (probability of topic zi

in document di), β (probability of word wi in topic zi) and k (number of topics to be
generated) (Agrawal et al. 2018).

Thirty-seven (out of 75) papers applied LDA with Gibbs Sampling (GS). Gibbs sampling
is a Markov Chain Monte Carlo algorithm that samples from conditional distributions of a
target distribution. Used with LDA, it is an approximate stochastic process for computing α

and β (Griffiths and Steyvers 2004). According to experiments conducted by Layman et al.
(2016), Gibbs sampling in LDA parameter estimation (α and β) resulted in lower perplexity

Page 11 of 62 120

Empir Software Eng (2021) 26: 120

80

16

30

0

10

20

30

40

50

60

70

80

90

desab-ADLISLADL

N
U

M
B

E
R

 O
F

 P
A

P
E

R
S

TOPIC MODELING TECHNIQUE

Fig. 2 Number of papers per topic modeling technique

than the Variational Expectation-Maximization (VEM) estimations. Perplexity is a stan-
dard measure of performance for statistical models of natural language, which indicates the
uncertainty in predicting a single word. Therefore, lower values of perplexity mean better
model performance (Griffiths and Steyvers 2004).

Thirty papers applied modified or extended versions of LDA (“LDA-based” in Fig. 2).
Table 4 shows a comparison between these LDA-based techniques. Eleven papers proposed
a new extension of LDA to adapt LDA to software engineering problems (hence the same
reference in the third and fourth column of Table 4). For example, the Multi-feature Topic
Model (MTM) technique by Xia et al. (2017b), which implements a supervised version of
LDA to create a bug triaging approach. The other 19 papers applied existing modifications
of LDA proposed by others (third column in Table 4). For example, Hu and Wong (2013)
used the Citation Influence Topic Model (CITM), developed by Dietz et al. (2007), which
models the influence of citations in a collection of publications.

The other topic modeling technique, LSI (Deerwester et al. 1990), was published in 1990,
before LDA which was published in 2003. LSI is an information extraction technique that
reduces the dimensionality of a term-document matrix using a reduction factor k (number
of topics) (Deerwester et al. 1990). Compared to LDA, LDA follows a generative process
that is statistically more rigorous than LSI (Blei et al. 2003b; Griffiths and Steyvers 2004).
From the 16 papers that used LSI, seven papers compared this technique to others:

– One paper (Rosenberg and Moonen 2018) compared LSI with other two dimensionality
reduction techniques: Principal Component Analysis (PCA) (Wold et al. 1987) and
Non-Negative Matrix Factorization (NMF) (Lee and Seung 1999). The authors applied
these models to automatically group log messages of continuous deployment runs that
failed for the same reasons.

– Four papers applied LDA and LSI at the same time to compare the performance of
these models to Vector Space Model (VSM) (Salton et al. 1975), an algebraic model for

120 Page 12 of 62

Empir Software Eng (2021) 26: 120

Table 4 LDA-based techniques

Technique Comparison to LDA Proposed by Papers

Labeled LDA
(LLDA)

Supervised approach of LDA that constrains top-
ics to a set of pre-defined labels

(Ramage
et al. 2009)

(McIlroy et al.
2016; Chen et al.
2019)

Label-to-
Hierarchy model
(L2H)

Builds concept hierarchy from a set of docu-
ments, where each document contains multiple
labels; learns from label co-occurrence and word
usage to discover a hierarchy of topics associated
with user-generated labels

(Nguyen
et al. 2014)

(Chen et al.
2019)

Semi-supervised
LDA

Uses samples of labeled documents to train
model; relies on similarity between the unclassi-
fied documents and the labeled documents

(Fu et al.
2015)

(Fu et al. 2015)

Twitter-LDA Short-text topic modeling for tweets; considers
each tweet as a document that contains a single
topic

(Zhao et al.
2011)

(Hu et al. 2019)

BugScout-LDA Uses two implementations of LDA (one imple-
mentation to model topics from source code and
another one to model topics in bug reports) to
recommend a short list of candidate buggy files
for a given bug report

(Nguyen
et al. 2011)

(Nguyen et al.
2011)

O-LDA Method for feature location that applies strate-
gies for filtering data used as input to LDA and
strategies for filtering the output (words in topics
to describe domain knowledge)

(Liu et al.
2017)

(Liu et al. 2017)

DAT-LDA Extended LDA to infer topic probability dis-
tributions from multiple data sources (Mashup
description text, Web APIs and tags) to support
Mashup service discovery

(Cao et al.
2017)

(Cao et al.
2017)

LDA-GA Determines the near-optimal configuration for
LDA using genetic algorithms

(Panichella
et al. 2013)

(Panichella et al.
2013; Zhang
et al. 2018;
Sun et al. 2015;
Yang et al. 2017;
Catolino et al.
2019)

Aspect and Senti-
ment Unification
Model (ASUM)

Finds topics in textual data, reflecting both aspect
(i.e., a word that expresses a feeling, e.g., “disap-
pointed”) and sentiment (i.e., a word that conveys
sentiment, e.g., “positive” or “negative”)

(Jo and Oh
2011)

(Galvis Carreno
and Winbladh
2012; Chen et al.
2014)

Citation Influ-
ence Topic
Model (CITM)

Determines the citation influences of a citing
paper in a document network based on two cor-
pora: (a) incoming links of publications (cited
papers), and (b) outgoing links of publications
(citing papers); a paper can select words from
topics of its own topics or from topics found in
cited papers

(Dietz et al.
2007)

(Hu and Wong
2013)

Collaborative
Topic Modeling
(CTM)

Creates recommendations for users based on the
topic modeling of two types of data: (a) libraries
of users, and (b) content of publications; for each
user, finds both old papers that are important to
other similar users and newly written papers that
are related to that user interests

(Wang and
Blei 2011)

(Sun et al.
2017)

Page 13 of 62 120

Empir Software Eng (2021) 26: 120

Table 4 (continued)

Technique Comparison to LDA Proposed by Papers

Discriminative
Probability
Latent Seman-
tic Analysis
(DPLSA)

Supervised approach that recommends compo-
nents for bug reports; receives assigned bug
reports for training and generates a number of
topics that is the same as the number of compo-
nents

(Yan et al.
2016a)

(Yan et al. 2016a,
b)

Multi-feature
Topic Model
(MTM)

Supervised approach that considers features
(product and component information) of bug
reports; emphasizes occurrence of words in bug
reports that have the same combination of prod-
uct and component

(Xia et al.
2017b)

(Xia et al.
2017b)

Relational Topic
Model (RTM)

Defines probability distribution of topics among
documents, but also derives semantic relation-
ships between documents

(Chang and
Blei 2009)

(Bavota et al.
2014a, b)

T-Model Detects duplicate bug reports (Nguyen
et al. 2012)

(Nguyen et al.
2012)

Temporal LDA Extends LDA to model document streams con-
sidering a time window

(Damevski
et al. 2018)

(Damevski et al.
2018)

TopicSum Estimates content distribution for summary
extraction. Different to LDA, it generates a col-
lection of document sets: background (back-
ground distribution over vocabulary words); con-
tent (significant content to be summarized); and
docspecific (local words to a single document
that do not appear across several documents)

(Haghighi
and Van-
derwende
2009)

(Fowkes et al.
2016)

Adaptively
Online LDA
(AOLDA)

Adaptively combines the topics of previous ver-
sions of an app to generate topic distributions of
current versions

(Gao et al.
2018)

(Gao et al.
2018)

Hierarchical
Dirichlet Process
(HDP)

Implements a non-parametric Bayesian approach
which iteratively groups words based on a prob-
ability distribution (i.e., the number of topics is
not known a priori)

(Teh et al.
2006)

(Palomba et al.
2017)

Maximum-
likelihood
Represen-
tation LDA
(MLE-LDA)

Represents a vocabulary-dimensional probability
vector directly by its first order distribution

(Rao and
Kak 2011)

(Rao and Kak
2011)

Query likelihood
LDA (QL-LDA)

Combines Dirichlet smoothing (a technique to
address overfitting) with LDA

(Wei and
Croft 2006)

(Binkley et al.
2015)

information extraction. These studies supported documentation (De Lucia et al. 2014);
bug handling (Thomas et al. 2013; Tantithamthavorn et al. 2018); and maintenance
tasks (Abdellatif et al. 2019)).

– Regarding the other two papers, Binkley et al. (2015) compared LSI to Query likelihood
LDA (QL-LDA) and other information extraction techniques to check the best model
for locating features in source code; and Liu et al. (2020) compared LSI and LDA to
Generative Vector Space Model (GVSM), a deep learning technique, to select the best
performer model for documentation traceability to source code in multilingual projects.

120 Page 14 of 62

Empir Software Eng (2021) 26: 120

5.2.2 Supported Tasks

As mentioned before, we aimed to understand why topic modeling was used in papers, e.g.,
if topic modeling was used to develop techniques to support specific software engineering
tasks, or if it was used as a data analysis technique in exploratory studies to understand
the content of large amounts of textual data. We found that the majority of papers aimed at
supporting a particular task, but 21 papers (see Table 5) used topic modeling in empirical
exploratory and descriptive studies as a data analysis technique.

We extracted the software engineering tasks described in each study (e.g., bug localiza-
tion, bug assignment, bug triaging) and then grouped them into eight more generic tasks
(e.g., bug handling) considering typical software development activities such as require-
ments, documentation and maintenance (Leach 2016). The specific tasks collected from
papers are available online 1. Note that we kept “Bug handling” and “Refactoring” separate
rather than merging them into maintenance because of the number of papers (bug handling)
and the cross-cutting nature (refactoring) in these categories. Each paper was related to one
of these tasks:

– Architecting: tasks related to architecture decision making, such as selection of cloud
or mash-up services (e.g., Belle et al. (2016));

– Bug handling: bug-related tasks, such as assigning bugs to developers, prediction of
defects, finding duplicate bugs, or characterizing bugs (e.g., Naguib et al. (2013));

– Coding: tasks related to coding, e.g., detection of similar functionalities in code, reuse
of code artifacts, prediction of developer behaviour (e.g., Damevski et al. (2018));

– Documentation: support software documentation, e.g., by localizing features in docu-
mentation, automatic documentation generation (e.g., Souza et al. (2019));

– Maintenance: software maintenance-related activities, such as checking consistency of
versions of a software, investigate changes or use of a system (e.g., Silva et al. (2019));

– Refactoring: support refactoring, such as identifying refactoring opportunities and
removing bad smell from source code (e.g., Bavota et al. (2014b));

– Requirements: related to software requirements evolution or recommendation of new
features (e.g., Galvis Carreno and Winbladh (2012));

– Testing: related to identification or prioritization of test cases (e.g., Thomas et al. (2014)).

Table 5 groups papers based on the topic modeling technique and the purpose. Few
papers applied topic modeling to support Testing (three papers) and Refactoring (three
papers). Bug handling is the most frequent supported task (33 papers). From the 21
exploratory studies, 13 modeled topics from developer communication to identify devel-
opers’ information needs: 12 analyzed posts on Stack Overflow, a Q&A website for
developers (Chatterjee et al. 2019; Bajaj et al. 2014; Ye et al. 2017; Bagherzadeh and
Khatchadourian 2019; Ahmed and Bagherzadeh 2018; Barua et al. 2014; Rosen and Shihab
2016; Zou et al. 2017; Chen et al. 2019; Han et al. 2020; Abdellatif et al. 2020; Haque and
Ali Babar 2020) and one paper analyzed blog posts (Pagano and Maalej 2013). Regarding
the other eight exploratory studies, three papers investigated web search queries to also iden-
tify developers’ information needs (Xia et al. 2017a; Bajracharya and Lopes 2009; 2012);
four papers investigated end user documentation to analyse users’ feedback on mobile
apps (Tiarks and Maalej 2014; El Zarif et al. 2020; Noei et al. 2018; Hu et al. 2018); and
one paper investigated historical “bug” reports of NASA systems to extract trends in testing
and operational failures (Layman et al. 2016).

Page 15 of 62 120

Empir Software Eng (2021) 26: 120

Ta
bl
e
5

Te
ch

ni
qu

es
an

d
su

pp
or

te
d

ta
sk

s

Te
ch

ni
qu

e

Su
pp

or
te

d
ta

sk
L

D
A

L
D

A
-b

as
ed

L
SI

L
D

A
-b

as
ed

,
(L

D
A

or
L

SI
)

L
D

A
,L

SI
To

ta
l

A
rc

hi
te

ct
in

g
(N

ab
li

et
al

.2
01

8;
B

el
le

et
al

.2
01

6;
D

em
is

si
e

et
al

.
20

20
;

G
op

al
ak

ri
sh

-
na

n
et

al
.2

01
7;

G
or

la
et

al
.2

01
4)

D
A

T-
L

D
A

(C
ao

et
al

.
20

17
),

L
D

A
-G

A
(Y

an
g

et
al

.
20

17
)

R
T

M
(C

ui
et

al
.2

01
9)

(P
os

hy
va

ny
k

et
al

.
20

09
;

R
ev

el
le

et
al

.
20

11
)

–
–

10

B
ug

ha
nd

lin
g

(N
gu

ye
n

et
al

.
20

12
;

N
oe

i
et

al
.

20
19

;
H

in
dl

e
et

al
.

20
15

;
L

e
et

al
.

20
17

;
C

ho
et

ki
er

tik
ul

et
al

.
20

17
;

Z
ha

ng
et

al
.

20
16

;
M

ar
tin

et
al

.
20

15
;

M
ur

al
i

et
al

.
20

17
;

A
ha

sa
nu

zz
am

an
et

al
.2

01
9;

N
ay

eb
i

et
al

.2
01

8;
L

uk
in

s
et

al
.2

01
0;

C
he

n
et

al
.

20
17

;
N

ag
ui

b
et

al
.

20
13

;
Z

ha
o

et
al

.2
02

0;
Z

ha
o

et
al

.2
01

6;
Z

am
an

et
al

.
20

11
;

M
ez

ou
ar

et
al

.
20

18
;S

ilv
a

et
al

.2
01

6)

B
ug

Sc
ou

t-
L

D
A

(N
gu

ye
n

et
al

.
20

11
),

C
IT

M
(H

u
an

d
W

on
g

20
13

),
C

T
M

(S
un

et
al

.
20

17
),

D
PL

SA
(Y

an
et

al
.2

01
6b

),
L

L
D

A
(M

cI
lr

oy
et

al
.

20
16

),
L

D
A

-G
A

(Z
ha

ng
et

al
.2

01
8;

C
at

ol
in

o
et

al
.

20
19

),
M

T
M

(X
ia

et
al

.
20

17
b)

,
Se

m
i-

su
pe

rv
is

ed
L

D
A

(F
u

et
al

.
20

15
),

A
O

L
D

A
(G

ao
et

al
.2

01
8)

–
A

SU
M

,
L

D
A

(C
he

n
et

al
.

20
14

),
L

L
D

A
,

L
D

A
(H

in
dl

e
et

al
.

20
16

),
M

L
E

-L
D

A
,

L
D

A
(R

ao
an

d
K

ak
20

11
)

(T
an

tit
ha

m
th

av
or

n
et

al
.

20
18

;
T

ho
m

as
et

al
.

20
13

)

33

C
od

in
g

(D
am

ev
sk

i
et

al
.

20
18

;
A

lta
ra

w
y

et
al

.
20

18
;

Ta
ba

et
al

.
20

17
;

C
he

n
et

al
.2

02
0;

R
ay

et
al

.2
01

4)

(F
ow

ke
s

et
al

.
20

16
)

–
–

–
6

D
oc

um
en

ta
tio

n
(A

su
nc

io
n

et
al

.
20

10
;

Ji
an

g
et

al
.

20
17

;H
in

dl
e

et
al

.2
01

3;
H

en
ß

et
al

.
20

12
;

M
os

le
hi

et
al

.
20

16
;

20
18

;
So

uz
a

et
al

.
20

19
;

M
os

le
hi

et
al

.
20

20
;

B
ig

ge
rs

et
al

.
20

14
;

W
an

g
et

al
.2

01
5)

L
D

A
-G

A
(P

an
ic

he
lla

et
al

.
20

13
),

O
-L

D
A

(L
iu

et
al

.
20

17
)

(D
it

et
al

.
20

13
;

Po
sh

yv
an

yk
et

al
.

20
12

;
Pé

re
z

et
al

.
20

18
;

N
oe

i
an

d
H

ey
da

rn
oo

ri
20

16
)

Q
L

-L
D

A
,

L
SI

(B
in

kl
ey

et
al

.2
01

5)

(D
e

L
uc

ia
et

al
.

20
14

;
L

iu
et

al
.

20
20

)

19

120 Page 16 of 62

Empir Software Eng (2021) 26: 120

Ta
bl
e
5

(c
on

tin
ue

d)

Te
ch

ni
qu

e

Su
pp

or
te

d
ta

sk
L

D
A

L
D

A
-b

as
ed

L
SI

L
D

A
-b

as
ed

,
(L

D
A

or
L

SI
)

L
D

A
,L

SI
To

ta
l

M
ai

nt
en

an
ce

(P
et

tin
at

o
et

al
.

20
19

;
L

i
et

al
.

20
18

;
Si

lv
a

et
al

.
20

19
;

C
ap

ilu
pp

i
et

al
.

20
20

;M
ar

tin
et

al
.2

01
6)

D
PL

SA
(Y

an
et

al
.

20
16

a)
,

L
D

A
-G

A
(S

un
et

al
.

20
15

),
Tw

ite
r-

L
D

A
(H

u
et

al
.

20
19

),
H

D
P

(P
al

om
ba

et
al

.
20

17
)

(T
ai

ra
s

an
d

G
ra

y
20

09
;

R
os

en
-

be
rg

an
d

M
oo

ne
n

20
18

)

–
(A

bd
el

la
tif

et
al

.2
01

9)
12

R
ef

ac
to

ri
ng

(C
an

fo
ra

et
al

.
20

14
)

R
T

M
(B

av
ot

a
et

al
.2

01
4a

;
B

av
ot

a
et

al
.2

01
4b

)
–

–
–

3

R
eq

ui
re

m
en

ts
(J

ia
ng

et
al

.
20

19
)

A
SU

M
(G

al
vi

s
C

ar
re

no
an

d
W

in
bl

ad
h

20
12

)
(B

la
sc

o
et

al
.

20
20

)
–

(A
li

et
al

.2
01

5)
4

Te
st

in
g

(T
ho

m
as

et
al

.
20

14
;

Sh
im

ag
ak

i
et

al
.2

01
8;

L
uo

et
al

.2
01

6)
–

–
–

–
3

E
xp
lo
ra
to
ry

st
ud
ie
s

(C
ha

tte
rj

ee
et

al
.

20
19

;
B

aj
aj

et
al

.
20

14
;

L
ay

m
an

et
al

.
20

16
;

B
aj

ra
ch

ar
ya

an
d

L
op

es
20

09
;

X
ia

et
al

.
20

17
a;

Pa
ga

no
an

d
M

aa
le

j
20

13
;

Y
e

et
al

.
20

17
;

B
aj

ra
ch

ar
ya

an
d

L
op

es
20

12
;

B
ag

he
rz

ad
eh

an
d

K
ha

tc
ha

do
ur

ia
n

20
19

;
A

hm
ed

an
d

B
ag

he
rz

ad
eh

20
18

;
B

ar
ua

et
al

.
20

14
;

R
os

en
an

d
Sh

ih
ab

20
16

;
Z

ou
et

al
.

20
17

;
H

an
et

al
.

20
20

;
A

bd
el

la
tif

et
al

.
20

20
;

H
aq

ue
an

d
A

li
B

ab
ar

20
20

;
T

ia
rk

s
an

d
M

aa
le

j
20

14
;

E
l

Z
ar

if
et

al
.

20
20

;
N

oe
i

et
al

.2
01

8)

L
2H

,
L

L
D

A
(C

he
n

et
al

.
20

19
),

Tw
itt

er
-L

D
A

(H
u

et
al

.2
01

8)

–
–

–
21

Page 17 of 62 120

Empir Software Eng (2021) 26: 120

5.2.3 Types of Contribution

For each study, we identified what type of contribution it presents based on the study goal.
We used three types of contributions (“Approach”, “Exploration” and “Comparison”, as
described below) by analyzing the research questions and main results of each study. A
study could contribute either an “Approach” or an “Exploration”, while “Comparison” is
orthogonal, i.e., a study that presents a new approach could present a comparison of topic
models as part of this contribution. Similarly, a comparison of topic models can also be part
of an exploratory study.

– Approach: a study develops an approach (e.g., technique, tool, or framework) to sup-
port software engineering activities based on or with the support of topic models. For
example, Murali et al. (2017) developed a framework that applies LDA to Android API
methods to discover types of API usage errors, while Le et al. (2017) developed a tech-
nique (APRILE+) for bug localization which combines LDA with a classifier and an
artificial neural network.

– Exploration: a study applies topic modeling as the technique to analyze textual data
collected in an empirical study (in contrast to for example open coding). Studies that
contributed an exploration did not propose an approach as described in the previous
item, but focused on getting insights from data. For example, Barua et al. (2014) applied
LDA to Stack Overflow posts to discover what software engineering topics were fre-
quently discussed by developers; Noei et al. (2018) explored the evolution of mobile
applications by applying LDA to app descriptions, release notes, and user reviews.

– Comparison: the study (that can also contribute with an “Approach” or an “Explo-
ration”) compares topic models to other approaches. For example, Xia et al. (2017b)
compared their bug triaging approach (based on the so called Multi-feature Topic Model
- MTM) with similar approaches that apply machine learning (Bugzie (Tamrawi et al.
2011)) and SVM-LDA (combining a classifier with LDA (Somasundaram and Murphy
2012)). On the other hand, De Lucia et al. (2014) compared LDA and LSI to define
guidelines on how to build effective automatic text labeling techniques for program
comprehension.

From the papers that contributed an approach, twenty-two combined a topic modeling
technique with one or more other techniques applied for text mining:

– Information extraction (e.g., VSM) (Nguyen et al. 2012; Zhang et al. 2018; Chen et al.
2020; Thomas et al. 2013; Fowkes et al. 2016);

– Classification (e.g., Support Vector Machine - SVM) (Hindle et al. 2013; Le et al.
2017; Liu et al. 2017; Demissie et al. 2020; Zhao et al. 2020; Shimagaki et al. 2018;
Gopalakrishnan et al. 2017; Thomas et al. 2013);

– Clustering (e.g., K-means) (Jiang et al. 2019; Cao et al. 2017; Liu et al. 2017; Zhang
et al. 2016; Altarawy et al. 2018; Demissie et al. 2020; Gorla et al. 2014);

– Structured prediction (e.g., Conditional Random Field - CRF) (Ahasanuzzaman et al.
2019);

– Artificial neural networks (e.g., Recurrent Neural Network - RNN) (Murali et al. 2017;
Le et al. 2017);

– Evolutionary algorithms (e.g., Multi-Objective Evolutionary Algorithm - MOEA)
(Blasco et al. 2020; Pérez et al. 2018);

– Web crawling (Nabli et al. 2018).

120 Page 18 of 62

Empir Software Eng (2021) 26: 120

Pagano and Maalej (2013) was the only study that contributed an exploration that com-
bined LDA with another text mining technique. To analyze how developer communities use
blogs to share information, the authors applied LDA to extract keywords from blog posts
and then analyzed related “streams of events” (commit messages and releases by time in
relation to blog posts), which were created with Sequential pattern mining.

Regarding comparisons we found that (1) 13 out of the 63 papers that contribute an
approach also include some form of comparison, and (2) ten out of the 48 papers contribute
an exploration also include some form of comparison. We discuss comparisons in more
detail below in Section 6.1.2

5.3 RQ2: Topic Model Inputs

In this section we first discuss the type of data (Section 5.3.1). Then we discuss the actual
textual documents used for topic modeling (Section 5.3.2). Finally, we describe which
model parameters were used (Section 5.3.3) to configure models.

5.3.1 Types of Data

Types of data help us describe the textual software engineering content that has been ana-
lyzed with topic modeling. We identified 12 types of data in selected papers as shown in
Table 6. In some papers we identified two or three of these types of data; for example, the
study of Tantithamthavorn et al. (2018) dealt with issue reports, log information and source
code.

Source code (37 occurrences), issue/bug reports (22 occurrences) and developer com-
munication (20 occurrences) were the most frequent types of data used. Seventeen papers
used two to four types of data in their topic modeling technique; twelve of these papers
used a combination of source code with another type of data. For example, Sun et al. (2015)
generated topics from source code and developer communication to support software main-
tenance tasks, and in another study, Sun et al. (2017) used topics found in source code and
commit messages to assign bug-fixing tasks to developers.

5.3.2 Documents

A document refers to a piece of textual data that can be longer or shorter, such as a require-
ments document or a single e-mail subject. Documents are concrete instances of the types
of data discussed above. Figure 3 shows documents (per type of data) and how often we
found them in papers. The most frequent documents are bug reports (12 occurrences), meth-
ods from source code (9 occurrences), Q&A posts (9 occurrences) and user reviews (8
occurrences).

We also analyzed document length and found the following:

– In general, papers described the length of documents in number of words, see Table 7.2

On the other hand, two papers (Moslehi et al. 2016, 2020) described their documents’
length in minutes of screencast transcriptions (videos with one to ten minutes, no infor-
mation about the size of transcripts). Sixteen papers mentioned the actual length of
the documents, see Table 7. Ten papers that described the actual document length did

2This table also shows hyperparameters and the number of topics which are discussed in the following
subsection.

Page 19 of 62 120

Empir Software Eng (2021) 26: 120

Table 6 Types of data for topic modeling

Type of data Description Number of
papers

“Lessons learned” as free
text

Lessons learned from issues and risks of a software
project (e.g., record of lessons learned from an issue
of the OpenOffice project)

1

URL content Text of a URL (e.g., URLs in a Cloud service priority
queue)

1

Transcripts Transcripts of audio or video recordings 3

Developer documentation Documentation used by developers (e.g., Web API
documentation)

4

Search query Keywords in web search queries (e.g., “software
development” used in Google search)

4

Log information Log events of a software, such as registries of updates
in a code repository

5

Commit messages Comments of developers when committing changes
to a code repository

10

End user communication App reviews of end users in app stores 12

End user documentation Apps and features descriptions, requirement docu-
ments, or API tutorials

15

Issue/bug reports Reports of bugs, change requests and/or issues of a
software project

22

Developer communication Developer discussions such as Q&A websites, e-
mails, and instant messaging

20

Source code Scripts, methods and classes of a software 37

that when describing the data used for topic modeling; four papers discussed document
length while describing results; and one mentioned document length as a metric for
comparing different data sources;

– Most papers (80 out of 111) did not mention document length and also do not
acknowledge any limitations or the impact of document length on topics.

– Fifteen papers did not mention the actual document length, but at some point acknowl-
edge the influence of document length on topic modeling. For example, Abdellatif et al.
(2019) mentioned that the documents in their data set were “not long”. Similarly, Yan
et al. (2016b) did not mention the length of the bug reports used but discussed the
impact of the vocabulary size of their corpus on results. Moslehi et al. (2018) mentioned
document length as a limitation and acknowledge that using LDA on short documents
was a threat to construct validity. According to these authors, using techniques specific
for short documents could have improved the outcomes of their topic modeling.

5.3.3 Model Parameters

Topic models can be configured with parameters that impact how topics are generated. For
example, LDA has typically been used with symmetric Dirichlet priors over θ (document-
topic distributions) and φ (topic-word distributions) with fixed values for α and β (Wallach
et al. 2009). Wallach et al. (2009) explored the robustness of a topic model with asymmetric
priors over θ (i.e., varying values for α) and a symmetric prior (fixed value for β) over φ.
Their study found that such topic model can capture more distinct and semantically-related

120 Page 20 of 62

Empir Software Eng (2021) 26: 120

Fig. 3 Documents (leaves in the figure) by type of data (nodes in the figure)

topics, i.e., the words in clusters are more distinct. Therefore, we checked which parameters
and values were used in papers. Overall, we found the following:

• Eighteen of the 111 papers do not mention parameters (e.g., number of topics k, hyper-
parameters α and β). Thirteen of these papers use LDA or an LDA-based technique,
four papers use LSI, while (Liu et al. 2020) use LDA and LSI.

• The remaining 93 papers mention at least one parameter. The most frequent parameters
discussed were k, α and β:

– Fifty-eight papers mentioned actual values for k, α and β;

Page 21 of 62 120

Empir Software Eng (2021) 26: 120

Ta
bl
e
7

D
oc

um
en

tl
en

gt
h

as
re

po
rt

ed
in

pa
pe

rs

D
oc

um
en

t
L

en
gt

h
To

pi
c

m
od

el
H

yp
er

pa
ra

m
et

er
s

N
um

be
r

of
to

pi
cs

Pa
pe

rs

A
n

in
di

vi
du

al
co

m
m

it
m

es
sa

ge
9

to
20

w
or

ds
L

D
A

-
10

(C
an

fo
ra

et
al

.2
01

4)

A
n

in
di

vi
du

al
bl

og
po

st
27

3
w

or
ds

av
er

ag
e

L
D

A
-

50
(P

ag
an

o
an

d
M

aa
le

j2
01

3)

A
n

in
di

vi
du

al
Q

&
A

po
st

50
0

w
or

ds
av

er
ag

e
L

D
A

α
=

50
/
k

,β
=

0.
01

40
(B

ar
ua

et
al

.2
01

4)

50
to

40
0

w
or

ds
L

L
D

A
;L

2H
α

=
10

,β
=

10
00

3
(C

he
n

et
al

.2
01

9)

A
n

in
di

vi
du

al
us

er
re

vi
ew

65
to

15
5

w
or

ds
Tw

itt
er

-L
D

A
-

10
(H

u
et

al
.2

01
9)

28
to

97
w

or
ds

L
D

A
-

85
,1

70
(N

ay
eb

ie
ta

l.
20

18
)

A
n

in
di

vi
du

al
bu

g
re

po
rt

40
4

w
or

ds
av

er
ag

e
L

D
A

α
=

50
/
k

,β
=

0.
01

20
,[

st
ep

s
of

10
],

10
0,

12
5,

15
0,

[s
te

ps
of

25
],

22
5

(L
ay

m
an

et
al

.2
01

6)

12
7

w
or

ds
(E

cl
ip

se
da

ta
)

an
d

14
6

w
or

ds
(M

oz
ill

a
da

ta
)

av
er

ag
e

L
D

A
;L

SI
-

32
,6

4,
12

8,
25

6
(T

an
tit

ha
m

th
av

or
n

et
al

.2
01

8)
*

A
co

m
bi

na
tio

n
of

lo
g

m
es

-
sa

ge
s

95
w

or
ds

(t
es

td
at

a)
an

d
22

1
w

or
ds

(v
al

id
at

io
n

da
ta

)
av

er
ag

e
L

D
A

α
=

50
/
k

,β
=

0.
1

9
(P

et
tin

at
o

et
al

.
20

19
)

A
n

in
di

vi
du

al
re

qu
ir

em
en

t
do

cu
m

en
t

3,
80

0
w

or
ds

av
er

ag
e

L
D

A
α

=
0.

1,
β

=
0.

1
20

(H
in

dl
e

et
al

.2
01

5)

A
n

in
di

vi
du

al
fr

ag
m

en
t

of
A

PI
tu

to
ri

al
s

10
0

to
30

0
w

or
ds

L
D

A
α

=
0.

1,
β

=
0.

1
-

(J
ia

ng
et

al
.2

01
7)

A
co

m
bi

na
tio

n
of

tu
to

ri
al

s
of

an
ap

p
st

or
e

3,
23

1
w

or
ds

av
er

ag
e

L
D

A
-

20
,5

0
(T

ia
rk

s
an

d
M

aa
le

j2
01

4)

A
co

m
bi

na
tio

n
of

cl
as

se
s

fr
om

a
di

re
ct

or
y

4,
15

3
w

or
ds

in
92

2
do

cu
m

en
ts

(t
ot

al
)

L
SI

-
-

(T
ai

ra
s

an
d

G
ra

y
20

09
)

A
n

in
di

vi
du

al
m

et
ho

d
14

w
or

ds
(E

cl
ip

se
da

ta
)

an
d

35
w

or
ds

(M
oz

ill
a

da
ta

)
av

er
ag

e
L

D
A

;L
SI

-
32

,6
4,

12
8,

25
6

(T
an

tit
ha

m
th

av
or

n
et

al
.2

01
8)

*

A
n

in
di

vi
du

al
sc

re
en

ca
st

tr
an

sc
ri

pt
1

to
10

m
in

ut
es

L
D

A
α

=
50

/
k

,β
=

0.
01

20
55

,8
0,

13
0

(M
os

le
hi

et
al

.
20

16
)

(M
os

le
hi

et
al

.2
02

0)

*
Sa

m
e

st
ud

y
th

at
us

ed
tw

o
di

ff
er

en
td

oc
um

en
ts

120 Page 22 of 62

Empir Software Eng (2021) 26: 120

– Two papers mentioned actual values for α and β, but no values for k;
– Twenty-nine papers included actual values for k but not for α and β;
– Thirty-two (out of 58) papers mentioned other parameters in addition to k, α

and β. For example, Chen et al. (2019) applied L2H (in comparison to LLDA),
which uses the hyperparameters γ1 and γ2;

– One paper (Rosenberg and Moonen 2018) that applied LSI, mentioned the
parameter “similarity threshold” rather than k, α and β.

We then had a closer look at the 60 papers that mentioned actual values for hyperparam-
eters α and β:

– α based on k: The most frequent setting (29 papers) was α = 50/k and β = 0.01
(i.e., α was depending on the number of topics, a strategy suggested by Steyvers and
Griffiths (2010) and Wallach et al. (2009)). These values are a default setting in Gibbs
Sampling implementations for LDA such as Mallet.3

– Fixed α and β: Five papers fixed 0.01 for both hyperparameters, as suggested by Hoff-
man et al. (2010). Another eight papers fixed 0.1 for both hyperparameters, a default
setting in Stanford Topic Modeling Toolbox (TMT);4 and three other papers fixed
α = 0.1 and β = 1 (these three studies applied RTM).

– Varying α or β: Four papers tested different values for α, where two of these papers
also tested different values for β; and one paper varied β but fixed a value for α.

– Optimized parameters: Four papers obtained optimized values for hyperparameters
(Sun et al. 2015; Catolino et al. 2019; Yang et al. 2017; Zhang et al. 2018). These papers
applied LDA-GA (as proposed by Panichella et al. (2013)) which, based on genetic
algorithms; finds the best values for LDA hyperparameters. In regards to the actual
values chosen for optimized hyperparameters, Catolino et al. (2019) did not mention
the values for hyperparameters; Sun et al. (2015) and Yang et al. (2017) mentioned only
the values used for k; and Zhang et al. (2018) described the values for k, α and β.

Regarding the values for k we observed the following:

– The 90 papers that mentioned values for k modeled three (Cao et al. 2017) to 500 (Li
et al. 2018; Lukins et al. 2010; Chen et al. 2017) topics;

– Twenty-four (out of 90) papers mentioned that a range of values for k was tested in
order to check the performance of the technique (e.g., Xia et al. (2017b)) or as a strategy
to select the best number of topics (e.g., Layman et al. (2016));

– Although the remaining 66 (out of 90) papers mentioned a single value used for k, most
of them acknowledged that had tried several number of topics or used the number of
topics suggested by other studies.

As can be seen in Table 7, there is no common trend of what values for hyperparameter
or k depending on the document or document length.

5.4 RQ3: Pre-processing Steps

Thirteen of the papers did not mention what pre-processing steps were applied to the data
before topic modeling. Seven papers only described how the data analyzed were selected,

3http://mallet.cs.umass.edu/topics.php
4https://nlp.stanford.edu/software/tmt/tmt-0.4/

Page 23 of 62 120

http://mallet.cs.umass.edu/topics.php
https://nlp.stanford.edu/software/tmt/tmt-0.4/

Empir Software Eng (2021) 26: 120

but not how they were pre-processed. Table 8 shows the pre-processing steps found in the
remaining 91 papers. Each of these papers mentioned at least one of these steps.

Removing noisy content (76 occurrences), Stemming terms (61 occurrences) and Split-
ting terms (33 occurrences) were the most used pre-processing steps. The least frequent
pre-processing step (Resolving negations) was found only in the studies of Noei et al. (2019)
and Noei et al. (2018). Resolving synonyms and Expanding contractions were also less
frequent, with three occurrences each.

Table 9 shows the types of noise removal in papers and their frequency. Most of the
papers that described pre-processing steps removed stop words (76 occurrences). Stop
words are the most common words in a language, such as “a/an” and “the” in English.
Removing stop words allows topic modeling techniques to focus on more meaningful
words in the corpus (Miner et al. 2012). Eight papers mentioned the stop words list used:

Table 8 Pre-processing steps found in papers

Pre-processing step Description Number of
papers

Resolving negations Negations refer to negative sentences with positive meaning,
such as “No problem”; used depending on the context of study
(e.g., the paper in which we found this step removed negations
in user reviews)

2

Expanding contractions Normalizing contracted terms into expanded forms (e.g.,
“couldn’t” into “could not”)

3

Resolving synonyms Replacing words with similar meaning with a common rep-
resentative word (e.g., “bug”, “error”, and “glitch” can be
synonyms for “exception”)

3

Identifying n-grams Words may have a more concrete meaning when used together;
n-grams are a sequence of n words; e.g., bi-gram (n-gram of
two words) software development can be more informative
than the words “software” and “development” separately

6

Correcting typos Replacing misspelled words with the correct ones 7

Splitting document Breaking a long document into shorter documents (e.g., split-
ting long project specifications and wiki pages)

7

Lemmatizing Reducing words to their lemmas based on the words’ part of
speech (e.g., words “is” and “are” can be resolved as “be”)

11

Tokenizing Breaking up text in document into individual tokens (e.g.,
using white space and punctuation as token delimiters)

17

Lowercasing Entire document is converted to lowercase characters regard-
less of the spelling in the original document

20

Splitting words Splitting two or more words with no separating spaces or punc-
tuation (e.g., many papers that analyze source code separated
camel cases like “processFile” into “process” and “File”)

33

Stemming Normalizing words into their single forms by identifying and
removing prefixes, suffixes and pluralisation (e.g., “develop-
ment”, “developer”, “developing” become “develop”)

61

Removing noise Noise is any text that will interfere in the topic modeling (e.g.,
slowing down the processing or resulting in meaningless top-
ics); due to the different types of noise removal, we discuss
noise removal separately in Table 9

76

120 Page 24 of 62

Empir Software Eng (2021) 26: 120

Table 9 Noisy content removed

Noisy content Number of papers

Empty documents 1

Long paragraphs 1

Extra white space 1

Short documents 2

Words shorter than four, three or two letters 2

URLs 4

Least frequent terms 8

Most frequent terms 8

Code snippets 9

HTML tags 9

Non-informative content 11

Numbers 17

Programming language keywords 23

Symbols and special characters 20

Punctuation 21

Stop words 75

Layman et al. (2016) and Pettinato et al. (2019) used the SMART stop words list;5 Martin
et al. (2015) and Hindle et al. (2013) used the Natural Language Toolkit English stop words
list;6 Bagherzadeh and Khatchadourian (2019), Ahmed and Bagherzadeh (2018) and Yan
et al. (2016b) used the Mallet stop words list;7 and Mezouar et al. (2018) used the Moby
stop words list.8

As can be seen in Table 9, some papers removed words based on the frequency of their
occurrence (most or least frequent terms) or length (words shorter than four, three or two
letters or long terms). Other papers removed long paragraphs. For example, Henß et al.
(2012) removed paragraphs longer than 800 characters because most paragraphs in their
data set were shorter than that. We also found two papers that removed short documents:
Gorla et al. (2014) removed documents with fewer than ten words, and Palomba et al. (2017)
removed documents with fewer than three words. The concept of non-informative content
depends on the context of each paper. In general, it refers to any data considered not relevant
for the objective of the study. For example, Choetkiertikul et al. (2017), which aimed at
predicting bugs in issue reports, removed issues that took too much time to be resolved. Noei
et al. (2019) and Fu et al. (2015) removed content (end user reviews and commit messages)
that did not describe feedback or cause of change.

5.5 RQ4: Topic Naming

Topic naming is about assigning labels (names) to topics (word clusters) to give the clusters
a human-understandable meaning. Seventy-five papers (out of 111) did not mention whether

5http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
6https://gist.github.com/sebleier/554280
7https://github.com/mengjunxie/ae-lda/blob/master/misc/mallet-stopwords-en.txt
8http://icon.shef.ac.uk/Moby/mwords.html

Page 25 of 62 120

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
https://gist.github.com/sebleier/554280
https://github.com/mengjunxie/ae-lda/blob/master/misc/mallet-stopwords-en.txt
http://icon.shef.ac.uk/Moby/mwords.html

Empir Software Eng (2021) 26: 120

or how topics were named. These papers only used the word clusters for analysis, but did
not require a name. For example, Xia et al. (2017a) and Canfora et al. (2014) did not name
topics, but mapped the word clusters to the documents (search queries and source code com-
ments) used as input for topic modeling. These papers used the probability of a document
to belong to a topic (θ) to associate a document to the topic with the highest probability.

From the 36 papers (out of 111) that mentioned topic naming (see Table 10), we
identified three ways of how they named topics:

– Automated: Assigning names to word clusters without human intervention;
– Manual: Manually checking the meaning and the combination of words in cluster to

“deduct” a name, sometimes validated with expert judgment;
– Manual & Automated: Mix of manual and automated; e.g., topics are manually

labeled for one set of clusters to then train a classifier for naming another set of clusters.

Most of the papers (30 out of 36) assigned one name to one topic. However, we identified
six papers that used one name for multiple topics (Hindle et al. 2013; Pagano and Maalej
2013; Bajracharya and Lopes 2012; Rosen and Shihab 2016) or labeled a topic with multiple
names (Zou et al. 2017; Gao et al. 2018). Two of the papers (Hindle et al. 2013; Bajracharya
and Lopes 2012) that assigned one name to multiple topics used predefined labels, and in
the other two papers (Pagano and Maalej 2013; Rosen and Shihab 2016) authors interpreted
words in the clusters to deduct names.

Regarding the papers that assigned multiple names to a topic, Zou et al. (2017) assigned
no, one or more names, depending on how many words in the predefined word list matched
words in clusters. Gao et al. (2018) used an automated approach to label topics with the
three most relevant phrases and sentences from the end user reviews inputted to their topic
model. The relevance of phrases and sentences were obtained with the metrics Semantic
and Sentiment scores proposed by these authors.

6 Discussion

6.1 RQ1: Topic Modeling Techniques

6.1.1 Summary of Findings

LDA is the most frequently used topic model. Almost all papers (95 out of 111) applied LDA
or a LDA-based technique, while nine papers applied LSI to identify topics and seven papers
used LDA and LSI. Regarding the papers that used LDA-based techniques, eleven (out of
30) proposed their own LDA-based technique (Fu et al. 2015; Nguyen et al. 2011; Liu et al.
2017; Cao et al. 2017; Panichella et al. 2013; Yan et al. 2016a; Xia et al. 2017b; Nguyen
et al. 2012; Damevski et al. 2018; Gao et al. 2018; Rao and Kak 2011). This may indicate
that the LDA default implementation may not be adequate to support specific software
engineering tasks or extract meaningful topics from all types of data. We discuss more
about topic modeling techniques and their inputs in Section 6.2.2. Furthermore, we found
that topic modeling is used to develop tools and methods to support software engineers and
concrete tasks (the most frequently supported task we found was bug handling), but also as
a data analysis technique for textual data to explore empirical questions (see for example
the “oldest” paper in our sample published in 2009 (Bajracharya and Lopes 2009)).

One aspect that we did not specifically address in this review, but which impacts
the applicability of topics models is their computational overhead. Computational over-
head refers to processing time and computational resources (e.g., memory, CPU) required

120 Page 26 of 62

Empir Software Eng (2021) 26: 120

Ta
bl
e
10

Pr
oc

ed
ur

es
fo

r
na

m
in

g
to

pi
cs

R
ef

er
en

ce
s

Pr
oc

ed
ur

e
D

es
cr

ip
tio

n
M

an
ua

l
A

ut
om

at
ed

M
an

ua
l

&
A

ut
om

at
ed

To
ta

l

D
ed

uc
tin

g
na

m
e

ba
se

d
on

w
or

ds
in

cl
us

te
rs

A
ss

ig
n

na
m

es
to

to
pi

cs
ba

se
d

on
un

de
rs

ta
nd

in
g

of
th

e
m

os
t

fr
eq

ue
nt

w
or

ds
in

to
pi

cs
(i

n
on

e
pa

pe
r

Pe
tti

na
to

et
al

.
(2

01
9)

,
au

th
or

s
as

ke
d

do
m

ai
n

ex
pe

rt
s

to
va

lid
at

e
th

e
na

m
es

)

(B
aj

aj
et

al
.

20
14

;
L

ay
m

an
et

al
.

20
16

;
B

ag
he

rz
ad

eh
an

d
K

ha
tc

ha
do

ur
ia

n
20

19
;

A
hm

ed
an

d
B

ag
he

rz
ad

eh
20

18
;

Pa
ga

no
an

d
M

aa
le

j
20

13
;

N
oe

i
et

al
.

20
19

;
H

in
dl

e
et

al
.

20
15

;
B

ar
ua

et
al

.
20

14
;R

os
en

an
d

Sh
ih

ab
20

16
;P

et
-

tin
at

o
et

al
.2

01
9;

Y
an

g
et

al
.2

01
7;

A
gg

ar
w

al
an

d
Z

ha
i

20
12

;
R

ay
et

al
.

20
14

;
H

aq
ue

an
d

A
li

B
ab

ar
20

20
;

G
or

la
et

al
.

20
14

;
T

ia
rk

s
an

d
M

aa
le

j
20

14
;

E
l

Z
ar

if
et

al
.

20
20

;
M

ez
ou

ar
et

al
.

20
18

;
H

an
et

al
.

20
20

;
A

bd
el

la
tif

et
al

.
20

20
;

B
aj

ra
ch

ar
ya

an
d

L
op

es
20

09
)

–
–

21

N
am

in
g

ba
se

d
on

m
os

t
fr

eq
ue

nt
w

or
d(

s)
in

cl
us

-
te

r

T
he

m
os

t
fr

eq
ue

nt
w

or
d

or
th

e
co

m
bi

na
tio

n
of

fr
eq

ue
nt

w
or

ds
in

th
e

to
pi

c
w

er
e

us
ed

as
th

e
na

m
e

of
th

at
to

pi
c

(G
al

vi
s

C
ar

re
no

an
d

W
in

bl
ad

h
20

12
;L

ie
ta

l.
20

18
)

(P
an

ic
he

lla
et

al
.2

01
3)

–
3

A
ss

ig
ni

ng
pr

ed
ef

in
ed

na
m

es
to

cl
us

te
rs

A
lis

t
of

pr
ed

ef
in

ed
na

m
es

is
re

la
te

d
to

to
pi

cs
ba

se
d

on
th

ei
r

si
m

ila
ri

tie
s

w
ith

th
e

m
os

t
fr

e-
qu

en
tw

or
ds

in
cl

us
te

rs

(M
ar

tin
et

al
.

20
15

;
B

aj
ra

ch
ar

ya
an

d
L

op
es

20
12

;
Z

ou
et

al
.

20
17

;
Ta

ba
et

al
.2

01
7)

(M
cI

lr
oy

et
al

.
20

16
;

Y
an

et
al

.
20

16
b;

Y
an

et
al

.
20

16
a;

Fu
et

al
.

20
15

;
C

he
n

et
al

.
20

19
;G

ao
et

al
.2

01
8)

(H
in

dl
e

et
al

.
20

13
;

H
in

dl
e

et
al

.2
01

6)

12

Page 27 of 62 120

Empir Software Eng (2021) 26: 120

for topic modeling. As discussed by others, topic modeling can be computational inten-
sive (Hoffman et al. 2010; Treude and Wagner 2019; Agrawal et al. 2018). However, we
found that only few papers (seven out of 111) mentioned computational overhead at all.
From these seven papers, five mentioned processing time (Bavota et al. 2014b; Zhao et al.
2020; Luo et al. 2016; Moslehi et al. 2016; Chen et al. 2020), one paper mentioned com-
putational requirements and some processing times (e.g., processor, data pre-processing
time, LDA processing time and clustering processing time), and one paper only mention
that their technique was processed in “few seconds” (Murali et al. 2017). Hence, based on
the reviewed studies we cannot provide broader insights into the practical applicability and
potential constraints of topic modeling based on the computational overhead.

6.1.2 Comparative Studies

As mentioned in Sections 5.2.1 and 5.2.3, we identified studies that used more than one
topic modeling technique and compared their performance. In detail, we found studies
that (1) compared topic modeling techniques to information extraction techniques, such
as Vector Space Model (VSM), an algebraic model (Salton et al. 1975) (see Table 11),
(2) proposed an approach that uses a topic modeling technique and compared it to other
approaches (which may or may not use topic models) with similar goals (see Table 12),
and (3) compared the performance of different settings for a topic modeling technique or a
newly proposed approach that utilizes topic models (see Table 13). In column “Metric” of
Tables 11, 12 and 13 the metrics show the metrics used in the comparisons to decide which
techniques performed “better” (based on the metrics’ interpretation). Metrics in bold were
proposed for or adapted to a specific context (e.g., SCORE and Effort reduction), while
the other metrics are standard NLP metrics (e.g., Precision, Recall and Perplexity). Details
about the metrics used to compare the techniques are provided in Appendix A.2 - Metrics
Used in Comparative Studies.

As shown in Table 11, ten papers compared topic modeling techniques to information
extraction techniques. For example, Rosenberg and Moonen (2018) compared LSI with
two other dimensionality reduction techniques (PCA and NMF) to group log messages of
failing continuous deployment runs. Nine out of these ten papers presented explorations, i.e.,
studies experimented with different models to discuss their application to specific software
engineering tasks, such as bug handling, software documentation and maintenance. Thomas
et al. (2013) on the other hand experimented with multiple models to propose a framework
for bug localization in source code that applies the best performing model.

Four papers in Table 11 (De Lucia et al. 2014; Tantithamthavorn et al. 2018; Abdellatif
et al. 2019; Thomas et al. 2013) compared the performance of LDA, LSI and VSM with
source code and issue/bug reports. Except for De Lucia et al. (2014), these studies applied
Top-k accuracy (see Appendix A.2 - Metrics Used in Comparative Studies) to measure the
performance of models, and the best performing model was VSM. Tantithamthavorn et al.
(2018) found that VSM achieves both the best Top-k performance and the least required
effort for method-level bug localization. Additionally, according to De Lucia et al. (2014),
VSM possibly performed better than LSI and LDA due to the nature of the corpus used in
their study: LDA and LSI are ideal for heterogeneous collections of documents (e.g., user
manuals from different systems), but in De Lucia et al. (2014) study each corpus was a
collection of code classes from a single software system.

Ten studies proposed an approach that uses a topic modeling technique and compared it
to similar approaches (shown in Table 12). In column “Approaches compared” of Table 12,
the approach in bold is the one proposed by the study (e.g., Cao et al. 2017) or the topic

120 Page 28 of 62

Empir Software Eng (2021) 26: 120

Ta
bl
e
11

St
ud

ie
s

th
at

in
cl

ud
e

co
m

pa
ri

so
n

of
to

pi
c

m
od

el
s

Pa
pe

r
Su

pp
or

te
d

ta
sk

Te
ch

ni
qu

es
co

m
pa

re
d

Ty
pe

of
da

ta
D

at
as

et
Ty

pe
of

co
n-

tr
ib

ut
io

n
M

et
ri

cs
B

es
t

pe
rf

or
m

in
g

te
ch

ni
qu

e

(D
e

L
uc

ia
et

al
.

20
14

)
D

oc
um

en
ta

tio
n

L
D

A
,L

SI
,V

SM
So

ur
ce

co
de

JH
ot

D
ra

w
an

d
eX

V
an

ta
ge

E
xp

lo
ra

tio
n

Te
rm

en
tr

op
y;

A
ve
ra
ge

ov
er
la
p

V
SM

(T
an

tit
ha

m
th

av
or

n
et

al
.2

01
8)

B
ug

ha
nd

lin
g

L
D

A
,L

SI
,V

SM
So

ur
ce

co
de

;
Is

su
e/

bu
g

re
po

rt
E

cl
ip

se
an

d
M

oz
ill

a
E

xp
lo

ra
tio

n
To

p-
k

ac
cu

ra
cy

V
SM

(A
bd

el
la

tif
et

al
.

20
19

)
M

ai
nt

en
an

ce
L

D
A

,L
SI

,V
SM

Is
su

e/
bu

g
re

po
rt

D
at

a
re

co
rd

s
fr

om
an

In
du

st
ry

pa
rt

ne
r

E
xp

lo
ra

tio
n

To
p-

k
ac

cu
ra

cy
;

M
ea

n
av

er
ag

e
pr

ec
is

io
n

(M
A

P)
V

SM

(L
iu

et
al

.2
02

0)
D

oc
um

en
ta

tio
n

L
D

A
,

L
SI

,
G

V
SM

-b
as

ed
te

ch
ni

qu
es

C
om

m
it

m
es

-
sa

ge
s;

Is
su

e/
bu

g
re

po
rt

17
op

en
so

ur
ce

pr
oj

ec
ts

E
xp

lo
ra

tio
n

A
ve

ra
ge

pr
ec

is
io

n
(A

P)
G

V
SM

-b
as

ed
te

ch
ni

qu
es

(B
in

kl
ey

et
al

.
20

15
)

D
oc

um
en

ta
tio

n
L

SI
,

V
SM

,
V

SM
-W

S,
Q

L
-l

in
,Q

L
-D

ir
,Q

L
-L

D
A

So
ur

ce
co

de
A

rg
oU

M
L

0.
22

,
E

cl
ip

se
3.

0,
Ja

bR
ef

2.
6,

jE
di

t
4.

3
an

d
m

uC
om

m
an

de
r

0.
8.

5

E
xp

lo
ra

tio
n

M
ea

n
R

ec
ip

ro
ca

l
R

an
k

(M
R

R
)

Q
L

-L
D

A

(R
ao

an
d

K
ak

20
11

)
B

ug
ha

nd
lin

g
M

L
E

-L
D

A
;

L
D

A
;

U
M

;
V

SM
;L

SA
;C

B
D

M
So

ur
ce

co
de

iB
U

G
S

be
nc

hm
ar

k
da

ta
se

t
E

xp
lo

ra
tio

n
M

A
P;

SC
O
R
E

U
M

(R
os

en
be

rg
an

d
M

oo
ne

n
20

18
)

M
ai

nt
en

an
ce

L
SI

,P
C

A
,N

M
F

L
og

in
fo

rm
at

io
n

C
is

co
Sy

st
em

s
N

or
w

ay
lo

g
ba

se
E

xp
lo

ra
tio

n
A

dj
us

te
d

m
ut

ua
l

in
fo

r-
m

at
io

n
(A

M
I)

;
E
ff
or
t

re
du

ct
io
n;

H
om

og
en
ei
ty

;
C
om

pl
et
en
es
s

N
M

F

(S
ilv

a
et

al
.2

01
6)

B
ug

ha
nd

lin
g

L
D

A
;X

Sc
an

So
ur

ce
co

de
R

hi
no

an
d

jE
di

t
E

xp
lo

ra
tio

n
Pr

ec
is

io
n;

R
ec

al
l;

F-
m

ea
su

re
X

Sc
an

(L
uo

et
al

.2
01

6)
Te

st
in

g
C

al
l-

gr
ap

h-
ba

se
d;

St
ri

ng
-

di
st

an
ce

-b
as

ed
;

L
D

A
;

G
re

ed
y

te
ch

ni
qu

es
;

A
da

pt
iv

e
ra

nd
om

te
st

in
g

Te
st

ca
se

s
30

op
en

so
ur

ce
Ja

va
pr

og
ra

m
s

E
xp

lo
ra

tio
n

A
ve
ra
ge

pe
r-

ce
nt
ag
e
of

fa
ul
ts

de
te
ct
ed

(A
P
F
D
)

C
al

l-
gr

ap
h-

ba
se

d

(T
ho

m
as

et
al

.
20

13
)

1
B

ug
ha

nd
lin

g
L

D
A

,L
SI

,V
SM

So
ur

ce
co

de
;

Is
su

e/
bu

g
re

po
rt

E
cl

ip
se

,
Ja

zz
an

d
M

oz
ill

a
A

pp
ro

ac
h

To
p-

k
ac

cu
ra

cy
V

SM

1
T

hi
s

st
ud

y
us

ed
th

e
be

st
pe

rf
or

m
in

g
m

od
el

s
to

de
ve

lo
p

an
ap

pr
oa

ch
fo

r
bu

g
lo

ca
liz

at
io

n

Page 29 of 62 120

Empir Software Eng (2021) 26: 120

Ta
bl
e
12

St
ud

ie
s

th
at

in
cl

ud
e

co
m

pa
ri

so
n

of
to

pi
c-

ba
se

d
ap

pr
oa

ch
es

Pa
pe

r
Su

pp
or

te
d

ta
sk

A
pp

ro
ac

he
s

co
m

pa
re

d
Ty

pe
of

da
ta

D
at

as
et

Ty
pe

of
co

n-
tr

ib
ut

io
n

M
et

ri
cs

B
es

t
pe

rf
or

m
in

g
ap

pr
oa

ch

(N
ag

ui
b

et
al

.
20

13
)

B
ug

ha
nd

lin
g

L
D
A

;L
D

A
-S

V
M

Is
su

e/
bu

g
re

po
rt

A
tla

s,
E

cl
ip

se
B

IR
T

an
d

U
ni

ca
se

A
pp

ro
ac

h
A
ct
ua

l
as
si
gn

ee
hi
t

R
at
io

;
To

p-
k

hi
t

L
D

A

(M
ur

al
i

et
al

.
20

17
)

B
ug

ha
nd

lin
g

Sa
le
nt
o

(L
D
A

+
P
ro
ba

-
bi
lis
ti
c

B
eh
av
io
r

M
od

el
an

d
A
rt
if
ic
ia
l

N
eu
ra
l

N
et
w
or
ks
);

N
on

-B
ay

es
ia

n
m

et
ho

d

So
ft

w
ar

e
do

cu
-

m
en

ta
tio

n
A

nd
ro

id
A

PI
s:

al
er

t
di

al
og

s,
bl

ue
to

ot
h

so
ck

et
s

an
d

cr
yp

to
gr

ap
hi

c
ci

ph
er

s

A
pp

ro
ac

h
Pr

ec
is

io
n;

R
ec

al
l;

A
no

m
al
y
sc
or
e

Sa
le

nt
o

(X
ia

et
al

.
20

17
b)

B
ug

ha
nd

lin
g

To
pi
cM

in
er

(M
T
M
);

B
ug

zi
e;

L
D

A
-K

L
;

SV
M

-L
D

A
;L

D
A

-A
ct

iv
ity

Is
su

e/
bu

g
re

po
rt

G
C

C
,

O
pe

nO
f-

fi
ce

,
N

et
be

an
s,

E
cl

ip
se

an
d

M
oz

ill
a

A
pp

ro
ac

h
To

p-
k

ac
cu

ra
cy

To
pi

cM
in

er

(T
ho

m
as

et
al

.
20

14
)

Te
st

in
g

L
D
A

;
C

al
l-

gr
ap

h-
ba

se
d;

St
ri

ng
-d

is
ta

nc
e-

ba
se

d;
A

da
pt

iv
e

ra
nd

om
te

st
in

g

So
ur

ce
co

de
So

ft
w

ar
e-

ar
tif

ac
t

In
fr

as
tr

uc
tu

re
R

ep
os

ito
ry

(S
IR

)

A
pp

ro
ac

h
A
P
F
D

;
M

an
n-

W
hi

tn
ey

-
W

ilc
ox

on
te

st
;

A
m

ea
su

re

L
D

A

(J
ia

ng
et

al
.

20
19

)
R

eq
ui

re
m

en
ts

SA
F
E
R

(L
D
A

+
C
lu
st
er
-

in
g

te
ch
ni
qu

e)
;

K
N

N
+

;
C

L
A

P

So
ft

w
ar

e
do

cu
-

m
en

ta
tio

n
10

0
G

oo
gl

e
Pl

ay
ap

ps
A

pp
ro

ac
h

H
it

ra
ti
o;

N
or
m
al
iz
ed

D
is
co
un

te
d

C
um

ul
at
iv
e

G
ai
n
(N

D
C
G
)

SA
FE

R

(C
ao

et
al

.
20

17
)

A
rc

hi
te

ct
in

g
D
A
T-
L
D
A

+
C
lu
st
er
in
g

te
ch
ni
qu

e;
W

T
C

lu
st

er
;

W
T-

L
D

A
;

C
D

SR
;

O
D

-D
M

SC
;

C
D

A
-D

M
SC

;C
D

T-
D

M
SC

So
ft

w
ar

e
do

cu
-

m
en

ta
tio

n
66

29
m

as
hu

p
se

r-
vi

ce
s

fr
om

Pr
o-

gr
am

m
ab

le
W

eb

A
pp

ro
ac

h
Pr

ec
is

io
n;

R
ec

al
l;

F-
M

ea
su

re
;

Pu
ri

ty
;

Te
rm

en
tr

op
y

D
A

T-
L

D
A

+
C

lu
st

er
in

g
te

ch
ni

qu
e

120 Page 30 of 62

Empir Software Eng (2021) 26: 120

Ta
bl
e
12

(c
on

tin
ue

d)

Pa
pe

r
Su

pp
or

te
d

ta
sk

A
pp

ro
ac

he
s

co
m

pa
re

d
Ty

pe
of

da
ta

D
at

as
et

Ty
pe

of
co

nt
ri

bu
-

tio
n

M
et

ri
cs

B
es

tp
er

fo
rm

in
g

ap
pr

oa
ch

(Y
an

et
al

.
20

16
b)

B
ug

ha
nd

lin
g

D
P
L
SA

;
L

D
A

-K
L

;
L

D
A

-
SV

M
Is

su
e/

bu
g

re
po

rt
E

cl
ip

se
,

B
ug

zi
lla

,
M

yl
yn

,
G

C
C

an
d

Fi
re

fo
x

A
pp

ro
ac

h
R

ec
al

l@
k;

Pe
r-

pl
ex

ity
D

PL
SA

(Z
ha

ng
et

al
.

20
16

)
B

ug
ha

nd
lin

g
L
D
A

+
C
lu
st
er
in
g
te
ch

-
ni
qu

e;
IN

SP
ec

t;
N

B
M

ul
tin

om
ia

l;
D

R
E

T
O

M
;

D
R

E
X

;D
ev

R
ec

Is
su

e/
bu

g
re

po
rt

G
C

C
,

O
pe

nO
f-

fi
ce

,
E

cl
ip

se
,

N
et

B
ea

ns
an

d
M

oz
ill

a

A
pp

ro
ac

h
Pr

ec
is

io
n;

R
ec

al
l;

F-
m

ea
su

re
;

M
R

R

L
D

A
+

C
lu

st
er

-
in

g
te

ch
ni

qu
e

(D
em

is
si

e
et

al
.

20
20

)
A

rc
hi

te
ct

in
g

P
R
E
V

(L
D
A

+
C
lu
st
er
-

in
g

an
d

C
la
ss
if
ic
at
io
n

te
ch
ni
qu

es
);

C
ov

er
t;

Ic
cT

A

So
ft

w
ar

e
do

cu
-

m
en

ta
tio

n
11

,7
96

G
oo

gl
e

Pl
ay

s
ap

ps
A

pp
ro

ac
h

Pr
ec

is
io

n;
R

ec
al

l
PR

E
V

(B
la

sc
o

et
al

.
20

20
)

R
eq

ui
re

m
en

ts
C
O
D
F
R
E
L

(L
SI

+
E
vo
-

lu
ti
on

ar
y

al
go
ri
th
m
);

R
eg

ul
ar

-L
SI

So
ur

ce
co

de
K

ro
m

ai
a

vi
de

o
ga

m
e

da
ta

A
pp

ro
ac

h
Pr

ec
is

io
n;

R
ec

al
l;

F-
m

ea
su

re

C
O

D
FR

E
L

Page 31 of 62 120

Empir Software Eng (2021) 26: 120

Ta
bl
e
13

St
ud

ie
s

th
at

in
cl

ud
e

co
m

pa
ri

so
n

of
di

ff
er

en
ts

et
tin

gs
fo

r
a

te
ch

ni
qu

e

Pa
pe

r
Su

pp
or

te
d

ta
sk

Te
ch

ni
qu

es
co

m
pa

re
d

Ty
pe

of
da

ta
D

at
as

et
Ty

pe
of

co
n-

tr
ib

ut
io

n
M

et
ri

cs
O

ut
co

m
e

of
co

m
-

pa
ri

so
n

B
ig

ge
rs

et
al

.
(2

01
4)

D
oc

um
en

ta
tio

n
L

D
A

(s
et

tin
gs

te
st

ed
:

hy
pe

rp
ar

am
et

er
s

α
an

d
β

,
do

cu
m

en
t,

nu
m

be
r

of
to

p-
ic

s
an

d
qu

er
y

(i
.e

.,
a

st
ri

ng
fo

rm
ul

at
ed

m
an

ua
lly

or
au

to
m

at
ic

al
ly

by
an

en
d

us
er

or
de

ve
lo

pe
r)

)

So
ur

ce
co

de
A

rg
oU

M
L

,
Ja

bR
ef

,j
E

di
t,

m
uC

om
m

an
de

r,
M

yl
yn

,R
hi

no

E
xp

lo
ra

tio
n

E
ff

ec
tiv

en
es

s
m

ea
su

re
R

ec
om

m
en

da
tio

n
fo

r
va

lu
es

of
L

D
A

hy
pe

rp
a-

ra
m

et
er

s
an

d
nu

m
be

r
of

to
p-

ic
s

co
ns

id
er

in
g

th
e

nu
m

be
r

of
do

cu
m

en
ts

us
ed

Po
sh

yv
an

yk
et

al
.(

20
12

)
D

oc
um

en
ta

tio
n

L
SI

-b
as

ed
te

ch
ni

qu
e

(s
et

-
tin

gs
te

st
ed

:
nu

m
be

r
of

do
cu

m
en

ts
,

nu
m

be
r

of
at

tr
ib

ut
es

,
st

em
m

in
g

of
co

rp
us

an
d

qu
er

ie
s)

So
ur

ce
co

de
A

rg
oU

M
L

,
Fr

ee
ne

t,
iB

at
is

,
JM

et
er

,M
yl

yn
an

d
R

hi
no

A
pp

pr
oa

ch
Pr

ec
is

io
n;

R
ec

al
l;

E
ff

ec
tiv

en
es

s;
M

in
im

al
br

ow
s-

in
g

ar
ea

(M
B

A
);

M
ax
im

um
po

s-
si
bl
e

pr
ec
is
io
n

ga
in

(M
P
G
)

C
on

fi
gu

ra
tio

n
se

tti
ng

s
fo

r
th

e
pr

op
os

ed
te

ch
-

ni
qu

e
ba

se
d

on
th

e
ch

ar
ac

-
te

ri
st

ic
s

of
th

e
co

rp
or

a
us

ed

C
he

n
et

al
.

(2
01

4)
B

ug
ha

nd
lin

g
A
R
-M

in
er

:
E

xp
ec

ta
tio

n
M

ax
im

iz
at

io
n

fo
r

N
ai

ve
B

ay
es

(E
M

N
B

)
+

L
D

A
;

E
M

N
B

+
A

SU
M

E
nd

us
er

co
m

-
m

un
ic

at
io

n
A

pp
s

Sw
if

tK
ey

K
ey

bo
ar

d,
Fa

ce
bo

ok
,

Te
m

pl
e

R
un

2,
Ta

p
Fi

sh

A
pr

oa
ch

Pr
ec

is
io

n;
R

ec
al

l;
F-

m
ea

su
re

;
N
D
C
G

E
M

N
B

+
L

D
A

Fo
w

ke
s

et
al

.
(2

01
6)

C
od

in
g

T
A
SS

A
L

+
L

D
A

;
T
A
S-

SA
L

+
V

SM
So

ur
ce

co
de

Si
x

op
en

so
ur

ce
Ja

va
pr

oj
ec

ts
A

pp
ro

ac
h

A
re

a
U

nd
er

th
e

C
ur

ve
(A

U
C

)
T
A
SS

A
L

+
L

D
A

120 Page 32 of 62

Empir Software Eng (2021) 26: 120

modeling technique used in their approach (e.g., Thomas et al. 2014). All newly proposed
approaches were the best performing ones according to the metrics used.

In addition to the papers mentioned in Tables 11 and 12, four papers compared the
performance of different settings for a topic modeling technique or tested which topic mod-
eling technique works best in their newly proposed approach (see Table 13). Biggers et al.
(2014) offered specific recommendations for configuring LDA when localizing features in
Java source code, and observed that certain configurations outperform others. For example,
they found that commonly used heuristics for selecting LDA hyperparameter values (beta

= 0.01 or beta = 0.1) in source code topic modeling are not optimal (similar to what has
been found by others, see Section 3.2). The other three papers (Chen et al. 2014; Fowkes
et al. 2016; Poshyvanyk et al. 2012) developed approaches which were tested with different
settings (e.g., the approach applying LDA or ASUM (Chen et al. 2014)).

Regarding the datasets used by comparative studies, only Rao and Kak (2011) used a
benchmarking dataset (iBUGS). Most of the comparative studies (13 out of 24) used source
code or issue/bug reports from open source software, which are subject to evolution. The
advantage of using benchmarking datasets rather than “living” datasets (e.g., an open source
Java system) is that its data will be static and the same across studies. Additionally, data in
benchmarking datasets are usually curated. This means that the results of replicating studies
can be compared to the original study when both used the same benchmarking dataset.

Finally, we highlight that each of the above mentioned comparisons has a specific
context. This means that, for example, the type of data analyzed (e.g., Java classes), the
parameter setting (e.g., k = 50), the goal of the comparison (e.g., to select the best model for
bug localization or for tracing documentation in source code) and pre-processing (e.g., stem-
ming and stop word removal) were different. Therefore, it is not possible to “synthesize”
the results from the comparisons across studies by aggregating the different comparisons
in different papers, even for studies that appear to have similar goals or use the same topic
modeling techniques, such as comparing the same models with similar types of data (such
as Tantithamthavorn et al. 2018 and Abdellatif et al. 2019).

6.2 RQ2: Inputs to Topic Models

6.2.1 Summary of Findings

Source code, developer communication and issue/bug reports were the most frequent types
of data used for topic modeling in the reviewed papers. Consequently, most of the docu-
ments referred to individual or groups of functions or methods, individual Q&A posts, or
individual bug reports; another frequent document was an individual user review (more dis-
cussions are in Section 6.2.3). We also found that few papers (16 out of 111) mentioned the
actual length of documents used for topic modeling (we discuss this more in Section 6.2.2).

Regarding modeling parameters, most of the papers (93 out of 111) explicitly mentioned
the configuration of at least one parameter, e.g., k, α or β for LDA. We observed that the
setting α = 50/k and β = 0.01 (asymmetric α and symmetric β) as suggested by Steyvers
and Griffiths (2010) and Wallach et al. (2009) was frequently used (28 out of 93 papers).
Additionally, papers that applied LDA mostly used the default parameters of the tools used
to implement LDA (e.g., Mallet 3 with α = 50/k and β = 0.01 as default). This find-
ing is similar to what has been reported by others, e.g., according to another review by
Agrawal et al. (2018), LDA is frequently applied “as is out-of-the-box” or with little tuning.
This means that studies may rely on the default settings of the tools used with their topic
modeling technique, such as Mallet and TMT, rather than try to optimize parameters.

Page 33 of 62 120

Empir Software Eng (2021) 26: 120

6.2.2 Documents and Parameters for Topic Models

Short texts: According to Lin et al. (2014), topic models such as LDA have been widely
adopted and successfully used with traditional media like edited magazine articles. How-
ever, applying LDA to informal communication text such as tweets, comments on blog
posts, instant messaging, Q&A posts, may be less successful. Their user-generated content
is characterized by very short document length, a large vocabulary and a potentially broad
range of topics. As a consequence, there are not enough words in a document to create
meaningful clusters, compromising the performance of the topic modeling. This means that
probabilistic topic models such as LDA perform sub-optimally when applied “as is” with
short documents even when hyperparameters (α and β in LDA) are optimized (Lin et al.
2014). In our sample there were only two papers that mentioned the use of a LDA-based
technique specifically for short documents (Hu et al. 2019; Hu et al. 2018). Hu et al. (2019)
and Hu et al. (2018) applied Twitter-LDA with end user reviews. Furthermore, Moslehi
et al. (2018) used a weighting algorithm in documents to generate topics with more relevant
words, they also acknowledge that the use of a short text technique could have improved
their topic model.

As shown in Table 7, few papers mentioned the actual length of documents. Considering
a single document from a corpus, we observed that most papers potentially used short texts
(all documents found in papers are shown in Fig. 3). For example, papers used an individual
search query (Xia et al. 2017a), an individual Q&A post (Barua et al. 2014), an individual
user review (Nayebi et al. 2018), or an individual commit message (Canfora et al. 2014)
as a document. Among the papers that mentioned document length, the shortest documents
were an individual commit message (9 to 20 words) (Canfora et al. 2014) and an individual
method (14 words) (Tantithamthavorn et al. 2018). Both studies applied LDA.

Two approaches to improve the performance of LDA when analyzing short documents
are pooling and contextualization (Lin et al. 2014). Pooling refers to aggregating similar
(e.g., semantically or temporally) documents into a single document (Mehrotra et al. 2013).
For example, among the papers analysed, Pettinato et al. (2019) used temporal pooling and
combined short log messages into a single document based on a temporal order. Contextu-
alization refers to creating subsets of documents according to a type of context; considering
tweets as documents, the type of context can refer to time, user and hashtags associated
with tweets (Tang et al. 2013). For example, Weng et al. (2010) combined all the indi-
vidual tweets of an author into one pseudo-document (rather than treating each tweet as
a document). Therefore, with the contextualization approach, the topic model uses word
co-occurrences at a context level instead of at the document level to discover topics.

Hyperparameters Table 14 shows the hyperparameter settings and types of data of the
papers that mentioned the value of at least one model parameter. In Table 14 we also high-
light the topic modeling techniques used. Note that some topic modeling techniques (e.g.,
RTM) can receive more parameters that the ones mentioned in Table 14 (e.g., number of
documents, similarity thresholds); all parameters mentioned in papers are available online
in the raw data of our study 1. When comparing hyperparameter settings, topic modeling
techniques and types of data, we observed the following:

– Papers that used LDA-GA, an LDA-based technique that optimizes hyperparameters with
Genetic algorithms, applied it to data from developer documentation or source code;

120 Page 34 of 62

Empir Software Eng (2021) 26: 120

Table 14 Number of papers by type of data and hyperparameter settings

Types of Data α based on k Fixed α and β Varying α or β Optimized
parameters

Commit messages DPLSA: 1 LDA: 1 – –

Semi-supervised LDA: 1 RTM: 1

Developer communication LDA: 8 LDA: 3 – –

LLDA; L2H: 1

End user communication LDA: 1 LDA: 1 – –

LDA; ASUM: 1

LLDA: 1

AOLDA: 1

Issue/bug report LDA: 3 LDA: 3 LDA: 1 –

LDA; LSI: 1 RTM: 1 MLE-LDA: 1

DPLSA: 1 LDA; LLDA: 1

MTM: 1

Log information LDA: 2 – – –

Search query – LDA: 2 – –

End user documentation LDA: 3 LDA: 3 LDA: 1 –

Developer documentation – DAT–LDA: 1 – LDA–GA: 1

Source code LDA: 6 LDA: 3 LDA: 2 LDA–GA: 2

LDA; LSI: 1 BugScout: 1 MLE–LDA: 1

RTM: 3 QL–LDA; LSI: 2

LDA; LSI: 1

“Lessons learned” – – – –

Transcript LDA: 3 – – –

URL content – LDA: 1 – –

– LDA was used with all three types of hyperparameter settings across studies. The most
common setting was α based on k for developer communication and source code;

– Most of the LDA-based techniques applied fixed values for α and β.

Most of the papers that applied only LSI as the topic modeling technique did not mention
hyperparameters. As LSI is a model simpler than LDA, it generally requires the num-
ber of topics k. For example, a paper that applied LSI to source code mentioned α and
k (Poshyvanyk et al. 2012).

Number of topics By relating the type of data to the number of topics, we aimed at finding
whether the choice of the number of topics is related to the data used in the topic modeling
techniques (see also Table 7). However, the number of topics used and data in the studies are
rather diverse. Therefore, synthesizing practices and offering insights from previous studies
on how to choose the number topics is rather limited.

From the 90 papers that mentioned number of topics (k), we found that 66 papers selected
a specific number of topics (e.g., based on previous works with similar data or addressing

Page 35 of 62 120

Empir Software Eng (2021) 26: 120

the same task), while 24 papers used several numbers of topics (e.g., Yan et al. (2016b)
used 10 to 120 topics in steps of 10). To provide an example of how the number of topics
differed even when the same type of data was analyzed with the same topic modeling tech-
nique, we looked at studies that applied LDA in textual data from developer communication
(mostly Q&A posts) to propose an approach to support documentation. For these papers
we found one paper that did not mention k (Henß et al. 2012), one paper that modeled dif-
ferent numbers of topics (k = 10, 20, 30) (Asuncion et al. 2010), one paper that modeled
k = 15 (Souza et al. 2019) and another paper that modeled k = 40 (Wang et al. 2015). This
illustrates that there is no common or recommended practice that can be derived from the
papers.

Some papers mentioned that they tested several numbers of topics before selecting the
most appropriate value for k (in regards to studies’ goals) but did not mention the range
of values tested. In regards to papers that mentioned such range, we identified four stud-
ies (Nayebi et al. 2018; Chen et al. 2014; Layman et al. 2016; Nabli et al. 2018) that tested
several values for k and used perplexity (see details in Appendix A.2 - Metrics Used in
Comparative Studies) of models to evaluate which value of k generated the best performing
model; three studies (Zhao et al. 2020; Han et al. 2020; El Zarif et al. 2020) also selected
the number of topics after testing several values for k; however they used topic coher-
ence (Röder et al. 2015) to evaluate models. One paper (Haque and Ali Babar 2020) used
both perplexity and topic coherence to select a value for k. Metrics of topic coherence score
the probability of a pair of words from the resulted word clusters being found together in
(a) external data sources (e.g., Wikipedia pages) or (b) in the documents used by the topic
model that generated those word clusters (Röder et al. 2015).

6.2.3 Supported Tasks, Types of Data and Types of Contribution

We looked into the relationship between the tasks supported by papers, the type of data used
and the types of contributions (see Table 15). We observed the following:

– Source code was a frequent type of data in papers; consequently it appeared for almost
all supported tasks, except for exploratory studies;

– Considering exploratory studies, most papers used developer communication (13 out of
21), followed by search queries and end user communication (three papers each);

– Papers that supported bug handling mostly used issue/bug reports, source code and end
user communication;

– Log information was used by papers that supported maintenance, bug handling, and
coding;

– Considering the papers that supported documentation, three used transcript texts from
speech;

– From the four papers related to the type of data developer documentation, two supported
architecting tasks and the other two, documentation tasks.

– Regarding the type of data, URLs and transcripts were only used in studies that
contributed an approach.

We found that most of the exploratory studies used data that is less structured. For exam-
ple, developer communication, such as Q&A posts and conversation threads generally do
not follow a standardized template. On the other hand, issue reports are typically submitted
through forms which enforces a certain structure.

120 Page 36 of 62

Empir Software Eng (2021) 26: 120

Ta
bl
e
15

N
um

be
r

of
pa

pe
rs

by
ty

pe
s

of
da

ta
an

d
su

pp
or

te
d

ta
sk

s

Su
pp

or
te

d
Ta

sk
s

Ty
pe

s
of

da
ta

A
rc

hi
te

ct
in

g
B

ug
ha

nd
lin

g
C

od
in

g
D

oc
um

en
ta

tio
n

M
ai

nt
en

an
ce

R
ef

ac
to

ri
ng

R
eq

ui
re

m
en

ts
Te

st
in

g
E

xp
lo

ra
to

ry
st

ud
ie

s

C
om

m
it

m
es

sa
ge

s
E

xp
lo

ra
tio

n:
1

A
pp

ro
ac

h:
3

E
xp

lo
-

ra
tio

n
[C

]:
1

–
A

pp
ro

ac
h:

1
E

xp
lo

-
ra

tio
n

[C
]:

1
A

pp
ro

ac
h:

1
E

xp
lo

ra
tio

n:
1

–
–

E
xp

lo
ra

tio
n:

1

D
ev

el
op

er
co

m
-

m
un

ic
at

io
n

–
A

pp
ro

ac
h:

1
–

A
pp

ro
ac

h:
5

A
pp

ro
ac

h:
1

–
–

–
E

xp
lo

ra
tio

n:
13

E
nd

us
er

co
m

-
m

un
ic

at
io

n
–

A
pp

ro
ac

h:
4

E
xp

lo
ra

tio
n:

2
–

–
A

pp
ro

ac
h:

1
E

xp
lo

ra
tio

n:
1

–
A

pp
ro

ac
h:

1
–

E
xp

lo
ra

tio
n:

3

Is
su

e/
bu

g
re

po
rt

E
xp

lo
ra

tio
n:

1
E

xp
lo

ra
tio

n
[C

]:
1

A
pp

ro
ac

h:
6

E
xp

lo
-

ra
tio

n:
2

A
pp

ro
ac

h
[C

]:
5

E
xp

lo
ra

tio
n

[C
]:

2

–
A

pp
ro

ac
h:

2
E

xp
lo

ra
tio

n
[C

]:
1

E
xp

lo
ra

tio
n

[C
]:

1
–

–
–

E
xp

lo
ra

tio
n:

1

L
og

in
fo

rm
at

io
n

–
A

pp
ro

ac
h:

1
A

pp
ro

ac
h:

1
–

A
pp

ro
ac

h:
1

E
xp

lo
ra

tio
n:

1
E

xp
lo

ra
tio

n
[C

]:
1

–
–

–
–

Se
ar

ch
qu

er
y

–
–

–
A

pp
ro

ac
h:

1
–

–
–

–
E

xp
lo

ra
tio

n:
3

E
nd

us
er

do
cu

-
m

en
ta

tio
n

A
pp

ro
ac

h:
2

A
pp

ro
ac

h
[C

]:
1

E
xp

lo
ra

tio
n:

1
A

pp
ro

ac
h

[C
]:

1

E
xp

lo
ra

tio
n:

1
A

pp
ro

ac
h:

4
A

pp
ro

ac
h:

1
–

A
pp

ro
ac

h
[C

]:
1

A
pp

ro
ac

h:
1

E
xp

lo
ra

tio
n:

2

D
ev

el
op

er
do

cu
m

en
ta

tio
n

A
pp

ro
ac

h:
1

A
pp

ro
ac

h
[C

]:
1

–
–

A
pp

ro
ac

h:
2

–
–

–
–

–

So
ur

ce
co

de
A

pp
ro

ac
h:

2
E

xp
lo

ra
tio

n:
2

A
pp

ro
ac

h:
4

E
xp

lo
-

ra
tio

n:
2

A
pp

ro
ac

h
[C

]:
1

E
xp

lo
ra

tio
n

[C
]:

3

A
pp

ro
ac

h:
2

E
xp

lo
ra

tio
n:

1
A

pp
ro

ac
h

[C
]:

1

A
pp

ro
ac

h:
5

E
xp

lo
ra

tio
n

[C
]:

3

A
pp

ro
ac

h:
1

E
xp

lo
ra

tio
n:

3
A

pp
ro

ac
h:

2
A

pp
ro

ac
h:

1
A

pp
ro

ac
h

[C
]:

1

A
pp

ro
ac

h
[C

]:
1

E
xp

lo
ra

tio
n

[C
]:

1

–

“L
es

so
ns

le
ar

ne
d”

–
–

–
–

E
xp

lo
ra

tio
n

[C
]:

1
–

–
–

–

T
ra

ns
cr

ip
t

–
–

–
A

pp
ro

ac
h:

3
–

–
–

–
–

U
R

L
co

nt
en

t
A

pp
ro

ac
h:

1
–

–
–

–
–

–
–

–

[C
] St

ud
ie

s
th

at
al

so
co

nt
ri

bu
te

d
w

ith
a

C
om

pa
ri

so
n

Page 37 of 62 120

Empir Software Eng (2021) 26: 120

6.3 RQ3: Data Pre-processing

6.3.1 Summary of Findings

Most of the papers (91 out of 111) pre-processed the textual data before topic modeling.
Removing noisy content was the most frequent pre-processing step (as typical for natu-
ral language processing), followed by stemming and splitting words. Miner et al. (2012)
consider tokenizing as one of the basic data pre-processing steps in text mining. However,
in comparison to other basic pre-processing steps such as stemming, splitting words and
removing noise, tokenizing was not frequently found in papers (it was at least not mentioned
in papers).

Eight papers (Henß et al. 2012; Xia et al. 2017b; Ahasanuzzaman et al. 2019; Abdel-
latif et al. 2019; Lukins et al. 2010; Tantithamthavorn et al. 2018; Poshyvanyk et al. 2012;
Binkley et al. 2015) tested how pre-processing steps affected the performance of topic
modeling or topic model-based approaches. For example, Henß et al. (2012) tested several
pre-processing steps (e.g., removing stop words, long paragraphs and punctuation) in e-mail
conversations analyzed with LDA. They found that removing such content increased LDA’s
capability to grasp the actual semantics of software mailing lists. Ahasanuzzaman et al.
(2019) proposed an approach which applies LDA and Conditional Random Field (CRF) to
localize concerns in Stack Overflow posts. The authors did not incorporate stemming and
stop words removal in their approach because in preliminary tests these pre-processing steps
decreased the performance of the approach.

6.3.2 Pre-processing Different Types of Data

Table 16 shows how different types of data were pre-processed. We observed that stemming,
removing noise, lowercasing, and splitting words were commonly used for all types of data.
Regarding the differences, we observed the following:

– For developer communication there were specific types of noisy content that was
removed: URLs, HTML tags and code snippets. This might have happened because
most of the papers used Q&A posts as documents, which frequently contain hyperlinks
and code examples;

– Removing non-informative content was frequently applied to end user communication
and end user documentation;

– Expanding contracted terms (e.g., “didn’t” to “did not”) were applied to end user
communication and issue/bug reports;

– Removing empty documents and eliminating extra white spaces were applied only in
end user communication. Empty documents occurred in this type of data because after
the removal of stop words no content was left (Chen et al. 2014);

– For source code there was a specific noise to be removed: program language specific
keywords (e.g., “public”, “class”, “extends”, “if”, and “while”).

Table 16 shows that splitting words, stop words removal and stemming were frequently
applied to source code and most of these studies (15) applied these three steps at the same
time. Studies that performed these pre-processing steps to source code mostly used methods,
classes, or comments in classes/methods as documents. For example, Silva et al. (2016) who
applied LDA, performed these three pre-processing steps in classes from two open source
systems using TopicXP (Savage et al. 2010). TopicXP is a Eclipse plug-in that extracts

120 Page 38 of 62

Empir Software Eng (2021) 26: 120

Ta
bl
e
16

N
um

be
r

of
pa

pe
rs

by
ty

pe
of

da
ta

an
d

pr
e-

pr
oc

es
si

ng
st

ep
s

Ty
pe

of
da

ta

Pr
e-

pr
oc

es
si

ng
st

ep
s

C
om

m
it

m
es

sa
ge

s
D

ev
el

op
er

co
m

m
un

i-
ca

tio
n

D
ev

el
op

er
do

cu
m

en
ta

-
tio

n

E
nd

us
er

co
m

m
un

i-
ca

tio
n

E
nd

us
er

do
cu

m
en

ta
-

tio
n

Is
su

e/
bu

g
re

po
rt

“L
es

so
ns

le
ar

ne
d”

L
og

in
fo

rm
at

io
n

Se
ar

ch
qu

er
y

So
ur

ce
co

de
T

ra
ns

cr
ip

t
U

R
L

co
nt

en
t

R
es

ol
vi

ng
ne

ga
tio

ns
0

0
0

2
1

0
0

0
0

0
0

0

C
or

re
ct

in
g

ty
po

s
0

0
0

6
1

1
0

0
0

0
0

0

E
xp

an
di

ng
co

nt
ra

ct
io

ns
0

0
0

2
0

1
0

0
0

0
0

0

R
es

ol
vi

ng
sy

no
ny

m
s

1
0

0
2

1
0

0
0

0
1

0
0

Sp
lit

tin
g

se
nt

en
ce

s
or

a
do

cu
-

m
en

ti
nt

o
n

do
cu

m
en

ts
3

1
0

1
3

3
0

0
0

1
0

0

L
em

m
at

iz
in

g
1

2
0

5
1

1
0

0
0

2
0

0

Id
en

tif
yi

ng
n-

gr
am

s
0

3
0

2
0

0
0

0
0

1
0

0

L
ow

er
ca

si
ng

1
1

0
5

1
3

0
2

1
5

1
1

To
ke

ni
zi

ng
1

1
0

2
2

5
0

2
1

4
0

0

Sp
lit

tin
g

w
or

ds
4

0
0

0
2

8
0

0
2

24
1

0

St
em

m
in

g
5

8
3

9
8

14
1

1
1

21
2

1

R
em

ov
in

g
em

pt
y

do
cu

m
en

ts
0

0
0

1
0

0
0

0
0

0
0

0

R
em

ov
in

g
lo

ng
pa

ra
gr

ap
hs

0
1

0
0

0
0

0
0

0
0

0
0

R
em

ov
in

g
sh

or
td

oc
um

en
ts

0
0

0
1

1
0

0
0

0
0

0
0

R
em

ov
in

g
ex

tr
a

w
hi

te
sp

ac
e

0
0

0
1

0
0

0
0

0
0

0
0

R
em

ov
in

g
no

n-
in

fo
rm

at
iv

e
co

nt
en

t
1

1
0

4
4

2
0

0
0

1
0

0

R
em

ov
in

g
w

or
ds

sh
or

te
r

th
an

fo
ur

,t
hr

ee
or

tw
o

le
tte

rs
0

0
0

1
0

1
0

1
0

1
0

0

R
em

ov
in

g
le

as
tf

re
qu

en
tt

er
m

s
0

2
0

2
1

2
0

0
0

1
0

0

R
em

ov
in

g
m

os
tf

re
qu

en
tt

er
m

s
0

2
0

2
1

0
0

0
0

3
0

0

R
em

ov
in

g
co

de
sn

ip
pe

ts
1

7
0

0
0

0
0

0
1

1
0

0

R
em

ov
in

g
H

T
M

L
ta

gs
1

6
0

0
2

1
0

0
0

0
0

0

Page 39 of 62 120

Empir Software Eng (2021) 26: 120

Ta
bl
e
16

(c
on

tin
ue

d)

Ty
pe

of
da

ta

Pr
e-

pr
oc

es
si

ng
st

ep
s

C
om

m
it

m
es

sa
ge

s
D

ev
el

op
er

co
m

m
un

i-
ca

tio
n

D
ev

el
op

er
do

cu
m

en
ta

-
tio

n

E
nd

us
er

co
m

m
un

i-
ca

tio
n

E
nd

us
er

do
cu

m
en

ta
-

tio
n

Is
su

e/
bu

g
re

po
rt

“L
es

so
ns

le
ar

ne
d”

L
og

in
fo

rm
at

io
n

Se
ar

ch
qu

er
y

So
ur

ce
co

de
T

ra
ns

cr
ip

t
U

R
L

co
nt

en
t

R
em

ov
in

g
pr

og
ra

m
m

in
g

la
n-

gu
ag

e
ke

yw
or

ds
1

3
0

0
0

4
0

0
1

19
0

0

R
em

ov
in

g
sy

m
bo

ls
an

d
sp

e-
ci

al
ch

ar
ac

te
rs

2
3

0
2

2
3

0
0

2
6

2
1

R
em

ov
in

g
pu

nc
tu

at
io

n
2

4
0

2
3

4
0

2
0

5
2

1

R
em

ov
in

g
st

op
w

or
ds

6
16

2
10

8
15

1
3

0
23

2
1

R
em

ov
e

U
R

L
1

4
0

0
1

0
0

0
0

0
0

0

R
em

ov
e

nu
m

be
rs

1
4

0
1

3
4

0
1

0
5

2
0

120 Page 40 of 62

Empir Software Eng (2021) 26: 120

source code, pre-process it and executes LDA. This plug-in implements splitting words,
stop words removal and stemming.

Splitting words was the most frequent pre-processing step in source code. Studies used
this step to separate Camel Cases in methods and classes (e.g., the class constructor
InvalidRequestTest produces the terms “invalid”, “request” and “test”). For example, Tan-
tithamthavorn et al. (2018) compared LDA, LSI and VSM testing different combinations
of pre-processing steps to the methods’ identifiers inputted to these techniques. The best
performing approach was VSM with splitting words, stop words removal and stemming.

Removing stop words in source code refer to the exclusion of the most common words
in a language (e.g., “a/an” and “the” in English), as in studies that used other types of
data. Removing stop words in source code is also different from removing programming
language keywords and studies mentioned these as separate steps. Lukins et al. (2010), for
example, tested how removing stop words from their documents (comments and identifiers
of methods) affected the topics generated by their LDA-based approach. They found that
this step did not improve the results substantially.

As mentioned in Section 5.4, stemming is the process of normalizing words into their
single forms by identifying and removing prefixes, suffixes and pluralisation (e.g., “devel-
opment”, “developer”, “developing” become “develop”). Regarding stemming in source
code, papers normalized identifiers of classes and methods, comments related to classes and
methods, test cases or a source code file. Three papers tested the effect of this pre-processing
step in the performance of their techniques (Tantithamthavorn et al. 2018; Poshyvanyk et al.
2012; Binkley et al. 2015), and one of these papers also tested removing stop words and
splitting words (Tantithamthavorn et al. 2018). Poshyvanyk et al. (2012) tested the effect of
stemming classes in the performance of their LSI-based approach. The authors concluded
that stemming can positively impact features localization by producing topics (“concept
lattices” in their study) that effectively organize the results of searches in source code. Bink-
ley et al. (2015) compared the performance of LSI, QL-LDA and other techniques. They
also tested the effects of stemming (with two different stemmers: Porter 9 and Krovetz 10)
and non-stemming methods from five open source systems. These authors found that they
obtained better performances in terms of models’ Mean Reciprocal Rank (MRR, details in
Appendix A.2 - Metrics Used in Comparative Studies) with non-stemming.

Additionally, we found that even though some papers used the same type of data, they
pre-processed data differently since they had different goals and applied different tech-
niques. For example, Ye et al. (2017), Barua et al. (2014) and Chen et al. (2019) used
developer communication (Q&A posts as documents). Ye et al. (2017) and Barua et al.
(2014) removed stop words, code snippets and HTML tags, while Barua et al. (2014)
also stemmed words. On the other hand, Chen et al. (2019) removed stop words and the
least and the most frequent words, and identified bi-grams. Some studies considered the
advice on data pre-processing from previous studies (e.g., Chen et al. 2017; Li et al. 2018),
while others adopted steps that are commonly used in NLP, such as noise removal and
stemming (Miner et al. 2012) (e.g., Demissie et al. 2020). This means that the choice of
pre-processing steps do not only depend on the characteristics of the type of data inputted
to topic modeling techniques.

9https://tartarus.org/martin/PorterStemmer/
10https://pypi.org/project/krovetz/

Page 41 of 62 120

https://tartarus.org/martin/PorterStemmer/
https://pypi.org/project/krovetz/

Empir Software Eng (2021) 26: 120

6.4 RQ4: Assigning Names to Topics

Most papers did not mention if or how they named topics. The majority of papers that
explicitly assigned names to topics (27 out of 36) used a manual approach and relied on
human judgment (researchers’ interpretation) of words in clusters. One paper (Rosen and
Shihab 2016) justified their use of a manual approach by arguing that there was no tool
that could give human readable topics based on word clusters. Thus, authors checked every
word cluster generated and the documents used (an individual question of a Q&A website)
to make sure they would label topics appropriately.

Table 17 shows how topics were named and the type of data analyzed. Table 18 shows
how topics were named and the type of contributions they make. We observed the following:

– Studies that modeled topics from developer documentation, transcripts and URLs
did not mention topic naming. Studies that contributed with both exploration and
comparison also did not mention topic naming;

– Topics were mostly named in studies that used data from developer communication (ten
occurrences) and in exploratory studies (22 occurrences).

– From studies that compared topic models or topic modeling-based approaches (see
Section 6.1.2), only one study (Yan et al. 2016b) named topics (automatically with
predefined labels).

Fourteen papers acknowledged limitations of manual topic naming:

– Twelve papers (Bagherzadeh and Khatchadourian 2019; Ahmed and Bagherzadeh
2018; Martin et al. 2015; Hindle et al. 2013; Pagano and Maalej 2013; Zou et al. 2017;
Pettinato et al. 2019; Layman et al. 2016; Ray et al. 2014; Tiarks and Maalej 2014;
Mezouar et al. 2018; Abdellatif et al. 2020) acknowledged that how topics were named
could be a threat to validity. For example, Layman et al. (2016) mentioned that they
did not evaluate the accuracy of the manual topic naming, which was based on their
expertise.

– Three papers (Hindle et al. 2015; Bajracharya and Lopes 2012; Li et al. 2018) men-
tioned difficulties to assign names to topics. Hindle et al. (2015), for example, explained

Table 17 Number of papers by topic naming procedure and types of data

Topic naming procedure

Types of data Based on word clusters Most frequent words Predefined names

Commit messages Manual: 1 – Automated: 2

Automated & Manual: 1

Developer communication Manual: 9 Automated: 1 Automated: 1 Manual: 1

End user communication Manual: 2 Manual: 1 Automated: 2 Manual: 1

End user documentation Manual: 5 – –

Issue/bug report Manual: 3 – Automated: 1

Automated & Manual: 1

Log information Manual: 1 – –

Search query Manual: 1 – Manual: 1

Source code – Automated: 1 Manual: 1 Manual: 1

120 Page 42 of 62

Empir Software Eng (2021) 26: 120

Table 18 Number of papers by topic naming procedure and types of contribution

Topic naming procedure

Types of contribution Based on word clusters Most frequent words Predefined names

Approach Manual: 5 Automated: 1 Manual: 1 Automated: 4

Automated & Manual: 2

Approach & Comparison – – Automated: 1

Exploration Manual: 16 Manual: 1 Automated: 1

Manual: 4

that labeling topics was difficult due to many project specific and unclear terms in
clusters.

– One paper (Pettinato et al. 2019) acknowledged that there is another topic naming
approach that could be applied to their data: authors acknowledged that an automated
extraction of topic names could replace manual labeling.

Hindle et al. (2015) provided some recommendations on topic analysis in software engi-
neering based on their experiences. Below are some of their recommendations related to
topic naming:

– Some of the generated topics will not be relevant (e.g., clusters filled with common
terms may not address any particular subject) and topics may be duplicated. This means
that not all topics have to be named and used for analysis;

– Domain experts can label topics better than non-experts, because they are more familiar
to domain-specific keywords that may appear in word clusters;

– It is important to rely on the relationship between topics generated and the original data.
Hindle et al. (2015) argued that “the content of the topic can be interpreted in many
different ways and LDA does not look for the same patterns that people do”.

6.5 Implications

The goal of this study was to describe how topic modeling is applied in software engineering
research. We found studies that experimented, explored data, or proposed solutions to sup-
port different software engineering tasks with topic models. Our findings help researchers
and practitioners as follows:

– Understand which topic modeling techniques to use for what purpose. Researchers
and practitioners that are going to select and apply a topic modeling technique, for
example, to refactor legacy systems; may consider the experiences of other studies with
similar objectives.

– Pre-processing based on the type of data to be modeled. Pre-processing steps depend
on the type of data analyzed (e.g., removing HTML tags in developer communication,
mainly Q&A posts). Researchers and practitioners who, for example, intend to model
topics from source code; may consider the same pre-processing steps that other studies
applied to source code.

– Understand how to name topics. Researchers and practitioners may check how other
studies named topics to get insights on how to give meaning to their own topics.

Page 43 of 62 120

Empir Software Eng (2021) 26: 120

We present some additional insights:

– Appropriateness of topic modeling. Although we found that most of papers applied
LDA “as is”, it may not be the best approach for other studies or for practical appli-
cation. LDA is popular because it is an unsupervised model, i.e., it does not require
previous knowledge about the data (e.g., pre-defined classes for model training), it
is statistically more rigorous than other techniques (e.g., LSI), and it discovers latent
relationships (i.e., topics) between documents in a large textual corpus (Griffiths and
Steyvers 2004). However, LDA is an unstable and non-deterministic model. This means
that generated topics cannot be replicated by others, even if the same model inputs (data
pre-processing and configuration of parameters) are used. Furthermore, LDA performs
poorly with short documents (Lin et al. 2014).

– Meaningful topics. Topic models should discover semantically meaningful topics.
Chang et al. (2009) argue about the importance of the interpretability of topics gener-
ated by probabilistic topic modeling techniques such as LDA. To create meaningful and
replicable topics with LDA, Mantyla et al. (2018) highlight the importance of stabiliz-
ing the topic model (e.g., through tuning (Agrawal et al. 2018)) and advocate the use of
stability metrics (e.g., rank-biased overlap - RBO (Mantyla et al. 2018)).

– Research opportunities. Researchers interested in investigating topic modeling in soft-
ware engineering may consider developing guidelines for researchers on how to use
topic modeling, depending on the type of data, goals, etc. Further studies may also
explore issues related to approaches for naming topics (e.g., based on domain experts),
on the evaluation of the semantic accuracy of topics generated (e.g., how meaningful
the topics are and if the context of document have to be considered), and on metrics
to measure the performance of topic models supporting different software engineering
tasks.

6.6 Threats to Validity

We analysed the validity threats to our study considering four types of threats to validity in
systematic literature mapping studies (Petersen et al. 2015):

Theoretical validity This threat to validity refers to concerns related to capturing the data
as intended, i.e., bias and limitations in the data selection and extraction. As we focused on
the practice of topic modeling in software engineering, we restricted the search to highly
ranked software engineering venues, which generally publish more mature studies. We used
“topic model”, “topic model[l]ing”, “lsi”, “lda”, “plsi”, “latent dirichlet allocation”, “latent
semantic” as search keywords to find all papers related to topic modeling. To select papers
to the survey, we established inclusion and exclusion criteria. One author selected the papers
and the others checked whether the selection criteria were applied appropriately. Further-
more, to minimize this threat in relation to data extraction, we first defined the data items
(details are in Table 2) to be extracted from papers and the relevance of the data for each
research question. Then, one author extracted the data and the others reviewed the results.
Controversial data results were discussed to reach agreement.

Descriptive validity In the context of a literature survey, descriptive validity refers to
bias and limitations in data synthesis and the accurate and objective description of the
data. To mitigate this threat, we described in detail how the data was synthesized (see
Section 4.3); furthermore, one of the authors synthesized the data and the others reviewed

120 Page 44 of 62

Empir Software Eng (2021) 26: 120

the results. Still, data and results depend on what is reported in papers which was some-
times incomplete, inconsistent or inaccurate (see for example information about document
length).

Interpretive validity This threat to validity refers to bias and limitations in the results of
the data analysis. We frequently reviewed the synthesized data during the data analysis and
the authors with more experience in this type of study checked the occurrence of inconsis-
tencies in results. Still, we recognize that interpretation bias may not have been removed
completely.

Repeatability This threat to validity concerns whether the study and its results can be repli-
cated. To reduce this threat, we described our search procedures in detail (Section 4), and
the processes of data selection, extraction and synthesis in detail. We also followed general
guidelines for systematic literature review as suggested by Kitchenham (2004) and mapping
study method as suggested by Petersen et al. (2015). Furthermore, raw data of our study are
available online 1.

7 Conclusions

We analyzed 111 papers that applied topic modeling. These papers were published in
the last twelve years (2009-2020) in ten highly ranked software engineering venues (five
conferences and five journals). Below we summarize our findings:

– LDA and LDA-based techniques are the most frequently used topic modeling tech-
niques;

– Topic modeling was mostly used to develop techniques for handling bugs (e.g., to pre-
dict defects). Exploratory studies that use topic modeling as a data analysis technique
were also frequent;

– Most papers modeled topics from source code (using methods as documents);
– Most papers used LDA “as is” and without adapting values of hyperparameters (α and

β);
– Most papers describe pre-processing. Some pre-processing steps depend on the type of

textual data used (e.g., removal of URL and HTML tags), while others are commonly
used in NLP techniques (e.g., stop words removal or stemming);

– Only 36 (out of 111) papers named the topics. When naming topics, papers mostly
adopted manual topic naming approaches such as deducting names (or labeling pre-
defined names) based on the meaning of frequent words in that topic.

By analysing topic modeling techniques, data inputs, data pre-processing, and how topics
were named, we identified characteristics and limitations in the use of topic models. Our
study can provide insights and references to researchers and practitioners to make the best
use of topic modeling, considering the experiences from previous studies.

Our study did not investigate all potential characteristics of topic modeling in software
engineering or compared topic models to other text mining techniques. To answer our
research questions, we analyzed data items shown in Table 2. Future studies may investi-
gate other characteristics of the use of topic modeling in software engineering, for example,
topic modeling tools or libraries (e.g., Mallet) used; the context of a specific supported
software engineering task; or compare topic modeling techniques to other text mining tech-
niques, such as clustering and summarization (e.g., sentence or document embeddings).

Page 45 of 62 120

Empir Software Eng (2021) 26: 120

Furthermore, future work can reflect on other fields or uses of topic modeling to contrast
how topic modeling is applied in software engineering. Further studies may also investigate
how papers evaluate the performance of their topic modeling techniques, how papers eval-
uate the the quality of the generated topics, and how exactly word clusters were used when
topics were not named.

Appendix A

A.1 Papers Reviewed

Year Venue Title Reference

2010 ICSE Software Traceability with Topic Modeling (Asuncion et al.
2010)

2017 ICSE An Unsupervised Approach for Discovering Relevant Tutorial
Fragments for APIs

(Jiang et al.
2017)

2013 ICSE How to Effectively Use Topic Models for Software Engineer-
ing Tasks? An Approach Based on Genetic Algorithms

(Panichella
et al. 2013)

2013 ICSE Analysis of User Comments: An Approach for Software
Requirements Evolution

(Galvis Carreno
and Winbladh
2012)

2014 ICSE AR-miner: Mining Informative Reviews for Developers from
Mobile App Marketplace

(Chen et al.
2014)

2012 ICSE Semi-automatically extracting FAQs to improve accessibility
of software development knowledge

(Henß et al.
2012)

2019 MSR Exploratory Study of Slack Q&A Chats as a Mining Source
for Software Engineering Tools

(Chatterjee
et al. 2019)

2014 MSR Mining Questions Asked by Web Developers (Bajaj et al.
2014)

2016 MSR Topic Modeling of NASA Space System Problem Reports:
Research in Practice

(Layman et al.
2016)

2013 MSR Using citation influence to predict software defects (Hu and Wong
2013)

2013 MSR Bug report assignee recommendation using activity profiles (Naguib et al.
2013)

2018 MSR Feature Location Using Crowd-Based Screencasts (Moslehi et al.
2018)

2016 MSR On Mining Crowd-Based Speech Documentation (Moslehi et al.
2016)

2015 MSR The App Sampling Problem for App Store Mining (Martin et al.
2015)

2009 MSR Mining search topics from a code search engine usage log (Bajracharya
and Lopes
2009)

2012 ASE Duplicate Bug Report Detection with a Combination of Infor-
mation Retrieval and Topic Modeling

(Nguyen et al.
2012)

2011 ASE A Topic-based Approach for Narrowing the Search Space of
Buggy Files from a Bug Report

(Nguyen et al.
2011)

120 Page 46 of 62

Empir Software Eng (2021) 26: 120

Year Venue Title Reference

2019 FSE Going Big: A Large-scale Study on What Big Data Developers
Ask

(Bagherzadeh
and
Khatchadourian
2019)

2017 FSE Bayesian Specification Learning for Finding API Usage Errors (Murali et al.
2017)

2013 MSR Bug report assignee recommendation using activity profiles (Naguib et al.
2013)

2018 MSR Feature Location Using Crowd-Based Screencasts (Moslehi et al.
2018)

2016 MSR On Mining Crowd-Based Speech Documentation (Moslehi et al.
2016)

2015 MSR The App Sampling Problem for App Store Mining (Martin et al.
2015)

2009 MSR Mining search topics from a code search engine usage log (Bajracharya
and Lopes
2009)

2012 ASE Duplicate Bug Report Detection with a Combination of Infor-
mation Retrieval and Topic Modeling

(Nguyen et al.
2012)

2011 ASE A Topic-based Approach for Narrowing the Search Space of
Buggy Files from a Bug Report

(Nguyen et al.
2011)

2019 FSE Going Big: A Large-scale Study on What Big Data Developers
Ask

(Bagherzadeh
and
Khatchadourian
2019)

2017 FSE Bayesian Specification Learning for Finding API Usage Errors (Murali et al.
2017)

2018 ESEM What Do Concurrency Developers Ask About?: A Large-scale
Study Using Stack Overflow

(Ahmed and
Bagherzadeh
2018)

2017 TSE Improving Automated Bug Triaging with Specialized Topic
Model

(Xia et al.
2017b)

2014 TSE Methodbook: Recommending move method refactorings via
relational topic models

(Bavota et al.
2014b)

2018 TSE Predicting Future Developer Behavior in the IDE Using Topic
Models

(Damevski
et al. 2018)

2013 EMSE Integrating information retrieval, execution and link analysis
algorithms to improve feature location in software

(Dit et al. 2013)

2013 EMSE Automated topic naming: supporting cross-project analysis of
software maintenance activities

(Hindle et al.
2013)

2017 EMSE What do developers search for on the web? (Xia et al.
2017a)

2013 EMSE How do open source communities blog? (Pagano and
Maalej 2013)

2014 EMSE How changes affect software entropy: an empirical study (Canfora et al.
2014)

2019 EMSE Towards prioritizing user-related issue reports of mobile appli-
cations

(Noei et al.
2019)

2019 EMSE CAPS: a supervised technique for classifying Stack Overflow
posts concerning API issues

(Ahasanuzzaman
et al. 2019)

Page 47 of 62 120

Empir Software Eng (2021) 26: 120

Year Venue Title Reference

2019 EMSE Studying the consistency of star ratings and reviews of popular
free hybrid Android and iOS apps

(Hu et al. 2019)

2015 EMSE Do topics make sense to managers and developers? (Hindle et al.
2015)

2017 EMSE Predicting the delay of issues with due dates in software
projects

(Choetkiertikul
et al. 2017)

2017 EMSE The structure and dynamics of knowledge network in domain-
specific Q&A sites: a case study of stack overflow

(Ye et al. 2017)

2012 EMSE Analyzing and mining a code search engine usage log (Bajracharya
and Lopes
2012)

2018 EMSE Studying software logging using topic models (Li et al. 2018)

2014 EMSE Static test case prioritization using topic models (Thomas et al.
2014)

2017 EMSE Will this localization tool be effective for this bug? Mitigating
the impact of unreliability of information retrieval based bug
localization tools

(Le et al. 2017)

2016 EMSE Analyzing and automatically labelling the types of user issues
that are raised in mobile app reviews

(McIlroy et al.
2016)

2014 EMSE What are developers talking about? An analysis of topics and
trends in Stack Overflow

(Barua et al.
2014)

2018 EMSE App store mining is not enough for app improvement (Nayebi et al.
2018)

2016 EMSE What are mobile developers asking about? A large scale study
using stack overflow

(Rosen and Shi-
hab 2016)

2018 EMSE Fusing multi-abstraction vector space models for concern
localization

(Zhang et al.
2018)

2014 TOSEM Improving Software Modularization via Automated Analysis
of Latent Topics and Dependencies

(Bavota et al.
2014a)

2019 TOSEM Recommending New Features from Mobile App Descriptions (Jiang et al.
2019)

2016 IST Combining lexical and structural information to reconstruct
software layers

(Belle et al.
2016)

2017 IST Towards comprehending the non-functional requirements
through Developers’ eyes: An exploration of Stack Overflow
using topic analysis

(Zou et al.
2017)

2015 IST MSR4SM: Using topic models to effectively mining software
repositories for software maintenance tasks

(Sun et al.
2015)

2019 IST Log mining to re-construct system behavior: An exploratory
study on a large telescope system

(Pettinato et al.
2019)

2017 IST Characterizing malicious Android apps by mining topic-
specific data flow signatures

(Yang et al.
2017)

2019 IST Automatic recall of software lessons learned for software
project managers

(Abdellatif
et al. 2019)

2010 IST Bug localization using latent Dirichlet allocation (Lukins et al.
2010)

2019 IST Bootstrapping cookbooks for APIs from crowd knowledge on
Stack Overflow

(Souza et al.
2019)

120 Page 48 of 62

Empir Software Eng (2021) 26: 120

Year Venue Title Reference

2017 IST Domain-aware Mashup service clustering based on LDA topic
model from multiple data sources

(Cao et al.
2017)

2018 IST The impact of IR-based classifier configuration on the perfor-
mance and the effort of method-level bug localization

(Tantithamthavorn
et al. 2018)

2016 IST A component recommender for bug reports using Discrimina-
tive Probability Latent Semantic Analysis

(Yan et al.
2016b)

2015 IST Automated classification of software change messages by
semi-supervised Latent Dirichlet Allocation

(Fu et al. 2015)

2017 JSS Mining domain knowledge from app descriptions (Liu et al. 2017)

2016 JSS Towards more accurate severity prediction and fixer recom-
mendation of software bugs

(Zhang et al.
2016)

2019 JSS Not all bugs are the same: Understanding, characterizing, and
classifying bug types

(Catolino et al.
2019)

2017 JSS Enhancing developer recommendation with supplementary
information via mining historical commits

(Sun et al.
2017)

2019 JSS Modeling stack overflow tags and topics as a hierarchy of
concepts

(Chen et al.
2019)

2017 JSS An exploratory study on the usage of common interface
elements in android applications

(Taba et al.
2017)

2017 JSS Topic-based software defect explanation (Chen et al.
2017)

2019 JSS Co-change patterns: A large scale empirical study (Silva et al.
2019)

2018 JSS Efficient cloud service discovery approach based on LDA
topic modeling

(Nabli et al.
2018)

2018 JSS Lascad: Language-agnostic software categorization and simi-
lar application detection

(Altarawy et al.
2018)

2016 JSS Automatically classifying software changes via discriminative
topic model: Supporting multi-category and cross-project

(Yan et al.
2016a)

2013 TOSEM Concept location using formal concept analysis and informa-
tion retrieval

(Poshyvanyk
et al. 2012)

2020 EMSE A feature location approach for mapping application features
extracted from crowd-based screencasts to source code

(Moslehi et al.
2020)

2020 EMSE Security analysis of permission re-delegation vulnerabilities in
Android apps

(Demissie et al.
2020)

2020 EMSE What do Programmers Discuss about Deep Learning Frame-
works

(Han et al.
2020)

2020 IST A fine-grained requirement traceability evolutionary algo-
rithm: Kromaia a commercial video game case study

(Blasco et al.
2020)

2020 IST Detecting Java software similarities by using different cluster-
ing techniques

(Capiluppi et al.
2020)

2019 ICSE Investigating The Impact Of Multiple Dependency Structures
On Software Defects

(Cui et al. 2019)

2020 ICSE Taming Behavioral Backward Incompatibilities Via Cross-
Project Testing And Analysis

(Chen et al.
2020)

2020 ESEC FSE Real-time incident prediction for online service systems (Zhao et al.
2020)

2016 ESEC FSE Causal impact analysis for app releases in google play (Martin et al.
2016)

Page 49 of 62 120

Empir Software Eng (2021) 26: 120

Year Venue Title Reference

2016 ESEM How Are Discussions Associated with Bug Reworking? An
Empirical Study on Open Source Projects

(Zhao et al.
2016)

2011 MSR Security versus performance bugs: a case study on Firefox (Zaman et al.
2011)

2014 ESEC FSE A large scale study of programming languages and code
quality in github

(Ray et al.
2014)

2018 ESEM Automatic topic classification of test cases using text mining
at an Android smartphone vendor

(Shimagaki
et al. 2018)

2017 ICSE Can Latent Topics In Source Code Predict Missing Architec-
tural Tactics?

(Gopalakrishnan
et al. 2017)

2020 MSR Challenges in Chatbot Development: A Study of Stack Over-
flow Posts

(Abdellatif
et al. 2020)

2020 ESEM Challenges in Docker Development: A Large-scale Study
Using Stack Overflow

(Haque and Ali
Babar 2020)

2014 ICSE Checking App Behavior Against App Descriptions (Gorla et al.
2014)

2014 MSR How does a typical tutorial for mobile development look like? (Tiarks and
Maalej 2014)

2020 MSR On the Relationship between User Churn and Software Issues (El Zarif et al.
2020)

2018 ICSE Online App Review Analysis For Identifying Emerging Issues (Gao et al.
2018)

2017 ICSE Recommending and Localizing Change Requests For Mobile
Apps Based On User Reviews

(Palomba et al.
2017)

2015 MSR Recommending posts concerning API issues in developer
Q&A sites

(Wang et al.
2015)

2018 ESEC FSE Winning the app production rally (Noei et al.
2018)

2015 EMSE An empirical study on the importance of source code entities
for requirements traceability

(Ali et al. 2015)

2009 EMSE An information retrieval process to aid in the analysis of code
clones

(Tairas and
Gray 2009)

2018 EMSE Are tweets useful in the bug fixing process? An empirical
study on Firefox and Chrome

(Mezouar et al.
2018)

2014 EMSE Labeling source code with information retrieval methods: An
empirical study

(De Lucia et al.
2014)

2013 TSE The impact of classifier configuration and classifier combina-
tion on bug localization

(Thomas et al.
2013)

2016 ICSE Autofolding for source code summarization (Fowkes et al.
2016)

2015 JSS Enabling improved IR-based feature location (Binkley et al.
2015)

2014 EMSE Configuring latent Dirichlet allocation based feature location (Biggers et al.
2014)

2018 EMSE Studying the consistency of star ratings and the complaints in
1 & 2-star user reviews for top free cross-platform Android
and iOS apps

(Hu et al. 2018)

2016 EMSE A contextual approach towards more accurate duplicate bug
report detection and ranking

(Hindle et al.
2016)

120 Page 50 of 62

Empir Software Eng (2021) 26: 120

Year Venue Title Reference

2016 ESEC FSE A large-scale empirical comparison of static and dynamic test
case prioritization techniques

(Luo et al.
2016)

2016 IST EXAF: A search engine for sample applications of object-
oriented framework-provided concepts

(Noei and Hey-
darnoori 2016)

2018 IST Fragment retrieval on models for model maintenance: Apply-
ing a multi-objective perspective to an industrial case study

(Pérez et al.
2018)

2018 ESEM Improving problem identification via automated log clustering
using dimensionality reduction

(Rosenberg and
Moonen 2018)

2011 MSR Retrieval from software libraries for bug localization: a com-
parative study of generic and composite text models

(Rao and Kak
2011)

2016 IST The effect of automatic concern mapping strategies on concep-
tual cohesion measurement

(Silva et al.
2016)

2020 MSR Traceability Support for Multi-Lingual Software Projects (Liu et al. 2020)

2009 EMSE Using information retrieval based coupling measures for
impact analysis

(Poshyvanyk
et al. 2009)

2011 EMSE Using structural and textual information to capture feature
coupling in object-oriented software

(Revelle et al.
2011)

A.2 Metrics Used in Comparative Studies

The column “Context-specific” indicates if the metric was proposed or adapted to a specific
context (“Yes”) or is a standard NLP metric (“No”).

Metric Definition Context-
specific

Used in

A measure Measures difference between two popula-
tions (Vargha and Delaney 2000)

No (Thomas et al.
2014)

Adjusted mutual
information
(AMI)

Compare two sets of clusters of a cluster-
ing technique, e.g., to compare gold standard
labeled clusters and the clusters discovered
by a technique

No (Rosenberg and
Moonen 2018)

Anomaly score Defining program behavior as a statistical
distribution, this metric represents the dis-
tance between the distribution of expected
behavior and the actual program behavior
(Murali et al. 2017)

Yes (Murali et al.
2017)

Area Under the Curve
(AUC)

Evaluates performance of a scoring classifier
using the Receiver Operating Characteris-
tic curve (ROC) which plots recall (true
positive rate) against the fraction of false
positives out of the negatives (false positive
rate) (Kakas et al. 2011)

No (Fowkes et al.
2016)

Average overlap Average overlap between labels generated man-
ually and labels automatically generated by the
tested topic models (De Lucia et al. 2014)

Yes (De Lucia et al.
2014)

Average percentage of
faults detected (APFD)

Average percentage of faults detected by a
prioritized test suite (Rothermel et al. 2001)

Yes (Thomas et al.
2014)

Page 51 of 62 120

Empir Software Eng (2021) 26: 120

Metric Definition Context-
specific

Used in

Completeness Extent to which all members of a given gold
standard label set are assigned to the same
cluster (Rosenberg and Moonen 2018)

Yes (Rosenberg and
Moonen 2018)

Homogeneity Extent to which members of a proposed
word cluster come from the same gold stan-
dard label set (Rosenberg and Moonen 2018)

Yes (Rosenberg and
Moonen 2018)

Effectiveness Number of methods that must be investi-
gated before the first method relevant to a
feature is located (Poshyvanyk et al. 2007)

Yes (Biggers et al.
2014; Poshy-
vanyk et al.
2012)

Effort reduction Ratio between created clusters and clus-
tered documents (log files) as a measure for
the the reduced effort by analyzing clus-
ters of log files rather than individual log
files (Rosenberg and Moonen 2018)

Yes (Rosenberg and
Moonen 2018)

Precision Fraction of documents retrieved that are rel-
evant to the user’s information need (total
number of documents retrieved that are rel-
evant divided by the total number of docu-
ments that are retrieved) (Zeugmann et al.
2011)

No (Silva et al.
2016; Murali
et al. 2017;
Cao et al. 2017;
Zhang et al.
2016; Demissie
et al. 2020;
Blasco et al.
2020; Poshy-
vanyk et al.
2012)

Average Precision Average precision value for a recalled
value (Zhang and Zhang 2009)

No (Liu et al. 2020)

Mean Average Preci-
sion (MAP)

Average of the aggregated average preci-
sion (Beitzel et al. 2009)

No (Abdellatif
et al. 2019; Rao
and Kak 2011)

Maximum possible
precision gain (MPG)

Precision of the best possible scenarios (e.g.,
in a tree of concepts, the user should navi-
gate the shortest path between the root and
the node with the relevant concept) that
might be obtained with a technique (Poshy-
vanyk et al. 2012)

Yes (Poshyvanyk
et al. 2012)

Recall Fraction of relevant documents that are suc-
cessfully retrieved (total number of docu-
ments retrieved that are relevant divided by
the total number of relevant documents in
the corpus) (Zeugmann et al. 2011)

No (Silva et al.
2016; Murali
et al. 2017;
Cao et al. 2017;
Zhang et al.
2016; Demissie
et al. 2020;
Blasco et al.
2020; Poshy-
vanyk et al.
2012)

Recall @k Fraction of relevant documents that are suc-
cessfully retrieved in top k results (Yan et al.
2016b)

No (Yan et al.
2016b)

120 Page 52 of 62

Empir Software Eng (2021) 26: 120

Metric Definition Context-
specific

Used in

F-measure Weighted harmonic mean of precision and
recall (Brank et al. 2011)

No (Silva et al.
2016; Cao et al.
2017; Zhang
et al. 2016;
Blasco et al.
2020)

Mann-Whitney-
Wilcoxon
test

Non-parametric test of the null hypothesis
that, for randomly selected values X and Y

from two populations, the probability of X

being greater than Y is equal to the proba-
bility of Y being greater than X (Mann and
Whitney 1947)

No (Thomas et al.
2014)

Mean Reciprocal
Rank (MRR)

Reciprocal rank is calculated using precision
@k: given a rank k, precision @k is the pre-
cision calculated over the set of retrieved
documents with a rank of k. Thus, MRR
is the average of the reciprocal rank of a
set of queries. The set of queries refer to
a list of documents of interest that may be
found in the ranked list of retrieved docu-
ments) (Craswell 2009)

No (Binkley et al.
2015; Zhang
et al. 2016)

Minimal browsing
area (MBA)

Shortest path between root node from a tree
of concepts and the node containing the rel-
evant results of a search in such tree (Poshy-
vanyk et al. 2012)

No (Poshyvanyk
et al. 2012)

Hit ratio When recommending software functionali-
ties (e.g., features for mobile apps), evalu-
ates how many functionalities can be suc-
cessfully recommended based on a list of hit
functionalities (Hariri et al. 2013)

Yes (Jiang et al.
2019)

Actual assignee hit
ratio

In the context of bug assignment to devel-
opers (referred as assignees), evaluates how
much the list of recommended assignees
contains the actual assignee (Naguib et al.
2013)

Yes (Naguib et al.
2013)

Top-k hit In the context of bug assignment to devel-
opers (referred as assignees), measures if
the ranked list of recommended assignees
contains any assignee who has performed
either assigning, reviewing, or resolving a
bug report (Naguib et al. 2013)

Yes (Naguib et al.
2013)

Normalized Dis-
counted Cumulative
Gain (NDCG)

Quality of Top-k Accuracy ranking (Croft
and Metzler 2010)

No (Jiang et al.
2019; Chen
et al. 2014)

SCORE Ranking-based metric that calculates the
proportion of bugs versus the proportion of
the code that must be examined for the local-
ization of the bugs (Jones and Harrold 2005)

Yes (Rao and Kak
2011)

Perplexity Measure of performance for statistical mod-
els of natural language, which indicates the
uncertainty in predicting a single word (Blei
et al. 2003b)

No (Yan et al.
2016b)

Page 53 of 62 120

Empir Software Eng (2021) 26: 120

Metric Definition Context-
specific

Used in

Purity Extent to which clusters (from a clustering
technique) contain a single label (Manning
et al. 2008)

No (Cao et al.
2017)

Term Entropy Measure of uncertainty associated with a
random variable (Shannon 1948). Stud-
ies calculated entropy for distribution of
terms in documents. A document with lower
entropy indicates that it has few dominant
terms, while a document with higher entropy
presents more dominant terms

No (De Lucia et al.
2014; Cao et al.
2017)

Top-k Accuracy Percentage of bug reports in which at least
one relevant source code entity was returned
in the top k results (e.g., a top-10 accu-
racy value of 0.15 indicates that for 15%
of the bug reports at least one relevant
source code entity was returned in the top 10
results) (Nguyen et al. 2011)

No (Thomas et al.
2013; Tan-
tithamthavorn
et al. 2018;
Abdellatif et al.
2019; Xia et al.
2017b)

Acknowledgements We would like to thank the editor and the anonymous reviewers for their insightful and
detailed feedback that helped us to significantly improve the manuscript.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in Chatbot Development: A
Study of Stack Overflow Posts. In: Proceedings of the 17th international conference on mining software
repositories, vol 12. IEEE/ACM, Seoul, pp 174-185. https://doi.org/10.1145/3379597.3387472

Abdellatif TM, Capretz LF, Ho D (2019) Automatic recall of software lessons learned for software project
managers. Inf Softw Technol 115:44–57. https://doi.org/10.1016/j.infsof.2019.07.006

Aggarwal CC, Zhai C (2012) Mining text data. Springer, New York. https://doi.org/10.1007/978-1-4614-
3223-4

Agrawal A, Fu W, Menzies T (2018) What is wrong with topic modeling? And how to fix it using search-
based software engineering. Inf Softw Technol 98(January 2017):74–88. https://doi.org/10.1016/j.
infsof.2018.02.005

Ahasanuzzaman M, Asaduzzaman M, Roy CK, Schneider KA (2019) CAPS: a supervised technique
for classifying Stack Overflow posts concerning API issues. Empir Softw Eng 25:1493–1532.
https://doi.org/10.1007/s10664-019-09743-4

Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about?: A large-scale study using
Stack Overflow. In: Proceedings of the international symposium on empirical software engineering and
measurement. ACM, Oulu, pp 1-10. https://doi.org/10.1145/3239235.3239524

120 Page 54 of 62

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3379597.3387472
https://doi.org/10.1016/j.infsof.2019.07.006
https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.1007/978-1-4614-3223-4
https://doi.org/10.1016/j.infsof.2018.02.005
https://doi.org/10.1016/j.infsof.2018.02.005
https://doi.org/10.1007/s10664-019-09743-4
https://doi.org/10.1145/3239235.3239524

Empir Software Eng (2021) 26: 120

Ali N, Sharafi Z, Guéhéneuc YG, Antoniol G (2015) An empirical study on the importance of source
code entities for requirements traceability. Empir Softw Eng 20(2):442–478. https://doi.org/10.1007/
s10664-014-9315-y

Alipour A, Hindle A, Stroulia E (2013) A contextual approach towards more accurate duplicate bug report
detection. In: IEEE international working conference on mining software repositories. pp 183–192.
https://doi.org/10.1109/MSR.2013.662402

Altarawy D, Shahin H, Mohammed A, Meng N (2018) LASCAD: Language-agnostic software categorization
and similar application detection. J Syst Softw 142:21–34. https://doi.org/10.1016/j.jss.2018.04.018

ARC ARC (2012) Excellence in research for australia (ERA). https://www.arc.gov.au/excellence-research-
australia http://www.arc.gov.au/pdf/era12/ERAFactsheet Jan2012 1.pdf

Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic modeling. In: Proceedings
of the international conference on software engineering. IEEE/ACM, Cape Town, pp 95-104

Bagherzadeh M, Khatchadourian R (2019) Going big: a large-scale study on what big data developers ask.
In: Proceedings of the 27th joint european software engineering conference and symposium on the foun-
dations of software engineering. ACM, Tallinn, pp 432-442. https://doi.org/10.1145/3338906.3338939

Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceed-
ings of the 11th working conference on mining software repositories. ACM, Hyderabad, pp 112–121.
https://doi.org/10.1145/2597073.2597083

Bajracharya S, Lopes C (2009) Mining search topics from a code search engine usage log. In: Proceedings of
the 6th international working conference on mining software repositories. IEEE, Vancouver, pp 111-120.
https://doi.org/10.1109/MSR.2009.5069489

Bajracharya SK, Lopes CV (2012) Analyzing and mining a code search engine usage log. Empir Softw Eng
17:424–466. https://doi.org/10.1007/s10664-010-9144-6

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? An analysis of topics and
trends in Stack Overflow. Empir Softw Eng 19(3):619–654. https://doi.org/10.1007/s10664-012-9231-y

Bavota G, Gethers M, Oliveto R, Poshyvanyk D, Lucia ADE (2014a) Improving software modularization
via automated analysis of latent. ACM Trans Softw Eng Methodol 23(1):1–33. https://doi.org/10.1145/
2559935

Bavota G, Oliveto R, Gethers M, Poshyvanyk D, De Lucia A (2014b) Methodbook: Recommend-
ing move method refactorings via relational topic models. IEEE Trans Softw Eng 40(7):671–694.
https://doi.org/10.1109/TSE.2013.60

Beitzel SM, Jensen EC, Frieder O (2009) MAP. In: Encyclopedia of database systems. Springer US, Boston,
pp 1691–1692. https://doi.org/10.1007/978-0-387-39940-9 492

Belle AB, Boussaidi GE, Kpodjedo S (2016) Combining lexical and structural information to reconstruct
software layers. Inf Softw Technol 74:1–16. https://doi.org/10.1016/j.infsof.2016.01.008

Bi T, Liang P, Tang A, Yang C (2018) A systematic mapping study on text analysis techniques in software
architecture. J Syst Softw 144:533–558. https://doi.org/10.1016/j.jss.2018.07.055

Biggers LR, Bocovich C, Capshaw R, Eddy BP, Etzkorn LH, Kraft NA (2014) Configuring latent Dirichlet
allocation based feature location. Empir Softw Eng 19(3):465–500. https://doi.org/10.1007/s10664-012-
9224-x

Binkley D, Lawrie D, Uehlinger C, Heinz D (2015) Enabling improved IR-based feature location. J Syst
Softw 101:30–42. https://doi.org/10.1016/j.jss.2014.11.013

Blasco D, Cetina C, Pastor O (2020) A fine-grained requirement traceability evolutionary algorithm: Kro-
maia, a commercial video game case study. Inf Softw Technol 119:1–12. https://doi.org/10.1016/j.infsof.
2019.106235

Blei DM, Jordan MI, Griffiths TL, Tenenbaum JB (2003a) Hierarchical topic models and the nested chinese
restaurant process. In: Proceedings of the 16th international conference on neural information processing
systems. Neural Information Processing Systems Foundation, Vancouver, pp 17-24

Blei DM, Ng AY, Jordan MI (2003b) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022.
https://doi.org/10.1162/jmlr.2003.3.4-5.993

Brank J, Mladenić D, Grobelnik M, Liu H, Mladenić D, Flach PA, Garriga GC, Toivonen H, Toivo-
nen H (2011) F 1-measure. In: Encyclopedia of machine learning. Springer US, pp 397–397.
https://doi.org/10.1007/978-0-387-30164-8 298

Canfora G, Cerulo L, Cimitile M, Di Penta M (2014) How changes affect software entropy: An empirical
study. Empir Softw Eng 19:1–38. https://doi.org/10.1007/s10664-012-9214-z

Cao B, Frank Liu X, Liu J, Tang M (2017) Domain-aware Mashup service clustering based on LDA topic
model from multiple data sources. Inf Softw Technol 90:40–54. https://doi.org/10.1016/j.infsof.2017.
05.001

Capiluppi A, Ruscio DD, Rocco JD, Nguyen PT, Ajienka N (2020) Detecting Java software similarities
by using different clustering techniques. Inf Softw Technol 122. https://doi.org/10.1016/j.infsof.2020.
106279

Page 55 of 62 120

https://doi.org/10.1007/s10664-014-9315-y
https://doi.org/10.1007/s10664-014-9315-y
https://doi.org/10.1109/MSR.2013.662402
https://doi.org/10.1016/j.jss.2018.04.018
https://www.arc.gov.au/excellence-research-australia
https://www.arc.gov.au/excellence-research-australia
http://www.arc.gov.au/pdf/era12/ERAFactsheet_Jan2012_1.pdf
https://doi.org/10.1145/3338906.3338939
https://doi.org/10.1145/2597073.2597083
https://doi.org/10.1109/MSR.2009.5069489
https://doi.org/10.1007/s10664-010-9144-6
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1145/2559935
https://doi.org/10.1145/2559935
https://doi.org/10.1109/TSE.2013.60
https://doi.org/10.1007/978-0-387-39940-9_492
https://doi.org/10.1016/j.infsof.2016.01.008
https://doi.org/10.1016/j.jss.2018.07.055
https://doi.org/10.1007/s10664-012-9224-x
https://doi.org/10.1007/s10664-012-9224-x
https://doi.org/10.1016/j.jss.2014.11.013
https://doi.org/10.1016/j.infsof.2019.106235
https://doi.org/10.1016/j.infsof.2019.106235
https://doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.1007/978-0-387-30164-8_298
https://doi.org/10.1007/s10664-012-9214-z
https://doi.org/10.1016/j.infsof.2017.05.001
https://doi.org/10.1016/j.infsof.2017.05.001
https://doi.org/10.1016/j.infsof.2020.106279
https://doi.org/10.1016/j.infsof.2020.106279

Empir Software Eng (2021) 26: 120

Catolino G, Palomba F, Zaidman A, Ferrucci F (2019) Not all bugs are the same: Understanding, character-
izing, and classifying bug types. J Syst Softw 152:165–181. https://doi.org/10.1016/j.jss.2019.03.002

Chang J, Blei DM (2009) Relational topic models for document networks. In: Proceedings of the 12th interna-
tional conference on artificial intelligence and statistics. Society for Artificial Intelligence and Statistics,
Clearwater Beach, pp 81-88

Chang J, Blei DM (2010) Hierarchical relational models for document networks. Ann Appl Stat 4(1):124–
150. https://doi.org/10.1214/09-AOAS309

Chang J, Boyd-Graber J, Gerrish S, Wang C, Blei DM (2009) Reading tea leaves: How humans interpret topic
models. In: Proceedings of the 2009 conference advances in neural information. Neural Information
Processing Systems Foundation, Vancouver, pp 288-296

Chatterjee P, Damevski K, Pollock L (2019) Exploratory study of slack q&a chats as a mining source for
software engineering tools. In: Proceedings of the 16th international conference on mining software
repositories. IEEE, Montreal, pp 1-12

Chen H, Coogle J, Damevski K (2019) Modeling stack overflow tags and topics as a hierarchy of concepts.
J Syst Softw 156:283–299. https://doi.org/10.1016/j.jss.2019.07.033

Chen L, Hassan F, Wang X, Zhang L (2020) Taming behavioral backward incompatibilities via cross-project
testing and analysis. In: Proceedings of the 42nd international conference on software engineering.
IEEE/ACM, Seoul, pp 112-124. https://doi.org/10.1145/3377811.3380436

Chen N, Lin J, Hoi SC, Xiao X, Zhang B (2014) AR-miner: Mining informative reviews for developers from
mobile app marketplace. In: Proceedings of the international conference on software engineering, vol 1.
IEEE/ACM, Hyderabad, pp 767-778. https://doi.org/10.1145/2568225.2568263

Chen TH, Thomas SW, Nagappan M, Hassan AE (2012) Explaining software defects using topic models.
In: Proceedings of the international working conference on mining software repositories. IEEE, Zurich,
pp 189-198. https://doi.org/10.1109/MSR.2012.6224280

Chen TH, Thomas SW, Hassan AE (2016) A survey on the use of topic models when mining software
repositories. Empir Softw Eng 21(5):1843–1919. https://doi.org/10.1007/s10664-015-9402-8

Chen TH, Shang W, Nagappan M, Hassan AE, Thomas SW (2017) Topic-based software defect explanation.
J Syst Softw 129:79–106. https://doi.org/10.1016/j.jss.2016.05.015

Choetkiertikul M, Dam HK, Tran T, Ghose A (2017) Predicting the delay of issues with due dates in software
projects. Empir Softw Eng 22:1223–1263. https://doi.org/10.1007/s10664-016-9496-7

Craswell N (2009) Mean reciprocal rank. In: Encyclopedia of database systems. Springer US, pp 1703–1703.
https://doi.org/10.1007/978-0-387-39940-9 488

Croft WB, Metzler D (2010) Search engines: Information retrieval in practice. Addison-Wesley, Reading
Cui D, Liu T, Cai Y, Zheng Q, Feng Q, Jin W, Guo J, Qu Y (2019) Investigating the impact of multiple depen-

dency structures on software defects, IEEE/ACM, Montreal. https://doi.org/10.1109/ICSE.2019.00069
Damevski K, Chen H, Shepherd DC, Kraft NA, Pollock L (2018) Predicting future developer behavior in the

IDE using topic models. IEEE Trans Softw Eng 44(11):1100–1111. https://doi.org/10.1109/TSE.2017.
2748134

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2014) Labeling source code with informa-
tion retrieval methods: An empirical study. Empir Softw Eng 19(5):1383–1420. https://doi.org/10.1007/
s10664-013-9285-5

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic
analysis. J Am Soc Inf Sci 41(6):391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::
AID-ASI1>3.0.CO;2-9

Demissie BF, Ceccato M, Shar LK (2020) Security analysis of permission re-delegation vulnerabilities in
Android apps. Empir Softw Eng 25:5084–5136. https://doi.org/10.1007/s10664-020-09879-8

Dietz L, Bickel S, Scheffer T (2007) Unsupervised prediction of citation influences. In: Proceedings of the
24th international conference on machine learning. ACM, Corvallis, pp 233-240. https://doi.org/10.1145/
1273496.1273526

Dit B, Revelle M, Poshyvanyk D (2013) Integrating information retrieval, execution and link anal-
ysis algorithms to improve feature location in software. Empir Softw Eng 18(2):277–309.
https://doi.org/10.1007/s10664-011-9194-4

El Zarif O, Da Costa DA, Hassan S, Zou Y (2020) On the relationship between user churn and software
issues. In: Proceedings of the 17th international conference on mining software repositories. ACM, New
York, pp 339-349. https://doi.org/10.1145/3379597.3387456

Fowkes J, Chanthirasegaran P, Ranca R, Allamanis M, Lapata M, Sutton C (2016) Autofolding for
source code summarization. Proc Int Conf Softw Eng 43(12):649–652. https://doi.org/10.1145/2889160.
2889171

Fu Y, Yan M, Zhang X, Xu L, Yang D, Kymer JD (2015) Automated classification of software
change messages by semi-supervised Latent Dirichlet Allocation. Inf Softw Technol 57:369–377.
https://doi.org/10.1016/j.infsof.2014.05.017

120 Page 56 of 62

https://doi.org/10.1016/j.jss.2019.03.002
https://doi.org/10.1214/09-AOAS309
https://doi.org/10.1016/j.jss.2019.07.033
https://doi.org/10.1145/3377811.3380436
https://doi.org/10.1145/2568225.2568263
https://doi.org/10.1109/MSR.2012.6224280
https://doi.org/10.1007/s10664-015-9402-8
https://doi.org/10.1016/j.jss.2016.05.015
https://doi.org/10.1007/s10664-016-9496-7
https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.1109/ICSE.2019.00069
https://doi.org/10.1109/TSE.2017.2748134
https://doi.org/10.1109/TSE.2017.2748134
https://doi.org/10.1007/s10664-013-9285-5
https://doi.org/10.1007/s10664-013-9285-5
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6$<$391::AID-ASI1$>$3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6$<$391::AID-ASI1$>$3.0.CO;2-9
https://doi.org/10.1007/s10664-020-09879-8
https://doi.org/10.1145/1273496.1273526
https://doi.org/10.1145/1273496.1273526
https://doi.org/10.1007/s10664-011-9194-4
https://doi.org/10.1145/3379597.3387456
https://doi.org/10.1145/2889160.2889171
https://doi.org/10.1145/2889160.2889171
https://doi.org/10.1016/j.infsof.2014.05.017

Empir Software Eng (2021) 26: 120

Galvis Carreno LV, Winbladh K (2012) Analysis of user comments: an approach for software requirements
evolution. In: Proceedings of the international conference on software engineering. IEEE/ACM, San
Francisco, pp 582-591

Gao C, Zeng J, Lyu MR, King I (2018) Online app review analysis for identifying emerging issues. In:
Proceedings of the 40th international conference on software engineering. IEEE/ACM, Gothenburg,
pp 48-58. https://doi.org/10.1145/3180155.3180218

Gopalakrishnan R, Sharma P, Mirakhorli M, Galster M (2017) Can latent topics in source code predict miss-
ing architectural tactics? In: Proceedings of the 39th international conference on software engineering,
IEEE/ACM, pp 15–26. https://doi.org/10.1109/ICSE.2017.10. http://ghtorrent.org/

Gorla A, Tavecchia I, Gross F, Zeller A (2014) Checking app behavior against app descriptions. In: Proceed-
ings of the international conference on software engineering. IEEE/ACM, Hyderabad, pp 1025-1035.
https://doi.org/10.1145/2568225.2568276

Griffiths TL, Steyvers M (2004) Finding scientific topics. In: Proceedings of the national academy
of sciences, vol 101. Neural Information Processing Systems Foundation, Irvine, pp 5228-5235.
https://doi.org/10.1073/pnas.0307752101

Haghighi A, Vanderwende L (2009) Exploring content models for multi-document summarization. In:
Proceedings of the conference on human language technologies: the 2009 annual conference of the
north american chapter of the association for computational linguistics. Association for Computational
Linguistics, Boulder, pp 362–370. https://doi.org/10.3115/1620754.1620807, http://www-nlpir.nist.gov/
projects/duc/data.html

Han J, Shihab E, Wan Z, Deng S, Xia X (2020) What do programmers discuss about deep learning
frameworks. Empir Softw Eng 25:2694–2747. https://doi.org/10.1007/s10664-020-09819-6

Haque MU, Ali Babar M (2020) Challenges in docker development: a large-scale study using stack over-
flow. In: Proceedings of the 14th international symposium on empirical software engineering and
measurement. IEEE/ACM, Bari, pp 1-11. https://doi.org/10.1145/3382494.3410693

Hariri N, Castro-Herrera C, Mirakhorli M, Cleland-Huang J, Mobasher B (2013) Supporting domain anal-
ysis through mining and recommending features from online product listings. IEEE Trans Softw Eng
39(12):1736–1752. https://doi.org/10.1109/TSE.2013.39

Henß S, Monperrus M, Mezini M (2012) Semi-automatically extracting FAQs to improve accessibil-
ity of software development knowledge. In: Proceedings of the international conference on software
engineering. IEEE/ACM, Zurich, pp 793-803. https://doi.org/10.1109/ICSE.2012.6227139

Hindle A, Godfrey MW, Ernst NA, Mylopoulos J (2011) Automated topic naming to support cross-project
analysis of software maintenance activities. In: Proceedings of the 33rd international conference on
software engineering. ACM, Waikiki, pp 163-172

Hindle A, Ernst NA, Godfrey MW, Mylopoulos J (2013) Automated topic naming: Supporting cross-project
analysis of software maintenance activities. Empir Softw Eng 18(6):1125–1155. https://doi.org/10.1007/
s10664-012-9209-9

Hindle A, Bird C, Zimmermann T, Nagappan N (2015) Do topics make sense to managers and developers?
Empir Softw Eng 20:479–515. https://doi.org/10.1007/s10664-014-9312-1

Hindle A, Alipour A, Stroulia E (2016) A contextual approach towards more accurate duplicate bug report
detection and ranking. Empir Softw Eng 21(2):368–410. https://doi.org/10.1007/s10664-015-9387-3

Hoffman M, Blei D, Bach F (2010) Online learning for latent dirichlet allocation. In: Proceedings of the
neural information processing systems conference. Neural Information Processing Systems Foundation,
Vancouver, pp 1-9. https://doi.org/10.1.1.187.1883

Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international
conference on research and development in information retrieval. ACM, Berkeley, pp 50-57

Hu H, Bezemer CP, Hassan AE (2018) Studying the consistency of star ratings and the complaints in 1 & 2-
star user reviews for top free cross-platform Android and iOS apps. Empir Softw Eng 23(6):3442–3475.
https://doi.org/10.1007/s10664-018-9604-y

Hu H, Wang S, Bezemer CP, Hassan AE (2019) Studying the consistency of star ratings and reviews of pop-
ular free hybrid Android and iOS apps. Empir Softw Eng 24:7–32. https://doi.org/10.1007/s10664-018-
9617-6

Hu W, Wong K (2013) Using citation influence to predict software defects. In: Proceedings of the inter-
national working conference on mining software repositories. IEEE, San Francisco, pp 419-428.
https://doi.org/10.1109/MSR.2013.6624058

Jiang H, Zhang J, Ren Z, Zhang T (2017) An unsupervised approach for discovering relevant tutorial
fragments for APIs. In: Proceedings of the 39th international conference on software engineering.
IEEE/ACM, Buenos Aires, pp 38-48. https://doi.org/10.1109/ICSE.2017.12

Jiang HE, Zhang J, Li X, Ren Z, Lo D, Wu X, Luo Z (2019) Recommending new features from mobile app
descriptions. ACM Trans Softw Eng Methodol 28(4):1–29. https://doi.org/10.1145/3344158

Page 57 of 62 120

https://doi.org/10.1145/3180155.3180218
https://doi.org/10.1109/ICSE.2017.10
http://ghtorrent.org/
https://doi.org/10.1145/2568225.2568276
https://doi.org/10.1073/pnas.0307752101
https://doi.org/10.3115/1620754.1620807
http://www-nlpir.nist.gov/projects/duc/data.html
http://www-nlpir.nist.gov/projects/duc/data.html
https://doi.org/10.1007/s10664-020-09819-6
https://doi.org/10.1145/3382494.3410693
https://doi.org/10.1109/TSE.2013.39
https://doi.org/10.1109/ICSE.2012.6227139
https://doi.org/10.1007/s10664-012-9209-9
https://doi.org/10.1007/s10664-012-9209-9
https://doi.org/10.1007/s10664-014-9312-1
https://doi.org/10.1007/s10664-015-9387-3
https://doi.org/10.1007/s10664-018-9604-y
https://doi.org/10.1007/s10664-018-9617-6
https://doi.org/10.1007/s10664-018-9617-6
https://doi.org/10.1109/MSR.2013.6624058
https://doi.org/10.1109/ICSE.2017.12
https://doi.org/10.1145/3344158

Empir Software Eng (2021) 26: 120

Jipeng Q, Zhenyu Q, Yun L, Yunhao Y, Xindong W (2020) Short text topic modeling techniques,
applications, and performance: a survey. https://doi.org/10.1109/TKDE.2020.2992485

Jo Y, Oh A (2011) Aspect and sentiment unification model for online review analysis. In: Proceedings of
the fourth ACM international conference on Web search and data mining. ACM, New York, pp 815-824.
https://doi.org/10.1145/1935826

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique.
In: Proceedings of the 20th international conference on automated software engineering. IEEE/ACM,
New York, pp 273–282. https://doi.org/10.1145/1101908.1101949, http://portal.acm.org/citation.cfm?
doid=1101908.1101949

Kakas AC, Cohn D, Dasgupta S, Barto AG, Carpenter GA, Grossberg S, Webb GI, Dorigo M, Birattari M,
Toivonen H, Timmis J, Branke J, Toivonen H, Strehl AL, Drummond C, Coates A, Abbeel P, Ng AY,
Zheng F, Webb GI, Tadepalli P (2011) Area under curve. In: Encyclopedia of machine learning. Springer
US, pp 40–40. https://doi.org/10.1007/978-0-387-30164-8 28

Kitchenham BA (2004) Procedures for performing systematic reviews. Keele, UK, Keele University
33(TR/SE-0401):28. https://doi.org/10.1.1.122.3308

Layman L, Nikora AP, Meek J, Menzies T (2016) Topic modeling of NASA space system problem reports
research in practice. In: Proceedings of the 13th working conference on mining software repositories.
ACM, Austin, pp 303-314. https://doi.org/10.1145/2901739.2901760

Le TDB, Thung F, Lo D (2017) Will this localization tool be effective for this bug? Mitigating the impact
of unreliability of information retrieval based bug localization tools. Empir Softw Eng 22:2237–2279.
https://doi.org/10.1007/s10664-016-9484-y

Leach RJ (2016) Introduction to software engineering, 2nd edn. CRC Press LLC, Boca Raton.
https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=4711469&query=Software+
Engineering

Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature
401(6755):788–791

Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging using topic models. Empir Softw
Eng 23:2655–2694. https://doi.org/10.1007/s10664-018-9595-8

Lian X, Liu W, Zhang L (2020) Assisting engineers extracting requirements on components from domain
documents. Inf Softw Technol 118(September 2019):106196. https://doi.org/10.1016/j.infsof.2019.
106196

Lin T, Tian W, Mei Q, Cheng H (2014) The dual-sparse topic model: Mining focused topics and focused
terms in short text. In: Proceedings of the 23rd international conference on world wide web. ACM, Seoul,
pp 539-549. https://doi.org/10.1145/2566486.2567980

Liu Y, Liu L, Liu H, Wang X, Yang H (2017) Mining domain knowledge from app descriptions. J Syst Softw
133:126–144. https://doi.org/10.1016/j.jss.2017.08.024

Liu Y, Lin J, Cleland-Huang J (2020) Traceability support for multi-lingual software projects. In: Proceed-
ings of the 17th international conference on mining software repositories. ACM, Seoul, pp 443-454.
https://doi.org/10.1145/3379597.3387440

Lukins SK, Kraft NA, Etzkorn LH (2010) Bug localization using latent Dirichlet allocation. Inf Softw
Technol 52:972–990. https://doi.org/10.1016/j.infsof.2010.04.002

Luo Q, Moran K, Poshyvanyk D (2016) A large-scale empirical comparison of static and dynamic test
case prioritization techniques. In: Proceedings of the 24th international symposium on foundations of
software engineering. ACM, Seattle, pp 559-570. https://doi.org/10.1145/2950290.2950344

Mahmoud A, Bradshaw G (2017) Semantic topic models for source code analysis. Empir Softw Eng
22(4):1965–2000. https://doi.org/10.1007/s10664-016-9473-1

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50–60. https://doi.org/10.1214/aoms/1177730491, http://projecteuclid.
org/euclid.aoms/1177730491

Manning CD, Raghavan P, Schütze H (2008) Evaluation of Clustering. In: Introduction to information
retrieval. Cambridge University Press. chap 16, https://doi.org/10.33899/csmj.2008.163987. https://
nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html, http://nlp.stanford.edu/IR?
book/html/htmledition/evaluation?of?clustering?1.htmlwhereisthesetofclustersan

Mantyla MV, Claes M, Farooq U (2018) Measuring LDA topic stability from clusters of replicated runs,
ACM, Oulu. https://doi.org/10.1145/3239235.3267435

Martin W, Harman M, Jia Y, Sarro F, Zhang Y (2015) The app sampling problem for app store mining.
In: Proceedings of the 12th international working conference on mining software repositories. IEEE,
Florence, pp 123-133. https://doi.org/10.1109/MSR.2015.19

Martin W, Sarro F, Harman M (2016) Causal impact analysis for app releases in google play. In: Proceedings
of the 24th international symposium on foundations of software engineering. ACM, Seattle, pp 435-446.
https://doi.org/10.1145/2950290.2950320

120 Page 58 of 62

https://doi.org/10.1109/TKDE.2020.2992485
https://doi.org/10.1145/1935826
https://doi.org/10.1145/1101908.1101949
http://portal.acm.org/citation.cfm?doid=1101908.1101949
http://portal.acm.org/citation.cfm?doid=1101908.1101949
https://doi.org/10.1007/978-0-387-30164-8_28
https://doi.org/10.1145/2901739.2901760
https://doi.org/10.1007/s10664-016-9484-y
https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=4711469&query=Software+Engineering
https://ebookcentral.proquest.com/lib/canterbury/detail.action?docID=4711469&query=Software+Engineering
https://doi.org/10.1007/s10664-018-9595-8
https://doi.org/10.1016/j.infsof.2019.106196
https://doi.org/10.1016/j.infsof.2019.106196
https://doi.org/10.1145/2566486.2567980
https://doi.org/10.1016/j.jss.2017.08.024
https://doi.org/10.1145/3379597.3387440
https://doi.org/10.1016/j.infsof.2010.04.002
https://doi.org/10.1145/2950290.2950344
https://doi.org/10.1007/s10664-016-9473-1
https://doi.org/10.1214/aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491
http://projecteuclid.org/euclid.aoms/1177730491
https://doi.org/10.33899/csmj.2008.163987
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation- of-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation- of-clustering-1.html
http://nlp.stanford.edu/IR?book/html/htmledition/evaluation?of?clustering?1.htmlwhereisthesetofclustersan
http://nlp.stanford.edu/IR?book/html/htmledition/evaluation?of?clustering?1.htmlwhereisthesetofclustersan
https://doi.org/10.1145/3239235.3267435
https://doi.org/10.1109/MSR.2015.19
https://doi.org/10.1145/2950290.2950320

Empir Software Eng (2021) 26: 120

McIlroy S, Ali N, Khalid H, E Hassan A (2016) Analyzing and automatically labelling the types of user
issues that are raised in mobile app reviews. Empir Softw Eng 21:1067–1106. https://doi.org/10.1007/
s10664-015-9375-7

Mehrotra R, Sanner S, Buntine W, Xie L (2013) Improving LDA Topic Models for Microblogs via Tweet
Pooling and Automatic Labeling. In: Proceedings of the 36th International Conference on Research and
Development in Information Retrieval. ACM, Dublin, pp 889-892

Mezouar ME, Zhang F, Zou Y (2018) Are tweets useful in the bug fixing process? An empirical study on
Firefox and Chrome. Empir Softw Eng 23(3):1704–1742. https://doi.org/10.1007/s10664-017-9559-4

Miner G, Elder J, Fast A, Hill T, Nisbet R, Delen D (2012) Practical text mining and statisti-
cal analysis for non-structured text data applications. Elsevier Science & Technology, Waltham.
https://doi.org/10.1016/C2010-0-66188-8

Moslehi P, Adams B, Rilling J (2016) On mining crowd-based speech documentation. In: Proceed-
ings of the 13th working conference on mining software repositories. ACM, Austin, pp 259-268.
https://doi.org/10.1145/2901739.2901771

Moslehi P, Adams B, Rilling J (2018) Feature location using crowd-based screencasts. In: Proceedings
of the 15th international conference on mining software repositories. ACM, New York, pp 192-202.
https://doi.org/10.1145/3196398.3196439

Moslehi P, Adams B, Rilling J (2020) A feature location approach for mapping application fea-
tures extracted from crowd-based screencasts to source code. Empir Softw Eng 25:4873–4926.
https://doi.org/10.1007/s10664-020-09874-z

Murali V, Chaudhuri S, Jermaine C (2017) Bayesian specification learning for finding API usage errors. In:
Proceedings of the Joint european software engineering conference and symposium on the foundations
of software engineering. ACM, Paderborn, pp 151-162. https://doi.org/10.1145/3106237.3106284

Nabli H, Ben Djemaa R, Ben Amor IA (2018) Efficient cloud service discovery approach based on LDA
topic modeling. J Syst Softw 146:233–248. https://doi.org/10.1016/j.jss.2018.09.069

Naguib H, Narayan N, Brügge B, Helal D (2013) Bug report assignee recommendation using activity profiles.
In: Proceedings of the international working conference on mining software repositories. IEEE, San
Francisco, pp 22-30. https://doi.org/10.1109/MSR.2013.6623999

Nayebi M, Cho H, Ruhe G (2018) App store mining is not enough for app improvement. Empir Softw Eng
23:2764–2794. https://doi.org/10.1007/s10664-018-9601-1

Nguyen AT, Nguyen TT, Al-Kofahi J, Nguyen HV, Nguyen TN (2011) A topic-based approach
for narrowing the search space of buggy files from a bug report. In: Proceedings of the 26th
international conference on automated software engineering. IEEE/ACM, Lawrence, pp 263–272.
https://doi.org/10.1109/ASE.2011.6100062

Nguyen AT, Nguyen TT, Nguyen TN, Lo D, Sun C (2012) Duplicate bug report detection with a combination
of information retrieval and topic modeling. In: Proceedings of the 27th international conference on auto-
mated software engineering. IEEE/ACM, Essen, pp 70–79. https://doi.org/10.1145/2351676.2351687

Nguyen VA, Boyd-Graber J, Resnik P, Chang J, Graber JB (2014) Learning a concept hierarchy from multi-
labeled documents. In: Proceedings of the neural information processing systems conference. Neural
Information Processing Systems Foundation, Montreal, pp 1-9

Noei E, Heydarnoori A (2016) EXAF: A search engine for sample applications of object-oriented framework-
provided concepts. Inf Softw Technol 75:135–147. https://doi.org/10.1016/j.infsof.2016.03.007

Noei E, Da Costa DA, Zou Y (2018) Winning the app production rally. In: Proceedings of the 26th ACM joint
meeting on european software engineering conference and symposium on the foundations of software
engineering. ACM, Lake Buena Vista, pp 283-294. https://doi.org/10.1145/3236024.3236044

Noei E, Zhang F, Wang S, Zou Y (2019) Towards prioritizing user-related issue reports of mobile
applications. Empir Softw Eng 24:1964–1996. https://doi.org/10.1007/s10664-019-09684-y

Pagano D, Maalej W (2013) How do open source communities blog? Empir Softw Eng 18(6):1090–1124.
https://doi.org/10.1007/s10664-012-9211-2

Palomba F, Salza P, Ciurumelea A, Panichella S, Gall H, Ferrucci F, De Lucia A (2017) Recom-
mending and localizing change requests for mobile apps based on user reviews. In: Proceedings of
the 39th international conference on software engineering. IEEE/ACM, Buenos Aires, pp 106-117.
https://doi.org/10.1109/ICSE.2017.18

Panichella A, Dit B, Oliveto R, Di Penta M, Poshynanyk D, De Lucia A (2013) How to effectively use
topic models for software engineering tasks? An approach based on Genetic Algorithms. In: Proceed-
ings of the international conference on software engineering. IEEE/ACM, San Francisco, pp 522-531.
https://doi.org/10.1109/ICSE.2013.6606598

Pérez F, Lapeṅa R, Font J, Cetina C (2018) Fragment retrieval on models for model maintenance:
Applying a multi-objective perspective to an industrial case study. Inf Softw Technol 103:188–201.
https://doi.org/10.1016/j.infsof.2018.06.017

Page 59 of 62 120

https://doi.org/10.1007/s10664-015-9375-7
https://doi.org/10.1007/s10664-015-9375-7
https://doi.org/10.1007/s10664-017-9559-4
https://doi.org/10.1016/C2010-0-66188-8
https://doi.org/10.1145/2901739.2901771
https://doi.org/10.1145/3196398.3196439
https://doi.org/10.1007/s10664-020-09874-z
https://doi.org/10.1145/3106237.3106284
https://doi.org/10.1016/j.jss.2018.09.069
https://doi.org/10.1109/MSR.2013.6623999
https://doi.org/10.1007/s10664-018-9601-1
https://doi.org/10.1109/ASE.2011.6100062
https://doi.org/10.1145/2351676.2351687
https://doi.org/10.1016/j.infsof.2016.03.007
https://doi.org/10.1145/3236024.3236044
https://doi.org/10.1007/s10664-019-09684-y
https://doi.org/10.1007/s10664-012-9211-2
https://doi.org/10.1109/ICSE.2017.18
https://doi.org/10.1109/ICSE.2013.6606598
https://doi.org/10.1016/j.infsof.2018.06.017

Empir Software Eng (2021) 26: 120

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping studies in
software engineering: An update. Inf Softw Technol 64(1):1–18. https://doi.org/10.1016/j.infsof.2015.
03.007

Pettinato M, Gil JP, Galeas P, Russo B (2019) Log mining to re-construct system behavior: An exploratory
study on a large telescope system. Inf Softw Technol 114:121–136. https://doi.org/10.1016/j.infsof.2019.
06.011

Poshyvanyk D, Gueheneuc YG, Marcus A, Antoniol G, Rajlich V (2007) Feature location using probabilis-
tic ranking of methods based on execution scenarios and information retrieval, vol 33, pp 420–431.
https://doi.org/10.1109/TSE.2007.1016. https://www.researchgate.net/publication/3189749

Poshyvanyk D, Marcus A, Ferenc R, Gyimóthy T (2009) Using information retrieval based coupling mea-
sures for impact analysis. Empir Softw Eng 14(1):5–32. https://doi.org/10.1007/s10664-008-9088-2,
http://www.mozilla.org/

Poshyvanyk D, Gethers M, Marcus A (2012) Concept location using formal concept analysis and information
retrieval. ACM Trans Softw Eng Methodol 21(4):1–34. https://doi.org/10.1145/2377656.2377660

Poursabzi-Sangdeh F, Goldstein DG, Hofman JM, Vaughan JW, Wallach H (2021) Manipulating and mea-
suring model interpretability. In: Proceedings of the conference on human factors in computing systems.
ACM, Yokohama. https://doi.org/10.1145/3411764.3445315

Ramage D, Hall D, Nallapati R, Manning CD (2009) Labeled LDA: A supervised topic model for credit
attribution in multi-labeled corpora. In: Proceedings of the conference on empirical methods in natural
language processing. ACL/AFNLP, Singapore, pp 248-256. https://doi.org/10.5555/1699510.1699543

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: A comparative study of generic
and composite text models. In: Proceedings of the international conference on software engineering.
IEEE/ACM, Waikiki, pp 43-52. https://doi.org/10.1145/1985441.1985451

Ray B, Posnett D, Filkov V, Devanbu P (2014) A large scale study of programming languages and code
quality in GitHub. In: Proceedings of the symposium on the foundations of software engineering, pp
155–165. https://doi.org/10.1145/2635868.2635922

Revelle M, Gethers M, Poshyvanyk D (2011) Using structural and textual information to capture feature
coupling in object-oriented software. Empir Softw Eng 16(6):773–811. https://doi.org/10.1007/s10664-
011-9159-7

Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: Proceedings of
the eighth ACM international conference on web search and data mining - WSDM ’15. ACM, Shanghai,
pp 399-408. https://doi.org/10.1145/2684822.2685324

Rosen C, Shihab E (2016) What are mobile developers asking about? A large scale study using Stack
Overflow. Empir Softw Eng 21:1192–1223. https://doi.org/10.1007/s10664-015-9379-3

Rosenberg CM, Moonen L (2018) Improving problem identification via automated log clustering using
dimensionality reduction. In: Proceedings of the international symposium on empirical software
engineering and measurement. ACM, Oulu, pp 1-10. https://doi.org/10.1145/3239235.3239248

Rothermel G, Untcn RH, Chu C, Harrold MJ (2001) Prioritizing test cases for regression testing. IEEE Trans
Softw Eng 27(10):929–948. https://doi.org/10.1109/32.962562

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613–620. https://doi.org/10.1145/361219.361220

Savage T, Dit B, Gethers M, Poshyvanyk D (2010) TopicXP: exploring topics in source code using latent
Dirichlet allocation. IEEE, Timisoara. https://doi.org/10.1109/ICSM.2010.5609654

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shimagaki J, Kamei Y, Ubayashi N, Hindle A (2018) Automatic topic classification of test cases using
text mining at an android smartphone vendor. In: Proceedings of the 12th international symposium on
empirical software engineering and measurement. IEEE/ACM, Oulu, pp 1-10. https://doi.org/10.1145/
3239235.3268927

Silva B, Sant’anna C, Rocha N, Chavez C (2016) The effect of automatic concern mapping strategies on
conceptual cohesion measurement. Inf Softw Technol 75:56–70. https://doi.org/10.1016/j.infsof.2016.
03.006

Silva LL, Valente MT, Maia MA (2019) Co-change patterns: A large scale empirical study. J Syst Softw
152:196–214. https://doi.org/10.1016/j.jss.2019.03.014

Soliman M, Galster M, Salama AR, Riebisch M (2016) Architectural knowledge for technology decisions in
developer communities: An exploratory study with Stack Overflow. In: Proceedings of the 13th working
conference on software architecture. IEEE, Venice, pp 128-133. https://doi.org/10.1109/WICSA.2016.13

Somasundaram K, Murphy GC (2012) Automatic categorization of bug reports using latent Dirichlet allo-
cation. In: Proceedings of the 5th India software engineering conference, vol 12. ACM, pp 125-130.
https://doi.org/10.1145/2134254.2134276

120 Page 60 of 62

https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2019.06.011
https://doi.org/10.1016/j.infsof.2019.06.011
https://doi.org/10.1109/TSE.2007.1016
https://www.researchgate.net/publication/3189749
https://doi.org/10.1007/s10664-008-9088-2
http://www.mozilla.org/
https://doi.org/10.1145/2377656.2377660
https://doi.org/10.1145/3411764.3445315
https://doi.org/10.5555/1699510.1699543
https://doi.org/10.1145/1985441.1985451
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1007/s10664-011-9159-7
https://doi.org/10.1007/s10664-011-9159-7
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1145/3239235.3239248
https://doi.org/10.1109/32.962562
https://doi.org/10.1145/361219.361220
https://doi.org/10.1109/ICSM.2010.5609654
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/3239235.3268927
https://doi.org/10.1145/3239235.3268927
https://doi.org/10.1016/j.infsof.2016.03.006
https://doi.org/10.1016/j.infsof.2016.03.006
https://doi.org/10.1016/j.jss.2019.03.014
https://doi.org/10.1109/WICSA.2016.13
https://doi.org/10.1145/2134254.2134276

Empir Software Eng (2021) 26: 120

Souza LB, Campos EC, Madeiral F, Paixão K, Rocha AM, Maia MdA (2019) Bootstrapping cookbooks
for APIs from crowd knowledge on Stack Overflow. Inf Softw Technol 111(March 2018):37–49.
https://doi.org/10.1016/j.infsof.2019.03.009

Steyvers M, Griffiths T (2010) Probalistic Topic Models. In: Landauer T, McNamara D, Dennis S, Kintsch
W (eds) Latent semantic analysis: a road to meaning. University of California, Irvine, pp 993-1022.
https://doi.org/10.1016/s0364-0213(01)00040-4

Sun X, Li B, Leung H, Li B, Li Y (2015) MSR4SM: Using topic models to effectively mining software repos-
itories for software maintenance tasks. Inf Softw Technol 66:1–12. https://doi.org/10.1016/j.infsof.2015.
05.003

Sun X, Liu X, Li B, Duan Y, Yang H, Hu J (2016) Exploring topic models in software engineering data
analysis: A survey, IEEE, Shangai. https://doi.org/10.1109/SNPD.2016.7515925

Sun X, Yang H, Xia X, Li B (2017) Enhancing developer recommendation with supplementary information
via mining historical commits. J Syst Softw 134:355–368. https://doi.org/10.1016/j.jss.2017.09.021

Taba SES, Keivanloo I, Zou Y, Wang S (2017) An exploratory study on the usage of common interface
elements in android applications. J Syst Softw 131:491–504. https://doi.org/10.1016/j.jss.2016.07.010

Tairas R, Gray J (2009) An information retrieval process to aid in the analysis of code clones, vol 14, pp 33–
56. https://doi.org/10.1007/s10664-008-9089-1, http://www.cis.uab.edu/tairasr/clones/literature

Tamrawi A, Nguyen TT, Al-Kofahi JM, Nguyen TN (2011) Fuzzy set and cache-based approach for bug
triaging. In: Proceedings of the 19th ACM symposium on foundations of software engineering. ACM,
pp 365–375. https://doi.org/10.1145/2025113.202516

Tang J, Zhang M, Mei Q (2013) One theme in all views: modeling consensus topics in multiple contexts. In:
Proceedings of the 19th international conference on knowledge discovery and data mining. ACM, New
York, pp 5–13

Tantithamthavorn C, Lemma Abebe S, Hassan AE, Ihara A, Matsumoto K (2018) The impact of IR-based
classifier configuration on the performance and the effort of method-level bug localization. Inf Softw
Technol 102(June):160–174. https://doi.org/10.1016/j.infsof.2018.06.001

Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical Dirichlet processes. J Am Stat Assoc
101(476):1566–1581. https://doi.org/10.1198/016214506000000302

Thomas SW, Nagappan M, Blostein D, Hassan AE (2013) The impact of classifier configuration and classi-
fier combination on bug localization. IEEE Trans Softw Eng 39(10):1427–1443. https://doi.org/10.1109/
TSE.2013.27

Thomas SW, Hemmati H, Hassan AE, Blostein D (2014) Static test case prioritization using topic models.
Empir Softw Eng 19:182–212. https://doi.org/10.1007/s10664-012-9219-7

Tiarks R, Maalej W (2014) How does a typical tutorial for mobile development look like? In: Proceedings of
the 11th international conference on mining software repositories. IEEE/ACM, Hyderabad, pp 272-281.
https://doi.org/10.1145/2597073.2597106

Treude C, Wagner M (2019) Predicting good configurations for GitHub and stack overflow topic models.
In: Proceedings of the 16th international conference on mining software repositories. IEEE, Montreal,
pp 84-95. https://doi.org/10.1109/MSR.2019.00022

Vargha A, Delaney HD (2000) A critique and improvement of the CL common language effect size statistics
of McGraw and Wong. J Educ Behav Stat 25(2):101–132. https://doi.org/10.3102/10769986025002101

Wallach HM, Mimno D, McCallum A (2009) Rethinking LDA: Why priors matter. In: Proceedings of the
conference on advances in neural information processing systems. Curran Associates Inc., Vancouver,
pp 1973–1981. http://rexa.info/

Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In: Proceedings
of the international conference on knowledge discovery and data mining. ACM, New York, pp 448-456.
https://doi.org/10.1145/2020408.2020480

Wang W, Malik H, Godfrey MW (2015) Recommending posts concerning API issues in developer
Q&A sites. In: Proceedings of the international working conference on mining software repositories.
IEEE/ACM, pp 224–234. https://doi.org/10.1109/MSR.2015.28. http://stackoverflow.com/questions/
5358219/

Wei X, Croft WB (2006) LDA-based document models for ad-hoc retrieval. In: Proceedings of the 29th
annual international conference on research and development in information retrieval. ACM, Seattle,
pp 178-185. https://doi.org/10.1145/1148170.1148204

Weng J, Lim EP, Jiang J, He Q (2010) TwitterRank: Finding topic-sensitive influential twitterers. In: Proceed-
ings of the 3rd international conference on web search and data mining. ACM, New York, pp 261-270.
https://doi.org/10.1145/1718487.1718520

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52.
https://doi.org/10.1016/0169-7439(87)80084-9

Xia X, Bao L, Lo D, Kochhar PS, Hassan AE, Xing Z (2017a) What do developers search for on the web?
Empir Softw Eng 22(6):3149–3185. https://doi.org/10.1007/s10664-017-9514-4

Page 61 of 62 120

https://doi.org/10.1016/j.infsof.2019.03.009
https://doi.org/10.1016/s0364-0213(01)00040-4
https://doi.org/10.1016/j.infsof.2015.05.003
https://doi.org/10.1016/j.infsof.2015.05.003
https://doi.org/10.1109/SNPD.2016.7515925
https://doi.org/10.1016/j.jss.2017.09.021
https://doi.org/10.1016/j.jss.2016.07.010
https://doi.org/10.1007/s10664-008-9089-1
http://www.cis.uab.edu/tairasr/clones/literature
https://doi.org/10.1145/2025113.202516
https://doi.org/10.1016/j.infsof.2018.06.001
https://doi.org/10.1198/016214506000000302
https://doi.org/10.1109/TSE.2013.27
https://doi.org/10.1109/TSE.2013.27
https://doi.org/10.1007/s10664-012-9219-7
https://doi.org/10.1145/2597073.2597106
https://doi.org/10.1109/MSR.2019.00022
https://doi.org/10.3102/10769986025002101
http://rexa.info/
https://doi.org/10.1145/2020408.2020480
https://doi.org/10.1109/MSR.2015.28
http://stackoverflow.com/questions/5358219/
http://stackoverflow.com/questions/5358219/
https://doi.org/10.1145/1148170.1148204
https://doi.org/10.1145/1718487.1718520
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1007/s10664-017-9514-4

Empir Software Eng (2021) 26: 120

Xia X, Lo D, Ding Y, Al-Kofahi JM, Nguyen TN, Wang X (2017b) Improving automated bug triaging
with specialized topic model. IEEE Trans Softw Eng 43(3):272–297. https://doi.org/10.1109/TSE.2016.
2576454

Yan M, Fu Y, Zhang X, Yang D, Xu L, Kymer JD (2016a) Automatically classifying software changes via
discriminative topic model: Supporting multi-category and cross-project. J Syst Softw 113:296–308.
https://doi.org/10.1016/j.jss.2015.12.019

Yan M, Zhang X, Yang D, Xu L, Kymer JD (2016b) A component recommender for bug
reports using Discriminative Probability Latent Semantic Analysis. Inf Softw Technol 73:37–51.
https://doi.org/10.1016/j.infsof.2016.01.005

Yang X, Lo D, Li L, Xia X, Bissyandé TF, Klein J (2017) Characterizing malicious Android apps by mining
topic-specific data flow signatures. Inf Softw Technol 90:27–39. https://doi.org/10.1016/j.infsof.2017.
04.007

Ye D, Xing Z, Kapre N (2017) The structure and dynamics of knowledge network in domain-specific Q&A
sites: a case study of stack overflow. Empir Softw Eng 22(1):375–406. https://doi.org/10.1007/s10664-
016-9430-z

Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: A case study on firefox. In:
Proceedings - international conference on software engineering, pp 93–102. https://doi.org/10.1145/
1985441.198545

Zeugmann T, Poupart P, Kennedy J, Jin X, Han J, Saitta L, Sebag M, Peters J, Bagnell JA, Daelemans W,
Webb GI, Ting KM, Ting KM, Webb GI, Shirabad JS, Fürnkranz J, Hüllermeier E, Matwin S, Sakakibara
Y, Flener P, Schmid U, Procopiuc CM, Lachiche N, Fürnkranz J (2011) Precision and recall. In: Encyclo-
pedia of machine learning. Springer US, pp 781–781. https://doi.org/10.1007/978-0-387-30164-8 652

Zhang E, Zhang Y (2009) Average precision. In: Encyclopedia of database systems. Springer US, pp 192–
193. https://doi.org/10.1007/978-0-387-39940-9 482

Zhang T, Chen J, Yang G, Lee B, Luo X (2016) Towards more accurate severity prediction and fixer
recommendation of software bugs. J Syst Softw 117:166–184. https://doi.org/10.1016/j.jss.2016.02.034

Zhang Y, Lo D, Xia X, Scanniello G, Le TDB, Sun J (2018) Fusing multi-abstraction vector space models
for concern localization. Empir Softw Eng 23:2279–2322. https://doi.org/10.1007/s10664-017-9585-2

Zhao N, Chen J, Wang Z, Peng X, Wang G, Wu Y, Zhou F, Feng Z, Nie X, Zhang W, Sui K, Pei D (2020)
Real-time incident prediction for online service systems. In: Proceedings of the 28th ACM joint meeting
european software engineering conference and symposium on the foundations of software engineering,
vol 20. ACM, pp 315–326. https://doi.org/10.1145/3368089.3409672

Zhao WX, Jiang J, Weng J, He J, Lim EP, Yan H, Li X (2011) Comparing twitter and traditional media
using topic models. In: Lecture Notes in Computer Science, vol 6611. Springer, Berlin, chap Advances
i, pp 338-349. https://doi.org/10.1007/978-3-642-20161-5-34

Zhao Y, Zhanq F, Shlhab E, Zou Y, Hassan AE (2016) How are discussions associated with bug
reworking? an empirical study on open source projects. In: Proceedings of the 10th international
symposium on empirical software engineering and measurement. IEEE/ACM, Ciudad Real, pp 1–10.
https://doi.org/10.1145/2961111.296259

Zou J, Xu L, Yang M, Zhang X, Yang D (2017) Towards comprehending the non-functional requirements
through Developers’ eyes: An exploration of Stack Overflow using topic analysis. Inf Softw Technol
84(1):19–32. https://doi.org/10.1016/j.infsof.2016.12.003

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

120 Page 62 of 62

https://doi.org/10.1109/TSE.2016.2576454
https://doi.org/10.1109/TSE.2016.2576454
https://doi.org/10.1016/j.jss.2015.12.019
https://doi.org/10.1016/j.infsof.2016.01.005
https://doi.org/10.1016/j.infsof.2017.04.007
https://doi.org/10.1016/j.infsof.2017.04.007
https://doi.org/10.1007/s10664-016-9430-z
https://doi.org/10.1007/s10664-016-9430-z
https://doi.org/10.1145/1985441.198545
https://doi.org/10.1145/1985441.198545
https://doi.org/10.1007/978-0-387-30164-8_652
https://doi.org/10.1007/978-0-387-39940-9_482
https://doi.org/10.1016/j.jss.2016.02.034
https://doi.org/10.1007/s10664-017-9585-2
https://doi.org/10.1145/3368089.3409672
https://doi.org/10.1007/978-3-642-20161-5-34
https://doi.org/10.1145/2961111.296259
https://doi.org/10.1016/j.infsof.2016.12.003

	Topic modeling in software engineering research
	Abstract
	Introduction
	Topic Modeling
	Data Input
	Modeling
	Output

	Related Work
	Previous Literature Reviews
	Meta-studies on Topic Modeling

	Research Method
	Search Procedure
	Study Selection Criteria
	Data Extraction and Synthesis

	Results
	Overview
	RQ1: Topic Models Used
	Topic Modeling Techniques
	Supported Tasks
	Types of Contribution

	RQ2: Topic Model Inputs
	Types of Data
	Documents
	Model Parameters

	RQ3: Pre-processing Steps
	RQ4: Topic Naming

	Discussion
	RQ1: Topic Modeling Techniques
	Summary of Findings
	Comparative Studies

	RQ2: Inputs to Topic Models
	Summary of Findings
	Documents and Parameters for Topic Models
	Hyperparameters
	Number of topics

	Supported Tasks, Types of Data and Types of Contribution

	RQ3: Data Pre-processing
	Summary of Findings
	Pre-processing Different Types of Data

	RQ4: Assigning Names to Topics
	Implications
	Threats to Validity
	Theoretical validity
	Descriptive validity
	Interpretive validity
	Repeatability

	Conclusions
	Appendix: A
	A.1 Papers Reviewed
	A.2 Metrics Used in Comparative Studies
	References

