Noname manuscript No.
(will be inserted by the editor)

Self-Admitted Technical Debt Practices:
A Comparison Between Industry and Open-Source

Fiorella Zampetti - Gianmarco Fucci -
Alexander Serebrenik - Massimiliano Di
Penta

Received: date / Accepted: date

Abstract Self-admitted technical debt (SATD) consists of annotations, left
by developers as comments in the source code or elsewhere, as a reminder
about pieces of software manifesting technical debt (TD), i.e., “not being
ready yet”. While previous studies have investigated SATD management and
its relationship with software quality, there is little understanding of the extent
and circumstances to which developers admit TD. This paper reports the
results of a study in which we asked developers from industry and open-
source about their practices in annotating source code and other artifacts for
self-admitting TD. The study consists of two phases. First, we conducted 10
interviews to gather a first understanding of the phenomenon and to prepare a
survey questionnaire. Then, we surveyed 52 industrial developers as well as 49
contributors to open-source projects. Results of the study show how the TD
annotation practices, as well as the typical content of SATD comments, are
very similar between open-source and industry. At the same time, our results
highlight how, while open-source code is spread of comments admitting the
need for improvements, SATD in industry may be dictated by organizational
guidelines but, at the same time, implicitly discouraged by the fear of admitting

Fiorella Zampetti
University of Sannio, Via Traiano, 3, Benevento, Italy
E-mail: fiorella.zampettiQunisannio.it

Gianmarco Fucci
University of Sannio, Via Traiano, 3, Benevento, Italy
E-mail: gianmarco.fucciQunisannio.it

Alexander Serebrenik
Eindhoven University of Technology, The Netherlands
E-mail: a.serebrenik@tue.nl

Massimiliano Di Penta
University of Sannio, Via Traiano, 3, Benevento, Italy
E-mail: dipenta@unisannio.it

2 Fiorella Zampetti et al.

responsibilities. Results also highlight the need for tools helping developers to
achieve a better TD awareness.

Keywords Technical debt - Self-admitted technical debt - Empirical Study -
Software Quality

1 Introduction

The notion of Technical Debt (TD) has been introduced by Cunningham (1992)
as “not quite right code which we postpone making it right”. Awareness has been
empirically shown to be a very important factor when managing TD (Ernst
et al., 2015), for making managers and, ultimately, end-users, knowledgeable
of the effort and activities necessary for software improvement (Lim et al.,
2012). Building on and refining the notion of TD, Potdar and Shihab (2014)
introduced the concept of Self-Admitted Technical Debt (SATD) as a sub-
category of TD capturing “intentional (i.e., self-admitted) quick or temporary
fixes, or in general source code that needs to be improved (i.e., technical debt)”.
Examples of SATD by Potdar and Shihab (2014) are such comments as “//
TODO this is such a hack it is silly” from Eclipse and “// Unsafe; should
error” from Chromium OS. Following the seminal work of Potdar and Shihab
(2014) researchers have studied different kinds of TD (Bavota and Russo, 2016;
Fucci et al., 2021; Maipradit et al., 2020; Mensah et al., 2018; Rantala et al.,
2020): from those introduced by such keywords as “TODO” or “FIXME” to
those focusing on situations when developers are waiting for a certain event or
an updated functionality, from those focusing on functional defects to those
related to maintainability. To encompass different variants of SATD found in
the scientific literature, in this paper we opt for a broad definition and consider
as SATD any source code comments for annotating delayed or intended work
activities such as TODO, FIXME, hack, workaround.

From an observer’s perspective, SATD represents the evidence of TD
in source code. Previous studies have related such evidence with software
quality (Bavota and Russo, 2016; Wehaibi et al., 2016; da S. Maldonado et al.,
2017a; Zampetti et al., 2018), by mining and analyzing related comments in
the source code or elsewhere, e.g., in the issues (Xavier et al., 2020). However,
while studies have been conducted to understand developers’ perception of
TD (Ernst et al., 2015), to identify strategies related to its introduction (Fucci
et al., 2020) and removal (Bavota and Russo, 2016; da S. Maldonado et al.,
2017a; Zampetti et al., 2018; JTammarino et al., 2019; Zampetti et al., 2020)
so far there is limited empirical evidence on the reasons and circumstances in
which developers admit TD under the form of a SATD comment, and how they
cope with it beyond removal.

An SATD comment in the source code is the result of decisions taken by a
developer whether to annotate source code and, when doing so, what details to
include in the SATD annotation. Such a decision might be influenced not only
by the developers’ evaluation of the problematic nature of the code but also
by organizational and project culture and guidelines. For example, while 88%

Title Suppressed Due to Excessive Length 3

of the survey respondents from the Dutch ING bank report SATD (Vassallo
et al., 2016), opinions on the usefulness of such annotations vary! and as such
not every developer might feel compelled to report SATD.

This paper sheds light on the technical debt annotation practices from
developers’ perspective (both industrial and open-source). We start looking at
whether or not developers annotate design decisions at all, going deeper on those
decisions that introduce TD in the source code. Furthermore, since developers
might have different reasons for (not) admitting SATD, e.g., organizational
policies, we look at what are the main reasons behind their (lack of) admissions.
Moreover, considering that previous work has highlighted that developers
might use different channels for annotating TD (Potdar and Shihab, 2014;
Xavier et al., 2020), we gather a broad knowledge about the channels used
for reporting SATD. Other than looking at the channels, it is important to
properly understand what is the content of SATD annotations instead of simply
considering the artifacts to which the SATD pertains to, e.g., requirements,
test or design. Finally, we also look at what are the developers’ reaction while
modifying a piece of code affected by a SATD, e.g., address it or simply leverage
it to influence other design and implementation decisions.

To address the aforementioned goal, we conducted 10 interviews with
developers, to gather a first understanding of the studied phenomenon. The
provided answers allowed us to design a survey, which was sent to both industrial
developers (mostly personal contacts) and mailing lists of open-source systems
(OSS), asking them to answer questions related to their SATD annotation
practices in those specific contexts. The survey received a total of 101 responses
(52 from the industry, and 49 from the open-source). Differently from previous
studies analyzing SATD by looking at the source code and its comments
(Bavota and Russo, 2016; Wehaibi et al., 2016; Zampetti et al., 2018), we are
more interested to understand developers’ rationale and perception. For this
reason, the study has been entirely conducted through interviews and surveys
rather than by mining software repositories.

At the first glance, the study results indicate that the SATD practice—at
least as reported by the study respondents—is very similar in industry and
OSS. Nevertheless, some results highlight several organizational and cultural
differences: e.g., industrial developers are less prone to admit TD than those
working in OSS, either because of organizational guidelines, or because of a
culture of “hiding under-performance”, which may reveal counter-productive.
Results also highlight the need for better developers’ support in admitting TD
and make it easily traceable and understandable by others.

By studying the extent to which developers admit TD, whether there
are barriers or challenges threatening this admission, and by understanding
how SATD is being used by developers, researchers could better scope the
development of tools supporting TD management. Also, project managers can

1 See, e.g., the “Todo Comments Considered Harmful” http://wiki.c2.com/
?TodoCommentsConsideredHarmful vs. “Todo Comments Considered Useful” http://wiki.
c2.com/?TodoCommentsConsideredUseful.

4 Fiorella Zampetti et al.

learn from this study in terms of benefits derived from admitting TD, and in
forming “better practices” concerning TD documentation and management.

The paper is organized as follows. Section 2 provides details about the study
design and planning. Results are reported in Section 3, while their implications
are discussed in Section 4, and the threats to the study validity in Section 5.
After a discussion of related work (Section 6), Section 7 concludes the paper
and outlines directions for future work.

The study material and datasets are available in a replication package
(Zampetti et al., 2021).

2 Study Design

The goal of this study is to understand the TD annotation practices from
developers’ perspective. The study perspective is of researchers, that want to
understand how annotation practices work, and possibly differ, in industry and
open source. The context of the study consists of 111 developers working either
on industrial projects or contributing in OSS, reached through semi-structured
interviews and a survey. It is important to note that the distinction between
industry and open source may not be sharp, because industrial developers may
contribute to OSS. However, as clarified in Section 5, we limited this threat
by clarifying, in the survey and interviews, the context for which respondents
should reply to our questions.

We aim at addressing the following five research questions:

RQi: To what extent developers admit SATD? We intend to understand
whether developers document design decisions at all (e.g., through comments
in the source code), but also when the source code is not ready yet (and,
thus, they admit TD). Previously, Vassallo et al. (2016), by surveying 152
developers of a large financial organization, to analyze the interaction between
continuous integration and delivery practices and development activities, found
that 88% of the respondents admit TD. Differently from their work, we aim at
understanding the frequency of such an admission beyond a specific company
and from different contexts, i.e., industrial and open-source (OSS).

RQy: What are the reasons for (not) admitting SATD? Developers might
have valid reasons for admitting or not admitting SATD. These reasons can be
related to a developer’s specific behavior or organizational policies.

RQs: What are the channels and tool support used to admit TD? The
notion of Self-Admitted Technical Debt has been introduced by Potdar and
Shihab (2014) as technical debt admitted by developers by using source code
comments. In a recent study, Xavier et al. (2020) conjectured that developers
can admit TD by creating issues in tracking systems. We conjecture that
developers may rely on other different channels, such as internal mailing list or
messaging apps, to annotate design decisions including the ones introducing a
TD in the source code. Differently from previous studies on SATD, with this
research question, we aim at gathering a broad knowledge about the channels
mainly used for admitting TD by explicitly asking developers.

Title Suppressed Due to Excessive Length 5

RQy: What is the content of SATD annotations? Previous work (Bavota
and Russo, 2016) has classified SATD by simply looking at the software artifacts
it belongs to, e.g., requirements, test, or design, without considering the content
of the admission. Differently from previous studies, our goal is to classify the
content of the SATD annotations from the developers’ perspective by asking
them what TD and improvement intentions they usually admit, e.g., expresses
the need for refactoring or performance improvement, indicates source code that
works only under certain conditions or does not adequately handle exceptions,
or serves as a reminder that further activities should be performed when a next
version of an external API is released.

RQ;5: How do developers react when they encounter SATD comments?
While previous research has studied the extent to which SATD is addressed,
or in general removed from the source code (da S. Maldonado et al., 2017a;
Zampetti et al., 2018), to the best of our knowledge there are no studies
aimed at understanding how developers act on pieces of code that need to be
evolved while being affected by a previously admitted TD. For this reason, our
last research question aims to shed light on whether, in general, developers
take previously admitted TD into account, e.g., address it before evolving
the affected code or leverage it to influence other design and implementation
decisions.

2.1 Methodology Overview

The methodology of this study follows two phases. First, we rely on semi-
structured interviews to gather a broad knowledge of the topics treated in
the five research questions. Then, based on the information acquired from the
interviews, we design a survey questionnaire, which complements the interviews
and aims at enlarging the sample of answers. This survey is sent to professional
developers working in the industry, as well as to mailing lists of 104 open source
projects. It is important to highlight that while some of our research questions
might be also addressed by looking at SATD comments in the source code
(i.e., RQ; and RQ4), we advisedly focused only on the developers’ perspective
by using both semi-structured interviews and a survey since investigating the
reasons behind the (not) admission as well as the developers’ reactions while
encountering SATD comments in the source code may only be addressed by
directly asking them.

In the following, we detail the methodology followed at each phase of the
study.

2.2 Interview Design and Methodology

The context of the interviews consists of 10 professional developers (referred to
as I, below), working in 7 different software companies, and reached through
personal contacts. We have involved developers of small, midsize and large
companies, in order to achieve diversity in terms of organizational culture.

6 Fiorella Zampetti et al.

First, we collected participants’ demographics, i.e., academic background,
kind of organization where they work, development experience, programming
languages, IDEs, and other tools they used. We have included a question about
IDEs since some IDEs support such annotations as FIXME and TODO that
might prompt developers to admit technical debt. Then, the interview structure
featured questions following the research questions stated above (the detailed
structure is in our replication package (Zampetti et al., 2021)). We ask:

1. whether, and how frequently developers insert comments in the source code
for annotating delayed or intended work activities, hacks, or workarounds;

2. what are the main reasons for code annotations, and what are the main
reasons for refraining from using code annotations;

3. besides source code comments, what are other channels for such annotations,
such as chats, code reviews, issue reports, and task management systems;

4. what is the typical content and level of detail of code annotations; and

5. how developers react when they find an annotation in the source code.

The interviews have been conducted by two of the authors, either in person,
through a conference call, or (in one case) through chat (as this was the
interviewee’s preferred communication medium). The interview was either
recorded (prior consent), or answers were handwritten on paper.

2.3 Interview Data Analysis

After the interviews were completed, the answers were copied into an online
spreadsheet, grouped along the categories described above. Then, one of the
author extracted notes from the interviews’ transcripts and, relying on an open
card sorting process (Spencer, 2009; Zimmermann, 2016), defined for each
question a finite set of possible options (i.e., labeled group of answers) to be
used while designing the survey structure. The labeled group of answers have
been validated by two different authors who could propose changes, and after
a final discussion with the first author, we derived the set of alternatives to
use while structuring the survey.

2.4 Survey Design and Methodology

The survey design closely follows the interview structure, with some key differ-
ences, mainly having the goal of reducing the time needed to provide answers
and to limit/avoid abandonment. Specifically, our survey includes the questions
used to guide our semi-structured interviews, for which we used the finite set
of options identified while applying the open-card sorting procedure previously
described. In other words, for the survey we opt for multiple-choice questions
with answer options derived from the findings of the interviews. For most
questions, multiple answers could have been selected. To mitigate the risk of
potential incompleteness in the answer options, we provided the respondents
with a possibility of including a different answer in the free text space.

Title Suppressed Due to Excessive Length 7

Table 1 Questions provided in the semi-structured interviews (I) and in the survey (S)
together with their mapping to the research questions their answers are going to address.

ID Question Body I+S/S RQ

Q; How frequently do you insert comments for annotating I+S RQ1
your implementation and design choices?

Q2 How frequently do you insert comments for annotating I+S RQ1
delayed or intended work activities?

Qs Does your organization have specific policies regarding the S RQ2

addition of annotations for the implementation and design
choices? If yes, please describe them.
Qu Does your organization have specific policies regarding the S RQ2
addition of annotations for delayed or intended work ac-
tivities? If yes, please describe them.

Qs What are the tracing mechanism mainly used for annotat- 148 RQs
ing your implementation and design choices?
Qs ‘While annotating your implementation and design choices I+S

in the source code do you rely on IDE-supported annota-
tions (e.g., automatically generated TODO)?

Q~ What are the main motivations for annotating the imple- I4+S RQ3>
mentation and design choices?

Qs What are the main motivations for not annotating your I+S RQ2
implementation and design choices?

Qo What is the typical content that you usually include while I+S RQ4
annotating delayed or intended work activities?

Q1o If you find an annotation reporting that the code is not I4+S RQs

in the right shape, in the code while implementing a new
feature or improving an existing feature, what do you ac-
tually do?

Furthermore, based on the results collected from the interviews we added
two open-ended questions aimed at gaining insights about the annotation
policies adopted for (not) admitting TD. Table 1 shows the structure of the
survey in which we have highlighted the linking with the structure used for the
semi-structured interviews together with how the questions are used to answer
the research questions previously described. Specifically, the third column
reports whether we used the questions in both the interviews and the survey
(I+S), or only in the survey (S). For the complete structure of the survey you
can refer to our replication package (Zampetti et al., 2021).

Finally, the demographics questions were asked at the end of the ques-
tionnaire, and made optional. This has been done to reduce the stereotype
threat (Steele and Aronson, 1995), and also allowed us to obtain responses from
individuals that might be reluctant to disclose the demographics information.

The questionnaire has been made available online using Google Forms.?

To gather responses from professional developers, we mainly relied on per-
sonal contacts, but we also shared the questionnaire on Twitter and Reddit
channels about software engineering, software development, and agile prac-
tices/SCRUM. Since this is an exploratory study, we prefer to rely on a
convenience sampling, as previously done in literature (Arnaoudova et al., 2014;
Rastkar et al., 2014; Celik et al., 2016; Di Nucci et al., 2017; Wei et al., 2017).
This is because software developers represent a hidden population so we did not
have a sampling frame (Baltes and Ralph, 2020). By using non-probabilistic

2 No participant, nor any potential participant reported us to have any particular privacy
concern about this channel.

8 Fiorella Zampetti et al.

sampling helps us to conveniently reach a suitable number of study partici-
pants. We received 52 answers, of which most of them (75%) have been reached
through our personal contacts.

For what concerns OSS, we started with five Java projects from the dataset
of da S. Maldonado et al. (2017a). To complement this data, we consider five
popular programming languages on GitHub, i.e., C/C++, Javascript, Java,
Python, and Ruby. While we conjecture that, in general, SATD practices
are programming language-agnostic, we cannot exclude that there could be
some language-specific peculiarities when admitting TD, e.g., related to API
management, language-specific features, etc. Therefore, to ensure enough gener-
alizability of the results, we targeted projects written in multiple programming
languages.

For each programming language, we select the top 100 projects ordered
accounting for the number of forks. From such lists, we pick projects (i) having
public developers’ mailing lists, forum or discussion groups, and (ii) preferring
projects with a greater number of contributors. All the considered projects have
more than 30 contributors. Once selected, for each project, one of the authors
subscribed to the mailing list /forum and posted the questionnaire together
with an explanation letter. We kept posting across projects developed with
different languages, expanding the list of top projects if necessary, balancing
the number of responses achieved for each language, and aiming at an overall
number of responses comparable to those of industrial developers. In the end,
we shared the survey with five projects from the dataset of da S. Maldonado
et al. (2017a), as well as with 10 Java, 27 Ruby, 33 C/C++, 15 Javascript,
and 14 Python GitHub projects. We obtained 49 answers, of which 11 from
Java, 10 from Ruby, 10 from Python, 11 from C/C++, and 7 from Javascript
projects.

One important note concerns how to deal with developers working both in
industry and in the open-source. When administering the survey questionnaire,
since developers could work both in open-source and industry, we explicitly
asked them to report their behavior related to their industrial project (when
we contacted them as part of the industrial questionnaire) and their behavior
in the open-source projects when contacting them through the OSS mailing
lists.

2.5 Survey Data Analysis

After having collected all responses, two of the authors performed an open
coding of answers to questions where this was required, and specifically for
those about policies for annotating design decisions and SATD. Similarly to
the procedure described in Section 2.3, the first author extracted codes from
the free-text left by our survey respondents and tried to group the codes in
more cohesive categories, each one with a specific label. This classification has
been validated by a different author who could propose changes that have been
discussed together with the first author to reach a consensus.

Title Suppressed Due to Excessive Length 9

Results are presented by (i) discussing the interviews’ main findings, and
(ii) showing the survey outcome in the form of bar charts, as well as discussing
specific answers provided by respondents. To support the comparison between
results obtained in industry and OSS, we perform statistical analysis as follows.
For RQq, the survey asked about the annotation frequency for design decisions
and SATD, and possible answers are (i) never, (ii) 25% of the development
tasks, (iii) between 25 and 75% of the development tasks, and (iv) above 75% of
the development tasks. To compare industry and OSS, we encoded the answers
into integers, and then used a two-tailed Wilcoxon Rank Sum test (Wilcoxon,
1945) and Cliff’s delta effect size (Grissom and Kim, 2005). The employed test
is a non-parametric test for independent samples. We used a non-parametric
test because, according to Wilk-Shapiro test, data significantly deviates from
normality (p-value< 0.001).

For the other questions, the survey contained multiple-choice questions
with answer options and that for many questions respondents have been
encouraged to indicate all answers applying to them. Hence, we do not compare
different answer options with each other but the proportions of respondents
from industry and OSS that have chosen a specific answer option. To this end,
we first construct a confusion matrix containing (i) the number of industry
respondents who picked the option, (ii) the number of industry respondents who
did not pick the option, (iii) the number of OSS respondents who picked the
option, and (iv) the number of OSS respondents who did not pick the option.
Next, we apply Fisher’s exact test (Fisher, 1922) to the contingency matrix to
compare proportions of answers of industrial vs. OSS respondents. In this way,
for each question, we perform Fisher’s exact tests as many as there are answer
options. To control the false discovery rate incurred by multiple comparisons
we adjust p-values using the Benjamini-Hochberg correction (Benjamini and
Hochberg, 1995).

3 Study Results

This section aims at addressing the research questions formulated in Section 2.
For each RQ we first report findings of our interviews since we used them to
define the survey, and then we report the results of the survey respondents
distinguishing between industrial and open source participants.

3.1 Participants’ Demographics

Although demographics questions were optional, all participants answered them.
All interview participants have more than eight years of experience in software
development. They mainly use Java (6) and C (5), together with some scripting
languages (3). All of them use an IDE: specifically, six of them rely on IntelliJ
IDEA, three use Eclipse, two use Visual Studio .NET, two PyCharm and one

10 Fiorella Zampetti et al.

Atom.? As regards the role in the company, four of them are developers, three
are involved in planning, development, and testing tasks, two are researchers,
and one is a project manager. One of the interviewees (I19) is employed by an
open source foundation, and therefore we treat this interview as representative
for OSS.

Concerning the survey respondents working in industry (referred as Ind,,), 17
have more than 10 years of development experience, 21 between 5 and 10, while
only 14 declare to have less than 5 years of development experience. Almost all
of them (42) are developers: other respondents are DevOps specialists, project
managers, a researcher, a software architect, a consultant, a data scientist and
machine learning specialist, and a tester. The organizations they work for are
software development consulting (12), data and analytics (10), information
technology (10), software as a service (5), safety-critical systems (4), software for
energy environments (3), and one for each of the following categories: systems
programming, game development, health care or social services, government,
hardware, financial and banking, and industrial automation.

Among the respondents contributing to OSS projects (referred as OSS,,),
31 have more than 10 years of development experience (63%), 11 between 5 and
10, and 7 have less than 5 years of experience. Most of the respondents own at
least a bachelor degree (43): 12 have a Ph.D., 16 a Master Degree, 14 a Bachelor
Degree and 1 has two Bachelor Degrees. Considering the number of open source
projects to which they contributed so far, 8 declared they contributed to only
one project, 15 between one and five projects, 14 between five and ten while 10
contributed to more than ten. All the respondents contributing in OSS use at
least an IDE/editor: the most used ones are IntelliJ IDEA (21), Visual Studio
.NET (14), Vi (13), PyCharm (11), and Eclipse (9). 30 respondents use two or
more editors, with the largest number of IDEs reported being five.

3.2 RQ1: To what extent developers admit SATD?

We start by investigating whether developers annotate any design and im-
plementation choice, and then we focus on the annotations highlighting the
presence of TD.

3.2.1 How frequently do developers annotate design decisions?

Four of our interviewees report that they always annotate their code with
decisions made, to improve the awareness towards the whole development team.
Other four indicate that they mainly use annotations for planning purposes,
e.g., Is uses annotations very frequently, in particular “to clarify what has to
be done to the ones who will implement the code.” Three of them highlight
that undocumented code cannot be merged in the stable release branch due to

3 The sum exceeds the number of interviewees as multiple IDEs and programming languages
may be used.

Title Suppressed Due to Excessive Length 11

Groups H Industry 0SS
4%
Never- .4%

33%
<25% of devel. tasks- 44%

26%
25%-75% of devel. tasks- 39%

37%
>75% of devel. tasks (**)- - 13%
0 25 50 75 100
Responses (%)

Fig. 1 Frequency of design/implementation decision annotations (Q1)

company policies. Finally, Is never uses annotations since the code should be
self-explanatory.

Based on the interview responses, while defining the survey we provided
four alternatives: never use annotations, use annotations in less that 25%
of development tasks, between 25% and 75% of development tasks, and in
more than 75% of development tasks. Fig. 1 suggests that OSS developers
(yvellow) are more likely to annotate design and implementation decisions
compared to industrial practitioners (blue): only 13% of industrial participants
use annotations in more than 75% of their development tasks as opposed to 37%
for OSS. The difference between the two distributions is marginally significant
(Wilcoxon rank-sum test p-value=0.05) with a small effect size (d = 0.21). The
above result is slightly contradicting what we found during our semi-structured
interviews from which it was quite evident that in the industry there may
exist strict policies for annotating both design and implementation decisions
especially for planning purposes (I5).

3.2.2 How frequently do developers make SATD annotations?

Most of the interviewees (7) use SATD-related annotations very often or always.
However, two of them report that they try to fix the problems before considering
leaving an annotation somewhere. As for the previous question, two interviewees
highlight the presence of company policies prohibiting merging buggy or not
fully implemented changes. For instance, Iy states: “We have a very strict
policy that we do not add any of these comments into the source code, we
try to only merge code that is fixed”, or Is mentions “we try to only merge
code that is actually fixed”. About the above aspect we found contradicting
results since for instance I3 reports that “Very often it happens that I need to
add annotations related to a new discovered bug”, or I7 who mentions “The
frequency of FIXME is greater than the frequency for TODO. Indeed, it is
more likely to find a bug in the system that you cannot fix immediately rather
than pushing an empty or not completed functionality”.

12 Fiorella Zampetti et al.

Groups H Industry 0SS

8%

Never- - 10%
39%
o e e | —v

33%
25%-75% of devel. tasks- _19%

20%
>75% of devel. tasks- -10%
0 25 50 75 100
Responses (%)

Fig. 2 Frequency of SATD annotations (Qz2)

The survey (Fig. 2) confirms the observations coming from the previous
question dealing with annotations for design and implementation decisions.
71% of the industrial respondents report that they never or rarely use this kind
of annotation, while only 10% use them very frequently as opposed to 47%
and 20% for OSS participants. We conjecture that in the industry it is possible
that people are not very happy admitting that something is going wrong and
let the other team members know about this misbehavior. As an example, one
of our interviewee (1) states: “I am shy reporting that my code is not in the
right shape, for this reason, most of the time I use documents accessible only to
myself”. Differences between the results are statistically significant (Wilcoxon
rank-sum test p-value=0.02) with a small effect size favoring OSS respondents
(Cliff’s §=0.24), i.e., OSS developers annotate delayed or intended sub-optimal
activities more often than their industry peers.

Comparing Fig. 1 and 2, one might get the impression that SATD is less
likely to be annotated than design decisions. More careful statistical analysis,
however, reveals that while there is no statistically significant difference between
the frequency of annotations for design decisions and SATD for OSS developers
(p=0.11), industrial developers seem to be more reluctant to admit TD than
to annotate their design decisions (p-value=0.02, Cliff’s 6=0.24, small), as
previously conjectured and highlighted by I5.

3.3 RQ2: What are the reasons for (not) admitting SATD?

Next, we investigate the reasons why developers use or not use annotations
to record implementation and design choices, including technical debt. Two
of the reasons have already been mentioned in Section 3.2: the presence of
company-specific policies and requirement the code to be self-explanatory
rendering annotations unnecessary.

Title Suppressed Due to Excessive Length 13

Groups B Industry 0ss

67%

Reminder for the community - 71%

73%

Reminder for yourself- 75%

) 35%
Reminder for newcomers- 44%

6%
Other- I2%
0 25 50 75 100
Responses (%)

Fig. 3 Reasons behind using annotations (Q7)

3.83.1 Why developers use annotations?

We perform card sorting on the interview transcripts, and three reasons emerge.

First, annotations can serve as a reminder for the community, the devel-
opment team, or the whole organization (9 interviewees), “to make the other
aware of the problems so that who wants can try to fix and address the problem
once available” (Ig). This is confirmed by the survey results (Fig. 3): more than
67% of the respondents, both from the industry and from the OSS, use anno-
tations for improving the awareness of the whole development team, project or
organization.

Second, annotations can serve as a reminder for the developer themselves
(6 interviewees). For instance, I1g states: “TODOs are used to remind me of
necessary work before it is ready. I am usually the only one who sees them.”
More than 73% of the survey respondents use annotations to this end, e.g.,
when there is not enough time the annotations can support recollection of what
has been done and what remains to do. Our distinction between annotations
being used as reminders for self, team, and community concurs with the earlier
observation of the annotation practices in the Eclipse community (Storey et al.,
2008).

Third, annotations can be specifically intended as a reminder for newcomers
joining the project (5 interviewees). For instance, Is uses annotations because
“this makes it easy for the new owner of the project, for the new developers that
are working on that project.”, or I3 states: “we will use annotations in order to
improve the overall readability for simplifying the integration of newcomers
in the team”. However, more generally speaking, Is mentions that he uses
annotations “ to give the possibility to improve and understand the code later
on”. The on-boarding of the newcomers is mentioned by more than 35% of the
survey respondents.

In addition to the three reasons that emerged from the interviews and
were confirmed by the surveys, one industrial participant (Indg) reports that
there are cases where the annotations are used to keep track of the creative

14 Fiorella Zampetti et al.

Groups H Industry 0SS

43%

LackoTme | ©*

10%
| remember where to improve the source code- -10%

4%
| do not want to tell others- .6%

41%
ONer >
0 25 50 75 100
Responses (%)

Fig. 4 Reasons behind not using annotations (Qg)

development process, while one OSS developer (0.5S23) highlights that “code
must be expressive enough to communicate its intent”.

3.3.2 Why developers do not use annotations?

Three interviewees indicate that annotations are useless when the code is
“very clear, complete and works as expected” (I7). Two themes were reported
by a single interviewee: (i) reluctance to report that the code is not in the
right shape (1), akin to the discussion of bounded transparency by Storey
et al. (2008); and (ii) omission of annotations due to lack of time (I5), likely
introducing documentation issues (Aghajani et al., 2020, 2019; Arnaoudova
et al., 2016). Even if developers need good documentation for maintaining and
evolving a software system, previous work by Aghajani et al. (2019) found that
documentation is affected by issues such as insufficient and inadequate/obsolete
content. In this case, not annotating design/implementation choices and TD
may generate a documentation that is not up-to-date (i.e., obsolete content)
or incomplete.

Results of the survey (Fig. 4) show that lack of time is by far most common
both in the industry (62%) and OSS (43%). The percentage is unsurprisingly
higher for industry than for OSS, as there is likely more pressure in releasing
the software. As already highlighted, it may be of interest to investigate how the
not usage of TD annotations impact the overall quality of the documentation in
terms of introduction of documentation smells (Aghajani et al., 2019). About
10% of the respondents state that they do not need annotations to recall where
the source code needs improvement, while reluctance to admit that the code is
not (yet) right has been reported by 4-6% of the respondents from OSS and
industry respectively.

20 out of 52 industry participants and 19 out of 49 OSS participants provided
further insights when answering this question. Three industrial and three OSS
respondents are concerned by annotations becoming obsolete and confusing
when the source code evolves. For instance, Indss reports: “Documentation tends
to diverge from the code it refers very quickly. If you change the code then you

Title Suppressed Due to Excessive Length 15

should change the documentation accordingly and it rarely happens, meaning
that your documentation easily becomes misleading”. Moreover, according to
085853 “<i>n the very best case annotations are only redundant information.
In the worst case they are not in sync and don’t communicate the true story.
Truth can only be found in code.” The latter confirms what already reported
by previous literature, indeed, Wen et al. (2019) in their taxonomy of code-
comment inconsistencies identified three different type of inconsistencies dealing
with TD (e.g., SATD comments not deleted while addressing them, or TD
introduced without being documented).

Also in this case differences between the responses of the industry and OSS
participants are not statistically significant.

3.3.83 Influence of Organizational Policies

As mentioned above, several interviews suggested that organizations might
have policies governing when annotations should, can or should not be used.
Hence, we included in the surveys two open-ended questions about policies
on (not) annotating (i) design and implementation decisions, and (ii) SATD.
Such policies are summarized in Fig. 5 (blue and yellow boxes indicate the
number of responses for each policy provided by industry and OSS respondents
respectively).

When asked about the policies for annotating development decisions, 32
respondents from the industry and 29 respondents from OSS reported that
their organizations or projects do not have such policies. Applying card sorting
to the remaining answers we identify seven themes:

— Never annotate. Six industry and three OSS respondents indicate that the
source code must be self-explanatory rendering annotations unnecessary:
“following clean code principles and investing a lot of time into good naming
of variables and functions is key” (0S5S23). The latter is confirmed by
an industrial developer (Indss) who points out that: “if the design needs
explanation then it is probably wrong and needs to go back to the drawing
board..

— Always annotate. On the other end, we find five industry and two OSS
respondents reporting that annotations are mandatory, e.g., “A Public
procedure must be tested and documented.” (Indg) or “10% of each day is
used to document the days’ work.” (0SSy4).

— Annotate under special circumstances. According to nine industry and six
OSS respondents, annotations are only mandatory when specific conditions
are met: (i) when the code is not self-explanatory, e.g., “for some very dark
and obscure snippets of code that cannot be refactored for better clarity”
(Indsa), (ii) only in the early stage of development when presumably the
developers’ ideas are not yet fledged fully, and “these are gradually fixed
in later commits” (Indy), and (iii) when the code has to pass the static
analysis checks, e.g., OSSy; reports :“Eslint restrictions, not using case
insensitive names for components etc.”.

16

Fiorella Zampetti et al.

General annotation TD annotation
policies policies

H 3 n—1 2
Never

Never ’
annotate (in a
annotate
release branch)

H [2] H Document E‘]

Always
as source code

annotate

comments
!l—{ 6 H—1 1
Annotate Do not
under special document
circumstances in source code

Describe
high-level
design choices

Declare
your identity

1 9
Link to issue Link to issue
tracker tracker
Avoid link maze Use tool support
2 3
Decisions Decisions
left to the team left to the team

. # of Industry respondents
[] #of 0SS respondents

Fig. 5 Summary of general and TD annotation policies (Q3 and Q4)

Annotate to describe high-level design choices (six industry and seven
OSS respondents). As an example, Indys states: “Design choices have to
be documented in the model of the SW architecture or detailed design.
One way to support developers in this task is to have tools automatically
generating such descriptions.

Link to issue tracker. Respondents Indig and OSS4; indicate that the
commit messages should record decisions and also link to the issue tracker.
Avoid a link maze. In contradiction to the previous case, OSSs mentions
that the policies “result in a maze of links which discourages reading them.
Decisions left to the team. Three industry and two OSS respondents indicate
that the decision whether to use annotations is left to the development
team. For instance, Ind;9 mentions: “No policy within the organisation, but
sometimes a policy within the team”, however the respondents does not
provide any insights indicating when and why this happens.

)

)

Title Suppressed Due to Excessive Length 17

Moving the attention to the policies for annotating TD, 32 industrial and
30 OSS respondents state that they do not have such policies. As above, no
statistically significant difference between the industrial and OSS respondents
could be observed (Fisher’s exact test p-value ~ 0.69). We derive seven themes
related to TD annotations:

— Never annotate (in a stable release branch). While, for design decision,
interview respondents pointed out a Do mot annotate policy, for SATD
interview participants told us this is mainly for the stable release branch
(while such annotations are still possible in development branches). In some
companies, this policy is automatically enforced: “Our CI/CD workflow
prevents TODO, FIXME comments from proceeding past the DEV branch”
(Indy3). This theme confirms what we found in our interviews, indeed I5,
while answering whether or not they use TD annotations states: “We have
very strict policy that we do not add any of these comments into the source
code, we try to only merge code that is actually fixed.”

— Always document TD as source code comments (two industry and four OSS
respondents). This policy is the opposite of the previous two. Indeed, in this
case, it is possible to push a change containing a workaround or delayed
activities highlighted with a specific source code comment. For instance,
Inds states: “They should always be documented”, while an OSS developers
(OSS40) mentions: “ad-hoc todo code comments”.

— Document TD in shared documents and not in the source code (two industry
and one OSS respondent): “Hacks and workarounds are discouraged but,
when absolutely needed, they are usually explained not in code but in
documents that are in our knowledge base” (Indss).

— Link to issue tracker (twelve industry and nine OSS respondents). As for
design annotation, interview participants pointed out how to use comments
vs. issues, and how to link them. This policy separates recording of the
details of TD (in an issue tracker) and indicating presence of TD in the
source code (by including the link to the issue tracker): “ToDos are fine, but
generally, future work shouldn’t be documented in code instead of in tickets”
(OS857). In a previous study with Eclipse developers (Storey et al., 2008),
44% of the respondents indicated that they include bug ID when using
TODOs. While this can be further investigated and quantified by mining
and analyzing SATD comments in source code, a preliminary exploration of
the SATD comments in the dataset by da S. Maldonado and Shihab (2015)
reveals that in OSS developers do not seem to follow this practice.

— Use of tool support (two industry and one OSS respondents). This policy
is induced by static analysis tools detecting TD, and requiring developers
to either resolve TD or at least justify its presence before committing the
change. For example, one of the survey participants (Inds;) highlights:
“The code is scanned by Sonar and warns you that you're committing a
todo. You have to justify the existence of the TODQO’s to code reviewers.”.

— Declare your identity when introducing TD (four industry and one OSS
respondent). Some policies require developers to take personal responsibility
by disclosing their identity in the SATD comment: “no TODO without

18 Fiorella Zampetti et al.

names or initials of the engineer” (Indsy). In the aforementioned study of
Eclipse (Storey et al., 2008), 51% of the respondents reported including
their name or initials in TODO annotations. Also in this case, a preliminary
exploration of the SATD comments in the dataset by da S. Maldonado
and Shihab (2015) reveals few cases where developers disclose their identity
while introducing an annotated TD.

— Decisions left to the team (two industry and four OSS respondents). Similarly
to design decision annotations, TD annotations can be defined by individual
teams.

3.4 RQs: What are the channels and tool support used to admit TD?

Section 3.3.2 suggested that respondents tend to use multiple channels to
record SATD: in addition to the source code comments, interviewees and
survey respondents have mentioned issue trackers and private documents.
Moreover, a recent study by Xavier et al. (2020) conjectures that developers
can admit TD by not only using source code comments, e.g., by creating
issues in tracking systems and labeling them as referring to TD. Their results
highlight that only 29% of the TD admitted in issue trackers can be tracked
to source code comments pointing out the lack of overlapping among what
documented in source code comments and what highlighted in issues. .

Zooming in on this aspect during the interviews, we found that the use of
source code comments is widespread (7 out of 10), but that developers also
use issue trackers (4), internal mailing list (3), task management tools, e.g.,
Trello (3), private documents (1) or commit messages (1). Hence, we used
the following as answer options in the surveys: source code comments, issue
trackers, internal documents, task management tools, mailing lists and commit
messages. We have also included code reviews or pull requests and messaging
apps, e.g., Slack.

Fig. 6 shows that industrial and OSS respondents use different tracing
mechanisms in very similar ways (differences are not statistically significant).
Similarly to the interviews, source code comments are the primary channel
for communicating design decisions and TD, being used by more than 81%
of respondents. Commit messages, code reviews or pull requests, and issue
trackers are still very common in both industry and OSS (44% of respondents).
Finally, 44% of industrial respondents and 35% of OSS developers use internal
and private documents to keep track of design decisions and TD. This may or
may not provide awareness to everybody in the development team, and surely
not to external contributors/newcomers of OSS.

3.5 RQ4: What is the content of SATD annotations?

By applying card sorting to the interview transcripts we identify seven topics.
The topics were also used as answer options in the survey (cf. Fig. 7).

Title Suppressed Due to Excessive Length 19

Groups B Industry 0ss

86%

Source Code- 81%

53%

Commit Messages- 54%

49%

Code Reviews or Pull Requests- 5206

53%

Issue Trackers- 44%

35%

Internal/Private Documents/Sheets- 24%

22%

Task Management Tools- 31%

14%

Messaging Apps- 15%

6%
Internal Mailing List- I4%

16%
Other- - 12%
25 50 75 100
Responses (%)

o-

Fig. 6 Tracing Mechanism (Qs)

— Eaxplain the need of improving maintainability or performance (six intervie-
wees), e.g., Is explicitly refers to the need to improve “readability of the
code under development”. The survey shows that mostly maintainability
(63%) and performance (35%) need to be improved.

— Explain the presence of a bug (six interviewees): adding information related
to the bug such as the context in which it occurs, the steps to reproduce
it, or the observed behavior opposed to the expected one. In this con-
text, Ig highlights: “What are the next steps and what was the source of
problem/delay (only technical problems are included)”. Survey respondents
mentioned this reason in a minority of cases (27-29%), likely because it
may be debatable whether or not bugs should be considered TD (Li et al.,
2015) or whether they should be handled in the usual way (i.e., through
issue tracking/triage).

— Report that a feature is not ready yet (five interviewees). I also stresses
the importance of “explaining what remains to do”. This is also considered
important by most of the survey respondents (49-52%).

20 Fiorella Zampetti et al.

— Report the need for introducing a temporary fix (three interviewees). For
example, I; states: “.. in presence of a bug into a different feature I am
using, I can complete my implementation but considering that this is only
a temporary patch that needs to be modified once addressed the inherited
bug”. This observation has been confirmed by more than 46% of the survey
respondents.

— Need for using a better API/upgrade API (two interviewees), e.g., when
developers “have no time to find a better API” (I7). This is the only case
for which OSS survey respondents considered the option in significantly
more cases (43%) than industry (13%). We conjecture that OSS projects are
more likely to use a variety of third-party APIs, whereas industrial projects
might be subject to organizational policies or technological constraints.

— The code works only under specific conditions (two interviewees). This
observation has been confirmed by more than 48% of the survey respondents.

— Use a simple tag as reminder (two interviewees). Ig states: “.. when I am
sure that I will touch the same code in the next day, I only use a tag because
I will remember also without adding more information”. The survey indicates
that a limited number of developers use tags as reminders, especially in
industry (29% vs. 43% in OSS). Once again, as mentioned above, the limited
usage of such tags may depend on the reluctance industrial developers have
to expose the limitations of their source code. This use of SATD annotations
is similar to short-term task annotations discussed by Storey et al. (2008).

)

Among the six survey respondents that used the “Other” option, Indss
indicated that SATD may refer to (partially) stubbed functionality: “Listing
missing functionality in stubs. For example when implementing a bigger feature
and you create multiple stubs first to have all the required functions.” This is a
specific case of a feature not being ready yet.

3.6 RQs: How do developers react when they encounter SATD comments?

The goal of our last question is to investigate what developers usually do while
encountering a previously admitted technical debt while coding. Most of the
interviewees (7) reported that, when they encounter a SATD annotation, they
try to address it before completing their tasks, even if the annotation was left
by somebody else. Three interviewees do not address the TD, but take it into
account while performing the changes. Quite surprisingly, two interviewees
report that they usually comment out the annotations and complete their
tasks without accounting for it. More specifically, I; states: “There are also
cases where I comment out the code affected by the annotations and I will
try to complete my task ignoring it”. Finally, four interviewees ask the project
manager or the author of the admission before starting to work on the affected
piece of code. As an example, Is states: “I try to contact the original author in
order to have more insights and only when the original author cannot address
the content of the annotation, I will try to address it by myself”.

Title Suppressed Due to Excessive Length 21

Groups B Industry 0SS

63%

Improve maintainability - 71%

49%

Incomplete feature- 5206

55%

Incorrect behavior under certain conditions-
48%

55%

Temporary fix- 26%

41%

Improve performance- 35%

27%
Possible bug- 29%
43%

Reminder (e.g., TODO, FIXME)- 29%

43%
Need to change API (**)- -
13%

4%

Other- -
10%
0

25 50 75 100
Responses (%)

Fig. 7 Type of content added while annotating technical debt (Qg)

Our survey results (Fig. 8) are in-line with the interviews, and there is no
statistically significant difference between industry and OSS. Many respondents
try to find a solution either when the SATD comment was added by them (54%
of the industrial respondents, and 65% of the OSS respondents), and when they
are not (40% of the industrial respondents, and 39% of the OSS respondents).
Furthermore, 38% of the industrial and 43% of the OSS respondents report
to not address the technical debt but to consider it while completing their
tasks. Only a small minority (4% industrial and 6% OSS) completely ignores
the admissions. The “Other” options include further reasons influencing the
decision to address TD. Indy mentions priorities: “Depends on the priority of
the task. Delivering results is more important than over-engineering something
that works assuming there are no major flaws with the code.” Indys comments
about code ownership/familiarity: “If it is in parts that I touch a lot, I would
be more inclined to try to find a solution. If not, mostly I would ignore the
comment”.

22 Fiorella Zampetti et al.

Groups B Industry 0SS

65%

If I am the author, it is a reminder for myself- 549%

39%

If I am not the author, | try to find a solution- 40%

43%

If I am not the author, | keep it into account- 38%

6%
If I am not the author, | ignore it- I4%

12%

Other- 29%

25 50 75 100
Responses (%)

o-

Fig. 8 How developers deal with SATD annotations (Q10)

4 Implications

In the following, we summarize the main lessons learned from this study, which
can result in implications for practitioners and, in some cases, for researchers.
In the following, after discussing results, we state some possible implications
that emerge from such results. Then, we outline possible research directions
that would help to enact the implications.

Industrial and OSS developers annotate design and implementation
decisions with a similar frequency, OSS developers admit SATD
more. The results of RQ; suggest that industrial and OSS developers an-
notate design and implementation decisions with a similar frequency. At the
same time, industrial developers seem to be more reluctant to admit SATD:
survey respondents attribute not admitting TD primarily to lack of time (RQz2).
As explained in Section 3.3.2, this is a primary reason for not admitting TD for
both industry and OSS, although with a greater percentage in industry. On the
one hand, the reason may be found in the higher pressure industrial developers
have, as they need to prioritize software releases, e.g., by adding requested
features or fixing critical bugs. On the other hand, this might or might not be
the primary reason for lack of admission, because respondents might be more
comfortable to indicate lack of time than “not being able to do their job right”.
As reported in Section 3.2.2; one interviewee (I2) stressed this aspect clearly
reporting the shyness as a main factor for not annotating TD in the source
code while using private documents that cannot be accessible to other team
members. Moreover, some companies have specific rules for which “not ready
yet” code should not be merged into a master/stable branch or should not be
annotated in the source code but elsewhere.

Title Suppressed Due to Excessive Length 23

Implication 1a: To reduce the barriers to manual annotation of TD, tools
should be able to recognize situations where TD should be admitted.

Previous research has shown how scenarios where design TD should be ad-
mitted could be identified through machine learning models that leverage source
code metrics, static analysis warnings, or code smells (cf. TeDIOUS (Zampetti
et al., 2017)). Future research should better explore these scenarios, by rec-
ommending admittance of other types of TD, as well as helping developers in
understanding why the code is likely to contain TD which should be, therefore,
admitted.

Implication 1b: Companies and OSS projects should find a balance be-
tween the desire to ensure quality and promoting an “open” culture in
which the awareness of temporary solutions, incomplete, and in general not
ready components is encouraged and not considered as a bad practice.

The latter is mainly a cultural and organizational problem rather than a
technological one. Promoting a knowledge sharing culture also for negative
aspects of the source code is something to encourage. Project managers should
avoid scenarios where developers may fear of bad consequences of admitting
their code limitations.

SATD is mainly communicated through source code, while in a few
cases internal documents are used. While source code remains the premier
channel to communicate SATD, some developers (both from industry and OSS)
mention commit messages, code reviews or pull requests, and issue trackers
as well as internal documents. The latter should be avoided, as it reduces the
problem awareness and knowledge sharing, especially in open source projects
where external developers may want to contribute. Based on our results, the
use of other, internal documents to convey SATD is more prevalent in industry
than in OSS. Instead, the use of source code comments represents a very
transparent channel of communication, with a sufficiently clear tracing of the
problem description onto the affected source code elements. At the same time,
source code comments are highly unstructured and usually do not provide a
notification mechanism (Guzzi, 2012; Storey et al., 2006).

Implication 2a: Researchers should provide mechanisms to help developers
write standardized, easy to understand SATD comments, as well as enacting
a notification mechanism similar to code review tools or issue trackers.

For example, it could be possible to use tools similar to the TODO bot (Etco,
2017) that creates GitHub issues based on TODO annotations in the source code.
Such tools could be combined with SATD detection tools (da S. Maldonado
and Shihab, 2015; da S. Maldonado et al., 2017b; Huang et al., 2018; Ren et al.,
2019), in order to create issues also for SATD not as easily recognizable as
TODOs.

24 Fiorella Zampetti et al.

Implication 2b: Researchers should expand studies of SATD beyond the
source code.

In this context, Xavier et al. (2020) have studies how SATD is admitted in
issue trackers. However, based on RQgs results, TD is admitted on a variety of
channels, which should also be considered to gain a global picture of a project’s
(explicit) TD.

Developers believe to remember what needs to be improved. As a
consequence, the decisions’ rationale is not tracked, and this could
create a truck factor. Annotations are used for both industry and OSS
developers as a reminder for themselves and others, less so for newcomers
that can be expected to benefit most from recorded design decisions or TD
indications. Moreover, developers still believe that, if they remember what to
do, TD annotations are redundant or confusing. Reliance on one’s memory can
create multiple problems including lack of traceability and documentation of
decisions taken (Aranda and Venolia, 2009; Falessi et al., 2013; Alexeeva et al.,
2016). Not only this makes the life hard for project newcomers, but, in extreme
cases, it can provoke truck factor events (Avelino et al., 2016; Torchiano et al.,
2011), making the source code hard to be maintained or project becoming
abandoned (Avelino et al., 2019). Missing rationale is also frequently reported
as confusing during code review (Ebert et al., 2019).

Implication 3a: Even if a developer is aware of what needs to be improved,
consistently adding SATD and documenting decision rationale helps to
promote awareness in the project, in turn, supporting newcomers and
reducing the likelihood of project abandonment.

For this reason, having the complete picture of a project’s SATD should
contribute to the set of (documented) design and development decisions that
one may want to look when understanding a project, for example in the case
of newcomers starting to contribute in project’s activities.

Implication 3b: Tools should support co-evolution of annotations with
the source code as well as automatic documentation generation and possibly
automatic machine translation from source code to comments.

Previous work has pointed out how sometimes source code comments may
be misaligned with source code (cf. (Aghajani et al., 2020; Wen et al., 2019))
and such inconsistencies could be highlighted to developers (Tan et al., 2012).
In the context of SATD management, SATD comments could be automatically
updated (or even removed) when the source code is changed. Also, similarly to
approaches for commit (Jiang et al., 2017) or release note generation (Moreno
et al., 2017), SATD comments could also be automatically generated.

SATD annotations may be beyond maintainability and temporary
fizes. Most of the SATD annotations contain details about maintainability

Title Suppressed Due to Excessive Length 25

concerns and temporary fixes (cf. Fig. 7). Sometimes the annotations refer
to the functional correctness; whether bugs should be considered as TD is
controversial: e.g., Bellomo et al. (2016) exclude bugs from TD, while Li et al.
(2015) consider bugs as a special case of TD. In any case developers should be
encouraged to report the problem as a bug in the issue tracker and properly
handle it. Still, there may be corner cases where the undesired behavior is
considered acceptable, e.g., it only happens in rare cases and the harm caused
is limited.

Another specific case of annotation, especially mentioned by OSS respon-
dents, was about the need for API replacement. While we do not have any
evidence of why API changes were mentioned more by OSS developers than by
industrial developers, one possible interpretation is that the former have more
degrees of freedom in integrating third-party, non-certified components in their
software.

Implication 4a: SATD may be related to functional behavior, and not
only to maintainability problems.

Certainly, when we mention functional behavior, this is not about blocking
bugs but rather, from what we have observed, anomalous behavior in certain
(sometimes rare) circumstances. On the one hand, the latter enforces the need
(as pointed out by Implication 2a) to manage SATD with issue tracker. On
the other hand, testing and analysis activities that identify (unlikely) scenarios
where the program may not work as expected could also automatically generate
SATD comments.

Implication 4b: Recommenders supporting developers in the choice of
APIs could help solving SATD related to API upgrade.

To help resolving this kind of TD, recommenders, and specifically those
recommending APIs based on their non-functional properties (e.g., ease of use,
performance, security) (Lin et al., 2019; Uddin and Khomh, 2017) could help
to address this kind of SATD. While, as explained in Section 3.5, this kind of
TD is more prevalent in OSS than in industry, recommenders similar to those
mentioned above could be adopted in both contexts indistinctly.

In most cases, SATD is taken into account or even addressed, al-
though sometimes developers “hide” it. Our results indicate that more
than 40% of developers generally take SATD into account, or try to address it,
either if it is coming from themselves (i.e., they have introduced the SATD
annotation when writing source code) or by others. This being said, many
developers merely take SATD into account without trying to address it: this
is concurrent with the previous observation of da S. Maldonado et al. (2017a)
that while all respondents of their survey at least sometimes encounter SATD,
half of them rarely address it. In a few cases, developers just decide to ignore
SATD: this concurs with an earlier observation of Zampetti et al. (2018) that
2-17% of SATD instance removals do not involve modification of the method

26 Fiorella Zampetti et al.

source code. While in some cases this may be a legitimate behavior (i.e., the
problem does not manifest anymore, or the concern no longer applies because
of changes elsewhere), there are also cases where this should be considered as
a “smelly” behavior.

Implication 5: Hiding SATD without addressing it should be discouraged.

To this aim, researchers could develop tools to recognize such behavior
similarly to what, for example, has been done for Continuous Integration
pipelines, to discourage “hiding” failing test cases or static analysis checks
(cf. CI-ODOR (Vassallo et al., 2019)). Also, it would be desirable to develop
recommender systems that prioritize actions to be undertaken in the presence
of SATD.

5 Threats To Validity

Threats to construct validity concern the relationship between theory and
observation. One threat can be due to the lack of a clear separation between
industrial and OSS developers, i.e., some industrial developers may also par-
ticipate in OSS during their spare time or their company contributes to OSS.
However, we know that the industrial developers coming from our personal
contacts answered the survey (or the interview questions) based on the work
carried out in their industrial projects.

When sending the questionnaire to OSS developers, by using the mailing
lists of the projects, we asked the respondents to answer with respect to that
particular OSS project. That being said, it is entirely possible that developers
working on both industrial and open-source projects may have a slightly
different perspective in admitting TD than developers working only on OSS or
only on industrial projects.

Another threat to construct validity can be due to the interpretation the
study respondents have given to the notion of TD and SATD. As for the
interviews, we clarified with the participants the intended notions referring to
the concepts of previous studies (Bavota and Russo, 2016; Potdar and Shihab,
2014). As for the questionnaires, we accompanied it with an introductory letter
(available in the replication package (Zampetti et al., 2021)), and made sure to
have self-explanatory questions. That being said, we cannot exclude possible
cases of misinterpretation. In particular, since our questionnaire contains specific
questions about TODO- and FIXME-related comments, some respondents
may have assumed that any comment with such an annotation is TD-related.
However, based on Cunningham’s definition Cunningham (1992), this may or
may not be the case.

Finally, a further threat can be the use of multiple-choice questions for the
survey, which was chosen to ease data collection and minimize the respondents’
burden. To mitigate this threat, we allowed respondents to use the “Other”
option and provide a written answer when the options did not fit.

Title Suppressed Due to Excessive Length 27

Threats to internal validity concern factors that are internal to our study
that could have influenced the results. One threat could be the low represen-
tativeness of the respondents with respect to our initial target. As for the
industrial developers, relying on personal contacts limited this threat. As for
the OSS developers, to at least achieve diversity in terms of programming
languages, we tried to balance the number of respondents among the different
languages. Moreover, by contacting the mailing lists of 104 OSS, and by in-
volving developers of small, midsize and large companies, we tried to achieve
diversity in terms of organizational culture. Of course, it may be desirable to
diversify other dimensions as well.

It could be possible that the experience of the participants may affect our
results. To mitigate this threat, we applied the same statistical procedures
applied to compare industry and OSS developers to check whether there are
statistically significant differences between developers with less than 5 years of
experience and those having more than 5 years of experience. The results did
not indicate, in any case, any statistically significant difference (p-value always
> 0.05).

Similarly, it could be possible that OSS answers depend on the programming
language of the targeted project. We have tested the effect of the language,
for Q; (Fig. 1) and Q2 (Fig. 2) using Kruskal-Wallis test (Kruskal and Wallis,
1952), and for the other questions using a proportion test (Newcombe, 1998),
adjusting p-values for multiple comparisons using the Benjamini-Hochberg
correction (Benjamini and Hochberg, 1995). Results, likely because of the
relatively low number of responses for each language, are never statistically
significant (p-values> 0.05), except for Q7 (Fig. 3), where we found that,
for Python, nobody mentioned the use of annotation as a support for the
community.

Threats to conclusion wvalidity are mainly related to the use of analysis
techniques to support our findings. As explained in Section 2, we used suitable
statistical procedures and effect size measures to answer our research questions
and above all to compare responses coming from the industry and OSS. More-
over, subjectiveness might have affected the coding of the interview transcripts
and open-ended questions. Using multiple annotators and multiple rounds of
coding mitigates this threat.

Threats to external validity concern the generalization of our findings.
Clearly, the results may not generalize beyond the companies and the OSS to
which the survey participants belong. We mitigated this threat having a set
of industrial developers working with different languages, as well as receiving
answers from mailing lists of OSS written in different languages.

Last, but not least, it is important to remark that our study concerns SATD
in source code. This may or may not cover a broader definition of TD. However,
TD management has been largely investigated in other studies, as discussed in
Section 6.1.

28 Fiorella Zampetti et al.

6 Related Work

This section reports the literature related to (i) studies about TD, (ii) “self-
admitted” TD and (iii) source code annotations.

6.1 Studies on Technical Debt

Previous studies discussed the term “technical debt” (Brown et al., 2010;
Kruchten et al., 2013; Seaman and Guo, 2011) underlining that TD is mainly
used for communication between developers and managers for development
issues. Alves et al. (2014), defined an ontology for TD, identifying 13 types
of TD, related to architecture, build, code, defect, design, documentation,
infrastructure, people, process, requirement, service, test automation, and test.
With respect to their ontology, our study mainly focuses on source code-related
TD and aims at investigating the reasons for admitting it (or not).

Zazworka et al. (2011) studied the impact of design TD on the quality of
a software product highlighting the need for identifying and managing them
closely in the development process to reduce their negative impact on software
quality.

Lim et al. (2012) conducted interviews with 35 practitioners to understand
their perception of TD. Among other insights that emerged from the interviews,
there was the need for properly communicating about TD, both towards the
management (to be recognized about the effort in dealing with it), as well
as the customers. Surprisingly, while there could be benefits from developers’
perspective to document TD, in our study we also found that both developers
are afraid of admitting TD (as they fear they are under-performing), and
organization guidelines discourage SATD in the main project branch. We
believe that different beliefs can also be due to cultural reasons.

Ernst et al. (2015) conducted a study with professionals, combining surveys
and semi-structured interviews, shedding the light on (i) the common under-
standing of TD, (ii) to what extent TD relates to architectural choices, and (iii)
tools being used to manage TD. We believe our study is complementary to the
work of Ernst et al., as we study how developers document TD. At the same
time, our study relates to many of their results. In particular, 79% of Ernst et al.
respondents indicated that the lack of TD awareness is a problem. Moreover,
concerning tools, while we share with their results the use of issue trackers as
one way to manage TD, our study reveals other kinds of communication tools
being used to document SATD.

Besker et al. (2018) conducted an exploratory study aimed at understanding
how software startups reason about TD. Specifically, they interviewed 16
software practitioners belonging to seven startup companies to determine what
are the organizational factors that could influence the accumulation of TD,
as well as, the challenges and benefits of TD for software startups. Their
results present six organizational factors that lead to the accumulation of TD
like developers’ experience, uncertainty, and autonomy as regards TD-related

Title Suppressed Due to Excessive Length 29

decisions. Among their findings, we highlighted a quite contradictory result
since they found how it is important to remove TD while joining newcomers in
the development team to avoid those new developers may model their code
off existing TD or duplicate poorly written code. Looking at our interviews
and survey responses, we found that the admission of TD is mainly aimed at
giving awareness to newcomers joining the project.

From a different perspective, de Almeida et al. (2018) conducted a multiple-
case study with two big software development companies to investigate whether
accounting for business objectives can improve the decision making for priori-
tizing TD removal, focusing more on business urgency and criticality. Their
findings show how the business perspective and business processes affect TD
removal prioritization. Based on these results, in a follow-up study, de Almeida
et al. (2019) presented a framework for TD prioritization (“Tracy”) by using a
business-driven approach built on top of the business process.

6.2 Self-Admitted Technical Debt

Potdar and Shihab (2014) observed that developers tend to “self-admit” tech-
nical debt (SATD) using comments highlighting the existence of somewhat
temporary. Moreover, they identified 62 patterns that indicate SATD and
emphasized that the presence of SATD is not uncommon in software projects.
da S. Maldonado and Shihab (2015), instead, used source code comments in
order to determine different types of technical debt showing that the most
common type of SATD is design debt. Bavota and Russo (2016) performed a
qualitative analysis of SATD and created a taxonomy featuring 6 higher-level
TD categories specialized in 11 sub-categories. Similarly to our discussion of the
study of Alves et al. (2014), rather than providing yet another categorization
of SATD, we study the reasons developers have to admit (or not) TD and
the extent to which they do that. Fucci et al. (2021) conducted a study in
which SATD comments have been classified based on their content (instead of
life-cycle dimensions, as previous work did). Also, they analyzed the polarity
of SATD comments belonging to different categories. Finally, they studied the
presence of external references in these commits. They found how on-hold and
functional-related SATD are those with the most negative polarity, and that
only a minority of comments leverage external references.

Different approaches have been proposed to detect SATD, including a
keyword-based (da S. Maldonado and Shihab, 2015), text mining (Huang
et al., 2018), Natural Language Processing (da S. Maldonado et al., 2017b),
and convolutional neural networks (Ren et al., 2019).

Rantala et al. (2020) went deeper on SATD comments containing keywords
such as TODO and FIXME (i.e., KL-SATD) and compared them to the rest
of source code comments. While the median percentage of KL-SATD is very
low (~ 2%), their contents is very different from other comments. They also
developed a machine learning classifier for identifying KL-SATD showing good
performance, i.e., AUC equals to 0.88.

30 Fiorella Zampetti et al.

Maipradit et al. (2020), instead, after a qualitative study of 333 SATD
comments identified a specific category of SATD, namely “on-hold” SATD, i.e.,
debt which contains a condition to indicate that a developer is waiting for a
certain event or an updated functionality having been implemented elsewhere,

designed an automatic approach for identifying on-hold instances having an
AUC of 0.98.

Wehaibi et al. (2016) measured the impact of SATD on software development
practices finding that the presence of self-admitted technical debt leads to a
complex change in the future. From a different perspective, Zampetti et al.
(2017) developed a machine learning approach that, by leveraging structural
information (metrics or warnings raised by static analysis tools) is able to
recommend developers design TD to be admitted.

da S. Maldonado et al. (2017b) focused on SATD removal analyzing the
change history of five Java open source projects. They found that (i) the ma-
jority of SATD is removed, (ii) SATD comments are mainly self-removed, and
(iii) the survival time varies from one project to another. Moreover, da S. Mal-
donado et al. (2017a) investigated what are the activities/reasons that lead to
the removal of SATD conducting a survey with 14 developers. Their results
highlighted that SATD is usually removed as part of bug fixing activities (9
out of 14 respondents indicated that) and the addition of new features (5
respondents). In a follow-up work, Zampetti et al. (2018) performed a fine-
grained analysis of SATD removal, finding that a large percentage of SATD is
removed accidentally while removing the whole classes and/or methods affected
containing the SATD comment, and identifying six specific removal patterns.
Mensah et al. (2018) clustered SATD comments for the purpose of classifying
them into complex (buggy-prone) and trivial tasks, and also to estimate the
amount of change required to address the SATD, which is between 10 and 25
commented LOC for complex tasks.

Related to the work of da S. Maldonado et al. (2017a), Zampetti et al.
(2018), and Mensah et al. (2018), we surveyed developers investigating the
extent to which they address SATD admitted by others, or keep it into account.

Xavier et al. (2020) studied the admission and removal of technical debt in
GitHub issue reports. The authors have also checked the extent of the overlap
between TD admitted in issue reports and source code comments being deleted
while closing and fixing the above issues. Our results confirm their findings,
indeed they highlighted that 71% only rely on issues to track the presence of
TD in the code, while in 29% of the cases the admission was also in the source
code as a comment.

From a different perspective, Fucci et al. (2020) using a curated SATD
dataset, analyzed the extent to which SATD comments are introduced by
authors different from those who have done last changes to the related source
code and have measured the ownership of developers admitting TD on the
related source code. Their results highlight that the percentage of TD admissions
by developers who have not authored the last change to the related source code
varies in the range [0-16], representing a non-negligible phenomenon. Moreover,

Title Suppressed Due to Excessive Length 31

by looking at the level of ownership they found how this level is not low and is
dependent from the project.

6.3 Source Code Annotations

Eclipse, IntelliJ IDEA, Visual Studio and other modern IDEs support such
task annotations as TODO, FIXME, and XXX (Storey et al., 2008, 2009;
Chen et al., 2012; Padioleau et al., 2009). While SATD can be expressed using
predefined task annotations, it is often not the case: e.g., among 62276 SATD
annotations collected by da S. Maldonado et al. (2017b) only 3590 (5.76%)
use TODO, FIXME or XXX annotations. Consistently with the previous
studies (Storey et al., 2008; Chen et al., 2012) TODO is the most commonly
used annotation in the dataset of da S. Maldonado et al. (2017b).

Similarly to the previous studies we observed that annotations are used to
create awareness (Chen et al., 2012) targeting self, team, and community as a
whole (Storey et al., 2008). With respect to the contents of the annotations we
take complementary perspectives: while Chen et al. (2012) focus on the general
purpose of the annotations, e.g., denoting future actions, explaining the design
and providing solutions, and Storey et al. (2008) investigate articulation work,
i.e., activities related coordination and management, we take a more tradi-
tional software engineering perspective and distinguish, e.g., maintainability,
incomplete implementation and temporary fixes (cf. Fig. 7).

7 Conclusion

While previous research has largely investigated the presence of self-admitted
technical Debt (SATD) in software projects, little has been done to understand
developers’ rationale behind such annotations and reasons for admitting or not
SATD. That is different developers could admit SATD more or less regularly,
providing different content, and handling it differently. Moreover, external
factors such as organizational or cultural ones could influence developers’
SATD admittance.

To the best of our knowledge, this paper presents the first empirical study
aimed at investigating SATD from developers’ perspective and has been con-
ducted through semi-structured interviews involving 10 developers (one of
which from OSS, the rest from industry), and a survey with 101 participants,
52 from the industry and 49 from OSS.

Results clearly indicate a very similar perception and usage of SATD
between industry and OSS. At the same time, some differences emerged, e.g.,
industrial developers are less prone than OSS developers to admit TD. This
might be due to organizational policies and, above all, to the lack of a shared
culture of not being afraid to share mistakes and information about imperfect
code. Moreover, OSS developers care more about the need for API replacement
than in industry, likely because of having more degrees of freedom.

32 Fiorella Zampetti et al.

The study results also highlight challenges developers are encountering
upon admitting SATD. This promotes future research work in this area, aimed
at supporting developers in the admittance of TD, providing better notification
mechanisms for that, and also highlighting and discouraging practices related
to removing TD documentation without properly addressing it.

References

Aghajani E, Nagy C, Vega-Marquez OL, Linares-Vasquez M, Moreno L,
Bavota G, Lanza M (2019) Software documentation issues unveiled. In:
2019 TEEE/ACM 41st International Conference on Software Engineering
(ICSE), IEEE, pp 1199-1210

Aghajani E, Nagy C, Linares-Vasquez M, Moreno L, Bavota G, Lanza M,
Shepherd DC (2020) Software documentation: The practitioners’ perspective.
In: 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), IEEE

Alexeeva Z, Perez-Palacin D, Mirandola R (2016) Design decision documenta-
tion: A literature overview. In: Tekinerdogan B, Zdun U, Babar MA (eds)
Software Architecture - 10th European Conference, ECSA 2016, Copenhagen,
Denmark, November 28 - December 2, 2016, Proceedings, Lecture Notes in
Computer Science, vol 9839, pp 84-101

de Almeida RR, Kulesza U, Treude C, Feitosa DC, Lima AHG (2018) Align-
ing technical debt prioritization with business objectives: A multiple-case
study. In: 2018 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018, pp 655-664

de Almeida RR, Treude C, Kulesza U (2019) Tracy: A business-driven technical
debt prioritization framework. In: 2019 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA,
September 29 - October 4, 2019, pp 181-185

Alves NSR, Ribeiro LF, Caires V, Mendes TS, Spinola RO (2014) Towards
an ontology of terms on technical debt. In: Sixth International Workshop
on Managing Technical Debt, MTD ICSME 2014, Victoria, BC, Canada,
September 30, 2014, pp 1-7

Aranda J, Venolia G (2009) The secret life of bugs: Going past the errors
and omissions in software repositories. In: 2009 IEEE 31st International
Conference on Software Engineering, pp 298-308

Arnaoudova V, Eshkevari LM, Di Penta M, Oliveto R, Antoniol G, Gueheneuc
YG (2014) Repent: Analyzing the nature of identifier renamings. IEEE
Transactions on Software Engineering 40(5):502-532

Arnaoudova V, Di Penta M, Antoniol G (2016) Linguistic antipatterns: What
they are and how developers perceive them. Empirical Software Engineering
21(1):104-158

Avelino G, Passos L, Hora A, Valente MT (2016) A novel approach for estimat-
ing truck factors. In: 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), IEEE, pp 1-10

Title Suppressed Due to Excessive Length 33

Avelino G, Constantinou E, Valente MT, Serebrenik A (2019) On the aban-
donment and survival of open source projects: An empirical investigation.
In: 2019 ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ESEM 2019, Porto de Galinhas, Recife, Brazil,
September 19-20, 2019, IEEE, pp 1-12

Baltes S, Ralph P (2020) Sampling in software engineering research: A critical
review and guidelines. arXiv preprint arXiv:200207764

Bavota G, Russo B (2016) A large-scale empirical study on self-admitted
technical debt. In: Proceedings of the 13th International Conference on
Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22,
2016, pp 315-326

Bellomo S, Nord RL, Ozkaya I, Popeck M (2016) Got technical debt?: surfacing
elusive technical debt in issue trackers. In: Kim M, Robbes R, Bird C
(eds) Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, ACM, pp
327-338, DOI 10.1145/2901739.2901754, URL https://doi.org/10.1145/
2901739.2901754

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B (Methodological) 57(1):289-300

Besker T, Martini A, Lokuge RE, Blincoe K, Bosch J (2018) Embracing techni-
cal debt, from a startup company perspective. In: 2018 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018, Madrid,
Spain, September 23-29, 2018, pp 415-425

Brown N, Cai Y, Guo Y, Kazman R, Kim M, Kruchten P, Lim E, MacCormack
A, Nord R, Ozkaya I, et al. (2010) Managing technical debt in software-reliant
systems. In: Proceedings of the FSE/SDP workshop on Future of software
engineering research, ACM

Celik A, Knaust A, Milicevic A, Gligoric M (2016) Build system with lazy
retrieval for java projects. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp 643—
654

Chen C, Zhang K, Itoh T (2012) Empirical evidence of tags supporting high-
level awareness. In: Luo Y (ed) Cooperative Design, Visualization, and
Engineering - 9th International Conference, CDVE 2012, Osaka, Japan,
September 2-5, 2012. Proceedings, Springer, Lecture Notes in Computer
Science, vol 7467, pp 94-101

Cunningham W (1992) The WyCash portfolio management system. In: Ad-
dendum to the Proceedings on Object-oriented Programming Systems, Lan-
guages, and Applications, ACM

Di Nucci D, Palomba F, De Rosa G, Bavota G, Oliveto R, De Lucia A (2017)
A developer centered bug prediction model. IEEE Transactions on Software
Engineering 44(1):5-24

Ebert F, Castor F, Novielli N, Serebrenik A (2019) Confusion in code reviews:
Reasons, impacts, and coping strategies. In: Wang X, Lo D, Shihab E (eds)
26th TEEE International Conference on Software Analysis, Evolution and

34 Fiorella Zampetti et al.

Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, IEEE,
pp 49-60

Ernst NA, Bellomo S, Ozkaya I, Nord RL, Gorton I (2015) Measure it? manage
it? ignore it? software practitioners and technical debt. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015, pp 50-60

Etco J (2017) todo: Automatically generate new issues. https://todo.jasonet.co/,
accessed: 2020-05-06

Falessi D, Briand LC, Cantone G, Capilla R, Kruchten P (2013) The value of
design rationale information. ACM Trans Softw Eng Methodol 22(3):21:1-
21:32

Fisher RA (1922) On the interpretation of chi-square from contingency tables,
and the calculation of p. Journal of the Royal Statistical Society 85(1):87-94

Fucci G, Zampetti F, Serebrenik A, Di Penta M (2020) Who (self) admits tech-
nical debt. In: 2020 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2020, IEEE

Fucci G, Cassee N, Zampetti F, Novielli N, Serebrenik A, Di Penta M (2021)
Waiting around or job half-done? sentiment in self-admitted technical debt. In:
International Conference on Mining Software Repositories, IEEE Computer
Society, United States

Grissom RJ, Kim JJ (2005) Effect sizes for research: A broad practical approach,
2nd edn. Lawrence Earlbaum Associates

Guzzi A (2012) Documenting and sharing knowledge about code. In: 2012
34th International Conference on Software Engineering (ICSE), IEEE, pp
1535-1538

Huang Q, Shihab E, Xia X, Lo D, Li S (2018) Identifying self-admitted
technical debt in open source projects using text mining. Empirical Software
Engineering 23(1):418-451

Tammarino M, Zampetti F, Aversano L, Di Penta M (2019) Self-admitted
technical debt removal and refactoring actions: Co-occurrence or more? In:
2019 IEEE International Conference on Software Maintenance and Evolution,
ICSME 2019, Cleveland, OH, USA, September 29 - October 4, 2019, IEEE,
pp 186-190

Jiang S, Armaly A, McMillan C (2017) Automatically generating commit
messages from diffs using neural machine translation. In: Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017,
pp 135-146

Kruchten P, Nord RL, Ozkaya I, Falessi D (2013) Technical debt: towards a
crisper definition report on the 4th international workshop on managing
technical debt. ACM SIGSOFT Software Engineering Notes

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association 47(260):583-621, URL http:
//wuw.jstor.org/stable/2280779

Li Z, Avgeriou P, Liang P (2015) A systematic mapping study on technical
debt and its management. J Syst Softw 101:193-220

Title Suppressed Due to Excessive Length 35

Lim E, Taksande N, Seaman C (2012) A balancing act: what software practi-
tioners have to say about technical debt. IEEE software

Lin B, Zampetti F, Bavota G, Di Penta M, Lanza M (2019) Pattern-based
mining of opinions in q&a websites. In: Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, pp 548-559

Maipradit R, Treude C, Hata H, Matsumoto K (2020) Wait for it: identifying
“on-hold” self-admitted technical debt. Empirical Software Engineering pp
1-29

Mensah S, Keung J, Svajlenko J, Bennin KE, Mi Q (2018) On the value of a
prioritization scheme for resolving self-admitted technical debt. Journal of
Systems and Software

Moreno L, Bavota G, Di Penta M, Oliveto R, Marcus A, Canfora G (2017)
ARENA: an approach for the automated generation of release notes. IEEE
Trans Software Eng 43(2):106-127

Newcombe RG (1998) Two-sided confidence intervals for the single proportion:
comparison of seven methods. Statistics in Medicine 17(8):857-872

Padioleau Y, Tan L, Zhou Y (2009) Listening to programmers - taxonomies and
characteristics of comments in operating system code. In: 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver,
Canada, Proceedings, IEEE, pp 331-341

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical
debt. In: 30th IEEE International Conference on Software Maintenance and
Evolution, Victoria, BC, Canada, September 29 - October 3, 2014, pp 91-100

Rantala L, Méantyla M, Lo D (2020) Prevalence, contents and automatic
detection of kl-satd. arXiv preprint arXiv:200805159

Rastkar S, Murphy GC, Murray G (2014) Automatic summarization of bug
reports. IEEE Transactions on Software Engineering 40(4):366-380

Ren X, Xing Z, Xia X, Lo D, Wang X, Grundy J (2019) Neural network-based
detection of self-admitted technical debt: From performance to explainability.
ACM Trans Softw Eng Methodol 28(3):15

da S Maldonado E, Shihab E (2015) Detecting and quantifying different types
of self-admitted technical debt. In: 7th IEEE International Workshop on
Managing Technical Debt, MTD 2015, Bremen, Germany, October 2, 2015,
pp 9-15

da S Maldonado E, Abdalkareem R, Shihab E, Serebrenik A (2017a) An
empirical study on the removal of self-admitted technical debt. In: 2017
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2017, Shanghai, China, September 17-22, 2017, pp 238-248

da S Maldonado E, Shihab E, Tsantalis N (2017b) Using natural language
processing to automatically detect self-admitted technical debt. IEEE Trans
Software Eng 43(11):1044-1062

Seaman C, Guo Y (2011) Measuring and monitoring technical debt. Advances
in Computers

Spencer D (2009) Card sorting: Designing usable categories. Rosenfeld Media

36 Fiorella Zampetti et al.

Steele CM, Aronson J (1995) Stereotype threat and the intellectual test perfor-
mance of african americans. Journal of personality and social psychology 69
5:797-811

Storey MA, Cheng LT, Bull I, Rigby P (2006) Shared waypoints and social
tagging to support collaboration in software development. In: Proceedings of
the 2006 20th anniversary conference on Computer supported cooperative
work, pp 195-198

Storey MA, Ryall J, Bull RI, Myers D, Singer J (2008) TODO or to Bug:
Exploring how task annotations play a role in the work practices of software
developers. In: Proceedings of the 30th International Conference on Software
Engineering, Association for Computing Machinery, New York, NY, USA,
pp 251—260

Storey MA, Ryall J, Singer J, Myers D, Cheng L, Muller MJ (2009) How
software developers use tagging to support reminding and refinding. IEEE
Trans Software Eng 35(4):470-483

Tan SH, Marinov D, Tan L, Leavens GT (2012) @Qtcomment: Testing javadoc
comments to detect comment-code inconsistencies. In: Fifth IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST
2012, Montreal, QC, Canada, April 17-21, 2012, pp 260-269

Torchiano M, Ricca F, Marchetto A (2011) Is my project’s truck factor low?
theoretical and empirical considerations about the truck factor threshold.
In: Proceedings of the 2nd International Workshop on Emerging Trends in
Software Metrics, pp 12-18

Uddin G, Khomh F (2017) Opiner: an opinion search and summarization engine
for APIs. In: Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017, pp 978-983

Vassallo C, Zampetti F, Romano D, Beller M, Panichella A, Di Penta M,
Zaidman A (2016) Continuous delivery practices in a large financial organi-
zation. In: 2016 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016, IEEE
Computer Society, pp 519-528

Vassallo C, Proksch S, Gall HC, Di Penta M (2019) Automated reporting of
anti-patterns and decay in continuous integration. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), IEEE, pp 105-115

Wehaibi S, Shihab E, Guerrouj L (2016) Examining the impact of self-admitted
technical debt on software quality. In: IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering, SANER 2016, Suita,
Osaka, Japan, March 14-18, 2016, IEEE Computer Society, pp 179-188

Wei L, Liu Y, Cheung SC (2017) Oasis: prioritizing static analysis warnings for
android apps based on app user reviews. In: Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pp 672682

Wen F, Nagy C, Bavota G, Lanza M (2019) A large-scale empirical study
on code-comment inconsistencies. In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC), IEEE, pp 53-64

Title Suppressed Due to Excessive Length 37

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics
Bulletin 1(6):80-83

Xavier L, Ferreira F, Brito R, Valente MT (2020) Beyond the code: Mining
self-admitted technical debt in issue tracker systems. In: 17th International
Conference on Mining Software Repositories (MSR), pp 137-146

Zampetti F, Noiseux C, Antoniol G, Khomh F, Di Penta M (2017) Recom-
mending when design technical debt should be self-admitted. In: 2017 IEEE
International Conference on Software Maintenance and Evolution, ICSME
2017, Shanghai, China, September 17-22; 2017, pp 216-226

Zampetti F, Serebrenik A, Di Penta M (2018) Was self-admitted technical
debt removal a real removal?: an in-depth perspective. In: Proceedings of
the 15th International Conference on Mining Software Repositories, MSR,
2018, Gothenburg, Sweden, May 28-29, 2018, pp 526-536

Zampetti F, Serebrenik A, Di Penta M (2020) Automatically learning patterns
for self-admitted technical debt removal. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pp 355-366

Zampetti F, Fucci G, Serebrenik A, Di Penta M (2021) Dataset of the paper
"Self-Admitted Technical Debt Practices: A Comparison Between Industry
and Open- Source". DOI 10.5281/zenodo.5076096, URL https://doi.org/
10.5281/zenodo.5076096

Zazworka N, Shaw MA, Shull F, Seaman CB (2011) Investigating the impact
of design debt on software quality. In: Proceedings of the 2nd Workshop on
Managing Technical Debt, MTD 2011, Waikiki, Honolulu, HI, USA, May 23,
2011, pp 17-23

Zimmermann T (2016) Card-sorting: From text to themes. In: Menzies T,
Williams L, Zimmermann T (eds) Perspectives on Data Science for Software
Engineering, Morgan Kaufmann, Boston, pp 137 — 141

