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Abstract
Ensuring the consistent usage of formatting conventions is an important aspect of modern
software quality assurance. To do so, the source code of a project should be checked against
the formatting conventions (or rules) adopted by its development team, and then the detected
violations should be repaired if any. While the former task can be automatically done by for-
mat checkers implemented in linters, there is no satisfactory solution for the latter. Manually
fixing formatting convention violations is a waste of developer time and code formatters do
not take into account the conventions adopted and configured by developers for the used
linter. In this paper, we present STYLER, a tool dedicated to fixing formatting rule viola-
tions raised by format checkers using a machine learning approach. For a given project,
STYLER first generates training data by injecting violations of the project-specific rules in
violation-free source code files. Then, it learns fixes by feeding long short-term memory
neural networks with the training data encoded into token sequences. Finally, it predicts
fixes for real formatting violations with the trained models. Currently, STYLER supports
a single checker, Checkstyle, which is a highly configurable and popular format checker
for Java. In an empirical evaluation, STYLER repaired 41% of 26,791 Checkstyle viola-
tions mined from 104 GitHub projects. Moreover, we compared STYLER with the IntelliJ
plugin CHECKSTYLE-IDEA and the machine-learning-based code formatters NATURALIZE

and CODEBUFF. We found out that STYLER fixes violations of a diverse set of Checkstyle
rules (24/25 rules), generates smaller repairs in comparison to the other systems, and pre-
dicts repairs in seconds once trained on a project. Through a manual analysis, we identified
cases in which STYLER does not succeed to generate correct repairs, which can guide fur-
ther improvements in STYLER. Finally, the results suggest that STYLER can be useful to
help developers repair Checkstyle formatting violations.
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1 Introduction

Coding conventions are widely recognized as a means to improve the internal quality of soft-
ware systems (Prause and Jarke 2015). They are rules that developers agree on for writing
code, which encode best coding practices, widely adopted standards, or developers’ prefer-
ences. The usage of coding conventions helps to reduce style deviations, which are nothing
but distracting noise when reading code (Spinellis 2011; Prause and Jarke 2015).

However, keeping all source code files of a project compliant with the coding conven-
tions agreed by a development team is a challenge. For that, two main activities must be
performed: the detection and the repair of coding convention violations. The detection of
coding convention violations can be automatically performed using linters. A linter is a tool
that statically analyzes code to check its compliance with rules and warns software devel-
opers when rule violations are found. The usage of linters also brings challenges because
the developers need to create a configuration according to their adopted conventions so that
the linter detects the right violations (not more and not less). Nevertheless, in this paper, we
focus on the latter task, i.e., the repair of violations, which is a little researched problem.

To repair coding convention violations, developers can either perform fixes manually or
use automated solutions that produce fixes. Manually fixing these violations is a waste of
valuable developer time. Considering formatting convention violations, which are the focus
of this paper, developers could use code formatters as automated solution. However, this
alternative is also not satisfactory. With code formatters, the key problem is that they do not
take into account the project-specific rules, those that are configured by developers for the
used linter.

Inspired by the problem statement of program repair (Monperrus 2018), we state in this
paper the problem of automatically repairing formatting violations: given a program, a set of
format checker rules, and one rule violation, the goal is to modify the source code formatting
so that no violation is raised by the format checker. A format checker is a linter, or a part
of a linter, that focuses on formatting checks, since linters cover several classes of coding
conventions, e.g., naming and formatting.

In this paper, we explore that problem in the context of Checkstyle1, a popular format
checker for the Java language. We present STYLER, a tool dedicated to fixing formatting
violations in Java source code. The uniqueness of STYLER is its applicability to any for-
matting convention because its approach is not based on specific format checker rules. The
key idea behind STYLER is the usage of machine learning to learn the formatting conven-
tions that are used in a software project. The learning is based on training data generated by
STYLER through the modification of source code files to trigger violations of the formatting
rules configured by developers for a given project. Once trained, STYLER predicts changes
on formatting characters (e.g., whitespaces) to fix formatting convention violations hap-
pening in the wild. Technically, STYLER encodes Java source code containing formatting
violations into abstract token sequences and uses sequence-to-sequence machine learning
models based on long short-term memory neural networks (LSTMs).

To evaluate STYLER, we conducted a large scale experiment using 26,791 Checkstyle
formatting violations mined from 104 GitHub projects. Based on our research questions,
we found out that STYLER repairs many violations (41%) from a diverse set of format-
ting rules (24/25). It generally performs better for fixing violations related to horizontal
whitespace between Java tokens than violations related to tabulations and line length.

1https://checkstyle.sourceforge.io/, last access: 2020-07-13
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Moreover, STYLER produces smaller repairs compared to the state-of-the-art machine
learning formatters (Allamanis et al. 2014; Parr and Vinju 2016) and the IntelliJ plu-
gin CHECKSTYLE-IDEA (CheckStyle-IDEA 2021). Finally, STYLER repairs violations in
seconds, once it is trained for a given project.

To sum up, our contributions are:

– A novel approach to fix violations of code formatting conventions, based on machine
learning. The approach is able to learn project-specific formatting rules with a self-
training data generation strategy and repair formatting rule violations with a sequence-
to-sequence machine learning model;

– A tool, called STYLER, which implements our approach in the context of Java and
Checkstyle, to repair Checkstyle formatting violations. The tool is made publicly
available2 for future research and usage;

– A dataset of real-world Checkstyle violations mined from GitHub repositories. The
dataset is publicly available3 for future research;

– A comparative experiment of the performance of STYLER against the state-of-the-art
code formatters (CheckStyle-IDEA 2021; Allamanis et al. 2014; Parr and Vinju 2016).
The results of the experiment are also publicly available4 for the sake of open science.

The remainder of this paper is organized as follows. Section 2 presents the background of
this work. Section 3 presents STYLER in detail, including its workflow and technical princi-
ples. Section 4 presents the design of our experiment for evaluating STYLER and comparing
it with three code formatters. The experimental results are then presented in Section 5.
Section 6 presents discussions, and Section 7 presents the related works. Finally, Section 8
presents the concluding remarks of this work.

2 Background

Coding conventions play an important role in software development and maintenance. In
this section, we present a background on coding conventions and tools that help developers
enforce them. In addition, we report on a study of the usage of Checkstyle, a tool that
statically checks Java code against a specified set of coding conventions.

2.1 Coding conventions

Coding conventions, also known as coding style and coding standards, are rules that devel-
opers agree on for writing code. The usage of coding conventions does not affect the
behavior of software systems. Instead, developers use them to improve code readability and
maintainability. Although not all coding practices are perceived by developers as enhancing
code readability (Santos and Gerosa 2018), they help to reduce style deviations, which are
nothing but distracting noise when reading code (Spinellis 2011; Prause and Jarke 2015).

There are several kinds of coding conventions, e.g., conventions related to naming and
formatting. In this paper, we focus on the latter, i.e., formatting conventions. Formatting

2https://github.com/KTH/styler/
3https://github.com/KTH/checkstylerr/
4https://kth.github.io/styler-experiments/
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refers to the appearance or the presentation of the source code. One can change the format-
ting by using, for instance, non-printable characters, such as spaces, tabulations, and line
breaks. In free-format languages such as Java and C++, the code formatting does not change
the abstract syntax tree of programs. In non-free-format languages, such as Python and
Haskell, the formatting is even related to behavior, which means that correcting formatting
issues can fix bugs.

To exemplify formatting conventions, consider Fig. 1, which shows two well-known
ways that developers may follow when placing left curly braces in code blocks. Note that
one way is to place the left curly brace in a new line (Fig. 1a) while another way is to place
it at the end of the conditional expression line (Fig. 1b). The way to actually do it in a soft-
ware project depends on what the project’s development team chooses. Agreeing on coding
conventions to be followed in a software project is important to avoid edit wars and endless
debates.

2.2 Detection of coding convention violations

A challenge faced by developers is to keep their code compliant with the agreed coding conven-
tions. Basically, every new change in the code must satisfy the adopted coding conventions.
Manual analysis of code changes for checking if they do not violate the adopted coding
conventions is time-consuming and error-prone. To do so automatically, one can use linters.
A linter is a tool that statically analyzes code to check its compliance with rules and warns
software developers when rule violations are found. The rules might be related to functional
problems, such as resource leakage or incorrect logic, and maintainability problems, such
as non-compliance with best practices or violations of style conventions (Beller et al. 2016).
As a side note, the literature does not consistently relate linters and automated static analy-
sis tools (abbreviated as ASATs, also known as static analyzers). However, we understand
that an automated static analysis tool is any tool that analyzes source code without the need
to run it, including, for instance, tools for software analytics. Therefore, in this paper, we
consider that any linter belongs to the family of automated static analysis tools, but that
automated static analysis tools are not all about analyzing code against a set of rules.

Linters can be usually integrated into IDEs and build tools. On the one hand, when inte-
grated into IDEs, developers may manually run the linter before they commit their changes.
If they do not do it, they might face a lot of violations raised by the linter after the end
of the building step for a release or for shipping the program. On the other hand, when a
linter is integrated into build tools, it might be automatically executed in Continuous Inte-
gration (CI) environments. The important coding conventions might be configured to make
CI builds break when they are violated. This way, developers are forced to repair coding
convention violations early in the software development process.

Fig. 1 Two conventions for placing a left curly brace
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Several linters have been developed for different programming languages. Some exam-
ples include ESLint5 for JavaScript, Pylint6 for Python, StyleCop7 for C#, and RuboCop8

for Ruby. For Java, which is our target language in this paper, a commonly used linter is
Checkstyle9. Checkstyle is composed of several checks that encode style-related rules. For
instance, Checkstyle contains a check named LeftCurly that checks for the placement of left
curly braces for code blocks, which is about the example illustrated in Fig. 1. Developers
specify in a configuration file, then, their coding conventions by selecting and configuring
Checkstyle checks. We refer to this configuration file as Checkstyle ruleset and, hereafter,
we refer to Checkstyle checks as Checkstyle rules. Finally, Checkstyle is a flexible linter
that can be integrated into IDEs (e.g., IntelliJ, Eclipse, and NetBeans) and build tools (e.g.,
Maven and Gradle).

2.3 Usage of Checkstyle in the wild

Linters have been the subject of investigation in recent research (Zampetti et al. 2017; Vas-
sallo et al. 2018; Marcilio et al. 2019). However, the existing studies did not investigate at
scale and look into how style checking tools are specifically used. In this section, we present
a study focused on the usage of Checkstyle, which is a popular linter for Java that checks
source code style.

2.3.1 Checkstyle usage in open-source projects

Method. To measure the usage of Checkstyle, we queried GitHub10 to only retrieve Java
projects with at least five stars, because stars have been shown meaningful to sample
projects from GitHub (Beller et al. 2017). We found 171,195 Java projects. Then, we
searched each of them11 for finding a Checkstyle ruleset file. Note that a Checkstyle ruleset
file can have any name, but we followed a conservative approach towards identifying true
positive files by using a set of commonly used names12. For simplicity, hereafter, we refer
to a Checkstyle ruleset file as checkstyle.xml.

Results. We found 4,334 Java projects containing a checkstyle.xml file, which is
2.53% of all Java projects with at least five stars on GitHub. Table 1 shows the proportion
of these projects that use Maven, Gradle, or Ant as their build tools, and the Travis or Cir-
cle CI services. We note that build tools are widely used among projects using Checkstyle:
98% of the projects use at least one build tool. Moreover, 44% of the projects use a con-
tinuous integration service, which shows the software engineering maturity of the sampled
projects.

5https://eslint.org/, last access: 2020-07-13
6https://www.pylint.org/, last access: 2020-07-13
7https://github.com/StyleCop/StyleCop/, last access: 2020-07-13
8https://docs.rubocop.org, last access: 2020-07-13
9https://checkstyle.sourceforge.io/, last access: 2020-07-13
10On June 23, 2021.
11On June 23–24, 2021.
12Commonly used names for Checkstyle ruleset files: ‘checkstyle.xml’, ‘.checkstyle.xml’, ‘check-
style rules.xml’, ‘checkstyle config.xml’, ‘checkstyle configuration.xml’, ‘checkstyle checker.xml’,
‘checkstyle checks.xml’, ‘google checks.xml’, ‘sun checks.xml’. Variants by replacing ‘ ’ by ‘-’ were also
used.
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Table 1 Usage of build tools and
CI services in the 4,334 projects
using Checkstyle

Build tool Maven 54%

Gradle 47%

Ant 9%

CI service Travis CI 41%

Circle CI 4%

2.3.2 Popularity of checkstyle rules

Method. To check the usage of the 182 Checkstyle rules13, we analyzed the previously-
found checkstyle.xml files from the 4,334 projects. Our goal is to investigate the most
used rules and check if formatting-related rules, which are the target of this work, are widely
used.

Results. We found out that all Checkstyle rules are used. Figure 2 shows the top-10 most
used rules. The bars in dark gray represent formatting-related rules, and the bars in light
gray represent non-formatting rules. In addition, the bar in gray with a dot pattern represents
a rule that can be about formatting, but it depends on how it is configured since it is a regex
rule. In the top-10 most used rules, there are three rules related to formatting and one that
can be. Notably, the top-3 most used rules are or can be formatting-related ones. Therefore,
we conclude that formatting-related rules are important for developers, which validates the
relevance of our work.

3 STYLER

STYLER is a tool dedicated to helping developers keep their source code compliant with
their adopted formatting conventions by automatically fixing formatting violations in Java
source code. STYLER could be used in different software development workflows. For
instance, STYLER could be used locally as a pre-hook commit when developers are about
to release projects. It could also be used in continuous integration environments, where pull
requests could be automatically opened with formatting fixes’ suggestions. In this section,
we present the workflow and the technical principles of STYLER.

3.1 Targeted violation types

STYLER is about learning and repairing violations related to formatting conventions. For
instance, consider that a developer specified that left curly braces must always be placed at
the end of lines (as shown in Fig. 1b). If this rule is not satisfied (e.g., such as in Fig. 1a),
a given linter triggers a formatting-related violation: for instance, Checkstyle would output
the violation presented in Fig. 4a, and SonarJava14 would find a violation of the rule “An
open curly brace should be located at the end of a line”15. In order to fix this violation, the
line break before the token “{” must be replaced by a single space.

13The set of Checkstyle rules considered in our study is from the Checkstyle version 8.43 (released on May
30, 2021).
14https://github.com/SonarSource/sonar-java, last access: 2020-07-13
15https://rules.sonarsource.com/java/RSPEC-1105, last access: 2020-07-13
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Fig. 2 The top-10 most used Checkstyle rules

As mentioned in Section 2.1, there are different classes of conventions, e.g., formatting
and naming, and consequently different automated checks in linters. In STYLER, we exclu-
sively focus on formatting checks related to non-printable characters, such as indentation
and whitespace before and after punctuation. Hereafter, we refer to the linter part related to
these formatting checks as format checker.

3.2 STYLER workflow

Figure 3 shows the workflow of STYLER. It is composed of two main components: ‘STYLER

training’ for learning how to repair formatting violations and ‘STYLER prediction’ for
repairing a real formatting violation raised by a format checker. STYLER receives as input a
software project, including its source code and its format checker ruleset.
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Fig. 3 STYLER workflow
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The component ‘STYLER training’ is responsible for learning how to repair formatting
violations on the given project according to the project-specific format checker ruleset. It
creates the training data by injecting formatting violations into violation-free source code
files belonging to the project (step A). Then, it encodes the training data into abstract token
sequences (step B) in order to train LSTM neural networks (step C). The learned LSTM
models are later used to predict repairs.

The component ‘STYLER prediction’ is responsible for predicting fixes for real format-
ting violations. It first detects formatting violations by running the format checker on the
project (step D). Then, STYLER encodes the violating code into an abstract token sequence
(step E), which is given as input to the LSTM models (step F) previously learned. The
models predict fixes for the given formatting violation. These fixes are in the format of
formatting token sequences, so they are translated back to Java code (step G). STYLER

then runs the format checker on the new Java code containing the predicted fixes (step
H). Finally, among the predicted fixes where no violation is raised by the format checker,
STYLER selects one formatting fix to give as output (step I). As STYLER only impacts the
formatting of source code, its repairs do not change the behavior of the program under
consideration.

3.3 STYLER in action

Consider the formatting violation presented in Fig. 4a. This violation is about the Checkstyle
LeftCurly rule, which was configured to enforce that left curly braces are placed at the end
of lines. The Java source code that caused such a violation is presented in Fig. 4b.

Fig. 4 STYLER from a Checkstyle formatting violation to a fix
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For that violation, STYLER encodes the incorrectly formatted lines (Fig. 4b) into the
abstract token sequence shown in Fig. 4c. Then, this abstract token sequence is given as
input to LSTM models, which predict alternative formatting token sequences, as the one
shown in Fig. 4d, that may fix the current formatting violation. These predicted formatting
token sequences are then used to modify the formatting tokens of the original abstract token
sequence. It results in predicted abstract token sequences, as the one shown in Fig. 4e. The
difference between Fig. 4c and 4e is the replacement of the formatting token 1 NL by 1 SP.
This predicted repair means that the line break before the token “{” should be replaced by
a single space. Then, the predicted abstract token sequence (Fig. 4e) is translated back to
Java code (Fig. 4f). Finally, when running Checkstyle on the new Java code, no Checkstyle
violation is raised, meaning that STYLER successfully repaired the violation.

3.4 Java source code encoding

STYLER encodes Java source code into an abstract token sequence that is required to predict
formatting changes. An abstract token sequence is composed of pairs of abstract Java tokens
and abstract formatting tokens. STYLER represents each Java token as an abstract token by
keeping the value of the Java keywords, separators, and operators (e.g., + → +), and by
replacing the other token kinds such as literals, comments, and identifiers by their types
(e.g., x → Identifier). For each pair of subsequent Java tokens, STYLER creates an
abstract formatting token, which depends on the presence of a new line. If there is no new
line, STYLER counts the number of whitespace characters, and then represents it as n SP
when the characters are spaces and n TB when the characters are tabulations, where n is the
number of whitespaces characters (e.g., → 1 SP). If there is no whitespace between two
Java tokens (e.g., x=), STYLER adds 0 None between the two Java tokens.

If there are new lines between two Java tokens, STYLER first counts the number of
new lines and represents it as n NL, where n is the number of new lines. Then, STYLER

calculates the indentation delta (�), i.e., the indentation difference, between the line
containing the first Java token and the line containing the second Java token. Positive
indentation deltas are represented by � ID (indent), negative ones are represented by
� DD (dedent), and deltas equal to zero, i.e., no indentation change between the lines,
are represented by the absence of an indentation delta representation. The complete rep-
resentation after the calculation of the number of new lines and the indentation delta is
n NL � (ID|DD) (SP|TB). For instance, in Fig. 4b, the new line between lines 7 and 8
is represented by 1 NL 4 ID SP, i.e., one new line and indentation delta +4.

3.5 Self-supervised training data generation

STYLER does not use predefined templates for repairing formatting violations. STYLER uses
machine learning for inferring a model to repair formatting violations and, consequently,
it needs training data. One option would be to mine past commits from the project under
consideration to collect training data. However, there might not exist enough data in the
history of the project for training models.

Therefore, to have enough data for training, our key insight is to generate the training
data in a self-supervised manner. The idea is to modify violation-free Java files belonging
to the project under analysis to trigger formatting rule violations. A similar idea has been
explored by Yasunaga and Liang (2020). Then, one obtains a pair of files (αorig , αerr ):
αorig is the file without the formatting violation, and αerr is the file with the formatting
violation. αorig is a repaired version of αerr , and we can use supervised machine learning
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to predict αorig given αerr . We explore this idea in two different ways to generate training
data, hereafter referred to as formatting violation injection protocols. The protocol names
are Stylerrandom and Styler3grams .

The Stylerrandom protocol for injecting formatting violations in a project consists of
automated insertion or deletion of a single formatting character (space, tabulation, or new
line) in Java source files. These modifications require a careful procedure so that 1) the
project still compiles and 2) its behavior is not changed. For this, we specify the locations
in the source code files that are suitable to perform the modifications. For insertions, the
suitable locations are before or after any token. For deletions, the suitable locations are 1)
before or after any punctuation (“.”, “,”, “(”, “)”, “[”, “]”, “{”, “}”, and “;”), 2) before or after
any operator (e.g., “+”, “-”, “*”, “=”, “+=”), and 3) in any token sequence longer than one
indentation character.

The Styler3grams protocol is meant to produce likely violations. Instead of directly
changing the Java source code as Stylerrandom, Styler3grams performs modifications at the
abstract token level. The idea is to replace formatting tokens with the ones used by devel-
opers in the same context, i.e., between the same surrounding Java tokens. For that, we use
3-grams, where a 3-gram = {Java token, formatting token, Java token}. So given a violation-
free Java file, the task of Styler3grams is the following. First, the Java file is tokenized (see
Section 3.4), and a random formatting token is picked and used to form a 3-gram, which
is 3-gramorig . Then, given a corpus of 3-grams previously created from software projects,
Styler3grams finds a 3-grami in the corpus that matches the Java tokens of 3-gramorig .
Several matches can be found, but the selection of a 3-grami is random according to its fre-
quency in the corpus. Then, the formatting token of 3-gramorig is replaced by the formatting
token of 3-grami . Finally, Styler3grams performs a de-tokenization so that a violating Java
version of the original violation-free Java file is created.

Algorithm 1 presents the algorithm that STYLER uses to generate one training dataset per
formatting violation injection protocol (Stylerrandom and Styler3grams). The input of the
algorithm is the format checker ruleset of the project, a corpus of violation-free Java files
taken from the project, the number of violating files to be generated, the injection protocol
to be used, and the maximum duration of the process. Then, in each batch iteration (line
7), a file is randomly selected from the corpus of violation-free Java files (line 12), and the
specified injection protocol is applied to it (line 13). Once a batch is completed, the format
checker is executed on the resulting modified files (line 16) so that the algorithm selects the
ones that contain a single violation (line 17). The algorithm ends when the desired number of
files with violations is reached or when the process reaches the specified maximum duration.

3.6 Violation encoding

In order to repair formatting violations, the Java source code encoded as an abstract token
sequence must capture both the violation in the code and the context surrounding the vio-
lation. So, for a given violation, STYLER considers a token window of k source code
lines before and after the violation location provided by the format checker for creating an
abstract token sequence (see Section 3.4). Once the violating line and the ones surrounding
it are tokenized, STYLER places two tags around the tokens related to the origin of the vio-
lation so that the violation location and its type can be further identified. The tags consist
of the name of the format checker rule that was violated. For instance, the violation pre-
sented in Fig. 4a is about the Checkstyle LeftCurly rule, so the tags around the violation are
<LeftCurly> and </LeftCurly> as shown in Fig. 4c.
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The strategy to place the tags in the abstract token sequence is primarily based on the
fact that the tags should surround the tokens related to the origin of the violation. At the
same time, the number of tokens between the two tags should be minimal so to keep precise
information about the violation location. Thus, STYLER places the tags according to the
location information given by the format checker. When the format checker provides the
line and the column, STYLER places <ViolationType> one token before the violation
and </ViolationType> one token after. When the format checker provides the line but
not the column (e.g., when the violation is about the Checkstyle LineLength rule), STYLER

places <ViolationType> one token before the line and </ViolationType> one
token after the end of the line.

3.7 Machine learningmodel

Learning (Fig. 3–step C). STYLER aims to translate a token sequence with a formatting
violation (input sequence) to a new token sequence with no formatting violation (out-
put sequence). STYLER uses a sequence-to-sequence translation based on recurrent neural
network LSTMs (Long Short-Term Memory), similar to what is used for natural lan-
guage translation. Thanks to the token abstraction employed by STYLER to encode Java
source code (see Section 3.4 and Section 3.6), the input and output vocabularies are small
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(respectively ∼150 and ∼50), hence are well handled by LSTM models. STYLER uses
LSTMs with bidirectional encoding, which means that the embedding is able to catch
information around the formatting violation in the two directions. For instance, a viola-
tion triggered by the Checkstyle WhitespaceAround rule, which checks that a token is
surrounded by whitespaces, requires the contexts before and after the token.

Repairing (Figure 3–step F). Once the LSTM models are trained (one per formatting viola-
tion injection protocol, see Section 3.5), STYLER can be used for predicting fixes for a token
sequence I as in Fig. 4c. For an input sequence I , an LSTM model predicts x alternative for-
matting token sequences using a technique called beam search, which we use off-the-shelf.
These alternatives are all potential repairs for the formatting violation (e.g., Fig. 4d).

Note that the LSTM models predict formatting token sequences (e.g., Fig. 4d), but
the goal is to have abstract token sequences containing Java and formatting tokens (e.g.,
Fig. 4e), so they can further be translated back to Java code. For that, STYLER generates
a new abstract token sequence (Oi) for each formatting token sequence (Fi), based on the
original input I , such as in Fig. 5a. Recall that I is composed of pairs of Java tokens and
formatting tokens (see Section 3.4), therefore its number of formatting tokens is LI =
length(I )/2. However, an LSTM model does not enforce the output size, thus we cannot
guarantee that the length of a predicted formatting token sequence (LFi

= length(Fi)) is
equal to LI . If LFi

> LI , STYLER uses the first LI formatting tokens from Fi and ignores
the remaining ones to generate Oi , such as in Fig. 5b. If LFi

< LI , STYLER uses all for-
matting tokens from Fi and copies the LFi

+ 1, LFi
+ 2, . . . , LI original formatting tokens

from I , such as in Fig. 5c. Finally, after creating x abstract token sequences O, STYLER

continues its workflow (Fig. 3–step G).

3.8 Repair verification and selection

STYLER performs x predictions per LSTM model (i.e., Stylerrandom-based model and
Styler3grams-based model), so in the end STYLER generates x × 2 predictions to repair a

Fig. 5 Generation of the sequence Oi based on the predicted formatting tokens Fi and the input I
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single violation. After the translation of these predictions back to Java source code (Fig. 3–
step G), STYLER performs a verification (Fig. 3–step H), where the format checker is
executed on the resulting Java source code files. Finally, given the files that do not result in
formatting violations, STYLER selects the one that has the smallest source code diff to give
as output (Fig. 3–step I).

3.9 Implementation

The approach employed by STYLER is independent of the considered format checker. The
current implementation uses Checkstyle, which is a popular format checker for Java. Other
format checkers can be integrated in STYLER. However, they must output the violation type
and the violation location. This is necessary for the violation encoding (see Section 3.6).

STYLER is implemented in Python. We use javalang16 for parsing and OpenNMT-py17

for the machine learning part. STYLER is publicly available at https://github.com/KTH/
styler/. The current calibration of STYLER is presented in Section 4.4.1.

4 Evaluation design

We conducted an empirical study to evaluate STYLER from different perspectives (see
Section 4.1), including a comparison against three state-of-the-art code formatting systems
(see Section 4.2). We first built a dataset of Checkstyle violations mined from GitHub repos-
itories (see Section 4.3), and then we gave these violations as input to all the four tools (see
Section 4.4) to measure their repairability. In this section, we present the design of our study.

4.1 Research questions

Our goal is to answer the following six research questions.

RQ #1 [Overall repairability]: To what extent does STYLER repair real-world Checkstyle
formatting violations, compared to other systems?

Overall repairability is an important metric to measure the value of tools. We investigate
the repairability of STYLER on real Checkstyle violations, which allows us to understand
to what extent STYLER repairs formatting violations that have occurred in practice. More-
over, we compare the repairability of STYLER to the repairability of three code formatters
by using the same dataset of violations to investigate if, and to what extent, STYLER

outperforms the related systems.

RQ #2 [Violation-type-based repairability]: To what extent does STYLER repair different
violation types, compared to other systems?

Checkstyle has different formatting rules, so it raises different violation types. In this
research question, we investigate if, and to what extent, STYLER repairs different violation
types compared to the other systems. This analysis is also important to investigate if the
systems are complementary to each other.

16https://github.com/c2nes/javalang/, last access: 2020-07-13
17https://github.com/OpenNMT/OpenNMT-py/, last access: 2020-07-13
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RQ #3 [Unsuccessful repair cases]: What are the cases in which STYLER fails to generate a
correct repair?

Understanding the cases in which STYLER fails to generate a correct repair is important
so that i) STYLER can be further improved, ii) hard-to-repair violations are identified and,
consequently, researchers might study them and develop tools specialized to repair them,
and iii) the limitations of STYLER can be taken into account by developers when deciding
whether or not to use STYLER in their projects. To discover the most frequent cases in which
STYLER does not succeed to generate a correct repair, we manually analyzed violations of
the rules for which STYLER does not perform well.

RQ #4 [Quality]: What is the size of the repairs generated by STYLER, compared to other
systems?

What are the cases in which STYLER fails to generate a correct repair? There may be
several alternative repairs that fix a given Checkstyle violation, including ones that change
source code lines other than the ill-formatted line. In this research question, we compare the
size of the repairs generated by STYLER against the repairs generated by the other systems.

RQ #5 [Performance]: How fast is STYLER for learning and predicting formatting repairs?

To investigate if STYLER could be applicable in practice, we measure its performance for
fixing the mined Checkstyle violations. This is valuable information for those who could
be interested in using STYLER as a pre-commit hook in IDEs or continuous integration
services.

RQ #6 [Technical analysis]: How do the two training data generation techniques of STYLER

contribute to its repairability?

Finally, we perform a comparison between the two formatting violation injection proto-
cols used to generate training data (see Section 3.5). This comparison is done through the
LSTM models trained with the two different training sets. We investigate if, and to what
extent, one of the models contributes more to the repairability of STYLER. This is an impor-
tant investigation from the point of view of users who might want to use STYLER with only
one model for performance reasons.

4.2 Systems under comparison

We selected three systems to compare STYLER with: CHECKSTYLE-IDEA (CheckStyle-
IDEA 2021), NATURALIZE (Allamanis et al. 2014), and CODEBUFF (Parr and Vinju 2016).
CHECKSTYLE-IDEA, also referred to as CS-IDEA in this paper, is an IDE-based code
formatter plugin for the IntelliJ IDE. It provides IDE-integrated feedback against a given
Checkstyle ruleset and fixes Checkstyle violations through the IntelliJ formatter by taking
into consideration a Checkstyle ruleset. NATURALIZE is a tool dedicated to assisting devel-
opers in fixing coding conventions related to naming and formatting in Java programs. It
learns coding conventions from a codebase and suggests fixes to developers, such as format-
ting modifications, based on the n-gram model. CODEBUFF is a code formatter applicable
to any programming language with an ANTLR grammar. Instead of formatting the code
according to ad-hoc rules for a language, CODEBUFF aims to infer the formatting rules
given a grammar for the language and a set of files following the same formatting rules. For
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each token, a KNN model decides to indent it or to align it with another token based on the
abstract syntax tree of the source file.

All three systems are code formatters. CHECKSTYLE-IDEA takes a Checkstyle rule-
set into consideration, and NATURALIZE and CODEBUFF are the state-of-the-art machine
learning formatters that aim to assist developers to fix formatting-related issues without any
prior or ad-hoc formatting rules.

4.3 Data collection

To execute STYLER and the systems under comparison and, consequently, answer our
research questions, we created a dataset of Checkstyle formatting violations by mining
open-source projects. The first step was to build a list of projects, which was done based
on the data previously collected for the study presented in Section 2.3. We selected all the
projects that have exactly one Checkstyle ruleset file and use Maven. This resulted in 2,143
projects.

For each project, we tried to reproduce Checkstyle violations with the following auto-
mated lightweight approach. First, the remote repository of the project is cloned from
GitHub18. Then, a sanity check is performed on the checkstyle.xml file contained
in the project. If the file contains variables, the project is discarded. Otherwise, a search
in the history of the project is done for the last commit (ci) that contains modifications
in the checkstyle.xml file, which is the commit to be used as the starting point for
the reproduction of real violations. Then, ci is checked out, and all the files of the project
are submitted to a process that aims to check if our automated approach can successfully
execute Checkstyle on the project and with which version of Checkstyle. The latter is
necessary because new versions of Checkstyle might introduce breaking backward com-
patibility19 and, then, fail to parse a checkstyle.xml file that was used with previous
versions of Checkstyle. Such a process consists of executing multiple Checkstyle versions
on the project, from a newer version to an older one, until finding one version that does
not fail or until the available options end20. If a successful Checkstyle execution is found,
the last tested Checkstyle version, x, is chosen to be used on the project. All commits since
ci are then gathered, inclusive, so that all commits to be analyzed are based on the same
Checkstyle ruleset.

Then, each selected commit is checked out, and a sanity check is performed on the
pom.xml file of the commit. If it points to a suppression file, the commit is discarded
because we want violations that happened in practice and our lightweight approach does not
solve paths. Otherwise, the Checkstyle version x is executed on the files of the project. If the
commit under analysis is the first one to be analyzed, Checkstyle is executed on all the files
of the project. Otherwise, Checkstyle is executed only on the files changed in the commit
under analysis to avoid duplicate violations in the dataset. Moreover, Java files in folders
named test or resources are ignored since we want violations that happened in the main
source code. Then, after executing Checkstyle, if at least one Checkstyle violation is raised,
the violating Java files and information about the violations, e.g., Checkstyle violation types
and locations, are saved.

18All repositories were cloned on June 24–25, 2021.
19Checkstyle release notes: https://checkstyle.sourceforge.io/releasenotes.html
20Our current implementation supports 48 Checkstyle versions, from 8.0 to 8.43.
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Such a process was executed for all the 2,143 projects in our list. At the end of the
process, we removed duplicate Java files according to the file content among all commits
if any. Then, we selected the files containing a single Checkstyle violation that is related
to formatting. We performed this selection to accurately evaluate repairs produced by
STYLER and the other tools. Finally, we kept projects where all criteria yield at least 20
Checkstyle formatting violations. By applying this systematic reproduction and selection
process, we obtained a dataset containing 27,058 Checkstyle violations spread over 105
projects. We used one project, and the violations found in it (267), to calibrate STYLER (see
Section 4.4.1), and the other 104 projects with 26,791 violations for the actual evaluation.

The dataset is diverse in terms of projects and violation types. Table 2 shows the sub-
ject projects. The projects are very diverse in several aspects, such as in number of Java
files (min = 2, med = 532, max = 18,206), commits (min = 13, med = 1,251, max =
71,544), contributors (min = 1, med = 14, max = 249), and stars (min = 5, med =
46, max = 24,888). Additionally, Table 3 shows the stats per Checkstyle formatting
rule. We note that the most frequent violations in our dataset are violations of the rules
RegexpSingleline, EmptyLineSeparator, and LineLength.

4.4 Setup and execution of the systems

We gave the dataset of violations as input to STYLER and the three systems under com-
parison to evaluate their repairability. In this section, we present the setup of the systems,
which includes the calibration of STYLER, the adaptations performed in NATURALIZE and
CODEBUFF, and how the four systems were executed.

4.4.1 STYLER calibration

To calibrate STYLER, i.e., the Stylerrandom- and Styler3grams-based models, we per-
formed an exploratory study by training LSTM models with different configurations. The
configurations combine values for key parameters, which are the model attention type (gen-
eral or mlp), the number of layers (one or two) and units (256 or 512) for the model
encoder/decoder, and the model word embedding size (256 or 512). For each configuration,
the training was performed for a maximum of 20k iterations, with a batch size of 32, and
a model was saved in the iterations 5k, 10k, 15k, and 20k. This means that, in the end, we
obtained 64 models (2 model attention types × 2 numbers of layers × 2 numbers of units
× 2 embedding sizes × 4 training iterations) per training data generation protocol (i.e.,
Stylerrandom and Styler3grams).

Those models were created for one open-source project21 contained in our dataset (see
Section 4.3), which was randomly selected from the top-5 projects with the most diversity
of violated formatting rules. The project was given as input to STYLER, which produced
training data by injecting Checkstyle violations in violation-free files found in the project
(see Section 3.5). For each protocol, 10k violations were injected. This data was used to
train the LSTM models, where 9k violations were used for training and 1k for validation.
Once the 64 models per protocol were created, we executed STYLER with each of them
on the real violations found in the project so that we could test the models and choose the
configuration of the best ones. Then, for each protocol, we picked the configuration of the
model that repaired violations in a more balanced way in terms of Checkstyle rules. The

21https://github.com/inovexcorp/mobi
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Table 2 Subject projectsa. 104 projects were used to evaluate STYLER and one project (flagged with “�”)
was used to calibrate STYLER

Projects (104 + 1) # Java files # Commits # Contributors # Stars # Violations

1and1/cosmo 557 594 8 54 26

actiontech/txle 208 1,416 44 35 49

Activiti/Activiti 1,532 10,758 192 7,837 1,032

Angel-ML/angel 861 2,714 47 6,282 1,143

apache/crunch 522 1,093 34 100 26

apache/ignite-3 344 201 23 23 80

apache/iotdb 1,215 5,001 121 1,388 491

apache/metron 568 1,453 60 828 115

apache/servicecomb-java-chassis 907 2,997 98 1,703 398

apache/shardingsphere 1,441 29,153 249 14,097 43

apache/usergrid 639 10,954 78 992 145

aspose-words-
cloud/aspose-words-
cloud-java

313 325 8 14 594

atlanmod/NeoEMF 293 2,998 10 38 87

bakdata/conquery 628 7,831 17 25 884

benetech/ServiceNet 660 1,618 12 7 69

black-ant/case 1,899 353 2 31 46

blockchain-
lab/ScaleOutDistributedLedger

2 574 6 10 29

ByteHamster/PSE 133 835 5 8 29

CESNET/perun 1,500 7,359 42 46 525

Chaklader/Multi-threading 532 55 1 16 35

Chaklader/Object-Oriented-Design 2985 35 1 240 67

chenpengliang0909/WxJava 622 2,209 73 13 30

ciandt-dev/tech-gallery 122 1,312 20 38 20

cloudera/director-sdk 516 39 7 20 317

codefollower/H2-Research 656 12,913 114 387 573

CONNECT-Solution/CONNECT 1,860 11,828 33 65 1,463

couchbase/couchbase-java-client 164 1,051 22 257 28

couchbase/couchbase-jvm-core 242 968 17 31 98

ctripcorp/apollo 78 2,526 78 24,888 144

DaGeRe/peass 103 907 1 7 114

decorators-squad/eo-yaml 58 834 12 203 39

decorators-squad/versioneye-api 4 127 3 7 57

delight-im/NationSoccer 847 18 1 13 20

DigitalMediaServer/DigitalMediaServer 502 7,315 38 24 42

DSC-SPIDAL/harp 580 900 18 20 50

dzhw/metadatamanagement 528 8,979 18 21 163

eclipse-ee4j/glassfish 12,820 1,337 48 233 140

eclipse/milo 1,434 1,119 16 618 273
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Table 2 (continued)

Projects (104 + 1) # Java files # Commits # Contributors # Stars # Violations

EMResearch/EMB 1,461 268 3 5 112

fangjinuo/easyjson 91 624 3 58 68

farao-community/farao-core 230 364 17 7 51

findbugsproject/findbugs 2,310 15,375 35 661 35

GluuFederation/casa 140 698 9 9 61

GluuFederation/oxCore 353 1,457 17 11 201

gomint/gomint 2953 1,668 26 221 42

googleapis/google-cloud-java 65 5,128 200 1,559 843

GourdErwa/MyNote 1,151 53 1 72 57

graphfoundation/ongdb 4,587 220 2 211 4,569

griddynamics/jagger 870 2,343 25 65 184

Gurux/gurux.dlms.java 175 377 2 52 31

h2database/h2database 656 13,570 127 2,849 215

HealerJean/HealerJean.github.io 2,752 1,385 2 23 112

HuygensING/timbuctoo 621 8,311 14 38 66

ibinti/bugvm 9,665 3,647 23 348 171

� inovexcorp/mobi 599 12,454 19 35 267

Internet2/grouper 4,661 10,368 22 59 101

intuit/Tank 1,160 320 7 61 217

IQSS/dataverse 807 19,817 119 600 132

ita-social-projects/GreenCity 182 2,164 38 41 29

java110/MicroCommunity 711 4,172 12 516 584

jflex-de/jflex 126 1,874 11 400 53

junkdog/artemis-odb 266 1,754 26 638 111

kitodo/kitodo-production 602 12,109 30 47 43

ldp4j/ldp4j 752 459 2 43 40

liuawen/Learning-Java 18,206 312 2 184 20

LoboEvolution/LoboEvolution 1,712 416 1 25 580

ManfredTremmel/gwt-bean-validators 934 219 3 26 23

matsim-org/matsim-episim-libs 59 2,528 18 15 33

NationalSecurityAgency/datawave 1,939 2,343 42 360 140

NationalSecurityAgency/emissary 317 186 16 171 20

neo4j/neo4j 3,641 71,544 210 9,060 3,375

neuhalje/bouncy-gpg 44 440 8 168 44

O2-Czech-Republic/proxima-platform 314 1,611 7 12 91

omnisci/omnisci-jdbc 92 76 12 6 61

open-eid/digidoc4j 287 2,000 25 55 95

opencb/opencga 837 12,047 39 120 410

OpenEMS/openems 1,615 4,962 32 194 46

openmessaging/openmessaging-java 55 332 11 696 61

Plugily-Projects/MurderMystery 66 694 15 105 105
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Table 2 (continued)

Projects (104 + 1) # Java files # Commits # Contributors # Stars # Violations

ppati000/visualDFA 18 270 6 8 26

primefaces/primefaces 1,250 12,177 160 1,367 33

Qihoo360/Quicksql 1,329 191 11 1,733 109

Roboy/roboy dialog 419 1,251 17 9 26

Rugal/algorithm 97 421 1 6 51

RWTH-i5-IDSG/steve 185 1,375 11 215 174

seedstack/business 252 309 7 20 196

seedstack/seed 439 698 10 24 351

self-xdsd/self-core 222 1,488 11 19 52

self-xdsd/self-storage 21 384 5 11 35

SentinelDataHub/dhus-core 412 13 3 6 35

SergeyZhernovoy/Java-education 265 441 1 8 40

spark-root/laurelin 44 440 4 7 30

StevenLooman/sonar-magik 54 178 2 5 27

Stratio/bdt 54 1,023 34 65 70

StuPro-TOSCAna/TOSCAna 122 606 6 10 33

TIBCOSoftware/genxdm 1,025 930 5 6 501

tmobile/kardio 206 41 9 149 130

toast-tk/toast-tk-engine 207 418 5 12 41

twilio/twilio-java 654 2,028 93 377 1,126

V1toss/JavaPA 146 242 1 16 28

vassalengine/vassal 986 7,861 14 99 28

vostok/hercules 322 1,988 9 16 118

wayshall/onetwo 1,221 4,690 2 17 158

wso2-attic/commons 7,399 904 1 10 587

zanata/zanata-platform 1,743 19,064 29 288 70

min 2 13 1 5 20

med 532 1,251 14 46 70

max 18,206 71,544 249 24,888 4,569

aThe numbers of commits, contributors, and stars were retrieved on June 23–24, 2021. The number of viola-
tions is the number of formatting-related violations found in the project and that were selected according to
our criteria

best Stylerrandom-based model was with the mlp model attention, one layer, 256 units,
embedding size of 512, and 5k training iterations, and the best Styler3grams-based model
was with the same values for the numbers of layers, embedding size, and training iterations,
but with the general model attention and 512 units. These are the configurations we used
for training the models for our experiments presented in Section 5.

For prediction, the beam search creates x = 5 potential repairs per model. As for the
violation encoding (see Section 3.6), we set k = 6. Recall that this parameter is about the
token window before and after the violation (i.e., the context surrounding the violation).
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Table 3 Checkstyle formatting violation dataset stats per rulea

aConsidering Checkstyle, STYLER also targets the following rules that are not contained in our dataset:
AnnotationLocation, AnnotationOnSameLine, EmptyForInitializerPad, and TypecastParenPad

This parameter is made big enough to contain important information and, at the same time,
small enough to still allow learning and prediction, and was set based on meta-optimization.

4.4.2 NATURALIZE and CODEBUFF adaptation

To use NATURALIZE, we had to slightly modify it. NATURALIZE recommends multiple
fixes, so we take the first one for a given violation as being the repair. In addition, we
changed NATURALIZE to only work for indentation, excluding fixes regarding naming con-
ventions (which are out of the scope of this paper). To run CODEBUFF, we give it the
required configuration, including the number of spaces for indentation. This value depends
on the project given as input to CODEBUFF. Thus, before running CODEBUFF on a project,
we count the most frequent indentation size found in the violation-free files of the project
and provide it to CODEBUFF.

4.4.3 Execution of the systems

The four systems were executed to repair the 26,791 violations found in the 104 projects
contained in the real violation dataset. The machine-learning-based systems (STYLER, NAT-
URALIZE, and CODEBUFF) require a corpus of violation-free files to be trained. Therefore,
for each subject project, we selected, as training seeds, all violation-free Java files from
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the first commit, or any subsequent one, that uses the same Checkstyle ruleset used to col-
lect the real violations. We took special care of consistency in our experiment: all the three
machine-learning-based systems were trained to repair a given project using the same corpus
of violation-free files from the project.

STYLER requires other input for training. Recall that its training process includes a step
for creating the actual training data (see Fig. 3–step A), which is based on the corpus of
violation-free files. For each protocol, we set Algorithm 1 to create 10,000 files per project,
with a maximum duration of three hours. The resulting files with violations were split for
learning and validation in a balanced way according to the violation types, considering 90%
for learning and 10% for validation.

Finally, to run CHECKSTYLE-IDEA on each subject project, we first loaded the violat-
ing Java files and the checkstyle.xml file contained in the project in IntelliJ. Then,
we imported the Checkstyle ruleset (Settings > Editor > Code Style > Import Scheme >

Checkstyle Configuration) and simply called the function “Reformat Code” from the IDE.

5 Evaluation results

We present and discuss the results for our six research questions in this section.

5.1 Overall repairability (RQ #1)

To investigate the overall repairability of STYLER and the other three systems on the 26,791
Checkstyle violations, we categorized the repair attempts per status, as shown in Table 4.
There are two groups of status: repaired and not repaired. The repaired violations are either
fully repaired, i.e., no violation is raised after the repair attempt, or partially repaired, i.e.,
the violation no longer exists in the source code but new violations were introduced. For
the sake of clarity, it is worth mentioning that only the full repairs are used for the other
five research questions. The group of violations that were not repaired includes the cases
where a resulting source code file still contains the same violation only or the same + new
violations, or is broken, which means that the file cannot be parsed by javalang after the
repair attempt.

STYLER fully repaired 41% of the violations while CS-IDEA repaired 50%, which
is the greatest overall repairability among the four considered tools. NATURALIZE and
CODEBUFF repaired fewer violations (15% and 20%, respectively). To check if there is a
significant difference between STYLER and the other tools regarding the full repairs, we
used McNemar test. Table 5 shows the contingency tables given as input to the test. We
found p-value < 0.00001 for all the three tests. Considering α = 0.05, this means that

Table 4 Repairability results on the 26,791 real violations per tool

Repaired violations Not repaired violations

Tool fully repaired new violations same violation same + new broken

STYLER 41% 12% 45% <1% 2%

CS-IDEA 50% 10% 12% 28% 0%

NATURALIZE 15% 15% 28% 8% 34%

CODEBUFF 20% 17% 10% 12% 41%
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Table 5 Contingency tables of the repairability of STYLER versus the other tools

STYLER McNemar test

repaired not repaired p-value

CS-IDEA repaired 9,039 4,337 <0.00001

not repaired 1,969 11,446

NATURALIZE repaired 3,290 610 <0.00001

not repaired 7,718 15,173

CODEBUFF repaired 3,530 1,796 <0.00001

not repaired 7,478 13,987

STYLER and any other tool have a statistically significant different proportion of errors on
our dataset of violations. Note that the p-values were not adjusted since they are too small
and the adjustment would have no impact.

Considering the numbers presented in Table 4 other than the proportions of fully-repaired
violations, we noticed that CS-IDEA and STYLER are the most reliable tools in the sense
of delivering to an end-user either a repaired source code or, in the worst-case scenario,
the code with the same violation. It is not the same case of NATURALIZE and CODEBUFF,
which had higher rates of delivering broken source code. They were, however, designed for a
different goal and do not take into account the Checkstyle ruleset of the project like STYLER

and CS-IDEA do. Yet, they are relevant for our experiment since they are the state of the
art of machine-learning-based code formatters. Our results show the need for specialized,
focused tools to repair Checkstyle violations.

In addition, we observed that some violation types, i.e., violations of different Checkstyle
rules, occur in a much higher frequency than others in our dataset (see Table 3). This might
cause bias in the results presented in Table 4. Because of that, we performed a normalization
of the data by sub-sampling the most frequent violation types. In this way, we obtained a
sub-sample of violations that contains the same number of instances for all violation types.
We ignored the less frequent ones to avoid using too few instances. For that, we calculated
the median of the distribution of the violation types, which is 274, and used it as the mini-
mum number of instances for including Checkstyle rules in the analysis. Then, we randomly
selected 274 violations of the included rules. In the end, the analysis comprises half of the
rules (13) and 3,562 violations. The normalized results are presented in Table 6. All the
tools are impacted positively in terms of fully-repaired violations. However, we note that
the normalized results present a different ranking of the tools’ performance, where STYLER

outperforms CS-IDEA. CS-IDEA is the tool most negatively impacted by the normaliza-
tion because it increases only 4% fully-repairs, while the other three tools considerably
increase their repairability by 7%–20%. This suggests that CS-IDEA performs better than
the other tools on violation types that are frequent in our dataset, which is investigated in
more detail in the next section, for answering RQ #2. Finally, we also performed McNemar
test in the normalized results, as shown in Table 7. Considering α = 0.05, the results show
that STYLER and any other tool have a statistically significant different proportion of errors
on the sub-sample too.
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Table 6 Normalized repairability results based on 3,562 violations equally distributed across 13 violation
types

Repaired violations Not repaired violations

Tool fully repaired new violations same violation same + new broken

STYLER 61% 12% 24% 1% 1%

CS-IDEA 54% 22% 14% 9% 0%

NATURALIZE 22% 22% 16% 7% 32%

CODEBUFF 34% 29% 5% 10% 23%

RQ #1: To what extent does STYLER repair real-world Checkstyle formatting viola-
tions, compared to other systems?
STYLER  repaired 41% (11,008/26,791) of the Checkstyle formatting violations found
in the wild. STYLER outperformed the machine learning systems NATURALIZE and
CODEBUFF. CS-IDEA outperformed STYLER on our entire dataset of violations, with a
repairability of 50%. However, this is not the case when we consider a sub-sample of the
dataset by normalizing the number of instances according to violation types, which sug-
gests that CS-IDEA performed better than the other tools on violations of frequent types
in our dataset. In addition, note that CS-IDEA depends on the code formatter of the Intel-
liJ IDE, whereas STYLER’s approach is fully automated and hence more appropriate for
handling new and configurable rules.

5.2 Violation-type-based repairability (RQ #2)

To answer RQ #2, we investigated the extent to which STYLER and the other three systems
repair different Checkstyle violation types, i.e., violations of different Checkstyle rules.
Figure 6 shows the Checkstyle violations fully repaired by the systems per violation type in a
heatmap. The color scale is from black to white, where black represents 0% of fully-repaired
violations and white represents 100% (i.e., the lighter, the better).

STYLER and NATURALIZE repaired violations of 24/25 Checkstyle rules, which is the
highest coverage of rules considering all the four tools. CS-IDEA and CODEBUFF fixed

Table 7 Contingency tables of the repairability of STYLER versus the other tools considering the normalized
results

STYLER McNemar test

repaired not repaired p-value

CS-IDEA repaired 1,457 479 <0.00001

not repaired 732 894

NATURALIZE repaired 736 55 <0.00001

not repaired 1,453 1,318

CODEBUFF repaired 937 284 <0.00001

not repaired 1,252 1,089
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Fig. 6 Types of Checkstyle violation repaired per tool

violations of 21 rules. Surprisingly, NATURALIZE produced fixes for a higher number of
violation types than CS-IDEA, even though it does not consider the Checkstyle ruleset of
projects because of its different goals. CODEBUFF performed relatively well considering
that it does not target Checkstyle violations as NATURALIZE. These facts suggest that our
idea of employing a machine learning approach for repairing format checker violations is
promising.

The reason for the high overall repairability of CS-IDEA (found in RQ #1) is that it
outperformed the other tools in the five most frequent rules in our dataset: RegexpSingle-
line, EmptyLineSeparator, LineLength, FileTabCharacter, and Indentation. This explains
why CS-IDEA is the leading tool in terms of repairability on the entire dataset but not on a
sample of it, as shown in RQ #1. STYLER, on the other hand, had a perfect success rate in
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rules that are not that frequent: EmptyForIteratorPad, GenericWhitespace, ParenPad, Reg-
expMultiline, and SeparatorWrap. Interestingly, CS-IDEA did not repair, at least not fully,
any violation of two of these rules. This indicates that the tools are complementary to each
other. Moreover, STYLER performed very well, with at least 80% of repaired violations, in
the rules that are related to horizontal whitespace between two Java tokens, such as Method-
ParamPad, NoWhitespaceAfter, and WhitespaceAround. For developers, even if fixing these
types of violations is easy, they may have dozens of them, which could be overwhelming.
To that extent, automation is still valuable. Moreover, STYLER is able to repair these viola-
tion types for which one would not need to put engineering effort to write the repair code.
Finally, we observed that all tools performed poorly on violations of the most frequent type
in our dataset, i.e., RegexpSingleline.

RQ #2: To what extent does STYLER repair different violation types, compared to
other systems?
STYLER and NATURALIZE repaired violations of a greater diversity of Checkstyle rules
(24/25) than the other tools (CS-IDEA and CODEBUFF: 21). STYLER performed well for
fixing violations related to horizontal whitespace between Java tokens. For some rules,
STYLER fixed all violations while CS-IDEA did not fix any and, for other rules, CS-IDEA
had a much higher repairability than STYLER, suggesting that they can be considered as
complementary in practice. Finally, we confirmed that CS-IDEA outperformed the other
tools on the five most frequent violation types in our dataset.

5.3 Unsuccessful repair cases (RQ #3)

STYLER repaired violations of 24/25 Checkstyle rules, but it did not perform well for some
rules as shown in RQ #2. To understand in which cases STYLER does not successfully gen-
erate repairs, we manually analyzed violations of the Checkstyle rules for which STYLER

repaired less than 50% violations. The analysis was ad-hoc, where, for each rule, both
repaired and non-repaired violations were investigated so that patterns of non-repaired vio-
lations or their contexts could be identified. We present the cases of unsuccessful repair we
found as follows.

STYLER encodes a violation according to the source code position returned by a format
checker which is, in this case, Checkstyle. However, in some cases, this position is not where
a fix should be applied. For instance, for a violation of the type OneStatementPerLine22, a
line break should be added in the column 19 or 20 of the line 42, just after the first statement.
However, Checkstyle returns column 31, which is the end of the second statement. In such
a case, STYLER tried to repair the violation in an inappropriate location.

Several non-repaired violations were inside comments. For instance, we found lines
of comments exceeding the maximum length of characters, therefore triggering viola-
tions of the type LineLength23. We also found tab characters inside comments, triggering
FileTabCharacter violations24. These violations also happen with strings25. STYLER does
not handle cases in which comments or strings should be modified. This is a limitation of

22https://kth.github.io/styler-experiments/#!/violation/Angel-ML-angel/339
23https://kth.github.io/styler-experiments/#!/violation/opencb-opencga/173
24https://kth.github.io/styler-experiments/#!/violation/actiontech-txle/13
25https://kth.github.io/styler-experiments/#!/violation/apache-iotdb/463
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STYLER due to its tokenization. Comments and strings are tokenized as a single token, i.e.,
STYLER does not take into account the separation of words.

Moreover, we found several occurrences of a case in which STYLER repaired a given
violation but then another existing one, which was not previously reported by Checkstyle,
was triggered. This case of only one violation being reported when multiple ones exist in
files is recurrent and happens with FileTabCharacter violations. We were not aware of that
at the time we built the real violation dataset, but when a file contains more than one tab
character, Checkstyle reports only the first instance of it. In some cases, STYLER repaired
the first instance26, but the next one was then raised by Checkstyle. Even though STYLER

repaired the originally reported violation, it was not counted as a repaired violation in our
study. Note that one criterion to select files containing violations when building the dataset
was the existence of a single violation in them (see Section 4.3). This was a decision we
made to guarantee we could automatically check if a given violation was fixed. In such a
case with FileTabCharacter violations, however, we could not check that precisely.

Finally, we observed that RegexpSingleline violations are the most frequent ones in our
dataset and are poorly handled not only by STYLER, but all tools (see the last column
of Fig. 6). When analyzing the violations related to this rule and other regex ones, we
found out that many violations are not related to formatting. Some examples are viola-
tions related to missing, wrong, or duplicated license header27 and the usage of specific
patterns, such as a tag in javadoc, that are forbidden in some projects28. Since these vio-
lations are not about formatting, they are not in the targeted violation types of STYLER

and other tools. However, the occurrence of these violations is very frequent in our dataset
and, consequently, the repairability of the tools for such regex violations is impacted. For
instance, our dataset contains 8,678 RegexpSingleline violations, and 8,102 (93%) of them
are non-formatting violations. The overall repairability results about that rule, as presented
in Fig. 6, are 3.2% for STYLER, 5.8% for CS-IDEA, 1.4% for NATURALIZE, and 2.6% for
CODEBUFF. Adjusting the repairability results of the tools by considering only the 576 Reg-
expSingleline violations that are about formatting, we found out that STYLER, CS-IDEA,
NATURALIZE, and CODEBUFF repaired 45.1%, 86.8%, 21%, 38.9% of RegexpSingleline
violations, respectively.

RQ #3: What are the cases in which STYLER fails to generate a correct repair?
STYLER does not generate a correct repair when Checkstyle returns a source code position
other than the one to be modified and when the violation is inside comments or strings.
Moreover, STYLER produces repairs that make Checkstyle raise non-originally-reported
violations. These cases in which STYLER failed to generate a correct repair relate to some
limitations of STYLER, which can be further addressed in new studies. Finally, we found
out that most of the violations of regex rules are not about formatting, which explains
why the repairability of the tools is low for these rules.

26https://kth.github.io/styler-experiments/#!/violation/actiontech-txle/19
27https://kth.github.io/styler-experiments/#!/violation/neo4j-neo4j/0
28https://kth.github.io/styler-experiments/#!/violation/apache-usergrid/0
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5.4 Size of the repairs (RQ #4)

One aspect of repair quality is the size of the diff between the source code with a formatting
violation and the repaired source code. There might be different repairs for the same viola-
tion that pass all Checkstyle rules, but the one with the smaller diff size would be preferable
for being the least disrupting for the developers. In the context of a pull request on GitHub,
a smaller diff is usually considered as easier to review and merge (Dias 2020).

To answer RQ #4, we calculated the diff size, in number of lines, of the repairs generated
by STYLER, CS-IDEA, NATURALIZE, and CODEBUFF. Figure 7 shows the distributions of
diff size per tool. We observed that the distributions of the repairs generated by STYLER and
NATURALIZE have the smallest medians, which are equal to one and three changed lines,
respectively. Yet, they suffer from a few bad cases (the right-hand part of the distributions),
mainly NATURALIZE. CS-IDEA and CODEBUFF produced larger repairs, with medians
equal to nine and 42, respectively. In the worst cases, they produced several repairs with
more than 200 changed lines, which can be seen by the fact that their 95th percentiles are not
shown in Fig. 7. On the other hand, the 95th percentile of STYLER is three. We performed
Wilcoxon rank-sum test to verify if the distributions of diff sizes obtained by STYLER and
the other tools are significantly different from one another. We found p-value < 0.00001
when testing STYLER with all the other tools. Considering α = 0.05, we rejected the null
hypothesis, which means that the distribution of STYLER is significantly different from the
other ones.

RQ #4: What is the size of the repairs generated by STYLER, compared to other sys-
tems?
The size of the repairs produced by STYLER is usually small. STYLER had the smallest
median repair size of one changed line, followed by NATURALIZE, with a median size
of three lines. CS-IDEA and CODEBUFF produced larger repairs. The ability to produce
small diffs is an important property for code review and pull-request-based develop-
ment, hence our results show that STYLER can be realistically used in a modern software
development context.

Fig. 7 Size of the repairs per tool. The two boxplot whiskers represent the 5th and the 95th percentiles
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5.5 Performance (RQ #5)

To investigate if STYLER can be used in practice, we measured the time STYLER spent on
the real violation dataset. Table 8 shows the minimum, median, average, and maximum time
spent on the 104 projects, split over the different steps of the STYLER workflow. For training
data generation, STYLER took at least 15 minutes and up to six hours, which is the maximum
execution time allowed by our experimental setup (see Section 4.4.3). The median time for
training data generation was 45 minutes. To tokenize the training data, STYLER took around
two minutes on average, and a maximum of 14 minutes for training the models. The entire
training process of STYLER (data generation + tokenization + model training) took around
one hour and a half on average. This can be considered just fine since the training is meant
to happen only when the coding conventions used in a project change (i.e., the Checkstyle
ruleset file). After STYLER is trained for a given project, it takes on average two seconds
to predict a repair, which is fast enough to be used in IDEs or in continuous integration
environments.

RQ #5: How fast is STYLER for learning and predicting formatting repairs?
On average, STYLER needs about one hour and a half for training and two seconds for
predicting a repair. The training time is not an issue since it only happens when the Check-
style ruleset file of a project changes. The prediction time relates to usability: our results
show that STYLER can be used in IDEs or CI in a practical setting.

5.6 Technical analysis on STYLER (RQ #6)

At prediction time, STYLER used two trained LSTM models, each one based on a different
training data generation protocol: Stylerrandom and Styler3grams . In RQ #6, we investigated
how the two protocols contribute to the final output of STYLER. We found out that STYLER

fixed 967 violations exclusively with the Stylerrandom-based model and 2,581 violations
exclusively with the Styler3grams-based model. 7,460 violations were fixed with both mod-
els. This shows that the model based on the Styler3grams protocol is more effective than
the model based on the Stylerrandom one. In a real case scenario, one could consider using
STYLER only with the Styler3grams-based model and still obtain fixes for 91% of what
STYLER can repair. This would reduce the time for training STYLER.

Table 8 Statistics on the performance of STYLER

Training Prediction

Data generation Tokenization Models Average Time

Step (Fig. 3)a : A B C E → I

Min 00:15:58 00:00:07 00:04:33 01.380 s/err

Med 00:45:19 00:01:36 00:07:07 02.133 s/err

Avg 01:23:05 00:01:53 00:07:13 02.267 s/err

Max 06:12:33 00:05:38 00:14:01 05.723 s/err

aThe steps were executed in a computer containing a processor Intel(R) Core(TM) i9-10980XE CPU @
3.00GHz and 125GiB system memory. For training the models, we used GPUs GeForce RTX 2080 Ti
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RQ #6: How do the two training data generation techniques of STYLER contribute
to its repairability?
The LSTM model based on the Styler3grams protocol is more effective than the model
based on the Stylerrandom protocol. Even though the latter exclusively contributes to the
overall repairability of STYLER with 9% of the fixes, in a real case scenario, one could
use only the former to reduce the time for training STYLER.

6 Discussion

We discuss, in this section, machine learning versus rule-based approaches, as well as the
threats to the validity of our study.

6.1 Machine learning versus rule-based approaches

STYLER employs a machine-learning-based approach for repairing formatting convention
violations. An alternative approach would be a rule-based one. In such a case, there would
be at least one transformation to be applied in the code per format checker rule. However,
the engineering of a transformation for every single linter rule is time-consuming. While this
is costly, this might be even impractical for highly configurable linters such as Checkstyle,
because the rule-based repair system would need to have different transformations for the
same linter rule due to the configurable properties. On the contrary, a machine learning
approach does not require costly human engineering. It is able to infer transformations for
a diverse set of linter rules. Our experiments have validated this property in the context
of formatting violations raised by Checkstyle. However, since our approach is far from
being perfect and does not work well for certain rules, one avenue for future research is
the development of a rule-based system for simple, non-highly configurable rules, to be
complementary to STYLER.

6.2 Threats to validity

STYLER generates training data for learning how to repair violations based on the Check-
style ruleset file contained in a given project. This means that STYLER assumes that all
formatting rules contained in such a file are valid. In practice, however, developers might
ignore the violations of certain rules. Our experiment does not take this scenario into
account, thus we do not claim that all the fixes produced by STYLER are necessarily relevant
for developers.

The real violation dataset contains Checkstyle violations mined from GitHub repositories.
It is to be noted that it does not cover all existing Checkstyle formatting rules. Moreover, the
dataset might not be representative of the real distribution of the 25 rules in the real world.
Consequently, future research is needed to strengthen the validity of our study.

At the end of the violation collection process for building the dataset, we removed dupli-
cate Java files according to file contents. However, there might still exist duplicate violations
in our dataset. A file containing a violation might have changed, but that change might not
be related to the line where the violation exists. Therefore, the same violation would exist in
both versions of the file, but since the overall file contents are different, they are both kept
in our dataset, which might create noise in it.
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Another threat related to the creation of the dataset is that, when selecting violating
files, we chose only the ones containing a single Checkstyle violation. We performed this
selection so that we could accurately check if the violation was correctly repaired by the
tools. Files containing more than one violation would make it hard to automatically check
the correctness of repairs because once a violation is repaired, the location of the other ones
in the file could be different. Therefore, our results are based on single-violation files, and
future investigations on multiple-violation files are needed.

Finally, to compare the quality of the repairs produced by STYLER with the repairs pro-
duced by the other three tools, we measured the size in lines of the diff between the original
and repaired program versions. However, the diff size is only one dimension for compar-
ing the tools, which only approximates the developer’s perception of formatting repairs.
User studies, such as proposing formatting repairs to developers, are interesting future
experiments to further investigate the practical value of this research.

7 Related work

STYLER aims to repair formatting violations raised by linters. Linters are a kind of auto-
mated static analysis tool. In this section, we first present works on the usage of static
analysis tools. Then, we present systems that share similar goals with STYLER, which
are systems that target linter violation repair and systems that fix source code formatting.
Finally, we present works related to STYLER in terms of used technique, i.e., machine
learning, for repairing compiler errors and behavioral bugs.

7.1 The usage of automated static analysis tools

Static analysis tools have been the subject of investigation in recent research. Zampetti
et al. (2017) investigated their usage in 20 popular Java open source projects hosted on
GitHub that use Travis CI to support CI activities. They first found out that the projects use
seven static analysis tools—Checkstyle, FindBugs (Ayewah et al. 2008), PMD29, License
Gradle Plugin30, Apache Rat31, Clirr32, and jDepend33—being Checkstyle the most used
one. About the integration of static analysis tools in CI pipelines, they found out that build
breakages due to those tools are mainly related to adherence to coding conventions, while
breakages related to likely bugs or vulnerabilities occur less frequently. Zampetti et al.
(2017) discuss that some tools are sometimes configured to just produce warnings without
breaking the build, possibly because of the high number of false positives.

Vassallo et al. (2018) investigated the usage of static analysis tools from the perspective
of the development context in which these tools are used. For that, they surveyed 42 develop-
ers and interviewed 11 industrial experts that integrate static analysis tools in their workflow.
They found out that static analysis tools are used in three main development contexts, which
are local environment, code review, and continuous integration. Moreover, they also found
out that developers consider different warning types depending on the context, e.g., when
performing code review they mainly look at style conventions and code redundancies.

29https://pmd.github.io/, last access: 2020-07-13
30https://github.com/hierynomus/license-gradle-plugin, last access: 2020-07-13
31https://creadur.apache.org/rat/, last access: 2020-07-13
32http://www.mojohaus.org/clirr-maven-plugin/, last access: 2020-07-13
33http://www.mojohaus.org/jdepend-maven-plugin/, last access: 2020-07-13
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Marcilio et al. (2019) focused on one specific static analysis tool: SonarQube34. Through
an online survey with 18 developers from different organizations, they found out that most
respondents agree that the issues reported by static analysis tools are relevant for improving
the design and implementation of software.

7.2 Linter violation repair and code formatters

Linter violation repair. There are some tools to fix violations of rules checked by linters.
Considering academic systems, there are Phoenix (Bavishi et al. 2019), which repairs vio-
lations of rules checked by FindBugs (Ayewah et al. 2008), and Getafix (Bader et al. 2019),
which focuses on rules checked by Infer (Calcagno et al. 2015) and Error Prone (Aftandil-
ian et al. 2012). These tools learn fix patterns by mining past human-written fixes for linter
violations. Another tool is SpongeBugs (Marcilio et al. 2020), which repairs violations of
rules checked by the two well-known static analyzers SonarJava and SpotBugs with fixed
repair templates. STYLER shares with these tools the goal of generating patches for lin-
ter violations. However, while the mentioned tools focus on rules related to bugs and code
smells, STYLER focuses on formatting. In addition, there is C-3PR (Carvalho et al. 2020),
which does not generate patches itself but proposes fixes through pull request on GitHub
generated by linter violation repair tools.

Beyond those academic systems, there are other tools that repair violations found by
linters. Related to formatting rules, there is, for instance, ESLint, which is a linter for
JavaScript, and it also includes automated solutions to repair violations raised by it.

Code formatters. A way to enforce formatting conventions lies in code formatters (also
known as pretty-printers). In Section 4.2, we described NATURALIZE (Allamanis et al.
2014) and CODEBUFF (Parr and Vinju 2016). NATURALIZE recommends fixes for coding
conventions related to naming and formatting in Java programs, and CODEBUFF infers for-
matting rules to any language given a grammar. Similar to the idea behind CODEBUFF,
Reiss (2007) had previously experimented with different learning algorithms and feature set
variations to learn the style of a given corpus so that it could be applied to arbitrary code.
More recently, Markovtsev et al. (2019) presented STYLE-ANALYZER, which helps devel-
opers to fix code formatting during code reviews. STYLE-ANALYZER mines the formatting
style of the git repository under analysis and expresses the found format patterns with com-
pact human-readable rules. Then, it suggests style inconsistency fixes in the form of code
review comments.

Beyond those academic systems, there are code formatters such as google-java-format35,
which reformats source code according to the Google Java Style Guide36. However, these
formatters are usually not configurable or require manual tweaking, which is a tedious pro-
cess for developers. This is a problem because not all developers are ready to follow a
unique convention style. STYLER, on the other hand, is generic and automatically captures
the conventions used in a project to fix formatting violations.

Finally, there is the CHECKSTYLE-IDEA plugin for IntelliJ (CheckStyle-IDEA 2021),
which we used to compare STYLER with. CHECKSTYLE-IDEA provides both real-time
and on-demand scanning of Java files with Checkstyle from within IDEA. It also uses the

34https://www.sonarqube.org/, last access: 2020-07-13
35https://github.com/google/google-java-format/, last access: 2020-07-13
36http://checkstyle.sourceforge.net/reports/google-java-style-20170228.html, last access: 2020-07-13
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Checkstyle ruleset of projects to configure the formatter available in IntelliJ, making it pos-
sible to repair Checkstyle formatting violations. However, it is limited in repairing violations
of a great number of Checkstyle rules as shown in RQ #2 and creates large repairs as shown
in RQ #4.

7.3 Learning for repairing compiler errors and behavioral bugs

Learning for repairing compiler errors. There are related works in the area of automatic
repair of compiler errors. In this case, the compiler syntax rules are the equivalent of the
formatting rules. There, recurrent neural networks and token abstraction have been used to
fix syntactic errors (Bhatia et al. 2018). In DeepFix, Gupta et al. (2017) use a language
model for repairing syntactic compilation errors in C programs. Out of 6,971 erroneous
C programs, DeepFix was able to completely repair 27% and partially repair 19% of the
programs. Later, Ahmed et al. (2018) proposed TRACER, which outperformed DeepFix,
repairing 44% of the programs. Santos et al. (2018) confirmed the efficiency of LSTM over
n-grams and of token abstraction for single token compiling errors. These approaches do
not target formatting violations, which is the target of STYLER.

Learning for repairing behavioral bugs. As for repairing compiler errors, there are also
learning systems for repairing behavioral bugs, those that, for instance, break test cases.
Tufano et al. (2018) investigated the feasibility of using Neural Machine Translation tech-
niques for learning bug-fixing patches for real defects. They mined millions of buggy and
patched program versions from the history of GitHub repositories and abstracted them to
train an Encoder-Decoder model. The model was able to fix hundreds of unique buggy
methods in the wild. Chen et al. (2019) proposed SequenceR, a program repair tool based on
sequence-to-sequence learning focused on one-line fixes. In an experiment with Defects4J
(Just et al. 2014), SequenceR was shown to be able to learn how to repair behavioral bugs
by generating patches that pass all tests. STYLER and SequenceR share the same idea for
formatting violation and bug encoding.

8 Conclusion

In this paper, we presented STYLER, which implements a novel approach to repair format-
ting violations raised by format checkers. STYLER creates a corpus of violations, learns
from it, and predicts fixes for new violations, using machine learning. Currently, its imple-
mentation supports Checkstyle, a popular linter for Java programs. Our experimental results
on 26,791 real Checkstyle violations showed that STYLER repairs real violations from a
diverse set of Checkstyle rules and performs better for fixing violations related to horizon-
tal whitespace between Java tokens than for fixing violations related to tabulations and line
length. Moreover, STYLER produces smaller repairs than the compared systems, and its pre-
diction time is low, which suggests that it can be used in development environments such
as IDEs. Finally, we identified cases in which STYLER does not succeed to generate correct
repairs, e.g., for Checkstyle violations inside comments or strings. These findings can guide
improvements in STYLER and help researchers and developers to understand STYLER’s
limitations.

There are several interesting avenues for future research. First, improvements on
the violation injection protocols for creating training data can be done to improve the
representativeness of seeded formatting violations. This might increase the repairability of
STYLER. Second, user studies can be conducted, where repairs predicted by STYLER are
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proposed to developers through, for instance, pull requests on GitHub. This type of study
would bring practical insights on the potential of STYLER. Third, STYLER could be inte-
grated into development environments, such as IDEs and social coding sites, for supporting
the mentioned user studies and possibly for developers to use STYLER. Fourth, other linters
could be plugged in STYLER so it could be applicable on projects that use linters other than
Checkstyle. Fifth, since STYLER does not work well for certain rules, the development of
a rule-based system for simple, non-highly configurable rules, could be beneficial to com-
plement STYLER. Finally, the overall idea behind STYLER could be tried out to repair other
linter violations beyond purely formatting ones.
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