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Abstract
Vulnerability prediction refers to the problem of identifying system components that are
most likely to be vulnerable. Typically, this problem is tackled by training binary classifiers
on historical data. Unfortunately, recent research has shown that such approaches underper-
form due to the following two reasons: a) the imbalanced nature of the problem, and b) the
inherently noisy historical data, i.e., most vulnerabilities are discovered much later than they
are introduced. This misleads classifiers as they learn to recognize actual vulnerable com-
ponents as non-vulnerable. To tackle these issues, we propose TROVON, a technique that
learns from known vulnerable components rather than from vulnerable and non-vulnerable
components, as typically performed. We perform this by contrasting the known vulnerable,
and their respective fixed components. This way, TROVON manages to learn from the things
we know, i.e., vulnerabilities, hence reducing the effects of noisy and unbalanced data. We
evaluate TROVON by comparing it with existing techniques on three security-critical open
source systems, i.e., Linux Kernel, OpenSSL, and Wireshark, with historical vulnerabili-
ties that have been reported in the National Vulnerability Database (NVD). Our evaluation
demonstrates that the prediction capability of TROVON significantly outperforms existing
vulnerability prediction techniques such as Software Metrics, Imports, Function Calls, Text
Mining, Devign, LSTM, and LSTM-RF with an improvement of 40.84% in Matthews Cor-
relation Coefficient (MCC) score under Clean Training Data Settings, and an improvement
of 35.52% under Realistic Training Data Settings.

Keywords Vulnerability prediction · Trovon · Training on vulnerabilities only ·
Encoder-decoder · Machine translation · tf-seq2seq

1 Introduction

A vulnerability is a hole or a weakness in the application, which can be a design flaw or
an implementation bug, that allows an attacker to cause harm to the stakeholders, i.e., the
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application owner, application users, and other entities that rely on the application (Vulner-
abilities 2021). While vulnerabilities can be thought of as specific types of software defects
(or bugs), there are subtle and significant differences that make their identification consid-
erably more complex and challenging than the problem of finding bugs (Tang et al. 2015;
Potter and McGraw 2004).

Vulnerabilities are fewer in comparison to defects, limiting the information one can
learn from. Also, their identification requires an attacker’s mindset (Morrison et al. 2015),
which developers or code reviewers may not possess. Lastly, the continuous growth of
codebases makes it difficult to investigate them entirely and track all code changes. For
example, the Linux kernel, one of the projects with the highest number of publicly reported
vulnerabilities, reached 27.80 million LoC (Lines of Codes) at the beginning of 2020 (2020).

Vulnerability prediction approaches were proposed to tackle these challenges by pri-
oritizing the efforts that developers and code reviewers have to put on when testing or
reviewing code to find vulnerabilities. These methods take advantage of the large amounts
of historical data available based on which they learn a set of features and/or code prop-
erties that associate with vulnerabilities. For instance, the presence of vulnerabilities has
been linked to high code churn (Shin et al. 2011), to the use of specific library imports and
function calls (Neuhaus et al. 2007), and the frequency of suspicious code tokens (Tang
et al. 2015). Unfortunately, building models around such features is challenging due to the
small number of available vulnerable code instances, which limit the learning ability of the
predictors (Zimmermann et al. 2009).

Furthermore, Jimenez et al. (2019) demonstrated that vulnerability prediction approaches
have been built under a “clean” training data assumption, i.e., all the component’s label-
ing information (vulnerable/non-vulnerable) is always available irrespective of time. Their
study showed that under these settings the approaches do not account for the gradual reve-
lation of vulnerabilities over time. This results in prediction models training on even those
vulnerabilities that have not been uncovered yet, e.g., all vulnerabilities known from time t
onwards are available at all times, even before time t.

Jimenez et al. advocated Realistic Training Data Settings where the vulnerability labels
used for training the prediction models are more realistically available at training time.
For example, in such settings, at a given time t, only the vulnerabilities known till time t
should be available for training. All vulnerabilities known from time t onwards should not
be available for training beforehand. Their study demonstrated that Realistic Training Data
Settings results in unavoidable noise in the training data because every component with no
reported vulnerability till training time is considered non-vulnerable during training, which
makes existing approaches perform poorly. This establishes a need for robust vulnerability
prediction techniques.

We advance in this direction by developing TROVON1—a method that learns from val-
idated data, i.e., we train only on components known to be vulnerable and leave aside the
(supposedly) non-vulnerable ones. This way, we do not make any assumptions on non-
vulnerable components and bypass the key problem faced by previous works. To do so, we
rely on a simple yet powerful language-agnostic machine translation technique (Britz et al.
2017) which we train on pairs of vulnerable and fixed code fragments, available at projects’
release time. In particular, we contrast the code fragments pairs (pairs of vulnerable and

1TROVON is an abbreviation for “Training on vulnerabilities only”, which is the core focus of our study.
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fixed fragments) that were modified when fixing a vulnerability, with fragment pairs from
other functions of the same components (fragments less likely to be vulnerable) in order to
learn to distinguish likely vulnerable from non-vulnerable code.

TROVON focuses on vulnerability fixes, i.e., code transformations that turn vulnerable
code into a non-vulnerable one, to train the machine translation model that aims at capturing
silent features related to the differences between vulnerable and fixed components. There-
fore, predictions are guided by actual points of interest, (i.e., diff points) in the vulnerable
code where the transformations should happen. This means that TROVON learns to identify
code characteristics that are similar to those (vulnerable) seen during training.

We empirically assess the effectiveness of TROVON on available releases of three security-
critical open source systems, i.e., Linux Kernel, Wireshark, and OpenSSL. Our evaluation
demonstrates that TROVON significantly outperforms existing vulnerability prediction
approaches under both Clean Training Data Settings and Realistic Training Data Settings.

In particular, our results show that when we train all the approaches (including TRO-
VON) with clean training data, TROVON outperforms the existing approaches by 83.96% in
Precision, 155.33% in Recall, 132.95% in F-measure, and 80.39% in Matthews Correlation
Coefficient (MCC). In addition to these metrics, we also evaluate TROVON on predicting
unseen vulnerable components specifically. This is a new metric that we introduce in this
paper to help evaluate the extent to which vulnerability prediction generalizes, i.e., abil-
ity to predict unseen components (components not used for training) as being vulnerable
or not. The percentages of unseen vulnerable components predicted by TROVON, on aver-
age, are 40.05%, 64.34%, and 42.28% higher than the ones obtained by existing techniques
in Linux Kernel, Wireshark, and OpenSSL releases, reflecting TROVON’s better general-
ization capability. Under Realistic Training Data Settings, on average, TROVON achieved
0.39 MCC, (i.e., 3.63 times higher than the baselines), 0.69 F-measure, (i.e., 11.82 times
higher), 0.86 Precision, (i.e., 2.66 times higher), and 0.58 Recall, (i.e., 15.25 times higher
than the baselines).

In summary, we make the following contributions:

1. We present TROVON, a novel vulnerability prediction method via machine translation.
2. We demonstrate that TROVON significantly outperforms existing methods through a

large empirical study.
3. We corroborate that TROVON remains robust when trained in Realistic Training Data

Settings that includes unavoidable noise, where almost all previous methods that we
compared with, fail (Jimenez et al. 2019).

2 Background

2.1 Vulnerabilities

Common Vulnerability Exposures (CVE) (2021) defines a security vulnerability as “a mis-
take in software that can be directly used by a hacker to gain access to a system or network”.
The inadvertence of a developer or insufficient knowledge of defensive programming usu-
ally causes these mistakes. Still, vulnerabilities are of critical importance for software
vendors, who often offer bounties to find them and prioritize their resolution over other less
harmful bugs, hence reducing a potential business impact.
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Vulnerabilities are usually reported in publicly available databases to promote their dis-
closure and fix. One such example is National Vulnerability Database, aka NVD (2021).
NVD is the U.S. government repository of standards based vulnerability management data.
All vulnerabilities in the NVD have been assigned a CVE (Common Vulnerabilities and
Exposures) identifier. The Common Vulnerabilities and Exposures (CVE) Program’s pri-
mary purpose is to uniquely identify vulnerabilities and to associate specific versions of
codebases (e.g., software and shared libraries) to those vulnerabilities. The use of CVEs
ensures that two or more parties can confidently refer to a CVE identifier (ID) when dis-
cussing or sharing information about a unique vulnerability. For every vulnerability, along
with the Git commit IDs of the code related to vulnerability-fix commit, NVD also pro-
vides related information, i.e., CVE number, vulnerability description, CWE number (if
applicable), time of creation, and the list of the impacted releases in the form of reports.

2.2 Vulnerability PredictionModeling

2.2.1 Prediction Modeling

Prediction modeling aims at learning statistical properties of interest based on historical
data. While the resulting models are usually suitable only for the project/application on
which they have been trained, the learning process is generic and applies to a specific set
of features that associate with the property to predict. In the context of vulnerabilities, a
prediction model can be used to classify software components as likely or unlikely vulner-
able. This information can be used to support the code review process. The task is similar
to defect prediction, yet due to the sparsity of available examples, it is harder to predict
vulnerabilities than defects (Shin and Williams 2013; Theisen and Williams 2020).

2.2.2 Intra vs Inter Predictions

Prediction modeling is usually performed in both intra- and cross-project fashion, i.e., train-
ing on data of the same or of other projects. However, vulnerabilities are project-specific,
i.e., they are tied to the project context, used libraries, and development process, and thus,
inter-project predictions do not work. Scandariato et al. (2014) found that the models for 11
apps out of 20 were too specific for cross-project prediction, and that the link was more pair-
wise rather than generic. The results of cross-project vulnerability prediction in the study of
Moshtari and Sami (2016) show high recall but comparatively low F2 using coupling and
IVH. Therefore, research in this area is focussed on intra-project.

2.3 Granularity Level

Prediction models can target various levels of granularity, such as line, function, component,
etc. However, the key target should be actionable for the developers and code reviewers
that are envisioned to use the technique. Given this, a commonly accepted tradeoff is the
component (file) level granularity as it has been vetted by Microsoft developers in a study
of Morrison et al. (2015), and is used by most existing approaches. Thus, we consider a
code-file as our component, i.e., file-level granularity, as it is actionable for industrial use
(Morrison et al. 2015), and provides a baseline for comparing our results with those reported
in the relevant literature that we elaborate in Section 4.5.

Empir Software Eng (2022) 27:169169 Page 4 of 30



2.4 Clean Training Data Settings

Jimenez et al. (2019) demonstrated that the existing vulnerability prediction approaches
have been built under a “clean” training data assumption, i.e., all the component’s labeling
information (vulnerable/non-vulnerable) is always available irrespective of time, which is
unrealistic. Jimenez et al. showed that under these settings, aka Clean Training Data Set-
tings, prediction approaches fail to account for the gradual revelation of vulnerabilities over
time. This results in biased prediction models, i.e., models trained on vulnerabilities that
have not been been discovered at the release time, e.g., all vulnerabilities known from time
t onwards are available at all times, even before time t.

2.5 Realistic Training Data Settings

In contrast to Clean Training Data Settings, where the component’s labeling information
(vulnerable/non-vulnerable) is always available irrespective of time, Realistic Training Data
Settings necessitate vulnerability labels to be used for training the prediction models to be
those that are available at training time. For instance in Realistic Training Data Settings, at a
given time t, only the vulnerabilities known at time t should be available for training. All vul-
nerabilities known after time t should not be available for training beforehand. Jimenez et al.
study demonstrated that Realistic Training Data Settings introduce noise in the training data,
because every component with no reported vulnerability till the training time is considered
as non-vulnerable during training, that makes existing approaches perform poorly.

Irrespective of the poor performance of existing approaches, Realistic Training Data
Settings represents a realist case study, the vulnerabilities are discovered and fixed long
after the release date of the projects. In our release-based experiments, (i.e., one release for
training the model and next release for testing the trained model), only those components
are considered as vulnerable in the training set whose vulnerabilities have been discovered
and fixed before the next release date of the system.

2.6 Seen Vulnerable Components

Vulnerabilities can remain in the code and get propagated throughout different releases
(one release after another) of a system, without getting fixed. Due to this, in a release-
based experiment, (i.e., one release for training the model and next release for testing the
trained model), vulnerable components that are present in the training set and “seen” by the
prediction model during training can also appear in the testing set. Throughout our paper,
we refer to such components as Seen vulnerable components.

2.7 Unseen Vulnerable Components

From one release of a system to the next one, many files/components are modified either
to introduce a new functionality or to modify an existing one. In case of Linux Kernel,
Wireshark, and OpenSSL projects, we analyzed that 29.95%, 72.53%, and 73.58% of the
files, on average, are changed between the releases. A component that was non-vulnerable in
the previous release can be become vulnerable in this release, because of such a modification
by a developer. Due to this, in a release-based experiment, any component in a testing set
which is vulnerable and is not available in the training set, represents a novel vulnerability.
Since, this component is “unseen” and has not been trained on by the model, we refer to it
as Unseen vulnerable component.
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2.8 Machine Translation

We perform vulnerability prediction using Machine Translation. Machine Translation can
be considered as a transformation function transform(X) = Y , where the input X = {x1, x2,
. . . , xn} is a set of entities that represents a component to be transformed to produce the
output Y = {y1, y2, . . . , yn}, which is a set of entities that represent a desired component.

In the training phase, the transformation function learns on the example pairs (X, Y)

available in the training dataset. In our context, X contains vulnerable entities, representing
a vulnerable component, and Y contains fixed entities, representing the corresponding fixed
component. The transformation function can be trained not to transform, i.e., to reproduce
the same output as the input in cases where X is the desired entity-set. This is achieved
by training the function on the example pairs (X,X), i.e. transform(X) = X. In the case of
vulnerability prediction modeling, this learned transformation will be used as our prediction
model.

2.9 RNN Encoder-Decoder Architecture

The encoder-decoder architecture for recurrent neural networks is the standard neural
machine translation method that rivals and in some cases outperforms classical statistical
machine translation methods (Brownlee 2022). We use the RNN Encoder-Decoder that is
established and is used by many recent studies (Garg et al. 2022; Sutskever et al. 2014;
Tufano et al. 2019a). The RNN Encoder-Decoder machine translation is composed of two
major components: RNN Encoder to encode a sequence of terms x into a vector repre-
sentation, and RNN Decoder to decode the representation into another sequence of terms
y. The model learns a conditional distribution over an output sequence conditioned on
another input sequence of terms: P(y1; . . . ; ym|x1; . . . ; xn), where n and m may differ. For
example, given an input sequence x = Sequencein = (x1; . . . ; xn) and a target sequence y

= Sequenceout = (y1; . . . ; ym), the model is trained to learn the conditional distribution:
P(Sequenceout |Sequencein) = P(y1; . . . ; ym|x1; . . . ; xn), where xi and yj are separated
tokens. A bi-directional RNN Encoder (Britz et al. 2017), formed by a backward RNN and
a forward RNN, is considered the most efficient to create representations as it takes into
account both past and future inputs while reading a sequence (Bahdanau et al. 2014).

3 Approach

The key idea of TROVON is to train a machine translator (viz. an encoder-decoder sequence
to sequence model) to identify vulnerable code, by feeding it with vulnerable code frag-
ments and their corresponding fixes. Machine translators can automatically recognize: (i)
features of the language (to be translated) and (ii) required translation (to the desired lan-
guage). In our case, it is used to automatically identify vulnerability features with minimum
overhead.

It should be noted that we do not aim at fixing vulnerable code, but rather at identifying
likely vulnerable code instances. The point here is that we use the translator to indicate the
presence of vulnerabilities without considering the fixes produced by the model. In other
words, we leverage the ability of the translators to learn the vulnerabilities’ context and
not their instance and location. We assert that since vulnerable code instances are scarce,
information gained from historical data is inevitably partial and incomplete. Therefore, it
can be used to indicate the presence of vulnerabilities but not their instance context.
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The translator is trained on input - desired output pairs,i.e., on vulnerable - fixed code
fragments. For prediction, one can input an unseen code into the trained translator to check
whether it is likely to be vulnerable. If the translator changes the code then it can be con-
cluded that the code is likely to be vulnerable. To avoid many false positives (the translator
changing every input code fragment), we also train it to leave non-vulnerable code frag-
ments unchanged. To this end, we also feed the translator with input-output pairs where
each of which is a non-vulnerable code fragment (input = output). It must be noted that we
train only on the components (files) that were fixed, leaving aside the unchanged ones. This
way we aim at reducing the noise from the training data, i.e., by focusing on what we are
certain of; the information provided by the vulnerability fixes.

Figure 1 shows an overview of the implementation. Starting from vulnerable code com-
ponents and their fixes, it involves the following activities: 1) decomposing the components
into code fragments; 2) identifying which code-fragments are responsible for the vulner-
ability; 3) producing abstracted code-fragments by removing irrelevant information (e.g.
user-defined names, comments); 4) configuring and training the machine translator. 5)
producing abstracted code-fragments of an unseen code component and using the trained
machine translator to predict whether it is likely to be vulnerable.

3.1 Decomposing Components into Code Fragments

We target our predictions at the component, (i.e., file) level due to: a) the empirical evidence
provided by Morrison et al. (2015) and b) to account for the context of code (vulnerability-
fixes) that can be fixed at multiple locations throughout the component. A code-fix can be an
addition, removal, and/or modification of code. Since functions are the basic building blocks
of a program, we use them to establish function-level mappings between the vulnerable
components and their fixed counterparts (based on the function headers).

Thus, we extract all the functions from both, a vulnerable component and its fixed coun-
terpart, and pair each before-fix function with the corresponding after-fix function. The
functions that cannot be paired, i.e., having no counterpart, are discarded. This can happen

Fig. 1 Implementation: Sequences generated from the source-code are used to train the model to generate
desired output sequences. The trained model is provided with sequences generated from an unseen source
code. The component prediction is based on the generated output sequences
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due to the creation and/or deletion of a function to fix a vulnerability, e.g., a function added
during the fix which was not present before or vice-versa.

3.2 Categorizing Functions as Vulnerable or Non-vulnerable

As typically performed in this line of work, we consider as vulnerable, any function that
was modified to fix the vulnerability. The remaining are considered as non-vulnerable (not
vulnerable to the specific vulnerability). When comparing a before-fix copy to its after-fix
counterpart, we ignore irrelevant syntactical changes, e.g., additional blank spaces and new
lines. If there remain syntactical differences between the two copies, we label the before-fix
as vulnerable.

3.3 Abstracting Irrelevant Information

A major challenge in dealing with raw source code is the huge vocabulary created by the
abundance of identifiers and literals used in the code. Vocabulary, on such a large scale,
hinders the learning of relevant code patterns (Tufano et al. 2019a). Thus, to reduce the
vocabulary size, we transform the source code into an abstract representation by replacing
user-defined entities with re-usable IDs.

Figure 2 shows a code snippet of a real function (Fig. 2a) converted into its abstract repre-
sentation (Fig. 2b). The purpose of this abstraction is to replace any reference to user-defined
entities (function name, type name, variable name, and string literal) with IDs that can be
reused across functions (thereby reducing vocabulary size). Thus, we replace identifiers and
string literals with unique IDs. Additionally, comments and annotations are removed.

New IDs follow the regular expression (F|T|V|L) (num)+, where num stands for
numbers 0, 1, 2, . . . assigned in a sequential and positional fashion based on the occurrence
of that entity. All the entities - user-defined Function names, Type names, Variable names,
and String Literals are replaced with F num, T num, V num, and L num, respectively. Thus,
the first function name receives the ID F 1, the second receives the ID F 2, and so on. If
any of these entities appear multiple times in a function, it is replaced with the same ID.

Each function (pair) is abstracted in isolation to yield an abstracted function code, i.e.,
same IDs can be reused across functions without impacting TROVON. ID references are not
preserved across functions, e.g., V 1 may refer to two different variable names from one

Fig. 2 Abstraction: Actual Functions (left) are abstracted by replacing user-defined Function names, Type
names, Variable names, and String Literals to F num, T num, V num, and L num, respectively to achieve
Abstracted Functions (right)
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function to another. This is the key to reduce the vocabulary size, e.g., the name of the first
function called in any pair is replaced with the ID F 1, regardless of its original name.

In the case of vulnerable functions, the before-fix copy is abstracted first and then the
after-fix copy. IDs are shared between the two copies (before-fix and after-fix) of the func-
tions and new IDs are generated only when new (Function, Type, Variable) names and String
Literals are found.

The abstracted code is rearranged in a single sentence to represent a sequence of
space-separated entities, which is the representation supported by the machine translator.
Sequences generated from vulnerable (before-fix), fixed (after-fix), and unchanged func-
tions are named vulnerable, fixed, and unchanged sequences, respectively. In these settings,
fixed and unchanged sequences represent non-vulnerable cases. To limit the computation
cost involved in training the translator, large sequences are split into multiple sequences of
no more than 50 tokens each.

3.4 Building theMachine Translator

To build our machine translator, we train an encoder-decoder model that can transform an
input sequence to the desired sequence (output of the model).

A representation of a sequence is similar to a sentence in a natural language that consists
of words separated by spaces and ends with a full stop. Instead of words and full stop char-
acter, a sequence has tokens and a newline character. Thus, we train the encoder-decoder by
feeding it with pairs of sequences. More precisely, we use two types of pairs: (i) vulnera-
ble sequences with their corresponding fixed sequences, and (ii) non-vulnerable sequences
paired with themselves. Non-vulnerable sequence-pairing is essential to allow the learner
to identify what should not be changed. Thereby, avoiding to raise many false positives
(incorrectly predicting non-vulnerable sequences as vulnerable) while learning only from
“clean” data.

3.5 Predicting Vulnerable Components

To predict whether an unseen component, (i.e., file) is potentially vulnerable, we decom-
pose it into sequences following the process depicted in Fig. 1. Then, we feed the resulting
sequences into the machine translator which produces output sequences. If one (or more)
of the output sequences returned by the model is different from the original one, (i.e., input
sequences), we consider the component as likely to be vulnerable. Otherwise, we consider
component as likely non-vulnerable, i.e., in case of no change in any of the output sequences
in comparison to the input sequences, the component is considered as likely non-vulnerable.

4 Experimental Evaluation

4.1 Research Questions

TROVON aims to support code reviews by predicting vulnerable components in new
releases, based on the information learned from previous (historical) data, i.e., the previous
project release. Therefore, our first research question regards the prediction ability of TRO-
VON. We measure the prediction ability of TROVON to correctly predict vulnerable and
non-vulnerable components. We do so with the help of classification assessment metrics,
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i.e., Precision, Recall, F-1, and MCC. We evaluate this by training on all available vulner-
abilities of one release and testing on the next release, for all available release pairs. Thus,
we ask:

RQ1 What is the prediction performance of TROVON in a release-based scenario?

After assessing the prediction ability of TROVON, we turn our attention to existing
techniques. Hence, we investigate:

RQ2 What is the prediction performance of TROVON in comparison to existing tech-
niques?

In TROVON, we train a model on the vulnerabilities of a release and test the trained model
on the components of the next release. Since we perform a release-based evaluation, vulner-
abilities spanning across multiple releases could be either seen by the trained model (used
during training) or not (newly appearing component). Thus, we may have the knowledge
in advance that a component is vulnerable in a given release irrespective of the vulnerabil-
ity detection date. As these vulnerable components may remain unfixed and reappear in the
next release, it is essential to assess the learning potential of our models by evaluating how
proficient are the studied models in classifying correctly components that were “seen” dur-
ing training, in a sense checking how well the model remembers, and in classifying new
components, i.e., components that were “unseen” during training, in a sense checking how
well a model can actually perform on new instances. Hence, we aim at controlling for seen
and unseen vulnerable components and ask:

RQ3 What is the prediction performance of the studied techniques in predicting seen and
unseen vulnerable components?

Until now, we consider that in every release all known vulnerable components are
labelled as such, i.e., following the clean training data settings. This analysis provides indi-
cations on what the potential prediction ability of the approaches is when the available
data are clean, i.e., all the component’s labeling information (vulnerable/non-vulnerable) is
always available irrespective of time. Unfortunately, in practice, such information is unavail-
able and inflates the actual performance of the prediction models. The actual performance
in Realistic Training Data Settings is much lower due to real-world labeling issues (Jimenez
et al. 2019), i.e., vulnerabilities are frequently reported at a much later time than they are
actually introduced. This has adverse effects as they cause the classifiers to treat vulnerable
components as non-vulnerable. Hence, it is imperative to study performance under Realis-
tic Training Data Settings, where a prediction model is trained only on those vulnerabilities
that were detected till the release date of a version for which the vulnerability prediction is
performed. For this reason, we also evaluate the approaches under Realistic Training Data
Settings. Hence, we ask:

RQ4 How effective (in predicting vulnerable components) is TROVON in comparison to
existing techniques under Realistic Training Data Settings?

4.2 Data

For our study, we need projects with many releases and vulnerabilities. We consider three
large security-intensive open-source systems that were used by previous research (Jimenez
et al. 2019)—the Linux Kernel, the OpenSSL library, and the Wireshark tool. These systems
are widely used, mature, and have a long history of releases and vulnerability reports.

Empir Software Eng (2022) 27:169169 Page 10 of 30



Table 1 The table records the total number of releases, average number of components, average number of
vulnerable components, and the ratio of vulnerable components for the systems we study

System #Releases #Avg.Comp #Avg.Vuln.Comp %Vuln.

Linux Kernel 36 16456 456 3%

Wireshark 10 2012 134 7%

OpenSSL 10 664 59 9%

Linux Kernel (2021) is an operating system, integrated into billions of systems and
devices, such as Android. Linux is one of the largest open-source code-bases and has a long
history (since 1991), recorded in its repository. It is relevant for our evaluation since it has
many security aspects and is among the projects with a higher number of reported vulner-
abilities in NVD. OpenSSL (2021) is a library implementing the SSL and TLS protocols,
commonly used in communications. It is of critical importance as highlighted by the Heart-
bleed vulnerability, which made half of a million web servers vulnerable to attacks (2021).
Wireshark (2021) is a network packet analyzer mainly used for troubleshooting and debug-
ging. The project is open source and is relevant for the study because it is integrated with
most operating systems.

We use VulData7 (Jimenez et al. 2018) which is a publicly available2 tool to gather the
vulnerabilities, i.e., the vulnerable and the corresponding fixed components of the afore-
mentioned systems. As we mention in Section 2.1, for every vulnerability, NVD provides a
Git commit IDs of the code related to vulnerability-fix commit. By using these NVD pro-
vided Git commitIDs, VulData7 extracts the code of vulnerabilities, (i.e., vulnerable code
and its patch) and creates a vulnerability dataset.

To gather the code-base of these systems, we use FrameVPM (Jimenez et al. 2019) which
is also a publicly available tool.3 FrameVPM is a framework built to evaluate and compare
vulnerability prediction models. We also used FrameVPM to perform a prediction compar-
ison with existing techniques. Section 4.5 elaborates on the re-implementation of existing
techniques that we compare with. Table 1 provides the details of our dataset. The dataset
composed of the vulnerabilities reported in National Vulnerability Database (NVD) (2021),
and the codebase gathered for the 36 releases of Linux Kernel project (2021), 10 releases of
Openssl project (2021), and 10 releases of Wireshark project (2021) is publicly available,4

along with our source-code and our re-implemented source-code of the baselines that we
compared TROVON with.

4.3 Implementation andModel Configuration

During the abstraction phase, we rely on the srcML tool (Collard and Maletic 2016) to
convert source code into an XML format including tags to identify literals, keywords, identi-
fiers, and comments. This helps in separating user-defined identifiers and string literals (the
largest part of the vocabulary) from language keywords (a limited set). Then, ID replace-
ment is performed by a dedicated tool that we implemented. To check whether before and
after-fix copies are different, we input the XML produced by srcML into theGumtree Spoon
AST Diff (Falleri et al. 2018) tool. The purpose of using Gumtree Spoon AST Diff is to

2https://github.com/electricalwind/data7
3https://github.com/electricalwind/framevpm
4https://github.com/garghub/TROVON
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achive a fine-grained diff which can ignore irrelevant changes such as whitespaces and/or
new line characters. It should be noted that TROVON is not bound to the above-mentioned
third-party tools. As an alternative, one can use any utility that identifies user-defined
entities and performs a diff.

Our encoder-decoder model is built on top of tf-seq2seq (Abadi et al. 2015), a general-
purpose encoder-decoder framework. To configure it, we learn from previous works that
apply machine translation to solve software engineering tasks other than vulnerability pre-
diction, e.g., Tufano et al. (2019a, b), Garg et al. (2022). Thus, we rely on a bidirectional
encoder as it generally outperforms a unidirectional encoder (Bahdanau et al. 2014). We use
a Long Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber 1997) to act as
the Recurrent Neural Network (RNN) cell, which was shown to perform better than other
common alternatives like simple RNNs or gated recurrent units, in other software engineer-
ing prediction tasks (Shewalkar et al. 2019; Brownlee 2021). Bucketing and padding are
used to deal with the variable length of sequences. To strike a balance between performance
and training time, we utilize AttentionLayerBahdanau as our attention class, configured
with 2 layered AttentionDecoder and 1 layered BidirectionalRNNEncoder, both with 256
units.

To determine an appropriate number of training steps, we conducted a preliminary study
involving a validation set (independent of both the training set and the test set that we use in
our experimental evaluation) and trained the model by iterations of 5,000 steps. At the end of
each iteration, we check whether the prediction accuracy on the validation set improved. If it
improved, then we pursued the training for another iteration, otherwise, stopped. We found
out that the model stopped improving at 50,000 steps, which we thus set as a threshold. This
order of magnitude is in line with previous research applying machine translation to solve
software engineering prediction tasks, e.g., Garg et al. (2022) and Tufano et al. (2019a).

4.4 Experimental Settings

Our experimental evaluation is designed to evaluate techniques under Clean Training Data
Settings and Realistic Training Data Settings. We train a model on each release and test the
trained model on the following release, (i.e., next release) simulating a typical release-based
vulnerability prediction evaluation scenario (Jimenez et al. 2019).

Clean Training Data Settings—Used in RQs 1, 2 & 3: In these settings, a prediction
model is trained using all the vulnerabilities (vulnerable, i.e., before-fix sequences trans-
formation to non-vulnerable, i.e., after-fix sequences) of a release of a system (Linux
Kernel/OpenSSL/Wireshark). The trained models are evaluated based on their predictions
in the following release of the same system (e.g., trained on vulnerable components in Linux
Kernel release v4.0 and evaluated on all components of v4.1). The components of the fol-
lowing release are converted into sequences that are input to the trained model to get the
output sequences. Then, TROVON compares the output sequences generated by the trained
model with the input sequences. A component is considered vulnerable if any of the output
sequences differ from the input sequences, otherwise considered as non-vulnerable. This
training-testing process is repeated for all available releases.

For our release-based experiments where we train the models of different approaches
on one release and test the trained models on the next release, in total we have 36 releases
of Linux Kernel, 10 releases of Wireshark, and 10 releases of OpenSSL, as mentioned in
Table 1. In case of (n) releases available to us for a system, we can only perform (n–1) exper-
iments because in chronological order, the last experiment would be to train a model on
(n–1)th release and test the trained model on (n)th release. The reason for such is that we do
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not have a release to test a model trained on the nth release. Hence, for 1 approach, we per-
formed 35 experiments for Linux Kernel, 9 experiments for Wireshark, and 9 experiments
for Wireshark. That results to 53 experiments in total (35 + 9 + 9 = 53), for 1 approach.

Realistic Training Data Settings—Used in RQ4: In contrast to the clean training data
settings, in Realistic Training Data Settingswe consider the date when the vulnerability was
fixed. Vulnerability fixing date determines whether a vulnerability is included in the training
dataset or not. In these settings, a prediction model (for one release of the system) is trained
only on those vulnerabilities that were fixed before the next release date. Then, the trained
model is evaluated on all the components of the following release of the same system.

4.5 Benchmarks for Vulnerability Prediction

To assess effectiveness, we compare TROVON with existing vulnerability prediction
techniques. To perform the comparison we use FrameVPM, a framework enabling the repli-
cation and comparison of vulnerability prediction approaches, introduced by Jimenez et al.
(2019). Overall, we compare TROVON with:

Software Metrics: Complexity metrics have been extensively used for defect prediction
(e.g. (Hall et al. 2012)) and vulnerability prediction (e.g. Shin and Williams 2008; Shin
et al. 2011; Chowdhury and Zulkernine 2011; Theisen and Williams 2020). It is based on
the idea that complex code is difficult to maintain and test, and thus has a higher chance
of having vulnerabilities than simple code. Using FrameVPM, we replicate and compare
with the original study from Shin et al. (2011) that rely on features related to following
metrics:

1. Complexity and Coupling

(a) LinesOfCode: lines of code;
(b) PreprocessorLines: preprocessing lines of code;
(c) CommentDensity ratio: lines of comments to lines of code;
(d) CountDeclFunction: number of functions defined;
(e) CountDeclVariable: number of variables defined;
(f) CC(sum, avg, max): sum, average and max cyclomatic complexity;
(g) SCC(sum, avg, max): strict cyclomatic complexity (Shin et al. 2011);
(h) CCE(sum, avg, max): essential cyclomatic complexity (Shin et al. 2011);
(i) MaxNesting(sum, avg, max): maximum nesting level of control constructs;
(j) fanIn(sum, avg, max): number of inputs, i.e., input parameters and global

variables to functions;
(k) fanOut(sum, avg, max): number of outputs, i.e., assignments to global variables

and parameters of function calls.

2. Code Churn: added lines, modified lines and deleted lines in the history of a compo-
nent.

3. Developer Activity Metrics:

(a) number of commits impacting a component;
(b) number of developers modified a component;
(c) current number of developers working on a component.

Text Mining: It considers a source code component as a collection of terms associated
with frequencies, also known as Bag of Words (BoW), used for vulnerability prediction
(Scandariato et al. 2014). The source code is broken into a vector of code tokens, and
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the frequency of each token is then used as the features to build the vulnerability pre-
diction model. Further improvements have been performed to significantly improve its
performance, e.g., by pooling frequency values in different bins according to particular
criteria to discretize BoW’s features (Scandariato et al. 2014; Kononenko 1995; Theisen
and Williams 2020).
Imports and Function Calls: The work of Neuhaus et al. (2007) is based on the obser-
vation that the vulnerable components tend to import and call a particular small set of
functions. Thus, the features of this simple prediction model are the components’ imports
and function calls. Following the suggestions of FrameVPM, we use imports and func-
tion calls as separate sets of features. We train one model based on Imports and another
based on Function Calls, thus implementing one model per set of features.
Devign: The work of Zhou et al. (2019) emphasizes the use of graph neural network
for vulnerability detection. With Abstract Syntax Tree (AST) as the backbone, Zhou et
al. proposed to convert components (vulnerable/non-vulnerable) as code property graphs
which helps to solve the problem of information loss during learning. To perform com-
ponent classification, (i.e., graph-level classification), graph neural network models are
trained which are composed of gated graph recurrent layer and convolutional layer, that
enables to learn the vulnerable programming pattern. Since the authors’ implementation
of the approach is not available, we implemented Devign based on our understanding
of Zhou et al. (2019) and made it publicly available.5

LSTM and LSTM-RF: The work of Dam et al. (2018) focuses to capture semantic features
of code components (vulnerable/non-vulnerable) and using these features to perform
vulnerability prediction. Dam et al. asserted that Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997) is highly effective in learning long-term depen-
dencies in sequential data such as text and speech, and can be used to learn features
that represent both the semantics of code tokens (semantic features) and the sequential
structure of source code (syntactic features). In this approach, components are encoded
using the embedding layer, and along with labels (vulnerable/non-vulnerable), are used
to train LSTM models. Although these trained LSTM models are capable of prediction,
i.e., to provide a probability of a component being vulnerable, the approach extends a
step further. The embeddings for the components are extracted using the trained LSTM
models, and are used to train binary classifier. Finally, the trained binary classifier pro-
vides the probability/likelihood of a component being vulnerable. For LSTM approach,
we used the trained LSTM models for predictions, and for LSTM-RF approach, we used
trained binary classifiers for predictions. Here as well, due to unavailable authors’ imple-
mentation, we implemented the approach based on our understanding of Hochreiter and
Schmidhuber (1997) and made it publicly available.6

4.6 PerformanceMeasurement

Vulnerability prediction modeling is a binary classification problem, thus it can result in
four types of outputs: Given a vulnerable component, if it is predicted as vulnerable, then
it is a true positive (TP); otherwise, it is a false negative (FN). Given a non-vulnerable
component, if it is predicted as non-vulnerable, then it is a true negative (TN); otherwise, it
is a false positive (FP). From these, we can compute the traditional evaluation metrics such

5https://github.com/garghub/TROVON/tree/main/devign
6https://github.com/garghub/TROVON/tree/main/lstm-rf

Empir Software Eng (2022) 27:169169 Page 14 of 30

https://github.com/garghub/TROVON/tree/main/devign
https://github.com/garghub/TROVON/tree/main/lstm-rf


as Precision, Recall, and F-measure scores, which quantitatively evaluate the prediction
accuracy of vulnerability prediction models.

Precision = T P

T P + FP
Recall = T P

T P + FN
F-measure = 2 × Precision × Recall

Precision + Recall

Intuitively, Precision indicates the ratio of correctly predicted positives over all the con-
sidered positives. Recall indicates the ratio of correctly predicted positives over all the actual
positives. F-measure indicates the weighted harmonic mean of Precision and Recall.

Yet, these metrics do not take into account the true negatives and can be misleading,
especially in the case of imbalanced data. Hence, we complement these with the Matthews
Correlation Coefficient (MCC) (Matthews 1975), a reliable metric of the quality of predic-
tion models (Shepperd et al. 2014). It is generally regarded as a balanced measure that can
be used even when the classes are of very different sizes, e.g. in the case of Linux Kernel,
3% vulnerable components (positives) over 97% non-vulnerable components (negatives).
MCC is calculated as:

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

MCC returns a coefficient between 1 and -1. An MCC value of 1 indicates a perfect pre-
diction, while a value of −1 indicates a perfect inverse prediction i.e., a total disagreement
between prediction and reality. MCC value of 0 indicates that the prediction performance is
equivalent to random guessing.

5 Experimental Results

5.1 Prediction with Clean Training Data, aka Clean Training Data Settings (RQ1)

Table 2 records the prediction performance results for the experiments conducted on the 56
releases we study, i.e., 36 releases of Linux Kernel, 10 of Wireshark, and 10 of OpenSSL,
and the total number of vulnerable components present in every release. As mentioned ear-
lier, here the model is trained on a release and evaluated against the following (next) release
of the same system. TROVON obtained an overall average (and median) of MCC = 0.74
(0.76), F-measure = 0.87 (0.88), Precision = 0.91 (0.92), and Recall = 0.84 (0.89) in pre-
diction of vulnerable components in the next release of a project. For almost all releases,
TROVON’s prediction models trained with the clean data achieved above 0.65 MCC (49
out of 53 releases), above 0.75 F-measure (51 out of 53 releases), above 0.80 Precision (52
out of 53 releases), and above 0.70 Recall (49 out of 53 releases). The results achieved
by TROVON indicate that the suggested predictions can be considered actionable for
security engineers looking to prioritize security inspection and testing efforts (Shin and
Williams 2013).
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Table 2 Prediction with clean training data, aka Clean Training Data Settings (RQ1)

Release MCC F-measure Precision Recall Total Vuln. Comp.

Linux Kernel

v3.0 0.70 0.86 0.84 0.89 598

v3.1 0.72 0.87 0.82 0.92 612

v3.2 0.75 0.88 0.86 0.91 612

v3.3 0.70 0.86 0.82 0.91 609

v3.4 0.73 0.88 0.84 0.91 607

v3.5 0.72 0.86 0.94 0.79 609

v3.6 0.74 0.88 0.86 0.90 640

v3.7 0.67 0.85 0.82 0.89 640

v3.8 0.78 0.89 0.92 0.87 632

v3.9 0.69 0.86 0.83 0.90 633

v3.10 0.77 0.89 0.88 0.90 637

v3.11 0.85 0.93 0.93 0.92 613

v3.12 0.76 0.89 0.88 0.90 584

v3.13 0.72 0.87 0.82 0.92 578

v3.14 0.85 0.93 0.93 0.93 573

v3.15 0.78 0.89 0.89 0.90 554

v3.16 0.80 0.91 0.92 0.89 553

v3.17 0.81 0.91 0.91 0.91 443

v3.18 0.81 0.91 0.93 0.89 428

v3.19 0.72 0.87 0.84 0.91 420

v4.0 0.88 0.94 0.96 0.92 417

v4.1 0.86 0.93 0.94 0.93 417

v4.2 0.77 0.88 0.96 0.82 410

v4.3 0.84 0.92 0.94 0.90 391

v4.4 0.82 0.92 0.91 0.93 371

v4.5 0.79 0.90 0.92 0.88 347

v4.6 0.79 0.90 0.88 0.93 330

v4.7 0.79 0.90 0.91 0.90 310

v4.8 0.83 0.92 0.91 0.92 284

v4.9 0.80 0.90 0.90 0.90 259

v4.10 0.79 0.90 0.92 0.88 233

v4.11 0.75 0.88 0.87 0.90 194

v4.12 0.78 0.89 0.93 0.86 176

v4.13 0.79 0.90 0.94 0.86 133

v4.14 0.80 0.91 0.91 0.90 113

Wireshark

v1.8.0 0.50 0.69 0.97 0.53 138

v1.10.0 0.58 0.77 0.92 0.67 168

v1.11.0 0.78 0.88 0.97 0.81 168

v1.12.0 0.58 0.76 0.95 0.63 165

v1.99.0 0.71 0.85 0.95 0.77 156

v2.0.0 0.59 0.78 0.93 0.67 123

v2.1.0 0.74 0.86 0.98 0.76 116

v2.2.0 0.67 0.83 0.93 0.75 93
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Table 2 (continued)

Release MCC F-measure Precision Recall Total Vuln. Comp.

v2.4.0 0.17 0.65 0.69 0.61 79

OpenSSL

v0.9.3 0.83 0.91 1.00 0.83 53

v0.9.4 0.83 0.91 1.00 0.83 56

v0.9.5 0.83 0.91 1.00 0.83 56

v0.9.6 0.67 0.80 1.00 0.67 65

v0.9.7 0.71 0.83 1.00 0.71 78

v0.9.8 0.71 0.83 1.00 0.71 75

v1.0.0 0.71 0.84 0.96 0.75 71

v1.0.1 0.73 0.87 0.91 0.82 48

v1.0.2 0.67 0.80 1.00 0.67 26

Overall

Average 0.74 0.87 0.91 0.84 334

Median 0.76 0.88 0.92 0.89 330

5.2 Comparison with Existing Techniques (RQ2)

Figure 3 shows the performance comparison of TROVON with existing approaches in a box
plot format. Box plots show the distribution of performance indicators (MCC, F-measure,
Precision, Recall) for the techniques per project.

We can observe that TROVON outperforms the others by achieving higher MCC scores.
Table 3 summarizes the overall performance of the techniques. Interestingly, TROVON
achieved higher prediction performance in comparison to existing techniques, with a sta-
tistically significant7 difference. We can also observe that the technique Function Calls
outperforms the others ( Software Metrics, Imports, Text Mining,Devign, LSTM, and LSTM-
RF ) with its average MCC of 0.52. TROVON even outperforms Function Calls with its
40.84% higher MCC and 80.67% higher F-measure. It is worth mentioning that the aver-
age improvement offered by TROVON is 8.68% in Precision and 134.73% in Recall, in
comparison to Function Calls.

The results show that TROVON can provide comparatively better guidance to security
engineers than existing techniques, to prioritize components for security inspection (Shin
and Williams 2013).

7We compared the MCC values by using Wilcoxon sign-rank-test (Wilcoxon 1945), and obtained a
p − value < 6.2e−9 with existing approaches. We also compared the effect size of MCC values, by using
the Vargha-Delaney A measure (Vargha and Delaney 2000), and obtained a value of lower than 0.07 in every
case, clearly indicating that TROVON significantly outperforms existing techniques.
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Fig. 3 Comparison with existing approaches (RQ2) in Clean Training Data Settings: When trained with
clean data, TROVON outperforms existing approaches with an average improvement in MCC, F-measure,
Precision, and Recall of 80.39%, 132.95%, 83.96%, and 155.33%, respectively

Table 3 (RQ2) Comparison between existing techniques and TROVON under Clean Training Data Set-
tings—average (and median)

Approach MCC F-measure Precision Recall

Software Metrics 0.49 (0.53) 0.44 (0.48) 0.85 (0.92) 0.32 (0.34)

Imports 0.46 (0.49) 0.43 (0.44) 0.83 (0.88) 0.30 (0.29)

Function Calls 0.52 (0.56) 0.48 (0.50) 0.84 (0.89) 0.36 (0.35)

Text Mining 0.52 (0.55) 0.48 (0.51) 0.83 (0.88) 0.36 (0.38)

Devign 0.33 (0.36) 0.29 (0.32) 0.79 (0.89) 0.19 (0.19)

LSTM 0.25 (0.22) 0.23 (0.18) 0.15 (0.09) 0.92 (0.93)

LSTM-RF 0.47 (0.49) 0.43 (0.42) 0.80 (0.89) 0.32 (0.29)

TROVON 0.74 (0.76) 0.87 (0.88) 0.91 (0.92) 0.84 (0.89)
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5.3 Predictions on Seen vs Unseen Vulnerable Components (RQ3)

Table 4 shows the average percentages of the seen vulnerable components correctly pre-
dicted by TROVON and existing techniques across 56 releases of the systems. On average,
the models that are based on TROVON predict 92.79%, 69.48% and 87.19% of the seen
vulnerable components in Linux Kernel, Wireshark, and OpenSSL project releases, respec-
tively. The models based on LSTM performs the best in identifying already seen vulnerable
components, i.e., 96.69%, 76.43%, and 95.77% of the vulnerable components identified
correctly in Linux Kernel, Wireshark, and OpenSSL project releases, respectively. The
percentages gained by TROVON are higher than existing techniques, except LSTM, by
44.12% for Linux Kernel releases, 17.19% forWireshark releases, and 33.81% for OpenSSL
releases, indicating a high learning potential.

Table 5 shows the average percentages of the unseen vulnerable component prediction.
On average, TROVON based trained models predict 76.53%, 91.03% and 60.07% of the
unseen vulnerable components in Linux Kernel, Wireshark, and OpenSSL project releases,
respectively. The percentages gained by TROVON are higher than existing techniques by
40.05% for Linux Kernel releases, 64.34% forWireshark releases, and 42.28% for OpenSSL
releases, reflecting higher generalization capability in comparison to existing techniques. It
is worth noting that TROVON obtains all the above mentioned percentages with an MCC of
0.74, on average, which is 80.39% higher than existing techniques.

5.4 Comparison with Existing Techniques Under Realistic Training Data Settings
(RQ4)

As mentioned before, in Realistic Training Data Settings, a model is trained only on the
vulnerabilities of a release that were detected/made public before the next release date of
the system. This unavoidably introduces mislabeling noise because every component that
has no vulnerabilities uncovered before the next release date, is considered non-vulnerable

Table 4 (RQ3) Comparison between existing techniques and TROVON wrt to their ability to predict correctly
already seen vulnerable components, i.e., (classify then as vulnerable)

Approach Linux Kernel 36 releases Wireshark 10 releases OpenSSL 10 releases

Software Metrics 48.12% 54.84% 54.17%

Imports 48.12% 60.76% 50.00%

Function Calls 58.65% 52.69% 64.58%

Text Mining 57.14% 56.99% 64.58%

Devign 32.34% 39.64% 35.69%

LSTM 96.69% 76.43% 95.77%

LSTM-RF 47.66% 48.81% 51.25%

TROVON 92.79% 69.48% 87.19%
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Table 5 (RQ3) Comparison between existing techniques and TROVON wrt to their ability to predict correctly
already unseen vulnerable components, i.e., (classify then as vulnerable)

Approach Linux Kernel 36 releases Wireshark 10 releases OpenSSL 10 releases

Software Metrics 09.09% 15.48% 18.18%

Imports 50.00% 08.93% 23.08%

Function Calls 56.10% 60.00% 09.09%

Text Mining 45.45% 16.07% 18.18%

Devign 32.54% 33.13% 14.99%

LSTM 25.79% 27.63% 23.02%

LSTM-RF 36.39% 25.62% 18.01%

TROVON 76.53% 91.03% 60.07%

during training. Figure 4 shows that the performance of all the techniques is consider-
ably reduced in the Realistic Training Data Settings, in comparison to the Clean Training
Data Settings. The results are in accordance with Jimenez et al. (2019). Despite this drop

Fig. 4 Comparison with existing techniques in Realistic Training Data Settings (RQ4): Despite a reduced
performance of models when trained with realistic training data, TROVON significantly outperforms existing
techniques with 3.63 times higher MCC, 11.82 times higher F-measure, 2.66 times higher Precision, and
15.25 times higher Recall, respectively
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Table 6 (RQ4) Comparison between existing techniques and TROVON under Realistic Training Data
Settings—average (median)

Approach MCC F-measure Precision Recall

Software Metrics 0.06 (0.03) 0.03 (0.01) 0.31 (0.30) 0.02 (0.01)

Imports 0.06 (0.06) 0.04 (0.02) 0.34 (0.33) 0.02 (0.01)

Function Calls 0.07 (0.05) 0.04 (0.02) 0.34 (0.33) 0.03 (0.01)

Text Mining 0.06 (0.05) 0.04 (0.01) 0.29 (0.28) 0.02 (0.01)

Devign 0.13 (0.02) 0.12 (0.03) 0.34 (0.06) 0.18 (0.02)

LSTM 0.16 (0.14) 0.14 (0.11) 0.08 (0.06) 0.83 (0.86)

LSTM-RF 0.29 (0.27) 0.28 (0.23) 0.47 (0.49) 0.21 (0.15)

TROVON 0.39 (0.41) 0.69 (0.68) 0.86 (0.87) 0.58 (0.56)

in performance, TROVON outperforms existing techniques with a statistically significant8

sizeable difference.
Table 6 shows the overall average and median performance statistics for each technique.

We can observe that the technique LSTM-RF outperforms the other existing techniques
(Software Metrics, Imports, Function Calls, Text Mining, Devign, and LSTM) with its
average MCC of 0.29. TROVON even outperforms LSTM-RF in all the performance mea-
sures, i.e., 35.52% higher MCC, 148.91% higher F-measure, 81.61% higher Precision, and
183.90% higher Recall, in comparison to LSTM-RF. This indicates that TROVON has much
higher accuracy in vulnerability prediction than existing techniques in the Realistic Training
Data Settings as well.

6 TROVONwith Bi-LSTM

Although training a machine translator (viz. an encoder-decoder sequence to sequence
model) to identify vulnerable components, is an integral part of TROVON’s architecture,
we also replicated our experiments with Bi-LSTM models. We kept the entire experimen-
tal setting the same, (i.e., both Clean Training Data Settings and Realistic Training Data
Settings with the corresponding training and test sets) and trained Bi-LSTM models instead
of training sequence to sequence models. For this experiment, we adhere to the key idea
of TROVON and train Bi-LSTM models on the validated data, (i.e., only on components
known to be vulnerable and leave aside the non-vulnerable ones). We name this approach
TROVON-BILSTM.

Tables 7 and 8 show the average and median performance statistics of TROVON-BILSTM
in Clean Training Data Settings and Realistic Training Data Settings, respectively. We also

8We compared the MCC values using Wilcoxon sign-rank-test and obtained a p − value < 7.7e−9 with
existing approaches. We also compared the MCC values with the Vargha-Delaney A measure and obtained a
value lower than 0.03 in every case, indicating that TROVON significantly outperforms existing techniques.
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Table 7 Comparison between TROVON-BILSTM and TROVON under Clean Training Data Settings—
average (median)

Approach MCC F-measure Precision Recall

Linux Kernel

TROVON-BILSTM 0.73 (0.70) 0.84 (0.83) 0.84 (0.83) 0.84 (0.84)

TROVON 0.78 (0.78) 0.89 (0.89) 0.89 (0.91) 0.90 (0.90)

Wireshark

TROVON-BILSTM 0.54 (0.54) 0.72 (0.72) 0.85 (0.85) 0.63 (0.61)

TROVON 0.59 (0.59) 0.79 (0.78) 0.92 (0.95) 0.69 (0.67)

OpenSSL

TROVON-BILSTM 0.71 (0.68) 0.82 (0.79) 0.93 (0.98) 0.73 (0.68)

TROVON 0.74 (0.71) 0.86 (0.84) 0.99 (0.99) 0.76 (0.75)

mention the results of TROVON for comparison. On average, in Clean Training Data Set-
tings, TROVON-BILSTM achieved 0.73 MCC, 0.84 F-1, 0.84 Precision, and 0.84 Recall for
Linux Kernel releases; 0.54 MCC, 0.72 F-1, 0.85 Precision, and 0.63 Recall for Wireshark
releases; and 0.71 MCC, 0.82 F-1, 0.95 Precision, and 0.73 Recall for OpenSSL releases.
In Realistic Training Data Settings, TROVON-BILSTM achieved 0.38 MCC, 0.65 F-1, 0.84
Precision, and 0.53 Recall for Linux Kernel releases; 0.34 MCC, 0.66 F-1, 0.73 Precision,
and 0.61 Recall for Wireshark releases; and 0.37 MCC, 0.68 F-1, 0.75 Precision, and 0.62
Recall for OpenSSL releases.

Figures 5 and 6 show the performance comparison of TROVON-BILSTM and TROVON
in Clean Training Data Settings and Realistic Training Data Settings, respectively. The
figures show that TROVON performs comparatively better than TROVON-BILSTM. Overall,
when trained with vulnerabilities, in Clean Training Data Settings, TROVON outperforms
TROVON-BILSTM by 6.49% in MCC, 6.63% in F-1, 6.40% in Precision, and 6.75% in
Recall. In Realistic Training Data Settings, TROVON outperforms TROVON-BILSTM by
5.08% in MCC, 5.21% in F-1, 5.01% in Precision, and 5.43% in Recall.

Table 8 Comparison between TROVON-BILSTM and TROVON under Realistic Training Data Settings -
average (median)

Approach MCC F-measure Precision Recall

Linux Kernel

TROVON-BILSTM 0.38 (0.39) 0.65 (0.67) 0.84 (0.87) 0.53 (0.54)

TROVON 0.40 (0.41) 0.68 (0.68) 0.88 (0.88) 0.56 (0.55)

Wireshark

TROVON-BILSTM 0.34 (0.36) 0.66 (0.65) 0.73 (0.70) 0.61 (0.62)

TROVON 0.37 (0.38) 0.72 (0.72) 0.79 (0.79) 0.66 (0.66)

OpenSSL

TROVON-BILSTM 0.37 (0.31) 0.68 (0.68) 0.75 (0.74) 0.62 (0.61)

TROVON 0.41 (0.31) 0.73 (0.68) 0.81 (0.78) 0.67 (0.62)
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Fig. 5 Comparison between TROVON-BILSTM and TROVON under Clean Training Data Settings: TROVON
outperforms TROVON-BILSTM by 6.49% in MCC, 6.63% in F-1, 6.40% in Precision, and 6.75% in Recall

7 Threats to Validity

Construct Validity We use VulData7 (Jimenez et al. 2018) for data collection using the
Git commit IDs provided in the CVE-NVD database. This process ensures the retrieval
of known and fixed vulnerabilities, whereas undiscovered or unfixed vulnerabilities are
ignored. This may result in false negatives with a potential impact on our measurements.
However, given the size of Linux Kernel, Wireshark, and OpenSSL and their long history
of vulnerability reports, we believe that it is unlikely to have many such cases.

Another concern originates from our choice to learn from the vulnerable and fixed
pairs of components. Since TROVON has access to this information one can argue that the
improved performance is due to this additional knowledge of fixed components. To diminish

Fig. 6 Comparison between TROVON-BILSTM and TROVON under Realistic Training Data Settings: TRO-
VON outperforms TROVON-BILSTM by 5.08% in MCC, 5.21% in F-1, 5.01% in Precision, and 5.43%
in Recall
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this concern we also included the fixed versions of the vulnerable files in the training set for
training existing techniques, but this resulted in negligible differences in their performance.

One may wonder if most of the vulnerabilities are introduced due to code changes
performed between the releases and whether every changed component between adjacent
releases can be flagged as vulnerable. We analyzed our data and found that the results are
close to random guessing with MCC—0.06, 0.09, 0.1 and Precision—0.04, 0.08, 0.14 for
Linux Kernel, Wireshark, and OpenSSL project releases, respectively. These results are in
accordance with the findings of Jimenez et al. (2019) that most vulnerabilities span across
multiple releases without being detected, and mislead the predictions, e.g., an existing vul-
nerability in release R1 may get detected and fixed in the release R4. Also, many files are
modified between the releases, i.e., 29.95%, 72.53%, and 73.58% of the files, on average,
are changed for Linux Kernel, Wireshark, and OpenSSL, which adds to the imprecision of
this baseline by producing excessive numbers of false positives/negatives.

Internal Validity We do not consider non-vulnerable components for training as these files
can in fact be vulnerable (vulnerability undetected till date) and may mislead our predictor.
Still, we train on the unchanged and fixed parts of the vulnerable components as we believe
that these are unlikely to be vulnerable. To support this intuition, we checked our data and
found that it is indeed true, i.e., components having more than one vulnerability, with one
fixed and the other not, are on average 0.037%, 0.19%, and 0.24% of the Linux Kernel,
Wireshark, and OpenSSL components per release.

We use FrameVPM (Jimenez et al. 2019) to implement vulnerability prediction models
for Software Metrics, Imports, Function Calls, and Text Mining. As none of the replicated
approaches provide a replication package, the framework may not have implemented pre-
cisely the original approaches. To reduce this threat we inspected the code, parameters,
and experiment decisions to perform the most accurate replication possible. Given that our
results are in line with the previous replication studies (Jimenez et al. 2016, 2019) and the
original studies (Shin et al. 2011; Neuhaus et al. 2007), we believe this threat is of less
significance.

Similarly, we implement Devign, LSTM, and LSTM-RF based on our understanding
of authors’ work described in the available articles because the author’s implementa-
tion/source-code of these approaches is not available. Still, there is a possibility that we
may not have implemented the original approaches as precisely as the authors of these
approaches would have. Nevertheless, these approaches make the clean labeling assumption
(Jimenez et al. 2019) thereby experimenting fundamental limitations on their performance.
This is actually the key reason why previous work reports much better results. Neverthe-
less, when using Clean Training Data Settings, we found F-1 scores of 32.73% and 36.54%
for Linux Kernel and Wireshark, which are in line with the results reported by Zhou et al.
(2019) (i.e., F-1 score of 24.64% and 42.05% for Linux Kernel and Wireshark), in their case
of imbalanced data (the only case that is somehow comparable with our analysis).

External Validity Although the study expands its evaluation to three security-critical open
source systems, the results may not generalize to other projects (e.g., Android). Additional
studies are required to sufficiently take care of the generalization threat. Also, we split
the methods into sequences of no more than 50 tokens each. Method-splitting in larger
sequences may require more training time and computational resources but can lead to
better results.
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8 RelatedWork

Early work in the area of vulnerability prediction has focused on defining features that could
be linked to vulnerabilities and thus to be used to train learners. The first such work can
be traced back to the study of Neuhaus et al. (2007), which investigated the use of libraries
and function calls. Later, Shin and Williams (2013), Shin et al. (2011) and Chowdhury and
Zulkernine (2011) investigated the use of code metrics such as complexity, code churn, and
object oriented metrics. Theisen and Williams (2020) showed that a combination of these
features can slightly improve the F-score and recommend identifying new features.

These approaches, although promising, were all using features designed based on human
intuition. Scandariato et al. (2014) advocated that the learners should find their features
without human intervention. To achieve this, they suggested the Text Mining approach where
code is treated as text and the learner learns from Bag of Words (BoW). The results of their
exploratory study demonstrated that Text Mining’s prediction power was superior to the
state of the art vulnerability prediction models with good performance for both precision
and recall in intra-project predictions.

Recently, deep learning techniques have been explored to automatically learn the
required features to predict vulnerabilities. Li et al. (2018) used Bidirectional LSTMs to
train a vulnerability prediction model on code gadgets, which are semantically related lines
of code. Under Clean Training Data Settings, this technique was shown to be effective for
analyzing two particular weaknesses, namely, buffer error vulnerabilities (CWE-119) and
management error vulnerabilities (CWE-399). In contrast, TROVON trains the translation
model on sequences extracted from the source code and does not target specific weaknesses.

Machine learning has also been used in other software engineering prediction tasks. For
instance, several works (D’Ambros et al. 2012; Hall et al. 2012; Yang et al. 2015; Wang
et al. 2016) used machine learning models for defect prediction. Particularly, RNN models
have been used for automatically fixing errors in C programs (Gupta et al. 2017), for gen-
erating API usage sequences (Gu et al. 2016), and for fault localization (Huo et al. 2016).
Closer to our work, machine translation-based approaches have been successfully applied to
automatically learn code features for detecting code clones (White et al. 2016), and interest-
ing mutants (Garg et al. 2022), for learning how to mutate source code from bugs (Tufano
et al. 2019a), and to produce bug-fixing repairs (Tufano et al. 2019b). To our knowledge,
TROVON is the first approach that proposes and evaluates a machine translation-based
vulnerability prediction.

9 Conclusion

This paper proposes TROVON, a machine translation based approach to automatically learn
to predict vulnerable components from noisy historical data. Taking advantage of the large
amounts of historical data, our predictions can be used to assist developers in code reviews
and security testing. The important advantage of TROVON is that it is completely automatic
as it learns latent features (context, patterns, etc.) linked with vulnerabilities based on infor-
mation mining from code repositories (in particular by analyzing historical vulnerability
fixes and their context). We empirically evaluated the effectiveness of TROVON following
the methodological guidelines set by Jimenez et al. (2019). In particular, we demonstrated
that TROVON can mitigate the problem of real-world noisy data on the releases of the
three security-critical open source systems that were used by previous research. Moreover,
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we showed that TROVON outperforms existing techniques under both, clean and realis-
tic, (i.e., noisy) training data settings. On average, when trained on clean data, TROVON
achieved an overall improvement of 80.39% in MCC score. Moreover, in Realistic Training
Data Settings, TROVON achieved 3.63 times higher MCC score in comparison to existing
approaches.
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