
https://doi.org/10.1007/s10664-022-10242-2

Automatic prediction of rejected edits
in Stack Overflow

Saikat Mondal1 ·Gias Uddin2 ·Chanchal Roy1

Accepted: 14 September 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
The content quality of shared knowledge in Stack Overflow (SO) is crucial in supporting
software developers with their programming problems. Thus, SO allows its users to suggest
edits to improve the quality of a post (i.e., question and answer). However, existing research
shows that many suggested edits in SO are rejected due to undesired contents/formats or
violating edit guidelines. Such a scenario frustrates or demotivates users who would like
to conduct good-quality edits. Therefore, our research focuses on assisting SO users by
offering them suggestions on how to improve their editing of posts. First, we manually
investigate 764 (382 questions + 382 answers) rejected edits by rollbacks and produce
a catalog of 19 rejection reasons. Second, we extract 15 texts and user-based features to
capture those rejection reasons. Third, we develop four machine learning models using those
features. Our best-performing model can predict rejected edits with 69.1% precision, 71.2%
recall, 70.1% F1-score, and 69.8% overall accuracy. Fourth, we introduce an online tool
named EditEx that works with the SO edit system. EditEx can assist users while editing
posts by suggesting the potential causes of rejections. We recruit 20 participants to assess the
effectiveness of EditEx. Half of the participants (i.e., treatment group) use EditEx and
another half (i.e., control group) use the SO standard edit system to edit posts. According to
our experiment, EditEx can support SO standard edit system to prevent 49% of rejected
edits, including the commonly rejected ones. However, it can prevent 12% rejections even in
free-form regular edits. The treatment group finds the potential rejection reasons identified
by EditEx influential. Furthermore, the median workload suggesting edits using EditEx
is half compared to the SO edit system.

Keywords Stack overflow · Rejected edits · Classification model · User study ·
Tool support

Communicated by: Neil Ernst

This article belongs to the Topical Collection: Registered Reports

� Saikat Mondal
saikat.mondal@usask.ca

Extended author information available on the last page of the article.

Published online: 24 November 2022

Empirical Software Engineering (2023) 28:9

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10242-2&domain=pdf
http://orcid.org/0000-0003-1767-6392
mailto: saikat.mondal@usask.ca

1 Introduction

The adoption, growth, and continued success of an online question and answering (Q&A)
site such as Stack Overflow (SO) depend on two major factors—(1) participation of users
and (2) quality of the shared knowledge (Bagozzi and Dholakia 2006; Lakhani and von
Hippel 2003; Parnin et al. 2012). SO thus introduces an edit system to promote quality by
allowing its users to communicate on the quality of the posts through editing. In particu-
lar, collaborative editing helps to keep posts clear, relevant, and up-to-date. For example,
users often edit posts to fix grammar and spelling mistakes, clarify the meaning, and add
related resources or hyperlinks. Unfortunately, many suggested edits in SO get rejected
because of undesired (i.e., it does not satisfy the post owner) editing or violating edit guide-
lines (Overflow 2015). However, edits can be rejected in two ways—rollback and expert
review. Rollback reverts a post to a previous version in the edit history (Exchange 2009b)
and thereby rejects one/multiple revisions. On the other hand, experts (e.g., users with a
reputation score ≥ 2K) can reject if suggested edits do not improve the quality of the posts.
However, manual identification of undesired edits or edits that violate the editing guide-
lines wastes community time and effort. For example, one user responded to the issue of
the identification of undesired edits manually, “It takes time to read and parse through
those questions when I am trying to spend my time more efficiently reading through the
actual question and figuring out how to answer it appropriately” (Exchange 2009a). At
least 921 users supported this comment by casting upvotes. It suggests that manually iden-
tifying undesired edits wastes users’ valuable time and resources. On the other hand, users
who suggest edits and later get rejected become frustrated because many users (especially
novices) are unaware of editing guidelines (Mondal et al. 2021a). Unfortunately, the existing
editing system of SO does not identify the rejected edits with the potential rejection reasons.
Therefore, a study on automatic identification of rejected edits with reasons is warranted to
assist SO users.

Realizing the need for an automated tool, some users started writing personal scripts to
identify undesired edits programmatically. For example, one user wrote a script to auto-
matically identify greetings (e.g., hello, dear) while reviewing suggested edits (Exchange
2009a). Such a scenario urges a system that identifies the potential rejected edits. However,
capturing all rejection reasons using simple rule-based scripts is challenging. Thus, a robust
technique (e.g., machine learning classifiers) needs to be introduced to reasonably identify
rejected edits and the potential reasons behind those rejections. Wang et al. (2018) inves-
tigate the rejected edits in SO. They analyze 369 rejected edits (by rollbacks) of answers
and identify 12 reasons (e.g., undesired text formatting). Their study shows the empiri-
cal evidence of the complexity and diversity of reasons that can contribute to the rejection
of suggested edits. However, we are unaware of any existing edit assistance system that
automatically identifies rejected edits with reasons to support the current editing system of
SO.

This study focuses on assisting SO users by offering them automated suggestions on
how to improve their editing of posts. First, we manually analyzed 764 rejected edits (382
questions + 382 answers). We identified 19 rejection reasons (Table 1), seven of which were
not reported by Wang et al. (2018). Second, we extract 15 texts and user-based features
to capture those rejection reasons. Third, using those features, we develop four machine
learning classifiers (e.g., random forest). According to the experiment, our best-performing

9 Page 2 of 43 Empir Software Eng (2023) 28:9

Ta
bl
e
1

Su
m
m
ar
y
of

th
e
ni
ne
te
en

m
an
ua
lly

de
ri
ve
d
re
as
on
s
be
hi
nd

ro
llb

ac
k
ed
its

R
ol
lb
ac
k
re
as
on
s

D
es
cr
ip
tio

n
Q
ue
st
io
n

A
ns
w
er

W
an
g
et
al
.

C
ou
nt

(%
)

U
nd
es
ir
ed

Te
xt

Fo
rm

at
tin

g
U
se
rs
ch
an
ge

th
e
fo
rm

at
of

th
e
te
xt
s
un
ne
ce
ss
ar
ily
.S

uc
h
ch
an
ge
s

✓
✗

✓
15
7
(2
0.
5%

)

in
cl
ud
e
ch
an
gi
ng

th
e
fo
nt
,t
ex
tc
as
es

(u
pp
er
ca
se
/lo

w
er
ca
se
),
em

ph
as
iz
in
g

te
xt

by
m
ak
in
g
th
em

bo
ld
/it
al
ic
,a
dd
in
g
or

re
m
ov
in
g
sp
ac
es
/n
ew

lin
es
,

cr
ea
tin

g
bu
lle
t/n

um
be
r
lis
t,
an
d
fo
rm

at
tin

g
te
xt

te
rm

as
co
de

el
em

en
to

r

vi
ce

ve
rs
a.

U
nd
es
ir
ed

Te
xt

A
dd
/R
em

ov
e

U
se
rs
ad
d
te
xt
s
w
ith

le
ss

or
no

im
pa
ct
on

th
e
qu
al
ity

/c
la
ri
fi
ca
tio

n
of

po
st
s

✓
✓

✓
22
3
(2
9.
2%

)

or
re
m
ov
e
es
se
nt
ia
lt
ex
ts
.

U
nd
es
ir
ed

Te
xt

C
ha
ng
e

U
se
rs
m
ak
e
un
de
si
re
d
ch
an
ge
s
of

th
e
se
nt
en
ce

st
ru
ct
ur
es

(e
.g
.,
si
m
pl
e,

✓
✓

✓
85

(1
1.
1%

)

co
m
pl
ex
),
te
ns
es

(e
.g
.,
pr
es
en
t,
pa
st
),
vo
ic
es

(e
.g
.,
ac
tiv

e,
pa
ss
iv
e)
,

re
w
or
di
ng
,i
nt
er
ch
an
gi
ng

co
nt
ra
ct
io
ns

by
ro
ot

w
or
ds
,a
cr
on
ym

s/

ab
br
ev
ia
tio

ns
by

el
ab
or
at
io
ns

an
d
vi
ce

ve
rs
a.

In
co
rr
ec
tT

ex
tC

ha
ng
e

U
se
rs
pe
rf
or
m

re
w
or
di
ng

w
ith

in
co
rr
ec
tt
er
m
s,
gr
am

m
at
ic
al
an
d
sp
el
lin

g
✓

✓
✓

86
(1
1.
3%

)

m
is
ta
ke
s,
in
co
rr
ec
tc
ha
ng
es

in
so
ft
w
ar
e
ve
rs
io
ns

or
sp
ec
if
ic
at
io
ns
,

ch
an
ge
s
th
at
al
te
rn
at
e
th
e
m
ea
ni
ng

of
th
e
se
nt
en
ce
.

U
nd
es
ir
ed

C
od
e
Fo

rm
at
tin

g
U
se
rs
m
ak
e
th
e
un
de
si
re
d
m
od
if
ic
at
io
n
of

co
de

in
de
nt
at
io
n
(e
.g
.,
ad
di
tio

n/
✓

✓
✓

74
(9
.7
%
)

re
m
ov
al
of

sp
ac
es
/n
ew

lin
es
),
ad
di
tio

n/
re
m
ov
al
of

lin
e
nu
m
be
rs
,s
pl
it/

m
er
ge

of
co
de

se
gm

en
ts
,c
ha
ng
es

in
te
xt

ca
se
s
(e
.g
.,
se
le
ct
to

SE
L
E
C
T

in
a
SQ

L
qu
er
y)
.

U
nd
es
ir
ed

C
od
e
A
dd
/R
em

ov
e

U
nw

an
te
d
co
de

st
at
em

en
ts
(e
.g
.,
al
te
rn
at
iv
e
so
lu
tio

ns
)
ar
e
ad
de
d,

or
✓

✓
✓

89
(1
1.
6%

)

es
se
nt
ia
ls
eg
m
en
ts
ar
e
re
m
ov
ed
.

U
nd
es
ir
ed

C
od
e
C
ha
ng
e

U
se
rs
m
ak
e
un
de
si
re
d
co
de

ch
an
ge
s,
su
ch

as
ch
an
gi
ng

op
tio

ns
of

a
✓

✓
✓

24
(3
.1
%
)

co
m
m
an
d,
ch
an
gi
ng

A
PI
s,
re
fa
ct
or
in
g
(e
.g
.,
va
ri
ab
le
re
na
m
in
g)
,a
nd

ed
iti
ng

co
m
m
en
ts
.

Page 3 of 43 9Empir Software Eng (2023) 28:9

Ta
bl
e
1

(c
on
tin

ue
d)

R
ol
lb
ac
k
re
as
on
s

D
es
cr
ip
tio

n
Q
ue
st
io
n

A
ns
w
er

W
an
g
et
al
.

C
ou
nt

(%
)

In
co
rr
ec
tC

od
e
C
ha
ng
e

U
se
rs
m
ak
e
in
co
rr
ec
tc
ha
ng
es

to
th
e
da
ta
ty
pe

of
va
ri
ab
le
s,
fu
nc
tio

n
✓

✓
✓

58
(7
.6
%
)

re
tu
rn

ty
pe
s,
fu
nc
tio

n
ar
gu
m
en
ts
,a
ri
th
m
et
ic
ex
pr
es
si
on
s.

St
at
us

U
pd
at
e

U
se
rs
ad
d/
re
m
ov
e
pe
rs
on
al
no
te
s
to

cl
ar
if
y
co
nf
us
io
n,

ap
pe
nd

m
es
sa
ge
s

✓
✓

✗
77

(1
0.
1%

)

m
is
se
d
du
ri
ng

th
e
su
bm

is
si
on

of
th
ei
r
po
st
s,
an
d
ac
kn
ow

le
dg
e
us
er
s’

re
sp
on
se
s.

E
m
ot
io
n
A
dd
/R
em

ov
e

A
dd
iti
on
/r
em

ov
al
of

w
or
ds
/s
en
te
nc
es
/e
m
ot
ic
on
s
th
at
re
pr
es
en
tp

er
so
na
l

✓
✓

✓
6
(0
.8
%
)

em
ot
io
n.

G
ra
tit
ud
e
A
dd
/R
em

ov
e

A
dd
iti
on
/r
em

ov
al
of

th
an
ks
gi
vi
ng

se
nt
en
ce
s
(e
.g
.,
th
an
k
yo
u,

ch
ee
rs
!)
.

✓
✓

✗
42

(5
.5
%
)

G
re
et
in
gs

A
dd
/R
em

ov
e

A
dd
iti
on
/r
em

ov
al
of

gr
ee
tin

g/
sa
lu
ta
tio

ns
(e
.g
.,
he
llo

,d
ea
r)
.

✓
✗

✗
4
(0
.5
%
)

U
nd
es
ir
ed

R
ef
.M

od
if
ic
at
io
n

U
se
rs
ad
d
in
ac
tiv

e
hy
pe
rl
in
ks
,i
na
pp
ro
pr
ia
te
im

ag
es
,o
r
di
ag
ra
m
s
w
ith

✓
✓

✓
85

(1
1.
1%

)

po
st
s.
O
n
th
e
co
nt
ra
ry
,s
om

et
im

es
th
ey

re
m
ov
e
es
se
nt
ia
lh

yp
er
lin

ks
/

im
ag
es

or
un
re
as
on
ab
ly

m
od
if
y
th
em

.

Si
gn
at
ur
e
A
dd
/R
em

ov
e

A
dd
iti
on
/r
em

ov
al
of

us
er
s’
na
m
es
,h
yp
er
lin

ks
to

pe
rs
on
al
w
eb
si
te
s.

✓
✓

✗
14

(1
.8
%
)

Pa
rt
ia
lA

cc
ep
ta
nc
e

R
ev
is
io
n
is
ro
lle
d
ba
ck
,b
ut

pa
rt
of

th
e
ch
an
ge
s
ar
e
st
ill

ac
ce
pt
ed
.T

he
n,

✓
✓

✓
4
(0
.5
%
)

th
e
ac
ce
pt
ed

ch
an
ge
s
ar
e
in
cl
ud
ed

in
la
te
r
re
vi
si
on
s.

D
ep
re
ca
tio

n
N
ot
e
A
dd
/R
em

ov
e

A
dd
iti
on
/r
em

ov
al
of

de
pr
ec
at
io
n
no
te
s
in
si
de

th
e
bo
dy

of
an

an
sw

er
.

✗
✓

✗
1
(0
.1
%
)

D
up
lic
at
io
n
N
ot
e
A
dd
/R
em

ov
e

A
dd
iti
on
/r
em

ov
al
of

du
pl
ic
at
io
n
no
te
s
in
si
de

th
e
bo
dy

of
a
qu
es
tio

n.
✓

✗
✗

11
(1
.4
%
)

C
om

m
un
ity

T
ru
st

T
he

re
pu
ta
tio

n
sc
or
e
es
tim

at
es

ho
w
m
uc
h
th
e
co
m
m
un
ity

tr
us
ts
a
us
er
.

✓
✓

✗
N
/A

U
se
rs
w
ith

lo
w
re
pu
ta
tio

ns
of
te
n
do

no
tf
ol
lo
w
th
e
gu
id
el
in
es

w
he
n

ed
iti
ng

po
st
s.
T
hu
s,
th
ei
r
ed
its

ar
e
re
je
ct
ed

m
or
e
th
an

th
e
hi
gh
ly

re
pu
te
d
us
er
s.

O
th
er

O
th
er

re
as
on
s
in
cl
ud
e
as
ki
ng

qu
es
tio

ns
in
si
de

th
e
an
sw

er
,a
dd
in
g

✓
✓

✓
40

(5
.2
%
)

so
lu
tio

ns
in
si
de

th
e
qu
es
tio

n,
in
te
rc
ha
ng
in
g
th
e
po
si
tio

n
of

te
xt
s,

in
tr
od
uc
in
g
sp
am

(i
.e
.,
us
er
s
de
fa
ce

te
xt
/c
od
e
to

pr
om

ot
e
a
pr
od
uc
t

or
se
rv
ic
e,
in
se
rt
ga
rb
ag
e
te
xt
s)
,a
nd

ch
an
gi
ng

po
st
s
co
m
pl
et
el
y.

9 Page 4 of 43 Empir Software Eng (2023) 28:9

model can predict rejected edits with 69.1% precision, 71.2% recall, 70.1% F1-score, and
69.8% accuracy. Fourth, we introduce an online tool named EditEx that works with the
SO edit system. EditEx can assist users while editing posts by identifying the rejected
edits and the potential causes of rejections.

Figure 1 shows the overview of EditEx workflow. The workflow is described as fol-
lows. (1) On the client-side, users need to install Tampermonkey,1 one of the most popular
userscript managers. It offers an effortless way to manage userscripts. In addition, it is avail-
able as a browser extension for all the popular browsers, such as Chrome, Firefox, Safari,
Microsoft Edge, and Opera. (2) Users require to add two JavaScript scripts for the Edi-
tEx and Suggestion interface with the SO edit system. Tampermonkey enables users to add
JavaScript scripts that can be used to modify web pages. (3) EditEx enables users to edit
the posts. (4) Suggestion captures the texts (before & after edits) and user information (e.g.,
reputation score, name). It then transmits texts and user information to the server where the
machine learning classifiers have been deployed. The server-side application extracts the
features. It then predicts whether the edit will be rejected or not and identify the potential
reasons (if rejected) using the machine learning classifiers. (5) Finally, it shows the deci-
sion (rejected/accepted) of the classifier and suggests to users with the potential reasons if
rejected.

We recruited 20 participants and divided them into treatment and control groups. The
treatment group used EditEx and the control group used the SO standard edit system
to edit posts. We survey the participants after completing their edits. According to survey
results, the treatment group found the potential reasons identified by EditEx behind the
rejections influential. Moreover, 49% rejections (including the commonly rejected ones)
were prevented upon following the suggestions offered by EditEx. However, EditEx is
also capable of preventing 12% rejections even in free-form regular edits. Free-form edits
refer to those edits that are not related to any specific rejection reasons. This tool also
significantly reduces the effort of suggesting edits and makes participants more confident.
The following major stakeholders in crowd-sourced knowledge-sharing platforms that use
collaborative editing features can be benefited from the findings from our study and the
tool EditEx: (a) forum like SO designers to improve the edit system, (b) forum users to
assist their edit behavior, and (c) software engineering researchers to study and improve
collaborative editing support in crowd-shared platforms.

Deviations of this study from our registered report (Mondal et al. 2020) are discussed in
Section 7.

Structure of the Article The rest of this article is structured as follows. Section 2 repre-
sents a catalog of edit rejection reasons. In Section 3, we discuss a model that predicts
rejected edits with potential reasons. Section 4 discusses our online tool named EditEx,
its architecture, and analyzes its effectiveness. Feature ranking, the reasons behind the mis-
classifications of our model, and the implications of our study are discussed in Section 5.
Section 6 focuses on the threats to validity, Section 8 discusses the related work and finally,
Section 9 concludes our study.

1https://www.tampermonkey.net

Page 5 of 43 9Empir Software Eng (2023) 28:9

https://www.tampermonkey.net

Offered by: tampermonkey.net

1

2

3

4

OK

5

Fig. 1 An overview of the EditEx workflow

2 A Catalog of Edit Rejection Reasons

SO introduces an edit system to improve the quality of the posts. However, edits may not
always be satisfactory and thus can be rejected. Wang et al. (2018) conduct an initial inves-
tigation on rejected edits of answers by rollback and expose 12 potential reasons behind
rejections. We extend their investigation by manually investigating rejected edits by roll-
backs of questions and answers. This section discusses our manual investigation process
first and later summarizes the identified edit rejection reasons.

2.1 Dataset Preparation

We downloaded the September 2019 (which was the start time of the journey of this study)
data dump of SO from the Stack Exchange site (Exchange 2019). The data dump stores
the history of all events (e.g., rollback and edit body) of the posts. In this study, we only
investigate the revisions where users made edits to the body of posts. Our data dump con-
tains a total of 1,116,473 rejected edits (72,159 questions + 44,314 answers) by rollbacks
and 26,604,779 accepted edits (13,624,495 questions + 12,980,284 answers). We manually
analyze rejected edits to explore the rejection reasons. However, accepted edits will be used
later to train and test our machine learning classifiers in Section 3.2. We randomly sampled
a statistically significant sample size from rejected and accepted edits.

To achieve a confidence level of 95% with a confidence interval of 5% (Boslaugh 2012),
we randomly sampled—(1) 382 from 72,159 rollback edits of questions, (2) 382 from
44,314 rollback edits of answers, (3) 385 from 13,624,495 accepted edits of questions,

9 Page 6 of 43 Empir Software Eng (2023) 28:9

and (4) 385 from 12,980,284 accepted edits of answers. We use the following formula to
compute the size of our random sample.

Nz2p(1 − p)

e2N + z2p(1 − p)
(1)

where N is the population size (e.g., 72,159), z is the Z-score corresponding to a particular
confidence level (e.g., 1.96 for a confidence level of 95%), e is the confidence interval (e.g.,
5%), and p is population proportion (e.g., 0.5) (Wang et al. 2018).

The data dump only stores the latest contents of the questions and answers after each
revision. However, we need both the texts before and after rollback/acceptance to ana-
lyze which suggested edits are rejected/accepted. Therefore, we collect the PostId and
RevisionGUID for each of our randomly selected revisions from the data dump. We
manually save the web pages using PostId from the SO site containing each post’s revi-
sion history. Next, we find the target revision from the history using the RevisionGUID.
Note that RevisionGUID is a unique ID used to find a particular revision. Each revision
contains the text before and after rollback/acceptance. Finally, we extract those target texts.

2.2 Edit Rejection Reasons

Table 1 summarizes the rollback edit reasons.We (two authors of this paper) manually inves-
tigate the randomly selected 764 (382 questions + 382 answers) rejected edits by rollbacks.
We consider the rollback reasons identified by Wang et al. (2018) as the baseline during our
analysis. However, we discuss the rollback edit reasons in multiple interactive sessions. We
then analyze 200 rollback edits (100 questions + 100 answers) from our selected dataset
and label the reasons. For a given rollback edit, we meticulously analyze the texts before
and after rollback to see the edits that cause a rollback. Our in-depth investigation exposes
a total of nineteen potential reasons. Twelve of them were identified by Wang et al., and
the remaining seven are new reasons. The new reasons are—(1) status update, (2) grati-
tude add/remove, (3) greetings add/remove, (4) signature add/remove, (5) deprecation note
add/remove, (6) duplication note add/remove, and (7) community trust. We then measure
the agreement using Cohen’s Kappa (Cohen 1968; 1960). The value of κ was 0.98, which
means the strength of the agreement is almost perfect. Next, we resolve the remaining few
disagreements by discussion. However, the agreement level indicates that any coder can do
the rest of the labeling without introducing individual bias. Thus, the first author of this
paper analyzes the remaining dataset and manually labels the reasons.

3 AModel to Predict Potential Rejection of Suggested Edits

The identification of undesired editing that causes rejection is essential to promote quality
editing. However, manual differentiation of undesired and accepted edits can waste a lot of
time and effort of users. Thus, this study aims to assist SO users by offering them automated
support while editing a post. Specifically, we attempt to exploit cues in the textual contents
of suggested edits to build a classifier that can automatically determine the rejected edits
with potential rejection reasons. In this section, we answer the research question as follows.

Page 7 of 43 9Empir Software Eng (2023) 28:9

For RQ1, we define the following null hypothesis.

Figure 2 shows the workflow of how we can detect the potential rejected edits of SO
with reasons. Our prediction pipeline includes three main components: Feature Extractor,
Rejected Edit Predictor and Rejection Reason Classifier. First, the feature extractor takes
the body text of the original post, the post with suggested edits, and the user’s informa-
tion (e.g., reputation) as inputs. Then, it produces a feature vector based on the predictor
variables. Second, the rejected edit predictor takes the feature vectors as input and outputs
a dichotomous variable, rejected. The value of rejected is 1 if the predictor deter-
mines that the suggested edit will most likely be rejected, and it is 0 otherwise. Third, the
rejection reason classifier takes the corresponding feature vector and texts as inputs if the
value of rejected is 1. Then, it outputs the potential reasons for rejection. Finally, we
measure the performances of the rejected edit predictor and rejection reason classifier.

3.1 Feature Extractor

Table 2 summarizes the features employed to predict whether suggested edits will be
rejected or not. We extracted fifteen texts & user-based features to predict the potential
rejected edits. Each feature is connected to one or multiple reasons behind a rejected edit.
Note that we discarded emotion, which was included in our registered report (Mondal et al.
2020), and added reputation. The reasons behind such decisions are discussed in Section 7.
However, this section discusses how we extract the features as follows.

Text/Code Formatting Text or code formatting refers to the changes in their presentation
styles. For example, consider the text with HTML tags—<p> I am using C#
programming language </p>. Here, C# is formatted as bold. Someone can reject the bold
format of C# by removing the ... tags. However, in both cases, the content
remains unchanged. The extracted content will be “I am using C# programming language”.
We thus detect the text/code formatting in the following ways.

Fig. 2 Workflow to predict rejected edits of SO with reasons

9 Page 8 of 43 Empir Software Eng (2023) 28:9

Table 2 Features of our predictor

Predictor Features Covered reasons

Editing Distance Text/Code Formatting Undesired Text/Code Formatting

Text/Code Modification Undesired Text/Code Add/Remove,

Undesired Text/Code Change

Deface Post Other

Complete Change of Post Other

Status Status Status Update

Gratitude Gratitude Gratitude Add/Remove

Greetings Greetings Greetings Add/Remove

Reference Reference Modification Undesired Reference Modification

Inactive Hyperlink Undesired Reference Modification

Signature Signature Signature Add/Remove

Deprecation Deprecation Note Deprecation Note Add/Remove

Duplication Duplication Note Duplication Note Add/Remove

Reputation Reputation Score Community Trust

where Tbrwt : Texts before rollback with HTML tags (e.g., <p> I am using C#
programming language </p>), Tbr : Texts before rollback (e.g., I am using C# program-
ming language), Tarwt : Texts after rollback with HTML tags (e.g., <p> I am using C#
programming language </p>), Tar : Texts after rollback (e.g., I am using C# programming
language), and De: Levenshtein (Yujian and Bo 2007; Wikipedia 2020) editing distance.
However, we remove new lines, strip leading & trailing spaces from Tbr & Tar , and make
them lowercase before processing.

where Cbrwt : Code before rollback with HTML tags, Cbr : Code before rollback, Carwt :
Code after rollback with HTML tags, and Tar : Code after rollback. Like text formatting, we
remove new lines, strip leading & trailing spaces from Cbr &Car , and make them lowercase
before processing.

Text/Code Modification Text/code modification refers to text/code addition/removal or
change of existing text/code.

Page 9 of 43 9Empir Software Eng (2023) 28:9

We normalize textModification with respect to the character length of Tbr since Tbr varies.
We determine the code modification in the same way as text modification.

Deface Post Remove the texts or code entirely.

We determine the deface code in the same way as the deface text. However, deface post will
be True if defaceText or defaceCode becomes True.

Complete Change of Post Users change texts or code segments entirely.

We determine the complete code change in the same way as the text change. However, com-
plete change of post will be True if completeChangeText or completeChangeCode becomes
True.

Status To detect the addition/deletion of status, we attempt to find a keyword match to
Tbr/Tar from a keywords list, Lkw . Here, Lkw = {edit, update, note, ps} (Mondal et al.
2021a).

Gratitude We detect the addition/removal of gratitude similarly to status. However, here the
keyword list, Lkw = {welcome, thanks, sorry, appreciated, thank, ty (i.e., thank you),
thx, regards, tia (i.e., thanks in advance)} (Mondal et al. 2021a).

Greeting We detect the addition/removal of greeting similarly to status. However, here
the keyword list, Lkw = {hi, hello, hey, dear, greetings, hai, guys, hii, howdy, hiya, hay,
heya, hola, hihi, salutations} (Exchange 2009a).

ReferenceModification To detect reference modification, we extract the values of the href
attribute of <a> tag from Tbrwt & Tarwt . Then insert the hyperlinks into two lists—LSTbr :
list of hyperlinks found from texts before rollback, and LSTar : list of hyperlinks found from
texts after rollback.

9 Page 10 of 43 Empir Software Eng (2023) 28:9

InactiveHyperlink To detect the inactive (e.g., broken/dead) hyperlink, we check the HTTP
response of each of the hyperlinks of LSTar . We decide whether a hyperlink is inactive or
not based on the response code.

Signature To detect the addition/removal of the signature, we extract and store the full
name, first part, and last part (if any) of two users (who suggested edit & who rolled back)
into a list, Lname. We then detect the addition/removal of the signature similarly to status.

Deprecation Note We detect the addition/removal of deprecation notes similarly to status.
However, here the keyword list, Lkw = {deprecation, deprecate, oldcode} (Mondal et al.
2021a).

Duplication Note We detect the addition/removal of duplication notes similarly to status.
However, here the keyword list, Lkw = {duplicate, duplication} (Mondal et al. 2021a).

Reputation Score We compute the reputation score of users to estimate—(1) how much
the community trusts them and (2) whether they follow the editing guidelines. The official
data dump of SO only reports the latest reputation scores of the users, which are not appro-
priate for our analysis. We thus use the snapshot of user activities (e.g., votes, acceptances,
bounties) to compute the reputation score of users during their editing of posts. In particular,
we use a standard equation provided by the SO to calculate the reputation score (Exchange
2020).

3.2 Rejected Edit Predictor

In this section, we first describe machine learning classifiers (Section 3.2.1) and their
evaluation setup (Section 3.2.2). Then we evaluate the performance of our classifiers in iden-
tifying rejected edits (Section 3.2.3). Finally, we construct the baseline models and report
their performance in Section 3.2.4.

Page 11 of 43 9Empir Software Eng (2023) 28:9

3.2.1 Machine Learning Models

The relationship between edit categories (rejected/accepted) and their corresponding feature
values might be complex. Thus, we choose the following four popular machine learning
classification techniques with different learning strategies to identify the potential rejected
edits. They are widely used in the relevant studies (Saha et al. 2013; Ponzanelli et al. 2014b;
Rahman and Roy 2015a; Beyer et al. 2018).

Decision Trees (DT) is a non-parametric supervised machine learning technique for clas-
sification and regression. Non-parametric means it does not make any assumptions about
the underlying data distribution. The intuition behind decision trees is that simple decision
rules are inferred from the dataset features and continually split the training set until all data
points belonging to each class are isolated. In particular, this technique employs different
heuristics (e.g., entropy, information gain) to decide which feature to be used for the subse-
quent split of the training set. The commonly used decision trees are ID3, C4.5, and CART.
However, ID3 can only be used when features are categorical. C4.5 and CART are exten-
sions of ID3, which can work with features of both categorical and continuous data. Here,
we use CART since our extracted features have both continuous and categorical values.

RandomForest (RF) is a supervised machine learning technique. The ‘forest’ it builds is an
ensemble of many decision trees, usually trained with the ‘bagging’ method. The underlying
principle behind the ensemble model is that a group of weak learners come together to form
a strong learner. Ensemble learners thus improve the performance of single classifiers by
inducing several classifiers and combining them to obtain a new classifier that outperforms
every one of them (Polikar 2006). RF is scalable to any number of dimensions and usually
has acceptable performance. However, it adds additional randomness to the model while
growing the trees. For example, instead of searching for the most important feature while
splitting nodes, it searches for the best feature among a random subset of features. RF thus
prevents the overfitting of datasets by creating random subsets of the features.

K-Nearest Neighbors(KNN) is a non-parametric method employed in classification and
regression problems (Goldberger et al. 2005). It does not use the training data points to
perform any generalization. Thus, the KNN’s training phase is much faster than other clas-
sification algorithms. In KNN, K represents the number of nearest neighbors, which is the
core factor in deciding a data point’s label (i.e., class). This technique finds the K closest
neighbors of a target point using distance measures (e.g., Euclidean distance). Then, each
neighbor votes for their class, and the class with the most votes is taken as the prediction.

eXtreme Gradient Boosting (XGBoost) is a scalable tree boosting technique that predicts
a target variable by combining an ensemble of estimates from a set of more simplistic and
weaker models (Chen and Guestrin 2016). It is a supervised learning algorithm and can
be employed for both classification and regression. XGBoost is an extension to gradient
boosted decision trees (GBM) with improved speed and performance. However, it is faster
than other algorithms because of its parallel and distributed computing. XGBoost performs
well because of its robust handling of various data types, relationships, distributions, and a
variety of hyperparameters. In addition, XGBoost has inbuilt cross-validation and a variety
of regularizations, which helps reduce overfitting.

9 Page 12 of 43 Empir Software Eng (2023) 28:9

3.2.2 Model Evaluation Setup

Dataset Selection We used the randomly sampled dataset (rejected & accepted) from
Section 2.1 to train and test our machine learning classifiers. However, we keep the training
and testing data separate since we have one time-dependent feature (i.e., reputation score).
For example, consider a user suggested edits to multiple posts at different times. The rep-
utation score of users increases over time. Thus, the reputation score of that user will be
lower while suggesting prior edits than the later edits. Therefore, we use earlier edits as the
training set and later edits as the test set to ensure that past data is not predicted based on
future data. In particular, we take 70% samples that were edited relatively earlier to train the
machine learning classifiers and use the remaining 30% to test them.

PerformanceMetrics The selection of the evaluation criteria is vital to guarantee a reliable
assessment of the prediction models. In a binary classification problem like rejected edit pre-
diction, a confusion matrix (e.g., Table 3) records the correctly and incorrectly recognized
examples of each class. Therefore, we can obtain several metrics from the given confu-
sion matrix to independently evaluate models’ performance for both positive and negative
classes.

The machine learning community often measures the classification accuracy as a simple
scalar performance metric for binary classification. Classification accuracy measures the
ratio of correctly classified edits into rejected & accepted classes with respect to all classi-
fied edits. However, according to He and Garcia (2008), accuracy might lead to an incorrect
conclusion as the measure is highly sensitive to changes in data. In such cases, precision
is a useful metric to capture the effect on a classifier performance of having a larger num-
ber of negative examples (Davis and Goadrich 2006). In particular, precision measures the
ratio of correctly classified edits into a class (i.e., rejected/accepted) with respect to all edits
classified into that class. However, He and Garcia (2008) argued that precision is still sensi-
tive to changes in the data distribution, and it cannot assert how many positive examples are
classified incorrectly. Unlike precision, recall is not sensitive to data distribution that mea-
sures the ratio of correctly classified edits with respect to the actually observed edits as true
instances. However, any assessment based solely on recall would be inadequate, as it pro-
vides no insight into how many examples are incorrectly classified as positives. Therefore,
neither precision nor recall can provide a reliable assessment of classification performance
(Calefato et al. 2019). However, these individual scalar metrics can be combined to build
more reliable classification performance measures. Specifically, these aggregated perfor-
mance metrics include the F-measure that represents the harmonic mean of precision and
recall. We thus measure precision, recall, F1-score, and overall accuracy to conclude the
models’ performance better. They can be measured as follows.

Precision = T P
T P+FP

Recall = T P
T P+FN

F1-Score 2×Precision×Recall
P recision+Recall

Accuracy = T P+T N
T P+FP+T N+FN

Table 3 Confusion matrix

Sample Size (N) Expected (Rejected) Expected(Accepted)

Predicted (Rejected) True Positive (TP) False Positive (FP)

Predicted (Accepted) False Negative (FN) True Negative (TN)

Page 13 of 43 9Empir Software Eng (2023) 28:9

3.2.3 Model Performance Evaluation

We experiment with our models to see how well the classification models perform based
on our features. Figure 3 summarizes the performance of our models. Our primary focus
is to predict the rejected edits. We see that our models can predict the rejected edits with
62.3%–69.1% precision. The random forest can predict the rejected edits more precisely
than the other three models. Its precision is 69.1%. On the other hand, XGBoost shows the
highest recall (i.e., 71.8%). However, the highest F1-score is achieved by the random for-
est model in predicting rejected edits. The precision to predict the accepted edits ranges
from 59.1%–70.5%. Like rejected edits, the random forest model achieves the highest preci-
sion in predicting accepted edits. On the contrary, the k-nearest neighbors shows the lowest
precision.

From Fig. 3, we see that the overall accuracy of the models is more than 60%. The high-
est accuracy is about 70%. Our experimental result shows that the random forest performs
best, whereas the k-nearest neighbors shows the lowest performance. The k-nearest neigh-
bors could suffer from the high dimensional data. However, according to the experimental
result, XGBoost slightly outperforms decision trees but underperforms the random forest.
We thus further investigate why XGBoost does not outperform random forest. We analyze
the predicted class of XGBoost and random forest models against our test dataset. We find

Fig. 3 Performance of our machine learning models

9 Page 14 of 43 Empir Software Eng (2023) 28:9

that XGBoost misclassified 31 samples (15 accepted + 16 rejected), which random forests
classified correctly.

In our dataset, addition/removal of duplication notes get rejected more than 94% times,
and signatures get rejected 100% times. However, a few samples are classified as accepted
by XGBoost even after the addition/removal of duplication notes or signatures. On the
contrary, random forest classified them correctly as rejected. Besides, XGBoost classified
several samples with trivial text changes as rejected, which were incorrect. Our analysis
shows that trivial changes have more chance of being accepted than rejected. However, ran-
dom forest classified the target class correctly in those cases. Hence, the above reasons
could explain why XGBoost slightly underperforms random forest. Therefore, we select the
random forest model to deploy with our online tool.

Our models could capture unnecessary details or too specific relationships within the
training dataset and thus suffer from overfitting. However, overfit models are not very stable
since they fail to generalize well to the data. Moreover, overfit models generally perform
poorly on unseen (e.g., test) data. In particular, a overfit model has a substantial difference
between the accuracy of the training and test dataset. That is why we can never trust an over-
fit model and put it into deployment. We thus attempt to reduce overfitting before deploying
our model. In particular, we tuned the critical parameters of the model to balance the accu-
racy between training and test datasets (Table 4). Then, we set the values of the parameters
to avoid model overfitting.

Figure 4 shows the model accuracies on the training and test dataset in contrast to exam-
ple critical parameters of the model. For example, we run the random forest model over the
depth of the tree from 1 to 20. As shown in Fig. 4a, the training accuracy improves with
the depth of the tree. However, the difference between training and test accuracies increases
when the depth exceeds five. We thus set the depth value as five while training the random
forest model. We set the depth values for the decision trees and XGBoost models similarly.
Their depth values are five and three. In particular, we attempt to balance the training and
test accuracies when determining depth values.

On the other hand, Fig. 4c shows the training and test accuracies of the k-nearest neigh-
bors in contrast to the number of neighbors. We vary the number of neighbors from 1 to 50,
evaluate the model on the train and test datasets for each number of neighbors, and report
the accuracy. We see that performance on the test set improves initially and then worsens,
and performance on the training set continues to degrade. As shown in Fig. 4c, the training
accuracy is dropping to converge with the line for the test set. However, the training and
testing accuracies are very close when the number of neighbors is 46. We thus choose the
parameter value is 46 (i.e., number of neighbors = 46).

Table 4 Accuracy of the machine learning models

Model name Accuracy

Testing Training

Random Forest 69.8% 71.2%

Decision Trees 66.8% 66.8%

K-Nearest Neighbors 60.4% –

XGBoost 67.2% 67.1%

Page 15 of 43 9Empir Software Eng (2023) 28:9

Fig. 4 Parameter tuning to reduce model overfitting

3.2.4 Performance of Baseline Model

To the best of our knowledge, there was no existing machine learning model to identify
the rejected edits with reasons at the time when we conducted this study. However, we
construct baseline models that reject/accept trivial edits and evaluate their performance. We
thus first attempt to categorize the types of edits conducted in the samples of our dataset. We
calculate the Levenshtein distance between the original post’s content (text + code) and the
post with suggested edits. We normalize the distance with respect to the character length of
the original posts. Then, we classify the edits into four categories based on the edit distance.
They are—trivial (distance ≤ lower quartile), small (lower quartile > distance ≤ median),
medium (median > distance ≤ upper quartile) and major (distance > upper quartile) edit.

Figure 5 shows the percentage and count of rejected and accepted edits for each category.
We see that 62.8% of trivial edits get accepted (Fig. 5a) in our dataset. On the contrary,
such a statistic is only 37.2% for rejected edits. However, the percentage of rejected edits
is higher than the accepted edits for the remaining three categories. We then develop a
rule-based classifier that rejects trivial edits. Figure 6a summarizes the performance of the
classifier. The precision of identifying rejected edits is below 40%. The classifier also has
poor recall (i.e., 19.1%) in identifying rejected edits with 43.7% overall accuracy. Next,
we build a classifier that rejects non-trivial (i.e., small, medium & major) edits. That is,
it accepts trivial edits. Figure 6b shows its performance. This classifier shows a higher

9 Page 16 of 43 Empir Software Eng (2023) 28:9

Fig. 5 Change of post contents by edits

recall in identifying rejected edits than our proposed models. However, the precision, F1-
score, and overall accuracy are significantly lower than our best-performing model. Such
performances suggest that rejected edits cannot be identified reasonably well only based-on
edit categories.

3.3 Rejection Reason Classifier

In the previous section, we evaluate the performance of the machine learning models in pre-
dicting the rejected edits. This section analyzes how accurately the rejection reason classifier
can identify the potential reasons for those rejections.

Our rejected reason classifier can almost accurately identify several rejection reasons by
applying the same approach as we extracted features Section 3.1. For example, our manual
investigation identified nine keywords (e.g., thanks, welcome) (Section 3.1) that were uti-
lized to identify gratitude. However, our further analysis finds that the addition or removal of
gratitude is rejected 85.5% times (e.g., Fig. 7) in our dataset. We thus used this lightweight
keyword-based technique to identify the reason “gratitude add/remove” when the edits are
predicted as rejected. However, to avoid multiple computations, we look back at the feature
vector to check the feature value of gratitude. Similarly, we identify the following potential
edits rejection reasons by analyzing the feature vector.

For a remaining few rejection reasons, such as undesired text/code addition/removal,
we primarily apply n-grams and pos-tagging-based techniques. Unfortunately, we did not
find satisfactory performance (e.g., accuracy <50%). Our further investigation suggests that
both desired and undesired texts contain similar words, phrases, or patterns. Therefore, we
cannot distinguish them using words, phrases, or pos-based patterns. However, the charac-
ter length of added or removed text/code can identify the undesired addition or removal of
text/code reasonably well. We thus extract the added/removed text or code from our manu-
ally analyzed dataset using the appropriate HTML tags. In particular, we extract the contents
of HTML elements with a class attribute with either diff-add & diff-delete values.
We measure the length of added/removed characters of text or code. We then normalize

Page 17 of 43 9Empir Software Eng (2023) 28:9

Fig. 6 Performance of baseline machine learning model

the length with respect to the total length of the text/code of revisions. Next, we sepa-
rate samples into two classes according to our manual label—(1) undesired vs. desired text
addition, (2) undesired vs. desired text removal, (3) undesired vs. desired code addition,
and (4) undesired vs. desired code removal. We developed four random forest classifiers to
identify the undesired text/code addition/removal. However, we resolve the class imbalance
problem using Synthetic Minority Oversampling Technique (SMOTE) (Wang et al. 2006).
Table 5 shows the performance of the classifiers. The precision of identifying the undesired
text/code addition/removal is about 62.1%–69.2%. The recall is slightly lower for undesired
text addition/removal than undesired code addition/removal. However, the overall accuracy
is more than 63%, except for undesired text removal.

We then evaluate the overall performance of the rejection reason classifier in identifying
the potential rejection reasons. We experiment with the rejection reason classifier using our
test dataset. In particular, we label each sample in a file as follows.

Fig. 7 Percentage of rejected and accepted edits

9 Page 18 of 43 Empir Software Eng (2023) 28:9

Table 5 Performance of classifiers to identify undesired text/code addition/deletion

Classifier Precision Recall F1-Score Accuracy

Undesired Text Addition 69.2% 48.1% 56.7% 63.4%

Undesired Text Removal 62.1% 50.8% 55.9% 58.0%

Undesired Code Addition 65.3% 64.0% 64.6% 65.0%

Undesired Code Removal 69.0% 74.4% 71.6% 68.1%

(1) Identified: the reasons detected by the rejection reason classifier. (2) Expected: the
actual reasons based on our manual analysis. We then create a confusion matrix to ana-
lyze the performance of the rejection reason classifier as follows. (i) True Positive (TP) =
‘identified’ reasons = ‘expected’ reasons (ii) False Positive (FP) = (‘identified’ reasons
�= ‘expected’ reasons) or (‘identified’ reasons but ‘expected’ no reasons) (iii) True Nega-
tive (TN) = ‘identified’ no reasons and ‘expected’ no reasons, and (iv) False Negative (FN)
= ‘identified’ no reasons but ‘expected’ one or more reasons. Using the above matrix, we
compute four standard metrics (Precision, Recall, F1-score, and Accuracy) to compute the
performance of the model to identify the rejected reasons.

Table 6 shows the confusion matrix and performance of rejection reason classifier to
identify the potential reasons for edit rejections. Our analysis shows that our rejection rea-
son classifier can identify the potential rejection reasons with 62.3% precision, 67.2% recall,
64.7% F1-score, and 66.7% overall accuracy. We further analyze in which cases our rejec-
tion reason classifier fails to identify rejection reasons. We find that our model mainly fails
to identify all the reasons when there were multiple reasons to reject suggested edits. In
that cases, our model can partly identify the reasons. For example, there are three reasons
for rejection. However, our model identifies two of them accurately. Note that we identify
the potential rejection reason as community mistrust when—(1) our rejection reason clas-
sifier cannot identify any reason and (2) the reputation score of the user who suggested
edits is below 2K. We choose a reputation score < 2K since users with a reputation score
< 2K have no privilege to edit posts instantly. However, our rejection reason classifier can-
not identify a couple of reasons (e.g., incorrect text/code change). We will discuss them in
Section 7.

4 EditEx: A Recommender for Early Fixes to Suggested Edits

We can assess the actual impact of our developed classifier if it can automatically assist
users during their editing of SO posts. Editing is a time-consuming and largely voluntary
activity in SO. Therefore, users can be assisted with a tool that can recommend potential

Page 19 of 43 9Empir Software Eng (2023) 28:9

Table 6 Confusion matrix and performance of our model to identify the rejection reasons (TP: True Posisitve,
TN: True Negative, FP: False Positive & FN: False Negative)

TP FP TN FN Performance

Precision Recall F1-Score Accuracy

129 78 153 63 62.3% 67.2% 64.7% 66.7%

fixes to their undesired edits. We thus focus on introducing an online tool, namely EditEx,
that interacts with our classifier, identifies the potential rejection reasons from the suggested
edits, and helps to reduce the likelihood of rejection of suggested edits. We then assess
the tool’s effectiveness via real-world usage by users and answer the research question as
follows.

For RQ2, we define the following null hypothesis.

4.1 EditEx Architecture

Figure 8 shows an overview of the EditEx architecture. EditEx has two parts: client and
server. On the client-side, users get the EditEx interface. EditEx interface comprises
two buttons: EditEx and Suggestion. EditEx enables users to edit the SO posts. On the other
hand, users can check whether the edits will be rejected/accepted and the potential rejection
reasons upon rejection by clicking the Suggestion button.

When users click the Suggestion button, the client-side script captures the necessary data
required to extract the features for the machine learning model. In particular, it captures—
(1) text before edit, (2) text after edit, (3) reputation, and (4) the name of the user who
suggests edits. Then it sends this data to the server-side application. Client-side script is writ-
ten by JavaScript, and server-side application is developed by Java. However, the server-side
application captures all the feature values (Section 3.1) using the data sent by the client. The

Fig. 8 An overview of the EditEx system architecture

9 Page 20 of 43 Empir Software Eng (2023) 28:9

feature values form a feature vector. The feature vector is then passed to the classification
model to predict whether the edit will be rejected or not.

The potential rejection reasons are identified upon rejection based on the feature vector
and texts (before and after edit). Then, the decision of the edit (i.e., rejected/accepted) and
the helpful suggestions that notify the rejection reasons (if rejected) are sent to the client-
side script. Finally, the client-side script offers users the result and suggestions.

4.2 Effectiveness Evaluation Plan of EditEx

Figure 9 shows the overview of how EditEx is introduced and its effectiveness is eval-
uated. Users can get the EditEx interface integrated with the SO’s existing edit system
after installing EditEx. Then, they can suggest edits to posts using EditEx to improve
their quality. We measure the effectiveness of EditEx in two ways. First, we recruited 20
participants and divided them into two groups. The control group edits posts using the exist-
ing SO edit system of SO, whereas the treatment group uses EditEx to edit posts. When
both groups complete their edits, we compare the success rates (e.g., fewer rejection ratios).
Second, we survey participants after completing their edits and analyze their feedback.

4.3 Study Design

In this section, we first discuss how we recruit our study participants (Section 4.3.1). We
then explain the formation of control vs. treatment groups (Section 4.3.2). Next, we discuss
the two phases of our study—task-based evaluation and survey-based feedback collection
phase (Section 4.3.3).

4.3.1 Study Participants

We recruit 20 participants who satisfy our constraint (i.e., participants must have editing
experience in SO posts) in the following two ways.

– Snowball Approach: We use convenience sampling to bootstrap the snowball (Stratton
2021). We first contacted a few software developers who are known to us, easily reach-
able, and working in software companies worldwide. We discuss our study goals and
share the survey with them. We then adopt a snowballing method (Bi et al. 2021) to
disseminate the survey to some of their colleagues with similar experiences. We asked

Fig. 9 An overview of the EditEx and its effectiveness evaluation

Page 21 of 43 9Empir Software Eng (2023) 28:9

to share the survey with those who could be interested in editing posts and participating
in our survey. In this process, we receive information (e.g., email) from 22 partici-
pants who show their interest in our study. However, 12 of them finally confirmed their
participation.

– Open Circular: We post a description of this study and our research goals in the spe-
cialized Facebook groups to find potential participants. We target the groups where
professional software developers discuss their programming problems. We also use
LinkedIn as a research tool to reach potential participants because it is one of the largest
professional social networks in the world. We get contacts of 20 participants from
this open circular who are willing to participate and satisfy our constraints (e.g., must
have editing experience). However, some participants did not respond to us when we
contacted them. We finally confirmed eight participants in this process.

In the end, we were able to recruit a total of 20 developers (12 from snowball + 8 from
open circular) who were eligible based on our study constraint. Half of them have 3–5
years, 40% (8 out of 20) have two years (or less), and 10% (2 out of 20) have 6–8 years
of software development experience. Note that 35% of participants were from different
software industries, and the remaining 65% of them were from academia. They worked as
developers, technical leads, grad students, and faculty members worldwide (e.g., Canada,
Germany, Bangladesh). In our registered report (Mondal et al. 2020), we proposed to recruit
30 participants using a snowball approach. However, we discussed these discrepancies in
the number of participants and recruitment approach in Section 7.

4.3.2 Formation of Control and Treatment Groups

As mentioned above (Section 4.3.1), we recruit 20 participants for our study. We pick 10 of
them for the treatment group and 10 for the control group as follows.

– Treatment Group: Each participant in this group was assisted in their editing of SO
posts by our developed EditEx tool. However, the participant could also access the
standard SO edit system.

– Control Group: Each participant in this group edited SO posts by using the standard SO
edit system only.

Table 7 shows the experience and professions of control and treatment groups. We
attempt to equate profession and experience between two groups to minimize the subjective

Table 7 Experience and profession of control and treatment groups

Control group Treatment group

Development Profession Development Profession

Experience Experience

(Years) (Years)

≤ 2 3-5 6-8 Academician SW Developer ≤ 2 3-5 6-8 Academician SW Developer

4 5 1 6 4 4 5 1 7 3

9 Page 22 of 43 Empir Software Eng (2023) 28:9

biases. For example, control and treatment groups have participants with low and high soft-
ware development experience. Also, each group contains participants from academia (e.g.,
faculty members) and software industries.

4.3.3 Execution Plan

First, we conduct a task-based analysis (Section 4.4) by asking each participant (control
+ treatment group) to edit ten posts. However, we set a task list and asked each partici-
pant to suggest edits to posts following the task list. Table 8 lists the tasks. Tasks T1–T6
were set based on the identified reasons that might cause rejections. For example, the treat-
ment and control groups were asked to add gratitude (e.g., thank you) associated with other
edits. In this case, EditEx warns the treatment group against adding such gratitude. There-
fore, participants of the treatment group proceed with the remaining edits and avoid adding
gratitude. On the other hand, the control group did not receive such a warning. Thus, they
suggested edits with gratitude. We attempt to see the effectiveness of EditEx in preventing
the commonly rejected reasons while suggesting edits from tasks T1–T6. However, the con-
trol group might get more rejections for tasks T1–T6. On the contrary, such tasks favor the
treatment group. Such a scenario can exaggerate EditEx’s effectiveness in reducing edit
rejections. Therefore, we also ask the participants to edit posts arbitrarily (e.g., Table 8, T7).
That means participants suggest edits to posts that are not related to any rejection reasons
to limit the bias of this study.

We circulated the editing guidelines of SO to each participant of the control and treatment
groups. We asked participants to follow the guidelines in suggesting edits. After suggest-
ing edits, participants wait until they get the decision (rejected/accepted) on those suggested
edits from the edit reviewers. However, users with a reputation score ≥ 2K can edit posts
instantly. Those edits are neither added to the review queue nor reviewed by experts. How-
ever, a rollback can reject their edits. Unfortunately, such a rollback even may take a few
months. We thus ask participants with a reputation score ≥ 2K to create a new account.
Edits suggested by their new account undergo an expert review. This decision also con-
firms the same privilege level of all the participants. However, our target was to quickly get
decisions (rejected/accepted) on the suggested edits and avoid undecided edits.

Table 8 Editing tasks to the participants

Task ID Task description

T1 Add greeting (e.g., hello, dear, good day) at the beginning of a post with other edits.

T2 Add gratitude (e.g., thank you) at the end of a post with other edits.

T3 Add signature (e.g., user name) at the end of a post with other edits.

T4 Format text (e.g., bold/unbold text, make text italic, format text element as code element or

vice versa) with other edits.

T5 Format code (e.g., add/remove space, make lowercase letter to uppercase or vice versa) with

other edits.

T6 Remove a code segment or a paragraph of text or change them radically.

T7 Other (e.g., fix grammar & spelling, text/code modification)

Page 23 of 43 9Empir Software Eng (2023) 28:9

Second, we conduct an online survey (Section 4.5) to listen to the participants about
their experience in suggesting edits to SO posts with/without our tool EditEx. Kitchen-
ham and Pfleeger (2008) suggest considering six main steps for a personal opinion survey.
They are—setting survey objectives, designing the survey, developing the survey instrument
(i.e., the questionnaire), evaluating the survey instrument, and obtaining and analyzing data.
We primarily follow their guidelines to survey participants. However, we also consider the
guidance and ethical issues from the established best practices (Groves et al. 2011; Singer
and Vinson 2002). For example, we take participants’ consent before starting the survey.
Besides, we confirm to participants that their provided information must be treated confi-
dentially. Our survey includes different types of questions (e.g., multiple-choice, free-text
answers). However, we inform about the estimated time (i.e., approximately 10 minutes)
required to complete the survey to the participants. Our survey comprises the parts as
follows.

– Consent and Prerequisite. This part confirms participants’ consent to participate in
this survey and agreement to process their data.

– Participants’ Information. In this part, we collect participants’ information such as
experience, current profession, organization, country, and editing experience in SO
posts.

– Workload Assessment. This section assesses the cognitive workload of the control and
treatment groups in suggesting edits to SO posts. We leverage the NASA Task Load
Index (TLX) (non-weighted) to estimate subjective workload (Cao et al. 2009; Hart and
Staveland 1988; Noyes and Bruneau 2007; Sharek 2011). In particular, we assess how
much effort participants had to exert mentally and physically to use EditEx and the
standard edit system of SO. Participants were asked to rate their scores on an interval
scale ranging from low (1) to high (10) (Memarian andMitropoulos 2011) in the follow-
ing six dimensions—(1) mental demand, (2) physical demand, (3) temporal demand,
(4) effort, (5) performance, and (6) frustration.

– Usefulness Analysis. In this section, we measure the participants’ confidence in sug-
gesting edits using EditEx (treatment group) and SO edit system (control group).
In addition, we ask the treatment group to rate the usefulness of the suggestions of
EditEx. In particular, we ask the following two questions to the treatment group par-
ticipants and employ a 5-point Likert scale (i.e., 1–5) to estimate their consent (Joshi
et al. 2015; Vagias 2006).

(a) How useful did you find the suggestions from EditEx? (5-point Likert scale)
(b) How confident were you to follow the EditEx suggestions? (5-point Likert)

We ask the following question to measure the confidence level of the participants in the
control group.

(c) How confident are you to edit posts using the SO editing system? (5-point Likert
scale)

– Suggestions to Improve EditEx. Finally, we seek participants’ recommendations to
improve the effectiveness of EditEx. We ask them the question as follows.

(a) What are your recommendations to further improve EditEx? (Text)

We added the survey form and its responses in anonymized CSV form in our replication
package (Mondal et al. 2021b).

9 Page 24 of 43 Empir Software Eng (2023) 28:9

4.4 Results from the User Study on Editing of SO Posts

Participants were asked to complete ten edits. However, several participants (especially from
the control group) could not edit ten posts due to three main challenges.

(a) SO’s edit queue often remains full, and thus participants could not edit posts according
to their schedule.

(b) Participants could not edit many posts (e.g., more than three) simultaneously.
SO restricts them from suggesting further edits before receiving a decision
(rejected/accepted) on the pending ones.

(c) SO does not allow its users to edit for a period when consecutive edits are being
rejected.

Figure 10 shows the task completion ratio of control and treatment groups. As mentioned
above, we asked each group to edit 100 posts (10 for each). However, participants from the
control group were able to edit 83 posts in total (i.e., completion ratio 83%), whereas the
treatment group edited 94 posts.

We then attempt to see the rejection ratio of suggested edits. First, we collect information
from each participant (treatment & control group) when all of their suggested edits got
decisions (e.g., rejected/accepted). In particular, we asked how many edits they suggested
and how many of them got rejected. We also collect their editing details to examine whether
they follow the given task list (e.g., Table 8) or not. Then we count the total number of
suggested and rejected edits of the treatment and control groups. Finally, we calculate the
rejection ratio of each group.

As shown in Fig. 11, the rejection ratio of the edits suggested by the treatment group is
only 16% (15 out of 94). On the contrary, such a statistic is 65.1% (54 out of 83) for the
control group. Overall, the percentage of rejected edits who used EditEx is about 49%
lower than those who used the standard editing system of SO. Such a finding gives us a
preliminary validation that our tool helps users to prevent their suggested edits from being
rejected.

Tasks T1–T6 were set based on our identified rejection reasons. However, EditEx alerts
the treatment group participants while suggesting T1–T6. Such alerts might help them to
avoid edits that cause rejections. On the contrary, the control group did not receive any alerts
from the SO edit system while suggesting T1–T6. Therefore, the overall edit rejection ratio
of the control group is much higher than the treatment group. We thus attempt to compare
the rejection ratio of task T7 (i.e., free-form editing) between control and treatment groups.
According to our analysis, the control group suggests 23 free-form edits. Among them, six
were rejected. Since EditEx prevents T1-T6, the treatment group could not suggest T1-
T6. Therefore, we consider all of their tasks as T7. However, we found that they suggested

Fig. 10 Task completion of
treatment and control groups

Page 25 of 43 9Empir Software Eng (2023) 28:9

Fig. 11 Rejection ratio of treatment and control groups

two edits out of task T7 (i.e., T1–T6). Among the remaining 92, 13 edits were rejected.
As shown in Fig. 12, the rejection ratio of the control group for T7 is 26.1%. On the other
hand, such ratio for the treatment group is 14.1%. Therefore, EditEx not only assists users
in avoiding edits that are usually rejected but also assists them in conducting regular (i.e.,
free-form) edits.

4.5 Results from Survey of User Study Participants

We received 20 valid survey responses (10 treatment + 10 control). We report the survey
responses as follows.

– Workload assessment during the completion of the editing tasks,
– Usefulness ratings of EditEx suggestions, and
– Improvement suggestions by the study participants for EditEx.

4.5.1 Workload Assessment During Edit Task Completion

Figure 13 shows the box plots of the NASA TLX cognitive workload score on a scale of ten.
We compute the average workload of each participant. We first sum up the ratings of each
of the six dimensions (e.g., mental demand) and then divide it by the number of dimensions.
In particular, we use the equation to compute the average workload of each participant as
follows.

Awl = 1

DT

[
DT∑
i=1

Ri

]
(2)

where Ri denotes the rating (1–10) of ith dimension, DT represents the total dimensions
(here, DT = 6).

Figure 13 shows the box plots that represent the average cognitive workload of each par-
ticipant from the treatment and control groups. We see that the median subjective workload
for the treatment group is about half that of the control group. That is, EditEx strongly

Fig. 12 Rejection ratio of T7
between treatment and control
groups

9 Page 26 of 43 Empir Software Eng (2023) 28:9

Fig. 13 Cognitive workload in
editing SO posts using EditEx
vs. SO’s standard edit system
using NASA TLX

supports the SO standard editing system to reduce the users’ workload required to suggest
edits to posts. We then attempt to find whether the workload difference between treatment
and control groups is statistically significant. We use the Mann-Whitney-Wilcoxon statisti-
cal significance test (McKnight and Najab 2010) and find a statistical significance p-value
(p-value � 0.0 < 0.05). We also use Cliff’s delta test (Macbeth et al. 2011) to determine
the effect size and find a large effect size (Cliff’s d = −0.97 (large)) with 95% confidence.
Given this evidence, EditEx helps the users to edit posts by significantly reducing their
workload.

4.5.2 Usefulness of EditEx Suggestions

Table 9 shows the participants’ assessment of the effectiveness of EditEx and the SO
edit system. We see that participants find the suggestions of EditEx influential (3.41 �
score � 4.20) in avoiding the potential rejections. The Likert score (i.e., 4.0) also shows
that they were confident to follow the suggestions given by EditEx. When we asked the
reason behind their confidence level, one participant responded that EditEx suggests the
common reasons behind the unsuccessful attempts of edit. These suggestions help to iden-
tify those and fix them. On the contrary, the participants who use the SO edit system (i.e.,
control group) were moderately confident (2.61 � score � 3.40) in suggesting their edits.
To explain the reasons, one participant stated that I was not sure whether my edits are good
or bad, so my confidence was low. I cannot understand much from the reviewers’ comments
why my edits were actually rejected. The reasons were too general. Such findings indicate
that EditEx is not only able to provide valuable suggestions but also make users more
confident in suggesting edits.

Table 9 Effectiveness analysis of EditEx and SO edit system

Questions Target group Mean value Interpretation

How useful did you find the suggestions from EditEx? Treatment 4.1 Influential

How confident were you to follow the EditEx suggestions? Treatment 4.0 Confident

How confident are you to edit posts using the SO editing system? Control 3.1 Moderate

Page 27 of 43 9Empir Software Eng (2023) 28:9

4.5.3 Recommendations for EditEx Improvements

We analyzed the recommendations of all the participants and summarized them into three
categories. We see that participants recommended—(1) enhancing existing functionalities,
(2) improving Graphical User Interface (GUI), and (3) notification & installation system.
We discuss their recommendations below.

Enhance Functionality

– Besides suggesting the rejection reasons, EditEx could also estimate a score based on
the quality of the edit.

– EditEx can be enhanced by adding a few features related to natural language
processing, such as identifying incorrect spelling, sentence complexity.

– EditEx should detect minor changes (e.g., adding an article) that do not significantly
improve the quality of the posts.

– Participants also suggested enhancing the capability of EditEx in such a way that it
can identify more potential reasons that might cause rejection.

– Participants recommend paraphrasing the notification sentences (e.g., edits may get
rejected due to low reputation) to convey them more positively.

Improve Graphical User Interface

– A few participants recommend improving the GUI of EditEx. For example, the noti-
fication system of the potential rejection reasons could be more appealing. In addition,
Suggest Me button should appear beside the edit window to avoid scrolling.

Add Notification & Improve Installation System

– One of the main barriers to suggesting edit is that the queue remains full most of the
time. Participants thus suggest that EditEx should notify them when the queue becomes
free to suggest edits to avoid frequent manual checking.

– EditEx uses Tampermonkey to add userscripts for integrating it into the SO edit sys-
tem. They appreciate it since Tampermonkey is popular and easy to use. However, they
suggest deploying EditEx as a standalone browser plug-in in future.

9 Page 28 of 43 Empir Software Eng (2023) 28:9

5 Discussions

In this section, we first explain the importance of the features used in our machine learn-
ing models (Section 5.1). We then discuss the reasons behind the misclassifications of the
machine learning models (Section 5.2). Finally, we discuss the implications of our study
findings and the developed EditEx tool in Section 5.3.

5.1 Ranking of Features in theMachine LearningModels

In Section 3.1, we discussed several features used to develop our machine learning models
in predicting whether an edit will be rejected or accepted. However, we do not know which
features are more important in machine learning classifiers than others in differentiating
rejected and accepted edits. To find the important features, we thus attempt to rank our
features using two popular measures as follows.

Information Gain We attempt to determine which features are more robust than others
for discriminating between rejected and accepted edits. We thus employ an information
gain-based feature ranking technique because it can estimate the discrimination power of
each of the given features. In information theory, the information gain of a random variable
is the change in information entropy between an initial state and a state that takes some
information (Saha et al. 2013). Therefore, the information gained from a particular attribute
in classifying rejected edits is as follows.

Inf oGain(C, ai) = H(C) − H(C|ai) (3)

where C represents a particular class (i.e., rejected/accepted), ai denotes the attribute, and
H denotes information entropy.

Figure 14a shows the information gain of our selected features. We see that changes
in text and reputation score have the highest information gain. It means that they might
discriminate the edits more accurately than others. Changes in code and addition/removal
of gratitude have the next highest information gain. However, the information gains of the

Fig. 14 Ranking of features

Page 29 of 43 9Empir Software Eng (2023) 28:9

remaining features are minimal. Therefore, those features contribute less to the machine
learning models to classify the rejected edits from the accepted ones.

SHapley Additive exPlanations (SHAP) Feature Importance The SHAP value is the aver-
age marginal contribution of a feature towards the model’s prediction across all possible
combinations of features (Molnar 2020). It shows whether a feature value can increase a
model’s prediction over a random baseline (Lundberg et al. 2020). However, the idea behind
SHAP feature importance is that features with larger absolute SHAP values are more impor-
tant than others. SHAP values can be calculated for any tree-based model. We calculate the
SHAP values to rank features from the Random Forest model.

Figure 14b shows the SHAP values of our selected features. We see that the top four
features are the same as when using the information gain-based feature ranking technique.
According to SHAP values, code change has the second-highest capability of identifying
rejected edits following the reputation score. However, the addition/removal of gratitude
has more power to discriminate rejected edits from accepted ones over changes in texts. We
then attempt to see the actual effect of our selected features on the model’s performance.
We thus remove the low-ranked features (according to SHAP values) one by one and eval-
uate the performance of our model. Table 10 shows the experimental results. According to
the experiment, the model’s performance gradually degrades when we remove features one
by one. For example, overall accuracy decreases 2% when we remove deprecation. Interest-
ingly, we see a slightly higher performance when we keep the top six features than the top
seven. Then the performance again decreases after removing features. However, the overall
accuracy drops from 69.8% to 61.3% when we remove all other features except the top four.

5.2 Analysis of TrainedMachine LearningModel & its Misclassifications

Machine learning models can produce accurate/inaccurate predictions. However, their black
box nature might prevent their easy adoption and enhancement by others. The SHAP

Table 10 Effect of individual feature on predicting rejected edits (f1: reputation, f2: code change, f3: grati-
tude, f4: text change, f5: text format, f6: deface post, f7: signature, f8: status, f9: duplication, f10: reference
modification, f11: greetings, f12: inactive link, f13: code format, f14: complete change, f15: deprecation)

Features Rejected Accepted Accuracy

Precision Recall F1-Score Precision Recall F1-Score

f1–f15 69.1% 71.2% 70.1% 70.5% 68.4% 69.5% 69.8%

f1–f14 68.3% 65.9% 67.1% 67.4% 69.7% 68.5% 67.8%

f1–f13 65.9% 71.6% 68.6% 69.2% 63.2% 66.1% 67.4%

f1–f12 65.5% 72.9% 69.0% 69.8% 61.9% 65.6% 67.4%

f1–f11 66.7% 69.0% 67.8% 68.2% 65.8% 67.0% 67.4%

f1–f10 62.9% 74.7% 68.3% 69.2% 56.3% 62.1% 65.4%

f1–f9 63.6% 73.4% 68.2% 68.9% 58.4% 63.2% 65.9%

f1–f8 61.5% 73.8% 67.1% 67.6% 54.1% 60.1% 63.9%

f1–f7 62.1% 71.6% 66.5% 66.8% 56.7% 61.4% 64.1%

f1–f6 64.4% 71.2% 67.6% 68.1% 61.0% 64.4% 66.1%

f1–f5 61.3% 72.1% 66.3% 66.5% 55.0% 60.2% 63.5%

f1–f4 59.4% 70.3% 64.4% 64.0% 52.4% 57.6% 61.3%

9 Page 30 of 43 Empir Software Eng (2023) 28:9

(Lundberg and Lee 2017) is a popular model interpretation framework to interpret the clas-
sification/misclassification results of the model. In our experiment, we conduct a binary
classification where the rejected edits was considered as the positive class and accepted
edits as the negative class. Thus, our models attempt to predict the rejected edits by default.
Therefore, a positive SHAP value indicates an increase in our models’ prediction of posi-
tive class and vice versa. Figure 15 shows the importance of our selected features using a
bee swarm plot from our random forest model. The bee swarm plot visualizes the SHAP
value of a feature from each of the training instances on the x-axis. On the y-axis, it sorts all
features in descending order according to their sum of SHAP values. The blue color indi-
cates a low feature value, whereas the red indicates a high feature value in our plot. We see
that reputation is the most important feature according to our random forest model. That
is, community trust, which is estimated by reputation score, is an important predictor of
the acceptability of suggested edits. We note that this feature with true response often leads
to negative SHAP values, which indicates an increased prediction towards edit acceptance.
That is, edits suggested by users with a high reputation score have a higher chance of being
accepted and vice versa. We also analyze our dataset for further insights on this. In particu-
lar, we conduct a comparative analysis of the reputation scores between users with rejected
and accepted edits. We find the median reputation score of users whose suggested edits were
rejected is 3428. On the contrary, such a score of users whose suggested edits were accepted
is more than double (i.e., 7660). We then attempt to see whether the difference is statisti-
cally significant or not. We use theMann-Whitney-Wilcoxon statistical significance test and
find a statistical significance p-value (p-value � 0.0 < 0.05). We also use Cliff’s delta test to
determine the effect size and find a medium effect size (Cliff’s d = −0.34 (medium)) with

Fig. 15 Feature importance using bee swarm plot (Random Forest model)

Page 31 of 43 9Empir Software Eng (2023) 28:9

95% confidence. Given this evidence, low-reputed users are less trusted by the community,
and thus their edits can be rejected.

The second most important feature is the code change. Code change with true response
often leads to positive SHAP values, which indicates an increased prediction towards edit
rejections. It refers that suggested edits get rejected when users change the code much. On
the contrary, text change with true response leads to negative SHAP values, which means
that significant changes in texts are acceptable. Similarly, we see that the true response of
text & code format, reference modification, and complete change of posts lead to nega-
tive SHAP values, which indicates an increased prediction towards edit acceptance. On the
other hand, the true response of gratitude, deface post, signature, status, greetings, and inac-
tive links lead to positive SHAP values, which indicates an increased prediction towards
edit rejections. However, according to the SHAP visualization, a few features such as rep-
utation, code & text change, status, and reference modifications confuse our model. For
example, reference modification’s true response leads to positive and negative SHAP values.
Therefore, those features might cause misclassifications of our model.

5.3 Implications of Study Findings

The findings from our study and the tool EditEx can guide the following major stakehold-
ers in crowd-sourced knowledge-sharing platforms that use collaborative editing features:
(a) forum designers to improve the edit system, (b) forum users to guide their edit behav-
ior, and (c) researchers to study and improve collaborative editing support in crowd-shared
platforms. We discuss the implications below.

Forum Designers The quality assurance of shared content is paramount for the usefulness
and popularity of a crowd-shared knowledge-sharing platform like SO. While the editing of
content allows users to suggest improvements in quality, the lack of proper guidance to the
user can lead to unnecessary rejections of the suggested edits. SO can use our developed
machine learning model and the EditEx tool to offer on-demand and context-aware edit
fix recommendations to the users. As we observed in Section 4.5, the SO users that used
EditEx had significantly less number of rejections compared to the users that did not use
EditEx tool. The SO edit assessment queue is set up to ensure novice SO users (with
less than 2K reputation) can not make bad edits. Many users in SO fall under this novice
category, but their inputs to edits are equally as important as the non-novice users. However,
as we noted, the SO edit queue can be often congested with many suggested edits that it
could take a disproportionate time for an edit to get reviewed. Even after the review, many
suggestions can be rejected due to trivial edits like undesired text formatting. A tool like
EditEx can help SO users by reducing such trivial edits, which then can ultimately help
SO and its expert edit reviewers with less rejection, which in turn can reduce the workload
on the edit queue.

Forum Users Interactive browser plug-ins like EditEx can warn forum users of potential
edits that could be rejected. Thus EditEx can improve the confidence of SO users during
the editing. Indeed, as we reported in Section 4.5, the study participants were more confident
while using EditEx than using SO editing system (average confidence of 4 while using
EditEx vs 3.1 while using SO). The SO users had only 16% of their edits rejected while
using EditEx, while the rejection rate was 65% while using SO. While a rejection ratio of
65% for SO could be biased due to our choice of editing task, the much lower rejection rate
while using EditEx does indeed highlight that SO users can benefit from a simple tool like

9 Page 32 of 43 Empir Software Eng (2023) 28:9

EditEx. EditEx is very easy to install. Given that EditEx is simply a browser plug-in
that SO users can easily install, we hope that EditEx will be accepted by the wider SO
community.

Indeed, our developed classifiers can be used to detect rejected edit reasons in SO auto-
matically. It can extend current tools and techniques that predominantly use contents from
suggested edits to recommend editing suggestions (e.g., see the works of Chen et al. 2017a,
b). The tool EditEx, with further modification (as suggested by our study participants in
Section 4.5.3), can be influential in the reduction of rejected edit reasons in SO and can
improve the overall satisfaction of SO users. In the long term, the tool can promote better
content because users will be more motivated. Such high quality contents then can offer bet-
ter content and recommendation support for tools and techniques that focus on the quality
of contents shared in SO (Zhang et al. 2018; Ya et al. 2013; Hudson et al. 2015; Rahman
and Roy 2015b; Agichtein et al. 2008; Mondal et al. 2019), the suite of tools and techniques
developed to detect and recommend quality posts (Ponzanelli et al. 2014c, d; Ya et al. 2015;
Harper et al. 2008; Li et al. 2015b; Calefato et al. 2018).

Researchers The quality of knowledge shared in SO is important because developers
worldwide now rely on this shared knowledge. Indeed, knowledge shared in SO can support
diverse activities like bug fixing, feature enhancement, API selection, and documenta-
tion (Uddin and Khomh 2017a, b, c, 2019; Uddin et al. 2019, 2020a, b; Chakraborty et al.
2021). This sharing of knowledge is important, because official software documentation
can often be lacking (Uddin and Robillard 2015; Khan et al. 2021). However, the editing of
content is a voluntary activity. SO users can be demotivated to produce quality edits if they
become frustrated due to unnecessary/unwanted rejection of their suggested edits. Tools like
EditEx or proactive policy assurance by Chen et al. (2017a, 2018) can help SO users with
suggestions to improve their edits. The positive survey responses of our tool EditEx show
the potential of deploying the tool in SO. Future research can contribute by including more
features into EditEx and by conducting more studies to learn how SO users can further
benefit from such tools. Such findings can promote quality contents, which then can support
all development tasks that rely on SO, as noted above.

6 Threats to Validity

Threats to internal validity relate to experimental errors and biases (Tian et al. 2014). We
asked participants to suggest edits using EditEx (treatment group) and SO’s standard edit
system (control group). The suggested edits were either accepted or rejected by the expert
review. However, the accepted edits could be rejected later by a rollback that might affect
the edit rejection ratio. We thus further analyzed how many accepted edits were rejected by
rollbacks in our dataset. However, such a statistic was less than 1% in our dataset. Thus, it
might not affect our results significantly.

Threats to external validity relate to the generalizability of a technique. We agree that
there might be rejection reasons that we could not identify. However, we analyze statistically
significant samples of rejected edits by rollbacks from questions and answers. We thus
believe that our manual investigation exposes all the main rejection reasons. Still, there is
scope to analyze more samples to explore additional rejection reasons. However, suggested
edits can be rejected by either rollback or expert review. Unfortunately, we could not collect
samples of those edits rejected by expert reviews. We could not find any convenient way to
collect such samples since their information is not readily available in the SO data dump.

Page 33 of 43 9Empir Software Eng (2023) 28:9

Thus, similar to existing literature, we consider the rejected edits by rollbacks (Wang et al.
2018). However, suggested edits are reviewed in SO by users with at least a 2K reputation
score. In our manually analyzed dataset, 90.6% (692 out of 764) of users who rolled back
edits have a reputation score ≥ 2K. The remaining were self-rollback (i.e., rolled back by
post owner). Therefore, our intuition is that the main reasons for rejections by expert reviews
would be similar to our identified reasons.

Our survey participants range from novice to experienced, mainly software develop-
ers and academicians (Table 7). Such diversity in the survey participants offers validity
and applicability to the survey findings. Furthermore, we ensure that control and treat-
ment groups have participants with different professions and experience levels to mitigate
individual bias.

We set a task list T1–T7 (Table 8) and asked participants (control & treatment group)
to suggest edits to posts based on that list. However, tasks T1–T6 were set based on our
identified rejection reasons. Thus, EditEx alerts the treatment group while suggesting T1–
T6, but the control group does not get such alerts. As a result, the treatment group receives
favor from EditEx, which might reduce their rejections. To mitigate this bias, we asked
participants to suggest free-form edits (T7). From T7, we attempt to see the effectiveness
of EditEx in assisting users in suggesting regular edits besides preventing common rejec-
tions. However, EditEx can support the SO edit system to prevent 12% rejections. Such
a finding confirms the effectiveness of EditEx in preventing not only common rejections
but also rejections from regular edits.

7 Deviations from Registered Report

This section discusses the deviations of this study from our registered report (Mondal et al.
2020) and explains them.

Rollback Reasons & Predictors In our registered report, we wanted to see whether the addi-
tion/deletion of emotion influences edit rejection using EmoTxt (Calefato et al. 2017). Our
primary analysis found that emotion has almost no effect on edit rejection/acceptance. Fur-
thermore, the overall accuracy of our rejected edit classifier improved only about 1% if we
consider emotion as a predictor. However, integrating a complex model to capture emotion
and its deployment is costly. Therefore, it can affect the performance of our online tool
EditEx. We thus discard emotion from this study. On the other hand, we added reputation
as a predictor (Table 2). The reputation score estimates how much the community trusts
a user (Anderson et al. 2012; Overflow 2022). Therefore, we added Community Trust as
a rollback reason (which was absent in the registered report) (Table 1) that was estimated
by reputation score. Moreover, users with lower reputation scores might violate the editing
guidelines more than those with higher reputation scores. Note that violating edit guidelines
is one of the causes of edit rejection. We thus consider reputation as a predictor that signif-
icantly improves the performance of our rejected edit classifier. Another discrepancy to the
registered report is that we included the Introducing Spam rollback reason under Other.

Manually Investigated Sample Size In the registered report, we manually investigated
777 rollback edits (382 questions + 395 answers). The statistically significant sample size
of rollback edits for both question and answer is 382. However, due to a programming
problem, we randomly selected 395 samples from rejected answer revisions. We kept 395
samples in the registered report because—(1) we completed our analysis using 395 samples,

9 Page 34 of 43 Empir Software Eng (2023) 28:9

and (2) 395 is more than the statistically significant sample size. However, we later ran-
domly selected 382 (among 395) samples (Section 2.1) to equalize it with the statistically
significant sample size and analyze them.

Recruitment of Participants We planned to recruit 30 participants (15 for treatment + 15
for the control group) who edited at least 100 posts. After deploying our tool EditEx, we
realized that EditEx could be helpful to both expert and novice SO users. Therefore, we
relaxed our constraints. We recruit participants who edited any SO post to ensure familiarity
with SO editing. However, we struggled to recruit 30 participants due to COVID-19 and the
extensive nature of this user study. The study was extensive because each user had to do
multiple edits of SO posts. Primarily, we planned to recruit participants using a snowball
approach. To recruit more participants, we then extend our approach. Besides snowball,
we attempt to recruit participants using an open circular. However, finally, we recruited 20
participants (10 for treatment + 10 for the control group) with different experience levels
and diverse professions (Section 4.3.1).

Number of Edits PerUser We planned to ask each participant to suggest ten edits. However,
several participants (especially the control group) could not edit ten posts for three main
challenges, as we discussed in Section 4.4.

EditEx’s Functionality of Highlighting Texts We planned to include EditEx’s function-
ality to highlight texts that may cause rejection. However, the current version of EditEx
cannot highlight texts. EditEx predicts the edit decisions (accepted/rejected) and alerts
users with the potential rejection reasons if rejected. While highlighting texts could be
helpful, we found that the EditEx tool with the basic features was usable and effective.
Therefore, we leave the highlighting of texts in EditEx as a future extension.

NASA TLX Workload We planned to estimate TLX effort as a task load by combining all
the ratings provided by a participant in five dimensions in the TLX metrics. However, most
existing studies estimate subjective workload by combining all the ratings in six dimensions
(Cao et al. 2009; Hart and Staveland 1988; Noyes and Bruneau 2007; Sharek 2011; Hart
1986). Therefore, we also take ratings from each participant on six dimensions (mental
demand, physical demand, temporal demand, effort, performance, and frustration). Finally,
we estimate the cognitive workload (Fig. 13). However, we consider a scale of ten with one
step size (Memarian and Mitropoulos 2011) to take ratings conveniently from participants
for each dimension. It slightly sacrifices granularity in comparison to scale 100 with step
size five. However, the results should not be affected much.

Unidentified Reasons Our rejection reason classifier cannot identify a couple of rejection
reasons, such as partial acceptance and incorrect text/code change. We can extract added or
removed text/code using appropriate HTML tags. However, partly accepted text/code cannot
be separated from added text/code. Furthermore, it requires analyzing the future revisions to
check partial acceptance, which is impractical. We did not find any patterns that can identify
incorrect changes in code/texts. Identification of such reasons demands manual efforts.

Page 35 of 43 9Empir Software Eng (2023) 28:9

8 RelatedWork

We developed our tool EditEx to recommend fixes to suggested edits in SO so that SO
users can avoid committing undesired edits that may lead to the rejection of the edits.
As such, our research in this paper belongs to a broader area called ‘collaborative editing
in social forums’. Major related work can broadly be divided into Studies of collabora-
tive editing systems in crowd-sourced forums (see Section 8.1) and Techniques to suggest
improvements to the editing system (see Section 8.2). In addition, SO data are used exten-
sively in SE research for various tasks (see Section 8.3), all of which could be potentially
impacted by having low-quality data due to erroneous/inefficient edits.

8.1 Studies of Collaborative Editing Systems

Editing of content can improve the content quality. As such, it is intuitive that the social
Q&A forums offer to edit the post contents. Since social forums can be accessed by many
users simultaneously, it is a cost-effective measure for the forums to support collaborative
editing by allowing their users to do the editing. Indeed, studies show that collaborating edit-
ing in social forums and online collaborative knowledge-sharing portals (e.g., Wikipedia)
can positively impact towards the improvement of shared contents (Li et al. 2015a; Kittur
and Kraut 2008). The nature of the collaborative editing can be similar across the social
forums (e.g., Q&A site) and knowledge portals (e.g., Wikipedia). The research of Li et al.
(2015a) looked at the adoption of Wikipedia-style collaborative editing into a Q&A site like
SO. They found that users with good edits are rewarded with positive votes by other users.
They analyzed five years of historical editing data from SO and found that substantive edits
from other users can increase the number of positive votes by 18% for the questions and
119% for answers. This reward can be beneficial for a user who does the edit because the
edit may only offer at most 5% improvement over the original post (i.e., the user can be
rewarded with mindful but low-cost editing efforts). Indeed, the SO reward system can serve
as an added influence to the users to suggest edits. A recent study by Wang et al. (2018) in
SO found that users are motivated to edit more when they are closer to getting a badge.

Overall, both Wang et al. (2018) and Li et al. (2015a) conclude that offering incentives
as reputation scores is useful to improve post quality within a collaborative editing platform
like SO. This finding was also observed in other collaborative editing platforms like web-
casts (Munteanu et al. 2008) and Wikipedia (Kittur and Kraut 2008). Munteanu et al. (2008)
tested the effectiveness of engaged users in collaborating in a wiki-like webcast platform to
edit/correct transcripts that are produced from webcasts through an automated speech recog-
nition system. Collaborative editing can be a cost-effective but useful means to improve the
quality of the ASR (Automated Speech Recognition) system in webcasts because ASR sys-
tems can have an average error rate of 45%—above the accepted threshold of 25%. The field
study carried out by the authors in a real lecture environment found that using students to
edit the webcast transcript was useful in reducing the error rate. The editing was supported
via a webcast extension that engages users to collaborate in a wiki-like manner. Kittur and
Kraut (2008) find that the increase in the number of editors does not guarantee the quality
of the articles on Wikipedia.

The quality of the question is important to get an answer: lack of clarity, relatedness, and
reproducibility of the problem, as well as the too short question, could dissuade developers
from answering the question (Asaduzzaman et al. 2013; Mondal et al. 2019). The reputa-
tion and past activity of an asker could also factor into the likelihood of a question getting
resolved (Rahman and Roy 2015b). As such factors of good questions are investigated, e.g.,

9 Page 36 of 43 Empir Software Eng (2023) 28:9

code to text ratio, etc. (Calefato et al. 2018; Duijn et al. 2015). However, depending on the
platforms and user characteristics, these factors can vary (Hudson et al. 2015). As such, it is
important to detect content quality automatically (Ponzanelli et al. 2014a, c; Ya et al. 2015).
Wang et al. (2018) found that users who make more edits in a short time are likely to get
more edits rejected. Thus bad edits can harm the content quality.

Our research on SO rollback edits initially started in 2019 to better understand the edit
rejection reasons as reported by Wang et al. (2018). Through our qualitative analysis of
SO posts, we also found all the edit rejection reasons reported by Wang et al. (2018). In
addition, we found four more edit rejection reasons. We report the edit rejection reasons
in Section 2 of this paper. While the above papers, including Wang et al. (2018), focus on
analyzing editing mechanisms in collaborative platforms based on empirical studies, our
paper focuses on developing techniques to automatically suggest fixes to suggested edits so
that the edits will not be rejected upon submission. As such, our developed tool EditEx
can further contribute to supporting the content quality in social forums by assisting users
with guidance on improving the quality of their suggested contents. Thus, our paper offers
complementary viewpoints to the above studies by offering tools and techniques that can
facilitate improved edit content in a social Q&A site like SO.

8.2 Techniques to Develop to Improve Collaborative Editing Systems

Collaborative editing systems are common in Wikipedia (Li et al. 2015a; Kittur and Kraut
2008), GitHub code editing (Dabbish et al. 2012), webcasts (Munteanu et al. 2008), scien-
tific contents (Lowry et al. 2005; Calvo et al. 2005), and so on. Compared to substantial
research on conducting studies on existing collaborative editing systems, we are not aware
of much research that focuses on developing tools and techniques to improve the systems.
This is perhaps due to the fact that currently available collaborative platforms likeWikipedia
seem to work well and are hugely popular. In all these platforms, the focus of collaborative
editing is to improve the quality of the shared content based on user engagement (Agichtein
et al. 2008).

Chen et al. (2017a) observed that most of the edits in SO are small sentence edits. While
developing their SOTorrent database, Baltes et al. (2018) also observed that majority of edits
in SO are relatively small. In a follow-up study, Chen et al. (2018) predicted whether a post
needs to be edited. Their approach is based on the concept of ‘proactive policy assurance’,
which assures that a modification to a suggested edit will satisfy the current ‘reactive policy
assurance’ in SO, which accepts/rejects based on the matching of exiting editing policy after
an edit is submitted (i.e., reactive). They developed a deep-learning-based policy assurance
tool to recommend post owners or other users’ potential mid-level edits to given post con-
tent. The deep learning model is a CNN (Convolutional Neural Network). In a large-scale
experiment, they find that the tool offers good precision, recall, and F1-score (at least 0.7)
while suggesting mid-level edits.

As we noted in Section 8.1, our research of this paper started in 2019 to gain hands-
on experience on the edit rejection reasons observed by Wang et al. (2018). Our initial
exploration led to an expansion of the edit rejection reasons and to the submission of a reg-
istered protocol report in 2020 (Mondal et al. 2020). In the registered protocol report, we
outlined our vision of this paper by offering to develop machine learning model to auto-
matically detect the edit rejection reasons and to build our EditEx tool that can offer
proactive guidance to fix suggested edits. While working on this paper, we observed that
some edit rejection reasons could be present both in accepted and rejected edits, resulting
in inconsistencies in the editing acceptance/rejection process. We reported a catalog of such

Page 37 of 43 9Empir Software Eng (2023) 28:9

inconsistencies in our MSR 2021 paper (Mondal et al. 2021a). In our MSR 2021 paper, we
also report several rule-based tools that we developed to detect inconsistencies in SO edits
automatically. While developing our EditEx tool in this paper, we purposefully did not
consider those inconsistencies, given those were not outlined in our 2020 registered pro-
tocol report (Mondal et al. 2020). We note that an immediate extension of EditEx could
investigate whether and how the inclusion of the inconsistencies into the rejection predic-
tion models and the EditEx tool could make the overall editing process more effective for
the SO users. We leave it as our immediate future work.

8.3 Other SE Research using SO Data

Several studies have been conducted to study developer discussions on different crowd-
shared developer platforms, including SO. Seaman et al. studied developer discussion on
inspection meetings (Seaman and Basili 1998). Reiner et al. used content analysis to study
developer discussions on software processes (Rainer et al. 2003). Gottipati et al. study
relevant answers in 3 software forums, Dzone, Tips, and Oracle forums (Gottipati et al.
2011). Several studies has focused on discussions on microblogs, such as, Twitter (Tian
et al. 2012; Prasetyo et al. 2012; Wang et al. 2013), and chat communities, such as,
HipChat (Alkadhi et al. 2017), IRC messages (Alkadhi et al. 2018; Shihab et al. 2009),
and Slack (Chatterjee et al. 2019). Recently, SO Q&A forums have been subject to a num-
ber of papers to study various aspects of software development, such as what developers
are discussing in general (Barua et al. 2012), or about a particular aspect, e.g., concur-
rency (Ahmed and Bagherzadeh 2018), big data (Bagherzadeh and Khatchadourian 2019),
chatbot development (Abdellatif et al. 2020).

Several studies has been conducted to study developer sentiments on online discussions
(e.g., SO data) (Guzman et al. 2014; Murgia et al. 2014; Ortu et al. 2015; Novielli et al. 2014;
Uddin and Khomh 2017a, c, 2019; Uddin et al. 2019, 2020a, b; Chakraborty et al. 2021; Lin
et al. 2022). Guzman et al. applied sentiment analysis on code comments (Guzman et al.
2014). Islam and Zibran study emotional variations in commit messages (Islam and Zibran
2016). Garcia et al. (2013) study the emotions of developers in the Gentoo community.
Guzman and Bruegge studied developer sentiments on mailing lists (Guzman and Bruegge
2013). Novielli et al. conduct sentiment analysis on SO and Github discussions (Novielli
et al. 2015). Many of these studies use automated sentiment analysis tools, which are found
to provide contradictory results in software engineering research (Jongeling et al. 2017).

All the above research works using SO data could be benefited from improved data
quality offered by collaborative editing in SO. As such, our tool EditEx, once adopted by
the SO users, can help the SO users as well as the SO-based research community with better
quality data.

9 Conclusion

SO has become an essential online resource with millions of programming-related prob-
lems and solutions. However, the quality of the shared knowledge is vital for the growth
and success of SO. To promote quality, SO introduces an edit system so that users can sug-
gest an improvement to posts. Unfortunately, numerous suggested edits are rejected due to
either undesired changes of posts or violating edit guidelines. Such a scenario not only hurts
the quality of content but also frustrates and demotivates users. We conducted a qualitative
analysis of 764 (382 questions + 382 answers) rejected edits by rollbacks and identified 19

9 Page 38 of 43 Empir Software Eng (2023) 28:9

rejection reasons. We then extract 15 texts and user-based features to automatically capture
those reasons and develop four machine learning models using them. Our best-performing
model can predict rejected edits with about 70% accuracy, and the rejection reason classi-
fier can identify the potential rejection reasons with 67% accuracy. We also introduced an
online tool named EditEx that can be integrated with the SO edit system. It analyzes the
edits, predicts whether they will be rejected, and suggests users with the potential rejec-
tion reasons. We conduct a survey to assess EditEx and SO edit system. According to
survey results, the participants find reasons for rejection identified by EditEx influential.
Moreover, EditEx can support the SO edit system to prevent 49% rejections, including
the commonly rejected reasons. Such a statistic is 12% when users suggest regular free-
form edits. Moreover, our tool significantly decreases the subjective workload and increases
participants’ confidence in suggesting edits.

Acknowledgements This research is supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery grants, and by an NSERC Collaborative Research and Training
Experience (CREATE) grant, and by two Canada First Research Excellence Fund (CFREF) grants coordi-
nated by the Global Institute for Food Security (GIFS) and the Global Institute for Water Security (GIWS).

Data Availability The datasets analyzed during this study are available in our online appendix (Mondal
et al. 2021b).

Declarations

Conflict of Interest The authors have no conflict of interest.

References

Abdellatif A, Costa D, Badran K, Abdalkareem R, Shihab E (2020) Challenges in chatbot development: a
study of stack overflow posts. In: 17th International conference on mining software repositories, October
5–6, 2020, Seoul, Republic of Korea. ACM, New York

Agichtein E, Castillo C, Donato D, Gionis A, Mishne G (2008) Finding high-quality content in social media.
In: Proceedings of the 2008 international conference on web search and data mining, pp 183–194

Ahmed S, Bagherzadeh M (2018) What do concurrency developers ask about?: a large-scale study using
stack overflow. In: Proceedings of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement, article no. 30

Alkadhi R, Lata T, Guzmany E, Bruegge B (2017) Rationale in development chat messages: an exploratory
study. In: 2017 IEEE/ACM 14th international conference on mining software repositories (MSR), IEEE,
pp 436–446

Alkadhi R, Nonnenmacher M, Guzman E, Bruegge B (2018) How do developers discuss rationale? In: 2018
IEEE 25th international conference on software analysis, evolution and reengineering (SANER). IEEE,
pp 357–369

Anderson A, Huttenlocher D, Kleinberg J, Leskovec J (2012) Discovering value from community activity
on focused question answering sites: a case study of stack overflow. In: Proceedings of the 18th ACM
SIGKDD international conference on knowledge discovery and data mining, pp 850–858

AsaduzzamanM,Mashiyat AS, Roy CK, Schneider KA (2013) Answering questions about unanswered ques-
tions of stack overflow. In: Proceedings of the 10th working conference on mining software repositories,
pp 87–100

Bagherzadeh M, Khatchadourian R (2019) Going big: a large-scale study on what big data developers ask.
In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, ESEC/FSE 2019. ACM, New York, pp 432–442

Bagozzi RP, Dholakia UM (2006) Open source software user communities: a study of participation in linux
user groups. J Manag Sci 52(7):1099–1115

Baltes S, Dumani L, Treude C, Diehl S (2018) Sotorrent: reconstructing and analyzing the evolution of stack
overflow posts. In: Proceedings of the 15th international conference on mining software repositories,
pp 319–330

Page 39 of 43 9Empir Software Eng (2023) 28:9

Barua A, Thomas SW, Hassan AE (2012) What are developers talking about? An analysis of topics and
trends in stack overflow. Empir Softw Eng 1–31

Beyer S, Macho C, Di Penta M, Pinzger M (2018) Automatically classifying posts into question categories on
stack overflow. In: 2018 IEEE/ACM 26th international conference on program comprehension (ICPC).
IEEE, pp 211–21110

Bi T, Xia X, Lo D, Grundy J, Zimmermann T, Ford D (2021) Accessibility in software practice: a
practitioner’s perspective. arXiv:210308778

Boslaugh S (2012) Statistics in a nutshell: a desktop quick reference. O’Reilly Media, Inc
Calefato F, Lanubile F, Novielli N (2017) Emotxt: a toolkit for emotion recognition from text. In: 2017 Sev-

enth international conference on affective computing and intelligent interaction workshops and demos
(ACIIW), pp 79–80

Calefato F, Lanubile F, Novielli N (2018) How to ask for technical help? Evidence-based guidelines for
writing questions on stack overflow. J Inf Softw Technol 94:186–207

Calefato F, Lanubile F, Novielli N (2019) An empirical assessment of best-answer prediction models in
technical q&a sites. ESE 1–48

Calvo RA, O’Rourke ST, Jones J, Yacef K, Reimann P (2005) Collaborative writing support tools on the
cloud. IEEE Trans Learn Technol 41:66–99

Cao A, Chintamani KK, Pandya AK, Ellis RD (2009) Nasa tlx: software for assessing subjective mental
workload. Behav Res Methods 41(1):113–117

Chakraborty P, Shahriyar R, Iqbal A, Uddin G (2021) How do developers discuss and support new pro-
gramming languages in technical q&a site? An empirical study of go, swift, and rust in stack overflow.
Information and Software Technology (IST) 19

Chatterjee P, Damevski K, Pollock L, Augustine V, Kraft NA (2019) Exploratory study of slack q&a chats
as a mining source for software engineering tools. In: 2019 IEEE/ACM 16th international conference on
mining software repositories (MSR). IEEE, pp 490–501

Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM
sigkdd international conference on knowledge discovery and data mining, pp 785–794

Chen C, Xing Z, Liu Y (2017a) By the community & for the community: a deep learning approach to assist
collaborative editing in q&a sites. In: Proceedings of the ACM on human-computer interaction, Article
32

Chen C, Xing Z, Liu Y (2017b) By the community & for the community: a deep learning approach to assist
collaborative editing in q&a sites. In: Proceedings of the ACM on human-computer interaction, Article
No. 32

Chen C, Chen X, Sun J, Xing Z, Li G (2018) Data-driven proactive policy assurance of post quality in
community q&a sites. In: Proceedings of the ACM on human-computer interaction, Article 33

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46
Cohen J (1968) Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit.

Psychol Bull 70(4):213
Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in github: transparency and collaboration in an

open software repository. In: Proceedings of the ACM conference on computer supported cooperative
work, pp 37–46

Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Proceedings of
ICML, pp 233–240

Duijn M, Kucera A, Bacchelli A (2015) Quality questions need quality code: classifying code fragments
on stack overflow. In: Proceedings of the IEEE/ACM 12th working conference on mining software
repositories, pp 410–413

Exchange S (2009a) Should ‘hi’, ‘thanks’, taglines, and salutations be removed from posts? https://meta.
stackexchange.com/questions/2950/ online; Last accessed February 2020

Exchange S (2009b) What is a ‘rollback’? https://meta.stackexchange.com/questions/17038/
what-is-a-rollback online; Last accessed February 2020

Exchange S (2019) StackExchage API. http://data.stackexchange.com/stackoverflow
Exchange S (2020) (Accessed on: December 2021) How does reputation work? https://meta.stackexchange.

com/questions/7237/how-does-reputation-work
Garcia D, Zanetti MS, Schweitzer F (2013) The role of emotions in contributors activity: a case study on the

gentoo community. In: 2013 International conference on cloud and green computing. IEEE, pp 410–417
Goldberger J, Hinton GE, Roweis ST, Salakhutdinov RR (2005) Neighbourhood components analysis. In:

Advances in neural information processing systems, pp 513–520
Gottipati S, Lo D, Jiang J (2011) Finding relevant answers in software forums. In: 2011 26th IEEE/ACM

international conference on automated software engineering (ASE 2011). IEEE, pp 323–332
Groves RM, Fowler JFJ, Couper MP, Lepkowski JM, Singer E, Tourangeau R (2011) Survey methodology

9 Page 40 of 43 Empir Software Eng (2023) 28:9

http://arxiv.org/abs/210308778
https://meta.stackexchange.com/questions/2950/
https://meta.stackexchange.com/questions/2950/
https://meta.stackexchange.com/questions/17038/what-is-a-rollback
https://meta.stackexchange.com/questions/17038/what-is-a-rollback
http://data.stackexchange.com/stackoverflow
https://meta.stackexchange.com/questions/7237/how-does-reputation-work
https://meta.stackexchange.com/questions/7237/how-does-reputation-work

Guzman E, Bruegge B (2013) Towards emotional awareness in software development teams. In: Proceedings
of the 2013 9th joint meeting on foundations of software engineering, pp 671–674

Guzman E, Azócar D, Li Y (2014) Sentiment analysis of commit comments in github: an empirical study.
In: Proceedings of the 11th working conference on mining software repositories, pp 352–355

Harper FM, Raban D, Rafaeli S, Konstan JA (2008) Predictors of answer quality in online q&a sites. In:
Proceedings of the SIGCHI conference on human factors in computing systems, pp 865–874

Hart SG (1986) Nasa task load index (tlx)
Hart SG, Staveland LE (1988) Development of nasa-tlx (task load index): results of empirical and theoretical

research. In: Advances in psychology, vol 52. Elsevier, pp 139–183
He H, Garcia EA (2008) Learning from imbalanced data. IEEE Trans Knowl Data Eng (9):1263–1284
Hudson N, Chilana PK, Guo X, Day J, Liu E (2015) Understanding triggers for clarification requests in

community-based software help forums. In: Proceedings of the IEEE symposium on visual languages
and human-centric computing, pp 189–193

Islam MR, Zibran MF (2016) Towards understanding and exploiting developers’ emotional variations in
software engineering. In: 2016 IEEE 14th international conference on software engineering research,
management and applications (SERA). IEEE, pp 185–192

Jongeling R, Sarkar P, Datta S, Serebrenik A (2017) On negative results when using sentiment analysis tools
for software engineering research. Empir Softw Eng 22(5):2543–2584

Joshi A, Kale S, Chandel S, Pal DK (2015) Likert scale: explored and explained. CJAST
Khan JY, Khondaker MTI, Uddin G, Iqbal A (2021) Automatic detection of five api documentation

smells: practitioners’ perspectives. In: IEEE International conference on software analysis, evolution and
reengineering (SANER), p 12

Kitchenham BA, Pfleeger SL (2008) Personal opinion surveys. In: Guide to advanced empirical software
engineering

Kittur A, Kraut RE (2008) Harnessing the wisdom of crowds in wikipedia: quality through coordination. In:
Proceedings of the ACM conference on Computer supported cooperative work, pp 37–46

Lakhani KR, von Hippel E (2003) How open source software works: free user-to-user assistance. J Res Policy
32(6):923–943

Li G, Zhu H, Lu T, Ding X, Gu N (2015a) Is it good to be like wikipedia?: exploring the trade-offs of
introducing collaborative editing model to q&a sites. In: Proceedings of the 18th ACM conference on
computer supported cooperative work & social computing, pp 1080–1091

Li L, He D, Jeng W, Goodwin S, Zhang C (2015b) Answer quality characteristics and prediction on an
academic q&a site: a case study on researchgate. In: Proceedings of the 24th international conference on
World Wide Web, pp 1453–1458

Lin B, Cassee N, Serebrenik A, Bavota G, Novielli N, Lanza M (2022) Opinion mining for
software development: a systematic literature review. ACM Trans Softw Eng Methodol 31(3).
https://doi.org/10.1145/3490388

Lowry PB, Curtis AM, LowryMR (2005) A taxonomy of collaborative writing to improve empirical research,
writing practice, and tool development. J Bus Commun 41:66–99

Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. In: Proceedings of the
31st international conference on neural information processing systems

Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee SI
(2020) From local explanations to global understanding with explainable ai for trees. Nat Mach Intell
2(1):56–67

Macbeth G, Razumiejczyk E, Ledesma RD (2011) Cliff’s delta calculator: a non-parametric effect size
program for two groups of observations. Univ Psychol 10(2):545–555

McKnight PE, Najab J (2010) Mann-whitney u test. The Corsini Encyclopedia of Psychology 1–1
Memarian B, Mitropoulos P (2011) Work factors affecting task demands of masonry work. In: Proceedings

of the 47th annual international conference of associated schools of construction
Molnar C (2020) Interpretable machine learning. Lulu.com
Mondal S, Rahman MM, Roy CK (2019) Can issues reported at stack overflow questions be reproduced?: an

exploratory study. In: Proceedings of the 16th international conference on mining software repositories,
pp 479–489

Mondal S, Uddin G, Roy CK (2020) Automatic identification of rollback edit with reasons in stack overflow
q&a site. In: 36th IEEE international conference on software maintenance and evolution (ICSME)—
registered protocol report, pp 856–856

Mondal S, Uddin G, Roy CK (2021a) Rollback edit inconsistencies in developer forum. In: 2021 IEEE/ACM
18th international conference on mining software repositories (MSR), pp 380–391

Mondal S, Uddin G, Roy CK, Schneider K (2021b) Editex: prediction of rejected edits with reasons in so
q&a site. https://bit.ly/3Hp1xJa

Page 41 of 43 9Empir Software Eng (2023) 28:9

https://doi.org/10.1145/3490388
https://bit.ly/3Hp1xJa

Munteanu C, Baecker R, Penn G (2008) Collaborative editing for improved usefulness and usability of
transcript-enhanced webcasts. In: Proceedings of the SIGCHI conference on human factors in computing
systems, pp 373–382

Murgia A, Tourani P, Adams B, Ortu M (2014) Do developers feel emotions? An exploratory analysis of
emotions in software artifacts. In: Proceedings of the 11th working conference on mining software
repositories, pp 262–271

Novielli N, Calefato F, Lanubile F (2014) Towards discovering the role of emotions in stack overflow. In:
Proceedings of the 6th international workshop on social software engineering, pp 33–36

Novielli N, Calefato F, Lanubile F (2015) The challenges of sentiment detection in the social programmer
ecosystem. In: Proceedings of the 7th international workshop on social software engineering, pp 33–40

Noyes JM, Bruneau DP (2007) A self-analysis of the nasa-tlx workload measure. Ergonomics 50(4):514–519
Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R (2015) Are bullies more productive?

Empirical study of affectiveness vs. issue fixing time. In: 2015 IEEE/ACM 12th working conference on
mining software repositories. IEEE, pp 303–313

Overflow S (2015) How do i make a good edit? https://meta.stackoverflow.com/questions/303219/
how-do-i-make-a-good-edit, online; Last accessed February 2020

Overflow S (2022) What is reputation? How do I earn (and lose) it? https://stackoverflow.com/help/
whats-reputation

Parnin C, Treude C, Grammel L, Storey MA (2012) Crowd documentation: exploring the coverage and the
dynamics of api discussions on stack overflow. Tech. rep. Georgia Tech.

Polikar R (2006) Ensemble based systems in decision making. IEEE Circ Syst Mag 6(3):21–45
Ponzanelli L, Mocci A, Bacchelli A, Lanza M (2014a) Improving low quality stack overflow post detection.

In: Proceedings of the 30th international conference on software maintenance and evolution, pp 541–544
Ponzanelli L, Mocci A, Bacchelli A, Lanza M (2014b) Understanding and classifying the quality of technical

forum questions. In: 2014 14th International conference on quality software. IEEE, pp 343–352
Ponzanelli L, Mocci A, Bacchelli A, Lanza M (2014c) Understanding and classifying the quality of technical

forum questions. In: Proceedings of the 14th international conference on quality software, pp 343–352
Ponzanelli L, Mocci A, Bacchelli A, Lanza M, Fullerton D (2014d) Improving low quality stack over-

flow post detection. In: Proceedings of the IEEE international conference on software maintenance and
evolution, pp 541–544

Prasetyo PK, Lo D, Achananuparp P, Tian Y, Lim EP (2012) Automatic classification of software related
microblogs. In: 2012 28th IEEE international conference on software maintenance (ICSM). IEEE,
pp 596–599

Rahman MM, Roy CK (2015a) An insight into the unresolved questions at stack overflow. In: Proceedings
of the 12th working conference on mining software repositories. IEEE Press, pp 426–429

Rahman MM, Roy CK (2015b) An insight into the unresolved questions at stack overflow. In: Proceedings
of the 12th working conference on mining software repositories, pp 426–429

Rainer A, Hall T, Baddoo N (2003) Persuading developers to “buy into” software process improvement:
a local opinion and empirical evidence. In: 2003 International symposium on empirical software
engineering, 2003. ISESE 2003. Proceedings. IEEE, pp 326–335

Saha RK, Saha AK, Perry DE (2013) Toward understanding the causes of unanswered questions in software
information sites: a case study of stack overflow. In: Proceedings of FSE, pp 663–666

Seaman CB, Basili VR (1998) Communication and organization: an empirical study of discussion in
inspection meetings. IEEE Trans Softw Eng 24(7):559–572

Sharek D (2011) A useable, online nasa-tlx tool. In: Proceedings of the human factors and ergonomics society
annual meeting, vol 55. SAGE Publications Sage, Los Angeles, pp 1375–1379

Shihab E, Jiang ZM, Hassan AE (2009) Studying the use of developer irc meetings in open source projects.
In: 2009 IEEE International conference on software maintenance. IEEE, pp 147–156

Singer J, Vinson NG (2002) Ethical issues in empirical studies of software engineering. TSE
Stratton SJ (2021) Population research: convenience sampling strategies. Prehosp Disaster Med 36(4):373–

374
Tian Y, Achananuparp P, Lubis IN, Lo D, Lim EP (2012) What does software engineering community

microblog about? In: 2012 9th IEEE working conference on mining software repositories (MSR). IEEE,
pp 247–250

Tian Y, Lo D, Lawall J (2014) Automated construction of a software-specific word similarity database. In:
Proceedings of CSMR-WCRE, pp 44–53

Uddin G, Khomh F (2017a) Automatic summarization of API reviews. In: Proceedings of 32nd IEEE/ACM
international conference on automated software engineering, p 12

Uddin G, Khomh F (2017b) Mining api aspects in api reviews. Tech. rep. https://swat.polymtl.ca/data/
opinionvalue-technical-report.pdf

9 Page 42 of 43 Empir Software Eng (2023) 28:9

https://meta.stackoverflow.com/questions/303219/how-do-i-make-a-good-edit
https://meta.stackoverflow.com/questions/303219/how-do-i-make-a-good-edit
https://stackoverflow.com/help/whats-reputation
https://stackoverflow.com/help/whats-reputation
https://swat.polymtl.ca/data/opinionvalue-technical-report.pdf
https://swat.polymtl.ca/data/opinionvalue-technical-report.pdf

Uddin G, Khomh F (2017c) Opiner: a search and summarization engine for API reviews. In: Proceedings of
32nd IEEE/ACM international conference on automated software engineering, p 6

Uddin G, Khomh F (2019) Automatic opinion mining from API reviews from stack overflow. IEEE Trans
Softw Eng 35

Uddin G, Robillard MP (2015) How api documentation fails. IEEE Softw 32(4):76–83
Uddin G, Baysal O, Guerroj L, Khomh F (2019) Understanding how and why developers seek and analyze

api related opinions. IEEE Trans Softw Eng 40
Uddin G, Khomh F, Roy CK (2020a) Automatic api usage scenario documentation from technical q&a sites.

ACM Trans Softw Eng Methodol 43
Uddin G, Khomh F, Roy CK (2020b) Automatic mining of api usage scenarios from stack overflow. Inf

Softw Technol (IST) 16
Vagias WM (2006) Likert-type scale response anchors. Clemson International Institute for Tourism &

Research Development, Department of Parks, Recreation and TourismManagement Clemson University
Wang J, Xu M, Wang H, Zhang J (2006) Classification of imbalanced data by using the smote algorithm and

locally linear embedding. In: 2006 8th International conference on signal processing, vol 3. IEEE
Wang X, Kuzmickaja I, Stol KJ, Abrahamsson P, Fitzgerald B (2013) Microblogging in open source software

development: the case of drupal and twitter. IEEE Softw 31(4):72–80
Wang S, Chen THP, Hassan AE (2018) How do users revise answers on technical Q&A websites? A case

study on stack overflow. IEEE Trans Softw Eng 19
Wikipedia (2020) Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein distance, online; Last

accessed February 2020
Ya Y, Tong H, Xie T, Akoglu L, Xu F, Lu J (2013) Want a good answer? Ask a good question first! Tech.

rep. arXiv:1311.6876
Ya Y, Tong H, Xie T, Akoglu L, Xu F, Lu J (2015) Detecting high-quality posts in community question

answering sites. J Inf Sci 302(1):70–82
Yujian L, Bo L (2007) A normalized levenshtein distance metric. IEEE Trans Pattern Anal Mach Intell

29(6):1091–1095
Zhang T, Upadhyaya G, Reinhardt A, Rajan H, Kim M (2018) Are code examples on an online q&a forum

reliable?: a study of api misuse on stack overflow. In: Proceedings of the 40th international conference
on software engineering, pp 886–896

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Affiliations

Saikat Mondal1 ·Gias Uddin2 ·Chanchal Roy1

Gias Uddin
gias.uddin@ucalgary.ca

Chanchal Roy
chanchal.roy@usask.ca

1 Software Research Lab, Department of Computer Science, University of Saskatchewan,
Saskatoon, Canada

2 Data Intensive Software Analytics (DISA) Lab, Department of Electrical and Software Engineering,
University of Calgary, Calgary, Canada

Page 43 of 43 9Empir Software Eng (2023) 28:9

https://en.wikipedia.org/wiki/Levenshtein_distance
http://arxiv.org/abs/1311.6876
http://orcid.org/0000-0003-1767-6392
mailto: gias.uddin@ucalgary.ca
mailto: chanchal.roy@usask.ca

	Automatic prediction of rejected edits in Stack Overflow
	Abstract
	Introduction
	Deviations
	Structure of the Article

	A Catalog of Edit Rejection Reasons
	Dataset Preparation
	Edit Rejection Reasons

	A Model to Predict Potential Rejection of Suggested Edits
	Feature Extractor
	Text/Code Formatting
	Text/Code Modification
	Deface Post
	Complete Change of Post
	Status
	Gratitude
	Greeting
	Reference Modification
	Inactive Hyperlink
	Signature
	Deprecation Note
	Duplication Note
	Reputation Score

	Rejected Edit Predictor
	Machine Learning Models
	Decision Trees (DT)
	Random Forest (RF)
	K-Nearest Neighbors(KNN)
	eXtreme Gradient Boosting (XGBoost)

	Model Evaluation Setup
	Dataset Selection
	Performance Metrics

	Model Performance Evaluation
	Performance of Baseline Model

	Rejection Reason Classifier

	EditEx: A Recommender for Early Fixes to Suggested Edits
	EditEx Architecture
	Effectiveness Evaluation Plan of EditEx
	Study Design
	Study Participants
	Formation of Control and Treatment Groups
	Execution Plan
	First, we conduct a task-based analysis
	Second, we conduct an online survey

	Results from the User Study on Editing of SO Posts
	Results from Survey of User Study Participants
	Workload Assessment During Edit Task Completion
	Usefulness of EditEx Suggestions
	Recommendations for EditEx Improvements

	Enhance Functionality
	Improve Graphical User Interface
	Add Notification & Improve Installation System
	Discussions
	Ranking of Features in the Machine Learning Models
	Information Gain
	SHapley Additive exPlanations (SHAP) Feature Importance

	Analysis of Trained Machine Learning Model & its Misclassifications
	Implications of Study Findings
	Forum Designers
	Forum Users
	Researchers

	Threats to Validity
	Deviations from Registered Report
	Rollback Reasons & Predictors
	Manually Investigated Sample Size
	Recruitment of Participants
	Number of Edits Per User
	EditEx's Functionality of Highlighting Texts
	NASA TLX Workload
	Unidentified Reasons

	Related Work
	Studies of Collaborative Editing Systems
	Techniques to Develop to Improve Collaborative Editing Systems
	Other SE Research using SO Data

	Conclusion
	Declarations
	References
	Affiliations

