
https://doi.org/10.1007/s10664-022-10251-1

Smells in system user interactive tests

Renaud Rwemalika1 · Sarra Habchi1 ·Mike Papadakis1 ·Yves Le Traon1 ·
Marie-Claude Brasseur2

Accepted: 26 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Test smells are known as bad development practices that reflect poor design and implemen-
tation choices in software tests. Over the last decade, there are few attempts to study test
smells in the context of system tests that interact with the System Under Test through a
Graphical User Interface. To fill the gap, we conduct an exploratory analysis of test smells
occurring in System User Interactive Tests (SUIT). We thus, compose a catalog of 35 SUIT-
specific smells, identified through a multi-vocal literature review, and show how they differ
from smells encountered in unit tests. We also conduct an empirical analysis to assess the
diffuseness and removal of these smells in 48 industrial repositories and 12 open-source
projects. Our results show that the same type of smells tends to appear in both industrial and
open-source projects, but they are not addressed in the same way. We also find that smells
originating from a combination of multiple code locations appear more often than those
that are localized on a single line. This happens because of the difficulty to observe non-
local smells without tool support. Furthermore, we find that smell-removing actions are not
frequent with less than 50% of the affected tests ever undergoing a smell removal. Interest-
ingly, while smell-removing actions are rare, some smells disappear while discarding tests,
i.e., these smells do not appear in follow-up tests that replace the discarded ones.

Communicated by: Jinqiu Yang

� Renaud Rwemalika
renaud.rwemalika@hotmail.com

Sarra Habchi
sarra.habchi@uni.lu

Mike Papadakis
michail.papadakis@uni.lu

Yves Le Traon
yves.letraon@uni.lu

Marie-Claude Brasseur
marie-claude.brasseur@bgl.lu

1 University of Luxembourg, Luxembourg, Luxembourg
2 BGL BNP Paribas, Luxembourg, Luxembourg

Published online: 17 December 2022

Empirical Software Engineering (2023) 28:20

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10251-1&domain=pdf
http://orcid.org/0000-0003-2945-0286
mailto: renaud.rwemalika@hotmail.com
mailto: sarra.habchi@uni.lu
mailto: michail.papadakis@uni.lu
mailto: yves.letraon@uni.lu
mailto: marie-claude.brasseur@bgl.lu

Keywords Test smells · System user interface tests · GUI tests · Refactoring ·
Multivocal literature review

1 Introduction

User interfaces are designed to provide a means for the user to interact with an application.
Unfortunately, as interfaces become more user-friendly, the underlying technology becomes
more complex (Myers 1994). In addition to the increase in complexity, nowadays, Graphical
User Interfaces (GUI) are becoming more and more common (Myers and Rosson 1992;
Myers 1995; Brooks et al. 2009; Memon and Nguyen 2010). Thus, the question of testing
GUI-based application becomes of upmost importance.

To increase the release pace while maintaining a high quality of their products, soft-
ware companies adopt continuous integration. To this end, much effort has been devoted
towards GUI test automation, notably focusing on desktop applications (Nguyen et al. 2014;
Advolodkin 2018; Pezzė et al. 2018), web applications (Mesbah and Van 2009; Biagiola
et al. 2019), mobile applications (Machiry et al. 2013; Gomez et al. 2013; Mao et al. 2016;
Salihu et al. 2019; Yu et al. 2019), and cross-platform applications (Canny et al. 2020).

All these techniques rely on the same principle: A test framework executes events belong-
ing to GUI components and monitors the resulting changes in the state of the System Under
Test (SUT) (Nguyen et al. 2014). In other words, each technique generates a sequence of
test steps, that are executed against the SUT (input) and captures some indication as to what
is the current state of the system (output). We refer to this category of tests as System User
Interactive Tests (SUIT) that can be defined as an automatic test exercising a software appli-
cation with a graphical front-end to check whether it meets its specifications by performing
a sequence of events against the GUI elements (Cunha et al. 2010; Banerjee et al. 2013;
Issa et al. 2012). As such, SUITs present unique characteristics in their (1) structure, (2)
interaction with the SUT, and (3) the actors involved in their maintenance.

Thanks to the maturity of test automation frameworks, both commercial and open-source
projects are increasingly adopting automated test suites to ensure software quality at the sys-
tem level (Mabl 2021). Keyword-Driven Testing (KDT) forms such an automated approach
that is widely adopted by industry (Mabl 2021; Katalon 2018). It allows writing test scripts
that are readable (by all the stakeholders) and easily understandable by humans.

Unfortunately, KDT is associated with high maintenance effort (Gao et al. 2015; Coppola
et al. 2019; Rwemalika et al. 2019a) due to their fragility, structure and usage that is sig-
nificantly impacted by the evolution of the projects. To aid testers in reducing the involved
maintenance cost, the research community proposed solutions by automating test mainte-
nance (Hurdugaci and Zaidman 2012) or by setting best practices, in some sense exposing
sub-optimal processes (Labuschagne et al. 2017) that make test maintenance hard. This
work aims at defining and monitoring frequent sub-optimal patterns of SUITs during the
projects development process.

Previous research has that many issues emerge in test code that results in increase of the
code entropy (Hanssen et al. 2010). For example, prior work has shown the existence of
sub-optimal design choices that lower the quality of the test code (van Deursen et al. 2001;
Meszaros 2007; Reichhart et al. 2007; Van et al. 2007; Bavota et al. 2015; Tufano et al.
2016; Bowes et al. 2017; Kim 2020; Peruma et al. 2020) in the form of test smells. This
concept of smells was first introduced by (Fowler et al. 1999), who defined code smells as
poor design and implementation choices that hinder the system maintainability. It was later
extended to test code, with the introduction of test smells (van Deursen et al. 2001).

20 Page 2 of 55 Empir Software Eng (2023) 28:20

Interacting through the user interface, SUITs present unique characteristics that originate
from the way they interact and synchronize with the SUT. Indeed, unlike unit tests, SUITs
are executed in separated processes than the SUT. Thus, they require mechanisms to identify
and interact with GUI elements thereby allowing to reach new states in the SUT. To avoid
any race condition between the tests and the system they exercise, synchronization mecha-
nism must be set into place to allow SUT to reach their new state before the SUIT continue
with their execution. Generally, SUITs treats the SUT as a black box thereby focusing on
end-to-end behavior by ignoring implementation details.

The above means that SUITs are fundamentally different from unit tests and as a result,
the conclusions drawn from previous work on the detection of smells (van Deursen et al.
2001; Tufano et al. 2016; Bowes et al. 2017), the analysis of their impact and diffusion
(Bavota et al. 2015; Tufano et al. 2016; Kim 2020), and their automatic removal (Van et al.
2007; Reichhart et al. 2007; Peruma et al. 2020) does not generally hold in the context of
SUITs. For example, the smell Mystery Guest, which is well studied in test smell literature
(van Deursen et al. 2001; Bavota et al. 2015; Tufano et al. 2016; De Bleser et al. 2019;
Peruma et al. 2020; Virginio et al. 2020) appears when a test class relies on an external
resource file. However, in the case of SUITs, extracting test data outside the test code is
considered a good practice (thus, the opposite of a smell) and is highly used in data-driven
testing (Baker et al. 2008) to decouple the data from the behavior specifications. Indeed, one
of the functions of a SUIT being communication between different roles, namely business
analysts, testers, and developers, technical details are hidden away to ease communication
between the stakeholders. Therefore, while there might be an overlap between smells in unit
tests and SUITs, some smells are specific to each category.

Thus, this study aims to consolidate our understanding on the understudied SUITs smells.
Specifically, we aim to answer the following research questions:

– RQ1: Which are the SUIT smells that are mentioned in academic and grey literature?
Goal: This question aims to explore and identify test smells that are specific to SUITs.
Identifying and categorizing test smells that are mentioned and discussed in the grey
literature bridges the gap between research community and practitioners since the
majority of grey literature is based on the practitioners views. In view of this, our intent
is to produce a catalog of known SUIT smells along with their definition and impact.

– RQ2: How prevalent the SUIT smells are?
Goal: This question aims at assessing the prevalence of SUIT smells in industrial and
open-source projects and how different smells appear in the test codebase. An addi-
tional aim in analysing this question is the analysis of how smells are viewed and
managed by practitioners. Answering this question provides evidence on the impor-
tance of the SUIT smells, i.e., very rare smells are probably not interesting as they do
not appear in practice.

– RQ3: How often do we observe smell-removing changes in SUIT smell symptoms?
Goal: This question aims to analyze the smell-removing actions performed by main-
tainers to remove SUIT smells. While there may be a large amount of smells present in
the test codebase, practitioners may be unaware of them. To explore this, we identify
and detect fine-grained smell-removing actions that reflect an interest by the maintain-
ers of the test suite. Answering this question provides evidence in the importance of the
smells, i.e., they are associated with development time and effort.

To answer these questions, we combine a multi-vocal literature review and an empirical
study on a large industrial project and 12 open-source repositories. Relying on the multivo-
cal literature review, we answer RQ1 and build a catalog of 35 SUIT smells. For 16 out of

Page 3 of 55 20Empir Software Eng (2023) 28:20

the 35 SUIT smells of this catalog we propose an automated approach for detecting their
diffusion and removal. Based on this approach, we measure the prevalence of SUIT smells
and their removal in more than two million tests from our dataset composed of industrial
and open-source projects. In summary, the main contributions of this study are:

– We introduce the first catalog of SUIT-specific smells building on the knowledge of
both researchers and practitioners.

– We develop an open-source automated tool1 to detect smells and their removals for 16
SUIT smells. Alongside with it, we implemented a SonarQube Plugin2 able to detect
smell instances in Robot Framework code.

– We show that smells caused by combinations of multiple code entities (functions,
files, suites) are harder to detect and thus, tend to appear more often than smells with
symptoms localized on a single line.

– Our results suggest that less than half of SUITs ever experience smell removal actions.
Missing Assertion is a unique exception with up to 90% of the symptomatic tests refac-
tored. However, assertions are rapidly added which suggesting it is an artifact of the
development process. Tests are created and once they work, concrete assertions are
added. Interestingly, while smell-removing actions are rare, SUIT smells like Narcis-
sistic and Middle Man still disappear from the codebase as a side effect of unintended
maintenance and refactoring operations.

2 Background

In this section, we discuss current techniques used to generate SUITs. The techniques are
grouped based on their theoretical potential for automation during the generation process.

2.1 RandomGUI Testing

In Random GUI Testing, tests are automatically created by generating steps in the hope to
explore the possible state of the SUT to reveal failures. Because no requirements are passed
as input, the generated tests rely on specific constraints that are application or domain invari-
ant (Mesbah and Van 2009). This property makes random GUI testing cheap to run on a
large number of version/configuration of an application. Thus, random GUI testing offers a
cheap alternative to classical test scripting which can be useful to detect crashes and other
invariants in an exploratory fashion. However, because of the absence of functional require-
ments and the lack of knowledge of the lifecycle of the application, exploring deep states
of the application and exposing complex behavior remains challenging. This is why, while
companies do use random GUI testing tools such as Sapienz (Mao et al. 2016) in companies
like Facebook, they use it in addition to the other techniques that we present below.

2.2 Model-Based Testing

Model-Based Testing (MBT) can be defined as an approach encompassing the process and
techniques for the automatic derivation of abstract test cases from abstract models (Utting
et al. 2012). Functional specifications of a system, with the assumption that they are precise

1Available at https://github.com/serval-uni-lu/ikora-evolution
2Available at https://github.com/serval-uni-lu/sonar-ikora-plugin

20 Page 4 of 55 Empir Software Eng (2023) 28:20

https://github.com/serval-uni-lu/ikora-evolution
https://github.com/serval-uni-lu/sonar-ikora-plugin

enough, are used as input to design process models which in turn are used to generated auto-
mated test cases (Gupta and Surve 2011). Unfortunately, today, GUI-based application are
not typically derived from a model. Thus, QA engineers cannot rely on an a priori model
encompassing all the expected behaviors of the application. Besides, even though advances
have been made in Model-Based Software Engineering, complex GUI applications exhibit
behaviors that cannot be expressed by models found in GUI testing (Lelli et al. 2015). To
tackle this shortcoming, authors propose to rely on reverse-engineering to automatically
derive a model of the SUT by automatically exploring the application (in a similar fashion as
random GUI testing). Unfortunately, models built that way do not guarantee completeness,
because of limitations such as assessing if the coverage offered by the model is sufficient
(Yuan et al. 2007) or choosing inputs during exploration (Biagiola et al. 2019). These lim-
itations cause MBT to offer limited applicability which explains why practitioners (with
the exception of safety critical domains) tend to shy away from the model-based solutions
proposed in the scientific literature.

2.3 Record & Replay

When adopting Record & Replay, test cases are generated from a sequence of user interac-
tions provided by the tester. As its name suggest Record & Replay works in a two phase
process: a record phase and a replay phase. During the record phase, the tester manually
interacts with the application, thereby generating events on the SUT. The tooling records
these interactions and a part of the resulting SUT state as specified by the tester. Then, dur-
ing the replay phase, the recorded test cases can be replayed on subsequent versions of the
SUT and the captured states of the SUT are used as test oracles. The generated test cases
require human intervention during the record phase, but are executed automatically during
the replay phase. Hence, Record & Replay reduces the overall effort of regression testing
when compared to manual testing. Additionally, because the test cases are generated by the
framework, no particular skills are needed from the tester. (Di Martino et al. 2021) show
that even when human testers have limited information about the system, they achieve better
coverage metrics than automatic test generation techniques when using Record & Replay.

Despite its advantages when generating the test cases, the generated tests tend to be frag-
ile (Hammoudi et al. 2016b). To address this drawback, the research community proposes
different ways to tackle the problem of fragility by automatically repairing broken tests
(Hammoudi et al. 2016a), by improving the recording (Ronsse and De Bosschere 1999),
or by generating a model of the SUT instead of directly building test cases (Saddler and
Cohen 2017). Unfortunately, even with these advances from the scientific community, the
approach suffers from high cost in terms of the maintainability of the generated test suites.
This issue is all the more relevant as the generated tests are often obscure, lacking any type
of internal hierarchy, thus, compromising any attempt to manually fix the tests. The solution
offered by the industry where most of the major tool vendor offer Record & Replay capa-
bilities (e.g. IBM Rational Functional Tester, TestComplete, HP UTF, SmartBear, Katalon)
is to represent the generated test as script and allow test automation engineer to manually
improve them as they are being built (Section 2.4).

2.4 Test Scripting

Like Record & Replay, SUIT scripts are typically used by teams performing acceptance
testing. Acceptance tests ensure that a specific acceptance criterion, which can be functional
or non-functional, is met (Pandit and Tahiliani 2015). Conforming to the acceptance criteria

Page 5 of 55 20Empir Software Eng (2023) 28:20

both verifies that the SUT delivers the business value expected by the customer and guards
against regressions or defects that break preexisting functions of the SUT (Humble and Far-
ley 2010). Therefore, acceptance tests are not concerned with the internal implementation
of the SUT, but with the overall behavior of the system. Additionally, because such tests
are business-facing, they are involved in the discussion between testers, developers, and
business analysts, and, as such, should be readable by all stakeholders.

To ease this communication process, practitioners propose design patterns to separate
different concerns into different abstraction layers. For example, (Humble and Farley 2010)
propose the three following layers adopted by open-source and commercial tools alike (e.g.
Robot Framework, Cucumber, JBehave, Finess, or TestComplete): (1) the acceptance cri-
teria which describes the functional behavior, usually written in a form close to natural
language; (2) the test implementation layer that contains the underlying implementation of
the test using the vocabulary from the application domain; and (3) the application driver
layer that understands how to interact with the SUT and is expressed in the domain language
of the driver that is used to communicate with the SUT.

One approach commonly used in industry that promotes this architecture is Keyword-
Driven Testing (KDT). KDT aims at separating test design from the technical implemen-
tation of tests, thus, limiting exposure to unnecessary details. To do so, KDT relies on
Keywords, i.e. named procedures, that are composed of steps expressing a behavior, where
each step represent a subsequent call to a Keywords. KDT advocates that this separation of
concerns makes tests easier to write and more maintainable. On top of that, the separation
enables experts from different fields and backgrounds to work together, at different levels
of abstraction (Tang et al. 2008). This enables the unobstructed collaboration in the creation
and analysis of the tests between different experts. This paradigm is used by the major tool
offering across the market such as TestComplete, HP UTF, SmartBear, Katalon, Ranorex,
and Robot Framework, which are jointly used by about 20-30% of the teams having adopted
automated acceptance testing (Katalon 2018; Mabl 2021).

Notably, another paradigm is largely used, namely, Behavior Driven Development (BDD)
with the extensive use of the tool Cucumber representing another 20-25% of the market
share. Similarly to KDT, BDD implements the three-layer architecture prescribed by (Hum-
ble and Farley 2010), but instead of relying on keyword for the test implementation layer,
general-purpose languages such as Python or Java are used. Finally, many teams still rely on
general purpose languages and their associated testing tools (e.g. Junit, Pytest) to write their
tests and call specific drivers like Appium3 or Selenium4. However, with the consolidation
of the offering and the improvement of the tooling, this practice tend to reduce (Mabl 2021).

Unfortunately, test scripting comes with its challenges as well. Indeed, because the GUI
layer exhibits a lot of variation across versions and configurations (Gao et al. 2015), SUITs
tend to be fragile, i.e. breaking following non-functional changes resulting from the natural
evolution of the SUT. Hence, test cases fail or require maintenance even though the specific
functionalities they test remain unchanged (Coppola et al. 2019; Di Martino et al. 2021).

In this work, we focus on the KDT paradigm and more specifically on its supporting
open-source framework, Robot Framework, as it is the technology deployed at our partner
BGL BNP Paribas. Furthermore, the open-source nature of the tooling allows us to extend
our study to other open-source projects mined from Github. In the remainder of this section,
we describe in more details KDT and Robot Framework.

3https://appium.io/
4https://www.selenium.dev/

20 Page 6 of 55 Empir Software Eng (2023) 28:20

https://appium.io/
https://www.selenium.dev/

2.4.1 Robot Framework

Robot Framework is an open-source KDT framework that was originally developed by
Nokia Networks and is adopted by 7% to 10% of the companies practicing acceptance test-
ing (Katalon 2018; Mabl 2021). As a KDT solution, it relies on human-readable keywords
that make the code easy to understand by non-technical people. One of the key selling
point of Robot Framework is its high modularity. This modularity allows the core of the
framework to be platform-agnostic by relying on a driver plugin architecture. Indeed, the
application driver layer is created either by the Robot Framework core team and integrated
in the language, developed by third parties and distributed as library plugins, or developed
directly by the test team in which case the library code can be maintained alongside the test
code. Thus, the concrete implementation of an action in a Robot Framework test script is
hidden from the test, imposing a clear separation between the test implementation layer and
the application driver layer.

Figure 1 shows an example of a Robot Framework test adapted from the official Robot
Framework documentation. The Test Case A user logs in with his username
and password, at line 6, is responsible for validating the correct behavior of the login
form in an imaginary SUT by interacting with its user interface. As can be seen from the
listing, most parts of this fully automated test are written in plain English. As defined by
KDT, the test implementation layer is composed of Keywords. To further extend the reuse of
these Keywords, they can accept Arguments. For instance, the Keyword Open browser
(line 21) is called with two arguments, ${LOGIN URL} and ${BROWSER}. At lines 6–
8 we see three test steps that represent the test acceptance criteria. As described in
Section 2.4, in KDT, each step is implemented as a Keyword. In turn, these Keywords are
defined in their respective definition blocks between lines 12 and 41. The steps composing
the body of a Keyword are subsequent Keyword calls. At the end of the call tree, we find
Library Keywords performing concrete actions such as interacting with the SUT (application
driver layer) or marshalling the control flow of the test (e.g. branching). For example, at line
2, the script is using the web driver automation library Selenium to interact with the SUT.
This library allows the test script to perform concrete actions such as navigating through the
website using the Go To Library Keywords at line 26 and interact with elements present
on a web page with library keywords such as Input Text (lines 31 and 35) or Click
Button (line 38). Furthermore, Library Keywords can be used to perform assertions such
as Title Should Be at line 41 which ensures that the title of a webpage is of a specific
value.

Thus, Robot Framework makes it easy to follow the three-layer architecture described by
(Humble and Farley 2010). In this model, the Test Case and its steps are the acceptance cri-
teria, the intermediate User Keywords are the implementation layer and, finally, the Library
Keywords interacting with the system under test represent the application driver layer.

3 Experimental Design

3.1 RQ1: Identification of SUIT Smells

To perform a study on the impact of smells in SUITs, we first need to build a catalog of
test smells. To this end, we start our investigation by collecting SUIT smells presented in
both academic and grey literature. We consider as academic literature (a.k.a white litera-
ture) papers that are published in peer reviewed conferences or journals. On the other hand,

Page 7 of 55 20Empir Software Eng (2023) 28:20

Fig. 1 Example of robot framework test

we consider as grey literature white-papers, magazines, online blog-post, question-answers
sites, survey results, and technical reports following the methodology presented in (Ricca
and Stocco 2021). Indeed, the grey literature constitutes a rich source of documents where
practitioners share their experiences, propose guidelines or even ask and answer questions.
Thus, we conduct a multivocal literature review following the steps depicted by (Garousi
and Ku̇ċu̇k 2018). Figure 2 summarizes our adoption of these steps in the process of build-
ing a catalog of SUIT smells. It is worth noting that our literature review focuses on building
a first catalog of SUIT smells and does not aim for completeness.

20 Page 8 of 55 Empir Software Eng (2023) 28:20

GGoogle
Search Engine

Search
String

GGoogle Scholar
Search Engine

Ini�al Search Ini�al Pool
(79 Sources)

Inclusion/Exclusion
Criteria

Final Pool
(38 Sources)

Smell
Iden�fica�on

Ini�al Smell
Catalog

(84 Smells)

Smell
Generaliza�on

Final Smell
Catalog

(35 Smells)

Source
Iden�fica�on

Smell
Iden�fica�on

Legend

Data Process Database

Fig. 2 Overview of the process to establish the SUIT smell catalog

Initial search To mine the academic sources we rely on the Google Scholar Search engine,
whereas for the grey literature we rely on the Google Search engine. These two search
engines are known to subsume other databases and repositories (Garousi and Ku̇ċu̇k 2018)
hence we limit our investigation to them. We compile a list of search terms such as “accep-
tance test”, “test automation”, “end-to-end test”, “system test” and “behavior test” to define
the type of tests that we are targeting and combine those strings with each of the following:
“smell”, “symptom”, “anti pattern” and “bad practice”. This allows us to generate the fol-
lowing search string for the engines: software and (“acceptance test” OR “test automation”
OR “end-to-end test” OR “system test” OR “functional test”) AND (“smell” OR “symp-
tom” OR “anti pattern” OR “bad practice”). To validate the search string we run it and
make sure that relevant documents known a priori appear in the results (Kitchenham and
Charters 2007; Ricca and Stocco 2021).

Note that when gathering sources, a source is considered as academic if it appears in the
proceedings of a peer reviewed conference, it is an article from a peer reviewed journal,
or it is a Ph.D. thesis. During this process, we do not take any decision about the rank or
impact factor of the venues nor the type of paper (e.g. tool paper, main track). Finally, papers
present in non-peer-reviewed repositories, (e.g. ArXiv) are excluded from the results.

Then, we proceed to a review of all the sources in order to identify test smells. However,
because the search string returns about 1,370,000 results in the Google Search Engine and
about 12,100 results in the Google Scholar Search Engine, we restrict our analysis to an
initial pool composed of the first 200 results in each engine, which is the point at which no
new results were found in both search engines. From those 400 entries, the two first authors
read the title and abstract available to decide whether or not to further analyze the articles.
When a disagreement was encountered, the source was added for further analysis. During
the selection process, the decision was based on the following criteria:

– Topic We exclude all articles that do not present SUIT smells. Indeed, many articles
were related to the topic of SUITs but did not introduce any smells for these tests.

– LanguageWe exclude articles that are not written in English.

Page 9 of 55 20Empir Software Eng (2023) 28:20

Table 1 The form leveraged to extract smell information from the analysed articles

Data Explanation

Smell name(s) We extract the names attached to the smell in the article.

Smell definition We extract and summarize the definition given to the

Smell impact(s) We infer the smell impact from the definition.

Example When possible, we extract a concrete example of the presented smell.

– Redundancy Some articles are published on multiple platforms and hence, we had to
ignore the duplicates.

This leads to an initial list composed of 40 sources in the grey literature and 31 sources
in the academic literature for a total of 71 sources.

Inclusion/Exclusion criteria Given our study objectives, we decided to exclude articles
that:

– Do not focus on black-box tests To be eligible for our study, a smell must address the
code of a SUIT. However, the terms adopted in both industry and academia might not
refer to how the test interacts with the application, but rather to what is the intent of
the test (e.g. acceptance testing) or its scope (e.g. system test). This leads to a series of
sources discussing tests that are not SUITs and are not compatible with them, typically,
white-box tests. This criterion led to the exclusion of 22 articles.

– Do not discuss codebase-related smells Some sources address testing issues that are
not related to the codebase such as organizational smells, which are outside the scope
of this study. Indeed, some smells do not target the test code but testers’ behavior e.g.,
Making Intermittent Bugs Low Priority (StackExchange 2017) for which bugs making
the functional test suite fail intermittently at low intervals are ignored. This criterion
led to the exclusion of 11 articles.

Since our study considers both white and grey literature, we did not exclude articles
based on their publisher or format. We admitted academic articles with different formats
(e.g. long or short) as well as non-peer-reviewed articles. Note that whenever disagreement
was encountered between the authors as whether or not to include a source, a discussion was
triggered until a consensus was reached. Using the aforementioned exclusion criteria, we
reduce our list to 32 sources from the grey literature and 6 sources in the academic literature
for a total of 38 sources. The drastic drop in the academic literature is due to the large
number of studies targeting unit tests instead of SUITs. The selection process is depicted in
the summary sheet5.

Smell Identification Relying on this final pool of sources, we proceed to the smell identi-
fication by extracting from each source the smells that it formally defines. We considered
a source to define formally a smell if it specifically identifies a bad practice and defines its
impact on the codebase. Table 1 summarizes the information extracted from each article.

We filter out all the smells that are not suitable for our analysis. Indeed, some smells
are not applicable to the framework under study e.g., Dependence on Record and Playback

5Available as https://docs.google.com/spreadsheets/d/e/2PACX-1vQ78jmOjU3qTOlGzwCSkidJOliPKNDQ
hmuOxSsfTaRqFVjmFP41JUbYQeupqU lGCK6L4EpQ3FHNGhU/pubhtml a spreadsheet

20 Page 10 of 55 Empir Software Eng (2023) 28:20

https://docs.google.com/spreadsheets/d/e/2PACX-1vQ78jmOjU3qTOlGzwCSkidJOliPKNDQhmuOxSsfTaRqFVjmFP41JUbYQeupqU_lGCK6L4EpQ3FHNGhU/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vQ78jmOjU3qTOlGzwCSkidJOliPKNDQhmuOxSsfTaRqFVjmFP41JUbYQeupqU_lGCK6L4EpQ3FHNGhU/pubhtml

(StackExchange 2017) in which tests are created using Record and Playback, a feature that
is not supported by Robot Framework. Other smells are too technology specific e.g., not
using the page object pattern in Selenium tests (Advolodkin 2018). We select the smells for
which the two authors who performed the literature review reach a consensus, classifying
them as generic SUIT smell.

Finally, we manually label whether the impact is affecting the readability, execution, or
maintenance. To do so, each author first relies on general understanding to label the smell,
then, in a second stage, all authors discuss each of the categories where disagreement is
observed until a consensus is reached for each smell and its labelling. The outcome of this
process is an initial smell catalog of 84 unique SUIT smells for which we can derive a metric
by analyzing the code representing the symptom observed.

Smell generalization Some SUIT smells gathered in the previous step exhibit large over-
laps; thus, we proceed to a smell generalization step. For instance, the smell Enter Enter
Click Click (Buwalda 2015) is grouped with Comments and documentation instead of
abstraction (Klarck 2014), since both smells target the presence of low-level actions in
the acceptance criteria but in the latter a specific emphasis is put on the documentation
aspect. Hence, we consider those two smells to present similar symptoms and effects and we
group them in one smell named Lack of encapsulation (Chen and Wang 2012; Klarck 2014;
Buwalda 2015; England 2016; Renaudin 2016). Moreover, we observe that some test smells
are subsuming others. In this case we only keep the subsuming smell. From this list, we fil-
ter out any test smell that would require the test to be executed in order to be observed. As
a result, the outcome of this step is a list of 35 SUIT smells6 that can be detected statically
(Table 6).

Finally, conducting our study using Robot Framework, we exclude four test smells that
cannot be observed in this specific language and its associated framework. Furthermore, we
omit 15 test smells because, despite our best efforts, no automated metric avoiding false pos-
itive could be constructed by analyzing the test code. Hence, in this work, we present a list
of 16 SUIT smells alongside with a metric to automatically detect them. A comprehensive
description of each smell is presented in Section 4.2.

3.2 Dataset

To answer RQ2 and RQ3, we conduct a case study on 13 test suites written in Robot Frame-
work. We establish two sets of projects: the first set is composed of 48 repositories from our
partner site, BGL BNP Paribas and the second set of projects is composed of 12 open-source
projects mined from Github. Table 2 summarizes the overall properties of these projects. In
the following we describe the projects and present the collection process.

3.2.1 Industrial Project:

We leverage the codebase of our industrial partner, BGL BNP Paribas. The test suite is
maintained by a dedicated quality assurance team which role is to ensure the compliance to
the requirements of the products deployed to production. As such, the team tests desktop,

6The complete catalog is available at https://github.com/serval-uni-lu/suit-smell-catalog

Page 11 of 55 20Empir Software Eng (2023) 28:20

https://github.com/serval-uni-lu/suit-smell-catalog

web, and mobile applications that are depending on services developed following a service-
oriented architecture (SOA). The goal of the team is to assess compliance to functional
requirements and applications are tested in a black box fashion through their user interface.

Historically, the team relied on manual testing to perform its tasks. However, with the
release cycles becoming shorter and the number of tests increasing, the execution burden
on the team became unmaintainable. Thus, in the end of 2016, the team started migrating
from manual testing to automated acceptance testing relying on Robot Framework. Robot
Framework was chosen because of the ease it provides to develop tests targeting application
written in different technologies requiring different mode of interactions.

Today, the test suite consists of 559 Robot Framework tests stored across 48 repositories
on an on premise GitLab instance. While some repositories are defining Test Cases, others
are used as resources of common Keywords where a series of generic Keywords specific to
the BGL BNP Paribas architecture have been created to help with the development effort as
well as to avoid code duplication. A typical example is the login to the ecosystem which is
common to a large amount of services, and consequently can be mutualized. Hence, in this
study, we merge all the repositories to count them as one project, which explains the larger
number of User Keywords observed in Table 2 for the project bgl.

3.2.2 Open-Source Projects:

To collect the open-source test suites, we use the Github Search API to mine repositories
containing suitable test suites, i.e Robot Framework test suites. Thus, using the API, we
select all project that contains at least one Robot Framework Test Cases and that have at least
10 stars to avoid collecting toy projects. Additionally, we ignore any forked repository to
avoid duplication. From the results of this first step we obtain 51 candidate projects. Then,
we manually analyze each project by reading their readme section (and if needed looking at
the test and the test harness) and filter out training projects (3 projects) and projects using

Table 2 Metrics for the 13 projects under study

Name LoC #Commits #TestCases #Keywords

bgl 57030 309 559 5000

apinf 1068 345 74 138

bikalims 4446 1279 76 172

collective-cover 1317 943 24 31

cumulus-ci 1599 1429 132 34

harbor 7270 3131 246 472

ifs 8466 5606 494 605

mms-alfresco 1797 504 156 8

mystamps 2361 353 212 111

ozone 2636 271 230 90

plone 1046 211 59 163

plone-intranet 2225 1759 213 134

rspamd 3397 685 429 151

LoC is the number of lines of Robot Framework Code, #Commits is the number of commits implicating
Robot Framework code, and #TestCases and #Keywords are the number of test cases and user keywords
respectively in the last commit of the projects

20 Page 12 of 55 Empir Software Eng (2023) 28:20

Robot Framework as a tool or extending it, and not using it as a test runner (12 projects).
Following this approach, we gather 36 repositories from Github. We then gather metrics
about the size of the projects and discard any projects with less than 10 test cases or less than
500 lines of code. Finally, to ensure that maintenance was performed on the test suite itself,
we analyze the number of commit involving the Robot Framework test suite for each project,
i.e. SUIT modifying commit, and discard any project with less than 100 SUIT modifying
commits. This process yields a total of 12 repositories presented in Table 2.

The data collection process leads to a total of 2,884,383 SUITs analyzed across all the
versions of all the projects where 2,742,271 originate from the open-source projects and
142,112 from the industrial projects gathered at BGL BNP Paribas.

These 13 projects (12 open source and 1 industrial) cover various technology stacks. For
instance, BGL BNP Paribas developed internal services using Java Swing which rely on
either the API exposed by Swing or rely on computer vision, through the use of the Sikuli7

library. BGL BNP Paribas also uses Robot Framework to test its mobile client application
relying on the Appium library. Finally, the majority of the test suites in both industrial
and open-source projects from this dataset target web applications through the use of the
Selenium library. The SUITs interact with such applications (1) through their webpages by
interacting with the DOM, (2) through their APIs or (3) directly accessing the state of the
database after an operation. Note that some operations generate emails or reports, thus, some
tests rely on operating system interaction to check that an email was properly sent through
a mail client or assess the existence and parses the content of a generated PDF documents.

To conclude this section, we observe that the dataset is composed of projects cover-
ing various domains, technology stacks, sizes, and modes of development. We believe that
this diversity allows to avoid biases observed in one type of projects and improves the
generalization of the observations.

3.3 RQ2: SUIT Smell Symptoms Distribution

For each of the SUIT smells that we gathered, we compute a metric to automatically mea-
sure a smelliness score for the affected test by relying on heuristics to construct these
metrics. To this end, we apply the high-level investigation mechanism framed by (Mari-
nescu 2004) called “detection strategy”. As defined by the authors, a “detection strategy”
is a generic mechanism for analyzing a source code model using metrics. The detection
strategies are formulated in a series of steps:

1. Break-down informal rules into symptoms that can be captured by a single metric;
2. Select a proper set of metrics to quantify each of the symptoms;
3. Define thresholds that classify a test as smelly or not;
4. Use operators to correlate the symptoms leading to the final rule for detecting the

smells.

Note that the step 3 of this approach describes the definition of a threshold. Even
though different approaches have been proposed, e.g. using semantical properties and sta-
tistical distributions (Marinescu 2004) or using Bayesian belief networks (Khomh et al.
2009), defining a good threshold remains a hard and error prone task. Thus, more recently,
researchers have been trying to avoid this limitation by using machine learning to directly
learn what a smell looks like avoiding altogether the use a threshold (Arcelli et al. 2016). In

7http://sikulix.com/

Page 13 of 55 20Empir Software Eng (2023) 28:20

http://sikulix.com/

,6

,12

,29

,15

,33

,40
,37

,20

7() 8()

9()

13()

16()

17()
18()

38()

35(,)
31(,)

21(,)

22()
23() 41()

Fig. 3 Call graph of the script from Fig. 1 where kt represent a test case node, ku, a user keyword node, kl ,
a library keyword node, and c(), a keyword call site with its optional arguments, a. The number suffix x in
cx(), kt,x and, ku,x indicates the corresponding line in the script

this work, in order to avoid any bias generated by a binary classification, we do not apply
any empirical threshold (with the exception of one smell, Long Test Steps) but focus our
analysis on the observation of the symptoms associated with SUIT smells. Hence, for each
test we attribute a metric that represents the number of symptoms that are observed in a
test. Furthermore, we propose a density metric, which normalizes the number of symptoms
observed over the worst case scenario for a given test. Indeed, our goal is to analyze how
the symptoms are treated by the maintainers of the test codebase and not to classify tests as
smelly or not.

To extract code metrics, we rely on a graph representation of the test code. Indeed, a
Robot Framework script can be represented using its call graph. A call graph G(N,E) is a
directed graph where every node n ∈ N , represents a function (or procedure) and an edge
en1→n2 ∈ E exists if function n1 invokes function n2 (Hall and Kennedy 1992). Figure 3
shows the graph representation of the test presented in Fig. 1. The nodes of the tree represent
functions from the Robot Framework language: (Test Case, User Keyword, and Library
Keyword). The edges represent Keyword call sites. At the root of the graph, we find the entry
point of test, the Test Case (double line). Each test sep composing the acceptance criteria
is represented by an edge from the Test Case to a Keyword. The intermediate nodes (plain

Table 3 Categories assigned to Library Keywords

Name Description

Interaction with the SUT Performs an action on the SUT capable of modifying its state.

Assertion Verifies that a predicate is true at a specific point.

Control Flow Modifies the control flow of the test execution.

Getter Retrieves a value available from the SUT or the environment.

Setter Modifies a value available from the environment.

Logging Dumps log during execution.

Synchronization Synchronizes the execution of the test with the one of the application.

20 Page 14 of 55 Empir Software Eng (2023) 28:20

Table 4 Types assigned to Library Keywords argmuents

Name Description

Object Generic type that can be converted to all the other types. The arguments for User Keywords
always assume that type.

String Type accepting a chain of characters.

Duration Type accepting a time interval representation (e.g. 1second).

Boolean Type accepting a boolean value.

Condition Type accepting the definition of a condition that returns a boolean value (e.g. $value == 1).

Number Type accepting a numerical value.

Keyword Type accepting a keyword call and its arguments.

Locator Type accepting the description of a GUI element.

line) represent User Keywords. User Keywords are calling subsequent Keywords which can
be either other User Keywords or Library Keywords. Finally, the leaf nodes (dashed line)
are the Library Keywords. Because they perform concrete actions that are hidden from the
test script, they appear in the graph as leaf nodes.

When building the call graph of the tests, we annotate each Library Keyword with a
category describing its intent (Table 3), e.g. Input Text modifies the state of the SUT,
therefore, is from the category Interaction with the SUT. Furthermore, even though Robot
Framework is a dynamic language, the type of Library Keywords is defined. Hence, in addi-
tion to their category, Library Keyword nodes are annotated with the type of the arguments
they expect (Table 4), e.g. Input Text takes two arguments of types Locator and String.

Finally, when traversing the arguments during the call graph construction, arguments are
annotated as constant if the value is a literal or variable if the argument is a variable. In
the latter case, a link is created to the definition of the variable, allowing partial resolution
(the necessary information might not be available statically) of the variable value set. The
algorithm is implemented in a Maven package8.

The generated call graphs are used to identify unique patterns that can be associated to
smells. A pattern here is nothing else than a subtree that matches some predifined rule set
extracted from the definition of the smells in Section 4.1. Note that the heuristics chosen do
not capture all the possible symptoms for a given smell, but are straightforward and focus
on manifestations that can be captured in the anoted call graph.

When computing the metrics, we introduce two types of metrics : a count metric S and
a density metric D. The count metric S (# Symptoms in Table 5) counts the number of
instances of a symptom observed in a test. On the other hand, the density metricD (% Symp-
toms in Table 5) provides an indication of the number of instances over a maximum value
that could have appeared in the test. Thus, the density metrics vary between 0 and 1, 0 indi-
cating the absence of any of the symptoms and 1 indicates that for each of the possible
location for the symptom to be present, it appeared in the test. Note that we focus on met-
rics with a high precision at the detriment of the recall. Indeed, some of the metrics only
cover one form of symptoms leading to a smell but lead to low rate of false positive. All the
patterns are implemented in a Maven package 9.

8https://github.com/serval-uni-lu/ikora-core
9https://github.com/serval-uni-lu/ikora-smells

Page 15 of 55 20Empir Software Eng (2023) 28:20

https://github.com/serval-uni-lu/ikora-core
https://github.com/serval-uni-lu/ikora-smells

Table 5 Definitions of the metrics used in the study

Name Notation Description

Symptoms Ss The number of symptoms for a smell s counted in a single test.

% Symptoms Ds The number of symptoms for a smell s counted in a single

test divided by the number of location they could have

appeared in that test.

Smell-Removing Action |SRAs | The total number of removal/changes in nodes exhibiting a

symptom SRAs for a smell s counted across all tests in all

versions.

% Smell-Removing Action – The proportion of symptomatic tests undergoing at least

one smell-removing action through their lifespan.

3.4 RQ3: SUIT Smell-Removing Actions

Refactoring can be defined as a technique to improve the design of a system and enable
its evolution (Fowler et al. 1999) and is typically associated to smell removal. However,
because our tooling cannot capture the intent of the change but merely its consequence, in
this work we focus on a related phenomenon, smell-removing actions which are changes
targetting specifically the removal of a smell but without guaranteeing a similar behavior.
Relying on this definition, to answer our third research question, we conduct an analysis
of the smell-removing actions during the maintenance of the test suites. To do so, we col-
lect every pair of subsequent versions and identify smell-removing changes occurring in the
test codebase. A key component in this type of analysis is to properly identify what con-
stitutes a valid smell-removing action. Indeed, just observing a decrease in smell metrics
does not imply that a smell has been specifically addressed. Other actions such as chang-
ing the scope of a test can, as a side effect, remove symptoms of a SUIT smells without
specifically targeting it. Thus, following the line of work present in the literature to identify
refactoring activity (Tsantalis et al. 2013; Silva and Valente 2017), we address this limi-
tation by using heuristics based on static test code analysis. More specifically, we use the
fine-grained change algorithm presented in (Rwemalika et al. 2019a) to extract instances
of smell-removing patterns. These patterns are derived from the definition of the symptoms
present in the literature.

More specifically, let’s consider a graph G1 and its subsequent version G2. The set of
actions AG1→G2 is composed of all the edit required to go from G1 to G2. To extract
AG1→G2 , the fine-grained change algorithm works in two phases:

1. Finding a match between the nodes from G1, NG1 , and the nodes from G2, NG2 to
come up with a mapping for each node nG1 → nG2 .

2. Finging a minimum edit script that transformsG1 intoG2 given the computed mapping.

As a result, the algorithm produces an edit script composed of the actions to transforms
G1 into G2, AG1→G2 . Each action, aG1→G2 ∈ AG1→G2 is one of: Insert (∅ → nG2), Delete
(nG1 → ∅), or Update (nG1 → nG2 |nG1 �= nG2).

Concurrently, for each SUIT smell s we store the set of nodes from G1, NG1 , that are
exhibiting a symptom of the SUIT smell and the smell-removing actions As,nG1

that when
performed on one or more elements of nG1 ∈ NG1 removes the symptom. We obtain a set
of tuples < s, nG1 , as,nG1

> for each pair of subsequent versions which describes the fine-

20 Page 16 of 55 Empir Software Eng (2023) 28:20

grained smell-removing actions that were performed on one or more nodes to fix a specific
SUIT smell symptom, i.e. the smell-removing actions.

To generate this list, first we compile the set of potential actions As,nG1
that can fix a

symptom of a SUIT smell s given a set of nodes NG1 (the complete list is presented in
Section 4.1). Then, for each action aG1→G2 provided by the fine-grained change extraction
algorithm, we check if aG1→G2 matches any pattern from As,nG2

. If it is the case, then the
fine-grained change aG1→G2 is considered to be a smell-removing action and added to the
list of tuples < s, N, aG1→G2 >.

To assess to which extent practitioners refactor SUIT smell symptoms, we count the
number of smell-removing actions across all the versions, |as,N | (# Smell-Removing Action
(|SRAs |) in Table 5). Thus, the higher this number, the more often developers remove the
symptoms. However, because some symptoms might appear much more often than others,
this number might be skewed towards symptoms that are frequent. In the result section,
we avoid this limitation by proposing a generalization metric computing the proportion
of symptomatic tests undergoing at least one smell-removing action through their lifes-
pan (% Smell-Removing Action in Table 5). The results of this analysis are presented in
Section 4.5.

3.5 Interviews

Finally, to validate the results obtained by the literature review as well as our tooling, we
conduct interviews with Robot Framework practitioners. The pool of participants is com-
posed of a practitioner from the open-source projects we collected, an automation engineer
from BGL BNP Paribas, as well as two other test automation engineers contacted through
the official Slack channel of the Robot Framework community. All participants actively
work on Robot Framework Test Suites and have at least five years of experience with the
technology. Thus, this leads to a pool of four experienced test automation engineers.

The interviews take the form of a semi-structured questionary where for each of the 16
smells for which we have a metric, we present their definition along with their impacts, and
an example displaying a symptomatic instance captured by our tooling. We ask for each
smell four questions:

1. According to your experience, do you consider this pattern a smell? (Yes/No)
2. How would you prioritize the refactoring of this smell? (1 (lowest) to 5 (highest))
3. How often have you seen this smell? (1 (never) to 5 (all the time))
4. Do you have any additional comments? (free text)

With question 1, we validate the fact that the test is indeed consider as a smell by prac-
titioners and that the instance captured by the tooling reflects their perception. Questions
2 and 3 characterized the perceived harmfulness and frequency of each smell. And finally,
question 4 offers an opportunity for the practitioners to share some experiences or thoughts
about the smells in an exploratory fashion.

In addition to the questions about the smells themselves, we show the practitioners the
results of our study regarding the diffusion of smells and the smell-removing actions. Here,
for each of the two experiments, we present the results in the form of a graph with a legend
and a short description and ask the single open-ended question: Do you have any comments
about your experience with smells? The goal of this question is to offer perspective from
our measures from practitioners in an exploratory fashion.

The results as well as the quotes obtained from the interviews are presented alongside
the results of the other research questions.

Page 17 of 55 20Empir Software Eng (2023) 28:20

Table 6 Catalog of SUIT Smells and their description

Name Description

Army of Clones Different tests perform and implement similar actions, leading to duplicated

pieces of test code.

Complicated Setup The test performs actions to set the system under test in a valid state for the

Scenarios focus of the test. These actions should be performed in the setup.

Conditional The test verifies different properties depending on the environment when the

Assertions environment state may change from one execution to the next.

Conspiracy Of An assertion in a test is failing with no indication as to why.

Silence

Data Creep Test data is stored in ways that are hard to access.

Dependencies Tests have dependencies between them, be it within the test themselves or their

between tests fixtures.

Directly Executing Since technologies such as web technologies allow to directly exercise the system

UI Scripts under test using scripts such as Javascript, it can be tempting to completely

bypass the user interface and just run such scripts.

Duplicate Check Different test in the test suite perform the same exact check against the system

under test.

Eager Test The test exercises several non-related features of the system under test.

Hardcoded The test contains hardcoded references to the environment when the same

Environment requirement must be run against different test environments.

Hiding Test Data The data are not directly visible and understandable in the test but are hidden in

the fixture code.

Implementation The test is dependent on the implementation details and data structures present

Dependent in the system under test.

Inconsistent The test component hierarchy (class hierarchy, keyword hierarchy, macro

Hierarchy hierarchy, etc.) is inconsistent with the structure of the GUI.

Inconsistent The domain concept are not used in a consistent way across tests.

Wording

Lack of The implementation details of a test are not properly hidden in the

Encapsulation implementation layer and start appearing in its acceptance criteria.

Lack Of Regression suites grow too big to be accommodated in the automation pipeline

Early Feedback where execution would last for hours.

Lifeless The test is missing the lifecycle steps of the business objects (e.g. CRUD) and

such basic operations are scattered throughout the test suite.

Long Test Steps One or many test steps are very long, performing a lot of actions on the system

under test.

Middle Man A test component (keyword, macro, function) delegates all its tasks to another

test component.

Missing Assertion The test lacks any explicit assertions.

Narcissistic The test uses the first person pronoun I to refer to its actors and does not

uniquely qualify those actors.

Noisy Logging The test logs the state of the fixtures.

Obscure Test The test behavior is difficult to understand because the test does not clearly

state what it is verifying. Typical symptoms are hardcoded values, high cyclomatic

complexity and/or function or procedure calls with high number of parameters.

20 Page 18 of 55 Empir Software Eng (2023) 28:20

Table 6 (continued)

Name Description

On the Fly The test calculates an expected results during its execution instead of relying

on pre-computed values.

Over-Checking The test performs some assertions that are not relevant for its scope.

Pointless Scenario The description of the step does not give any extra information about its intent

Descriptions while remaining long.

Sensitive Locators The test uses element identification selectors that have long chains to identify an

element in the user interface. e.g. complex x-pass or CSS selector for web

application.

Sneaky Checking The test hides its assertions in actions that are at the wrong level of details.

Stinky The test fails to use proper synchronization points with the system under test.

Synchronization

Test Data Loss Fixtures used by the test are always the same and require non trivial

computation. When not saved, these values need to be computed at each test

execution.

Testing Data Not The data the test rely on are dependent on the environment they lie in and need

Code to be generated for each environment at every release.

Unnecessary The test performs actions that are not directly connected to the focus of the test.

Navigation

Unrealistic Data The test is written using trivial data that are not representative of

the production data.

Unsecured Test The test is using real user data and reads private information which might be

Data violating certain laws.

Unsuitable Naming The name of the test does not capture the essence of what the test is doing.

Smell in bold are associated with a metric which is discussed in Section 4.2

4 Results

4.1 RQ1: SUIT Smells Catalog

Table 6 lists all the 35 smells identified in both grey and academic literature along with a
short description for each smell. The entries in bold refer to smells for which we defined a
metric. The origin of the smell is depicted in Fig. 4a which shows the number of test smells
that were found in academic literature and in grey literature. We show both the 35 initial
SUIT smells extracted from the literature and the subset of 16 SUIT smells for which we
could extract a metric in the test code. Note that a SUIT smell is considered as covered
by academia if at least one of the smells grouped in the generalization step (Section 3.1)
is covered by the academic literature. The figure shows that while there exists an interest
from practitioners with 35 unique smells discussed, the number of smells discussed in peer
reviewed literature remains rather limited with only 10 smells identified. We also see that
smells identified from the literature could generate a metric in six out of ten cases. The ones
for which no metric could be derived are Inconsistent Wording (Hauptmann et al. 2013),
Unsuitable Naming (Chen andWang 2012), Inconsistent Hierarchy (Hauptmann et al. 2013)
and Data Creep (Alegroth et al. 2016). While (Hauptmann et al. 2013) propose metrics for

Page 19 of 55 20Empir Software Eng (2023) 28:20

(a) Source (b) Issues

Fig. 4 Properties of the identified SUIT smells. Figure 4a displays the number of smells found in the aca-
demic and in the grey literatures. Figure 4b displays the number of smells exhibiting a specific issue. Note
that a smell can lead to several issues, hence the total is greater than the total number of SUIT smells

the smells they introduce, during our evaluation we observed a high rate of false positive
for Inconsistent Wording and Inconsistent Hierarchy thus we excluded them for the final
list. Chen and Wang (Chen and Wang 2012) and (Alegroth et al. 2016) on the other hand
do not propose a metric to automatically measure the smells they present. To conclude
this analysis of Fig. 4a, we see that there exists a gap between the grey literature and the
academic literature. We believe that more work need to be conducted to better understand
and automatically detect and refactor SUIT smells in the academia. The present work is
an attempt to fill this gap with the introduction of 25 new smells not previously studied in
academia.

Figure 4b presents the effects associated to each SUIT smell. Note that a smell can lead
to issues from different categories. Thus, the total number of issues is greater than the num-
ber of smells. From the figure, we observe that although readability issues appear the most
often with 18 instances, maintenance issues with 12 instances, and execution issues with 14
instances do not fall far behind. Furthermore, to our surprise, SUIT smells affecting read-
ability where the ones for which the most metrics could be computed. One reason explaining
this phenomenon is that in the case of execution issues, information about the SUT and
its execution are required. The same observation can be made for maintenance where the
danger is coming from a divergence of the test from the SUT.

Before moving on to the detailed description of each smell, note that for each SUIT smell,
we define the sources, and if there exists any, the sources describing the associated unit test
smell (Tables 7 and 8). The sources populating the SUIT columns are the ones extracted
from our MLR, while the ones in the Unit Test columns are extracted fom the study by
(Garousi and Ku̇ċu̇k 2018), where each source was reviewed to ensure that it is addressing
unit tests specifically. This analysis offers an overview on the differences between the smell
addressed in the two types of tests. Note that because the scope of this work targets SUIT
smells, only those are reported in this table. One class of smells not appearing in SUITs are
the smells appearing in association with production code (Garousi and Ku̇ċu̇k 2018). For
instance, the smell For Test Only occurs when a production class has methods only used by
test methods (Breugelmans and Rompaey 2008; Garousi and Ku̇ċu̇k 2018). However, SUIT

20 Page 20 of 55 Empir Software Eng (2023) 28:20

Table 7 Sources of SUIT smells and their potential unit test counterpart for which an automatic metric could
not be derived

Name SUIT Unit Test

Complicated Setup (Scott 2015) (Greiler et al. 2013)

Scenarios

Conspiracy Of Silence (Gawinecki 2016; Sheth 2020) (van Deursen et al. 2001)

Data Creep (Alegroth et al. 2016; Siminiuc
2019; Shay 2019)

Dependencies between
tests

(Klarck 2014; Advolodkin 2018;
Cripsin 2018; Bushnev 2019;
Goldberg 2019)

(Zhang et al. 2014)

Directly Executing UI Scripts (Scott 2015)

Duplicate Check (Buwalda 2019)

Eager Test (England 2016; Renaudin
2016; Cripsin 2018; Scia-
manna 2019; Temov 2020)

(van Deursen et al. 2001; Van et al.
2006; Bavota et al. 2012; Basit et al.
2013; Greiler et al. 2013; Bavota
et al. 2015; Delin and Foegen 2016;
Tufano et al. 2016; Spadini et al.
2018; Grano et al. 2019)

Implementation Dependent (Jain 2007; Kapelonis 2018;
Goldberg 2019)

Inconsistent Hierarchy (Clayton 2014; Gawinecki
2016; Buwalda 2019)

(Reichhart et al. 2007)

Inconsistent Wording (Hauptmann et al. 2013)

Lack Of Early Feedback (Dharmender 2017)

Lifeless (Buwalda 2015; Renaudin
2016; Buwalda 2019)

Pointless Scenario Descriptions (England 2016) (Reichhart et al. 2007)

Test Data Loss (Siminiuc 2019)

Testing Data Not Code (Dharmender 2017)

Unnecessary Navigation (Archer 2010)

Unrealistic Data (Goldberg 2019)

Unsecured Test Data (Morlion 2019)

Unsuitable Naming (Chen and Wang 2012; Goldberg
2019; Shay 2019; Sheth 2020)

(Reichhart et al. 2007; Basit
et al. 2013)

smells functioning in a black box fashion, by design do not suffer from this category of
smells.

Looking at Tables 7 and 8, we observe an important overlap in the type of smells with
14 out of 35 smells appearing both in unit test and SUITs. To classify a unit test smell and
a SUIT smell as overlapping, we used the methodology described in Section 3.1 to extract
and identify the smell from the unit smell source and to map them to the corresponding
SUIT category. Thus, for the 21 remaining smells, we did not find a mapping from unit tests.
Looking at the smells only appearing in SUITs, we see that they are concerned with issues in
the test data management or they tackle the workflow of the SUIT. Since unit test typically
do not deal with any external data and are meant to be short and focused, these smell do not
impact them. Finally, smell specifically targeting interaction with the user interface, such as
Sensitive Locator or Directly Executing UI Scripts fall out of the scope of unit test smells.

Page 21 of 55 20Empir Software Eng (2023) 28:20

Table 8 Sources of SUIT smells and their potential unit test counterpart for which an automatic metric could
be derived (Section 4.2)

Name SUIT Unit Test

Army of Clones (Chen and Wang 2012; Hauptmann
et al. 2013; Hauptmann et al. 2015;
Knight 2019)

(van Deursen et al. 2001; Lanubile
and Mallardo 2007; Breugelmans and
Rompaey 2008; Bavota et al. 2012;
Basit et al. 2013; Athanasiou et al. 2014;
Bavota et al. 2015; Grano et al. 2019)

Conditional Assertions (Gawinecki 2016)

Hardcoded Environment (Gawinecki 2016; Sheth 2020)

Hiding Test Data (Jain 2007)

Lack of Encapsulation (Chen and Wang 2012; Evangelisti
2012; Klarck 2014; Buwalda 2015;
England 2016; Renaudin 2016;
Knight 2017a; Goldberg 2019;
Knight 2019; Shay 2019)

Long Test Steps (Chen and Wang 2012; Hauptmann
et al. 2013; Buwalda 2019)

(Reichhart et al. 2007; Breugel-
mans and Rompaey 2008; Spadini
et al. 2020)

Middle Man (Chen and Wang 2012)

Missing Assertion (Klarck 2014) (Reichhart et al. 2007; Breugel-
mans and Rompaey 2008; Athana-
siou et al. 2014)

Narcissistic (England 2016; Knight 2017b)

Noisy Logging (Jain 2007) (Reichhart et al. 2007)

Obscure Test (Hauptmann et al. 2013; Gawinecki
2016; Siminiuc 2019)

(Lanubile and Mallardo 2007; Breugel-
mans and Rompaey 2008; Athanasiou
et al. 2014; Delin and Foegen 2016)

On the Fly (Archer 2010)

Over-Checking (Buwalda 2015; Renaudin 2016) (van Deursen et al. 2001; Lanubile
and Mallardo 2007; Breugelmans and
Rompaey 2008; Bavota et al. 2012;
2015; Tufano et al. 2016; Spadini et al.
2018; Grano et al. 2019)

Sensitive Locators (Scott 2015; Knight 2019;
Battat 2020; Sheth 2020)

Sneaky Checking (Kirkbride 2014; Buwalda
2015; Renaudin 2016)

Stinky Synchronization (Gawinecki 2016; Renaudin 2016;
Bushnev 2019; Knight 2019; Sheth
2020)

(Spadini et al. 2020)

20 Page 22 of 55 Empir Software Eng (2023) 28:20

4.2 SUIT Smell SymptomMetrics

Following the notation introduced in Section 3.3, we formally describe each smell for which
a metric can be extracted with respect to its symptoms, its impact, and the metrics chosen
to measure the prevalence of the symptoms following the protocol presented in Section 3.3.
For each smell, the metric is define as the pattern that best represent the definition of the
symptom and the smell removal action is the minimal set of action that would result in the
removal of the symptomatic pattern. Finally, associated with each metric, we provide the
smell dispersion which is the level of localization at which a symptom appears in the test
code. It can be:

– Line: It affects a single line of test code;
– Keyword: It is present in a single Keyword;
– Test: It can spread across different keyword from within a single test;
– Suite: It is spread across the entire test suite.

4.2.1 Army of Clones (AoC)

Description Different tests perform and implement similar actions, leading to duplicated
pieces of test code.

Impact on readability Test sequences which are similar but not identical are not easy to
distinguish. It is not easy to grasp the intention of the test in comparison with its clone.

Impact onmaintenance The effort to maintain duplicated parts of tests increases. Further-
more, it is difficult to determine where maintenance has to be performed.

Dispersion Suite.

Detectionmethod Code duplication can be observed at different levels. Here, for the body
of a User Keyword, we detect if there exists a clone of type 1 (code duplication at the token
level) or type 2 (code duplication at syntax level allowing for minor syntactic changes such
as variables name) in the test suite. Thus, we express the count metric, SAoC(t), as the
number of calls to User Keywords that have a clone and the density metric, DAoC(t), as the
number of calls to User Keywords that have a clone over the total number of unique User
Keywords called by the test. More formally:

SAoC(t) = |Kt ∩ Kclone|

DAoC(t) = |Kt ∩ Kclone|
|Kt |

where Kt is the set of unique User Keywords called by test t and Kclone is the set of unique
User Keywords that have at least one clone in the test suite.

Smell-removing actions The symptom is considered refactored if the User Keyword that
is called by a test and have at least one clone in the test suite, kt,clone, is removed. Thus, we
propose the smell-removing pattern, SRAAoC(k), as follow:

SRAAoC(k) = kt,clone
action−−−→ ∅

Page 23 of 55 20Empir Software Eng (2023) 28:20

4.2.2 Conditional Assertions (CA)

Description The test verifies different properties depending on the environment when the
environment state may change from one execution to the next.

Impact on readability With more complex logic in the assertions, it becomes harder to
capture their meaning.

Impact on execution More complex code might introduce bugs in the test code.

Dispersion Line or Keyword.

Detection method We consider assertions nodes, Cassertion, to be symptomatic if they
have a parent node which is a conditional node and have no sibling nodes in the call graph,
Ccondition. Thus, we express the count metric, SCA(t), as the number of conditional asser-
tion calls and the density metric, DCA(t), as the number of conditional assertion calls over
the total number of assertion calls.

SCA(t) = |Ct ∩ Cassertion ∩ Ccondition|

DCA(t) = |Ct ∩ Cassertion ∩ Ccondition|
|Ct ∩ Cassertion|

where |Ct ∩ Cassertion| is the size of the set of calls to Library Keyword annotated as
“assertion” for a test t and |Ct ∩ Cassertion ∩ Ccondition| is the size of the set of calls to
Library Keyword annotated as “assertion” for which the caller is a conditional node that has
only one child (logging nodes excluded).

Smell-removing action The symptom is considered refactored if the conditional assertion
node is removed from the call graph. Thus, we accept the following smell-removing pattern,
SRACA(c), as removing a symptom in a node c:

SRACA(c) = ct,assertion,condition
action−−−→ ct,assertion

The assertion ct,assertion replaces its former parent node ct,assertion,condition. Note that
removing a parent of ct,assertion,condition or adding a sibling to the child assertion node are
not considered as fixing the symptom.

4.2.3 Hardcoded Environment (HE)

Description The test contains hardcoded references to the environment when the same
requirement must be run against different test environments instead of having an
environment-agnostic test.

Impact onmaintenance Updating the configuration requires modifying multiple locations
in different tests.

Dispersion Line.

20 Page 24 of 55 Empir Software Eng (2023) 28:20

Detectionmethod The metric we propose covers the case of multi-browser configuration.
Here, when a browser is loaded, the metric ensure that the web-driver is not instanti-
ated with a hardcoded configuration for the browser. Thus, we express the count metric,
SHE(t , as the number of configuration arguments that are hardcoded and the density metric,
NHE(t), as he number of configuration arguments that are hardcoded over the total number
of configuration arguments. More formally:

SHE(t) = |At ∩ Aconf ig ∩ Ahardcoded |

DHE(t) = |At ∩ Aconf ig ∩ Ahardcoded |
|At ∩ Aconf ig|

where |At ∩ Aconf ig| is the size of the set of arguments in calls to Library Keywords anno-
tated as “configuration” in a test t and |At ∩ Aconf ig ∩ Ahardcoded | is the size of the set of
arguments in calls to Library Keywords annotated as “configuration” for which the value is
hardcoded.

Smell-removing action The symptom is considered refactored if the hardcoded argument
in a call to a Library Keyword annotated as “configuration”, at,conf ig,hardcoded , is replaced
with a variable, at,conf ig,variable. Thus, we propose the following smell-removing pattern,
SRAHE(a), for an argument a:

SRAHE(a) = at,conf ig,hardcoded
action−−−→ at,conf ig,variable

4.2.4 Hidden Test Data (HTD)

Description The data are not directly visible and understandable in the test but are hidden
in the fixture code.

Impact on readability The data is completely obscure to the future reader making the intent
of the test difficult to understand.

Dispersion Line.

Detection method In this work, we associate the fixture code to the setup of a test. We
consider data access as reading input from external resources through a Library Keyword
annotated as “getter”. Thus, we express the count metric, SHT D(t), as the number of calls
to getter in the setup of a test and DHT D(t) as the number of calls to getter in the setup of a
test over the total number of calls in the setup of that test. More formally:

SHT D(t) = |Ct ∩ Csetup ∩ Cgetter |

DHT D(t) = |Ct ∩ Csetup ∩ Cgetter |
|Ct ∩ Csetup|

where |Ct ∩ Csetup| is the size of the set of calls to Library Keywords in the setup of test t

and |Ct ∩ Csetup ∩ Cgetter | is the size of the set of calls to Library Keywords annotated as
“getter” in the setup of test t .

Smell-removing action The symptom is considered refactored if the call to the Library
Keywords annotated as “getter” in the setup of test t , ct,setup,getter , is removed. Thus,

Page 25 of 55 20Empir Software Eng (2023) 28:20

we propose the following smell-removing pattern, SRAHT D(c) performed on a Library
Keyword call c as follow:

SRAHT D(c) = ct,setup,getter
action−−−→ ∅

Note that removing a parent node of ct,setup,getter is not considered as a fix.

4.2.5 Lack of Encapsulation (LoE)

Description The implementation details of a test are not properly hidden in the implemen-
tation layer and start appearing in its acceptance criteria.

Impact on readability The acceptance criteria is meant to convey intention over imple-
mentation. Focusing on implementation in the acceptance criteria makes the intent harder
to grasp.

Dispersion Line.

Detectionmethod Typically the acceptance criteria makes call to the implementation layer
which subsequently relies on the application driver layer. The metric detects the direct calls
from the acceptance criteria (test steps) to Library Keywords. Thus, we express the count
metric, SLoE(t), as the number of direct calls to a driver from the acceptance criteria of a
test and the density metric, DLoE(t), as the number the number of direct calls to a driver
from the acceptance criteria of a test over the total number of steps of the acceptance criteria
of a test. More formally:

SLoE(t) = |Ct ∩ Cstep ∩ Cdriver |

DLoE(t) = |Ct ∩ Cstep ∩ Cdriver |
|Ct ∩ Cstep|

where |Ct ∩ Cstep| is the size of the set of steps in the acceptance criteria of the test t and
|Ct ∩ Cstep ∩ Cdriver | is the size of the set of steps in the acceptance criteria of the test t

directly calling the application driver, i.e. a (Library Keyword).

Smell-removing action The symptom is considered refactored if the direct call to a Library
Keyword is removed from the acceptance criteria. Thus, we propose the smell-removing
patterns, SRALoE,1(c) and SRALoE,2(c), performed on a Library Keyword call c as follow:

SRALoE,1(c) = ct,step,driver
action1−−−−→ ct,step,¬driver

SRALoE,2(c) = ct,step,driver
action2−−−−→ ∅

In the first equation, SRALoE,1(c), the direct call to a Library Keyword in the accep-
tance criteria is replaced by a call to a User Keyword where as in the second equation,
SRALoE,2(c), the call is removed.

4.2.6 Long Test Steps (LTS)

Description One or many test steps are very long, performing a lot of actions on the system
under test.

Impact on readability The intention of the step is difficult to grasp.

20 Page 26 of 55 Empir Software Eng (2023) 28:20

Impact on execution With each action on the system under test, there is a chance of
something going wrong. The higher this number, the more fragile the test becomes.

Dispersion Test.

Detection method For a test step, Kt,step , of a test t , the metric counts the number of
Library Keyword annotated as “action” (triggering an event on the SUT) called directly or
indirectly by Kt,step. If the value is greater than a threshold L, then Kt,step is considered
symptomatic. Thus, we express the count metric, SLT S(t), as the number of steps that are
performing a number of actions greater than a threshold and the density metric, DLT S(t), s
the number of steps that are performing a number of actions greater than a threshold over
the total number of steps. More formally:

SLT S(t) = |Ct ∩ Cstep≥L|

DLT S(t) = |Ct ∩ Cstep≥L|
|Ct ∩ Cstep|

where |Ct ∩ Cstep| is the number of steps in a test t and |Ct ∩ Cstep≥L| is the number of
steps calling more than L Library Keyword annotated as “action”.

Because the parameter L needs to be set empirically, we compute a deviation threshold
based on the distribution of our dataset. Using the analysis of the evolution of the quan-
tiles, we compute at which point the values start to rapidly deviates by computing the knee
curve of the quantiles distribution function proposed by (Satopaa et al. 2011). Following this
approach we find the knee point at 13 actions on the SUT for a step (quantile = 0.986, see
Fig. 5). Therefore, we set L = 13 and consider any step performing a sequence of actions
on the SUT greater than 13 to be too long.

Smell-removing action The symptom is considered refactored if the number of actions
performed on the SUT by a long step sees its value pass under the threshold L. We do not
specify how the calls on the SUT have to be transformed, as long as the test step call is left
unchanged. Thus, we propose the smell-removing pattern, SRALT S(c), where c is a long
test step:

SRALT S(c) = ct,step≥L
action−−−→ ct,step<L

where ct,step≥L is a step yielding at least L actions on the SUT while ct,step<L is a step
yielding less than L actions on the SUT.

Fig. 5 The blue curve represent
the evolution of the length of the
sequences of the step as the
quantiles increase. The
intersection of the black doted
lines displays the knee point
(0.986, 13) at which the values
sequence lengths values start to
increase dramatically

Page 27 of 55 20Empir Software Eng (2023) 28:20

4.2.7 Middle Man (MM)

Description A test component (keyword, macro, function) delegates all its tasks to another
test component.

Impact on readability The levels of indirection make the test harder to follow by future
readers.

Dispersion Keyword.

Detectionmethod The principle of delegating is doing nothing and simply calling another
function. Thus, we express the count metric, SMM(t), as the number of User Keywords
called from a test that are composed of a single call to another Keyword and the density
metric, DMM(t), as the he number of User Keywords called from a test that are composed
of a single call to another User Keyword and the density metric over the total number of
Keyword called by the test. More formally:

SMM(t) = |Kt ∩ Kdelegate|

DMM(t) = |Kt ∩ Kdelegate|
|Kt |

where |Kt | is the number of User Keywords in a test t and |Kt ∩ Kdelegate| is the number
of User Keywords performing a single call to one other User Keyword (we ignore logging
action) without performing any subsequent action on their own, i.e. Delegate Keyword.

Smell-removing actions The symptom is considered refactored if the Delegate Keyword
call is replaced with another call which is not simply delegating its actions. Thus, we pro-
pose the smell-removing pattern, SRAMM(c) where c is a call to a Delegate Keyword
as:

SRAMM(c) = cKt,delegate

action−−−→ cKt,¬delegate

where cKt,delegate
is a call to a Delegate Keyword and cKt,¬delegate

is a call to any Keyword not
performing delegation.

4.2.8 Missing Assertion (MA)

Description The test lacks any explicit assertions.

Impact on readability Future readers are left in the potentially frustrating position of
puzzling over the intention of the test.

Dispersion Test.

Detectionmethod The metric detects the absence of call to Library Keyword annotated as
“assertion” within the test. Because the symptom can at most appear once in the test, both
the count metric, SMA(t) and the density metric DMA(t) are express as the absence of an
assertion call in the test. More formally:

SMA(t) = DMA(t) =
{
1, if Ct ∩ Cassert = ∅
0, otherwise

20 Page 28 of 55 Empir Software Eng (2023) 28:20

Smell-removing actions The symptom is considered refactored if Library Keyword anno-
tated as “assertion” is introduced in test that is missing any assertion. Thus, we propose the
smell-removing pattern, SRAMA(t), where t is the test lacking any assertion as:

SRAMA(t) = ∅ action−−−→ ct,assertion

where ct,assertion is a call to a Library Keyword annotated as “assertion” in a test t .

4.2.9 Narcissistic (N)

Description The test uses the first person pronoun “I” to refer to its actors and does not
uniquely qualify those actors.

Impact on readability The test is harder to read because it is not clear who “I” is and what
are the roles that “I” has.

Dispersion Line.

Detection method Using text tagging, we identify calls from the acceptance criteria, i.e.
“test steps”, using a personal pronouns as the subject in there name as symptomatic. Further-
more, the implementation used in our experiments supports the different languages present
in our dataset (namely, French and English). Thus, we express the count metric, SN(t), as
the number of steps in the acceptance criteria of a test that are using a personal pronoun and
the density metric, DN(t), as the number of steps in the acceptance criteria of a test that are
using a personal pronoun over the total number of steps in the acceptance criteria of the test:

SN(t) = |Ct ∩ Cstep ∩ CI |
DN(t) = |Ct ∩ Cstep ∩ CI |

|Ct ∩ Cstep|
where |Ct ∩ Cstep| is the number of “test steps” for a test t and |Ct ∩ Cstep ∩ CI | is the
number of “test steps” using a personal pronouns as the subject in there name.

Smell-removing actions The symptom is considered refactored if the name of a symp-
tomatic “test steps” is changed so that it does not contain a personal pronoun anymore.
Thus, we propose the smell-removing pattern, SRAN(c), where c is a step of the acceptance
criteria of a test t :

SRAN(c) = ct,step,I
action−−−→ ct,step,¬I

where ct,step,I is a User Keyword called by a “test steps” using the personal pronoun
“I” as the subject and ct,step,¬I is the User Keyword with its new name not using the per-
sonal pronoun “I” as the subject. Therefore, a fix is detected only when the name of a User
Keyword called by a “test steps” is changed.

4.2.10 Noisy Logging (NL)

Description The test logs the state of the fixtures.

Impact on execution There is too much noise in the output from the tests, making its
analysis more cumbersome.

Dispersion Test.

Page 29 of 55 20Empir Software Eng (2023) 28:20

Detection method In this work, we associate the fixture code to the setup of a test. Thus,
we express the count metric, SNL(t), as the number of calls to Library Keywords annotated
as “logging” from the setup of a test and the density metric, DNL(t), as the number of calls
to Library Keywords annotated as “logging” from the setup of a test over the total number
of calls from the setup of the test. More formally:

SNL(t) = |Ct ∩ Csetup ∩ Clogging|
DNL(t) = |Ct ∩ Csetup ∩ Clogging|

Ct ∩ Csetup

where |Ct ∩ Csetup| is the size of the set of Library Keyword called from the setup of
a test t and |Ct ∩ Csetup ∩ Clogging| is the size of the set of Library Keyword annotated as
“logging” called from the setup of test t .

Smell-removing action The symptom is considered refactored if the call to the Library
Keyword annotated as “logging” called from the setup of test t , ct,setup,log , is removed.
Thus we propose the smell-removing pattern, SRANL(c), performed on a Keyword call c

as follow:
SRANL(c) = ct,setup,log

action−−−→ ∅
Note that removing a parent of ct,setup,log is not considered as fixing the smell.

4.2.11 Obscure Test (OT)

Description The test behavior is difficult to understand because the test does not clearly
state what it is verifying. Typical symptoms are hardcoded values, high cyclomatic
complexity and/or function or procedure calls with high number of parameters.

Impact on readability Future reader might not understand the meaning of a hardcoded
value, hence, missing the intention of the test. As with a high cyclomatic complexity it
becomes hard for the future reader to follow the execution flow of the test and grasp what it
is doing.

Impact onmaintenance It is difficult to determine where to perform changes if hardcoded
values are scattered all over the test code. Furthermore, test with high cyclomatic complexity
might have side effect overseen during maintenance which might lead to future problems.

Dispersion Test

Detection method In this work, we focus on one of the expression of an obscure test:
the overuse of hardcoded values. The code starts to smell when hardcoded values are used
directly in calls to bothUser Keyword and Library Keywords, instead of relying on variables.
Thus, we express the count metric, SOT (t), as the number of hardcoded arguments present
in a test and the density metric DOT (t) as the number of hardcoded arguments present in
the test over the total number of arguments from that test. More formally:

SOT (t) = |At ∩ Ahardcoded |
DOT (t) = |At ∩ Ahardcoded |

|At |
where |At | is the size of the set of arguments passed to Keyword calls in a test t and
|At ∩ Ahardcoded | is the size of the set of arguments passed to Keyword calls which are
hardcoded.

20 Page 30 of 55 Empir Software Eng (2023) 28:20

Smell-removing actions Focusing on hardcoded values, the symptom is considered refac-
tored if an argument passed to Keyword call as a hardcoded value is replaced by a variable.
Thus, we propose the smell-removing pattern, SRAOT (a), where a is a Keyword call
arguments as:

SRAOT (v) = at,hardcoded
action−−−→ at,variable

where at,hardcoded is a hardcoded Keyword call argument and at,variable is a variable
Keyword call argument.

4.2.12 On the Fly (OtF)

Description The test calculates an expected results during its execution instead of relying
on pre-computed values.

Impact on readability By embedding the business rule in the assertion, the code for the
automated test can become as complicated as the system under test.

Dispersion Line.

Detectionmethod The expected value should be a constant or a reference to a constant and
not computed during the test. Thus, we express the count metric, SOtF (t), as the number
of expected values that are computed in the test and the density metric, DOtF (t), as the
number of expected arguments from assertion calls that are computed in the test over the
total number of expected arguments from assertion calls:

SOtF (t) = |At ∩ Aexpected ∩ Acomputed |

DOtF (t) = |At ∩ Aexpected ∩ Acomputed |
|At ∩ Aexpected |

where |At ∩ Aexpected | is the number of “expected” arguments in calls to Library Keywords
annotated as “assertion” for a test t and |At ∩ Aexpected ∩ Acomputed | is the number of
“expected” arguments in calls to Library Keywords annotated as “assertion” resolved during
the execution of the test t . Note that the identification of the “expected” argument is based
on the definition of the Library Keyword. When a Library Keyword annotated as “assertion”
contains a field called “expected”, it is considered by the engine as the placeholder for the
expected value. For instance, the library keyword Should be equal from the Builtin library
takes six arguments: value, expected, message, values, ignore case and formatter. Hence,
in this case the expected argument is the second one.

Smell-removing action The symptom is considered refactored when the assertion is pre-
served but the expected value is not computed on the fly. This leads to the following equation
for a smell-removing action, SRAOtF , addressing a symptom in an argument a:

SRAOtF (a) = at,expected,computed
action−−−→ at,expected,¬computed

where at,expected,computed is an expected value that is computed on the fly and
at,expected,¬computed is an expected value that is not computed on the fly, being either hard-
coded or provided through a variable pointing to a static value. Thus removing the assertion
would not be considered as removing the symptom since at,expected,¬computed would not be
present.

Page 31 of 55 20Empir Software Eng (2023) 28:20

4.2.13 Over-Checking (OC)

Description The test performs some assertions that are not relevant for its scope.

Impact on readability It becomes harder to understand what is the main intent of the test.
Many assertions suggest the test is checking many properties.

Impact on maintenance The test may be too sensitive to the evolution of the SUT,
verifying implementation properties instead of behavioral ones.

Dispersion Test.

Detection method As the ratio assertions to actions on SUT increases, the chances that
all the assertions are relevant decreases. Thus we express the count metric, SOC(t), as the
number of assertions in a test and the density metric, NOC(t), as the number of assertions
in a test over the total number of calls in the test. More formally:

SOC(t) = |Ct ∩ Cassertion|
NOC(t) = |Ct ∩ Cassertion|

|Ct |
where |Ct | is the size of the set Library Keywords calls and |Ct ∩ Cassertion| is the size of
the set of calls to Library Keywords annotated as “assertion”.

Smell-removing actions The symptom is considered refactored if the call to a Library
Keyword annotated with “assertion”, ct,assertion , is removed from a test t . Thus, we propose
the smell-removing pattern, SRAOC(c) where c is a call to an Library Keyword annotated
with “assertion” as:

SRAOC(c) = ct,assertion
action−−−→ ∅

4.2.14 Sensitive Locators (SL)

Description The test uses element identification selectors that have long chains to identify
an element in the user interface. e.g. complex x-pass or CSS selector for web application.

Impact on maintenance This leads to fragile tests, as any change in that chain from the
user interface representation will break the tests.

Dispersion Line.

Detection method The complexity of a locator can be expressed by how deep the locator
needs to go in the hierarchy of the UI, be it an x-pass, a CSS selector or any UI representation
based on a hierarchy. A locator, Alocator , can be expressed as the number of GUI element,
|E|, that have to be traversed to uniquely locate the target GUI element. Thus, we express
the count metric, SSL(t), as the number of locator arguments that visit more than one GUI
elements and the density metric, DSL(t), the number of of locator arguments that visit more
than one GUI elements in a test over the total number of locator arguments present in the
test. More formally:

SSL(t) = |At ∩ Alocator ∩ A|E>1|

20 Page 32 of 55 Empir Software Eng (2023) 28:20

DSL(t) = |At ∩ Alocator ∩ A|E>1|
|At ∩ Alocator |

where |At ∩ Alocator | ∩ A|E>1| is the number of locators that require to visit more than one
element E of the GUI to be uniquely identified (e.g. the XPath “/html/body/div[4]/button”
visits 4 elements to quality the button where the XPath “//button[@id =”unique-id”]” only
needs to visit one element). Note that Robot Framework using dynamic types, only Library
Keyword calls explicitly specify a type for their parameters. Therefore, for each Library
Keyword call requiring a locator as an argument, the engine resolve all the values possible
for the argument within the test to populate the set Alocator .

Smell-Removing Actions: The symptom is considered refactored if the value of a node l

flagged as complex locator sees its length go down to one. Thus, we propose the smell-
removing pattern, SRASL(l), as follow:

SRASL(c) = l|E>1|
action−−−→ l|E=1|

where l|E>1| is a node defining the value of a sensitive locator and l|E=1| is the same node
but with a simple locator expression. Note that a change is only accounted for when the
value of the locator is modified.

4.2.15 Sneaky Checking (SC)

Description The test hides its assertions in actions that are at the wrong level of details.

Impact on readability The future reader is not able to understand what is being tested by
just looking at the main steps of the acceptance criteria without a need to inspect how low
level details are implemented.

Dispersion Keyword.

Detection method A User Keyword only calling an Library Keyword annotated as “asser-
tion” can be seen as hiding the assertion to the callers of that User Keyword. Thus, we
express the count metric, SSC(t), as the number of unique User Keywords called by a test
and only calling an assertion and the density metric, DSC(t), as the number of unique User
Keywords called by the test and only calling an assertion over the number of unique User
Keywords called by that test. More formally:

SSC(t) = |Kt ∩ Kassert |
DSC(t) = |Kt ∩ Kassert |

|Kt |
where |Kt | is the total number of uniqueUser Keywords and |Kt ∩ Kassert | is the number of
User Keywords only calling an Library Keyword annotated as “assertion” (logging actions
are ignored).

Smell-Removing Actions: The symptom is considered refactored if a User Keywords only
calling a Library Keyword annotated as “assertion”, kt,assert , is removed from the test t .
Thus, we propose the smell-removing pattern, SRASC(k), where k is a User Keywords as:

SRASC(k) = kt,assert
action−−−→ ∅

Page 33 of 55 20Empir Software Eng (2023) 28:20

4.2.16 Stinky Synchronization (SS)

Description The test fails to use proper synchronization points with the system under test.

Impact on execution The test becomes oversensitive to the response time, leading to flaky
tests, or very slow tests when choosing very conservative wait points.

Dispersion Line.

Detection method This symptom is associated with the use of explicit and fixed synchro-
nization, independent from the SUT such as a pausing the test for a specific amount of time.
Thus, we express the count metric, SSS(t), as the number of calls to explicit pause from a
test and the density metric, DSS(t), as the number of calls to explicit pause from a test over
the total number of synchronization calls. More formally:

SSS(t) = |Ct ∩ Csync ∩ Csleep|

DSS(t) = |Ct ∩ Csync ∩ Csleep|
|Ct ∩ Csync|

where |Ct ∩ Csync| is the size of the set of calls to Library Keyword annotated as “syn-
chronization” in a test t and |Ct ∩ Csync ∩ Csleep| is the size of the set of calls to Library
Keyword annotated as “synchronization” by pausing the test execution for a specified
amount of time. In the case of Robot Framework, it is instantiated by calls to the Library
Keyword “Sleep”.

Smell-removing actions The symptom is considered refactored if a Library Keyword call
annotated as “synchronization” which pausing the test execution of the test for a specified
amount of time, ct,sync,sleep , is removed or replaced by another Library Keyword call anno-
tated as “synchronization”, ct,sync,¬sleep . Thus, we propose two smell-removing patterns,
SRASS,1(c) and SRASS,2(c), as follow:

SRASS,1(c) = ct,sync,sleep
action1−−−−→ ∅

SRASS,2(c) = ct,sync,sleep
action2−−−−→ ct,sync,¬sleep

4.3 Smell Validation

We proceeded to an external evaluation of the tooling by asking four Ph.D. students from
our group to systematically go over the smells and flag the ones that they consider false
positive. To assist them during this task we used the SonarQube Plugin (Fig. 6) that we
developed which implements the smells reported in this work (with the exception of Nar-
cissistic requiring a language model of 400MB that we deem too large for distribution and

Fig. 6 Example of a smell instance deemed as a false positive by one of our volunteer during the evaluation
of the smell detection algorithm using our SonarQube Plugin

20 Page 34 of 55 Empir Software Eng (2023) 28:20

Army of Clones which conflicts with SonarQube which implements its own token based
clone detection mechanism). To do so, we assigned to each of the participants one of the four
largest projects (ifs, harbor, bikalims, and ozone) of our dataset and asked them to review
systematically all the detected smells instances in the last version of each projects. How-
ever, due to the large amount of Hardcoded Values (31,161) we only used a random sample
and relying on the Central Limit Theorem, we asked the participants to review a sample of
673 smells offering a confidence interval of 99% and a margin of error of 5%. We present
the results in Table 9. We see that with the exception of Conditional Assertion, all metrics
perform well in terms of precision. The low score associated with Conditional Assertion
originates from the definition of what we define as a condition. Indeed, the tooling label the
library keyword Run Keyword as conditional since it impacts the control flow, but not
doing so conditionally, but rather systematically, it should be excluded when considering a
conditional assertion. The false positive associated to Hardcoded Values originate from the
presence of structures defined by the development teams in python scripts that could not be
mapped by our tooling.

Next, because some smells do not appear in the selected versions or are not implemented
by the SonarQube Plugin, an additional investigation had to be performed by the authors of
the paper to validated the remaining 5 smells. To do so, we randomly select 30 instances
of the smell symptoms detected in the industrial project with which we are familiar. We
perform a similar analysis as the one performed by the participants but relying on the Ikora
Evolution which does not provide a user interface, however, expose both Narcissistic and
Army of Clones instances. Furthermore, the tooling allow to analyze many version of the test
suite at once to augment chances to encounter smell symptoms. The results of this analysis
are reported in Table 9.

We observe that most result do not expose false positive. Furthermore, after this anal-
ysis, we improved the tooling to reach 100% precision for the two smells that performed
suboptimally with regard to that metric.

Table 9 Results from the tool evaluation performed using the SonarQube Plugin

Smell Sample False Positive Precision

Army of Clones* 30 0 1.00

Conditional Assertion 42 26 0.42

Hardcoded Environment 31 0 1.00

Hardcoded Values 673 30 0.96

Lack of Encapsulation 949 0 1.00

Long Test Steps 412 0 1.00

Missing Assertion 150 0 1.00

Middle Man* 30 0 1.00

Noisy Logging* 30 0 1.00

On the Fly 6 0 1.00

Over-Checking 489 0 1.00

Sensitive Locator* 30 0 1.00

Sneaky Checking* 30 0 1.00

Stinky Synchronization Syndrome 279 0 1.00

Smells associated with a * indicates an evaluation on the industrial project by the author of the tool

Page 35 of 55 20Empir Software Eng (2023) 28:20

Fig. 7 Percentage of tests exhibiting at least one symptom in open-source and industrial projects

4.4 RQ2: SUIT Smell Symptoms Distribution

Building on the metrics derived in Section 4.1, we show in Fig. 7 the number of tests
exhibiting at least one smell symptom. We observe that the smell Hidden Test Data does
not appear in any of the studied projects. Furthermore, the smells Noisy Logging, Sensitive
Locator, Narcissistic and HardCoded Environment manifest in less than 10% of the tests in
both open-source and industrial test suites. Figure 8 shows answer from the interviews to

Fig. 8 Answers from the interviews to the question: Do you consider this pattern a smell? The total number
of answer (X-axis) corresponds to the number of interviewees

20 Page 36 of 55 Empir Software Eng (2023) 28:20

the question : According to your experience, do you consider it a smell?. Putting the results
from Figs. 7 and 8 into perspective, we observe that the smells Noisy Logging, Narcissis-
tic, and HardCoded Environment are all considered by all interviewees to be a smell and
tend to rarely appear in the test suites analyzed suggesting a deliberate intent by practition-
ers to avoid these patterns. In the case of Sensitive Locator, even though one interviewee
does not consider it harmful, most do, mentioning strategies and tooling to generate good
locators: I use tools like Playwright to generate stronger locators or There also exists web-
site like ”test projects” where you can generate good locators. Furthermore, the literature
offers an entire field dedicated to improve locator representation, specifically by offering
ways to generate shorter locators (Leotta et al. 2014; 2016; Kirinuki et al. 2019; Nguyen
et al. 2021). Finally, Hidden Test Data does not appear often despite not being considered
by three out of four interviewees as a smell. These results may originate from the limited
capacity from the tooling to detect the use of data providing from pythons scripts, thus not
being annotated as GETTER (Table 3) from our tool.

On the other end of the spectrum, three smells appear in the majority of the tests: the
symptom Hardcoded Values appears in more than 90% of the tests, Over Checking between
75% (industrial) and 79.5% (open-source), and finally Sneaky Checking appears in 70% of
the tests. Again, contrasting these observations with the results from Fig. 8, we observe that
Sneaky Checking is considered to not be a smell by three out of four interviewees, which
explains its high occurrence. On another hand, the high number for Hardcoded Values can
be explained by the metric which is very sensitive, since as soon as one hardcoded value
is used in a test, regardless of its size, it is considered as being symptomatic. Lastly, Over
Checking present a test dispersion, which means it can be spread across different Keywords
located in different files. This characteristic can explain why practitioners are less able to
avoid this smell because they might not be aware of its presence.

When comparing industrial and open-source projects, we observe significant differences.
Notably, in industrial projects three symptoms appear much more often than in open-
source projects, namely,Middle Man (93.5%), Army of Clones (91.2%) and Long Test Steps
(58.8%). These results can be explained by the structure of the projects at BGL BNP Paribas.
Symptoms for the smells Long Test Step and Army of Clonesmanifest because many reposi-
tories are interconnected, leading to larger tests and code base where these two smells with a
large dispersion, test and suite respectively, are hard to detect. As for the symptoms ofMid-
dle Man, their presence is explained by the use of Keywords that act as translation layers.
While two actions can perform the same concrete actions on the SUT, in different contexts
they might operate on a different business logic. Thus, developers created translation layers
to unify the vocabulary used in the acceptance layer of each test. These translation layers
are implemented by the use of a Keyword only calling one other Keyword with a different
name. Along those lines, one interviewee working on another project added: It depends on
the place people come from. For instance, non-english speakers people would not be able
to read the english keywords, when explaining why sometimes they do introduce a Middle
Man.

We continue our analysis with the evaluation of the number of symptoms appearing per
tests (Fig. 9). Note that only tests presenting at least one symptom are considered in our
analysis, i.e. symptomatic tests. Looking at Hardcoded Values, we see that even if both
industrial and open-source projects exhibit the same proportion of tests affected by Hard-
coded Values, the number varies significantly from a median of 27 in the case of industrial
projects to 59 for open-source ones. As explained previously, this number can be explained
by the presence of larger tests in the industrial projects, which offer mechanically more
chances to observe more Hardcoded Values. A similar observation can be made for the case

Page 37 of 55 20Empir Software Eng (2023) 28:20

Fig. 9 Distribution of the number of symptoms in symptomatic tests for all projects across all commits

of Over Checking where the median varies from 5 (open-source) to 70 (industrial). Finally,
the last significant difference regards the symptom Army of Clones. Not only the number
of tests containing duplicated code (Fig. 7) is higher, but the average number of duplicated
Keywords in symptomatic tests is higher in industrial projects than in open-source projects.
This is explain by the complexity of the project in the industrial dataset, where a duplicated
Keywords can exist in different sub-project and therefore, it becomes hard for the practition-
ers to reuse keywords when they are not aware of their existence. Note that this observation
is also true in open-source projects. Indeed, during our interviews, one of the interviewee
blamed the diffusion of duplicated code on the lack of tooling, saying: With Robot Frame-
work, there is no proper IDE that allows you to have visibility for the code. [...] The lack of
tooling is the issue.

To put the results of Fig. 9 into perspective, we show the density metrics, Ds(t), in
Fig. 10. As a reminder, the density value presents the number of symptoms appearing in a
SUIT divided by the number of times it could have appeared. One interesting finding to put
in contrast with the previous figure regards the smell Hardcoded Environment. While the
symptoms do not appear often (only outliers present a value greater than 0 in Fig. 9), when-
ever an environment variable is used, it will generally be through the use of a hardcoded
value which is shown by a median value for its density metric at 1 for both open-source
and industrial projects. That is, with regard to its potential occurrences, the SUIT smell
Hardcoded Environment is actually very frequent. Thus, even though interviewees agree
to qualify the use of Hardcoded values to set up environment variable, this smell tends to
appear at a high density. On the other hand, the smells Noisy Logging, Hidden Test Data,
Sensitive Locator, Narcissistic and Conditional Assertion present low scores in the den-
sity value. This means that even when the conditions for their occurrence are present, the
symptoms of these smells do not manifest, which confirms our previous observations.

20 Page 38 of 55 Empir Software Eng (2023) 28:20

Fig. 10 Distribution of the density of symptoms in each test for all projects across all commits where the
density is the percentage of locations that a symptom could appear at which actually exhibit the symptom

We also observe some notable differences between the open-source projects and the
industrial projects. In the case of the industrial projects, we observe that On the Fly with a
median value of 0.67 shows a deviation from the count metric, Ss(t). As for open-source
projects, we observe that Sticky Synchronization is frequent, with a median value of 0.2. The
divergence with the count metric can be explained by the fact that many tests do not use
explicit synchronization mechanism, thus, limiting the number of tests where the symptom
could appear. Furthermore, the difference from the industrial project can be explained by
the hard policy in the QA team at BGL BNP Paribas, where explicit timeouts are consid-
ered as a major source of flakiness. As such, explicit timeouts are strongly discouraged by
the QA team and are usually removed during code reviews.

To assess its potential to appear in a test suite, we consider a symptom as frequent if the
median value of the density metric is greater than 0. Thus, Hardcoded Values with median
values of 0.67 and 0.33, Over Checking with median values of 0.17 and 0.08, and Sneaky
Checking with median values of 0.33 and 0.14, for open-source and industrial projects
respectively, are frequent in both industrial and open-source projects. This aligns with the
observations from the count metric and confirms the prevalence of these smells. Similarly,
following the same trend from Fig. 9 Army of Clones (median value of 0.40), Long Test
Step (median value of 0.5) and Middle Man (median value of 0.29) appear often in indus-
trial projects. As we mentioned earlier, the result for Hardcoded Values originates from the
sensitivity of the metric. Sneaky Checking not being considered as a smell by three out of
four interviewees, appears often. On the contrary, even though two out of four interviewees
consider Middle Man a bad practice, it tends to appear quite often. According to one of
the interviewees : Middle Man creates shorter syntax, making the test easier to read and

Page 39 of 55 20Empir Software Eng (2023) 28:20

understand, with the caveat that if it has the same number of argument, it is quite useless.
So reduce the number of arguments instead of just giving it a prettier name. This comment
can explain the apparently contradicting results. It may not be consider a bad practice if
the encapsulating Keyword consist of less arguments. Finally, Army of Clones, Long Test
Step, and Over Checking all follow a characteristic: they are not local, i.e. the definition of
each symptom covers different places in the test code. As such, especially in the absence
of appropriate tooling, it is challenging for testers to spot the presence of these symptoms,
thus hindering their effort to avoid them.

Finally, we perform a ranking analysis between industrial projects and open-source
projects. The goal of this analysis is to determine if the symptoms appear in the same order
in both project. Thus, we use the normalized Levenshtein similarity where the order of the
symptoms is determined by the mean number of symptoms and percentage of symptom.
This metric provide an indication as the number of permutations that are necessary in order
to go from one list to the other, in other words their similarity. A value of 1 indicates a per-
fect similarity and a value of 0 that the two list are totally dissimilar. We obtain a value of
0.1819 when comparing the number of symptoms and a value of 0.3125 in the case of their
density. The higher score when taking into account the density metric can be explain by the
difference in term of tests sizes, where the industrial tests tend to be much larger than the
open-source ones, thus offering larger raw counts but normalizing for the size effect. More
generally, these low scores suggest that the relative importance of the symptoms present in
SUITs differs from industrial project and open-source projects. Notably, despite the differ-
ent in size, one major difference between the two dataset is the scope of the test suites. In
the case of open-source project, each test suite target a single application. In the case of the
industrial projects, different test suites are reused to create common libraries in an effort to
reduce the maintenance and production effort by mutualizing part of the test code. Unfor-
tunately out of the scope of the present study, the impact of the architecture of a test suite
on the occurrences of smell would shed more light on the underlying reason behind these
differences.

4.5 RQ3: Smell-Removing Actions

While Section 4.4 focuses on the prevalence of smell symptoms across SUITs, this section
tackles the question of how often the symptoms are removed by practitioners. We use
the methodology described in Section 3.4 to extract the fine-grained changes removing a
symptom from the test, i.e. smell-removing actions.

Column Count in Table 10 shows the number of smell-removing actions across all SUIT-
modifying commits. Adding assertions to tests presenting the symptom Missing Assertion
is the most common type of smell-removing action as it occurs 6,647 times in the industrial
project and 137,707 times in open-source projects. This result is explained by the fact that
in SUITs, creating a scenario and being able to run it from beginning to end already provide

20 Page 40 of 55 Empir Software Eng (2023) 28:20

Table 10 Total Number of smell-removing actions (Count) and percentage of symptomatic tests where at
least one smell-removing action was performed during their lifetime (Percent) for industrial and open-source
projects

Industrial Open-source

Symptom Count Percent Count Percent

Army of Clones 738 36.64 10,139 24.42

Conditional Assertions 9 4.95 270 0.32

Hardcoded Environment 0 0.00 882 9.95

Hardcoded Values 226 18.44 28,863 17.09

Hidden Test Data 0 0.00 0 0.00

Lack of Encapsulation 8 0.00 10,944 11.52

Long Test Steps 0 0.00 34 0.19

Middle Man 1,037 39.57 55,509 27.62

Missing Assertion 6,647 90.45 137,707 72.86

Narcissistic 0 0.00 0 0.00

Noisy Logging 0 0.00 0 0.00

On the Fly 27 13.85 516 7.93

Over-Checking 35 3.46 21,586 15.50

Sensitive Locators 2 4.55 0 0.00

Sneaky Checking 0 0.00 0 0.00

Stinky Synchronization 38 4.92 23,163 23.28

a signal. However, once the test is ready and behaves as expected, more specific checks,
i.e. assertions, are added to improve its readability and its fault detection capabilities. Thus,
we observe that some SUITs are missing assertion when created but assertions are added in
later commits.

In the industrial project, three other types of smell-removing actions see high values
compared to the rest, namely, Army of Clones with 738 smell-removing actions, Hard-
coded Value with 226 smell-removing actions, andMiddle Man with 1,037 smell-removing
actions. Indeed, with the introduction of the tool presented in (Rwemalika et al. 2019b),
the team at BGL BNP Paribas became aware of the existence of a large amount of code
duplication and actively started to work on reducing it, which explains the number of smell-
removing actions for Army of Clones. As for Middle Man, during the year 2019, the team
performed a normalization in the naming of Keywords, in an effort to improve readabil-
ity in the codebase. Consequently, names such as “Fill Form Next Page” were changed to
more expressive forms such as “Fill Login Form and Validate”. The goal was to increase the
expressiveness of the test codebase and consequently, it reduced the need for a translation
layer. Note that in this case, the team was targeting another SUIT smell,Unsuitable Naming,
where the name of the Keyword does not provide indication as what it is doing. Thus, the
team ended up addressing two smells:Unsuitable Naming andMiddle Man. Finally, observ-
ing the number of smell-removing actions addressing Hardcoded Value is mainly due to
the fact that the symptom appears often. Indeed, when observing the column Percent from
Table 10, we see that only 18% of the test exhibiting the symptom ever observe the removal
of one symptomatic instance through their lifetime.

Page 41 of 55 20Empir Software Eng (2023) 28:20

Fig. 11 Evolution of the number
of symptoms for the smell
Narcissistic over time for the
industrial project (BGL BNP
Paribas)

Still focusing on the results for the industrial project, for some symptoms, we never
observe smell-removing actions. This is the case for: Hidden Test Data, Noisy Logging,
Narcissistic, Sensitive Locator and Sneaky Checking. With the exception of Sneaky Check-
ing, these symptoms only rarely occur in the test codebase. Hence, in the absence of
symptoms, there is nothing to refactor. Sneaky Checking, on the other hand, is considered
frequent according to our metric, but is never addressed. This observation confirms our ini-
tial assumption that Sneaky Checking is not a smell, and therefore, not actively removed
from the test code.

However smell-removing actions only offer a partial picture. Indeed, Figure 11 shows
the evolution of the symptom Narcissistic over time. We observe an abrupt decrease of
the number of symptoms until they completely disappear. Where this observation seem
to contrast with previous results, this is explained by old tests presenting this pattern are
deprecated by the team and replaced by new ones not presenting the smell. Thus, while
there is no specific smell-removing action happening, the symptoms are removed from the
test suite as new test are introduced and old tests deprecated.

The results for open-source projects depict a similar picture. Symptoms for Missing
Assertion, Middle Man, Army of Clones, and HardCoded Values show also relatively high
values compared to other symptoms. Similarly, we also notice a relatively large number of

Fig. 12 Answers from the interviews to the question: How would you prioritize the refactoring of this smell?
The total number of answer (X-axis) corresponds to the number of interviewees. A value of 0 from the legend
indicates that the interviewee does not consider the pattern a smell, a value of 1 that it prioritize its refactoring
to low, and a value of 5 corresponds to a high priority for refactoring

20 Page 42 of 55 Empir Software Eng (2023) 28:20

smell-removing actions for the symptoms of Stinky Synchronization, Over Checking, and
Lack of Encapsulation. The difference between the results from Stinky Synchronization can
be explained by the active policy in the industrial team preventing such symptoms to appear
altogether.

Looking at Fig. 12, we see confirm once again that Sneaky Checking is not regarded as a
smell and explain the absence of refactoring. Interestingly, where one would have expected
high values for the intent of refactoring for Missing Assertion, we see that only one devel-
oper considers it high where the two others do not. Yet, an hypothesis as the high number
despite this result from our interview is the ease and lack of side effect of adding an assertion
in a test. Contrarily, Long Test Steps almost never see refactoring actions, where all inter-
viewees gave it a high score for refactoring. Indeed, not only the smell is difficult to detect
without executing the test, but refactoring the test requires deep changes and a lot of care to
avoid breaking its workflow. As such, this smell tends to be overlooked. Surprisingly, Army
of Clones with similar characteristics was refactored, even in open-source projects. This
indicates that testers are ready to pay the cost of maintaining the quality of the test suite,
even within a non-trivial setup. But, even more surprising, is the total absence of refactor-
ing for Hardcoded Environment. Indeed, looking at Fig. 12, all the interviewees agree that
it is a smell and should be removed with high priority. However, not only the smell tend to
appear systematically, but also it is never removed, despite being very local and easy to fix
(replace a hardcoded value by a variable and put the associated value in the variable block).

Similarly to Section 4.4, we perform a rank analysis using the normalized Levenshtein
similarity. The value obtained when comparing the number of fixes performed in open-
source and industrial projects is 0.4375 and 0.2667 when accounting for the percentage of
smell-removing actions. These low values show that the majority of smell-removing actions
are not ranked in the same way in both industrial and open-source projects. Taking into
account the results of Section 4.4 this comparison suggests that when generalizing results
obtained from open-source projects, researchers should remain careful to their applicability
in industrial contexts.

In conclusion, the results presented in this section show that the smell-removing actions
performed in industry and open-source projects are different in type and frequency. How-
ever, in both cases, the proportion of symptomatic tests that are refactored remain low with
the exception of the symptoms for Missing Assertion.

Finally, we conclude this analysis with a cross-comparison across different metrics.
Table 11 summarizes the results of the interviews we conducted; the number of commits
modifying the test suite between the insertion of the smell and its removal by a smell-
removing action; the number of symptoms present in the tests; and finally, the number of
actions performed to remove those symptoms. We observe that when practitioners agree to
qualify a smell as relevant (Perception has a large value) and the smell appears frequently
(Symptoms has a large value), they tend to refactor the smells (Fixes has a large value). This

Page 43 of 55 20Empir Software Eng (2023) 28:20

Table 11 Comparative table that reports results from all the previous research questions where Perception is
the average refactoring priority (0 to 5) given by the interviewees,Duration is the average number of versions
between the introduction and the removal of a smell, Symptoms is the average number of symptoms per test,
and Fixes is the total number of fixes across all versions

Smell Perception Duration Symptoms Fixes

Army of Clones 4.50 39.70 3.94 10,877

Conditional Assertion 0.00 74.25 0.13 279

Hardcoded Environment 4.50 303.10 2.29 882

Hardcoded Values 2.25 303.10 47.21 29,089

Hidden Test Data 0.75 – 0.00 0

Lack of Encapsulation 2.00 11.46 3.51 10,952

Long Test Steps 4.00 13.78 1.07 34

Middle Man 1.75 594.68 4.76 46,546

Missing Assertion 3.00 4.61 0.21 144,354

Narcissistic 3.75 – 0.06 0

Noisy Logging 2.25 – 0.05 0

On the Fly 1.25 229.93 0.07 540

Over Checking 1.50 15.48 3.93 21,621

Sensitive Locator 3.50 411.10 0.01 2

Sneaky Checking 1.00 – 2.18 0

Stinky Synchronization 3.50 87.89 5.36 23,201

is the case for the smells: Army of Clones, Missing Assertion, and Stinky Synchronization.
Smells with a high Perception and a low Symptoms may indicate that developers actively
avoid these smells. This is the case for: Narcissistic, Noisy Logging, and Sensitive Locator.
Interestingly, we also notice some smells which, despite interviewees agreeing to qualify
them as low priority, tend to undergo a lot of refactoring to remove them. This is the case
for the smells: Hardcoded Values, Lack of Encapsulation, and Middle Man. There are two
cases with different trends. These are the Long Test Steps and the Hardcoded Environment.
In particular, Long Test Steps while being considered of high priority by testers and appear-
ing quite often is not addressed. We believe this is due to the difficulty to detect this smell
without appropriate tooling. Similarly, Hardcoded Environment is an outlier in our dataset,
i.e., while being fairly frequent and considered of high priority by the developers, it is not
removed. To explain this observation we inspected the code in which this smell appears
and found out that the expressions in which the smell appears were readable and easy to
maintain.

When observing the time between the introduction of a smell and its removal (by a smell-
removing action), we see that Missing Assertion have the shortest lifespan. This confirms
our previous observation that this type of smell appears during creation time, but is quickly
addressed once the test is released. On the other end of the spectrum, some tests take several
hundreds of commit before being addressed. One observation that can explain this result
is that some smells are removed in bulk following the introduction of a new tool (e.g.,
our smell detection tool at BGL BNP Paribas). Another explanation regards smells such as
Sensitive Locator where the locators are only updated when they cause the test to break. As
such, where this study focuses on the perceived impact of smells, their dispersion in the test
code base, and the way they are addressed, future work should focus on the concrete impact

20 Page 44 of 55 Empir Software Eng (2023) 28:20

of SUIT smells to offer a better understanding as to why some smells are so long lived or
never removed.

5 Lessons Learned

In this section, we describe the lessons learned based on our analysis. These lessons are
important for test automation practitioners, tool manufacturers, and researchers.

Lession 1: Testing community possess untapped knowledge During our multivocal lit-
erature review, we identified 25 new smells that were never addressed in the scientific
literature when studying SUIT smells. This gap in knowledge between scientists and prac-
titioners highlights the importance for researchers in the field of software engineering
practices to read content produced by practitioners.

Lesson 2: SUIT have their unique issues Even though there exists an overlap between unit
tests and SUITs, we observe that SUIT contains unique smells and vice versa. This suggests
that different types of testing practices will exhibit different issues. Thus, it is important
when studying tests not to conflate all type of tests but to actually separate them based on
their scope, intent, and mode of interaction with the SUT.

Lesson 3: Not everyone agrees When interviewing seasoned practitioners whether or not
a pattern constitutes a smell, in half of the cases no consensus was reached. This means that
what is viewed as a bad practice within a team or an organization may not be seen the same
way by another group. Furthermore, the interviewees consider that four of the 16 smells
that we presented to them should not be considered as smell. Thus, they have a diverging
position than the author from our grey literature analysis, i.e. other practitioners. As such,
tool producers should use this result as a caution. When designing tools, sufficient flexibility
should be provided to the practitioners so they can adapt the smell detection algorithm to
their needs. Indeed, what can be considered a test smell in a team, can be considered not
harmful by another one.

Lesson 4: If you cannot see it, you cannot do anything about it Some tests are considered
harmful by all the practitioners we interviewed, yet, still appear often in tests and are not
subsequently fixed. This behavior can be explained by the amount of code that has to be
analyzed to detect the smell. For example, smells like Narcissistic which expression is local
tend to almost never appear. On the contrary, smells such as Long Test Step for which the
symptom can be spread across different files are much harder to spot. Indeed, in the absence
of proper IDE support multi-location smell symptoms are challenging for testers to detect
and address. As such, it is important for researchers and tool producers alike to focus on this
large spread tests in order to provide the tooling to support the activities of test automation
engineers.

Lesson 5: Avoid smells or no onewill remove them The majority of the smells introduced
will never be refactored. As such, we suggest to focus on the prevention of smells rather
than their removal at a later stage. Providing feedback during creation time could avoid the
introduction of the smells altogether. Thus, when designing tooling, integrating them into

Page 45 of 55 20Empir Software Eng (2023) 28:20

IDE is crucial to provide value to test automation engineers. Furthermore, the adoption of
strong policies and code review seems to avoid the spread of smells in the test codebase (e.g.
Strong policies allowed the team BGL BNP Paribas to prevent the proliferation of Stinky
Synchronization smell in their test codebase.).

Lesson 6: We learn from ourmistakes While analyzing the subsequent versions of the test
suites, many smells disappear without undergoing smell removing actions. Indeed, in some
instances, old smelly tests were disappearing and the newly introduced tests did not express
the smells. It shows that developers are aware of the impact of SUIT smells or at the very
least tend to avoid them as the project evolves. This shows that when conducting research
on smell evolution, not only the action to actively remove smells can lead to conclusion, but
also the absence of some patterns in newly created code.

6 Threats to Validity

Threat to construct validity result from the non suitability of the metrics used to evaluate the
results. To detect test smells we rely on heuristics based on code metrics. Thus, the valid-
ity of our results is bound to the precision with which smells are detected by our tooling.
To mitigate the effect of low precision, we first ensured that our tooling offers good per-
formances by writing a comprehensive test suite covering all the targeted smells in their
different variation of the patterns. Moreover, we completed our evaluation of the tool with
a user evaluation to further mitigate this threat to validity. Unfortunately, we are fully aware
that the non-detection of certain smells is a limitation of this work, yet, we are not aware of
any mechanism to mitigate this shortcoming.

Threats to the internal validity are due to the design of the study, potentially impacting
our conclusions. Such threats typically do not affect exploratory studies like the one in
this work. A caveat can be raised on how the changes are extracted. Indeed, changes are
recorded when developers check-in their changes to the control version system. Thus, smell-
removing actions might be lost if developers do not check-in often their changes or on the
contrary, we might flag artifacts of the development process (e.g. Assertions added only at
the end of the test) as smell-removing actions. To account for this phenomenon, we analyze
manually a subset of the results to ensure the soundness of the process.

Finally, the threats to external validity, regarding the generalization of the results, con-
cerns mainly the choice of the projects analyzed. Indeed, conducting our analysis on a
limited sample of projects, our results might not generalize to other projects. However,
we try to control for this limitation by selecting projects of different sizes, from different
domains and in different development cultures. Furthermore, working with Robot Frame-
work, there is no guarantee that the results presented in this work are transferable to other
languages or technologies. Finally, it is noted that the proposed catalog reflects the studied
sources, which were deemed sufficient, and should not be considered as an exhaustive list of
SUIT smells. Additionally, the defined search terms and the sources analyzed were both in
English, resources written in other languages were excluded. We argue that our process, be
it restricted to English encompasses sufficient knowledge that would have been captured by
other sources, notably with English being a language adopted even by non native speakers
to increase diffusion. Further replications and analyses would be beneficial to corroborate
our findings.

20 Page 46 of 55 Empir Software Eng (2023) 28:20

7 RelatedWork

Considering the uniqueness and impacts of test smells, the research community entailed
studies to extend the catalogs of known test smells, empirical studies have been conducted to
analyze their introduction, diffusion and suppression, and finally, tools have been proposed
to automatically detect them.

(van Deursen et al. 2001) are among the first to introduce the concept of test smells. They
describe a catalog of 11 test smells and refactoring operation to address them. Following
their work, different studies were conducted to further extend the catalog of test smells.
Departing from the analysis of the code to identify test smells, (Bowes et al. 2017) and
(Tufano et al. 2016) conducted human studies to isolate test smells and report the perceived
impacts on both test code and production code.

With good test smell catalogs established, the community investigated the diffusion and
evolution of smells in test code. (Bavota et al. 2015) conducted an empirical studies to
analyze the diffusion and the impact of test smells. In their work, (Tufano et al. 2016) and
later (Kim 2020) showed that test smells are introduced when the test is written and are long
lived.

To help practitioners identify potential sub-optimal patterns in their test codebase,
researchers introduced tooling to automatically detect them. Typically, detection tools ana-
lyze test code metrics using rule based heuristics (Van et al. 2007; Reichhart et al. 2007;
Peruma et al. 2020) to isolate test smells.

Nonetheless, all of the work mentioned above focuses on test smells present in unit test-
ing. (Hauptmann et al. 2013) conducted a study on test smells present in tests expressed
in natural language in industrial systems. However, their experiments show that the metrics
extracted cannot be used for assessment of the quality of a test suite. (Femmer et al. 2014;
Femmer et al. 2017) introduce the concept of requirement smells and conducted an empiri-
cal evaluation of their approach using industrial projects. In their work, the author present an
automated static analysis technique relying on natural language processing (NLP) to detect
smells in the requirements. The main goal at the requirement level is to detect whether or
not a requirement contains ambiguities, therefore, the techniques developed rely on con-
crete instances of ambiguities. Finally (Chen and Wang 2012), propose a catalog of 11 test
smell present in KDT along with 16 refactoring methods.

8 Conclusion and Implications

The goal of this paper is to shed light on the smells occurring in SUITs. To do so, we con-
ducted a multivocal literature review and identified SUIT-specific smells from both formal
and grey literature. This process lead to a catalog of 35 SUIT smells. Comparing our catalog
to previously established catalogs from the literature on Unit Test Smells, we see that while
there exist an overlap between the SUIT and Unit Test Smells with 14 common smells, 21
smells are unique to SUITs. These smells, unique to SUITs, are the result of the difference
in the scope and workflow between SUITs and unit tests. Smells unique to SUITs typically
address issues such as data management, test workflow, and interaction with the GUI.

For 16 of the SUIT smells we derive metrics to characterize the diffusion and removal of
their symptoms in the test code. Large projects are prone to multi-location smells such as
Army of Clones, Long Test Steps and Middle Man for which the symptom is spread across
multiple location in the test code. On the contrary, with the exception of Hardcoded Envi-
ronment, when testers and the literature agree on a smell, if its symptom is localized to a

Page 47 of 55 20Empir Software Eng (2023) 28:20

single line in the test code, practitioners are actively avoiding it. When a test is affected by
a symptom, its suppression is far from systematic, with less than 50% of the symptomatic
tests ever undergoing any refactoring actions for 8 of the 16 smells studied. Note thatMiss-
ing Assertion is a unique exception with between 70% (open-source) and 90% (industrial)
of the symptomatic tests being addressed. Interestingly, while smell-removing actions are
rare, symptoms for smells such as Narcissistic and Middle Man still disappear from the
test codebase as a side effect of the replacement of old symptomatic tests by new tests not
exhibiting the symptom.

Though we observe general trends common to both industrial and open-source projects,
when performing a statistical comparison between the two sets of projects, we observe sig-
nificant differences. Indeed, the projects differ both in terms of prevalence of the symptoms
and removing operations. These results can be explain by the difference in scope, actors,
and lifecycle present in each context. Consequently, these results suggest that when con-
ducting studies researchers should be aware of these fundamental differences which might
limit the generalization of their results.

In light of the results from this exploratory analysis, we believe that extending the cata-
log of known SUIT smells and providing the necessary tooling to highlight them will have
an impact on SUITs development process. Indeed, we observed a trend to avoid the intro-
duction of smells by test automation engineers. However, if a smell is not addressed right
away, practitioners tend not to remove it later on. Thus, it is of utmost importance to catch
the bad practices as soon as they are introduced. Unfortunately, because some smells are
harder to detect, they manage to creep in the test code base. As such, we advocate for con-
tinuous monitoring of the test suite with tools such as SonarQube that allow to flag and
remove smell instances as soon as they are introduced.

For instance, our partner, BGL BNP Paribas, has already started using our tooling to
address some of the bad design choices that we observed in their test codebase. The Sonar-
Qube Plugin that we developed is now being evaluated at their site with the goal of offering
continuous quality evaluation of the test code base at each commit. The report generated are
used to allow test automation engineers to keep an eye on the proliferation of anti-pattern
in the test code base, and address them as soon as they are introduced. While at BGL BNP
Paribas no quality gate is setup, the team is reviewing the quality reports on a regular basis.
To do so, a Jenkins job launches the SonarQube runner once a week and keeps a quality
report up to date. The report is accessible through the SonarQube web client. Test automa-
tion engineers analyze the report at regular intervals and address potential smells revealed
by the reporting tool. While this practice has allowed the team to improve the quality of the
test codebase through dedicated maintenance session, as suggested in Section 5, running the
analysis directly in the development environment would allow the smells to be detected as
they are introduced and potentially avoided altogether.

This study alongside with the tooling developed and the available dataset10 lays the
ground for future research on the impact of smells on SUIT suites. Moreover, with our new
catalog and these first observations, we open perspective for future research on awareness
of bad testing practices and the pitfalls to avoid when evolving SUITs. Our future agenda
is focused on the use of Natural Language Processing to address the categories of smells
linked to wording and expressiveness that is central in acceptance testing where different
stakeholders from different domains need to communicate.

10https://github.com/kabinja/suit-smells-replication-package

20 Page 48 of 55 Empir Software Eng (2023) 28:20

https://github.com/kabinja/suit-smells-replication-package

References

Advolodkin N (2018) Top 17 automated testing best practices (supported by data). https://ultimateqa.com/
automation-patterns-antipatterns/

Alegroth E, Steiner M, Martini A (2016) Exploring the presence of technical debt in industrial GUI-
Based Testware: A case study. In: Proceedings of the 9th international conference on software testing,
verification and validation workshops, IEEE, pp 257?262. https://doi.org/10.1109/ICSTW.2016.47

Arcelli FF, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experimenting machine learning tech-
niques for code smell detection. Empir Softw Eng 21(3):1143–1191. https://doi.org/10.1007/s10664-
015-9378-4

Archer M (2010) How test automation with selenium can fail. https://mattarcherblog.wordpress.com/2010/
11/29/how-test-automation-with-selenium-or-watir-can-fail/

Athanasiou D, Nugroho A, Visser J, Zaidman A (2014) Test code quality and its relation to issue handling
performance. IEEE Trans Softw Eng 40(11):1100–1125. https://doi.org/10.1109/TSE.2014.2342227

Baker P, Dai ZR, Grabowski J, Haugen O, Schieferdecker I, Williams C (2008) Data-driven testing. In:
Model-driven testing. Springer, pp 87–95

Banerjee I, Nguyen B, Garousi V, Memon A (2013) Graphical user interface (GUI) testing: Systematic map-
ping and repository. Inf Softw Technol 55(10):1679–1694. https://doi.org/10.1016/j.infsof.2013.03.004

Basit W, Lodhi F, Ahmed F, Bhatti MU (2013) A metric based evaluation of unit tests as specialized clients
in Refactoring. Pak J Eng Appl Sci 13:37–53

Battat M (2020) How do you simplify end-to-end test maintenance?. https://dzone.com/articles/how-do-you-
simplify-end-to-end-tes t-maintenance-au

Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D (2012) An empirical analysis of the distribution of
unit test smells and their impact on software maintenance. In: Proceedings of the 28th IEEE international
conference on software maintenance. IEEE, pp 56–65. https://doi.org/10.1109/ICSM.2012.6405253

Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D (2015) Are test smells really harmful? An empirical
study. Empir Softw Eng 20(4):1052–1094. https://doi.org/10.1007/s10664-014-9313-0

Biagiola M, Stocco A, Ricca F, Tonella P (2019) Diversity-based web test generation. In: Proceed-
ings of the 27th ACM joint meeting on european software engineering conference and sympo-
sium on the foundations of software engineering, ACM Press, Tallinn, Estonia, vol 1, pp 142-153.
https://doi.org/10.1145/3338906.3338970

Bowes D, Hall T, Petric J, Shippey T, Turhan B (2017) How Good Are My Tests? In: Proceedings of the
8th workshop on emerging trends in software metrics.IEEE, pp 9–14. https://doi.org/10.1109/WETSoM.
2017.2

Breugelmans M, Rompaey BV (2008) TestQ : Exploring structural and maintenance characteristics of unit
test suites. In: Proceedings of the 1st international workshop on advanced software development tools
and techniques, i, pp 1–16

Brooks P, Robinson B, Memon AM (2009) An initial characterization of industrial graphical user interface
systems. In: Proceedings of the 2nd IEEE international conference on software testing, verification, and
validation, pp 11–20. https://doi.org/10.1109/ICST.2009.11

Bushnev Y (2019) Top 15 ui test automation best practices. https://www.blazemeter.com/blog/
top-15-ui-test-automation-best-practices-you-should-follow

Buwalda H (2015) Test design for automation: Anti-patterns. https://www.techwell.com/techwell-insights/
2015/09/test-design-automation-anti-patterns

Buwalda H (2019) 8 test automation anti-patterns (and how to avoid them). https://dzone.com/articles/
8-test-automation-anti-patterns-and-how-to-avoid-t

Canny A, Palanque P, Navarre D (2020) Model-based testing of GUI applications featuring dynamic Instanci-
ation of widgets. In: Proceedings of the international conference on software testing Testing, verification
and validation workshops, IEEE, pp 95–104. https://doi.org/10.1109/ICSTW50294.2020.00029

Chen WK, Wang JC (2012) Bad smells and refactoring methods for GUI test scripts. In: Proceedings
of the 13th international conference on software engineering, artificial intelligence, networking, and
parallel/distributed computing pp 289–294. https://doi.org/10.1109/SNPD.2012.10

Clayton J (2014) Acceptance tests at a single level of abstraction. https://thoughtbot.com/blog/
acceptance-tests-at-a-single-level-of-abstraction

Coppola R, Morisio M, Torchiano M (2019) Mobile GUI testing fragility: a study on open-source android
applications. IEEE Trans Reliab 68(1):67–90. https://doi.org/10.1109/TR.2018.2869227

Cripsin L (2018) Keep your automated testing simple and avoid anti-patterns. https://www.mabl.com/blog/
keep-your-automated-testing-simple

Page 49 of 55 20Empir Software Eng (2023) 28:20

https://ultimateqa.com/automation-patterns-antipatterns/
https://ultimateqa.com/automation-patterns-antipatterns/
https://doi.org/10.1109/ICSTW.2016.47
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-015-9378-4
https://mattarcherblog.wordpress.com/2010/11/29/how-test-auto mation-with-selenium-or-watir-can-fail/
https://mattarcherblog.wordpress.com/2010/11/29/how-test-auto mation-with-selenium-or-watir-can-fail/
https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1016/j.infsof.2013.03.004
https://dzone.com/articles/how-do-you-simplify-end-to-end-tes t-maintenance-au
https://dzone.com/articles/how-do-you-simplify-end-to-end-tes t-maintenance-au
https://doi.org/10.1109/ICSM.2012.6405253
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1145/3338906.3338970
https://doi.org/10.1109/WETSoM.2017.2
https://doi.org/10.1109/WETSoM.2017.2
https://doi.org/10.1109/ICST.2009.11
https://www.blazemeter.com/blog/top-15-ui-test-automation-bes t-practices-you-should-follow
https://www.blazemeter.com/blog/top-15-ui-test-automation-bes t-practices-you-should-follow
https://www.techwell.com/techwell-insights/2015/09/test-desig n-automation-anti-patterns
https://www.techwell.com/techwell-insights/2015/09/test-desig n-automation-anti-patterns
https://dzone.com/articles/8-test-automation-anti-patterns-an d-how-to-avoid-t
https://dzone.com/articles/8-test-automation-anti-patterns-an d-how-to-avoid-t
https://doi.org/10.1109/ICSTW50294.2020.00029
https://doi.org/10.1109/SNPD.2012.10
https://thoughtbot.com/blog/acceptance-tests-at-a-single-leve l-of-abstraction
https://thoughtbot.com/blog/acceptance-tests-at-a-single-leve l-of-abstraction
https://doi.org/10.1109/TR.2018.2869227
https://www.mabl.com/blog/keep-your-automated-testing-simple
https://www.mabl.com/blog/keep-your-automated-testing-simple

Cunha M, Paiva ACR, Ferreira HS, Abreu R (2010) PETTool: A pattern-based GUI testing tool. In: Pro-
ceedings of the 2nd IEEE international conference on software technology and engineering, IEEE, vol 1,
pp 202?206. https://doi.org/10.1109/ICSTE.2010.5608882

De Bleser J, Di Nucci D, De Roover C (2019) Assessing diffusion and perception of test smells in scala
projects. In: Proceedings of the 16th international conference on mining software repositories, IEEE,
pp 457–467 https://doi.org/10.1109/MSR.2019.00072

Delin M, Foegen K (2016) An analysis of information needs to detect test smells. full-scale software
engineering/current trends in release engineering, pp 19–24

van Deursen A., Moonen, van Den BA, Kok G (2001) Refactoring test code. In: Proceedings of the 2nd
international conference on extreme programming and flexible processes in software engineering, pp 92–
95

Dharmender K (2017) Automation testing: Anti-patterns. https://alisterbscott.com/2015/01/20/five-automa-
ted-acceptance-test-anti-patterns/

Di Martino S, Fasolino AR, Starace LLL, Tramontana P (2021) Comparing the effectiveness of capture and
replay against automatic input generation for Android graphical user interface testing. Softw Test Verif
Reliab 31(3):272–285. https://doi.org/10.1002/stvr.1754

England T (2016) Cucumber anti-patterns (part one). https://cucumber.io/blog/bdd/cucumber-antipatterns-
part-one/

Evangelisti A (2012) How to transform bad acceptance tests into awesome ones. https://mysoftwarequality.
wordpress.com/2012/12/14/how-to-transform-bad-acceptance-tests-into-awesome-ones/

Femmer H, Fernȧndez DM, Juergens E, Klose M, Zimmer I (2014) Rapid requirements checks with require-
ments smells: two case studies. In: Proceedings of the 1st international workshop on rapid continuous
software engineering, ACMPress, NewYork, USA, pp 10–19. https://doi.org/10.1145/2593812.2593817

Femmer H, Fernández DM, Wagner S, Eder S (2017) Rapid quality assurance with requirements smells. J
Syst Softw 123:190–213. arXiv:1611.08847. https://doi.org/10.1016/j.jss.2016.02.047

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: Improving The Design of Existing
Code. Addison-Wesley Longman Publishing Co.,Inc., USA

Gao Z, Liang Y, Cohen MB, Memon AM, Wang Z (2015) Making System User Interactive Tests Repeatable:
When and What Should We Control? In: Proceedings of the 37th International Conference on Software
Engineering, IEEE, vol 1, pp 55–65, https://doi.org/10.1109/ICSE.2015.28

Garousi V, Ku̇ċu̇k B (2018) Smells in software test code: A survey of knowledge in industry and academia.
J Syst Softw 138:52–81. https://doi.org/10.1016/j.jss.2017.12.013

Gawinecki M (2016) Anti-patterns in test automation. http://nomoretesting.com/blog/2016/05/23/
anti-patterns/

Goldberg Y (2019) Node.js and javascript testing best practices 2020. https://yonigoldberg.medium.com/
yoni-goldberg-javascript-nodejs-testing-best-practices-2b98924c934

Gomez L, Neamtiu I, Azim T, Millstein T (2013) RERAN: Timing- and touch-sensitive record and replay for
android. In: Proceedings of the 35th international conference on software engineering, IEEE, pp 72–81.
https://doi.org/10.1109/ICSE.2013.6606553

Grano G, Palomba F, Di Nucci D, De Lucia A, Gall HC (2019) Scented since the beginning: On
the diffuseness of test smells in automatically generated test code. J Syst Softw 156:312–327.
https://doi.org/10.1016/j.jss.2019.07.016

Greiler M, Van Deursen A, Storey MA (2013) Automated detection of test fixture strategies and smells. In:
2013 IEEE Sixth international conference on software testing,verification and validation, IEEE, pp 322–
331. https://doi.org/10.1109/ICST.2013.45

Gupta P, Surve P (2011). In: Proceedings of the 1st ACM international workshop on end-to-end test script
engineering, ACM Press, New York, USA, pp 1–7.https://doi.org/10.1145/2002931.2002932

Hall MW, Kennedy K (1992) Efficient call graph analysis. ACM Trans Program Lang Syst 1(3):227–242.
https://doi.org/10.1145/151640.151643

Hammoudi M, Rothermel G, Stocco A (2016a) WATERFALL: an incremental approach for repairing record-
replay tests of web applications. In: Proceedings of the 24th ACM SIGSOFT international symposium
on foundations of software engineering, ACM, New York, NY, USA, vol 13-18-Nove, pp 751–762.
https://doi.org/10.1145/2950290.2950294

Hammoudi M, Rothermel G, Tonella P (2016b) Why do Record/Replay Tests of Web Applications Break?
In: Proceedings of the international conference on software testing, verification and validation, IEEE,
pp 180–190

Hanssen G, Yamashita AF, Conradi R, Moonen L (2010) Software entropy in agile product evolution.
In: Proceedings of the 43rd Hawaii international conference on system sciences, IEEE, 2, pp 1–10.
https://doi.org/10.1109/HICSS.2010.344. http://ieeexplore.ieee.org/document/5428534/

20 Page 50 of 55 Empir Software Eng (2023) 28:20

https://doi.org/10.1109/ICSTE.2010.5608882
https://doi.org/10.1109/MSR.2019.00072
https://alisterbscott.com/2015/01/20/five-automated-acceptanc e-test-anti-patterns/
https://alisterbscott.com/2015/01/20/five-automated-acceptanc e-test-anti-patterns/
https://doi.org/10.1002/stvr.1754
https://cucumber.io/blog/bdd/cucumber-antipatterns-part-one/
https://cucumber.io/blog/bdd/cucumber-antipatterns-part-one/
https://mysoftwarequality.wordpress.com/2012/12/14/how-to-tra nsform-bad-acceptance-tests-into-awesome-ones/
https://mysoftwarequality.wordpress.com/2012/12/14/how-to-tra nsform-bad-acceptance-tests-into-awesome-ones/
https://doi.org/10.1145/2593812.2593817
http://arxiv.org/abs/1611.08847
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1109/ICSE.2015.28
https://doi.org/10.1016/j.jss.2017.12.013
http://nomoretesting.com/blog/2016/05/23/anti-patterns/
http://nomoretesting.com/blog/2016/05/23/anti-patterns/
https://yonigoldberg.medium.com/yoni-goldberg-javascript-node js-testing-best-practices-2b98924c934
https://yonigoldberg.medium.com/yoni-goldberg-javascript-node js-testing-best-practices-2b98924c934
https://doi.org/10.1109/ICSE.2013.6606553
https://doi.org/10.1016/j.jss.2019.07.016
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1145/2002931.2002932
https://doi.org/10.1145/151640.151643
https://doi.org/10.1145/2950290.2950294
https://doi.org/10.1109/HICSS.2010.344
http://ieeexplore.ieee.org/document/5428534/

Hauptmann B, Heinemann L, Vaas R, Braun P (2013) Hunting for smells in natural language tests. In:
Proceedings of the 35th international conference on software engineering, IEEE, San Francisco, CA,
USA, pp 1217-1220. https://doi.org/10.1109/ICSE.2013.6606682

Hauptmann B, Eder S, Junker M, Juergens E, Woinke V (2015) Generating Refactoring Proposals to remove
clones from automated system tests. In: Proceedings of the 23rd international conference on program
comprehension, IEEE, vol 2015-August, pp 115–124. https://doi.org/10.1109/ICPC.2015.20

Humble J, Farley DG (2010) Continuous Delivery: Reliable Software Releases through Build, Test, and
Deployment Automation. Addison-Wesley Upper Saddle River, NJ

Hurdugaci V, Zaidman A (2012) Aiding software developers to maintain developer tests. In: Proceedings of
16th european conference on software maintenance and Reengineering, IEEE, pp 11–20

Issa A, Sillito J, Garousi V (2012) Visual testing of graphical user interfaces: an exploratory study towards
systematic definitions and approaches. In: Proceedings of the international symposium on web systems
evolution, IEEE, pp 11–15. https://doi.org/10.1109/WSE.2012.6320526

Jain N (2007) Patterns and anti-patterns: Acceptance testing with fitnesse. https://blogs.agilefaqs.com/2007/
08/25/patterns-and-anti-patterns-acceptance-testing-with-fitnesse/

Tang J, Cao X, Ma A (2008) Towards adaptive framework of keyword driven automation testing. In: Proceed-
ings of the IEEE international conference on automation and logistics, IEEE, September, pp 1631–1636.
https://doi.org/10.1109/ICAL.2008.4636415

Kapelonis K (2018) Software testing anti-patterns. http://blog.codepipes.com/testing/software-testing-anti-
patterns.html

Katalon (2018) The most striking problems in test automation : A survey. Tech Rep May, Katalon
Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2009) A bayesian approach for the detection of code and

design smells. In: Proceedings of the 9th international conference on quality software. IEEE Comput
Soc, USA, pp 305–314. https://doi.org/10.1109/QSIC.2009.47

Kim DJ (2020) An empirical study on the evolution of test smell. In: Proceedings of the 42nd international
conference on software engineering: companion proceedings, ACM, New York, NY, USA, i, pp 149–
151.https://doi.org/10.1145/3377812.3382176

Kirinuki H, Tanno H, Natsukawa K (2019) COLOR: correct locator recommender for broken test scripts
using various clues in web application. In: Proceedings of the 26th international conference on software
analysis, evolution and Reengineering, IEEE, vol 36, pp 310–320

Kirkbride J (2014) Testing anti-patterns. https://medium.com/jameskbride/testing-anti-patterns-b5ffc1612
b8b

Kitchenham BA, Charters S (2007) Guidelines for performing systematic literature reviews in software
engineering. Tech. Rep. EBSE 2007-001, Keele University and Durham University Joint Report

Klarck P (2014) Robot framework dos and don’ts. https://slideshare.net/pekkaklarck/robot-framework-dos-
and-donts

Knight A (2017a) Bdd 101:Writing good gherkin. https://automationpanda.com/2017/01/30/bdd-101-writing
-good-gherkin/

Knight A (2017b) Should gherkin steps use first-person or third-person? https://automationpanda.com/2017/
01/18/should-gherkin-steps-use-first-person-or-third-person/

Knight A (2019) Bdd 101: Writing good gherkin. https://techbeacon.com/app-dev-testing/7-ways-tidy-
your-test-code

Labuschagne A, Inozemtseva L, Holmes R (2017) Measuring the cost of regression testing in practice: a study
of Java projects using continuous integration. In: proceedings of the 11th Joint Meeting on Foundations
of Software Engineering, pp 821–830. https://doi.org/10.1145/3106237.3106288

Lanubile F, Mallardo T (2007) Inspecting automated test code: a preliminary study. In: Agile processes in
software engineering and extreme programming, vol 4536, LNCS, Springer Berlin Heidelberg, pp 115–
122. https://doi.org/10.1007/978-3-540-73101-6 16

Lelli V, Blouin A, Baudry B, Coulon F (2015) On model-based testing advanced GUIs. In: Proceedings of the
8th international conference on software testing, verification and validation workshops, IEEE, pp 1–10.
https://doi.org/10.1109/ICSTW.2015.7107403

Leotta M, Stocco A, Ricca F, Tonella P (2014) Reducing web test cases aging by means of robust XPath
locators. In: Proceedings of the IEEE international symposium on software reliability engineering
workshops, IEEE, pp 449–454

Leotta M, Stocco A, Ricca F, Tonella P (2016) Robula+: an algorithm for generating robust XPath locators
for web testing. J softw: Evol Process 28(3):177–204

Mabl (2021) Benchmark report : the state of testing in DeVops
Machiry A, Tahiliani R, Naik M (2013) Dynodroid: an input generation system for Android apps. In: Pro-

ceedings of the 9th joint meeting on foundations of software engineering, ACM Press, New York, USA,
pp 224. https://doi.org/10.1145/2491411.2491450

Page 51 of 55 20Empir Software Eng (2023) 28:20

https://doi.org/10.1109/ICSE.2013.6606682
https://doi.org/10.1109/ICPC.2015.20
https://doi.org/10.1109/WSE.2012.6320526
https://blogs.agilefaqs.com/2007/08/25/patterns-and-anti-patt erns-acceptance-testing-with-fitnesse/
https://blogs.agilefaqs.com/2007/08/25/patterns-and-anti-patt erns-acceptance-testing-with-fitnesse/
https://doi.org/10.1109/ICAL.2008.4636415
http://blog.codepipes.com/testing/software-testing-antipatterns.html
http://blog.codepipes.com/testing/software-testing-antipatterns.html
https://doi.org/10.1109/QSIC.2009.47
https://doi.org/10.1145/3377812.3382176
https://medium.com/jameskbride/testing-anti-patterns-b5ffc1612b8b
https://medium.com/jameskbride/testing-anti-patterns-b5ffc1612b8b
https://slideshare.net/pekkaklarck/robot-framework-dos-and-donts
https://slideshare.net/pekkaklarck/robot-framework-dos-and-donts
https://automationpanda.com/2017/01/30/bdd-101-writing-good-gherkin/
https://automationpanda.com/2017/01/30/bdd-101-writing-good-gherkin/
https://automationpanda.com/2017/01/18/should-gherkin-steps-u se-first-person-or-third-person/
https://automationpanda.com/2017/01/18/should-gherkin-steps-u se-first-person-or-third-person/
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://doi.org/10.1145/3106237.3106288
https://doi.org/10.1007/978-3-540-73101-6_16
https://doi.org/10.1109/ICSTW.2015.7107403
https://doi.org/10.1145/2491411.2491450

Mao K, Harman M, Jia Y (2016) Sapienz: multi-objective automated testing for android applications. In:
Proceedings of the 25th international symposium on software testing and analysis, ACM, New York,
NY, USA, pp 94–105. https://doi.org/10.1145/2931037.2931054

Marinescu R (2004) Detection strategies: metrics-based rules for detecting design flaws. In: Proceed-
ings of the 20th IEEE international conference on software maintenance, IEEE, pp 350–359.
https://doi.org/10.1109/ICSM.2004.1357820

Memon AM, Nguyen BN (2010) Advances in automated model-based system testing of software applica-
tions with a GUI Front-End. In: Advances in computers, vol 80, 1st edn, Elsevier Inc., pp 121–162.
https://doi.org/10.1016/S0065-2458(10)80003-8

Mesbah A, Van DA (2009) Invariant-based automatic testing of AJAX user interfaces. In: Pro-
ceedings of the 31st international conference on software engineering, IEEE, pp 210–220.
https://doi.org/10.1109/ICSE.2009.5070522

Meszaros G (2007) xUnit Test Patterns: Refactoring Test Code, 1st edn. Addison-Wesley
Morlion P (2019) Software testing anti patterns. https://www.enov8.com/blog/software-testing-anti-patterns/
Myers B (1994) Challenges of HCI design and implementation. Interactions 1(1):73–83.

https://doi.org/10.1145/174800.174808
Myers BA (1995) User Interface Software Tools. ACM Trans Comput Hum Interact 2(1):64–103.

https://doi.org/10.1145/200968.200971
Myers BA, Rosson MB (1992) Survey on user interface programming. In: Proceedings of the con-

ference on Human factors in computing systems, ACM Press, New York, USA, pp 195–202.
https://doi.org/10.1145/142750.142789

Nguyen BN, Robbins B, Banerjee I, Memon A (2014) GUITAR: an innovative tool for automated testing of
GUI-driven software. Autom Softw Eng 21(1):65–105. https://doi.org/10.1007/s10515-013-0128-9

Nguyen V, To T, Diep GH (2021) Generating and selecting resilient and maintainable locators for Web
automated testing. Softw Test Verif Reliab 31(3):19. https://doi.org/10.1002/stvr.1760

Pandit P, Tahiliani S (2015) Agile UAT: a framework for user acceptance testing based on user stories and
acceptance criteria. Int J Comput Appl 120(10):16–21. https://doi.org/10.5120/21262-3533

Peruma A, Almalki K, Newman CD, Mkaouer MW, Ouni A, Palomba F (2020) tsDetect: an open-source
test smells detection tool. In: Proceedings of the 28th joint meeting on European software engineering
conference and symposium on the foundations of software engineering, ACM, New York, NY, USA,
pp 1650-1654. https://doi.org/10.1145/3368089.3417921

Pezzė M, Rondena P, Zuddas D (2018) Automatic GUI testing of desktop applications. In: Compan-
ion proceedings for the ISSTA/ECOOP 2018 Workshops, ACM, New York, NY, USA, i, pp 54–62.
https://doi.org/10.1145/3236454.3236489

Reichhart S, Girba T, Ducasse S (2007) Rule-based assessment of test quality. J Object Technol 6(9):231.
https://doi.org/10.5381/jot.2007.6.9.a12

Renaudin J (2016) Software testing anti patterns. https://www.slideshare.net/JosiahRenaudin/
antipatterns-for-automated-testing

Ricca F, Stocco A (2021) Web test automation: insights from the grey literature. In: Proceedings of the 47th
international conference on current trends in theory and practice of computer science, Bolzano,Italy,
pp 472-485. https://doi.org/10.1007/978-3-030-67731-2 35

Ronsse M, De Bosschere K (1999) RecPlay: A fully integrated practical record/replay system. ACM Trans
Comput Syst 17(2):133–152. https://doi.org/10.1145/312203.312214,

Rwemalika R, Kintis M, Papadakis M, Le Traon Y, Lorrach P (2019a) On the evolution of keyword-driven
test suites. In: Proceedings of the 12th international conference on software testing, verification and
validation, New York, NY, USA, pp 335-345

Rwemalika R, Kintis M, Papadakis M, Le Traon Y, Lorrach P (2019b) Ukwikora: continuous inspec-
tion for keyword-driven testing. In: Proceedings of the 28th international symposium on software
testing and analysis, association for computing machinery, New York, NY, USA, pp 402–405.
https://doi.org/10.1145/3293882.3339003

Saddler JA, Cohen MB (2017) EventFlowSlicer: A tool for generating realistic goal-driven GUI tests. In:
Proceedings of the 32nd international conference on automated software engineering, ASE, IEEE,
pp 955–960. https://doi.org/10.1109/ASE.2017.8115711

Salihu IA, Ibrahim R, Ahmed BS, Zamli KZ, Usman A (2019) AMOGA: A static-dynamic
model generation strategy for mobile Apps testing. IEEE Access 7(c):17158–17173.
https://doi.org/10.1109/ACCESS.2019.2895504

Satopaa V, Albrecht J, Irwin D, Raghavan B (2011) Finding a kneedle in a haystack: detecting knee points
in system behavior. In: Proceedings of the 31st IEEE international conference on distributed computing
systems workshops, IEEE, pp 166–171. https://doi.org/10.1109/ICDCSW.2011.20

20 Page 52 of 55 Empir Software Eng (2023) 28:20

https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/ICSM.2004.1357820
https://doi.org/10.1016/S0065-2458(10)80003-8
https://doi.org/10.1109/ICSE.2009.5070522
https://www.enov8.com/blog/software-testing-anti-patterns/
https://doi.org/10.1145/174800.174808
https://doi.org/10.1145/200968.200971
https://doi.org/10.1145/142750.142789
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1002/stvr.1760
https://doi.org/10.5120/21262-3533
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.1145/3236454.3236489
https://doi.org/10.5381/jot.2007.6.9.a12
https://www.slideshare.net/JosiahRenaudin/antipatterns-for-au tomated-testing
https://www.slideshare.net/JosiahRenaudin/antipatterns-for-au tomated-testing
https://doi.org/10.1007/978-3-030-67731-2_35
https://doi.org/10.1145/312203.312214
https://doi.org/10.1145/3293882.3339003
https://doi.org/10.1109/ASE.2017.8115711
https://doi.org/10.1109/ACCESS.2019.2895504
https://doi.org/10.1109/ICDCSW.2011.20

Sciamanna A (2019) What are the anti patterns of automation with selenium? https://anthonysciamanna.com/
2019/10/20/avoiding-automated-testing-pitfalls.html

Scott A (2015) Five automated acceptance test anti-patterns. https://alisterbscott.com/2015/01/20/
five-automated-acceptance-test-anti-patterns/

Shay L (2019) Bdd cucumber features best practices. https://www.linkedin.com/pulse/
bdd-cucumber-features-best-practices-liraz-shay/

Sheth H (2020) 16 selenium best practices for efficient test automation. https://www.lambdatest.com/blog/
selenium-best-practices-for-web-testing/

Silva D, Valente MT (2017) RefDiff: detecting Refactorings in version histories. In: Proceedings of the
14th international conference on mining software repositories, IEEE, pp 269–279. arXiv:1704.01544.
https://doi.org/10.1109/MSR.2017.14

Siminiuc A (2019) What are the anti patterns of automation with selenium? https://www.quora.com/
What-are-the-anti-patterns-of-automation-with-selenium

Spadini D, Palomba F, Zaidman A, Bruntink M, Bacchelli A (2018) On the relation of test smells to software
code quality. In: Proceedings of the international conference on software maintenance and evolution,
IEEE, pp 1–12. https://doi.org/10.1109/ICSME.2018.00010

Spadini D, Schvarcbacher M, Oprescu AM, Bruntink M, Bacchelli A (2020) Investigating severity thresholds
for test smells. In: Proceedings of the 17th international conference on mining software repositories,
ACM, New York, NY, USA, pp 311–321. https://doi.org/10.1145/3379597.3387453

StackExchange (2017) What are anti-patterns in test automation? https://sqa.stackexchange.com/questions/
8508/what-are-anti-patterns-in-test-automation

Temov J (2020) Want to speed end-to-end testing? don’t send in the clones. https://techbeacon.com/
app-dev-testing/want-speed-end-end-testing-dont-send-clones

Tsantalis N, Guana V, Stroulia E, Hindle A (2013) A multidimensional empirical study on Refactoring
cctivity. In: Proceedings of the conference of the center for advanced studies on collaborative research,
IBM Corp, Ontario, Canada, pp 132–146

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2016) An empirical
investigation into the nature of test smells. In: Proceedings of the 31st international conference on auto-
mated software engineering, ACM Press, Singapore, pp 4–15. https://doi.org/10.1145/2970276.2970340

Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-based testing approaches. Software Testing
Verification and Reliability 22(5):297–312. https://doi.org/10.1002/stvr.456

Van RB, Du Bois B, Demeyer S (2006) Characterizing the relative significance of a test smell. In: Pro-
ceedings of the 22nd IEEE international conference on software maintenance, IEEE, pp 391–400.
https://doi.org/10.1109/ICSM.2006.18

Van RB, Du Bois B, Demeyer S, Rieger M (2007) On the detection of test smells: a metrics-based
approach for general fixture and eager test. IEEE Trans Soft Eng 33(12):800–817. 10.1109/TSE.2007.70
745

Virginio T, Martins LA, Soares LR, Santana R, Costa H, Machado I (2020) An empirical study of
automatically-generated tests from the perspective of test smells. In: Proceedings of the 34th Brazil-
ian symposium on software engineering, ACM, New York, NY, USA, pp 92–96.https://doi.org/10.1145/
3422392.3422412

Yu S, Fang C, Feng Y, Zhao W, Chen Z (2019) LIRAT: layout and image recognition driving automated
mobile testing of cross-platform. In: Proceedings of the 34th international conference on automated
software engineering, IEEE, pp 1066–1069 https://doi.org/10.1109/ASE.2019.00103

Yuan X, Cohen M, Memon AM (2007) Covering array sampling of input event sequences for automated gui
testing. In: Proceedings of the 22nd international conference on automated software engineering, ACM
Press, New York, USA, pp 405

Zhang S, Jalali D, Wuttke J, Muşlu K, Lam W, Ernst MD, Notkin D (2014) Empirically revisiting the
test independence assumption. In: Proceedings of the international symposium on software testing and
analysis, ACM Press, New York,USA, pp 385–396. https://doi.org/10.1145/2610384.2610404

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Page 53 of 55 20Empir Software Eng (2023) 28:20

https://anthonysciamanna.com/2019/10/20/avoiding-automated-te sting-pitfalls.html
https://anthonysciamanna.com/2019/10/20/avoiding-automated-te sting-pitfalls.html
https://alisterbscott.com/2015/01/20/five-automated-acceptanc e-test-anti-patterns/
https://alisterbscott.com/2015/01/20/five-automated-acceptanc e-test-anti-patterns/
https://www.linkedin.com/pulse/bdd-cucumber-features-best-pra ctices-liraz-shay/
https://www.linkedin.com/pulse/bdd-cucumber-features-best-pra ctices-liraz-shay/
https://www.lambdatest.com/blog/selenium-best-practices-for-w eb-testing/
https://www.lambdatest.com/blog/selenium-best-practices-for-w eb-testing/
http://arxiv.org/abs/1704.01544
https://doi.org/10.1109/MSR.2017.14
https://www.quora.com/What-are-the-anti-patterns-of-automatio n-with-selenium
https://www.quora.com/What-are-the-anti-patterns-of-automatio n-with-selenium
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1145/3379597.3387453
https://sqa.stackexchange.com/questions/8508/what-are-anti-pa tterns-in-test-automation
https://sqa.stackexchange.com/questions/8508/what-are-anti-pa tterns-in-test-automation
https://techbeacon.com/app-dev-testing/want-speed-end-end-tes ting-dont-send-clones
https://techbeacon.com/app-dev-testing/want-speed-end-end-tes ting-dont-send-clones
https://doi.org/10.1145/2970276.2970340
https://doi.org/10.1002/stvr.456
https://doi.org/10.1109/ICSM.2006.18
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1145/3422392.3422412
https://doi.org/10.1145/3422392.3422412
https://doi.org/10.1109/ASE.2019.00103
https://doi.org/10.1145/2610384.2610404

Renaud Rwemalika is a Research Associate at the Interdisciplinary
Centre for Security, Reliability, and Trust (SnT) at the University of
Luxembourg. His career interests revolved around software quality,
technical debt in system testing, static test code analysis, and gener-
ally test maintenance define his career interest. He earned his Ph.D.
from the University of Luxembourg with a specialization in software
engineering in September 2021.

Sarra Habchi is a Research and Development Scientist at La Forge,
Ubisoft Canada. Her research interests lie primarily in the area of
software quality and reliability. She received her Ph.D. from the
University of Lille, France.

Mike Papadakis is a senior research scientist at the Interdisciplinary
Centre for Security, Reliability, and Trust (SnT) at the University
of Luxembourg. He received a Ph.D. in Computer Science from the
Athens University of Economics and Business. His research inter-
ests include software testing, static analysis, prediction modelling and
search-based software engineering. He is best known for his work
on Mutation Testing for which he has been awarded an IEEE TCSE
Rising Star Award 2020.

20 Page 54 of 55 Empir Software Eng (2023) 28:20

Yves Le Traon is a professor at the University of Luxembourg
where he leads the SERVAL (SEcurity, Reasoning, and VALidation)
research team. His research interests include (1) innovative testing,
debugging and repair techniques, (2) mobile security using static
code analysis, machine learning techniques and, (3) design of robust
machine-learning based systems. His research is inspired from and
applies to several industry partners (IoT, Fintech, Smartgrid, Industry
4.0). He was elevated IEEE Fellow in 2022.

Marie-Claude Brasseur is the Manager of the quality assurance team at BGL BNP Paribas, Luxembourg.
She is interested in the continuous improvement and monitoring of end-to-end tests deployed in a cloud
environment.

Page 55 of 55 20Empir Software Eng (2023) 28:20

	Smells in system user interactive tests
	Abstract
	Introduction
	Background
	Random GUI Testing
	Model-Based Testing
	Record & Replay
	Test Scripting
	Robot Framework

	Experimental Design
	RQ1: Identification of SUIT Smells
	Initial search
	Inclusion/Exclusion criteria
	Smell Identification
	Smell generalization

	Dataset
	Industrial Project:
	Open-Source Projects:

	RQ2: SUIT Smell Symptoms Distribution
	RQ3: SUIT Smell-Removing Actions
	Interviews

	Results
	RQ1: SUIT Smells Catalog
	SUIT Smell Symptom Metrics
	Army of Clones (AoC)
	Description
	Impact on readability
	Impact on maintenance
	Dispersion
	Detection method
	Smell-removing actions

	Conditional Assertions (CA)
	Description
	Impact on readability
	Impact on execution
	Dispersion
	Detection method
	Smell-removing action

	Hardcoded Environment (HE)
	Description
	Impact on maintenance
	Dispersion
	Detection method
	Smell-removing action

	Hidden Test Data (HTD)
	Description
	Impact on readability
	Dispersion
	Detection method
	Smell-removing action

	Lack of Encapsulation (LoE)
	Description
	Impact on readability
	Dispersion
	Detection method
	Smell-removing action

	Long Test Steps (LTS)
	Description
	Impact on readability
	Impact on execution
	Dispersion
	Detection method
	Smell-removing action

	Middle Man (MM)
	Description
	Impact on readability
	Dispersion
	Detection method
	Smell-removing actions

	Missing Assertion (MA)
	Description
	Impact on readability
	Dispersion
	Detection method
	Smell-removing actions

	Narcissistic (N)
	Description
	Impact on readability
	Dispersion
	Detection method
	Smell-removing actions

	Noisy Logging (NL)
	Description
	Impact on execution
	Dispersion
	Detection method
	Smell-removing action

	Obscure Test (OT)
	Description
	Impact on readability
	Impact on maintenance
	Dispersion
	Detection method
	Smell-removing actions

	On the Fly (OtF)
	Description
	Impact on readability
	Dispersion
	Detection method
	Smell-removing action

	Over-Checking (OC)
	Description
	Impact on readability
	Impact on maintenance
	Dispersion
	Detection method
	Smell-removing actions

	Sensitive Locators (SL)
	Description
	Impact on maintenance
	Dispersion
	Detection method
	Smell-Removing Actions:

	Sneaky Checking (SC)
	Description
	Impact on readability
	Dispersion
	Detection method
	Smell-Removing Actions:

	Stinky Synchronization (SS)
	Description
	Impact on execution
	Dispersion
	Detection method
	Smell-removing actions

	Smell Validation
	RQ2: SUIT Smell Symptoms Distribution
	RQ3: Smell-Removing Actions

	Lessons Learned
	Lession 1: Testing community possess untapped knowledge
	Lesson 2: SUIT have their unique issues
	Lesson 3: Not everyone agrees
	Lesson 4: If you cannot see it, you cannot do anything about it
	Lesson 5: Avoid smells or no one will remove them
	Lesson 6: We learn from our mistakes

	Threats to Validity
	Related Work
	Conclusion and Implications
	References

