
Empirical Software Engineering (2023) 28:79
https://doi.org/10.1007/s10664-022-10255-x

Automated test generation for SCRATCH programs

Adina Deiner1 ·Patric Feldmeier1 ·Gordon Fraser1 · Sebastian Schweikl1 ·
WengranWang2

Accepted: 20 October 2022
© The Author(s) 2023

Abstract
The importance of programming education has led to dedicated educational program-
ming environments, where users visually arrange block-based programming constructs that
typically control graphical, interactive game-like programs. The SCRATCH programming
environment is particularly popular, with more than 90 million registered users at the time
of this writing. While the block-based nature of SCRATCH helps learners by preventing
syntactical mistakes, there nevertheless remains a need to provide feedback and support in
order to implement desired functionality. To support individual learning and classroom set-
tings, this feedback and support should ideally be provided in an automated fashion, which
requires tests to enable dynamic program analysis. In prior work we introduced WHISKER,
a framework that enables automated testing of SCRATCH programs. However, creating these
automated tests for SCRATCH programs is challenging. In this paper, we therefore investi-
gate how to automatically generate WHISKER tests. Generating tests for SCRATCH raises
important challenges: First, game-like programs are typically randomised, leading to flaky
tests. Second, SCRATCH programs usually consist of animations and interactions with long
delays, inhibiting the application of classical test generation approaches. Thus, the new
application domain raises the question of which test generation technique is best suited
to produce high coverage tests capable of detecting faulty behaviour. We investigate these
questions using an extension of the WHISKER test framework for automated test generation.
Evaluation on common programming exercises, a random sample of 1000 SCRATCH user
programs, and the 1000 most popular SCRATCH programs demonstrates that our approach
enables WHISKER to reliably accelerate test executions, and even though many SCRATCH

programs are small and easy to cover, there are many unique challenges for which advanced
search-based test generation using many-objective algorithms is needed in order to achieve
high coverage.

Keywords Search-based testing · Block-based programming · SCRATCH

Communicated by: Dan Hao

Authors listed in alphabetical order.

� Gordon Fraser
Gordon.Fraser@Uni-Passau.De

1 University of Passau, Innstr. 33, Passau, 94032, Germany
2 North Carolina State University, 890 Oval Dr, Raleigh, NC 27606, USA

Published online: 13 May 2023/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10255-x&domain=pdf
http://orcid.org/0000-0002-4364-6595
mailto: Gordon.Fraser@Uni-Passau.De

Empir Software Eng (2023) 28:79

1 Introduction

Computer programming nowadays is at the forefront of education: Not only is program-
ming considered an important skill that is included in general computer science education,
it also plays a central role in the teaching of computational thinking (Lee et al. 2011). The
term “computational thinking” refers to the ability to think or solve problems based on com-
puting methods, and includes aspects such as abstraction, data representation, and logically
organising data. A core vehicle to teach these aspects is programming. Since computa-
tional thinking is increasingly integrated into core curricula at primary school level, even
the youngest learners nowadays learn how to create simple computer programs.

Teaching young learners programming requires dedicated programming languages
and programming environments. Common novice programming environments, such as
SCRATCH (Maloney et al. 2010), SNAP (Harvey et al. 2013), and ALICE (Cooper et al. 2000)
engage young learners by allowing them to build programming artefacts such as apps and
games, which connects computation with their real-world interests (Papert 1980). Novice
programming environments typically have two distinguishing features: First, to avoid the
necessity to memorize and type textual programming commands as well as the common
syntactic overhead caused by braces or indentation, programs are created visually by drag-
ging and dropping block-shaped commands from “drawers” containing all possible blocks.
The blocks have specific shapes and only matching blocks snap together, such that it is only
possible to produce syntactically valid programs. Second, the programs typically control
graphical sprites in a game-like, interactive environment. Accordingly, many programming
commands are high-level statements that control the behaviour of these graphical sprites.

While these simplifications and application scenarios reduce complexity and make pro-
gramming accessible and engaging, the learning process is nevertheless challenging from
multiple points of view: Learners may struggle implementing programs due to miscon-
ceptions (Sirkiä and Sorva 2012), and even though there are no syntax errors there still is
an infinite number of possible ways to assemble blocks in incorrect ways (Frädrich et al.
2020). Teachers therefore need to support their students, but to do so they need to compre-
hend each individual learner’s program, which can be a daunting task in the light of large
classrooms. Consequently, there is a need to support learners and teachers with the help of
automated tools.

A primary means to enable automated tools to inform learners and teachers is by testing
the programs. Given insights on the implemented behaviour, automated tools can identify
missing or incorrect functionality, they can suggest which parts of the program to fix, how
to fix them, or which steps to perform next in order to solve the overall task. A common
prerequisite, however, is that tests can be automated. In the context of SCRATCH programs,
the WHISKER framework (Stahlbauer et al. 2019) provides a means to automate testing.
A WHISKER test automatically sends user events such as key presses or mouse clicks to
the program, and observes the resulting behaviour. However, creating WHISKER tests is a
challenging task. For example, the test suite for a simple fruit catching game used in the
original WHISKER study (shown in Fig. 1) consists of 869 lines of JavaScript code. Some of
the complexity of creating such tests can be alleviated by providing suitable user interfaces
and more abstract means to specify the tests (Wang et al. 2021b). However, at the end
of the day the tests nevertheless require non-trivial manual labour, which is problematic
considering the likely target audience of teachers who may not be adequately educated
software engineers.

79 Page 2 of 63

Empir Software Eng (2023) 28:79

In this paper we aim to mitigate this problem by relieving users of the task of cre-
ating tests themselves. Given a SCRATCH program, we aim to automatically generate a
set of WHISKER tests that execute all parts of the code. The program under test could
be an example solution for a given task, such that the test suite can then be executed
against all student solutions. Alternatively, the program could be a student solution for
which a dynamic analysis is desired. However, even though SCRATCH programs tend to
be small and playful, generating tests for them automatically is nevertheless challenging.
In an initial proof of concept, we demonstrated the feasibility of using search techniques
to automatically generate sequences of interactions with SCRATCH programs (Deiner et al.
2020), but also revealed multiple obstacles that make test generation difficult: Unlike tradi-
tional code, SCRATCH program executions tend to take substantial time due to the frequent
use of motion- and sound-related animations and time-delays. Automated test generation
techniques, however, rely on frequently executing programs. The original WHISKER test
execution framework (Stahlbauer et al. 2019) reduced non-determinism by controlling ran-
dom number generators, but experience has shown that the timing aspects of these programs
and the unpredictability of the scheduler when executing these highly concurrent programs
nevertheless make deterministic executions difficult. Finally, there are technical challenges
related to the questions of which interactions a program should receive, and which algorithm
to use in order to explore possible sequences of such interactions.

In order to address these challenges, we extend our prior work on the WHISKER testing
framework (Stahlbauer et al. 2019) and WHISKER test generation (Deiner et al. 2020). In
detail, the contributions of this paper are as follows:

– We modify the execution model of the SCRATCH virtual machine that makes executions
deterministic, even in the light of timing and concurrency. Given this modification, tests
are fully reproducible and can be executed in a highly accelerated fashion.

– We propose a strategy that takes the source code as well as the runtime state of a pro-
gram during its execution into account to determine which user events are suitable for
interacting with a program under test.

– We adapt random and search-based test generation approaches to the scenario of gener-
ating high-coverage test suites for SCRATCH programs, which includes improvements
to encoding, fitness function, and algorithms.

– We implement a full-fledged test generation framework that combines generated event
sequences with regression assertions.

– We empirically study the correctness of our virtual machine modifications and the
ability of our test generation techniques to cover and test the code of real SCRATCH

programs using four datasets.

Our experiments demonstrate that, even when accelerating test execution by a fac-
tor of 10, test results are completely deterministic and devoid of any flakiness using our
approach. While we find that many users create programs that are small and easy to
cover fully, there are countless unique challenges to test generation for SCRATCH, rang-
ing from extracting suitable events for exercising a program to calculating appropriate
reachability estimates to guide test generation. Our extension of the WHISKER framework
implements techniques that, collectively, allow many-objective search-based test generation
to achieve an average of 95.5% coverage on common user-written programs, and on aver-
age 69.2% coverage on popular projects. Consequently, WHISKER represents an important
step towards enabling dynamic analysis of SCRATCH programs and countless resulting pos-
sible applications in the area of supporting programming learners. To support researchers in

Page 3 of 63 79

Empir Software Eng (2023) 28:79

developing these applications, and to develop new techniques to improve coverage further,
WHISKER and its mature automated test generation framework are freely available as open
source software.

2 Background

2.1 SCRATCH Programs

SCRATCH programs revolve around a stage on which graphical sprites process user inputs
and interact. Figure 1 shows a SCRATCH program with three sprites: bowl, bananas and
apple; the stage contains the background image. Conceptually, we define a SCRATCH pro-
gram as a set of actors, one of which is the stage and the others are sprites. Actors are
rendered on a canvas; each actor is rendered on a separate layer (Stahlbauer et al. 2019).
An actor is composed of sets of scripts, custom blocks, sound and image resources. The
resources are used for example to provide background images on the stage, or to decorate
sprites with costumes. The currently chosen costume is an example of an attribute of an
actor, and other attributes include position, rotation, or size. Actors can also define vari-
ables which are untyped and contain numeric or textual data. Scripts consist of individual
blocks stacked together. The SCRATCH language consists of different types of blocks with
different shapes, and programs are arranged by combining blocks in ways that are permitted
by their shapes.

– Hat blocks : Each script can have only one hat block, which represents an event
handler that triggers the execution of the script. Scripts without hat blocks can only be
executed by the user double clicking on them.

– Stack blocks , , ...: Regular program statements, for example to control the
appearance or motion of sprites, can be stacked on top of each other. The stacking
represents the order of the control flow between the statements.

Fig. 1 The SCRATCH user interface

79 Page 4 of 63

Empir Software Eng (2023) 28:79

– C blocks : These blocks are named after their shape and represent control flow (if,

if-else, loops). The conditionally executed code is contained within the C-shape.
– Reporter blocks : These blocks represent variables and expressions and can be used

as parameters of other blocks.
– Boolean blocks : These are special reporter blocks that represent Boolean values.

– Cap blocks : These are blocks after which no stack blocks can be attached as they
either terminate the execution or it never proceeds beyond them (e.g., forever loops).

– Custom blocks : These blocks are essentially macro scripts. An
instance of a custom block triggers the execution of the corresponding macro script.

SCRATCH programs are executed in the SCRATCH virtual machine, and controlled by the
user via mouse, keyboard, microphone, or other input devices. That is, a program can react
to mouse movement, mouse button presses, keyboard key presses, sound levels, or entering

answers to blocks. In addition, there is a global Greenflag event

which represents the user starting the program through the green flag icon in the user inter-
face (cf. Fig. 1). The SCRATCH language also contains broadcast statements ,
which trigger corresponding message receiver hat-blocks . The execution

of a script is initiated when the event corresponding to its hat block occurs, resulting in a
process p. Executing a SCRATCH program therefore results in the creation of a collection
of concurrent processes P , and the state of each process is defined by the control location
as well as the values of all variables and attributes of the actor.

Execution is operationalised by the step function of the virtual machine. Figure 2 shows
a simplified version of one scheduling step performed by the SCRATCH VM to update its
internal state. Each step has a predefined step time duration and starts by determining which
scripts are currently active and have to be executed. The collection of active scripts P ′ ⊂ P

consists of processes triggered by recent user inputs and already active scripts from previous
time steps. All active processes are then handed over for execution to the sequencer. The
sequencer mimics parallelism by sequentially executing all received processes in batches

Fig. 2 Simplified scheduling function of the SCRATCH VM

Page 5 of 63 79

Empir Software Eng (2023) 28:79

B = 〈p′
1, . . . , p

′
n〉 until the working time, which is by default set to two-thirds of the step

time, has elapsed. In order to avoid non-deterministic behaviour, the execution of a process
batch is never interrupted, even if the working time has depleted. Whenever a single process
p′ is scheduled for execution, the process is transferred to the block executor. Upon receiv-
ing a script to execute, the block executor processes each block of the given process p′ until
all blocks of the script’s process have been executed or specific blocks, forcing the process
to halt, are encountered. These process halting blocks consist of:

– and blocks, which force the process to wait until a user-defined
timeout x has run out or some condition is met.

– blocks, which create a think/speech bubble for the specified amount of
time x on top of the sprite containing the block.

– blocks, which move the given sprite gradually within a time frame x to a
specified location.

– blocks, which force the program execution to halt until the defined
sound file x has been played completely.

– blocks, which work like a block by translating the given text
argument x into the sound file y.

– The last block contained within , and blocks, which forces the

process to halt until the next process batch is executed.

Eventually, the state of the currently executed process p′ is reported back to the
sequencer. As soon as the working time has depleted and the full batch of processes has
been executed, the collection of modified process states 〈p′

1, . . . , p
′
n〉 ∈ P ′ is handed back

to the runtime environment. Finally, the runtime environment updates the internal state of
the SCRATCH VM and notifies the user by redrawing the canvas to meet the state changes.

2.2 TheWHISKER Testing Framework

Testing a program means executing the program, observing the program’s behaviour, and
checking this behaviour against expectations. WHISKER (Stahlbauer et al. 2019) automates
this process for SCRATCH programs: Conceptually, a WHISKER test consists of a test har-
ness, which sends user events to the SCRATCH program under test, and a set of SCRATCH

observers, which encode properties φ that should be checked on the program under test.
As illustrated by Fig. 3, WHISKER executes tests by wrapping the SCRATCH VM’s

scheduling function and inheriting its step time. First, WHISKER queries the test harness for
an input to be sent to the SCRATCH program under test. Then it performs a step by send-
ing the obtained input in the form of an event to the SCRATCH program. The SCRATCH

VM then invokes its scheduling function (Fig. 2). After the working time has expired, the
scheduling function stops and reports the new state back to WHISKER. This state is handed
over to the test observer, which checks if the actual state matches the expected properties φ.
If it does not, then a failing has been found and is reported in the form of an error witness
(Diner et al. 2021), which contains the whole input sequence leading to the violation of the
given property.

A static test harness provides inputs encoded in JavaScript to the program. Arbitrary
events can be sent based on time intervals or when certain conditions hold. As an example,

79 Page 6 of 63

Empir Software Eng (2023) 28:79

Fig. 3 Execution step of the WHISKER VMWrapper: Select an input, send that input to the SCRATCH VM,
and finally match the resulting state against the expected properties φ

Listing 1 shows a WHISKER test for the project in Fig. 1. The test consists of pressing the
left cursor key for ten steps and checking whether the bowl-sprite has moved to the left.

WHISKER also supports dynamic test harnesses, where the program is exercised with
randomly generated sequences of inputs. Although these are often sufficient to fully cover
simple programs, previous work (Stahlbauer et al. 2019) has shown that more complex pro-
grams are not always fully covered. In addition, in cases where an instructor or a researcher
needs to author tests for multiple students’ solutions in one assignment, defining one set of
inputs is almost never sufficient to cover all different student programs, where each student
may have their own unique implementation for properties such as actor movement speed
and game begin/end conditions (Wang et al. 2021a). Finally, specifying SCRATCH observers
may be easier for a given sequence of user inputs in contrast to specifying the expected out-
come for arbitrary sequences inputs. Therefore, the aim of this paper is to generate static
test harnesses, i.e., test suites that reach all statements of a program under test.

Listing 1 Example WHISKER test case for the game shown in Fig. 1

Page 7 of 63 79

Empir Software Eng (2023) 28:79

3 Accelerated and Deterministic Test Execution

The nature of SCRATCH programs causes two issues for automated testing: First, the fre-
quent use of animations and timed behaviour causes executions to take long. Second, this
time-dependent behaviour, the randomised nature of games, and various implementation
aspects of SCRATCH may lead to non-determinism. To enable efficient and reliable testing
of SCRATCH programs we therefore modified the SCRATCH VM to decrease the execution
time and to make executions deterministic. Additionally, since some blocks check for sound
originating from a device’s microphone, we modified the SCRATCH VM to allow WHISKER

to generate virtual sound levels without requiring a real physical microphone.

3.1 Accelerating Execution

To increase test execution speed we apply two essential modifications to the SCRATCH

VM: First, the rate at which inputs are sent to the SCRATCH VM is increased; second,
all blocks that halt the execution of a process to wait for time to pass (see Section 2.1)
are instrumented to reduce their time-dependent arguments in proportion to the chosen
acceleration factor. While the SCRATCH VM tries to execute process batches until the
working time has elapsed, due to the nature of SCRATCH programs most processes sooner
or later hit some statement that causes waiting. Indeed, we have observed that processes
tend to spend more time waiting than executing within a step. Therefore, to effectively
increase the rate at which inputs are sent to the SCRATCH VM, we reduce the step time
of the WHISKER VMWrapper by the selected acceleration factor. Since the step time is
directly linked to the SCRATCH VM’s working time, as explained in Section 2.1, reduc-
ing the step time automatically leads to an increased update interval of the SCRATCH VM.
Thus, a decrease in the step time results in sending inputs more frequently to the program
under test and furthermore increases the rate at which the SCRATCH VM processes these
inputs. To illustrate the increased execution speed, Fig. 4 depicts an accelerated version of
WHISKER’s scheduling function shown in Fig. 3. In the accelerated scheduling function,
an acceleration factor of two cuts the step and working time in half, resulting in twice as
many steps within the same time frame. However, some blocks force a process to enter
an execution halting process state until a timeout or some user-defined condition is met
(Section 2.1). Hence, even if the speed at which the SCRATCH VM updates its internal state
is increased, these blocks would still force the process they are contained in to halt for
the given amount of time. Therefore, statements that contain a time-dependent argument

such as , , and are instrumented to reduce
their time argument x by the given acceleration factor. On the other hand, execution halt-
ing blocks that do not directly hold any time-dependent arguments like and

are accelerated by reducing the play duration of the given or translated sound
file appropriately. Lastly, statements that stop the execution of a process until a specific
condition is met, as the block, are not altered at all because these condi-
tions already emerge earlier due to accelerated program execution. By applying both
VM modifications to the original SCRATCH VM, we construct a modified SCRATCH VM
used by WHISKER, capable of effectively increasing test execution speed by a user-defined
acceleration factor.

79 Page 8 of 63

Empir Software Eng (2023) 28:79

Fig. 4 Accelerating a SCRATCH program by halving WHISKER’s step time and the SCRATCH VM’s working
time (“WT”)

3.2 Ensuring Determinism

Most of the projects created within the SCRATCH programming environment represent
simple games. A very prominent characteristic of games is their use of random number gen-
erators, which results in non-deterministic behaviour. Unfortunately, this frequently leads
to flaky test suites (Luo et al. 2014; Gruber et al. 2021), which is undesirable in any test-
ing tool but especially problematic in WHISKER’s application scenario: For example, a
WHISKER test related to a graded assignment could pass on a student’s system but fail on
the teacher’s machine, leading to a potentially unfair grading process. In order to avoid
flaky tests originating from randomised program behaviour, WHISKER offers the option
to seed the SCRATCH VM’s random number generator to a user-defined seed, by replac-
ing the global Math.random function with a seeded one at runtime. However, random
number generators do not pose the only source of non-deterministic behaviour. In conse-
quence of its many temporal dependencies, the SCRATCH VM itself is also susceptible to
non-determinism. This becomes especially apparent in programs containing blocks that take
temporal values as an argument. To exemplify this problem, consider Fig. 5, showcasing a
program consisting of an elephant (originating from a study by Geldreich et al. (2016)) that
changes its costume (and thus its visual appearance) every second. When executing this pro-
gram for the same amount of time on different machines, the last selected costume might
not always be the same.

This non-deterministic behaviour originates from the way the sequencer repeatedly exe-
cutes active processes. As depicted in Fig. 2, the sequencer obtains all currently active
processes P ′ from the runtime environment and keeps executing batches of those processes
until the allocated working time has elapsed. The root cause of non-deterministic behaviour

Page 9 of 63 79

Empir Software Eng (2023) 28:79

Fig. 5 SCRATCH project containing an elephant that changes its visual appearance every second

resides in the sequencer processing each batch of processes b ∈ B as a whole and its inabil-
ity to interrupt the execution of a batch b even if the allocated working time has run out.
Therefore, differences in code execution speed between systems of diverging performances
will allow the sequencer to step through and execute a varying number of process batches in
the course of one working time interval. Hence, fast machines have a higher chance of strik-
ing a specific time interval earlier than slow machines. As depicted in Fig. 6, for the elephant
example, this behaviour eventually leads to earlier costume changes in faster machines.

Accelerating execution may facilitate non-deterministic behaviour since the window of
acceptable execution speed variances shrinks proportionally to the acceleration factor used.
For example, an acceleration factor of 5 reduces the wait duration in the elephant project
from one second down to 0.2 seconds. With a wait duration of only 0.2 seconds, the prob-
ability of more performant machines repeatedly triggering a state change faster than less
performant ones increases. Moreover, as illustrated in Fig. 4, higher acceleration factors
decrease the working time interval, further enforcing diverging program behaviour.

To eliminate non-deterministic behaviour originating from the scheduling function, we
further modify the accelerated SCRATCH VM established within Section 3.1: First, time-
dependent arguments within specific SCRATCH blocks are replaced with a discrete measure
which is added to the SCRATCH VM and based on the number of executed steps so far. Since
the SCRATCH VM implements different ways to treat time in different types of blocks, there
are multiple different ways this change has to be implemented. Second, in a similar way,
time-dependent WHISKER event parameters, defining how long inputs should be sent to the
SCRATCH VM, are modified to be based on the number of executed steps as well.

In order to replace the imprecise measurement of time, a step counter sc ∈ N is added to
the SCRATCH VM’s runtime environment. The step counter is decoupled from the exact unit
of time measured in seconds and responsible for counting the number of steps WHISKER

has executed so far. Whenever a time-dependent block is encountered during the
execution of a SCRATCH program, the temporal argument x ∈ Q≥0 of the waiting block
measured in seconds is translated into the corresponding number of steps s ∈ N. Converting

79 Page 10 of 63

Empir Software Eng (2023) 28:79

Fig. 6 Effect of code execution speed variances on the Elephant project with each beam representing one
process batch b ∈ B: Fast machines execute process batches more frequently within one step and thus have a
higher chance of striking the end of the 1 second block earlier than machines having a low execution speed,
resulting in diverging elephant states

seconds into the appropriate number of steps is done by dividing the time with the fixed step
time, which already incorporates the chosen acceleration factor. For example, concerning
the blocks of the depicted elephant project and assuming a step time of 10ms, the
duration of all waiting blocks x is transformed into s = 1s/10ms = 100 steps. At the time
of entering the process halting block, the current step count sc0 is added to the calculated
number of steps s to obtain the step count value scr = sc0 + s at which execution of the
halted process can resume. Every time the process containing the time-dependent block is
executed again, the current step count sc is checked, and execution is resumed iff sc > scr .

Very similar to the wait block is the block, which measures the time spent since
program execution started or the time passed since a block was encountered. Non-
deterministic real-time measurements in timer blocks are replaced by a new variable, which
is increased by a value of 0.075 after every executed step and set back to zero after
encountering a reset block. The value of 0.075 was empirically derived by minimizing
the difference to real-time measurements. Although those changes may introduce slight
and, in most cases, non-perceivable behavioural differences to the original SCRATCH VM,
they nonetheless ensure deterministic program behaviour and are therefore preferred over
real-time measurements, which will always lead to flaky behaviour.

Page 11 of 63 79

Empir Software Eng (2023) 28:79

Whereas wait and timer blocks are realised in SCRATCH as custom timers,
, and blocks are implemented differ-

ently and hence require special treatment.
Instead of maintaining a simple timer, blocks withhold a promise until

a timeout set via JavaScript’s setTimeout() function has elapsed. The blocked process is
kept in the Yield process state and can only resume its execution if it attains the withhold
promise from the yield forcing block. In addition to the already present non-determinism
caused by the SCRATCH VM, the setTimeout() function is known to be very inaccurate,
therefore enforcing non-deterministic behaviour even more1. Hence, it does not suffice to
simply replace the timeout duration x with the corresponding number of steps s. To avoid
the problematic JavaScript function, these blocks were modified to resemble a
block by setting the blocked process into the Wait process state instead of the Yield pro-
cess state. Furthermore, in order to retain the functionality of blocks, a
speech/think bubble is placed before, and removed after, the simulated wait above the
corresponding actor .

Blocks using statements, on the other hand, repeatedly change an actor’s
position on the canvas in relation to the elapsed time. These blocks are instrumented by
transforming the total gliding duration x to the corresponding number of steps s. Addition-
ally, whenever a specific glide block is entered for the first time, we calculate and store the
glide terminating step count scr = sc + s, after which the respective block reaches its des-
tination. Finally, by setting the the current step count sc in relation to the glide terminating
step count scr , the position of the sprite can precisely be determined in each execution step.

Lastly, and blocks behave similar since both halt execution
until the given or translated file x has been played. Because sound files specify their dura-
tion, the step count scr at which execution will resume can be calculated the same way
as for the blocks by translating the duration into the corresponding number of
steps s.

Besides their translated sound file, blocks contain another source of flaky
behaviour by querying a remote server to produce a sound file for the text argument x. Due
to network uncertainties (Luo et al. 2014), the translation of the text argument always takes
different lengths of time, which in turn delays the calculation of scr and eventually leads to
non-deterministic behaviour. To eliminate network uncertainties, we modified the SCRATCH

VM to translate and cache all resulting sound files of blocks during the loading
process of the block hosting sprite, i.e., before the execution of the SCRATCH program.

By abstracting the measure of time x to logical execution steps s, we can exactly define
at which step count scr a halted process can be resumed. As a consequence, locks orig-
inating from execution halting blocks can only be released between steps and no longer
within a single step, which makes the working time obsolete. Therefore, the SCRATCH VM’s
sequencer is further modified to only execute a single process batch instead of executing as
many process batches as possible within the working time. Since the implemented accelera-
tion technique instruments execution halting blocks and because a single process is executed
until the end of its corresponding script or until reaching a process halting block, the removal
of the working time does not change the behaviour of the SCRATCH VM. Regarding the ele-
phant project, as shown in Fig. 7, instead of changing the costume as soon as one second

1https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout, last acces-
sed September 2022

79 Page 12 of 63

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout

Empir Software Eng (2023) 28:79

Fig. 7 Instead of waiting for exactly one second, the costume-changing blocks of the elephant now have to
wait for exactly 100 steps until they are allowed to change their costume. The working time interval is no
longer needed

has passed, the step counter ensures that the elephant will constantly change its costume
every time precisely 100 steps have elapsed, no matter how fast the given machine executes
process batches.

Besides the implementations of the SCRATCH blocks, the events that WHISKER tests
consist of depend on temporal values as well, for example when deciding how long to send
a key press to the program under test. To avoid diverging program executions, all temporal
arguments x of WHISKER events are translated into steps s. Furthermore, to ensure all events
can have impact on the SCRATCH VM, we enforce a minimal step duration of one step.
Thus, given a step duration of 30ms and a KeyPress event with a duration of 29ms, the
KeyPress event is translated into an event that presses the key for exactly s = 29

30 → 1 step.

3.3 Virtual Sound

The hat block as well as the sensing block both check for the presence
of a given sound level. When these blocks are executed, the SCRATCH VM tries to determine
the current sound level in the user’s environment by accessing the device’s microphone. In
case a microphone has been detected, the sound level is determined by calculating the root
mean square (RMS) of the sound wave measured by the microphone. Then, the RMS value
is scaled into the range [0, 100], with 0 indicating that no noise has been detected and 100
representing the highest possible sound level.

In order to test SCRATCH projects without microphone (e.g., on a compute server), we
added virtualised sound to the SCRATCH VM using a new variable virtual sound. The virtual
sound variable is directly accessible via the WHISKER framework and thus can be utilised
to simulate sound levels in the range of [0, 100], mirroring the RMS value range. The sound
event in WHISKER can send sound with a given volume for a predefined number of steps to
the program under test. As soon as the defined number of steps have elapsed, WHISKER sets
the virtual sound level to a value of −1 to indicate the end of the simulated sound sequence.
To guarantee that a given program recognises the simulated sound, we further modified the
SCRATCH VM to always check for the presence of virtual sound first before trying to access
a microphone. However, to still allow the SCRATCH VM to fall back to its default behaviour
using a physical microphone to detect sound, we use a value of −1 to indicate that no virtual
sound is currently intended to be sent to the SCRATCH VM.

Page 13 of 63 79

Empir Software Eng (2023) 28:79

4 Test Generation for SCRATCH

A SCRATCH program processes streams of user inputs (e.g., keyboard and mouse events)
to update program states. As an example, consider the SCRATCH program shown in Fig. 8,
which contains two sprites, a cat and a bear. The program starts when a player clicks on the
cat sprite. The cat first greets the bear by saying “Hello bear!” for 2 seconds. Afterwards,
the script of the bear receives the message that they need to answer the cat, and then greets
the cat back by saying “Hello cat!” for 2 seconds. Then, if the user presses the space key,
the bear will change to a “smiling bear” costume. This program includes two scripts
and two types of input events: clicking on the cat sprite and pressing the space key. Conse-
quently, testing this program would involve repeatedly sending either of these two events to
the program.

In order to systematically generate test inputs for SCRATCH programs, we derived a
representative set E of input events and encoded them into WHISKER:

E = {Greenflag, KeyPress, ClickSprite, ClickStage, TypeText, TypeNumber, MouseDown,

MouseMove, MouseMoveTo, DragSprite, Sound, Wait}
Some events require parameters, such as (x, y) coordinates for MouseMove. Thus, a user event
is fully defined by a tuple (e, v) consisting of an event type e ∈ E and a list of parameter
values v = 〈v1, v2, . . . , vi〉. Table 1 summarises the supported events and their parameters.

4.1 Test Generation

A test case t = 〈e1, e2, e3, . . . ei〉 consists of a sequence of events and their parameters. In
the simplest form of test generation, a test case may be produced by combining several ran-
domly selected events from the sequence of available events E until the desired test case
length has been reached. The randomTestGeneration Algorithm 1 repeatedly chooses an
event from E and determines parameters for the chosen event using the random function,
which randomly selects a single element from a set of elements S. Note we are exclud-
ing the Greenflag event from E since by design WHISKER automatically sends this event
at the beginning of every test execution. While straight-forward to implement, this strategy
might be ineffective for test generation as events can be chosen from E for which no cor-
responding handler exists in the project under test. For example, in Fig. 8, sending events
of category MouseDown or Sound is pointless since the program cannot respond to these

Fig. 8 Example SCRATCH program: The cat says “Hello bear!” when clicked and broadcasts the message
“answer cat”. The bear receives this message and then says “Hello cat!”. Afterwards, when the space key is
pressed the bear switches its costume to “smiling bear”

79 Page 14 of 63

Empir Software Eng (2023) 28:79

Algorithm 1 Random test generator

events. Thus, more fine-grained event extraction methods which filter irrelevant events from
E are needed.

4.2 Event Extraction

The inclusion of irrelevant events can be avoided by considering only events for which
event handlers exist in the source code. Event handlers can take on two different forms in
SCRATCH. First, there are event handlers in terms of hat-blocks starting a script s (such

as and in Fig. 8). Second, it is also possible to query the

Table 1 Events supported by WHISKER

Event Parameter list Description

Greenflag — Starts SCRATCH program execution.

KeyPress Key and duration Presses a certain key for a specified duration.

ClickSprite Sprite Clicks on a sprite or one of its clones.

ClickStage — Clicks on some location that is not occupied by sprites.

TypeText Text Enters a string from the pool of (1) all strings used in
direct comparisons with the block, (2) a randomly
generated string, and (3) fixed seed strings (‘0, ‘10’,
‘Hello’).

TypeNumber Number Inserts the supplied number into a text field.

MouseDown Status Toggles the mouse button status (pressed/not pressed).

MouseMove (x, y) coordinates Moves the mouse to the target coordinates.

MouseMoveTo Sprite Moves the mouse to the position of the target sprite.

DragSprite Sprite/colour/edge and angle Drags the sensing sprite to a sensed sprite/colour or ran-
domly selected edge on the canvas. Additionally, if angle
≤ 360 the determined dragging location is moved along
the angle direction by the size of the sensing sprite.

Sound Volume and duration Sends virtualised sound to the
SCRATCH VM for a specified dura-
tion

Wait Duration Waits for a specified duration.

Page 15 of 63 79

Empir Software Eng (2023) 28:79

state of mouse and keyboard through sensing blocks. For example, in the program shown
in Fig. 8, the sensing block observes if the space key is pressed. Thus, a
corresponding KeyPress event should be included in the sequence of available events E.
Table 2 summarises the event handling blocks for all the supported user events.

Extracting only events for which corresponding event handlers exist in the SCRATCH

program may still include irrelevant events: On the one hand, sensing blocks cannot process
events if their scripts are inactive. For example, in Fig. 8 there is no point in sending Key-
Press(space) events when the forever loop in script Fig. 8c is not executing. On the other
hand, if an event which triggers a hat block of a currently active script is sent to the pro-
gram, the execution of that script is halted and starts anew. Therefore, some sensing blocks
potentially never become activated because their scripts are constantly restarted.

Consequently, dynamicEventExtraction considers the source code of the SCRATCH pro-
gram as well as the current program state γ , as shown in Algorithm 2. The filtered events
are formed by extracting events for which corresponding sensing blocks occur within active
scripts and collecting events from hat blocks whose scripts are currently inactive. For
example, in Fig. 8, at the beginning of the program execution, the event set only includes
ClickSprite(cat). After 2 seconds, when the script in bear starts to execute, ClickSprite(cat)
is removed from the event set, and KeyPress is added to the event set. This allows the
input events to only include highly relevant events at each moment of program execution.
Furthermore, because only active sensing blocks are considered, loose sensing blocks in
unconnected scripts that have no hat block responsible for starting the execution of the script
are automatically removed as well. Lastly, whenever an event e ∈ {TypeText, TypeNumber}
is extracted, we follow the lead of the SCRATCH environment, setting the focus of the user
interface to the input field, and further restrict the sequence of available events to 〈e, Wait〉.

As the dynamicEventExtraction observes the current program state, it is also capable of

Table 2 Mapping of SCRATCH blocks to the corresponding WHISKER event handlers

79 Page 16 of 63

Empir Software Eng (2023) 28:79

Algorithm 2 Dynamic Event Extraction

inferring specific event parameters automatically. For instance, if a DragSprite event is cho-
sen due to a block, the target sprite’s position can precisely be determined
from the program state. An overview of all events classified into inferable and non-inferable
parameters is shown in Table 3. Since the dynamicEventExtraction extracts information
about the current state of the program, the execution of the program has to be interleaved
with the selection of events, as shown in Algorithm 3. Furthermore, because we assume the

Table 3 Inferable and non-inferable parameters mapped to their respective events

Event Inferable parameter Non-inferable parameter

KeyPress Key Duration

ClickSprite Sprite —

ClickStage — —

TypeText Text —

TypeNumber — Number

MouseDown Press-status —

MouseMove — (x, y) coordinates

MouseMoveTo Sprite —

DragSprite Sprite/colour/edge Angle

Sound Volume, fixed duration —

Wait — Duration

Page 17 of 63 79

Empir Software Eng (2023) 28:79

Greenflag event to be similar to the initiation of a regular program execution, the event is
always sent at the beginning of test execution and never after the test execution has started.

Algorithm 3 Random test generator using dynamic event extraction

4.3 Assertion Generation

The test generation algorithm produces tests that consist of sequences of events. In order to
be able to detect faults, a WHISKER test case also requires an observer (Section 2.2) that
checks the observed behaviour against the expected behaviour. Since we envision that a
common application scenario for WHISKER is that tests are generated on a model solution
and then executed on student solutions, we operationalise the WHISKER observer in terms
of regression test assertions that capture the state of the model solution. An assertion is a
Boolean function that takes the program state P as input, and checks one of the properties
against an expected value. If the value deviates, the assertion fails the test case. The asser-
tions implemented in WHISKER are listed in Table 4: Each assertion is implemented in terms
of code to check the value at runtime, and can synthesise JavaScript code that implements
the observer in the generated WHISKER test.

The assertion generation algorithm is based on the approach proposed by Xie (2006),
which essentially adds an assertion for every attribute after every step of a test, with expected
values derived from the current version of the program. Since the number of possible asser-
tions for a WHISKER test is proportional to the number of sprites, clones, and events in a
test case, a direct application of the approach by Xie (2006) would lead to a huge number of
assertions, many of which would be irrelevant for the program under test. While a common
approach to filter relevant assertions is using mutation analysis (Fraser and Zeller 2011), the
long test execution times of WHISKER tests together with the many executions required by
the mutation analysis render this approach impracticable for WHISKER tests. We therefore
reduce assertions as follows: We execute each test event by event; after each event, we deter-
mine the values for all possible assertions in the current state, and compare them against the
values of the same assertions in the previous state. Only if the value of an assertion changes
from the previous to the current state, this assertion is added to the current state.

79 Page 18 of 63

Empir Software Eng (2023) 28:79

Table 4 Types of assertions supported by the WHISKER test generator

Assertion Target Expected value

Backdrop Stage Costume (=backdrop) number

Clone count Sprite Number of clones

Costume Sprite, Clone Costume number

Direction Sprite, Clone Heading ±1 degree

Graphics effect Sprite, Clone, Effect type Value

Layer Sprite, Clone Layer number

List Sprite, Stage Length

Position Sprite, Clone (x, y) coordinates ±5 pixels

Say Sprite, Clone Existence, type, and contents of speech bubble

Size Sprite, Clone Size attribute

Variable Sprite, Stage Variable value

Visibility Sprite, Clone Visibility attribute

Volume Sprite, Clone Volume attribute

5 Test Generation Algorithms

5.1 Encoding SCRATCH Tests Using Grammatical Evolution

A prerequisite for applying search algorithms is a representation amenable to the mod-
ifications required by different search operators. For our application context we aim to
evolve test cases, which consist of sequences of events. One challenge that applies to such
sequences is that there can be dependencies between different events within the sequence.
For example, assume two successive click events on the same sprite, where the execution
of the first click event causes the sprite to be hidden—since the sprite is hidden, no second
click can be performed on the sprite. Consequently, events cannot be performed in arbitrary
order, and search operators that manipulate events may lead to invalid sequences. Rather
than directly encoding test cases as sequences of events we therefore use an encoding
inspired by Grammatical Evolution (O’Neill and Ryan 2001), where the mapping from
genotype to phenotype is performed using a problem-specific grammar G = 〈T , N, P, ns〉.
Here, T is a set of terminals, which are the items that will appear in the resulting phenotype;
N are non-terminals, which are intermediate elements associated with the production rules
P : N → (N ∪ T)∗; the element ns ∈ N is the start symbol, which is used at the beginning
of the mapping process.

The genotype is typically represented as a list of bits or integers; we use an integer
representation (codons). Since a codon can represent the next event that will be executed or
determine a non-inferable parameter of an event, we differentiate between event codons ce

and parameter codons cp.
The mapping of a list of codons to the phenotype creates a derivation of the grammar as

follows: Beginning with the first production of starting symbol ns of the grammar, for each
non-terminal x on the right-hand side of the production we choose the rth production rule
for x. Given an event codon ce and n productions for non-terminal x, the number r of the
production rule to choose is determined as follows:

r = ce mod n (1)

Page 19 of 63 79

Empir Software Eng (2023) 28:79

In our application scenario, n represents the number of available events (Section 4). The
resulting number r is then used as index for selecting an event from the available events E.
If a look-up of Table 3 indicates that the selected event contains j non-inferable parameters,
the subsequent j parameter codons cp of the genotype are then queried to determine the
required parameters based on a unique parameter mapping for each event type ev.

Note that a single change of one event codon might result in the selection of a different
event that consumes more or less non-inferable parameters than the previous event. Such
a change of consumed parameter codons would potentially lead to a diverging interpreta-
tion of the remaining codons because former event codons might be treated as parameter
codons and vice versa. Thus, mutating a single event codon could result in an entirely dif-
ferent test execution, leading to considerable jumps within the fitness landscape. To avoid
this problem, we assign each event codon a fixed number of parameter codons np, regard-
less of the number of non-inferable parameter codons a given event consumes. The fixed
number of assigned parameter codons np is defined by the maximum number of con-
sumed codons across all processable events of a given project Estatic. A genotype is then
incrementally translated into a phenotype by transforming each event codon to the corre-
sponding SCRATCH event using (1) and consuming the event-specific number of required
event parameter j ≤ np.

Algorithm 4 describes the simultaneous decoding and execution of a codon sequence and
demonstrates how concrete parameter values are chosen. The DragSprite event constitutes
a special case since the dragging location defined by the event extractor tends to show
unintended side effects. Consider, for example, a game in which the player has to reach a
specific position at the end of a maze without touching a wall. If the DragSprite event moves
the player sprite to the goal position in order to trigger code related to winning the game, the
player sprite might also overlap with a wall, leading to a Game Over state instead. To avoid
these side effects, the DragSprite event consumes an additional parameter codon to slightly
move the determined dragging location in the direction of the parameter codon value, which
is interpreted as an angle in the range of [0, 360]. Moreover, for KeyPress and Wait events,
the user can specify an upper bound for the respective wait or keypress duration.

Each time an event has been inferred from the current event codon ce, the respective
event is sent to the SCRATCH VM, which updates its state based on the received event.
Then, the decoding of the codon sequence moves on to the next unused event codon of the
genotype, skipping all unused parameter codons cp of the previous event codon. Overall,
we define an implicit grammar where the starting production for a test case of length l =
len(codons)/(np + 1) is given by the following formula:

testcase ::= input1 input2 . . . inputl

Consider the following example chromosome that was generated for the program
depicted in Fig. 8, with Estatic = 〈Wait, ClickSprite(Cat), KeyPress(Space)〉 and np = 1:

T = 〈[4 3] [5 8] [2 9]〉
For a better visualisation of the codon groups, we placed each event codon together

with its np parameter codons inside rectangular brackets. After sending the Greenflag event
to the SCRATCH VM, the resulting initial program state provides a choice of two events:
a Wait event as well as a ClickSprite event on the cat sprite. Using the first event codon
value 4 and the two available events 〈Wait, ClickSprite(Cat)〉, we compute 4 mod 2 = 0 and
thus select the Wait event from the set of available events. Since the Wait event requires a
parameter that denotes the duration, the next codon 3 is interpreted as the event’s param-
eter, i.e., as the number of steps to wait for. Moving on, the next event codon is 5. In our

79 Page 20 of 63

Empir Software Eng (2023) 28:79

Algorithm 4 Decoding and execution of a codon sequence

case, waiting does not have an impact on the list of available events, which means we have
〈Wait, ClickSprite(Cat)〉 as our sequence of available events again. Due to 5 mod 2 = 1,
we choose to click on the cat sprite. Since the ClickSprite event does not require addi-
tional parameter codons, we skip the reserved parameter 8. After executing the ClickSprite
event, the event handler script broadcasts a message that triggers the receiver script in the
bear sprite, which in turn waits for a press of the space key in an infinite loop. Thus,
when interpreting the next event codon (2), there are three possible events to choose from:
〈Wait, ClickSprite(Cat), KeyPress(Space)〉. Because 2 mod 3 = 2, the chosen event is to
press the space key. Because the KeyPress event requires a single additional codon to deter-
mine the press duration, the following reserved parameter codon is consumed to define a
press duration of 9. In order to explore the search space and derive new chromosomes, we
apply mutation and crossover.

Page 21 of 63 79

Empir Software Eng (2023) 28:79

5.1.1 Mutation

During mutation, event codons are grouped with their np assigned parameter codons, which
results in ng = len(codons)/(ng + 1) codon groups. Codon groups are then traversed and
mutated with a probability of 1/ng. If a codon group is mutated, a single mutation operator
out of the following three operators is chosen randomly. Each description of a mutation
operator succeeds an exemplary mutant that results from applying the respective mutation
operation at the codon group [5, 8] of the genotype T = 〈[4 3] [5 8] [2 9]〉.
– Add a novel codon group in front of the selected codon group, consisting of np + 1

randomly generated codon values: T = 〈[4 3] [1 7] [5 8] [2 9]〉
– Iteratively modify every codon value of the selected codon group by sampling new

codon values from a gaussian distribution that has its mean value set to the respective
codon value: T = 〈[4 3] [4 10] [2 9]〉

– Delete the selected codon group: T = 〈[4 3] [2 9]〉
Since each codon group is mutated with a probability of 1/ng, we apply, on average, one
mutation operation to every parent.

5.1.2 Crossover

Crossover takes as input two parents and produces two children by combining the codons
of both parents at specific codon positions ψ1 and ψ2. Similar to the mutation operator, the
crossover operator starts by grouping the codons of both parents into codon groups of sizes
ng1 and ng2. To derive the crossover positions ψ1 and ψ2 for both parents, we first randomly
select a relative crossover point ψr in the range of [0, 1], with 0 representing the first codon
group and 1 representing the last codon group of any given parent, and map ψr to the
corresponding codon group for each parent individually. A new offspring is generated by
combining the first parent’s codon groups from 0 to ψ1 − 1 with the codon groups residing
at the index positions ψ2 to ng2 of the second parent. Finally, a second child is produced by
swapping the first and second parent. For example, consider the two parents

T1 = 〈[0 1] [2 3] [4 5] [6 7] [8 9]〉
T2 = 〈[10 11] [12 13] [14 15]〉

and a randomly chosen relative crossover point ψr = 0.5, which is mapped to the crossover
positions ψ1 = 2 and ψ2 = 1. Then, using the derived crossover positions, the crossover
operator produces the two children:

T12 = 〈[0 1] [2 3] [12 13] [14 15]〉
T21 = 〈[10 11] [4 5] [6 7] [8 9]〉

5.2 Fitness Function

Fitness functions offer a means of distinguishing “good” and “bad” chromosomes. We aim
for statement coverage, such that the fitness function estimates how close a given execu-
tion was to reaching a statement. This estimate is traditionally calculated by considering
distances in the control flow (approach level (Wegener et al. 2001)) and distances of the
executions of individual conditional statements (branch distance (Korel 1990)):

– Approach Level: A target statement can be nested arbitrarily deep in conditional (e.g.,
if-then-else) parts of the program. The control flow only reaches the target if it takes

79 Page 22 of 63

Empir Software Eng (2023) 28:79

specific branches at these decision nodes. Intuitively, the approach level measures the
minimum number of decision nodes by which control flow missed the target.

– Branch Distance: If the control flow takes the wrong branch at any of the dependent
decision nodes, then the branch distance estimates how close the underlying conditional
statement was from taking the opposite branch.

The fitness calculation in WHISKER is based on these concepts, but requires adaptations.

5.2.1 Interprocedural Control Flow and Control Dependence Graphs

The approach level metric was designed for procedural code containing potentially deeply
nested code constructs. In contrast, SCRATCH programs tend to consist of many small
scripts, which communicate through events and messages. To counter this discrepancy, we
create an interprocedural control flow graph and control dependency graph for SCRATCH

programs, and use this for calculating approach levels.
A given target SCRATCH program consists of a number of scripts; for each script we

derive the control flow graph (CFG), defined as CFG = (L ∪ {entry, exit}, G), i.e., a
directed graph consisting of control flow locations L as well as dedicated entry and exit

nodes, and edges based on the control flow G between these nodes. We combine these
intraprocedural CFGs to an interprocedural super-CFG as follows:

– For each event handler , we add an artificial node with edges to the event
handler (hat block) as well as the exit node. We further add an edge from entry to this
artificial node for event handlers of user inputs.

– For each or statement, we add an edge from the broadcast to

all scripts that start with a matching receive event handler block .

– For each statement, we add an edge to all scripts that start with a matching

event handler block for the corresponding sprite.

– For each and statement, we add an edge from that block to

all scripts that start with a matching block for the corresponding
backdrop (or all such event handlers if the name of the backdrop is not known).

– For each procedure call statement , we add an edge from the call to the
start block of the procedure (custom block), and a return edge from its end to the
successor node in the calling script. If there are multiple calls to a custom block, all
calls lead to the same start block, and there are multiple return edges from the end of
the procedure.

– For we add an edge to the exit node, since the rest of the execution is
dependent on the condition being satisfied.

Figure 9a shows the interprocedural CFG for the program in Fig. 8. This CFG contains
two artificial event nodes (clicked cat?, broadcast?), each of which effectively is a branch-
ing statement depending on whether the event occurs. These branches turn the occurrence
of events into control dependencies of the statements in the event handler code.

5.2.2 Approach Level

The approach level is calculated using the control dependence graph, which can be derived
directly from the interprocedural CFG. Figure 9b shows the CDG for the example program

Page 23 of 63 79

Empir Software Eng (2023) 28:79

Fig. 9 Interprocedural control flow graph and control dependence graph created for the example program
from Fig. 8

shown in Fig. 8; inter-dependencies, for example caused by message broadcasts, are cap-
tured in this graph. Figure 10 shows a simple example program, where the say block is only
executed if the two control dependencies checking x against 50 and then against 60 are sat-
isfied. If x is less than 50, then the approach level after executing this script will be 1; if x

is larger than 50 but less than or equal to 60, then the approach level is 0.
To measure the approach level, each statement fitness function pre-computes the distance

in the CDG for each node to the target node. We instrument program executions by extend-
ing the SCRATCH VM such that information about executed branching statements is added
to execution traces. Execution traces consist of block traces, which collect specific block-
related data such as the block type and argument values of conditional statements. Given
an execution trace, we iterate over the covered nodes and determine the minimum distance
observed along the trace using the pre-computed approach levels.

5.2.3 Control Flow Distance

Traditional programs execute their procedures from start to end. In contrast, SCRATCH pro-
grams tend to execute for long durations because of the animations they tend to contain,
while WHISKER tests at the same time impose strict time limits (defined implicitly by the
number and duration of the Wait events in a test). When a WHISKER test reaches its end it
is terminated, which may interrupt the execution at any point in the control flow. Such an

79 Page 24 of 63

Empir Software Eng (2023) 28:79

Fig. 10 Example program to illustrate aspects of the fitness function

interrupted execution might be following the correct path in the control flow, such that the
branch distance of those executed control dependencies is 0 (i.e., the correct branch was
taken). The search would now receive no guidance towards reaching the next control depen-
dency or the target statement. In order to counter this problem, we introduce the control flow
distance metric, which informs the fitness function how close an execution was to reaching
a target node within a sequence of statements; the target node might either be the target of
the fitness function itself, or the next control dependency on the path to it.

The computation of the control flow distance is outlined in Algorithm 5: Given a CFG
G with control locations L, and a set of already covered locations C ⊂ L, we perform a
backwards breadth-first search starting from the desired target node t ∈ L, and compute the
minimal distance between t and any covered statement.

The function is called using the coverage information contained in a trace. The target
node passed as parameter is the target node itself if the approach level is 0. Otherwise, we
determine the control flow distance towards each successor control dependency, and select
the minimum value. In Fig. 10, if the variable x is larger than 60, the execution may still
be interrupted before the say block is executed. Therefore, once the second if-condition
has been evaluated, the control flow distance to the say-block is 2, and after the change
statement it is 1.

5.2.4 Branch Distance Instrumentation

The branch distance estimates how close a conditional statement was to evaluating to a spe-
cific outcome (true or false). We extended the SCRATCH VM such that for each conditional
statement the branch distances are calculated and traced. For each conditional statement,
the execution trace contains information about the minimum branch distances (for evalu-
ation to true and to false) observed during an execution. To calculate the branch distance
we first select the closest control dependence, as determined when calculating the approach

Page 25 of 63 79

Empir Software Eng (2023) 28:79

Algorithm 5 Control flow distance computation via breadth-first traversal

level, and then select the minimum branch distance of the outgoing edge that would take the
execution closer to the target node.

Suppose the target is to reach the say block in Fig. 10, then if x is, for example, 42, then
the branch distance is computed based on the first if-condition as |50 − 42| + 1 = 9. If the
first if-condition evaluates to true, for example with x = 55, then the second if-condition
serves to calculate the branch distance |60 − 55| + 1 = 6.

The instrumentation applies the regular equations known from the literature (Korel
1990); for example, given an equality comparison , the distance for this condition to
evaluate to true is 0 if x equals 42 and otherwise |x − 42|; the distance for this condition to
evaluate to false is 0 if x is already different from 42, otherwise it is 1. The instrumentation
of the SCRATCH VM implements this for all standard relational and logical operators.

Due to the game-like nature of many SCRATCH programs, a common task is to check for
interactions between sprites, e.g. whether they are touching. To this end, SCRATCH provides
dedicated sensing blocks. These can be used as conditions for if-then-else or loop blocks,
but are also often found in combination with blocks, which are encoded as
branching statements in the CFG. Therefore, branch distance needs to be calculated and
traced for all sensing blocks, but the equations presented for standard operators cannot be
applied, and we require a novel definition of branch distance for sensing blocks.

A dichotomous notion (e.g., using 0 or 1 depending on whether a sensing block reports
true or false) leads to challenging plateaus in the fitness landscape, which reduces the effec-
tiveness of the search. This is a well-known problem to the test generation community. It
has been shown that altering the fitness landscape and restoring lost gradients can lead to
better guidance and consequently improvements in the search (Vogl et al. 2021).

The key to this is the observation that many sensing blocks query the location of objects
on the stage. For example, or blocks check if the current sprite
or one of its colours is touching the other target colour. We transform these conditions by
checking if the Euclidean distance between the subjects is 0 on the canvas, and use it as the

79 Page 26 of 63

Empir Software Eng (2023) 28:79

branch distance. This fits the traditional notion: if the condition is true, both the Euclidean
distance and the branch distance to the true-branch are 0, and the distance to the false-branch
is 1. On the other hand, if the condition is false, we define the distance to the false-branch
as 0, and use the Euclidean distance for the true-branch. This way, sprites or colours that are
closer together will have smaller distance values than the ones that are further apart.

Similarly, if the condition checks if a sprite is touching the edge of the stage
(), we can gather the position information and calculate the distance to all four
edges, and use the minimal distance as the branching distance. If the condition checks if a
sprite is or , we use the distance between the sprite and the
mouse pointer or the target sprite, respectively, as the branch distance.

The repeat-times block also represents a special case since it does not evaluate a condi-
tion expressed in code. We therefore instrumented these loops such that the branch distance
to exiting the loop is represented by the remaining number of loop iterations, and the false
distance is only non-0 when the loop is exited. To ensure that these loops are considered as
control dependencies, we add an edge in the CFG from the loop header to the exit node.

The occurrence of events (e.g., greenflag, key press, sprite click) is encoded in artificial
branching nodes in the CFG (cf. Section 5.2.1). The occurrence or absence of events is
encoded with branch distances of 1 or 0, depending on whether or not the event occurred.

5.2.5 Time-Dependent Statements

SCRATCH contains several time-dependent statements, such as explicit waits ,
think/say blocks glide-animations , audio playback with a certain

duration , or text to speech translation . The control flow distance only
provides limited guidance in terms of the number of statements remaining to be covered
in a sequence. To better capture time in the fitness function, we model time-dependencies
explicitly in the CFG, and include information on remaining times in the branch distance.

To achieve this, we add artificial edges for each time-dependent statement to the exit
node in the CFG, turning them into control dependencies of all successor statements, thus
including them in the calculation of the approach level. We extend the instrumentation of
the SCRATCH VM such that traces include branch distances for time-dependent statements:
If a time-dependent statement was fully executed, then the true distance is 0 and the false
distance is 1; if the execution was interrupted before the statement completed, then the true
distance is defined as the remaining time (and the false distance is 0).

5.2.6 Overall Fitness Function

The overall fitness function for a specific target node is a combination of Approach Level,
Branch Distance and Control Flow Distance: The approach level value is an integer, and to
avoid creating deceiving fitness landscapes it needs to dominate the other measurements.
We therefore normalise branch distance and control flow distance in the range [0, 1] using
the normalisation function α(x) = x/(1+x) (Arcuri 2013). If the branch distance is greater
than 0, then we set the control flow distance to the maximum value of 1, since the execution
first needs to change the evaluation of the last control dependency before progressing in the
CFG matters. To ensure the dominance of the approach level, we thus need to multiply it
by a factor of 2. Finally, we determine the fitness f = fitness(t) ∈ R of a test t for a given

Page 27 of 63 79

Empir Software Eng (2023) 28:79

target location as described in Algorithm 6. Since our overall objective is to achieve full
coverage, one such fitness function is created for each block in the program.

Algorithm 6 Fitness computation for test cases

5.3 Search Algorithms

Given the encoding and fitness function, it is possible to apply any meta-heuristic search
algorithm to the problem of test generation for SCRATCH. Random search (Algorithm 7) is

Algorithm 7 Random search

79 Page 28 of 63

Empir Software Eng (2023) 28:79

the simplest conceivable global search algorithm. As a global search algorithm, it considers
the entire search space (in contrast to neighbouring chromosomes in a local search algo-
rithm), trying to cover as many statements at a time as possible. It operates by repeatedly
sampling a test t at random, and adds it to the test suite T if it covers a new target. This pro-
cess continues until a given search budget is exhausted, after which T is returned. Due to its
simplicity, random search is often used as a baseline for comparison. As many SCRATCH

programs tend to be small, it is also possible that random search will often be sufficient in
order to generate adequate test suites.

The aim of automated test generation is to maximise the achieved code coverage, which
is a task that lends itself to a multi-objective problem representation, where every single
statement is an individual optimisation goal in its own right. Hereby, it is not uncommon
to encounter conflicting goals (e.g., statements in if-branches vs. else-branches), and
depending on the size of p, the number of goals might range from tens to hundreds, or possi-
bly even more. This poses scalability challenges to “traditional” many-objective algorithms,

Algorithm 8 Many-Objective Sorting Algorithm (Panichella et al. 2015)

Page 29 of 63 79

Empir Software Eng (2023) 28:79

Algorithm 9 Many Independent Objective Algorithm (Arcuri 2017)

such as the well-known NSGA-II (Deb et al. 2002). Due to the so-called dominance resis-
tance phenomenon, the proportion of non-dominated solutions increases exponentially with
the number of goals to optimise, thus degrading the search to a random one in the process.

We therefore employ the Many-Objective Sorting Algorithm (MOSA) (Panichella et al.
2015) (outlined in Algorithm 8). MOSA is a modified variant of NSGA-II that caters to
mentioned peculiarities of test generation. Most notably, it introduces a so called preference
criterion that allows us to assign a preference among non-dominated solutions based on how
“close” they come to covering a new, previously uncovered target. This way, the number

79 Page 30 of 63

Empir Software Eng (2023) 28:79

of targets to consider at a time is reduced and the search budget is directed towards the
targets that are still left to be covered. As a notable deviation from the original algorithm
(Panichella et al. 2015), we have extended the search algorithm to a memetic algorithm
(Fraser et al. 2015) by applying a local search to the new parent population at the end
of every generation (and also updating the archive if necessary). A local search algorithm
explores the local neighbourhood of a candidate solution in a more focused way than a
global exploration would. In particular, this post-processing step is necessary to address the
challenge of finding suitable test execution durations specific to SCRATCH.

The number of targets to cover in a SCRATCH program can be very large, and even
though MOSA tries to address this problem, it might still struggle to achieve 100% coverage.
For example, certain statements may be infeasible, and it is thus not worthwhile trying
to cover them. For this reason, the Many Independent Objective algorithm (MIO) (Arcuri
2017), outlined in Algorithm 9, tries to strike a balance between exploration and exploitation
by focusing on those goals that are most promising, given the resources available. It has
been specifically designed for test generation and is based on the (1+1) EA evolutionary
algorithm, but also maintains an archive of candidate solutions for each coverage objective.
Similar to MOSA, we extended MIO with local search by applying the local search defined
in Section 5.3 with a certain probability after each generation.

We have turned MOSA and MIO into memetic algorithms by integrating local search
operators (Fraser et al. 2015), which take an existing test case as input and explore its
neighbours by applying operator-specific changes to its genotype. If a local search operator
manages to generate an improved test case, which is measured based on the pursued goal of
the applied operator, the original test case is replaced with the modified one.

5.3.1 Extension Local Search

SCRATCH projects often contain blocks that pause the execution of a program for a certain
amount of time (Section 2.1). Due to these, some program statements can only be reached
after waiting for an extended period of time. Extension local search aims to overcome these
execution halting blocks by repeatedly adding WaitEvents to a given test case, eventually
making previously hard to reach blocks more accessible. In order to append and execute
WaitEvents at the end of a test case, the operator first has to obtain the SCRATCH VM’s state
after executing the original test case. For this purpose, the extension local search algorithm,
shown in Algorithm 10, starts with the re-execution of the original test case.

In the while-loop that follows, the operator repeatedly checks for the presence of Type-
TextEvents/TypeNumberEvents and novel events that were not present in the list of events E

during the previous iteration of the loop. If a TypeTextEvent or TypeNumberEvent is found,
it is preferably selected over WaitEvents since the program execution halts until the user
has given an answer to a posed question, which is indicated to the user through an UI-focus
switch that highlights a text field. Hence, until an answer has been given in the form of a
TypeTextEvent/TypeNumberEvent, adding additional WaitEvents usually does not contribute
in exploring novel program states. Newly found events, on the other hand, are preferred
because these events become available due to overcoming certain execution halting blocks,
and therefore promise to lead to novel program states. However, newly discovered events
are only selected with a specific probability, as otherwise, program states potentially hid-
ing behind even longer wait durations would most likely remain out of reach. A prominent
example of such a novel event scenario is a ClickSpriteEvent, representing a click on a
button that gets only clickable after an introductory animation has finished.

Page 31 of 63 79

Empir Software Eng (2023) 28:79

Algorithm 10 Extension Local Search

Furthermore, to save time the operator checks after every iteration if the overall fitness
of the test case has improved and stops if no improvement could be observed. In addition
to the lack of observable fitness improvements, the algorithm also stops if the maximum
codon length defined by the user has been reached or if the program has stopped due to the
execution of a block or having reached the end of all program scripts s.

Since the extension local search operator aims to discover novel program states by
extending the genotype of a test case, the operator can only be applied if a genotype has not
reached its full length yet. Finally, the original test case is replaced with the extended one if
the operator discovered new statements not previously covered by the existing test case.

79 Page 32 of 63

Empir Software Eng (2023) 28:79

5.3.2 Reduction Local Search

Reduction local search aims to reduce the codon length by removing genes that did not
contribute to improving the fitness. For that purpose, every time a test case is executed,
we save the codon position Cl that points to the last codon group after which no further
fitness improvements have been observed. Using the index Cl, the reduction local search
operator generates a new test case by cloning the codon groups located at the positions
[0, Cl], excluding all codons occurring after Cl. A significant difference to the extension
local search operator is that reduction local search does not re-execute the original test case
since Cl is already saved during the execution of the original test case.

The operator is only applied to genotypes for which Cl < ng is satisfied, with ng

representing the total number of codon groups contained in the genotype. Furthermore,
since Cl points to the codon group after which no further fitness improvements have been
observed, it is ensured that no covered statements are lost in the process of reducing the
size of the genotype. Hence, every reduced test case is guaranteed to be an improvement
over the original test case in terms of codon size and will therefore replace it in the search
algorithm’s population.

The benefit of applying reduction local search to a given test case is twofold: First,
removing codon groups can save valuable search time due to not re-executing events
that do not contribute in discovering new program states. Second, since the presented
mutation operator mutates each codon group with a probability of 1/ng , reduction local
search forces the mutation process to focus on relevant codon groups by increasing their
mutation probability.

5.4 Test Minimization

Although MIO and MOSA both use minimization as a secondary criterion, the final test
suite may contain test cases that are not minimal. We therefore apply a post-processing step
that removes redundant events from test cases. The minimization algorithm produces test
cases that are 1-minimal: A test case T = 〈e1, e2, . . . en〉 of length n, where ei can be inter-
preted as either a codon group or as an event, is 1-minimal with respect to a coverage goal
represented by fitness function f , if for all i the test case T ′ = 〈e1, ei−1, ei+1, . . . , en〉 has
f (T ′) > f (T). That is, removing any of the events leads to the test case no longer satisfying
the coverage goal. We use the minimization algorithm implemented in EVOSUITE (Fraser
and Arcuri 2012): For each test case T we iterate over all ei starting from the last event, pro-
duce a test case T ′ without that event, and measure its fitness; if the fitness is not worse, then
ei is discarded and T = T ′. In theory, a more efficient algorithm such as delta debugging
could be used to increase the performance of the minimization (Leitner et al. 2007).

6 Experiments

To provide a better understanding of the problem of test generation for SCRATCH, we aim
to answer the following questions:

RQ1: How much can test execution be accelerated reliably?
RQ2: Can SCRATCH projects be trivially covered?
RQ3: What is the best test generation algorithm for SCRATCH programs?
RQ4: How effective are generated tests at detecting faults?

Page 33 of 63 79

Empir Software Eng (2023) 28:79

6.1 Experimental Setup

6.1.1 Dataset 1: Projects with Manually Written WHISKER Tests (MANUAL)

The first dataset consists of SCRATCH programs with corresponding handwritten WHISKER

tests from two previous studies. The first study (Greifenstein et al. 2021) provides 14
SCRATCH programs together with matching tests; the second study considered is the origi-
nal WHISKER study (Stahlbauer et al. 2019), which provides the fruit catching game (Fig. 1)
and its 28 test cases. Overall, the dataset comprises 15 programs with 94 manually crafted
WHISKER test cases (11.3 on average per project) that contain a total of 185 assertions.

6.1.2 Dataset 2: Buggy and Correct Projects (BUGS)

Our second dataset consists of programs with bugs, and fixed versions thereof. The source
is again the study by Greifenstein et al. (2021), in which students received the 14 pro-
grams included in our first dataset, but each with one intentionally seeded bug. The students
then attempted to fix the bug, and the correctness of the student submissions was deter-
mined using the manually written WHISKER tests as well as manual evaluation by a teacher,
who classified the programs into “correct” and “buggy” submissions. We create the dataset
by collecting all student solutions that were evaluated by a human examiner. This process
results in 559 manually reviewed SCRATCH programs (39.93 on average per project), of
which 338 were rated as “correct” and 221 were rated as “buggy”.

6.1.3 Dataset 3: 1000 Random Projects (RANDOM1000)

SCRATCH is among the most popular platforms for programming beginners, and backed by
a large online ecosystem and community. We created a dataset of publicly shared SCRATCH

projects by mining projects as follows: Each SCRATCH project has a unique ID which is
sequentially increasing as new projects are created. By probing project IDs we determined
that starting roughly from ID 400.000.000 we can reliably retrieve projects in the format of
SCRATCH 3, whereas below we frequently encountered version 2 projects. While WHISKER

can also handle projects saved in version 2 of SCRATCH, our static analysis tool LITTERBOX

(Fraser et al. 2021) used in related research on the same dataset (Adler et al. 2021) requires
version 3 projects. We then uniformly sampled project IDs in the range of 400.000.000 and
700.000.000 (i.e., a number larger than the latest projects at the time of this writing), and
downloaded batches of 1000 starting from the random ID using the REST-API provided by
the SCRATCH webserver. Projects can only be downloaded if they are publicly shared. This
process resulted in a dataset of 2.2 million projects, of which 1.500.937 are not remixes
of other projects, i.e., variations of already uploaded projects. From these, we randomly
sampled a subset of 1000, which is a compromise between a large desirable set of evaluation
subjects and the resulting computational costs of running experiments in multiple different
configurations with many repetitions to counter randomness.

Figure 11a shows the log-scale distribution of sizes of the 1000 projects based on the
count of statement-blocks. Note that we only count executable statement blocks; i.e., we
exclude any loose blocks, or blocks contained in dead code (e.g., event handlers for events
not generated in the project). The majority of projects are small and have less than 100 state-
ments, but there are also larger projects with up to 1082 (connected, reachable) statements.

79 Page 34 of 63

Empir Software Eng (2023) 28:79

Fig. 11 Distribution of number of statements per project

6.1.4 Dataset 4: Top 1000 Most Loved Projects (TOP1000)

Many of the perils of mining GitHub open source projects do not apply to our sampling pro-
cess of SCRATCH projects: For example, whereas when mining GitHub projects it is often
problematic that many projects are personal (i.e., there is only one committer, and collabo-
ration with others is not intended) or do not even contain code (Kalliamvakou et al. 2016),
all SCRATCH projects per definition are personal and contain SCRATCH code since that is
the only use case. However, since a common application scenario for SCRATCH is creative
use rather than programming it is possible that a random sample may contain many trivial
projects. Thus, while the random sample is useful for external validity, we also created a
second dataset of popular projects. Indeed it has been shown that a focus on the star-rating
in GitHub projects can have an impact on resulting findings (Maj et al. 2021). To derive a
dataset of popular projects, we crawled the https://scratchstats.com/ website, which collects
live statistics on SCRATCH users and projects, on 2021–12–16 and identified and down-
loaded the 1000 most “loved” projects on SCRATCH. Figure 11b shows that these projects
are substantially larger, with sizes ranging from 5 to 11 530 connected and reachable state-
ments, with a mean of 1036 statements. On average, these projects have received 10 315.6
loves and 432 589 views by other SCRATCH users. The dataset includes 21 projects which
are a remix of other projects in the dataset.

6.1.5 Implementation and Tuning

The ideas presented in this paper are implemented as an extension to the test generation
tool WHISKER (Stahlbauer et al. 2019). In particular, we added the SCRATCH VM modifi-
cations presented in Section 3, the event selection mechanisms outlined in Section 4 and the
algorithms described in Section 5. The source code used in this study is publicly available 2.

Every described test generation algorithm is accompanied by a set of configurable param-
eters that guide the search for a test suite. To optimise these parameters, we establish an
optimisation dataset, which is disjoint from the TOP1000 and RANDOM1000 datasets, by
randomly sampling 250 projects following the same procedure as in Section 6.1.3. Param-
eters used across all algorithms, and MOSA-specific ones, are determined by executing

2https://github.com/se2p/whisker based on the commit starting with 8537271, and https://github.com/se2p/
scratch-vm based on the commit starting with ed4055f2

Page 35 of 63 79

https://scratchstats.com/
https://github.com/se2p/whisker
https://github.com/se2p/scratch-vm
https://github.com/se2p/scratch-vm

Empir Software Eng (2023) 28:79

MOSA on all 250 projects using different values for a single parameter while fixating all
other configurable parameters. After the search has finished, we compare the achieved cov-
erages and choose the best performing configuration. Finally, we repeat the same procedure
with MIO to optimise remaining parameters that only occur within the MIO algorithm.

The results of the optimisation process indicates that a codon range of [2, 20] works best,
which means that a single test case may contain up to 20 events. Furthermore, a probability
of 30% for applying extension and reduction local search indicates that the search benefits
from using these operators. For the MOSA algorithm, we chose a population size of 30
and a crossover probability of 70%. Regarding MIO, an unreachable focus phase of 100%
combined with a random test generation probability starting at 90% reveals that exploration
is more beneficial than exploitation for the SCRATCH problem domain. A complete list of
all used parameter configurations can be found in the WHISKER repository.

6.1.6 Environment

We conducted our experiments in a controlled execution environment using a Docker image
based on Debian Slim Buster and Node.js 16. The used revision of WHISKER is identified
by git commit 8537271. The experiments were run on a dedicated computing cluster. Each
of its nodes features one Intel Xeon E5-2690v2 CPU with 3.00 GHz and 64 GB of RAM.
Each run of WHISKER was allocated one CPU core and 5 GB of RAM.

6.2 Experiment Methodology

6.2.1 RQ1: HowMuch Can Test Execution be Accelerated Reliably?

To confirm whether the changes introduced to the SCRATCH VM allow for reliable accel-
erated test execution without introducing any form of non-deterministic behaviour, we run
the manually written tests in the MANUAL dataset presented in Section 6.1.1 with a fixed
seed for the random number generator, and repeat the experiment 20 times. If the tests
reveal no functional differences in the execution, we can then validate whether the SCRATCH

VM can be accelerated at all by comparing the total execution time on all 15 projects
using varying acceleration factors. Finally, we want to ascertain that the accelerated exe-
cution of SCRATCH programs behaves deterministically in two ways: First, the test results
of a given project for each used acceleration factor is compared with the outcomes of the
non-accelerated test execution to make sure that the introduced acceleration of SCRATCH

programs does not alter the execution behaviour. Second, to validate that the modified
SCRATCH VM does not introduce any flakiness, we also check whether all 20 experiment
repetitions within the observed acceleration factors lead to the same test results.

6.2.2 RQ2: Can SCRATCH Projects be Trivially Covered?

In order to determine whether SCRATCH projects represent a test generation challenge in the
first place, we run a baseline algorithm of random testing with dynamic event selection on
the Random1000 and Top1000 datasets. While there is no clear boundary of what constitutes
a “trivial” project, intuitively a project does not pose a challenge to a test generator if it is
possible to consistently achieve 100% code coverage without requiring a large number of
test executions and without using an evolutionary algorithm. Following this intuition, we

79 Page 36 of 63

Empir Software Eng (2023) 28:79

define for both datasets a threshold, which is based on the lowest number of test executions
at which we encounter the first program that is not covered entirely. Using this threshold,
we then report the number of trivial and non-trivial projects for each dataset individually.

6.2.3 RQ3: What is the Best Test Generation Algorithm for SCRATCH Programs?

Section 5 describes three different algorithms for test generation; the aim of this research
question is to determine which of these performs best. To answer this question, each search
algorithm is applied 20 times to every project of the Random1000 and Top1000 dataset
using the dynamic event selector and a search budget of 10 minutes. Besides the achieved
block coverages, we also compare the number of events contained within final test suites
and the average execution time of a test case during the search by comparing averages, the
Â12 effect size and the number of projects for which one approach outperforms another one.
Furthermore, we report the average block coverage achieved over time.

6.2.4 RQ4: How Effective are Generated Tests at Detecting Faults?

In our fourth research question, we evaluate whether the generated tests together with
regression assertions (Section 4.3) are able to detect faulty SCRATCH programs. For that
purpose, we conduct two experiments that seek to answer the research question from two
different angles: First, we assess the generalisability of our approach by generating a large
dataset of faulty programs based on a few selected program mutation operators. The second
experiment then evaluates the applicability in a real-world scenario.

Within the first experiment, we use a mutation analysis framework that implements the
eight mutation operators shown in Table 5. The selection of mutation operators is based on
the traditional set of sufficient mutation operators (Offutt et al. 1996). Using the mutation
framework and the tests generated during RQ3, we produce mutants for each program and
validate whether the tests with assertions are able to detect the inserted program modifica-
tions. A mutant is detected if a test that passes on the original program leads to a failing
assertion when executed on the mutant.

During the mutation analysis, we first load the test suite of the original program, before
executing it against all its mutants one by one. This revealed a problem in the memory
management of the SCRATCH VM: Every time a project is loaded, the VM deserializes
associated assets (costumes and sounds), and stores them in memory. All mutants share the
same assets, but previously loaded assets are neither reused nor cleared when loading the
next mutant. Instead, a redundant copy of the data is created in memory. While this memory
leak is not a problem for our test and assertion generation, where we reset the program state
directly between test executions, it is a problem during mutation analysis, where not only
the state but also the code need to be replaced. We therefore limit the RQ4 experiments
to the Random1000 projects, which are small enough such that the memory leak does not
affect the results significantly, as only 4% of all test executions escalated into program
crashes. The Top1000 set, on the other hand, contains a rich set of assets, and we observed
crashes in 58% of all test executions. The maintainers of the SCRATCH VM are aware of
the memory leak,3 and while the problem is unresolved at the time of writing, we seek
to evaluate the effectiveness of our automatically generated assertions on bigger programs
(e.g., the Top1000 set) in future studies.

3https://github.com/LLK/scratch-vm/issues/1955

Page 37 of 63 79

https://github.com/LLK/scratch-vm/issues/1955

Empir Software Eng (2023) 28:79

Table 5 Mutation operators

The generalisability of our approach is evaluated by reporting the Mutation Score (Jia
and Harman 2010) for every applied operator after excluding test cases which reported a
false-positive result on the respective unmodified project. In order to keep the mutation
analysis experiment within a reasonable time frame, we only consider first-order mutants as
is usually done, and set a timeout of 90 minutes for the mutation analysis of an individual
project. To avoid false-positive results due to randomised program behaviour, we seed each
test execution with the same seed that was used during the test generation phase.

In our second experiment for RQ4, we evaluate the applicability of our approach in
a real-world application scenario by first generating tests for each model solution of the
collected student submissions from the BUGS dataset presented in Section 6.1.2. Then,
we run the generated tests on the corresponding student-submitted programs and verify
whether our tests come to the same Pass/Fail conclusions as the human examiner. Finally,
the research question is answered by reporting the precision, recall and F1-score based on
the goal of detecting faulty student submissions. To account for random influences during
test generation, we repeat both experiments 20 times.

6.3 Threats to Validity

Threats to Internal Validity To ensure that results can be trusted, WHISKER has an exten-
sive test suite, RQ1 aims to demonstrate validity, and we manually inspected results.
Upstream changes to the SCRATCH VM may require adaptation of our modifications. How-
ever, such changes are rather unlikely, as they would also break many programs shared
across the Scratch community. Since WHISKER uses randomised algorithms and results
may be affected by chance, all experiments are based on 20 repetitions and are statisti-
cally analysed following common guidelines (Arcuri and Briand 2014). The performance of
search algorithms depends on many parameters. In order to ensure our results are not neg-
atively influenced by unsuitable configurations, we applied the tuning procedure described
in Section 6.1.5.

79 Page 38 of 63

Empir Software Eng (2023) 28:79

Threats to External Validity Results may not generalise beyond the specific dataset used for
experiments. However, we aimed to maximise generalisability by using two large datasets
of 1000 projects each for RQ2 and RQ3, one randomly sampled from the SCRATCH website,
and the other based on popularity as measured using the number of “love” reactions from
other users. A possible source of bias is that only projects which users chose to publicly
share can be accessed this way. It is conceivable that programs not shared publicly are more
incomplete or broken. Similarly, the 15 projects and their tests used to answer RQ1 may
not suffice to cover all possible sources of non-determinism that may occur in SCRATCH

projects. The reported results in RQ4 are based on the Random1000 dataset and may not
generalise to more complex programs, such as the ones contained in the Top1000 set.

Threats to Construct Validity The main metric for comparison is code coverage (coverage
of statement blocks). Code coverage is the most common metric used in practice as well as
in research in order to compare test suites as well as test generation algorithms; however,
whether and how code coverage is related to fault detection is an ongoing debate (Inozemt-
seva and Holmes 2014; Chen et al. 2020). We also evaluate whether the tests are able to
detect artificial faults using mutation analysis. Mutation scores may be skewed by equiva-
lent mutants (Budd and Angluin 1982). Furthermore, artificially generated mutants may not
be representative of real program faults (Gopinath et al. 2014). However, automated testing
is not the only targeted application scenario of WHISKER; the tests are intended to enable
any form of dynamic analysis that can support the generation of hints and feedback to learn-
ers. Code coverage is a prerequisite for any form of testing and dynamic analysis, and so it
is important to consider this as a first step.

7 Results

7.1 RQ1: HowMuch Can Test Execution be Accelerated Reliably?

To determine whether SCRATCH projects can be accelerated at all, we executed the 15
test suites of the MANUAL dataset and analysed the required execution durations for each
project. As can be observed in Fig. 12a, every recorded data point resides beneath the diag-
onal, indicating that all projects benefit from an increased acceleration factor. Figure 12b
shows its direct impact, with a factor of two halving the average execution time across all
projects. However, as acceleration factors further increase, the gains in speed up are dimin-
ished significantly. This is due to halting blocks enforcing lock durations, which start to
reach the minimum duration of a single step in the VM. The error bars displayed in red indi-
cate that the execution speed is very consistent and does not suffer from significant variation,
which shows that with the given hardware environment the results are consistent. However,
hardware with higher code execution speed would be capable of processing individual steps
faster, thereby making even higher speedups feasible.

Besides validating whether SCRATCH programs can be accelerated at all, RQ1 seeks to
ascertain that acceleration does neither introduce flakiness nor alter the program’s behaviour
as a whole. To ensure deterministic behaviour, Fig. 12c compares the number of flaky tests
obtained using the accelerated SCRATCH VM (SVM) introduced in Section 3.1 against the
improved accelerated SCRATCH VM (SVM+) which contains safety measures for sources of
flaky behaviour as described in Section 3.2. In contrast to SVM, the SVM+ does not show
any signs of non-deterministic behaviour within 20 repetitions of the same test as well as
between the execution of a given test in an accelerated and non-accelerated scenario. The

Page 39 of 63 79

Empir Software Eng (2023) 28:79

Fig. 12 Comparison of execution times, including standard deviations highlighted as red error bars, and flaky
tests across different acceleration factors

SVM, however, shows increasingly flaky behaviour for higher acceleration factors due to
reasons explained in Section 3.2. Even though the SVM does not show any signs of flaki-
ness in our experimental setup for the unaccelerated scenario, non-deterministic behaviour
is very likely to occur if tests are generated and executed on different machines or if the
machine’s computing resources are scarce during test execution.

Finally, Fig. 12d compares the number of passed and failed tests for both VM versions
after excluding flaky (c.f. Section 3.2) test results. The results demonstrate that both variants
achieve the same results, which indicates that the SVM+ behaves similarly to the SVM,
and errors found in one of the two versions can be reproduced in the other one. All in all,
due to the ensured determinism and limited increase in perceivable program speed up for
acceleration factors greater than 10, we decided to conduct all following experiments using
an acceleration factor of 10.

79 Page 40 of 63

Empir Software Eng (2023) 28:79

7.2 RQ2: Can SCRATCH Projects be Trivially Covered?

SCRATCH projects are created mainly by young learners, which raises the question whether
test generation is actually a problem. For the Random1000 set, WHISKER managed to
produce tests for 983/1000 projects across all used search algorithms. Most of the time,
the search algorithms struggle with the remaining 17 programs due to memory and
time limitations.

Figure 13a shows the distribution of coverage results using basic random testing on RAN-
DOM1000, suggesting that the majority of projects are fully covered. Figure 14a visualises
the relation of program size (measured in blocks), the number of executed tests until the
time limit or 100% coverage was achieved, and the resulting average coverage. The plot
contains two clusters: In the bottom left there is a large cluster of projects with less than
100 blocks, for which 100% coverage was achieved within less than 100 executed tests. The
upper half contains a second cluster where results are more varied in terms of size, tests
executed, and resulting coverage. Based on the project with the lowest average test execu-
tion count (plotted as � in Fig. 14a) for which the random test generator did not manage
to reach full coverage, we define the RANDOM1000 dataset’s threshold below which we
classify projects as being trivial to be at 2.05 executed tests, leading to 391 trivial projects.

For TOP1000 the results look somewhat different (Fig. 13b): WHISKER manages to
synthesise slightly fewer tests (947/1000) for the more challenging programs than for the
Random1000 dataset. While there are still many projects covered fully, the coverage distri-
bution shows a wider spread of coverage values achieved, with a tendency towards an almost
bimodal distribution with one peak at about 100% and the other around 50%. Figure 14b
confirms that the cluster of fully covered projects having less than 100 executed tests is very
small for the popular projects. Furthermore, most projects have more than 100 statements,
and many even more than 1000 blocks. This is considerable since the domain-specific
blocks of the language do not require many blocks to conjure interesting behaviour. Fur-
thermore, assembling the blocks for projects larger than 1000 statements in the SCRATCH

code editor is a feat in itself. In the Top1000 dataset, we encounter the first project having a
coverage below 100% (plotted as � in Fig. 14b) already after a test execution count of 1.50.
Even though the difference between both thresholds is smaller than a single executed test,
the Top1000 set contains significantly fewer trivial projects (29) than the Random1000 set.

Some of the trivial projects are simply very small. For example, Fig. 15 shows a project
that contains two scripts with a total of ten statements, including two loops that control the

Fig. 13 Distribution of coverage results for random testing

Page 41 of 63 79

Empir Software Eng (2023) 28:79

Fig. 14 Size vs. tests executed vs. coverage. Executed tests threshold after which projects are treated as
non-trivial is marked as a star

Fig. 15 Trivial example project (ID 400050176): Simply clicking on the green flag will cover everything
within a few execution steps

Fig. 16 Trivial example project (ID 400011212): Even though there are 314 blocks representing complex
vector calculations, covering them requires no interactions

79 Page 42 of 63

Empir Software Eng (2023) 28:79

Fig. 17 Overall coverage

dance behaviour of the two sprites, which is achieved by cycling through costumes. Simply
starting the program will cause all statements to be executed within a few execution steps.
On the other hand, even projects that contain more code may be trivial if they are not inter-
active. For example, Fig. 16 shows a project which performs complex vector calculations on
list datastructures, but this only serves to simulate bouncing balls with no user interactions.

Overall, the coverage observed on RANDOM1000 is clearly higher than in other
domains, so it appears that many SCRATCH programs are indeed trivial. This matches the
intended use case, where young learners initially take their first steps by building small
animations and story-like projects. However, a fairly large number of projects nevertheless
clearly challenges the random tester for projects in RANDOM1000, which suggests that
even the average SCRATCH user may produce non-trivially covered projects. For projects
to become popular (TOP1000) it rather seems that the level of difficulty is on par with other
domains of software.

7.3 RQ3: What is the Best Test Generation Algorithm for SCRATCH Programs?

The box plots in Fig. 17 show the overall coverage achieved by the different test generation
algorithms. For Random1000 (Fig. 17a), all algorithms achieve very high coverage with a
median of 100%. This is not surprising considering the large number of trivial projects (cf.
RQ2). There is, however a difference noticeable on average, where random test generation
leads to 92.7% coverage, MOSA achieves 95.4% coverage, and MIO achieves 95.5% cover-
age. For Top1000 (Fig. 17b) the coverage is substantially lower, and the differences between
the algorithms are more pronounced: random test generation leads to 62.7% coverage,
MOSA achieves 69.0% coverage, and MIO achieves 69.2% coverage.

The average coverage values suggest that MIO is the best algorithm, and MOSA is still
better than random testing. Figure 18 sheds more light on the differences by showing the
distribution of Vargha-Delaney Â12 effect sizes. The median is 0.5 for both datasets, which
the statistical comparison summarised in Table 6 explains: For a large share of projects all

Page 43 of 63 79

Empir Software Eng (2023) 28:79

algorithms achieve the same level of coverage; for Random1000 this is often 100% (696
projects), while for Top1000 only 111 achieve 100% coverage. This means the chosen algo-
rithm will very often make no difference, particularly for projects similar to Random1000.

The differences in average coverage can be explained by 198 projects in Random1000
where MIO performs better than random testing (significant for 159), and 174 for MOSA
over random testing (significant for 146). This is substantially more than the number of
cases where random is better than MIO (44, significant for 15) and MOSA (44, signifi-
cant for 38). This is also reflected in the average effect size of 0.55 for MOSA vs. random
testing, and 0.56 for MIO vs. random testing. Consequently, there are clear benefits to
using either of the search algorithms over random testing on projects similar to those we
randomly sampled.

The trade-off between search and random testing is less clear for Top1000: MIO per-
forms better than random testing for 414 projects (significant for 306), and MOSA for 376
(significant for 293); at the same time, however, random is better than MIO for 376 projects
(significant for 223) and MOSA for 406 (significant for 251). On average the effect size
nevertheless leans towards search (0.55 for MIO vs. Random, and 0.53 for MOSA vs. Ran-
dom). To better understand this result, Fig. 19 contrasts the coverage per project between
random and the two search algorithms for both datasets. For all four cases the picture is very
similar: A large share of the projects is clustered around the diagonal with equal coverage,
and there is a larger spread of projects to the left of the diagonal than to the right, mean-
ing that the search algorithms achieved higher coverage. For Top1000 (Fig. 20c and d) the
spread around the diagonal is notably larger than for Random1000 (Fig. 20a and b), which
shows that even though there are more cases with differences on Top1000, these are often
insubstantial. When search is better, it is often better by a very large margin.

The differences between MOSA and MIO are small, but an Â12 of 0.51 for the Ran-
dom1000 set and slightly more significantly better results for MIO (89 vs. 77) suggest that
MIO overall is the algorithm better suited for the problem at hand. Figure 19 also shows only
small differences between the two algorithms, confirming that differences are small, though
slightly in favour of MIO. We conjecture that this is influenced by the larger degree of
exploration achieved in MIO through the parameters that emerged from our tuning process.

Figure 20 shows how coverage evolves over time for both, Random1000 and Top1000:
Random test generation very quickly converges at a lower coverage value on both datasets,
whereas the two search algorithms successfully evolve tests to cover more code. The plot

Fig. 18 Effect sizes comparing algorithms wrt. coverage

79 Page 44 of 63

Empir Software Eng (2023) 28:79

Table 6 Test generation comparison of the achieved block coverages

Testset Comparison Â12 Sig Better Better Equal Worse Sig Worse

Random1000 MOSA vs. Random 0.55 146 174 727 82 38

Random1000 MIO vs. Random 0.56 159 198 741 44 15

Random1000 MIO vs. MOSA 0.51 40 135 807 41 6

Top1000 MOSA vs. Random 0.53 293 376 165 406 251

Top1000 MIO vs. Random 0.55 306 414 157 376 223

Top1000 MIO vs. MOSA 0.50 89 342 278 327 77

Besides the Â12 value, we report the number of projects for which the first approach achieves significantly
better, better, equal, worse and significantly worse results than the second approach. Statistically significant
results are determined by using the Mann-Whitney-U test and a p-value < 0.05

also shows a distinct difference between MIO and MOSA: The MOSA algorithm requires
longer to reach a higher level of coverage, whereas MIO has substantially higher coverage
within the first 2–3 minutes of the search. This is due to the population based approach of
MOSA, which applies evolutionary operators to entire generations of the population size
chosen (30 in our experiments). In contrast, MIO produces one test at a time and directs the

Fig. 19 Comparison of achieved coverage

Page 45 of 63 79

Empir Software Eng (2023) 28:79

Fig. 20 Average coverage over time

search towards promising areas of the search space, which initially allows it to perform bet-
ter. Consequently in particular if the time budget is limited, MIO may be a preferable choice.

The largest improvement of MOSA and MIO over random testing can be observed for
projects that implement non-trivial story behaviour. For example, Fig. 21 shows project ID
401050644, where MOSA and MIO achieve 67.83 % and 66.24% coverage respectively,
while random testing achieves only an average of 10.23%. The story consists of more than
100 individual scenes in which eight different sprites interact. Each scene is encoded as a
script that is triggered by a message with the scene ID, and at the end broadcasts a mes-
sage with the next scene ID. Covering the program entirely requires waiting long, and the
fitness function provides a monotonic gradient to achieve this: The approach level captures
the dependencies between the broadcasts, the control flow distance captures the progress
in the scripts, and the branch distance captures the progression of time-related blocks. In
conjunction with the extension local search, the problem thus becomes easy for the search.

Fig. 21 Example project (ID 401050644): The project represents a story with more than 100 scenes, each
encoded in an individual script, triggered by a broadcast

79 Page 46 of 63

Empir Software Eng (2023) 28:79

A similar pattern can be observed for many of the projects with large differences between
search and random testing.

Although this type of project results in the largest difference between search and random
testing, Fig. 22 suggests that very long execution sequences do not appear to be domi-
nating. While the execution speed differences for the random set are negligible (Random:
2.81s, MOSA: 3.07s, MIO: 3.16s), we notice more significant differences and overall longer
running tests for the Top1000 projects (Random: 9.14s, MOSA: 12.74s, MIO: 15.55s). How-
ever, a look at the execution times for projects of the Top1000 dataset in which all algorithms
achieve exactly the same amount of coverage reveals that these results correlate with the
increased program coverage (Random: 6.36s, MOSA: 6.78s, MIO: 7.07s), as the differences
in execution times become negligible again.

Note that these execution times refer to accelerated execution, which means that effec-
tively (unaccelerated) the tests are running up to an average of more than two minutes per test
suite! Clearly, test generation without accelerated execution would be challenging. Notably
these execution times are substantially higher than common values found in other test gen-
eration domains. For example, in search-based unit test generation (Fraser and Arcuri 2012)
tests tend to execute within a few milliseconds. Since the computational costs of test exe-
cution are the central bottleneck in search-based test generation, this explains why, even
though SCRATCH programs are substantially smaller than other types of software, we still
have to run test generation for 10 minutes for reasonable results.

The search does not only provide advantages when the objective is to wait long enough.
Figure 23 shows a game (ID 400148579) where the player controls the robot using the cursor
keys, and the aim is to catch the star, which continuously moves to random positions. The
script controlling the player score (Fig. 24a) provides a gradient in the fitness landscape that
drives the search towards touching the star through the block, and the two if-
conditions checking the score drive the search towards trying to repeat this. A further script
checks for intermediate scores and displays messages. The search successfully controls the
robot, and sometimes drags it, in order to reach scores that are substantially higher than those
achieved by random testing. Indeed in most cases the search reaches the second (final) level
of the game. Consequently, MOSA and MIO achieve an average of 92.57% and 92.71%
coverage, respectively, whereas random testing only reaches an average of 80.14%.

While there are no projects where random testing achieves comparably large margins
in terms of coverage over the search algorithms, there are some projects where random

Fig. 22 Average test execution time

Page 47 of 63 79

Empir Software Eng (2023) 28:79

Fig. 23 Example project (ID 400148579): The user controls a robot that has to catch the star

testing does achieve higher coverage. Figure 24 shows a Zombie game where the player
has to exterminate zombies without being eaten, using weapons that can be purchased in
a shop. While the bullet-sprite provides some guidance for the search through a condition
that checks if a zombie is touched, the fitness does not provide guidance towards shooting
all zombies, nor to evade them. While random testing appears to be lucky nevertheless
with an average coverage of 53.38%, MOSA only achieves an average of 49.68%. MIO
benefits from the combination of exploration and exploitation and reaches an average
coverage of 60.05%.

Fig. 24 Example project (ID 402089829): Zombie shootout game

79 Page 48 of 63

Empir Software Eng (2023) 28:79

Many of the projects in the Top1000 dataset are games with similar challenges. For
example, Fig. 25 shows “Paper Minecraft”, the most loved project of the Top1000 dataset.
Containing 6720 statements, it is also among the biggest projects in the dataset (cf.
Fig. 11b). Paper Minecraft implements a so-called sandbox game where players face no
pre-determined objective but are encouraged to be creative by farming resources, creating
buildings, etc. Random testing achieves an average coverage of 7.73%, while MOSA and
MIO achieve 6.77% and 4.93%, respectively. To actually play the game (Fig. 25b) one has
to select the “New Game” option on the title screen (Fig. 25a). Interestingly, when the but-
ton was hovered we observed a click-rate of 17/44 across all executions for random testing,
compared to MOSA (7/22) and MIO (6/10). That is, random testing started the game more
often than the other algorithms, which explains its higher coverage, while MIO started the
game least often.

In general, for all algorithms the majority of tests for more complex games focus on
interacting with the title screen rather than playing the actual game. Even when a test does
play the game, the maximum length of 20 events per test case prevents it from doing so long
enough, and only simple actions such as walking or switching items in the inventory can be
performed in case of Paper Minecraft. Allowing longer tests would alleviate this problem to
a certain extent, but would increase the computational costs; using variable length might also
lead to effects of bloat (Fraser and Arcuri 2012). Like Paper Minecraft, many other games
challenge the approach of optimising event-based sequences. Future work might consider
reinforcement learning or other related techniques to address this problem.

Besides the achieved coverage, a further important aspect for consideration is the size of
the resulting test suites, since these may need to be interpreted by users. As the tests gener-
ated by the algorithms vary in length, we quantify the length in terms of the overall number
of events contained in a test suite. Since the size is influenced by the coverage achieved by a
test suite (i.e., test suites with higher coverage tend to be larger), we compare the algorithms
only on those projects, where all algorithms achieved the same coverage. Figure 26 sum-
marises the average number of events in the final test suites for these projects, and Fig. 27
shows the distribution of effect sizes. The reported results are based on the test lengths
after conducting the minimisation process, which reduces the average test suite size by an
average of 39.12, 38.89 and 45.20 events on the Random1000 set and by 33.40, 34.10 and

Fig. 25 Example project (ID 10128407): “Paper Minecraft” sandbox game

Page 49 of 63 79

Empir Software Eng (2023) 28:79

55.65 events on the Top1000 set for the Random, MOSA and MIO algorithm, respectively.
This comparison shows for both datasets that MOSA and MIO produce smaller tests than
random testing. The fact that this difference is measured after the minimisation suggests
that the search algorithms succeed in finding targeted tests for more individual coverage
goals, rather than accidentaly covering many goals with long execution sequences. How-
ever, the minimisation has to remove the most events from MIO’s test suites. We conjecture
the longer event sequences to be influenced in particular by the extension local search, and
how successful longer tests are replicated and mutated in MIO.

We use a test’s JavaScript source to count its number of events. As every event selected by
the test generator is followed by a Wait event for a single step, there are twice as many events
as codons. Listing 2 shows an excerpt of a test for the game from Fig. 23 after removing
automatically generated assertions. Events resulting from codons are followed by a single
step (t.runForSteps(1)). KeyPress events are represented as two statements in the test
code: The instruction to press the key for a certain number n of steps (t.keyPress(’. . .’, n)),
and a Wait event with the same number n (t.runForSteps(n)). Figure 28 shows the average
length of individual test cases for the different algorithms: Interestingly, for both datasets
the median length of a single test covers between 49.73% and 78.90% of the entire suite,
which indicates that most test suites consist of only 1–3 tests.

7.4 RQ4: How Effective are Generated Tests at Detecting Faults?

For our last research question, we conducted two different experiments to evaluate our
approach’s effectiveness in generating test assertions that can detect faulty program
behaviour. In our first experiment, we seek to assess the generalisability of our approach by
executing the test suites produced in Section 7.3 on mutated versions of the programs and
evaluate whether the synthesised tests are able to detect the generated mutants. Following
common practice in mutation analysis and in order to ensure a sound evaluation, we exclude
test cases which falsely mark a non-modified program as a mutant. However, as shown by
Fig. 29, these false-positives only occur very rarely in the form of outliers and have a median

Fig. 26 Overall test suite size for projects with equal coverage

79 Page 50 of 63

Empir Software Eng (2023) 28:79

Fig. 27 Effect sizes comparing algorithms wrt. test suite size for projects with equal coverage

frequency of 0 %. The reason for these rarely occurring false-positives varies and is very
program-specific. Out of 1273516 generated mutants, the tests generated by the random
search algorithm were able to reach a Mutation Score of 52.23 %. In contrast, tests gener-
ated by MOSA and MIO detected 54.14 % and 55.67 % mutants from a total of 1250248
and 1253983 generated mutants, respectively. Please note that the total number of generated
mutants varies slightly due to memory allocation issues, as explained in Section 6.2.4.

In addition to the frequency of false-positives, Fig. 29 also illustrates the distribution of
killed mutants across the applied operators: For all three algorithms, the results are very sim-
ilar, with MIO-generated tests detecting slightly more mutants per projects (50.28 %) than
tests synthesised by MOSA (46.70 %) and random search (47.44 %). This small advantage
originates from MIO’s ability to achieve slightly higher coverage than the other algorithms,
as shown in Section 7.3. All in all, the results demonstrate that the generated tests are
able to detect faulty SCRATCH programs automatically. Nevertheless, further work should
be done to improve the sensitivity of the generated assertions to reduce the frequency of
false-positives and increase the number of detected program faults.

Finally, Fig. 29 reveals that certain mutants are harder to detect than others. NCM, KRM
and SDM are easiest to detect since they can fundamentally alter program semantics, e.g.,
diverting control flow to the opposite branch in an if-else, or preventing the execution of
entire scripts. In contrast, SBD, AOR and VRM show the lowest kill rates. Since they are

Listing 2 Test generated for project 400148579 (Fig. 23)

Page 51 of 63 79

Empir Software Eng (2023) 28:79

Fig. 28 Average length of test cases across all projects

applicable to many blocks, and not exclusively to the switching points of control flow, they
have a lower chance of making impactful changes. We hypothesise that the former oper-
ators with their larger changes represent learners’ mistakes well: Previous work (Frädrich
et al. 2020) investigated typical bug patterns in the SCRATCH community, such as broad-
cast messages that are never sent or received, or cloning sprites without proper initialisation.
These patterns are among the most common ones, and can be easily elicited by operators
such as SDM or KRM, indicating that our mutants and tests can produce and detect com-
mon real-world faults in learners’ programs. However, a closer analysis of fault coupling
for SCRATCH mutation operators is out of scope for this paper and remains as future work.

The second experiment evaluates the effectiveness of our approach in the real-world
application scenario of testing student submissions by comparing the results of tests that
were generated on model solutions and executed on student submissions against the verdict
of a human examiner. Since MIO proved to achieve slightly better results than Random and
MOSA, we restrict this experiment to tests generated with MIO. To compute the precision,
recall, and F1-score values, we define the goal of the experiment as detecting as many
incorrect student submissions as possible. Figure 30 shows that MIO-generated tests achieve
high F1-scores values for most program, indicating that the generated tests frequently come
to the same conclusion as a human evaluator on most programs.

Fig. 29 Mutant kill rates across the applied mutation operators

79 Page 52 of 63

Empir Software Eng (2023) 28:79

For the programs Garten, Geisterwald and Labyrinth, the tests perform considerably
worse than for other projects, thus reducing the overall mean F1-score to 0.63 per project.
A closer look at Table 7 reveals the reasons for the low F1-scores in these three projects,
which are the low precision values of 0.06, 0.19 and 0.18. Overall, the average precision
and recall values of 0.59 and 0.81 indicate that our tests tend to be overly confident in
marking submissions as incorrect. This behaviour originates from the assertion generation
process, which adds assertions for nearly every property contained in the model solutions.
As a consequence, the generated tests are very strict and only allow submissions that are
very close or even identical to the model solution to pass the generated assertions.

In our experiment, deviations of the expected behaviour are primarily influenced by
randomised behaviour of programs, as slight changes in the order of blocks can lead to
a different consumption of the generated random numbers, resulting in small changes
in the observed program properties. This behaviour is especially severe for the three
projects Garten, Geisterwald and Labyrinth, as all three programs expose randomised
program behaviour, and the number of correct programs is significantly higher than the
number of incorrect ones. Although Schatzinsel and Winter have a similar distribution of
correct and incorrect programs, precision is relatively high with values of 0.73 and 0.66
because these programs are less dependent on random number generators than Garten,
Geisterwald and Labyrinth.

More generally, while overly strict tests help detect truly faulty programs, as shown by
the relatively high recall value of 0.81, in an educational setting teachers may welcome
alternative solution approaches that might lead to irrelevant assertion failures. Arguably, in
this setting it would be reasonable to expect a teacher to select a subset of assertions or
properties relevant to the assignment at hand. Alternatively, such issues may be overcome
by minimising test assertions (Fraser and Zeller 2011), refining test assertions (Jahangirova
et al. 2016), or exploring test oracles that capture the intended behaviour of programs with-

Fig. 30 F1-score of MIO-generated tests per project

Page 53 of 63 79

Empir Software Eng (2023) 28:79

Table 7 Number of correct/incorrect student submissions based on the verdict of the human evaluator
together with the mean precision, recall and F1-score values of MIO-generated tests, given the goal of
detecting as many incorrect student submissions as possible

Program Correct Incorrect Precision Recall F1-score

Fangen 23 18 0.73 1.00 0.82

Garten 38 4 0.06 0.57 0.11

Geisterwald 34 8 0.19 0.12 0.15

HappyNewYear 29 13 0.80 1.00 0.89

Labyrinth 35 8 0.18 0.77 0.29

Papagei 26 17 0.84 0.93 0.88

Pong 17 24 0.58 0.85 0.69

Raumschiff 24 20 0.53 0.97 0.69

Schatzinsel 11 3 0.73 0.92 0.81

Skipiste 14 27 0.76 0.94 0.83

Snake 7 34 0.83 1.00 0.91

Sternenjagd 27 14 0.34 0.98 0.50

TicTacToe 17 25 1.00 0.34 0.50

Winter 36 6 0.66 1.00 0.80

Mean 24.14 15.79 0.59 0.81 0.63

out being disturbed by randomised program behaviour, such as model-based testing (Götz
et al. 2022) or approaches based on artificial neural networks (Feldmeier and Fraser 2022).

Even though our assertions appear to be strict, the average recall of 0.81 lies slightly
below the average coverage of 0.87. On the one hand, this may be because block coverage
is a weak coverage criterion akin to statement coverage, and other coverage criteria may
help revealing faults (Shamshiri et al. 2015). On the other hand, the projects Geisterwald
and TicTacToe show particularly low recall values of 0.12 and 0.34. Such low recall values
are often caused by the issue that blocks that would reveal the induced bugs are not reached
by the tests. This issue may even occur for programs in which the tests reach generally high
coverage values. For example, executed on the TicTacToe student submissions, the generated
tests reach a high mean coverage of 90%. However, the execution of exactly these missed
blocks would reveal the error that was induced to the model solution and not fixed by the
students in incorrect submissions. Together with the first experiment in which MIO was able
to achieve slightly better results due to reaching more block statements, it becomes apparent
that high program coverage is crucial for detecting bugs in SCRATCH programs, and the
high coverage values seen throughout all of our experiments should neither be interpreted
to suggest testing SCRATCH programs is an easy nor a solved problem.

assertions

program

79 Page 54 of 63

Empir Software Eng (2023) 28:79

8 RelatedWork

8.1 Automated Test Generation

A traditional approach to generate tests automatically is by using symbolic execution (Bal-
doni et al. 2018), which extracts path conditions from programs and then generates test
inputs by solving the path conditions with constraint solvers. Symbolic execution is mostly
used when testing at unit or API level, or when inputs can be represented as symbolic
variables. In this paper, however, we consider system testing at the level of a user inter-
face. While there have been attempts to apply symbolic execution also in this context (e.g.,
(Ganov et al. 2009; Mirzaei et al. 2012; Salvesen et al. 2015)), this is usually done to gen-
erate input values for specific user inputs (e.g., text). For SCRATCH programs, however, the
challenge rather lies in finding timed sequences of simple user interactions. This problem is
generally addressed using random and search-based test generation approaches.

Random testing of GUIs (Miller et al. 1995) consists of sending random user interactions
to a program under test. Search-based testing generalizes this approach by adding objec-
tive functions, such as reaching target points in the source code (McMinn 2004), together
with algorithms that optimize the inputs to reach the objectives. While the bulk of research
on search-based testing considers function inputs or unit tests, the problem of generating
tests for graphical user interfaces (GUIs) has also been successfully addressed using meta-
heuristic search algorithms, for example in the context of Java Swing applications (Gross
et al. 2012) or Android apps (Mao et al. 2016; Amalfitano et al. 2014; Mahmood et al. 2014).

Objective functions in search-based testing are usually based on the notion of code cov-
erage, and require instrumentation to collect data that allows calculating fitness values. For
some domains, such as Android apps, it is challenging to provide this instrumentation and
to frequently execute long-running tests, therefore alternative black-box approaches have
been proposed, e.g., aiming to maximise the amount of GUI changes observed (Mariani
et al. 2012). In contrast, the size of SCRATCH programs represents no problems in terms of
the scalability of fitness computations, and we therefore can base our fitness computations
on inter-procedural analysis and instrumentation. However, test executions may still take a
long time due to the time-based behaviour of SCRATCH programs.

An issue that is common to search-based GUI testing approaches is the difficulty of
implementing search operators such as crossover, as crossing two sequences of events is
likely to result in invalid sequences, where the events encoded in the sequences cannot be
executed in the actual program states. Prior approaches to tackle this problem consisted
of restricting crossover to suitable locations and ensuring valid sequences through repair
(Mahmood et al. 2014), or using set-based representations where no sequences are modified
during crossover (Mao et al. 2016). A common alternative is also to resort to heuristics that
do not require such operators but, e.g., rather decide on executions based on probabilisty
distributions (Su et al. 2017). To overcome these problems of representation, we used an
integer-based encoding based on grammatical evolution (O’Neill and Ryan 2001), which
has not received much attention in the context of test generation yet (Anjum and Ryan 2020).

Which search algorithm is most effective is highly problem specific. Variants of random
search are often sufficient (Shamshiri et al. 2018), but more advanced search algorithms
provide clear benefits on more complex test problems. Our study confirms that this also
holds in the domain of SCRATCH programs. At the unit testing level, it has been shown that
searching for sets of tests that aim to cover all code (Fraser and Arcuri 2012) at once is most

Page 55 of 63 79

Empir Software Eng (2023) 28:79

effective (Campos et al. 2017; Panichella et al. 2018) using many-objective optimisation
algorithms such as MOSA (Panichella et al. 2015) and MIO (Arcuri 2017), which is why
we chose these many-objective optimisation algorithms also for our study.

8.2 Automated Testing and Analysis for SCRATCH Programs

Novice programming environments such as SCRATCH (Maloney et al. 2010) or SNAP (Har-
vey et al. 2013) are widely used in introductory programming curricula (Franklin et al. 2020;
Garcia et al. 2015). These environments motivate students by enabling them to create pro-
gramming artefacts that they can interact with, and they have been shown to improve learn-
ing gains and long-term interests towards programming (Weintrop and Wilensky 2017).
Among the available programming environments, SCRATCH is by far the most popular
environment, with the largest online youth programming community (Fields et al. 2017).

A core aspect of these programming environments is that they use blocks instead of
text to avoid that learners have to memorise syntax or available programming commands.
While this simplifies initial coding, students have been shown to still struggle in building
logically coherent programs in SCRATCH (Meerbaum-Salant et al. 2011). They have also
been reported to create “smelly” code (Aivaloglou and Hermans 2016; Hermans et al. 2016;
Techapalokul and Tilevich 2017bb), and these code smells have been shown to have a neg-
ative impact on understanding (Hermans and Aivaloglou 2016). It is therefore important to
provide tool-based support for learners as well as their teachers. The majority of prior work
focused on statically analysing SCRATCH code. For example, the popular DR. SCRATCH

(Moreno-León and Robles 2015) website assesses evidence of computational thinking in
programs and can also point out code smells using the HAIRBALL (Boe et al. 2013) static
analysis tool. Similar code smells are identified by QUALITY HOUND (Techapalokul and
Tilevich 2017ba) and SAT (Chang et al. 2018). LITTERBOX (Frädrich et al. 2020) is an
extensible framework that can identify not only code smells, but also patterns of common
bugs as well as positive aspects such as code perfumes (Obermüller et al. 2021) in SCRATCH

programs. A general limitation of these syntax-based approaches which we aim to address
in this paper is that they can only provide limited reasoning about the actual and intended
program behaviour.

Dynamic analysis is required to reason about program behaviour, and automated testing
is a common means to enable dynamic analysis. Automated testing is commonly applied in
the context of programming education for tasks such as assessing student programs to pro-
vide feedback after a task has been completed, or during its creation (Shute 2008). In many
text-based programming environments, automated tests have been shown to enable vari-
ous types of feedback, such as by displaying failed test cases (Edwards and Murali 2017),
suggesting likely misconceptions (Gusukuma et al. 2018), and highlighting erroneous code
(Edmison et al. 2017). Offering such immediate, automated feedback has been shown to
improve students performance and learning outcomes (Corbett and Anderson 2001).

However, unlike text-based programming environments, novice programming envi-
ronments like SCRATCH are often centered around custom graphical scenarios that are
controlled by input streams of signals from users’ input devices such as keyboard and
mouse, which causes challenges for automated testing. The ITCH tool (Johnson 2016)
dynamically tests SCRATCH programs by translating a small subset of SCRATCH programs
to Python code. However, such tests are limited to functions that take in static input/outputs,
such as and blocks. Furthermore, ITCH does not automatically generate test

cases. WHISKER (Stahlbauer et al. 2019) takes this approach a step further and, besides

79 Page 56 of 63

Empir Software Eng (2023) 28:79

execution of automated tests directly in SCRATCH, also provides automated property-based
testing. SNAPCHECK (Wang et al. 2021b) applies similar concepts in the context of the
SNAP! programming language. However, all of these existing testing tools focus on auto-
matically executing manually written tests. In contrast, the aim of this paper is to automate
the test generation process itself.

The work presented in this paper is integrated into WHISKER (Stahlbauer et al. 2019),
but controls the SCRATCH VM directly and represents a separate component which is
mainly connected with WHISKER through the result of the test generation, which is saved
in WHISKER’s format and can be re-executed with WHISKER. Our proof-of-concept on
WHISKER test generation (Deiner et al. 2020) proposed a codon-based encoding, the use of
interprocedural graphs to calculate fitness values, and accelerated test execution. This paper
extends this initial proof-of-concept by providing an entirely new execution model, extend-
ing the codon encoding and search operators, providing new search algorithms, adding
local search, refining the fitness function with the concept of control flow distance, adds
many testability transformations to improve the fitness function, adds a new model for event
extraction as well as new events, and adds test minimization as well as regression assertion
generation, and adding many smaller technical improvements overall. In addition, a central
contribution of this paper lies in the large empirical study.

9 Conclusions

The increasing popularity of block-based programming languages leads to a demand for
tools to support programmers. However, even though languages like SCRATCH have mil-
lions of users, they lack fundamental analysis frameworks that are common for other
programming languages, which inhibits the development of tools to support novice pro-
grammers. To address this issue, WHISKER makes it possible to run automated tests also
on SCRATCH, but writing WHISKER tests remains challenging. In this paper we presented a
fully automated approach to generate these tests given a SCRATCH program under test. Our
experiments on three different, large datasets have demonstrated that automated test gener-
ation generally achieves very high coverage. This paves the way for advanced analysis and
feedback tools.

Although our experiments suggest that WHISKER will fully cover many types of pro-
grams, we also observed two notable patterns of programs where the search-based test
generation approach implemented by WHISKER could be improved:

– First, for many of the projects finding the correct sequence of user inputs is only part
of the challenge, while in fact the timing is a more important question, and very often
test generation would require waiting long durations for parts of the animations or
sounds playing. While WHISKER accommodates for this through accelerated execution
and including timing in the fitness function, the rather classical search-based testing
approach that WHISKER implements nevertheless builds on the assumption that one
can run many short executions. In contrast, many SCRATCH programs may be easier to
test by alternative approaches aiming to drive individual, longer executions.

– Second, many SCRATCH programs, in particular the popular ones, represent games where
a traditional test generation approach stands no chance of ever optimising a sequence
that can really succeed at playing the game—which, alas, is a prerequisite to reaching
interesting states and parts of the code. Possible avenues to address this problem will
be to record and integrate user interactions with a program under test, or to apply
reinforcement learning approaches to teach the computer to actually play the games.

Page 57 of 63 79

Empir Software Eng (2023) 28:79

The techniques described in this paper generalise conceptually in multiple dimensions:
First, there are other block-based languages such as ALICE (Cooper et al. 2000) or SNAP

(Harvey et al. 2013), which also use a similar concept of stages and sprites. Second, there
are also text-based programming environments such as GREENFOOT (Kölling 2010) that
are based on the same concept. Adapting our approach to these programming environments
mainly requires engineering work to adapt our modified execution model, and to add sup-
port for different language constructs. We also anticipate that our deterministic execution
model can influence the design of future programming environments. More generally,
the encoding, search operators, and algorithmic modifications proposed in this paper are
applicable in principle to any UI-based testing problem, independently of the underlying
programming language.

Compared to other testing problems, the code coverage observed in our experiments is
relatively high. Besides the smaller size of SCRATCH programs, one potentially influential
factor is the absence of certain types of testing challenges such as external dependencies;
for example, Android apps will frequently access web services and data storage, which
leads to substantially lower code coverage (Mao et al. 2016). However, such challenges
also exist in the domain of block-based languages: The SCRATCH language provides sup-
port for extensions that can provide arbitrary functionality, ranging from machine learning
functionality to support for controlling external devices. Furthermore, there are related
languages such as MBLOCK4, which extends SCRATCH with support for a wide range of
robots. Supporting these features will require future work to extend our encoding as well
as the underlying instrumentation.

Given the ability to generate tests for SCRATCH programs, we hope to enable new
approaches for automated tutorial systems, automated repair systems, hint generation sys-
tems. To support this future work, WHISKER is available as open source at: https://github.
com/se2p/whisker

Acknowledgements We thank Christoph Frädrich, Sophia Geserer, and Niklas Zantner for their contri-
butions to WHISKER. This work is supported by DFG project FR 2955/3-1 “TENDER-BLOCK: Testing,
Debugging, and Repairing Blocks-based Programs”.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability A replication package containing all data from the experiments presented in this paper, as
well as all artefacts and software needed to reproduce the results, is provided online at: https://zenodo.org/
record/7101776.

Declarations

Conflict of Interests The authors declare that they have no conflict of interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

4https://mblock.makeblock.com/, last accessed September 2022

79 Page 58 of 63

https://github.com/se2p/whisker
https://github.com/se2p/whisker
https://zenodo.org/record/7101776
https://zenodo.org/record/7101776
http://creativecommons.org/licenses/by/4.0/
https://mblock.makeblock.com/

Empir Software Eng (2023) 28:79

References

Adler F, Fraser G, Gründinger E, Körber N, Labrenz S, Lerchenberger J, Lukasczyk S, Schweikl S (2021)
Improving readability of SCRATCH programs with search-based refactoring. In: 21st IEEE international
working conference on source code analysis and manipulation, SCAM, 2021. IEEE, pp 120–130

Aivaloglou E, Hermans F (2016) How kids code and how we know: an exploratory study on the SCRATCH

repository. In: Proceedings ICER, pp 53–61
Amalfitano D, Fasolino AR, Tramontana P, Ta BD, Mobiguitar AMM (2014) Automated model-based testing

of mobile apps. IEEE Softw 32(5):53–59
Anjum MS, Ryan C (2020) Seeding grammars in grammatical evolution to improve search based software

testing. In: European conference on genetic programming (part of EvoStar). Springer, pp 18–34
Arcuri A (2013) It really does matter how you normalize the branch distance in search-based software testing.

Softw Test Verif Reliability 23(2):119–147
Arcuri A (2017) Many independent objective (MIO) algorithm for test suite generation. In: Proceedings of

the international symposium on search based software engineering, SSBSE, vol 10452 of lecture notes
in computer science. Springer, pp 3–17

Arcuri A, Briand L (2014) A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Softw Testing Verification and Reliability 24(3):219–250

Baldoni R, Coppa E, D’elia DC, Demetrescu C, Finocchi I (2018) A survey of symbolic execution techniques.
ACM Comput Surveys (CSUR) 51(3):1–39

Boe B, Hill C, Len M, Dreschler G, Conrad P, Hairball DF (2013) Lint-inspired static analysis of SCRATCH

projects. In: Proceedings SIGCSE, pp 215–220
Budd TA, Angluin D (1982) Two notions of correctness and their relation to testing. Acta Inform 18(1):31–45
Campos J, Ge Y, Fraser G, Eler M, Arcuri A (2017) An empirical evaluation of evolutionary algorithms

for test suite generation. In: International symposium on search based software engineering. Springer,
pp 33–48

Chang Z, Sun Y, Wu T-Y, Guizani M (2018) Scratch analysis tool (sat): a modern SCRATCH project anal-
ysis tool based on antlr to assess computational thinking skills. In: 2018 14th International wireless
communications & mobile computing conference (IWCMC). IEEE, pp 950–955

Chen YT, Gopinath R, Tadakamalla A, Ernst MD, Holmes R, Fraser G, Ammann P, Just R (2020) Revisiting
the relationship between fault detection, test adequacy criteria, and test set size. In: Proceedings of the
35th IEEE/ACM international conference on automated software engineering, pp 237–249

Cooper S, Dann W, Pausch R, Pausch R (2000) Alice: a 3-d tool for introductory programming concepts.
In: Journal of computing sciences in colleges. Consortium for computing sciences in colleges, vol 15,
pp 107–116

Corbett AT, Anderson JR (2001) Locus of feedback control in computer-based tutoring impact on learn-
ing rate, achievement and attitudes. In: Proceedings of the SIGCHI conference on human factors in
computing systems. ACM, pp 245–252

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Trans Evol Computat 6(2):182–197

Deiner A, Frädrich C, Fraser G, Geserer S, Zantner N (2020) Search-based testing for SCRATCH programs.
In: International symposium on search based software engineering. Springer, pp 58–72

Diner D, Fraser G, Schweikl S, Stahlbauer A (2021) Generating timed ui tests from counterexamples. In:
International conference on tests and proofs. Springer, pp 53–71

Edmison B, Edwards SH, Pérez-quiñones MA (2017) Using spectrum-based fault location and heatmaps to
express debugging suggestions to student programmers. In: Proceedings of the nineteenth australasian
computing education conference, ACE ’17. Association for computing machinery, pp 48–54, New York

Edwards SH, Murali KP (2017) Codeworkout: short programming exercises with built-in data collection. In:
Proceedings of the 2017 ACM conference on innovation and technology in computer science education,
pp 188–193

Feldmeier P, Fraser G (2022) Neuroevolution-based generation of tests and oracles for games. In: 37th
IEEE/ACM international conference on automated software engineering (ASE ’22). ACM

Fields DA, Kafai YB, Giang MT (2017) Youth computational participation in the wild understanding expe-
rience and equity in participating and programming in the online SCRATCH community. ACM Trans
Comput Educ (TOCE) 17(3):1–22

Frädrich C, Obermüller F, Körber N, Heuer U, Fraser G (2020) Common bugs in SCRATCH programs. In:
Proceedings of the 2020 ACM conference on innovation and technology in computer science education,
pp 89–95

Page 59 of 63 79

Empir Software Eng (2023) 28:79

Franklin D, Weintrop D, Palmer J, Coenraad M, Cobian M, Beck K, Rasmussen A, Krause S, White M,
Anaya M, Crenshaw Z (2020) Scratch encore: the design and pilot of a culturally-relevant intermediate
SCRATCH curriculum. In: Proceedings of the 51st ACM technical symposium on computer science edu-
cation, SIGCSE ’20. Association for computing machinery. ISBN 9781450367936, pp 794–800, New
York

Fraser G, Arcuri A (2012) Whole test suite generation. IEEE Trans Softw Eng 39(2):276–291
Fraser G, Zeller A (2011) Mutation-driven generation of unit tests and oracles. IEEE Trans Softw Eng

38(2):278–292
Fraser G, Arcuri A, McMinn P (2015) A memetic algorithm for whole test suite generation. J Syst Softw

103:311–327
Fraser G, Heuer U, Körber N, Wasmeier E et al (2021) Litterbox: a linter for SCRATCH programs. In: 2021

IEEE/ACM 43rd international conference on software engineering: software engineering education and
training (ICSE-SEET). IEEE, pp 183–188

Ganov S, Killmar C, Khurshid S, Perry DE (2009) Event listener analysis and symbolic execution for testing
gui applications. In: International conference on formal engineering methods. Springer, pp 69–87

Garcia D, Harvey B, Barnes T (2015) The beauty and joy of computing. ACM Inroads 6(4):71–79
Geldreich K, Funke A, Hubwieser P (2016) A programming circus for primary schools. In: ISSEP 2016,

pp 49–50
Gopinath R, Jensen C, Groce A (2014) Mutations: how close are they to real faults? In: 2014 IEEE 25th

international symposium on software reliability engineering. IEEE, pp 189–200
Götz K, Feldmeier P, Fraser G (2022) Model-based testing of SCRATCH programs. In: 2022 IEEE conference

on software testing, verification and validation (ICST). IEEE, pp 411–421
Greifenstein L, Obermüller F, Wasmeier E, Heuer U, Fraser G (2021) Effects of hints on debugging SCRATCH

programs: an empirical study with primary school teachers in training. In: The 16th workshop in primary
and secondary computing education, pp 1–10

Gross F, Fraser G, Zeller A (2012) Search-based system testing: high coverage, no false alarms. In:
Proceedings ISSTA, pp 67–77

Gruber M, Lukasczyk S, Kroiß F, Fraser G (2021) An empirical study of flaky tests in python. In: 2021 14th
IEEE conference on software testing, verification and validation (ICST). IEEE, pp 148–158

Gusukuma L, Tech V, Cory Bart A, Kafura D, Ernst J (2018) Misconception-driven feedback : results from
an experimental study, (1):160–168

Harvey B, Garcia DD, Barnes T, Titterton N, Armendariz D, Segars L, Lemon E, Morris S, Paley J (2013)
Snap!(build your own blocks). In: Proceedings of the 44th ACM technical symposium on computer
science education, pp 759–759

Hermans F, Aivaloglou E (2016) Do code smells hamper novice programming? a controlled experiment on
SCRATCH programs. In: Proceedings ICPC. IEEE, pp 1–10

Hermans F, Stolee KT, Hoepelman D (2016) Smells in block-based programming languages. In: Proceedings
VL/HCC. IEEE, pp 68–72

Inozemtseva L, Holmes R (2014) Coverage is not strongly correlated with test suite effectiveness. In:
Proceedings of the 36th international conference on software engineering, pp 435–445

Jahangirova G, Clark D, Harman M, Tonella P (2016) Test oracle assessment and improvement. In:
Proceedings of the 25th international symposium on software testing and analysis, pp 247–258

Jia Y, Harman M (2010) An analysis and survey of the development of mutation testing. IEEE Trans Softw
Eng 37(5):649–678

Johnson DE (2016) Itch: individual testing of computer homework for SCRATCH assignments. In: Proceed-
ings SIGCSE, pp 223–227

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2016) An in-depth study of the
promises and perils of mining github. Empir Softw Eng 21(5):2035–2071

Kölling M (2010) The greenfoot programming environment. ACM Trans Comput Educ 10(4):1–21
Korel B (1990) Automated software test data generation. IEEE Trans Softw Eng 16(8):870–879
Lee I, Martin F, Denner J, Coulter B, Allan W, Erickson J, Malyn-Smith J, Werner L (2011) Computational

thinking for youth in practice. Acm Inroads 2(1):32–37
Leitner A, Oriol M, Zeller A, Ciupa I, Meyer B (2007) Efficient unit test case minimization. In: Proceedings

of the twenty-second IEEE/ACM international conference on automated software engineering, pp 417–
420

Luo Q, Hariri F, Eloussi L, Marinov D (2014) An empirical analysis of flaky tests. In: Proceedings of the
22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 643–653

Mahmood R, Mirzaei N, Malek S (2014) Evodroid: segmented evolutionary testing of android apps. In: Pro-
ceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering,
pp 599–609

79 Page 60 of 63

Empir Software Eng (2023) 28:79

Maj P, Siek K, Kovalenko A, Vitek J (2021) Codedj: Reproducible queries over large-scale software
repositories. In: 35th European conference on object-oriented programming (ECOOP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik

Maloney J, Resnick M, Rusk N, Silverman B, Eastmond E (2010) The SCRATCH programming language and
environment. TOCE 10(4):1–15

Mao K, Harman M, Jia Y (2016) Sapienz: multi-objective automated testing for android applications. In:
Proceedings ISSTA, pp 94–105

Mariani L, Pezze M, Riganelli O, Santoro M (2012) Autoblacktest: automatic black-box testing of interactive
applications. In: 2012 IEEE fifth international conference on software testing, verification and validation.
IEEE, pp 81–90

McMinn P (2004) Search-based software test data generation: a survey. Softw Test Verification Reliability
14(2):105–156

Meerbaum-Salant O, Armoni M, Ben-Ari M (2011) Habits of programming in SCRATCH. In: Proceedings of
the 16th annual joint conference on Innovation and technology in computer science education, pp 168–
172

Miller BP, Koski D, Lee CP, Maganty V, Murthy R, Natarajan A, Steidl J (1995) Fuzz revisited: a re-
examination of the reliability of unix utilities and services. Technical report, University of Wisconsin-
Madison department of computer sciences

Mirzaei N, Malek S, Păsăreanu CS, Esfahani N, Mahmood R (2012) Testing android apps through symbolic
execution. ACM SIGSOFT Softw Eng Notes 37(6):1–5

Moreno-León J, Robles G (2015) Dr. Scratch: a web tool to automatically evaluate SCRATCH projects. In:
Proc. WIPSCE, pp 132?-133

Obermüller F, Bloch L, Greifenstein L, Heuer U, Fraser G (2021) Code perfumes: reporting good code to
encourage learners. In: The 16th workshop in primary and secondary computing education, pp 1–10

Offutt AJ, Lee A, Rothermel G, Untch RH, Zapf C (1996) An experimental determination of sufficient mutant
operators. ACM Transactions on Software Engineering and Methodology (TOSEM) 5(2):99–118

O’Neill M, Ryan C (2001) Grammatical evolution. IEEE Trans Evol Comput 5(4):349–358
Panichella A, Kifetew FM, Tonella P (2015) Reformulating branch coverage as a many-objective optimiza-

tion problem. In: 8th IEEE international conference on software testing, verification and validation
(ICST), pp 1-?10

Panichella A, Kifetew FM, Tonella P (2018) A large scale empirical comparison of state-of-the-art search-
based test case generators. Inf Softw Technol 104:236–256

Salvesen K, Galeotti JP, Gross F, Fraser G, Zeller A (2015) Using dynamic symbolic execution to generate
inputs in search-based gui testing. In: 2015 IEEE/ACM 8th international workshop on search-based
software testing. IEEE, pp 32–35

Papert S (1980) Mindstorms; Children Computers and Powerful Ideas. Basic Book, New York
Shamshiri S, Just R, Rojas JM, Fraser G, McMinn P, Arcuri A (2015) Do automatically generated unit

tests find real faults? an empirical study of effectiveness and challenges (t). In: 2015 30th IEEE/ACM
international conference on automated software engineering (ASE). IEEE, pp 201–211

Shamshiri S, Rojas JM, Gazzola L, Fraser G, McMinn P, Mariani L, Arcuri A (2018) Random or evolutionary
search for object-oriented test suite generation? Softw Test Verification Reliability 28(4):e1660

Shute VJ (2008) Focus on formative feedback. Rev Educ Res 78(1):153–189
Sirkiä T, Sorva J (2012) Exploring programming misconceptions: an analysis of student mistakes in visual

program simulation exercises. In: Proceedings of the 12th Koli calling international conference on
computing education research, pp 19–28

Stahlbauer A, Kreis M, Fraser G (2019) Testing SCRATCH programs automatically. In: ESEC/SIGSOFT
FSE. ACM, pp 165–175

Su T, Meng G, Chen Y, Wu K, Yang W, Yao Y, Pu G, Liu Y, Su Z (2017) Guided, stochastic model-based
gui testing of android apps. In: Proceedings of the 2017 11th joint meeting on foundations of software
engineering, pp 245–256

Techapalokul P, Tilevich E (2017b) Quality hound—an online code smell analyzer for SCRATCH programs.
In: IEEE 2017 symposium on visual languages and human-centric computing (VL/HCC). IEEE, pp 337–
338

Techapalokul P, Tilevich E (2017b) Understanding recurring quality problems and their impact on code
sharing in block-based software. In: Proceedings VL/HCC. IEEE, pp 43–51

Vogl S, Schweikl S, Fraser G (2021) Encoding the certainty of boolean variables to improve the guidance
for search-based test generation. In: Chicano F, Krawiec K (eds) GECCO ’21: genetic and evolutionary
computation conference. ACM, Lille, France, 10-14 Jul 2021, pp 1088–1096

Page 61 of 63 79

Empir Software Eng (2023) 28:79

Wang W, Fraser G, Barnes T, Martens C, Price T (2021a) Execution-trace-based feature engineering to
enable formative feedback on visual, interactive programs educational data mining in computer science
education (CSEDM) workshop @ EDM’21

Wang W, Zhang C, Stahlbauer A, Fraser G, Price T (2021b) Snapcheck: automated testing for snap pro-
grams. In: Proceedings of the 26th ACM conference on innovation and technology in computer science
education, ITiCSE ’21. ACM, pp 227–233

Wegener J, Baresel A, Sthamer H (2001) Evolutionary test environment for automatic structural testing. Inf
Softw Technol 43(14):841–854

Weintrop D, Wilensky U (2017) Comparing block-based and text-based programming in high school
computer science classrooms. ACM Trans Comput Educ 18(1):3

Xie T (2006) Augmenting automatically generated unit-test suites with regression oracle checking. In:
European conference on object-oriented programming. Springer, pp 380–403

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Adina Deiner is a master student of Computer Science at the Univer-
sity of Passau. Her research interests include program analysis and
programming education.

Patric Feldmeier is a PhD student of the Software Engineering II
Chair at the University of Passau. His main research interests include
search-based software engineering, software testing and reinforce-
ment learning. Patric’s primary research goal is to advance the state
of fully automated Game and GUI testing using reinforcement learn-
ing approaches such as Neuroevolution. In addition, he is working on
tools like Whisker that assist young learners throughout their devel-
oper journey by providing valuable feedback for the block-based
programming language Scratch.

79 Page 62 of 63

Empir Software Eng (2023) 28:79

Gordon Fraser is a full professor in Computer Science at the Uni-
versity of Passau, Germany. He received a PhD in computer science
from Graz University of Technology, Austria, worked as a post-doc
at Saarland University, and was a Senior Lecturer at the University
of Sheffield, UK. The central theme of his research is improving
software quality, and his recent research concerns the prevention,
detection, and removal of defects in software.

Sebastian Schweikl received the master’s degree in computer sci-
ence from the University of Passau, Germany, in 2019, where he
is currently working as a PhD student. His main research interests
include the design and analysis of search-based metaheuristics.

Wengran Wang is a PhD student of Computer Science at NC
State University. Her research interests include building automated,
personalized examples to support creative, open-ended programming.

Page 63 of 63 79

	Automated test generation for Scratch programs
	Abstract
	Introduction
	Background
	Scratch Programs
	The Whisker Testing Framework

	Accelerated and Deterministic Test Execution
	Accelerating Execution
	Ensuring Determinism
	Virtual Sound

	Test Generation for Scratch
	Test Generation
	Event Extraction
	Assertion Generation

	Test Generation Algorithms
	Encoding Scratch Tests Using Grammatical Evolution
	Mutation
	Crossover

	Fitness Function
	Interprocedural Control Flow and Control Dependence Graphs
	Approach Level
	Control Flow Distance
	Branch Distance Instrumentation
	Time-Dependent Statements
	Overall Fitness Function

	Search Algorithms
	Extension Local Search
	Reduction Local Search

	Test Minimization

	Experiments
	Experimental Setup
	Dataset 1: Projects with Manually Written Whisker Tests (Manual)
	Dataset 2: Buggy and Correct Projects (Bugs)
	Dataset 3: 1000 Random Projects (Random1000)
	Dataset 4: Top 1000 Most Loved Projects (Top1000)
	Implementation and Tuning
	Environment

	Experiment Methodology
	RQ1: How Much Can Test Execution be Accelerated Reliably?
	RQ2: Can Scratch Projects be Trivially Covered?
	RQ3: What is the Best Test Generation Algorithm for Scratch Programs?
	RQ4: How Effective are Generated Tests at Detecting Faults?

	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity

	Results
	RQ1: How Much Can Test Execution be Accelerated Reliably?
	RQ2: Can Scratch Projects be Trivially Covered?
	RQ3: What is the Best Test Generation Algorithm for Scratch Programs?
	RQ4: How Effective are Generated Tests at Detecting Faults?

	Related Work
	Automated Test Generation
	Automated Testing and Analysis for Scratch Programs

	Conclusions
	Declarations
	References

