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Abstract
Data science is an exploratory and iterative process that often leads to complex and unstruc-
tured code. This code is usually poorly documented and, consequently, hard to understand
by a third party. In this paper, we first collect empirical evidence for the non-linearity of data
science code from real-world Jupyter notebooks, confirming the need for new approaches
that aid in data science code interaction and comprehension. Second, we propose a visu-
alisation method that elucidates implicit workflow information in data science code and
assists data scientists in navigating the so-called garden of forking paths in non-linear code.
The visualisation also provides information such as the rationale and the identification of
the data science pipeline step based on cell annotations. We conducted a user experiment
with data scientists to evaluate the proposed method, assessing the influence of (i) different
workflow visualisations and (ii) cell annotations on code comprehension. Our results show
that visualising the exploration helps the users obtain an overview of the notebook, signifi-
cantly improving code comprehension. Furthermore, our qualitative analysis provides more
insights into the difficulties faced during data science code comprehension.
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1 Introduction

In recent years, data science has become a major resource in the decision-making process.
This became undeniable during the recent COVID-19 pandemic, in which governments and
scientists monitored and predicted the evolution of the spread of the virus using data science
methods. To make their results reproducible, verifiable, and extensible by others (Randles
et al. 2017), data scientists tend to share the code they create using computational notebook
environments like Jupyter (2015).

However, several challenges exist in understanding and, consequently, reproducing the
notebooks (Brandt et al. 2008; Pimentel et al. 2019; Merali 2010). Rule et al. (2018b) found
that publicly available data science notebooks usually lack documentation. Undocumented
third-party software code, in general, is challenging to comprehend (Francese et al. 2017;
Letovsky and Soloway 1986; DeLine et al. 2005). Similarly, understanding a notebook with-
out explanations from its author(s) can create confusion and misunderstanding (Rule et al.
2018b).

Furthermore, data scientists often present their results from the exploratory analysis,
which are generally a result of choices determined by subjective reasons (Silberzahn et al.
2018; Schweinsberg et al. 2021), as an exploration of a single data analysis path. On the
contrary, researchers have long advocated for the transparency of the computational narra-
tive1 (Gelman and Loken 2013; Wacker 2017; Silberzahn et al. 2018; Rule et al. 2018a; Hill
et al. 2016) i.e., making the data analysis process, decisions, and resulting artefacts includ-
ing the dead-ends explicit, by documenting them. Gelman and Loken (2013) describes data
analysis as a garden of forking paths and recommends documenting all of the alternative sta-
tistical analyses taken, successful or not, as each of them can highly influence the outcome
(Schweinsberg et al. 2021).

In addition, while preliminary observations suggest that exploratory data science pro-
gramming is iterative (Kery et al. 2019) and non-linear (Kery et al. 2017; Rule et al. 2018b),
existing computational notebook environments like Jupyter allow data scientists to imple-
ment and record their analyses linearly. Because of this, data scientists often actively curate
their notebook during its development by re-writing existing cell content, adding cell(s) in
between other cells, or deleting existing cells in order to keep it concise and from growing.
This behaviour also often leads to loss of information about their previous steps, exploration
or (unsuccessful) alternative analyses.

Existing works on computational notebooks have proposed approaches that track the
provenance and versioning history to keep a record of the analyses (Srinivasa et al. 2016;
Pimentel et al. 2015, 2019). These approaches and their respective visualisations (Pimentel
et al. 2015; Kery et al. 2019) to help reason about the analysis rely on the details (e.g.,
function definition (Pimentel et al. 2015)) of the source code and their execution as they
occur linearly. However, keeping track of and foraging through a large number of source
code-level changes is difficult for the data scientists (Srinivasa et al. 2016; Pimentel et al.
2015; Kery et al. 2019; Green and Petre 1996). Further, these approaches are limited to the
analyses of source code and its related artefacts (e.g., data flow and control flow) and do
not consider the non-linear nature of data science workflows and its steps. As a result, their
visualisation does not represent the analysis in the form of garden of forking paths.

Prior work also shows that, due to active curation of the notebook, data scientists struggle
to keep track of their mental model during development (Kery et al. 2017). However, there

1Narrative and computational narrative are used interchangeably throughout this paper
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is a lack of research on how this affects the comprehension of data science code, particularly
by third-party data scientists. The field of software engineering (SE) research extensively
studied methods that facilitate program/code comprehension (Fjelstad and Hamlen 1979;
Minelli et al. 2015; Corbi 1989; Ko et al. 2006; Storey et al. 1997a; Collberg et al. 2003),
especially documenting for evolving software. Software visualisation tools, particularly
software exploration tools “which combine graphical representations of software structures
linked to textual representations of source code and documentation” (Storey et al. 1997a),
are used to facilitate program understanding by forming a mental model of the software
(Storey 1998). In order to facilitate the construction of a more accurate mental model dur-
ing notebook comprehension, it is important to make the narrative as explicit and complete
as possible, as indicated by Kery et al. (2018).

In this work, we first perform an empirical analysis on a set of data science notebooks in
order to supplement the existing observations on the iterative and non-linear nature of data
science programming that motivates this work. Further, we propose an explorable visuali-
sation method that aims to enrich existing narrative information by elucidating the implicit
workflow information in computational notebooks. Our interactive graph-based visuali-
sation method represents and visualises a data science notebook’s (non-linear) workflow
information in terms of forks and dead-ends. Additionally, we investigate how our data sci-
ence workflow visualisation can help in notebook comprehension using a controlled user
experiment.

The experiment is conducted with 35 data scientists who work as research scientists at
a university or as freelancing data scientists in Upwork. During the experiment, each group
of users was provided with different workflow information about (i) divergent paths, using
the concept of forks and dead-ends described by Gelman and Loken (2013), and (ii) anno-
tation of the data science steps present in the code. For the experiment, we implemented a
prototype2 of the interactive visualisation plugin for Jupyter, named MARG (which means
“path” (Dictionary 2020)) - Narrative Exploration, that presents a static graphical represen-
tation of the underlying notebook’s workflow. We presented this graphical representation to
data scientists together with the code as an aid to navigate and understand the code in the
notebook. We further asked them to fill in a questionnaire where we asked questions that
allowed us to measure comprehension accuracy, time taken to comprehend the notebook,
and the usability of our solution.

The overarching goal of the work we present in this paper is to enable data scientists in
their notebook comprehension activity through an explorable visualisation method.

Overall, the main contributions of this paper include:

– Empirical evidence, based on the analysis of 470 real-world Jupyter notebooks, shows
that 81.1% of all the notebooks potentially follow a non-linear workflow in terms of
the data science actions they implement, whereas 30.0% of them had more than three
potential divergence points (Section 5.3). Further manual investigation of forks on 47
notebooks shows that, on average, at least about 0.9261 forks (i.e., a bit less than one)
exist in a notebook.

– MARG, a graph visualisation method to represent data analysis in computational note-
books and its implementation in order to visualise the notebook’s implicit workflow
information (Section 6.2).

2The plugin was implemented as a prototype for experimental purposes providing a static view of the work-
flow present in the notebook, i.e., we do not consider the updated information if the corresponding notebook
is modified and as a result, the visualisation will not be updated.
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– Empirical evidence based on a controlled experiment with 35 data scientists that:

1. Data scientists using MARG reach a statistically significant improvement in
the comprehension of a given notebook in terms of comprehension accuracy
(Section 6.5.1).

2. Data scientists in groups that had access to MARG spent more time in answering
the comprehension questions but less time to get an overview of the notebook given
the maximum time scheduled for all groups was equal (Section 6.5.2).

3. Based on the usability analysis of our solution, users receiving information about
the data science step annotation gave a more positive score in terms of system
usability than users receiving information about the workflow (Section 6.5.3).

4. Data Scientists from all groups highlighted the lack of narrative text (including
comments, analysis rationale, and interpretation of results) as a major obstacle in
third-party notebook comprehension. (Section 6.6).

5. We also discuss the strategies used and obstacles faced during a notebook compre-
hension task.

The remainder of this article follows the structure given here: Section 2 introduces the
terminologies used in this article. Section 3 provides an overview of the related work, and
the research questions are presented in Section 4. Section 5 describes the methodology, anal-
ysis, and results of the empirical study on data science code linearity. Section 6 details the
methodology, analysis, hypotheses, and results of the user experiment studying the influence
of explicit workflow information on data science code comprehension. Section 7 discusses
and elaborates further on the insights we obtained from the user experiment and their impli-
cations. Section 8 concludes the article with final remarks and summarises the implications
based on the insights from the user experiment for future research.

2 Preliminaries: Terminology

In this section, we introduce the terminology used throughout this article. The terminologies
are motivated by the literature and are restricted to the context of exploratory data science
workflows in computational notebooks like Jupyter.

In an ideal scenario, a data science workflow (SCWF ) is implemented through a series
of executable data science activities3 from obtaining the data, exploring the data (in the
case of exploratory tasks) and(-or) modelling the data (in the case of predictive tasks),
and interpreting the results (Perkel 2019). In a computational notebook, this may include
some or all of the following steps (Ramasamy et al. 2022): helper functions, load
data, data preprocessing, data exploration, modelling, evaluation,
prediction, result visualisation, save results, comment only.
When connected sequentially, these steps comprise a data science pipeline.

A data science pipeline is a linear(-ised) workflow (SClinear
WF ) that follows a single

path of sequential steps. Hence, a linear workflow SClinear
WF = < s1, . . . , sn >, contains

a sequence of steps si , where si is a code fragment corresponding to a data science step.
In Jupyter notebooks, these code fragments usually correspond to cells (Head et al. 2019;
Jupyter 2015; Rule et al. 2018b). In an earlier study, we found that ∼ 76% of the cells in
DASWOW dataset contain a single data science step (Ramasamy et al. 2022).

3code blocks with order information
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In exploratory data science tasks, workflows are generally non-linear. A non-linear
workflow (Kery et al. 2017; Patel et al. 2008) contains diverging paths that are referred to as
forks. Every point at which a fork happens in a non-linear workflow is a divergence point.
A non-linear workflow SCnon−linear

WF = (S,Edirected ) is a directed acyclic graph of steps,
where the steps si ∈ S, directed edge ej ∈ Edirected , and ej ⊆ S × S. A non-linear work-
flow composed of more than one fork, ideally, can be transformed into a set of pipelines by
decomposing the workflow with respect to the divergence points.

A fork is a divergent path, starting at a divergence point in a data science workflow and
provides a new, alternative, or complementary analytical path (Gelman and Loken 2013;
Rule et al. 2018b). Hence, a fork is a step si that has at least two or more outgoing edges.
While there can be multiple reasons for forking a data science workflow, some examples
include modelling with a different feature selection, relaxing an assumption and recom-
puting a model, applying a different learning algorithm, and using another subset of the
data.

A dead-end is a point in a data science workflow at which a set of steps taken in a data
analysis does not (or cannot) advance (Patel et al. 2008). Hence, a dead-end step si will
have no outgoing edges. Dead-ends are often the result of how data scientists repeatedly
interact with the data, often in an explorative manner. For example, a dead-end would be
the conclusion of a set of steps that lead to a hypothesis’ result, which turned out to be
uninteresting or false. A dead-end can occur within a fork and may pave the way for another
fork in the data analysis. While dead-ends are not necessary to reproduce the final result,
they influence and guide the workflow of the analysis (Kandel et al. 2012) and may be
crucial to understanding the rationale of the analysis.

A computational narrative details a multi-modal account of a data science workflow that
tells the story of ‘the data and the computations that process and visualise those data for a
particular audience and context’ (Granger and Pérez 2021). It includes the source code (data
science workflow) used for the task and its execution results (Granger and Pérez 2021) and
narrative text about both the code and the results (Granger and Pérez 2021) including the
rationale behind specific choices made throughout the task (Granger and Pérez 2021; Kery
et al. 2017).

Hence, the computational narrative can be defined as a tuple Cnarrative = (SCWF ,

D, Tnarrative, ·), where SC is the source code, D is the data used including the input data
Dinput , intermediate data Dintermediate, and the output data Dresults , and Tnarrative is the
narrative text. Note that we have an inclusive view of data which includes structured datasets
such as tables of graphs and unstructured data such as texts, images, as well as figures. Also,
note that it may contain additional information (such as external supplementary files) not
discussed in this paper (denoted with ·).

A data science narrative consists of a linear or a non-linear data science workflow
that implements the solution for a data-oriented task. Hence, a data science narrative
DSnarrative = (SCWF , D, Tnarrative, ·) is a type of computational narrative in which the
source code SCWF is composed of a set of data science steps.

Computational notebooks allow implementation and documentation of computational
narratives that can contain source code, execution results (outputs such as a plot, print
statements etc.), natural language text, equations, media, hyperlinks, and any other visual
representation, in a linear manner (Granger and Pérez 2021; Kery et al. 2017).
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Fig. 1 (1a) An example data science non-linear workflow of a computational notebook showcasing the diver-
gence point, forks (using different modelling techniques) generating out of the divergence point, and a fork
that may be leading to a dead-end. With respect to the computational notebook structure, each circle denotes
a code cell identified with the number that denotes the order of the appearance of the cell and the data science
steps it performs. Decomposed based on the divergence point at cell number 15, Figure (1b) shows a single
pipeline of the non-linear workflow comprising the left fork and Figure (1c) shows a single pipeline of the
non-linear workflow comprising the right fork

We illustrate the terminology using Fig. 1.

3 RelatedWork

There is a large body of scientific work related to computational notebooks and, in general,
data-intensive workflows. In this section, we summarise the most relevant works on compu-
tational notebook workflows, notebook comprehension activities, and software visualisation
for comprehension.

3.1 Computational Notebooks, Narratives, andWorkflows

Existence of Non-Linear Workflow A few studies have produced preliminary observations
on the non-linearity of the data science workflow present in the computational notebooks
(Rule et al. 2018b; Kery et al. 2018; Liu et al. 2020a; Pimentel et al. 2019). Rule et al.
(2018b) and Pimentel et al. (2019) base their analyses on the execution numbers present
in the notebooks to show that the notebooks have non-linear execution. However, more
evidence is needed to generalise this finding because non-linear execution numbers can also
occur due to various reasons, such as introducing a small change in the code. In the first part
of our study, we expand on this and conduct an empirical study to investigate the existence
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of non-linear workflows in real-world Jupyter notebooks based on the data science step they
perform.

Documenting the Narrative Prior works on managing and documenting notebook narra-
tives use the versioning history (Kery et al. 2017; Kery and Myers 2018; Head et al. 2019)
and provenance (Pimentel et al. 2015; Koop and Patel 2017; Namaki et al. 2020; Macke et al.
2020) to track the analysis. However, keeping track of a large number of complex changes
over an extended period is overwhelming for a human to interpret (Srinivasa et al. 2016;
Pimentel et al. 2015; Kery et al. 2019; Green and Petre 1996). Another set of works uses
the data flow information (Patterson et al. 2017), sometimes associated with a knowledge
base of data analysis concepts (Patterson et al. 2017) to represent the analysis. The above-
said works rely on the source code together with its execution providing a linear account of
the analysis (based on a single trial or run). They do not address the challenge of represent-
ing a non-linear workflow of data science development. As Head et al. (2019) advocates for
solutions that “add more sophisticated ‘layers’ to simplify and enrich notebooks’ narrative
structure”, in MARG, we focus on representing the high-level workflow information rather
than the changes at the level of lines of code to enrich the narratives.

3.2 Notebook Comprehension

Past research has explored how developers comprehend software programs and their rel-
evant artefacts and built tools for supporting program comprehension. However, in the
discipline of data science, the number of studies addressing this topic is still limited.

In exploratory programming tasks, Srinivasa et al. (2016) observed that programmers
“build, refine, and use” a narrative, which is similar to a mental model-making process in
traditional software engineering, to comprehend someone else’s code. Other studies also
indicate that narratives are crucial for a third party to improve and extend an existing work
(Kery et al. 2018). However, to the best of our knowledge, there is no existing research
that studies how the workflow information within the narrative influences comprehension
in the case of computational notebooks. In this work, we conduct an experimental study
to understand how people, particularly third-party data scientists, comprehend someone’s
data science notebook with the help of workflow visualisation. Additionally, we address the
gap in data science comprehension studies by shedding light on the strategies and obstacles
faced during the comprehension activity.

3.3 Software Visualisation for Comprehension

Software visualisation methods have long been used to help understand software systems by
visualising their structure, behaviour, and code. The most commonly used methods, particu-
larly in small systems, are based on visualising graph representations (Ball and Eick 1996).
Storey et al. (1997b) used graph visualisation techniques to explore a software’s structure
and code. Similarly, Kienle and Müller (2010) produced an explorable high-level graphical
view of software, whereas Systä et al. (2001) visualised static software artefacts as well as
their dependencies as a directed graph.

In order to aid comprehension-related activities, different kinds of information related to
the software are tracked and (or) extracted. DeLine et al. (2005) recorded activity and atten-
tion patterns that developers show while browsing software and used this navigation history
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to guide the third party through an unfamiliar code. Minelli and Lanza (2013) recorded and
visualised the interaction of developers within the IDE to support comprehension, whereas
Cornelissen et al. (2009), Pauw et al. (2001), and Systä et al. (2001) visualised program
behaviour (execution) and structural attributes of the software (Cornelissen et al. 2009).

In the case of computational notebooks and, in general, scientific workflow systems,
several works focus on visualising the provenance information (Pimentel et al. 2015; Kery
et al. 2019; Patterson et al. 2017) of a data analysis code and their execution details (e.g., log
data, data flow, control flow etc.) as they occur linearly. Alternatively, in this work, we focus
on the workflow information and the implementation of data science steps in a notebook. As
a result, we view the workflow in a notebook according to the data science steps and their
divergences. This allows us to visualise the non-linear nature of data science workflows at
a higher level of abstraction — at the level of decision and ideas.

In a different line of work addressing the multiple decision paths, Liu et al. (2020b)
proposed a visualisation method called Analytic Decision Graph (ADG) to communicate
decision processes for end-to-end analysis in the context of scientific publications and
suggested that such a diagrammatic representation “linked to corresponding analysis code
snippets (i.e., cells in a computational notebook)” will be helpful. In this paper, we propose
a visualisation method4 similar to ADG that not only focuses on recording the decisions
and rationale but also provides workflow information (with)in the context of data science
activities. Our method is particularly adapted to capture and visualise the rich workflow of
data science implementations in computational notebooks.

In our visualisation method, MARG, we approach the workflow information for data sci-
ence code at a higher level of abstraction — at the level of decision and ideas. Hence, we
keep a record of the alternatives, unsuccessful approaches, and the workflow of the imple-
mentation itself. Furthermore, we also enrich the graph visualisation with other information,
such as the rationale and the identification of the data science pipeline step through cell
annotations. As a result, MARG captures and visualises the data science notebook in the
form of the garden of forking paths in order to elucidate the implicit workflow of a data
science notebook. MARG, with its explorable visualisation, also provides orientation cues
(Thüring et al. 1995) (by identifying their current position in the workflow and focusing on
the relevant code cell) and navigation facility to support the comprehension activity (Storey
et al. 1997a).

Furthermore, we evaluate the visualisation for its ability to facilitate comprehension
using an experimental study.

4 Research Questions

As discussed in Section 3, while previous studies (Rule et al. 2018b; Kery et al. 2018) hint at
the existence of non-linear notebook workflows, existing tools do not track the (work)flow
of narrative at the level of ideas, methods, and decisions (Kery et al. 2019). Also, how
the workflow information influences comprehension is not known. To address them, we
structure our study around two research questions. The first research question focuses on
empirically investigating the existence of non-linearity in computational notebooks based
on the data science step they perform.

4developed independently from existing visualisations
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RQ1. To what extent do data science computational notebooks follow a non-linear
workflow?

The second research question investigates to what extent elucidating the workflow
information improves comprehension of third-party data science notebooks that contain
analytical forking paths, as described by Gelman and Loken (2013). Note that while the ini-
tial work by Gelman and Loken (2013) and later by Schweinsberg et al. (2021) refers to a
multi-user scenario in which the same hypothesis and data are given to several researchers
who end up obtaining different solutions, we focus on augmenting data science implemen-
tation that contains forks, independently of the number of authors contributing to the code
as even a single data scientist may (and should) explore multiple analytical paths (Gelman
and Loken 2013; Steegen et al. 2016).

RQ2. Does making workflow explicit and navigable, via a workflow visualisation
of the notebook development process and an annotation of the data science steps,
support data science code comprehension?

The following sections provide details on the research method used to answer these ques-
tions and discuss the results obtained. We make the dataset and analyses publicly available
here: https://doi.org/10.5281/zenodo.7476596.

5 Empirical Analysis of (Non-)Linearity in Computational Notebook
Workflows (RQ1)

Our goal with this research question is to study the linear nature of the workflows present in
data science notebooks w.r.t. data science steps they perform and augment the state-of-the-
art findings with empirical evidence. To perform this study, we use DASWOW dataset5 that
contains a set of 470 notebooks with each code cell annotated according to the data science
step it performs.

5.1 Data

We analyse the expert annotated dataset, DASWOW, from Ramasamy et al. (2022) contain-
ing a curated subset of notebooks that performed a data science task, randomly sampled
from the ∼ 1M GitHub notebooks dataset by Rule et al. (2018b). DASWOW contains 470
notebooks with a total of 9,678 code cells and an average of 21 code cells per notebook. The
annotation process was carried out by experts who manually inspected the notebook and
annotated each code cell based on a 10-step characterisation of workflows in computational
notebooks. As a result, each code cell in a notebook is assigned a primary label according
to the primary step performed in the cell. Each code cell may also be assigned other labels
called secondary labels if it contains other steps.

5from our previous work on generating an expert annotated dataset of computational notebooks.
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To get the workflows from the notebooks, we consider the sequence of data science
steps based on the annotation information. Given the absence of order information for the
secondary labels and that a majority (∼ 76%) of the code cells in the dataset contain a single
data science step, we take into account the sequence of primary labels for the analysis.

5.2 Methodology

In this section, we explain the strategy we used to empirically analyse the linearity of the
workflows in data science notebooks based on the type of data science steps present.

We consider Jupyter cells as the logical separation of data science steps in a notebook.
As a result, we view each notebook in the DASWOW as a sequence of data science steps
(< s1, . . . , sn >) occurring one after the other.

For each notebook in the DASWOW, we then compare (i) the actual sequence of labels
(< a1, . . . , an >) in the notebook to (ii) the sequence of labels of a reference data sci-
ence pipeline (< rstep1 , . . . , rstep8 >). As a commonly prescribed data science pipeline, we
specify the — sequential and linear — waterfall-like data science workflow as the reference
pipeline that contains the complete set of data science steps for computational notebooks,
from importing libraries to saving results (as identified by Ramasamy et al. (2022)). Figure 2
shows an example notebook workflow.

When comparing the actual list of steps in the subject notebooks, we ignore cells
containing exclusively imported libraries or comments (i.e., cells annotated as helper
functions and comment only). If consecutive cells contain the same data science
step, we consider it as a single step as it indicates the code may be split among several cells.

We then analyse programmatically whether the actual data science actions in the note-
book appear in the same order as in the reference waterfall-like data science pipeline, taking
into account that some steps might be omitted (e.g., a data scientist might not have the need
to clean the data in a notebook and therefore, there may not be a data preprocessing
step in the notebook). Given that Jupyter notebooks follow a linear structure, we identify
step ai(= rstepi

) as a divergence point if the next step ai+1 ∈ [r1, rstepi
).

As a result, if the predefined order of progression is not followed, that is, when a previ-
ous step is (re)visited, then we declare the notebook as potentially non-linear and compute
the number of divergence points (or ‘potential’ forks) occurring in the notebook. For exam-
ple, if a notebook contains a data preprocessing cell after modelling, then that
would account for one ‘potential’ fork. We do not, however, identify divergences that arise
from non-consecutive cells. For example, in Fig. 2, we do not compare the first step of diver-
gence 1 data exploration and the first step of divergence 2 data processing
and account for another divergence point since users are likely to write code progressively
in the immediate next cell following Jupyter’s linear structure. Also, as we consider con-
secutive cells containing the same data science step as a single step, we ignore divergences
arising from them. For example, if two consecutive cells perform modelling but each
of the cells applies a different modelling strategy, this will not be accounted. As a conse-
quence, our results provide a lower-bound estimate for the presence of forks. We note that
the identification of dead-end is not considered in this study.

We interpret the presence of divergence points as non-linearity and as a signal for poten-
tial forking paths resulting from the iterative and exploratory data science process. Using
this method, we can control for the changes at a fine-grained level, i.e., re-executing a cell
to fix programmatical errors. However, it is important to note that this method does not con-
firm the forks as this requires a better understanding of the developer’s intentions behind
the code, which we do not have.
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Fig. 2 Sample workflow of a data science notebook characterised by the steps of the data science pipeline
present in the cells of the notebook (lower half of the figure) compared to the reference data science pipeline
(top half of figure). From left to right, we can observe the sequence of steps occurring in cells throughout a
notebook. As seen in the figure, a notebook can have ‘potential’ forks/divergence points that (re)visit previous
steps, making the sequence non-linear

In order to tackle this and verify our findings, as a next step, we manually investigate
whether the programmatically identified divergence points actually lead to forks using the
information (code and markdown comments) in the notebook. To this end, we randomly
sample a subset (10%) of notebooks. The first author of this paper then manually checked
the programmatically identified divergence points to verify whether they led to forks. If we
manually identify that a divergence point leads towards a different path of analysis (i.e.,
selecting different sets of different features to be modelled, applying different learning algo-
rithms on the same set of features), we mark it as a ‘fork’. In the next section, we report the
results from the programmatic analysis of divergence points, followed by the findings on
forks from the manual study.

5.3 Results

Programmatically IdentifiedDivergence Points The analysis shows that 81.1% of the 470
notebooks had at least one divergence point, and 30.0% of all the notebooks had more than
three divergence points.

Fig. 3 81.1% of the notebooks in the dataset had one or more divergence points
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Fig. 4 Where do potential forks occur? The majority of the divergences occur at the stages of data
preprocessing or modelling during a data science task

Figure 3 shows the number of divergence points in a recommended linear data science
pipeline in our dataset. We also found that the highest number of divergences occur at the
data preprocessing step (see Fig. 4). These results provide more detailed insights
into the non-linearity of data science code. In other words, apart from finding evidence to
reinforce the growing perception that the data science development is explorative and itera-
tive most of the time, we are able to untangle, with respect to the data science steps, some
evidence for the existence of a certain amount of forking processes during the notebook
development. The non-linear nature of the notebooks also shows that the data science devel-
opment seems to follow the fail-fast agile methodology,6 which encourages the process of
forking. That is, any direction of analysis (e.g., using a different statistical method or eval-
uation metric or data sample) taken by the analyst that does not lead to the desired result
may be abandoned by proceeding to another, more promising direction leading to forks and
dead-ends.

As Fig. 4 indicates, most of the divergence points happen during data preprocess
ing. This is during the initial phase of the analysis when data scientists seem to be cleaning
the data by trying various approaches.

Verification of forks Through our manual investigation of a subset of notebooks, we stud-
ied 10.8% of divergence points in the DASWOW dataset. In total, 18%7 of the cells
were programmatically identified as divergence points. Of these, we found that 24% of
them are forks. Further, we found two false positive scenarios: one, where developers
of the notebooks had generously used visualisations to explore and visualise the data
and any (intermediate) results, which are identified as data exploration step. As a
result, in many instances, data exploration as a label appears not only before data
preprocessing but also after. Two, we found that the function definitions can appear in
a different order compared to their original execution order; for example, a function defin-
ing the evaluation method may appear before the function defining the model. Taking into
account the above two scenarios and eliminating the corresponding divergence points, we
shortlisted 9% of the programmatically identified divergence points for further analysis. Of
these, we found that 49% of them were indeed forks. This accounts for 4.41% of all the
code cells being identified as a fork in the dataset.

6Agile development “advocates adaptive planning, evolutionary development, early delivery, and continual
improvement, and it encourages rapid and flexible response to change” (see https://en.wikipedia.org/wiki/
Agile software development)
7proportionately equal to the distribution in DASWOW
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Considering an average of 21 code cells per notebook, our analysis shows that at
least about 0.9261 forks exist per notebook.

It is important to note that such divergences and their reasoning are hardly obvious in
notebooks. As a result, an absence of the original developer’s mental model can lead to
difficulties in the comprehensibility and reproducibility of the analysis, which motivates the
second research question we address in this paper.

5.4 Limitations and Threats to Validity

A potential validity concern is the representativeness and outdatedness of the dataset created
by Rule et al. (2018b). In order to tackle this, we used DASWOW that contains a randomly
sampled and manually curated subset of data science notebooks from Rule et al. (2018b).
Further, as the dataset relies on publicly available notebooks on GitHub, we cannot rule out
that the notebooks from other public platforms like Kaggle may differ as they are generally
cleaned before sharing the solution (Quaranta et al. 2022) and are well-documented (Gil
et al. 2010).

Another limitation is that the analysis considers only the primary labels given in DAS-
WOW to extract the workflows of each notebook. A future study extending this investigation
to include secondary labels may reveal further fine-grained insights.

Another possible concern could be that our study of non-linearity relies on DASWOW’s
annotation. Also, given the snapshot view of the notebook, identified potential forks are not
confirmed as, indeed, a fork. To address this, we manually verified the presence of forks in
a smaller, randomly sampled set of notebooks. Further, given our manual analysis provide
a lower bound to the presence of forks in an average-sized notebook, we suspect a higher
frequency of forks in the case of larger notebooks. Our manual analysis also revealed further
insights to improve the accuracy of programmatic identification of divergence points with
additional rules (refer to Section 5.3).

6 User Experiment on the Influence of Workflow Information on Data
Science Code Comprehension (RQ2)

To investigate our second research question, we conducted a controlled user experiment
where participants answered a set of comprehension questions. Using the experiment, we
study the effectiveness of the visual representation of the workflow in notebooks (con-
taining forking paths and data science step information) in helping data scientists navigate
and understand data science code. In order to provide the visualisation, we first develop
MARG : Narrative Exploration, a plugin that visualises this workflow information and other
workflow elements of a data science notebook.

Given the popularity of Jupyter python notebooks among data scientists (Perkel 2018),
the selected environment for the notebook comprehension experiment is a Python notebook,
executable within the Jupyter framework. The following subsections provide details of the
data preparation tasks for the comprehension experiment, the implementation of the work-
flow visualisation plugin, and the concrete methodology followed in the user experiment.
The relevant institutional ethics committee approved the experiments, and the participants
explicitly consented to the usage and publication of anonymised results.
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6.1 Data Preparation: A notebook with a ‘garden of forking paths’

For the notebook comprehension experiment, we use a data science task published in the
literature, which “compared housing and rental prices in five major cities on the United
States’ west coast” (Rule et al. 2018b). In order to generate a notebook with the solution
to this task, exploring multiple analytical forking paths and generating information to cap-
ture its workflow information, we recruited two data science experts8 from Upwork, with
experience in implementing data science solutions for clients and good reviews.

In order to capture all the relevant details whilst the data scientist implemented the
notebook (that we would use as data in the target user experiment), we proceeded with
a think-aloud approach, in which the data scientist explained the rationale of their deci-
sions and provided information about the parts that we identify as forks and dead-ends. We
informed the data scientists beforehand that the resulting notebooks would be shared with
others and set the task’s duration to be 120 minutes. At the end of the task, we verified
our recorded information, such as forks, dead-ends, and data science steps (as defined by
Ramasamy et al. (2022)) with the developer in order to capture the information as accurately
as possible.

While we hired two data scientists to have redundancy, the second expert’s dataset explo-
ration was not satisfying and had only a minimal solution. As a result, we decided to use
the notebook and information captured from one data scientist. The implemented notebook
contained a few variable errors (e.g., using a variable that was later renamed in only some of
the cells), missing inline output visualisations, and disorderly execution. However, we used
the notebook provided by the data scientist as is, without any change, in the experiment to
mimic real-world notebooks.

As mentioned in Section 2, the narrative of a notebook includes not only the explana-
tory information that is supposed to help to understand the story of the notebook but also
the source code. We prepared the input data to represent the workflow information in the
source code explicitly, along with the annotation of data science steps for the visualisa-
tion using the final notebook, information observed throughout the think-aloud task, other
narrative information (additional description and rationale text), and the information gath-
ered through the discussion with the developer. For the annotation of data science steps,
we used the characterisation of data science workflows for computational notebooks pro-
vided by Ramasamy et al. (2022), which aggregates and extends state-of-the-art data science
workflow characterisations. As a next step, we implement the visualisation for our plugin.

6.2 Visualisation through MARG : A narrative exploration plugin

The Jupyter plugin we devised and implemented visualises the data science code in a note-
book and its underlying narrative elements, including workflow information, with the aim
of improving comprehension. We designed the visualisation in an interactive way to allow
the user to explore the narrative that emerged during the explorative development of a
data science task by providing orientation cues and navigation facilities to aid the mental
model-making process and support the comprehension activity.

Figure 5 gives an overview of the user interface provided via MARG, augmenting the
code of a Jupyter notebook. The plugin we implemented, once installed, is activated via the

8The experts participated in the task individually and at different times.
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Fig. 5 Components of the MARG : Narrative Exploration plugin are identified in the figure. It shows the
complete and original overview of the plugin with both tree workflow and annotation present. In the
case of presenting only tree workflow, annotation is removed

Jupyter toolbar. A short demo video of the plugin (marg-narrative-exploration-
plugin.m4v) is available at https://doi.org/10.5281/zenodo.7476596. In its most com-
plete version, the plugin presents the user with a graph visualisation on the left-hand side
of the screen, which includes the workflow information and other elements, including data
science step annotation.

Each cell in the notebook is visualised as a node (circular or rectangular, depending
on whether they are code cells or markdown cells, respectively) and is identified by the
cell number (or position w.r.t the sequence of cells in the notebook). It is accompanied by
information about the order of execution it followed (presented in square brackets next to
the node), the existence of forks, the data science step implemented in the cell (according
to the categorisation we specified in Section 2), and additional textual information that
explains the rationale followed by the developer of the notebook at each cell. A dashed
line edge indicates a fork, and a solid line edge indicates a sequential set of cells. A red
border around the node circle represents a dead-end. By double-clicking on a node, the user
sees the workflow paths highlighted — either all of the paths (in the same colour) at the
same time or individual forks (in different colour coding). When a cell node or a path(s) is
highlighted, the corresponding cell(s) in the code is highlighted as well (in the same colour
coding), providing a quick navigation access point. The user may also collapse/expand the
nodes visualised in the workflow.

Additionally, users can select a list of data science steps in the checklist below to high-
light the cells performing those steps in the graph. Together, the visualisation provides an
overview of the data analysis process and serves as an enriched table of contents. The note-
book itself is available on the right-hand side, which can be inspected and explored by
navigating through the visualisation. Since our primary goal in this work is to empirically
identify the kind of information that has the most positive influence on code comprehension,
we focused on a static visualisation/representation for the experiment (i.e., the visualisa-
tion of the notebook’s original state is provided to the user and is not updated with any new
changes in the notebook). The data (indicating the description of cells, their execution order,
etc.) is provided as input to the plugin in JSON format.
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Fig. 6 Linear workflow visualised with annotation. In the case of presenting only linear workflow,
annotation is removed

For the evaluation of MARG, we created multiple versions of the visualisation informa-
tion (see Figs. 6 and 7) based on two factors: the workflow information presented to the
user is serialised either in a linear way (i.e., following the implementation order of cells and
ignoring the existence of forks) or in a tree-based representation (i.e., making the beginning
and the end of forks explicit based on the development process) and the data science step
annotation, which is either available or not.

As a next step, we evaluate the effects of making the workflow explicit using a code
comprehension task.

6.3 Controlled Experiment Design

In this experiment, we investigate how MARG can help in data science code comprehension
by testing the participants against a set of questions. Specifically, we evaluate the workflow
visualisation for two factors (independent variables):

workflow workflow information as “garden of forking paths”: tree with forks and dead-
ends (like shown in the upper left side of Fig. 5), linear progression (like in figure but only
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Fig. 7 Visualisation presenting only annotation in the absence of workflow graph. Visualisation of only
annotation is provided through the embedding of data science step information in the notebook

a linear representation of the cells shown in the order of the notebook), or no visualisation
of the workflow.

annotation information about the data science step each cell is performing is shown
(as shown in Fig. 5 above the nodes; when no workflow is shown, then the step
information would be added to the cell directly to the notebook).

Target Variables We measured code comprehension in terms of the accuracy of the answers
and response time, following the methodology proposed in Rajlich and Cowan (1997).
Accuracy is the correctness of an answer given to a comprehension question when compared
to the ground truth curated by the primary author of the paper and revised by a co-author.
We calculate the comprehension score for each participant by adding the scores for eight
comprehension questions (we explain more about the questions in a later section). We mea-
sure Response time as the time taken to answer each question. We record the time spent in
two parts: prep time as the time taken to answer preparatory questions, and test time as the
time taken to finish all eight comprehension questions.

Experiment Groups and Environment We designed the experiment in such a way that
the components of the visualisation ({workflow} and {annotation}) can be studied
to discern the individual effects and their practical usefulness. The result is a three-by-two
study (workflow: tree/linear/none; annotation: step-type/none) leading to a control
group and five treatment groups (see Table 1).

Table 1 Experimental Design: 3x2 factorial setup of workflow and annotation modes leading to 6
experimental groups

workflow: Workflow Visualisation

none linear tree

annotation: none control (5) linear (5) tree (10)

Data Science Step annotated DS (5) linear.DS (5) tree.DS (5)

Page 17 of 42    58



Empir Software Eng (2023) 28:58

Each group consisted of five participants to begin with. We added an additional five par-
ticipants for the “tree” group in order to address the large dispersion of results (a higher
standard deviation compared to the other groups) we found from the initial set of partici-
pants. As a result, the experiment had 35 participants in total and produced a setup where
a total of 10 participants received “linear” workflow information, 15 participants received
workflow in terms of forks and dead-ends (“tree”), and 15 participants received data science
step annotation. The information shown to each group is given below:

– Control: notebook
– Linear: notebook, a linear workflow visualisation
– Linear.DS: notebook, a linear workflow visualisation accompanied with data science

step annotation
– Tree: notebook, a tree-based workflow visualisation in terms of forks and dead-ends
– Tree.DS: notebook, a tree-based workflow visualisation in terms of forks and dead-ends

accompanied with data science step annotation
– DS: data science step annotation

We set up the experiment environment in our local server with Jupyter and the MARG
plugin with the corresponding information mode already installed. We allowed the partic-
ipants to access the environment, including the experiment files (notebook and the dataset
used in the notebook), remotely for the experiment duration. We also set up the survey
questions and shared them with the participants during the experiment.

Participants We recruited participants using various channels such as Upwork (16) and
University contacts (19) and randomly assigned them to one of the groups shown in Table 1.
Their highest attained educational degree varied between a high school diploma (5.7%), a
bachelor’s (40%), a master’s (51.4%), and a doctorate (2.9%). All of them were either data
scientists or data science students and had practical experience in python programming and
Jupyter and had worked on data science tasks before. We provide further details on the
participants’ experience in the Appendix (refer to Appendix A.1).

Comprehension Questions At the beginning of the experiment, participants received a set
of general questions about the data science processes. We then followed the methodology
suggested by Siegmund (2016) to devise the main comprehension task. We considered a
set of 8 comprehension questions to assess the participant’s understanding of the data sci-
ence notebook developed by a third-party data scientist. We devised these questions to test
three dimensions of comprehension: navigation, understanding, and modification. We pro-
vide the list of questions and their format in the Appendix (refer to Appendix A.2). We
displayed them in the same order to all the participants across groups. Additionally, we also
asked a preparatory question (Question 1) in the beginning in order to allow the participant
to familiarise themselves with an overview of the notebook. Questions 2-5 tested the under-
standing of the notebook by asking questions like the number of features and the modelling
technique used. Question 6 dealt with navigation by asking about the orientation of a cell,
and Questions 7-9 tested the ability to make modifications to the notebook. We finished the
task with qualitative questions on the comprehension process. Given its subjective nature,
we always awarded a full point to Question 1 unless there was no attempt to solve it. We
evaluated the answers to the other questions against our answer key. We awarded a score
of 1 to each accurate answer and 0 to an incorrect answer. If a question is open-ended, we
checked the answer (if available) manually in order to ascertain that the answer is their own
and already not available in the presented notebook (e.g., a modelling technique that is not
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already showcased in the presented notebook). At the end of the experiment, we asked the
participants to rate their comprehension of the notebook and answer a set of questions about
their experience (comprehension strategy, issues and difficulties faced). Participants who
received the MARG plugin support also answered a usability test (Brooke 1996) (System
Usability Scale (SUS)) on the plugin and its features. We report the complete list of ques-
tions (including the SUS questions used for relevant groups), instructions, the description
of the task (refer to Appendix A.3), and the reference answers for comprehension questions
(refer to Appendix A.4) in the Appendix.9

Experiment Setup To answer the questions, participants were able to interact with the
notebook and the additional visualisations (except for the control group) about the code
according to their experimental group. Each participant received a reward of 25$ for partic-
ipation and a 1.5$ bonus per accurate answer. Every participant spent about 2 hours on the
experiment, including a time limit of 90 minutes (arrived at using a pilot study) for answer-
ing the comprehension questions, including the preparatory question. The participants were
allowed to use resources freely as they would usually do in a regular comprehension task.

Experimental Procedure We scheduled the experiment individually for each participant
using a video call. We recorded the screen-share/audio of the experiment for any re-
verification later. We destroyed the videos after scoring the questions in line with ethical
guidelines. First, they answered generic questions about their knowledge of data science
processes. The participants then watched the video of the notebook environment setup
(including the explanation of the plugin features whenever applicable) and were then pro-
vided with 10 minutes to try the setup with an example notebook. After the video, the
participants received the notebook with the plugin showing the features according to their
treatment group — except for the control group, which only got the notebook — and were
asked to answer the preparatory question and comprehension questions. The participants
were allowed to search or use any online resources such as Google, StackOverflow Etc.
during the task. Finally, the participants answered questions about their comprehension
strategy, experience, and usability of the plugin (if applicable).

Hypotheses Our main hypotheses focus on the improvement in comprehension accuracy
and time:

H10: Workflow exploration as supported by order information (linear path or tree-
based visualisation) and data science step annotation does not improve notebook
comprehension accuracy, measured by the correctness of the answers to the
comprehension questions.

H11: Workflow exploration as supported by order information (linear path or
tree-based visualisation) and data science step annotation does improve notebook
comprehension accuracy, measured by the correctness of the answers to the
comprehension questions.

9We also provide the complete list of questions with instructions in the supplementary material.

Page 19 of 42    58



Empir Software Eng (2023) 28:58

Table 2 Summary statistics for the comprehension score

group name N Mean SD SE 95% Conf. Interval

DS 5 3.0 1.225 0.548 1.800 4.200

Control 5 3.2 0.837 0.374 2.380 4.020

Linear.DS 5 3.2 1.483 0.663 1.746 4.654

Tree 10 3.6 1.430 0.452 2.666 4.534

Linear 5 4.2 0.837 0.374 3.380 5.020

Tree.DS 5 5.4 1.140 0.510 4.282 6.517

H20: Workflow exploration as supported by order information (linear path or tree-
based visualisation) and data science step annotation does not improve the time
required to comprehend the notebook, measured by the time spent in answering
preparatory and test questions.

H21: Workflow exploration as supported by order information (linear path or
tree-based visualisation) and data science step annotation does improve the time
required to comprehend the notebook, measured by the time spent in answering
preparatory and test questions.

6.4 Methodology

For the inferential analysis, we employ parametric two-way ANCOVA to study the two
factors: workflow and annotation and their interaction effects. While conducting
the analysis of variance, we control for the effects of prior experience with data science,
Jupyter notebook, python programming, and programming in general (at the subject level)
and the plugin features (at the environment level) by including these terms in the model.
For the qualitative analysis, we employ the in-vivo qualitative coding strategy.

6.5 Results

Our user experiment, which assesses the influence of different workflow information on
data science code comprehension, led to both quantitative and qualitative results. We
begin our quantitative analysis by performing ANCOVA tests on the comprehension score
achieved through answering the comprehension questions. Then, we examine the response
time taken to answer the questions and the usability study results. We continue by dis-
cussing the qualitative results regarding the comprehension experience, usability factors,
and practices relevant to linearity.

6.5.1 Data Science Code Comprehension - Accuracy Score

Table 2 shows the summary statistics for the comprehension score over different groups.
Tree.DS has the highest mean comprehension score among all the groups.
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Fig. 8 Box plot showing comprehension score results over workflow & annotation factors

Figure 8 shows a box-plot of comprehension score results over {workflow} &
{annotation} factors. We report the statistical significance and the cohen’s f (Cohen
1988) effect size from our ANCOVA models using partial η2, which corresponds to the pro-
portion of variance accounted for by each main effect, controlling for all other effects. A
two-way ANCOVA test for the {workflow} and {annotation} factors shows a statis-
tically significant difference with respect to interaction effect (F = 5.6, p = 0.01) with
an effect size of 0.7 (large (Cohen 1988)). The factors {workflow} and {annotation}
individually achieve F = 1.83, p = 0.18 with an effect size of 0.4 and F = 0.68, p = 0.42
with an effect size of 0.2 respectively. An interaction plot for the comprehension score is
shown in Fig. 9. Based on these results, we conclude that:

Workflow exploration in the form of tree-based workflow visualisation together
with the data science step annotation produces a statistically significant improve-
ment in terms of accuracy for data science code comprehension.

Fig. 9 Interaction plot for workflow & annotation factors. Workflow visualisation produces an
improvement in comprehension score (particularly when it is a tree workflow representation), and it is further
improved by the presence of annotation
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Table 3 Summary statistics for the comprehension time (in sec)

group name N Mean SD SE 95% Conf. Interval

Control 5 1594.498 441.1642 197.2946 1046.7203 2142.2757

DS 5 2111.456 1235.3200 552.4519 577.6036 3645.3084

Linear.DS 5 2203.660 674.0463 301.4427 1366.7210 3040.5990

Tree.DS 5 2246.460 476.8663 213.2611 1654.3523 2838.5677

Tree 10 2249.021 437.4145 138.3226 1936.1135 2561.9285

Linear 5 2471.088 1008.9968 451.2371 1218.2530 3723.9230

Given the statistically significant interaction, we utilise the simple effects of the t and
{annotation} factors. This corresponds to the mean comprehension scores presented in
Table 2. The increasing order of the performances of the groups on comprehension is DS,
Control, Linear.DS, Tree, Linear, Tree.DS. Groups that received linear or tree {workflow}
performed equally or better in comprehension scores than the Control group. The Linear
group performs well without annotation, and the Tree group performs better with the anno-
tation information. Tree.DS group achieved an improvement of ∼ 69% over the Control
group on mean comprehension score. However, groups that received either none or linear
{workflow}, which is Jupyter’s original workflow information, did not gain from step
{annotation}. We suspect the {annotation} information is more helpful when used
with the navigation capability of the plugin since users can navigate to the desired cell
corresponding to {annotation} without excessive scrolling.

6.5.2 Data Science Code Comprehension - Response Time

Table 3 shows the summary statistics for the total time taken to finish comprehension
questions over different groups.

Figures 10 and 11 show an overview of the prep and test completion times, respectively,
of all the groups. During the experiment, we found that 77% of the participants spent one-
fourth of their time, and around 37% of the participants spent half of their total time in the
preparatory question getting an (initial) idea of the notebook.

Fig. 10 Prep time among workflow & annotation factors
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Fig. 11 Test time among workflow & annotation factors

A two-way ANCOVA test on prep-time and test-time produced results for {workflow},
{annotation}, and interaction that are not statistically significant, thus meaning that we
cannot reject the null hypothesis. In other words, we could measure no significant differ-
ence in the time taken to understand the notebook and answer the comprehension questions
among the experiment groups. We also analysed the time taken for the test questions in con-
junction with the answers’ correctness but did not find any statistically significant results.
However, from Figs. 10 and 11, we can see a general trend for the preparatory question that
having {workflow}, particularly tree, and {annotation} helps in acquiring a general
overview of the notebook quickly. As a result, we conclude that:

Statistically significant conclusions cannot be drawn. Groups that received the
plugin may spend more time answering the comprehension questions and spend
less time on the preparatory question than the control group. The tendencies are
generally compatible with the expectations, but there is no statistical confirmation.

6.5.3 MARG : Usability

The System Usability Scale (SUS) analysis on the plugin showed that the participants gen-
erally reported better usability when {annotation} is present. The plugin had an overall
SUS score of 76.5%, which is a good score for acceptability (Bangor et al. 2008). Table 4
shows the SUS score over the components of the workflow exploration plugin using a table
of means analysis. The scores are indicative, given the differences were not statistically
significant (for p = 0.05).

Considering the comprehension score achieved, having both tree-based {workflow}
and {annotation} has a good usability score (78%). We hypothesise that having only
{workflow} information could have led to a cognitive load even though it produced a
better understanding of the notebook’s original purpose and intent (as is reflected in the
comprehension score). In the case of tree {workflow}, it requires the participant to think
in terms of the garden of forking paths that marks a deviation from their original Jupyter
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Table 4 Usability score for MARG : Narrative exploration plugin

Annotation.absent Annotation.present Marginal mean

No flow − 79.500 79.500

Linear 71.000 80.000 75.500

Tree 76.750 78.000 77.375

Marginal mean 73.875 79.167 76.521

The annotation factor, in general, has a better score than the workflow factor. The primary concern for
workflow factor is that it takes nearly half the size of the available window view, thus hindering the normal
Jupyter notebook experience

notebook flow. Using open questions, participants expressed that they did not feel linear
{workflow} added additional benefits since the workflow presented is redundant to the
linear {workflow} already provided by the Jupyter notebook (also reflected in the mean
usability score of 75.5%). The presence of {annotation} had a higher usability score
(79.2%) compared to the absence of it (73.9%). We would like to note here that the partic-
ipants who had {annotation} information also reported a better comprehension of the
notebook (refer to Section 6.6.1), showing its usefulness. We report the qualitative results
on the usability of the plugin in Section 6.6.2.

6.6 Qualitative results

The goal of our qualitative analysis is threefold: first, we analyse the participants’ code
comprehension experience, namely their perceived comprehension score, the strategies they
followed to understand third-party data science code, and the difficulties they encountered
in this process. We further analyse the obstacles to comprehension that the data scientists
in our experiments reported. Second, we identify the factors that contributed positively and
negatively to the usability of our proposed solution. Third, we report the participants’ results
on their own data science workflow development practices in the context of the ‘garden of
forking paths’.

6.6.1 Comprehension Experience

Perceived Comprehension We asked the participants to rate their comprehension using a
5-point Likert scale ranging from 1-Poor Comprehension to 5-Excellent Comprehension.
Figure 12 shows a summary of the participants’ ratings as they are perceived by experi-
ment groups. 11.4% of all participants rated their comprehension of the notebook as good
or excellent while more than half of the participants (54.2%) stated that their comprehension
was fair. We found that perceived comprehension is highest in the group that received only
the annotation, whereas it is lower in the groups that received a linear {workflow}. Partic-
ipants who received a tree {workflow} stated a higher perceived comprehension, with or
without annotation.

Our analysis shows that a user’s perception of how well they comprehend the note-
book may not necessarily reflect in the performance. This is particularly reflected by the
group that received only the annotation. While their corresponding comprehension score
was the lowest (refer to Section 6.5.1), they (53.3% of the participants who received
{annotation}), however, had generally reported a higher comprehension (‘Good’ or

58   Page 24 of 42



Empir Software Eng (2023) 28:58

Fig. 12 Perceived comprehension rating

‘Very good’) of the notebook. Based on our analysis of further qualitative comments, we
suspect that the mismatch is because users seemed to prefer information that may be less
cognitively heavy despite their value of being useful.

Strategies for Data Science Code Comprehension We asked the participants about the
strategy they followed to comprehend the notebook, giving them two fixed alternatives as
identified by Littman et al. (1987) (which differentiate between skimming and carefully
reading all the code) and an open-ended third option. 68.6% of the participants indicated
that they followed the strategy of “skimming through the code and then, navigated through
the code snippets as needed”, and 25.7% stated that they followed the strategy to “first
read the code completely to have an overview”. This shows that the majority of the data
scientists, when they read a third-party data science notebook, are primarily interested in
getting an overview of it. Finally, 5.7% said they would employ a different strategy, which
corresponded to using both the strategies mentioned above.

Obstacles to Data Science Comprehension We asked participants in an open-ended ques-
tion to elaborate on the difficulties they encountered in the process of understanding the data
science code in the notebook. We implemented an in-vivo coding methodology (Saldaña
2015) to process the participants’ answers and to extract and categorise the significant
obstacles to data science code comprehension. Below, we thematically elaborate on the
difficulties sorted by their frequency of occurrence:

1. narrative text: A lack of enough narrative text (e.g., descriptive information in the form
of comments, rationale, and result interpretation) leads to difficulties in comprehension.
A total of 65.7% participants reported this difficulty.

2. code: Code-related issues faced during comprehension include the presence of bugs,
poor naming of variables, unclear data flow through the variables, and missing outputs.
A total of 54.3% participants reported this difficulty.

3. data: Data-related issues include a lack of relevant analysis for the task, including a lack
of sufficient exploration, analysis, and visualisation of the input data and its features. A
total of 45.7% participants reported this difficulty.

4. coding style: Style-related issues during data science code comprehension include
abnormal density and redundancy of the code. It also includes different program-
ming styles both in terms of structuring the analysis and in general. A total of 42.3%
participants reported this difficulty.

5. knowledge of methods and algorithms: This includes a lack of knowledge of certain
functions or methods used as a result of the participant’s experience and expertise. A
total of 25.7% participants reported this difficulty.
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Fig. 13 Obstacles in data science code comprehension as reported by the % of the participants in each of
the groups. The majority of the participants, particularly from the control group, commented on the lack of
narrative text. The other top difficulties were errors in the source code itself and a lack of detailed analysis
of the data. The least of the concerns was the time constraint

6. structural: At the notebook level, this includes excessive scrolling needs, non-linearity
and logical disconnectedness in the code. At the cognitive level, a lack of mental
model-related information contributes to structural issues. A total of 25.7% participants
reported this difficulty.

7. time: The time given for the comprehension activity was considered insufficient by a
few participants. A total of 17.1% participants reported this difficulty.

Figure 13 shows the frequency of these obstacles in each of the experimental groups. Par-
ticipants from the control group indicated that lack of enough narrative text and the need
for more time were the major obstacles in the comprehension task. Coding style was the
primary concern for groups that received {annotation} and tree {workflow}. Groups
that received only {annotation} primarily reported obstacles related to data and code.
Groups that received linear {workflow} reported obstacles related to structure. For groups
that received {annotation} and tree {workflow}, coding style was the primary concern.

6.6.2 Usability Factors for our Plugin

We present here a qualitative analysis of the participants’ experience with the plugin and
its usability. From Fig. 14, the top features that participants found as most helpful are:
being able to navigate to a particular cell (63.3%), distinguishing cells based on their step
in the data science pipeline (33.3%), the visualisation of the forks (30%) providing an
overview, and the presence of additional explanations or rationale provided for a particular
cell (30%). The participants mentioned navigation was beneficial in the presence of a tree
{workflow}, possibly because it condenses the depth of the notebook. Groups (60% of
the participants in the Tree group and 40% of the participants in the Tree.DS group) that
received a tree {workflow} also indicated that the plugin helped them to get an overview
of the notebook and understand the flow of analysis. 10% of the participants that belonged
to the Tree group did not feel they had a use case for highlighting the paths in the tree. Par-
ticipants (30%) indicated the ability to collapse certain parts of the tree as the least useful
feature as they rarely had the need. We suspect this might change if the notebook becomes
more complex, with many paths and dead-ends.

The difficulties (reported by 26.6% of the participants) in using the plugin mainly
stemmed from the large size of the window it occupied. In addition, one participant men-
tioned that double-clicking a cell to visualise its path was difficult using a touchpad.
Participants also expressed their desire to have more information (e.g., thumbnail of the
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Fig. 14 Participants’ remarks on what was the plugin helpful for?

actual cell content, output from the last execution of the cell) for each node in addition to
the cell number (6.6%) and expected some support for handling variable flow (6.6%).

6.6.3 Common Data Science Practices Relevant to Linearity

Participants also answered additional questions related to data science development that we
posed to complement our findings of data science code linearity (Section 5.3). We asked
them whether they explore alternative paths (forks and dead-ends) when implementing data
science code. Most participants (∼ 85%) stated that they usually try different, alternative
solutions when approaching a data science task. This insight corroborates and triangulates
our findings on the potential existence of forks and dead-ends in the notebooks. A majority
of the participants (∼ 60%) also mentioned that the data science development follows either
agile or iterative methodology, which is similar to our empirical finding from Section 5.3.

6.7 Limitations and Threats to Validity

In this section, we discuss the limitations and potential validity concerns of our comprehen-
sion experiment, including the data preparation activity.

Validity concerns arise primarily from generalising the results of a single notebook con-
cerning one field to a broader context. However, we used an existing data science problem
from the literature in order to mitigate this issue. Also, a single data scientist developed the
notebook; hence, that data scientist’s knowledge, expertise, and coding style are potential
confounding factors. Therefore we cannot rule out that findings with a different notebook
implemented by a different data scientist may diverge.

A second limitation concerns the participants’ lack of experience and knowledge about
the plugin and its features. To mitigate this aspect, we first introduced the notebook environ-
ment and plugin (wherever applicable) in a short video and then we allowed the participants
to familiarise themselves with the setup using an example notebook. We tried to minimise
learning effects by introducing a preparatory question that allowed the participants to get
familiarised with the notebook before answering the comprehension questions. Nonetheless,
it is unclear how longer-term effects would factor into our results.

A further confounding factor of our experiment that could have affected our results is the
participants’ perception and expectations of coding style and what is readable. Controlling
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for coding style expectations would require both a larger set of subjects and notebooks (with
varying coding styles) — an investigation we intend to undertake in the future.

We allowed the participants to read and execute the notebook as they would typically do
in a comprehension process. On the one hand, this experimental choice mimicked the real-
world comprehension activity closer. However, it could have led to participants changing
the original notebook before the comprehension questions were accurately answered. To
avoid this, we placed the modification questions at the end such that the participant did not
significantly change the original notebook.

Moreover, as stated above, in this experiment, the plugin provides users with a static
representation of the notebook’s workflow. Hence, if users were to implement any change in
the code cells that affects the workflow, their change would not be updated in the workflow
graphical representation. Our rationale for this decision was to investigate the usefulness of
this approach first and implement the dynamic extension of the plugin subsequently, taking
into account the findings of this experiment.

Finally, we identify a generalisability limitation. The number of participants in each of
the groups of our controlled experiment is limited. After analysing the initial set of results,
we decided to limit the standard deviation below 2 in the comprehension scores of the
groups. For that purpose, we added an additional set of participants in the case of the Tree
group, which had a higher standard deviation in the initial set of results.

7 Discussion

In this section, we further discuss the insights gained from the data science comprehension
experiment and potential challenges and opportunities for future research.

Comprehension Strategies in Data Science While systematic studying of the program (a
traditional piece of software) has been linked to success in activities involving modifica-
tion of the program (Littman et al. 1987), a majority of the participants in our experiment
preferred to skim through the code and then navigate through the code snippets as needed
(refer to Section 6.6.1). Littman et al. (1987) showed that this strategy allows users to focus
on a localised part of the code when navigation becomes critical to reaching the block of
code quickly. This is expected as Jupyter notebooks have navigation difficulties due to the
complex and linear structuring of the code (Kery et al. 2018, 2019). But at the same time,
when the user applies skimming as a strategy to study the program, it results in weak men-
tal models during comprehension and, as a result, does not lead to success in maintenance
tasks (Littman et al. 1987). This has implications for the development of support tools for
comprehension and maintenance of data science code.

Using our visualisation tool, we alleviate some of these difficulties. One, the tool allows
the users to find and navigate directly to code blocks that perform a particular data science
step without excessive scrolling and searching. Two, the tool supports the creation of a
mental model by providing an overview of the notebook. However, there is still further
potential for tools that support the comprehension activities in computational notebooks,
for example, to allow the user to study the program in a systematic and detailed manner in
conjunction with the workflow structure.

Supporting the Development of Exploratory Computational Notebooks We also found
that users had varied opinions on what is a well-written code, similar to the findings in
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traditional software fields (Hulkko and Abrahamsson 2005; Begel and Nagappan 2008). A
coding style that does not conform to their expectations created difficulties in the compre-
hension of the notebook. Examples include writing and structuring code blocks differently
or declaring variables that do not follow the standard naming conventions. However, not all
data scientists are always familiar with standard coding conventions (Kim et al. 2017; Wang
et al. 2019).

By augmenting previous guidelines for making scientific analyses reproducible (Wil-
son et al. 2014), Rule et al. (2019) developed a set of ten rules in 2019, particularly for
computational notebooks like Jupyter. It advocates simple suggestions like modular coding
and accomplishing a single task per cell to improve computational notebooks. Similarly,
Pimentel et al. (2019) developed another set of best practices in another study and conse-
quently developed a Jupyter extension called Julynter (Pimentel et al. 2021) that provides
suggestions based on these practices to improve a notebook’s reproducibility. In another
study, Quaranta et al. (2022) adapted the existing practices, particularly for the collaborative
development of notebooks. Quaranta et al. (2022) also found through an interview study
that experienced data scientists followed a majority of these best practices in a collabora-
tive context. However, they also found that these practices are difficult to follow in the case
of exploratory data analysis, where notebooks contain non-linear exploration. As a result,
data scientists, including experts, face difficulties in balancing the effort to create quality
notebooks while exploring (Quaranta et al. 2022; Rule et al. 2018b).

Therefore, tools that provide further support to novices, experts, and interdisciplinary
programmers to create, document, and visualise notebooks that perform exploratory tasks
will be helpful. In this context, our work provides contributions and further insights into the
opportunities for software visualisation for computational notebooks.

Further Tools and Features in Computational Notebooks Our study has several impli-
cations with respect to improving the support for the development and comprehension of
computational notebooks. Our qualitative study reveals the needs of data scientists when
comprehending and modifying a third-party notebook (refer to Section 6.6.1).

To understand and extend a data science code, a data scientist needs to interact with the
existing code and other supplementary information like comments. During the experiment,
we found that many participants did not just read but also executed the notebooks by running
the cells separately or using the “run-all” option provided by Jupyter. If they encountered
an error while executing the notebooks, a majority of the participants looked for cues from
comments as well as the data and tried to solve the bug, while a few gave up and proceeded
by only reading the notebook. Most errors concerned the variable names, and the partic-
ipants felt they no longer had the original environment of the variable to fix them. This
shows that information from tools that support tracking of history (Kery et al. 2017; Kery
and Myers 2018), data flow (Patterson et al. 2017) are likely to be helpful, however, must be
presented in a meaningful and compact way in order to avoid overloading the data scientist.

Supporting (non-linear) Workflow Development in Computational Notebooks Our lin-
earity analysis has implications for tools that automate the modification of notebooks (refer
to Section 5.3). Our method to identify the divergence points can benefit other tools that
are targeted towards automated cleaning, splitting, merging, re-ordering, and re-structuring
of the existing notebooks for various purposes like readability and replication. Given the
prevalence of non-linearity, these tools should also consider the dependencies (e.g., vari-
ables used, logical continuity) of the current execution environment of the notebook while
modifying its structure. Our method, when integrated within the notebook environment
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using active learning approaches, can support the developers with automatic identification
and documentation of forks with less effort and more accuracy.

Support in Automation of Analysis In our experiment, we observed that many participants
wanted to add more ad-hoc analyses between the original notebook cells in order to under-
stand the data science task better (e.g., visualising different features of the dataset). Such
additions will change the state of the original notebook as presented to them and, if not
documented, may lead to loss of information like the author who created the analysis. As a
result, tools that support comprehension should also consider and facilitate different modes
of collaboration (Nosek 1998). Moreover, the participants in our experiment also exhibited
an interest in an assistant that would automatically present them with an initial set of analy-
ses. For example, given a user input and its desired output (Bavishi et al. 2019) synthesised
programs for Pandas API. Such support may save effort and time for the user.

Support for Knowledge Tracking Due to the vast expansion of data science in the past
years, it is difficult for data scientists to keep up with emerging methods and techniques
(Kim et al. 2017). We observed this in our experiment as many participants expressed their
lack of knowledge about specific methods. This challenge can be overcome by, for example,
integrating data science specific named entity recognition tools (Ye et al. 2016) in computa-
tional notebook environments. Such a tool can provide support both during development and
modification by suggesting alternative methods and techniques that are yet to be explored.
The entities can also be linked to other relevant knowledge sources like StackOverflow and
GitHub for further support in solving data science tasks.

Support for Data Science Workflow Documentation Additionally, our study reveals that
participants prefer to have a detailed account of the data science workflow. This account
should include, for example, the decisions that influence the selection of certain features
and methods among available alternatives and is different from versioning which focuses
on low-level code details. The participants’ need also reflects the view from the literature
(Gelman and Loken 2013; Steegen et al. 2016) that a record of the explored alternatives
that were both successful and unsuccessful (dead-ends) should be documented for verifi-
cation and future maintenance. Such support for the documentation of the workflow, the
rationale of the decisions made, and the dead-ends encountered should be integrated into
computational notebook environments to provide a complete account of the narrative.

The software visualisation method developed in this work addresses some of the require-
ments described above. The workflow information provided in the form of visualisation and
annotations and the integration of additional descriptions of the cells along with the orien-
tation cues in our plugin were found to be helpful by the participants in navigating through
the code and improving their comprehension.

8 Conclusion

In this paper, we presented an empirical analysis of the existence of non-linearity in real-
world Jupyter notebooks and proposed a method to visualise workflow information in
non-linear data science notebooks to enrich the data science narratives, which has several
implications for supporting the development of data science workflows. Our empirical anal-
ysis confirms previous preliminary evidence that most real-world notebooks do not follow
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a linear workflow but instead follow an explorative path that gives rise to forks and dead-
ends. A controlled experiment involving our visualisation method showed that presenting
data scientists with extra workflow information improves third-party notebook compre-
hension. The results and insights obtained also call for improvements in computational
notebook environments that support efficient programming and presentation of non-linear
workflows in computational notebooks for better comprehension. Other obstacles faced dur-
ing a third-party notebook comprehension reveal insights into the needs of data scientists,
and tools addressing the issues found from the user study will likely be received well by the
community.

Further studies can be conducted to understand the effects of additional workflow infor-
mation on a larger set of notebooks that vary in their characteristics (e.g. size and domain).
An additional research question that remains unanswered relates to the understanding of the
evolution of data science comprehension over time. The design issues that we discovered in
the experiment suggest how the visualisation can be improved in terms of usability to better
support data science code comprehension and generally improve the user experience while
interacting with third-party notebooks and the MARG plugin.

Appendix A

A.1 Participants Details

Figures 15, 16, 17, and 18 provide more information about the participants’ experience.

A.2 Comprehension Questions

The list of comprehension questions and its corresponding dimensions are given in Table 5.

Fig. 15 Programming experience among the groups

Page 31 of 42    58



Empir Software Eng (2023) 28:58

Fig. 16 Python experience among the groups

Fig. 17 Data science experience among the groups

Fig. 18 Jupyter notebook experience among the groups
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Table 5 Program comprehension questions and its dimensions

question id question dimension

1 Please share what you think are the 3 main points or takeaways from
the solution implemented in the notebook.

−

2 How many features of the dataset are used in the modelling phase that
leads to the final solution?

Understanding

3 How many approaches did the author of this code explore while
solving the given task?

Understanding

4 What is the modelling technique used for the final solution? Understanding

5 Why do you think the data scientist created the variable
‘unique housing prop’ and for what?

Understanding

6 In which cell did the data scientist create the features that are used in
both the ’shifted features - correlation’ method and the ’random forest’
method? (Indicate the answer by copy-pasting the code snippet or by
indicating the cell position)

Navigation

7 Can you think of a different modelling technique that could be useful
in the analysis?

Modification

8 Please choose a different feature combination (if possible) and re-run
all the modelling that has been explored in the notebook. Please include
this addition at the bottom of the notebook by adding new cells. Please
do not modify/move/delete the existing cells. This is in order to keep
the original notebook order. (Do this task in the Jupyter Notebook pro-
vided before answering the question below) Indicate the cell position
after which you would include your code if you were about to run the
notebook in sequential order.

Modification

9 Please indicate the code snippets that are redundant or not useful to
arrive at the final solution if any in the original notebook. (Indicate
the answer by copy-pasting the code snippet or by indicating the cell
position)

Modification

A.3 Experiment Questions

A.3.1 General Questions before the Task

Please answer the next few questions related to your programming and comprehension
strategy in general.

1. Gelman et al. (1) found that: “Researcher degrees of freedom can lead to a multiple
comparisons problem, even in settings where researchers perform only a single analysis
on their data. The problem is there can be a large number of potential comparisons
when the details of data analysis are highly contingent on data, without the researcher
having to perform any conscious procedure of fishing or examining multiple p-values.”
When you implement a data science task, do you try to exhaust all possibilities (or)
come up with different alternative solutions that can be forks which may/may not lead
to deadends or solutions?
Note: Fork - A fork in a data analysis task is, given the same data and hypothesis, one
way of arriving at a result. Every fork is a decision point in the given task and bases
itself on an idea, assumption or a rationale.
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Deadend - Any fork in a data analysis that does not let us advance to a result (or) ends
before we arrive at a result is a dead end. While dead-ends are not necessary to repro-
duce the final result, they may/may not have led you to the final result by influencing
the thought process of the data analyst. It may pave the way for a fork in the data anal-
ysis.
(1) ’The garden of forking paths: Why multiple comparisons can be a problem, even
when there is no “fishing expedition” or“p-hacking” and the research hypothesis was
posited ahead of time’ by Gelman et. al

2. What do you think is the methodology (i.e., waterfall, agile, rapid application, Scrum,
Lean etc.) of any given data science task?

A.3.2 Task Description

Compare housing and rental prices in five major cities on the United States’ west coast. The
five major cities in this task are Seattle, Portland, San Francisco, Los Angeles, San Diego.
Dataset: https://www.kaggle.com/zillow/zecon
Raw data files required for this task are: ‘data/data dictionary.csv’,
‘data/cities crosswalk.csv’ and ‘western states time series.csv’ (available in the data folder
that we provide you). A description of the variables can be found in ‘data dictionary.csv’.

The hypothesis to be tested: ”Housing and rental prices in the given five major cities on
the United States’ west coast are correlated”. That is, to test:
i) whether rental prices are correlated among 5 major cities on the United States’ west coast
ii) whether the housing prices are correlated among 5 major cities on the United states’ west
coast.

A.3.3 Comprehension Questions

Question 1: Please share what you think are the 3 main points or takeaways from the solution
implemented in the notebook.
Question 2: How many features of the dataset are used in the modelling phase that leads to
the final solution?

Note: Final solution is the solution that answers the hypothesis question - whether the
housing prices among the five cities are correlated and whether the rental prices among the
five cities are correlated.
Question 3: How many approaches did the author of this code explore while solving the
given task?
Question 4: What is the modelling technique used for the final solution?

Please choose only one of the following: random forest / shifted features - correlation /
correlation - mean squared distance / other

Make a comment on your choice here:
Question 5: Why do you think the data scientist created the variable ‘unique housing prop’
and for what?
Question 6: In which cell did the data scientist create the features that are used in both the
‘shifted features - correlation’ method and the ’random forest’ method? (Indicate the answer
by copy-pasting the code snippet or by indicating the cell position)
Question 7: Can you think of a different modelling technique that could be useful in the
analysis?
Question 8: Please choose a different feature combination (if possible) and re-run all the
modelling that has been explored in the notebook. Please include this addition at the bottom
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of the notebook by adding new cells. Please do not modify/move/delete the existing cells.
This is in order to keep the original notebook order. (Do this task in the Jupyter Notebook
provided before answering the question below)

Note: Indicate the cell position after which you would include your code if you were
about to run the notebook in sequential order.
Question 9: Please indicate the code snippets that are redundant or not useful to arrive at the
final solution if any in the original notebook. (Indicate the answer by copy-pasting the code
snippet or by indicating the cell position)

A.3.4 General Questions on the Experience

1. Please indicate the comprehension strategy that you followed
Please choose only one of the following: I first read the code completely to have an
overview / I skimmed through the code and then, navigated through the different code
snippets as needed / Other

2. Did you find it difficult to navigate through the notebook during the task? Please
elaborate on the reasons.

3. Did the notebook contain enough information to report accurate answers? Please
provide more information about particular cases.

4. Rate your comprehension of the given notebook. Please choose only one of the fol-
lowing: Poor / Fair / Good / Very good / Excellent Make a comment on your choice
here:

5. Did you find any other difficulties during this task with respect to data science code
comprehension? Please elaborate.

6. Please indicate if you have any other comments.

A.3.5 Usability questions on Marg - Narrative Exploration of the Notebook Plugin

1. Please answer the next few questions related to the plugin. First, you are asked about
each separate feature in the plugin and then, about the overall plugin.

2. Was the plugin helpful? Please indicate what it was useful for and what it was not/less
useful for.

3. Which plugin features you used were the most useful? And which the least useful?
4. What problems did you face in using the plugin?
5. The information about the data science step that each cell is focusing on Please choose

the appropriate response for each item: (Strongly disagree / Disagree / Neither agree
nor disagree / Agree / Strongly agree)

(a) I think that I would like to use this feature frequently.
(b) I found the feature unnecessarily complex.
(c) I thought the feature was easy to use.
(d) I think that I would need the support of a technical person to be able to use this

feature.
(e) I found the various functions in this feature were well integrated.
(f) I thought there was too much inconsistency in this feature.
(g) I would imagine that most people would learn to use this feature very quickly.
(h) I found the feature very cumbersome to use.
(i) I felt very confident using the feature.
(j) I needed to learn a lot of things before I could get going with this feature.
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6. The information about the forks and deadends Please choose the appropriate response
for each item: (Strongly disagree / Disagree / Neither agree nor disagree / Agree /
Strongly agree)

(a) I think that I would like to use this feature frequently.
(b) I found the feature unnecessarily complex.
(c) I thought the feature was easy to use.
(d) I think that I would need the support of a technical person to be able to use this

feature.
(e) I found the various functions in this feature were well integrated.
(f) I thought there was too much inconsistency in this feature.
(g) I would imagine that most people would learn to use this feature very quickly.
(h) I found the feature very cumbersome to use.
(i) I felt very confident using the feature.
(j) I needed to learn a lot of things before I could get going with this feature.

7. Navigation feature in the plugin Please choose the appropriate response for each item:
(Strongly disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree)

(a) I think that I would like to use this feature frequently.
(b) I found the feature unnecessarily complex.
(c) I thought the feature was easy to use.
(d) I think that I would need the support of a technical person to be able to use this

feature.
(e) I found the various functions in this feature were well integrated.
(f) I thought there was too much inconsistency in this feature.
(g) I would imagine that most people would learn to use this feature very quickly.
(h) I found the feature very cumbersome to use.
(i) I felt very confident using the feature.
(j) I needed to learn a lot of things before I could get going with this feature.

8. Overall Marg Plugin Please choose the appropriate response for each item: (Strongly
disagree / Disagree / Neither agree nor disagree / Agree / Strongly agree)

(a) I think that I would like to use this plugin frequently.
(b) I found the plugin unnecessarily complex.
(c) I thought the plugin was easy to use.
(d) I think that I would need the support of a technical person to be able to use this

plugin.
(e) I found the various functions in this plugin were well integrated.
(f) I thought there was too much inconsistency in this plugin.
(g) I would imagine that most people would learn to use this plugin very quickly.
(h) I found the plugin very cumbersome to use.
(i) I felt very confident using the plugin.
(j) I needed to learn a lot of things before I could get going with this plugin.

A.4 Comprehension Task Answers

The reference set of answers to the comprehension questions (refer to Table 5) is listed by
question id in Table 6.
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Table 6 Answers to the
comprehension questions based
on the notebook provided to the
participants

question id answer

1 (question attempted)

2 2

3 3

4 correlation-mean squared distance

5 to be able to determine what kind of property we are
dealing with per line

6 cell 25

7 any suitable modelling technique that is not already
present in the given notebook

8 (question attempted)

9 All the cells in the fork exploring driver analysis was
not used in the final solution.
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