Skip to main content
Log in

A fuzzy-stochastic OWA model for robust multi-criteria decision making

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

All realistic Multi-Criteria Decision Making (MCDM) problems face various kinds of uncertainty. Since the evaluations of alternatives with respect to the criteria are uncertain they will be assumed to have stochastic nature. To obtain the uncertain optimism degree of the decision maker fuzzy linguistic quantifiers will be used. Then a new approach for fuzzy-stochastic modeling of MCDM problems will be introduced by merging the stochastic and fuzzy approaches into the OWA operator. The results of the new approach, entitled FSOWA, give the expected value and the variance of the combined goodness measure for each alternative. Robust decision depends on the combined goodness measures of alternatives and also on the variations of these measures under uncertainty. In order to combine these two characteristics a composite goodness measure will be defined. The theoretical results will be illustrated in a watershed management problem. By using this measure will give more sensitive decisions to the stakeholders whose optimism degrees are different than that of the decision maker. FSOWA can be used for robust decision making on the competitive alternatives under uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bath S.K., Dhillon J.S., Kothari D.P. (2004). Fuzzy satisfying stochastic multi-objective generation scheduling by weightage pattern search methods. Electric Power Systems Research 69: 311–320

    Article  Google Scholar 

  • Bellman R.A., Zadeh L.A. (1970). Decision making in fuzzy environment. Management Science Ser. B 17: 141–164

    MathSciNet  Google Scholar 

  • Ben Abdelaziz F., Lang P., Nadeau R. (1999). Dominance and efficiency in multicriteria decision under uncertainty. Theory and Decision 47: 191–211

    Article  MATH  MathSciNet  Google Scholar 

  • Ben Abdelaziz F., Enneifar L., Martel J.M. (2004). A multiobjective fuzzy stochastic program for water resources optimization: the case of lake management. Information System and Operational Research Journal 42(3): 201–215

    MathSciNet  Google Scholar 

  • Ben-Arieh, D., & Chen, Z. (2004). A new linguistic labels aggregation and consensus in group decision making. In Proceedings of the Conference of IERC 2004, Houston, Texas, US.

  • Bender M.J., Simonovic S.P. (2000). A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets and Systems 115(1): 35–44

    Google Scholar 

  • Bordogna G., Fedrizzi M., Pasi G. (1997). A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Transactions on Systems, Man, and Cybernetic – Part A: Systems and Humans 27(1): 126–133

    Article  Google Scholar 

  • Buckly J.J. (1990). Stochastic versus possibilistic programming. Fuzzy Sets and Systems 34: 173–177

    Article  MathSciNet  Google Scholar 

  • Caballero R., Cerda E., Munoz M.M., Rey L. (2004). Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. European Journal of Operational Research 158: 633–648

    Article  MATH  MathSciNet  Google Scholar 

  • Carlsson C., Fullér R., Fullér S. (1997). OWA operators for doctoral student selection problem. In: Yager R.R., Kacprzyk J. (eds). The ordered weighted averaging operators: Theory, methodology, and applications. Kluwer Academic Publishers, Boston, pp.167–177

    Google Scholar 

  • Changchit C., Terrell M.P. (1993). A multi-objective reservoir operation model with stochastic inflows. Computers and Industrial Engineering 24(2): 303–313

    Article  Google Scholar 

  • Chen C.W.E. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems 114: 1–9

    Article  MATH  Google Scholar 

  • Chen S.J., Hwang C.L. (1991). Fuzzy multiple attribute decision making. Berlin, Springer-Verlag

    Google Scholar 

  • Choudhury A.K., Shankarb R., Tiwari M.K. (2006). Consensus-based intelligent group decision-making model for the selection of advanced technology. Decision Support Systems 42: 1776–1799

    Article  Google Scholar 

  • Das K., Roy T.K., Maiti M. (2004). Multi-item stochastic and fuzzy-stochastic inventory models under two restrictions. Computers & Operations Research 31: 1793–1806

    Article  MATH  Google Scholar 

  • Hahn E.D. (2006). Link function selection in stochastic multicriteria decision making models. European Journal of Operational Research 172: 86–100

    Article  MATH  MathSciNet  Google Scholar 

  • Goicoechea A., Hansen D.R., Duckstein L. (1982). Multiobjective decision analysis with engineering and business applications. New York, Wiley

    Google Scholar 

  • Herrera F., Herrera-Viedma E., Verdegay J.L. (1996). A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems 78: 73–87

    Article  MathSciNet  Google Scholar 

  • Inuiguichi M., Ramik J. (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111: 3–28

    Google Scholar 

  • Iskander M.G. (2005). A suggested approach for possibility and necessity dominance indices in stochastic fuzzy linear programming. Applied Mathematics Letters 18: 395–399

    MATH  MathSciNet  Google Scholar 

  • Kacprzyk J., Fedrizzi M., Nurmi H. (1992). Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems 49: 21–31

    Article  MATH  MathSciNet  Google Scholar 

  • Lahdelma R., Salminen P. (2006). Stochastic multicriteria acceptability analysis using the data envelopment model. European Journal of Operational Research 170: 241–252

    Article  MATH  Google Scholar 

  • Liu L., Huang G.H., Liu Y., Fuller G.A., Zeng G.M. (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Engineering Optimization 35(2): 177–199

    Article  MathSciNet  Google Scholar 

  • Malczewski J. (2006). Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation 8: 270–277

    Article  Google Scholar 

  • Maqsood I., Huang G.H., Yeomans J.S. (2005). An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. European Journal of Operational Research 167: 208–225

    Article  MATH  MathSciNet  Google Scholar 

  • Markowitz H. (1959). Portfolio selection. New York, Wiley

    Google Scholar 

  • Milgrom, J., & Roberts, P. (1992). Economics, organization and management (pp. 246–247). Englewood cliffs, New Jersey: Prentice Hall.

  • Mohammed W. (2000). Chance constrained fuzzy goal programming with right-hand side uniform random variable coefficients. Fuzzy Sets and Systems 109: 107–110

    Article  MATH  MathSciNet  Google Scholar 

  • Mohan C., Nguyen H.T. (2001). An interactive satisficing method for solving multiobjective mixed fuzzy-stochastic programming problems. Fuzzy Sets and Systems 117: 61–79

    Article  MATH  MathSciNet  Google Scholar 

  • National Research Council. (1999). New strategies for America’s watersheds (p. 207). Washington: National Academy Press.

  • Pasi G., Yager R.R. (2006). Modeling the concept of majority opinion in group decision making. Information Sciences 176: 390–414

    Article  MATH  MathSciNet  Google Scholar 

  • Raju, K. S., & Kumar, D. N. (1998). Application of multiobjective fuzzy and stochastic linear programming to Sri Ram Sagar irrigation planning project of Andhra Pradesh. In Proceedings of 22nd National Systems Conference, Calicut, India, pp. 423–428.

  • Ribeiro R.A. (1996). Fuzzy multiple attribute decision making: a review and new preference elicitation techniques. Fuzzy Sets and Systems 78: 155–181

    Article  MATH  MathSciNet  Google Scholar 

  • Roubens M., Teghem J. (1991). Comparison of methodologies for fuzzy and stochastic multiobjective programming. Fuzzy Sets and Systems 42: 119–132

    Article  MATH  MathSciNet  Google Scholar 

  • Sakawa M., Kato K., Katagiri H. (2004). An interactive fuzzy satisfying method for multiobjective linear programming problems with random variable coefficients through a probability Maximization model. Fuzzy Sets and Systems 146: 205–220

    Article  MATH  MathSciNet  Google Scholar 

  • Shamsuzzaman M., Sharif Ullah A.M.M., Bohez E.L.J. (2003). Appling linguistic criteria in FMS selection: fuzzy-set-AHP approach. Integrated Manufacturing Systems 14(3): 247–254

    Article  Google Scholar 

  • Sinha S.B., Hulsurkar S., Biswal M.P. (2000). Fuzzy programming approach to multiobjective stochastic programming problems when bi’s follow joint normal distribution. Fuzzy Sets and Systems 109: 91–96

    Article  MATH  MathSciNet  Google Scholar 

  • Slowinski, R., & Teghem, J. (1990). A comparison study of STRANGE and FLIP. In R. Slowinski & J. Teghem (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty (pp. 392–393). Kluwer.

  • Stancu-Minasian I.M. (1984) Stochastic programming with multi objective functions. Dordrecht, Reidel

    Google Scholar 

  • Teghem J., Jr., Dufrane D., Thauvoye M. (1986). STRANGE: An interactive method for multi-objective linear programming under uncertainty. European Journal of Operational Research 26: 65–82

    Article  MATH  MathSciNet  Google Scholar 

  • Triantaphyllou E., Lin C.T. (1996). Development and evaluation of five fuzzy multiattribute decision-making methods. International Journal of Approximate Reasoning 14: 281–310

    Article  MATH  Google Scholar 

  • Wang H.F. (2000). Fuzzy multicriteria decision making-an overview. Journal of Intelligent and Fuzzy Systems 9(1–2): 61–83

    Google Scholar 

  • Westervelt, J. (2001). Simulation modeling for watershed management (p. xi). New York: Springer-Verlag.

  • Xu Z. (2005). An overview of methods for determining OWA weights. International Journal of Intelligent Systems 20: 843–865

    Article  MATH  Google Scholar 

  • Xu Z., Chen, J. (2007). An interactive method for fuzzy multiple attribute group decision making. Information Sciences 177: 248–263

    Article  MATH  MathSciNet  Google Scholar 

  • Xu Z., Da Q.L. (2003). An overview of operators for aggregating information. International Journal of Intelligent Systems 18: 953–969

    Article  MATH  Google Scholar 

  • Yager R.R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18(1): 183–190

    Article  MATH  MathSciNet  Google Scholar 

  • Yager R.R. (1996). Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems 11: 49–73

    Article  Google Scholar 

  • Yager R.R. (2002). On the cardinality and attituditional charactersitics of fuzzy measures. International Journal General Systems 31(3): 303–329

    Article  MATH  MathSciNet  Google Scholar 

  • Zimmermann H.J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems 1: 45–55

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Zarghami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarghami, M., Szidarovszky, F. & Ardakanian, R. A fuzzy-stochastic OWA model for robust multi-criteria decision making. Fuzzy Optim Decis Making 7, 1–15 (2008). https://doi.org/10.1007/s10700-007-9021-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-007-9021-y

Keywords

Navigation