
Multi-objective genetic algorithm for 
single machine scheduling problem 
under fuzziness  
Duenas, A. and Petrović, D 
 
Author post-print (accepted) deposited in CURVE May 2012 
 
Original citation & hyperlink:  
Duenas, A. and Petrović, D. (2008) Multi-objective genetic algorithm for single machine 
scheduling problem under fuzziness. Fuzzy Optimization and Decision Making, volume 7 (1): 
87-104. 
http://dx.doi.org/10.1007/s10700-007-9026-6 
 
 
Publisher statement: The final publication is available at www.springerlink.com. 
 
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 
 
 
 
 
 

CURVE is the Institutional Repository for Coventry University 
http://curve.coventry.ac.uk/open  

http://dx.doi.org/10.1007/s10700-007-9026-6
http://www.springerlink.com/
http://curve.coventry.ac.uk/open


A New Approach to a Multi-objective Single Machine Scheduling Problem 

under Fuzziness 
 

Alejandra Duenas, Dobrila Petrovic
*
 

 
Control Theory and Applications Centre (CTAC), School of Mathematical and Information Sciences,  

Coventry University, Coventry, United Kingdom 

 

 

 

Abstract 

 

This paper presents a new approach to a single machine scheduling problem in the presence of uncertainty and 

multiple scheduling objectives. The uncertain parameters under consideration are duedates of jobs. They are 

modelled by fuzzy sets where membership degrees represent decision maker’s satisfaction grades with respect to 

the jobs’ completion times. The two objectives defined are to minimise the maximum and the average tardiness 

of the jobs. Due to fuzziness in the duedates, the two objectives become fuzzy too. In order to find a job schedule 

that maximises the aggregated satisfaction grades of the objectives, a hybrid algorithm that combines a multi-

objective genetic algorithm with local search is developed. The algorithm is applied to solve a real-life problem 

of a manufacturing pottery company.  
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1. Introduction 

 

Scheduling of jobs and control of their flow through a production process is of great importance to modern 

manufacturing organisations. The diversity of scheduling problems, large-scale dimensions and their dynamic 

nature make scheduling problems computationally very complex and difficult to solve. They require multi-

disciplinary approaches, drawing on various concepts and techniques of operations managements, artificial 

intelligence, optimisation theory, etc. In real world production scheduling problems, quite often, parameters are 

characterised vaguely due to imprecise data or incomplete information available. Conventional concepts of 
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randomness and probability distributions have been traditionally applied to model uncertainty inherent in 

production scheduling, mainly uncertainty in processing times. However, in cases where there is no evidence 

recorded in the past, or where there is lack of evidence available, or simply the evidence do not exist, probability 

distributions cannot be derived with complete confidence.   

 

The potential of using fuzzy sets theory in treating different sources of uncertainty, particularly when intuition 

and judgement play an important role, has been acknowledged in the literature [15, 16]. It has been successfully 

applied to model various manufacturing parameters, including for example, modelling of fuzzy customer 

demand [13], fuzzy processing times [10], fuzzy production due dates [5] or fuzzy job precedence relations [9]. 

 

Real-life production environments, in essence, involve multiple objectives to be considered simultaneously. The 

most frequently considered objective in production scheduling has been to minimise completion time of all jobs. 

In addition, other objectives have been of interest such as objectives related to due dates (e.g., to minimise the 

maximum tardiness or the maximum earliness), resource utilisation, cost incurred, throughput, etc [18]. 

 

Different approaches to multi-objective single machine problems with fuzzy parameters have been presented in 

the literature in the last decade. Ishii and Tada [9] considered a single machine scheduling problem with the 

objective to minimize the maximum lateness of jobs with fuzzy precedence relations. A fuzzy precedence 

relation relaxes the crisp precedence relation and represents the satisfaction grade with respect to precedence 

between two jobs. Therefore, an additional objective to maximise the minimum satisfaction level achieved 

regarding the fuzzy precedence relations was considered. An algorithm for determining nondominated solutions 

based on a graph representation of the precedence relations was proposed. Adamopoulos and Pappis [1] 

presented a fuzzy-linguistic approach to a multi-criteria sequencing problem. They considered a single machine 

where each job was characterised by fuzzy processing times. The objective was to determine the length of 

processing times, the common duedate and a sequence of the jobs for the machine through the search for a near-

optimal value of a related cost function. Another approach to solving a single machine multi-criteria scheduling 

problem was presented by Lee et al. [11]. The proposed approach used linguistic values for the evaluation of 

each criterion (e.g. very poor, poor, fair, good and very good) and for the representation of its relative weight 

(e.g. very unimportant, unimportant, medium important, important and very important). A tabu-search was used 

as the optimisation technique to find the near-optimal solution with an aggregated fuzzy objective function. 

Ishibuchi and Murata [7] presented a flow shop scheduling problem with fuzzy parameters such as fuzzy 



duedates and fuzzy processing times, where the objectives were to minimise the maximum earliness and 

tardiness of all jobs, to minimise the makespan and to minimise the total flowtime. A multi-objective genetic 

algorithm that can handle these fuzzy scheduling objectives was developed. 

 

In this paper, a new approach to solving a fuzzy multi-objective single machine scheduling problem is proposed. 

It brings together three areas, namely fuzzy reasoning, multi-criteria decision making and production scheduling 

in uncertain environments. Fuzzy parameters are jobs’ duedates, modelled by fuzzy sets, where the 

corresponding membership functions represent decision maker satisfaction degrees with respect to jobs’ 

completion times. Therefore, the objective functions under consideration become fuzzy. They are defined using 

membership functions and aggregated using a standard averaging operator. The aggregation operator allows the 

consideration of fuzzy multi-objectives simultaneously, and it is used to define a decision membership function.  

Finally, a hybrid model that combines a genetic algorithm (GA) with local search is applied to find a decision 

(schedule) that maximises the decision function, i.e., the satisfaction degree achieved for all the objectives. The 

new approach is applied to a real life-scheduling problem identified through the collaboration with a 

manufacturing pottery company.  

 

The paper is organised as follows. The description of the fuzzy multi-objective scheduling problem and a new 

approach to solving it are presented in Section 2. In Section 3, the GA in conjunction with the tabu-search used 

as a local search optimisation technique is presented. Section 4 contains a brief description of a real-life 

scheduling problem. Additionally in Section 5, the results obtained by applying the new multi-objective hybrid 

algorithm to the real-life problem are described and analysed using different GA and tabu-search parameter 

specifications. Finally, a paper summary is presented in Section 6 with some issues for future research. 

 

2. Multi-objective single machine scheduling with fuzzy duedates 

 

Consider a problem of K jobs, J1, J2,…, JK, to be scheduled on a single machine with the following assumptions: 

 

- No job pre-emption is allowed. 

- The machine can only process one job at a time. 

- All jobs are available in time zero. 

- The machine set-up times are negligible. 

- All jobs have identical and deterministic processing times. 



- Duedates are fuzzy. 

 

The schedule to be generated is represented as a permutation of K jobs denoted as Π(π1, π2,…, πK). A new 

approach to defining and solving the single machine scheduling problem as a fuzzy multi-objective problem is 

proposed as depicted in Figure 1. 

 

 1. Identify and define fuzzy 

parameters  

2. Define fuzzy objective functions 

3. Define an aggregation operator for 

the fuzzy objective functions 

4. Find a decision that 

maximizes the aggregated 

fuzzy objective functions 
 

Figure 1: An approach to fuzzy multi-objective optimisation 

 

The steps included in the fuzzy multi-objective approach to scheduling are the following: 

 

 

Step 1. First, uncertain scheduling parameters are identified.  They are modelled using fuzzy sets where 

membership degrees represent a decision maker (DM) (in this case a production manager) preference profile, 

i.e., satisfaction grades with respect to the different parameter values. The membership functions can have 

different shapes such as semi-linear (e.g. triangular, trapezoidal) and nonlinear (e.g. Gaussian function).  

 

In this paper, the fuzzy parameters considered are jobs’ duedates. A fuzzy duedate is defined as follows [7]. Let 

Ck be the completion time of job k. The membership function of fuzzy duedate dk,  k = 1,…,K is defined in (1) 

and represented in Figure 2: 
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where the two boundaries: a lower bound L
kd  and an upper bound U

kd  are defined. If job k is completed before 

or at time L
kd  the DM is completely satisfied i.e., the satisfaction degree is 1, if the job is completed between 

L
kd  and U

kd  a linear shape represents the DM’s satisfaction degrees, and finally if the job is completed at or 

after U
kd  the DM is completely unsatisfied and the satisfaction degree is 0.  
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Figure 2: Fuzzy duedate 

 

Step 2. This step involves identification and definition of the objectives of interest. In this paper, the scheduling 

problem under consideration is restricted to two objectives, however, the fuzzy multi-objective approach 

developed can handle more than two objectives. The two identified objectives are to find a permutation of the 

jobs in such a way as (a) to minimise the maximum tardiness of all the jobs and (b) to minimise the average 

tardiness.  

 

Having the permutation Π(π1, π2,…, πK), the job k completion time kCΠ  is defined as: 
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where pk is the processing time of job k in permutation Π. 

 

Due to fuzziness of duedates, the tardiness of each job becomes fuzzy too. The corresponding membership 

functions associated with the objectives represent the DMs satisfaction grades with respect to achieving the 

objectives. As previously defined, the first objective is to minimise the maximum tardiness of the jobs. 

According to Ishibuchi and Murata [7], the problem of minimising the maximum tardiness can be transformed 

into the problem of maximising the minimum of all the satisfaction grades achieved with respect to the fuzzy 



duedates. Therefore, the first objective is to find a permutation of jobs Π(π1, π2,…, πK) that maximises 

membership function 
1f

µ associated with the first objective: 
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The second objective is the minimisation of the average tardiness [2]. The average tardiness in the crisp case is 

defined as 
K

T
K

k
k∑

== 1T , where Tk is the tardiness of job Jk. In the presence of uncertainty in dudates, the new 

fuzzy objective is defined as to maximise the average satisfaction grade with respect to the fuzzy duedates; i.e., 

find a permutation of jobs Π(π1, π2,…, πK) that maximises membership function 
2fµ : 
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Step 3. The aggregation operation is an essential fuzzy set operation that combines elements from a number of 

fuzzy sets into a single fuzzy set [12].  Various operators such as triangular norms (t-norms), triangular conorms 

(t-conorms), averaging, and ordered weighted averaging (OWA) have been defined in fuzzy sets theory to model 

fuzzy sets aggregation. The first two operators, t-norms and t-conorms, are used to model the intersection and 

union of fuzzy sets [20]. The averaging operation is defined as a generalised mean [3] and it has been most 

commonly used in decision making, specifically utility theory and multi-criteria decision theory. The OWA 

operators are special cases of the mean operators, defined as a weighted sum with ordered arguments [19]. The 

OWA operators have been developed to aggregate criteria in multi-criteria decision making. 

 

In this paper, a standard averaging operator, arithmetic mean, is used to aggregate the objective membership 

functions defined in Step 2 as follows: 
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Step 4. Once the aggregation operator has been selected, a decision membership function µD is defined as 

follows: 

 

),(
21 ffD A µµµ =      (6) 

 

where 
1f

µ is the membership function of Objective 1, 
2fµ is the membership function of Objective 2 and D is a 

fuzzy set of all job permutations where the membership degrees represent aggregated satisfaction grades 

achieved with respect to the given objectives.  

 

Once the decision membership function has been defined, a decision that maximises the grade of satisfaction 

with respect to all the objectives has to be found. In this way, an initial fuzzy multi-objective problem is mapped 

into the following problem: 

 

find a permutation of jobs that maximises Dµ    (7) 

 

In order to find this job permutation, a search algorithm must be applied. The algorithm used is a multi-objective 

genetic algorithm with local search defined in the following section. 

 

3. Multi-objective genetic algorithm with local search  

A general multi-objective optimisation problem (MOP) is defined as follows [6]: 

 

Minimise ))(,),(),(( 21 xxxz Nfff K=      

subject to Xx ∈       (8) 

 

where z is the objective vector, x is the decision variable vector, N is the number of objectives and X is the 

feasible region in the decision space. 

 

A nondominated solution (Pareto-optimal solution) of the MOP is the solution in which it is not possible to 

improve one objective without increasing the other objectives. In a formal way, x
*
 is a nondominated solution if 

and only if there is not any x ∈ X such that fi(x) ≤  fi(x
*
) for all i = 1,…, N, and   fj(x) <  fj(x

*
) for at least one j. 

 



Genetic algorithms (GA) have been used to solve single objective and MOPs [4]. Generally, GAs are stochastic 

algorithms based on natural evolution principles, that perform a search iteratively starting from an initial 

population of candidate solutions (strings) and apply certain genetic operators to find a near optimal solution. 

GAs used for MOPs are called multi-objective GAs and their main purpose is to find as many nondominated 

solutions as possible [4]. 

 

Ishibuchi et al. [8] proposed a multi-objective genetic algorithm with local search (MOGLS), for determining a 

solution of a flowshop scheduling problem. The local search technique is introduced in order to improve 

convergence time of the GA. The MOP is solved using a scalar fitness function f(x), to be minimised, where all 

the objectives were combined as follows: 

 

)x()x()x()x( 2211 Nn fwfwfwf +++= K      (9) 

 

where wi ≥ 0, i = 1, 2,…, N, 1
1

=∑
=

N

i
iw  and wi is specified randomly. The MOGLS algorithm is the hybridisation 

of a GA and a local search procedure applied in order to improve the convergence time to the Pareto-front, 

where the Pareto-front is a curve or surface in an n-dimensional space composed by all nondominated or Pareto-

optimal solutions, and, given the constraints of the model, no solutions exist beyond the Pareto-front. One of the 

main characteristics of this algorithm is that it uses two populations, an initial population defined as in any 

typical GA and a secondary population where all the nondominated solutions obtained during the GA’s 

performance are stored. This secondary population has two main functions: (a) to store the nondominated 

solutions generated during the GA’s performance and (b) to input nondominated solutions into the elitist 

strategy. The elitist strategy is incorporated in order to ensure that good solutions are considered in each of the 

algorithm iterations. 

 

In the new approach proposed in this paper, the minimisation of the scalar fitness function is replaced by the 

maximisation of the grade of satisfaction of all the objectives given by (6) and (7). The steps included are 

described below: 

 

1. Initialisation. Generate randomly an initial solution population of size Np. 

2. Evaluation. Calculate the N objectives for each string in the solution population and store the 

nondominated solutions in the secondary population. 



3. Selection. Use tournament selection in order to select (Np - Nelite) pairs of parents for crossover and 

mutation operators, where Nelite is the number of solutions selected for the elitist strategy. 

4. Crossover and mutation application. Define probability of crossover pc and probability of mutation pm. 

Apply crossover operator to each of the selected pairs of parents and mutation operator to the offspring 

generated after applying the crossover operator.  

5. Elitist strategy utilisation. Randomly select Nelite solutions from the secondary population and add the 

selected solutions to the population. 

6. Local search application. Select an element from Np using tournament selection with a tournament size 

bigger than 3 and local search probability pS. If local search is applied to the selected element, the new 

solution is included in the next population, otherwise the selected element is copied directly to the next 

population.  The local search procedure proposed for this step is tabu-search and it is defined in 

Subsection 3.1. 

7. Termination. If the number of solutions evaluated is met, stop the algorithm, else return to Step 2. 

 

3.1 Local search procedure 

 

Tabu-search is an “improvement type” local search procedure, that can be applied in order to find a better 

solution through the manipulation of a solution arbitrarily selected [14]. For instance, in case of a scheduling 

problem, the tabu-search procedure can be used to obtain a better schedule through the modification of the 

current schedule. The main characteristic of a local search procedure is that it cannot be guaranteed that an 

optimal solution will be found, because the best solution within the neighbourhood of the current solution only is 

searched. The solutions found within a certain neighbourhood, called neighbours, are candidates to become the 

next solution to move to. In order to determine whether a neighbour solution should be accepted or rejected, an 

acceptance-rejection criterion has to be defined. A tabu-list with a fixed number of entries is kept, where the 

modifications that the procedure is not allowed to do, are stored.   If the tabu-list is full and a new modification 

(mutation) has to be entered, the modification that was first entered into the list is deleted and the list is pushed 

down for one position.  

 

Tabu-search can be applied either to single objective or multi-objective problems [14]. In the case of single 

objective problems, the search stores in the memory the best solution found so far, whilst in the multi-objective 

case all schedules that are nondominated are stored in the memory. 



 

In this paper, the tabu-search procedure is used as part of the MOGLS algorithm to perform the local search. The 

acceptance-rejection criterion is the same as the one defined for the corresponding GA, i.e., maximisation of the 

grade of satisfaction of all the objectives. Therefore, if a neighbour has a smaller grade of satisfaction it is 

rejected, otherwise is accepted. Having selected a specific schedule ∏s, a new schedule is generated through an 

interchange of a pair of jobs in the schedule i.e., by applying the mutation operator and the new schedule is 

considered as a part of the neighbourhood of ∏s. Every time a mutation is performed in ∏s, the reverse pair is 

entered in the tabu-list.  

 

4. Real-world scheduling problem 

 

In this paper, a real-world problem has been defined through collaboration with Denby Pottery Company Ltd. 

This company has been involved in the pottery industry for almost 200 years and manufactures a wide range of 

ceramic tableware products. Hence, scheduling is of great interest in many areas of their manufacturing 

processes such as biscuit making and glazing where kilns play one of the most important roles in the production. 

Since the data obtained from the company is confidential some of the data used in this paper are hypothetical. 

 

Pottery industry usually uses two types of kilns: tunnel and intermittent kilns. Tunnel kilns are continuously fired 

and work 24 hours a day, 7 days a week, while intermittent kilns are fired once or twice a day. The kiln 

considered in this paper is an intermittent kiln that has a 12 hours cycle and processes 6 cars every time it is 

fired. The kiln is fired once a day, five days a week, and therefore the number of jobs processed in one week is 

equal to 30. Moreover, the schedule time horizon under consideration is one week. The problem is defined as a 

single machine scheduling problem, with the assumption that each car represents a job to be scheduled. This 

assumption can be made as each car is loaded with different products.  Therefore, the problem under 

consideration is to sequence 30 jobs with respect to the objectives defined below. 

 

As the kiln cycle time is fixed, it is assumed that all the jobs have an identical processing time of 12 hours. The 

machine set-up times are negligible. Figure 3 shows how the problem is visualised as a single machine 

scheduling problem. 

 



 

Kiln J1 J2 J3 J30 

 

Figure 3: Kiln scheduling 

 

Following the steps defined in Section 2 (Figure 1), the scheduling problem is defined and solved as follows. 

 

 

Step 1. At present, it is considered that a DM is completely satisfied if at the end of the week (time horizon) all 

products specified in the production plan have been produced. The question that arises is what difference it will 

make in the jobs’ sequence if the DM starts considering the completion time of each job in the scheduling 

process. Since some products have to go to different processes after being in the kiln, having a higher priority 

than other products, defining and meeting adequate duedates become an important element of the kiln 

scheduling. Moreover, the products inventory costs can be another important aspect in the consideration of job’s 

duedates. Hence, it is desirable to represent different grades of DM’s satisfaction with respect to jobs completion 

times and, therefore, a more detailed schedule (daily instead of weekly) has to be generated. For this reason, it 

has been decided to specify a fuzzy duedate for each job with a semi-linear shape membership function as shown 

in Figure 2.   

 

The boundaries ( L
kd  and U

kd ) of each fuzzy duedate expressed in days are specified as follows:  

 

L
kd  is a random integer from the set {1,2,3,4,5} 

U
kd is a random integer from the set {1,2,3,4,5}  

 

where the set {1,2,3,4,5} represents the possible days in which the job can be completed and L
k

U
k dd ≥ . 

 

Step 2. The objectives to be optimised are those defined in Section 2; namely 

 

1. to minimise the maximum tardiness of all the jobs, i.e., to maximise the minimum degree of satisfaction 

with respect to the fuzzy duedates: 
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2. to minimise the average tardiness, i.e., to maximise the average degree of satisfaction with respect to 

the fuzzy duedates: 
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Step 3. In this problem, a standard averaging operator given in (5) is used to aggregate the two objective 

membership functions and to define a decision membership function µD. 

  

 

Step 4. Finally, the decision that maximises the grade of satisfaction of both objectives, i.e., maximises µD is 

found using the multi-objective genetic algorithm with local search. 

 

In order to apply the multi-objective genetic algorithm with local search the selection, crossover and mutation 

operators are defined as follows. The tournament selection is defined with a tournament size of 2; the crossover 

operator used is the position-based crossover proposed by Syswerda [17] and finally, the mutation operator 

selected is the insertion (shift) mutation. It is important to note that the insertion mutation operator is applied to 

the whole selected parent (string). 

 

The initial parameter specifications of the multi-objective genetic algorithm with local search are the following: 

 

Population size (Np): 60, 

Crossover probability (pc): 0.8, 

Mutation probability per string (pm): 0.6,  

Tournament size: 2, 

Number of elite solutions (Nelite): 10, 

Local search probability (ps): 0.8, 

Tournament size in the selection of solutions for the local search: 4, 



Tabu-list size: 5. 

 

These parameters were defined as a starting point but varied in different analyses performed. The algorithm was 

run 1000 iterations for each analysis. Some of the results obtained are discussed in the following section. 

 

5. Results analyses  

 

Three different result analyses were performed in order to evaluate the performance of the algorithm proposed, 

including (a) analysis of nondominated solutions, (b) analysis of multi-objective genetic algorithm performance, 

and (c) analysis of local search performance. 

 

5.1 Analysis of nondominated solutions  

 

The first analysis was divided into two different stages, where the first stage consisted of running the GA with no 

local search and considering the candidate solutions stored in the secondary population (Nelite) after 1000 

iterations. These candidate solutions represent the nondominated solutions found in the last iteration. In the 

second stage the candidate solutions from the primary population obtained every 100 iterations were considered 

while the algorithm was run 1000 iterations. The objective of this stage of the analysis was to observe the 

number of nondominated solutions obtained from the total of candidate solutions.  

 

Figure 4 shows the results obtained when the problem was solved using the multi-objective GA with the elitist 

procedure but without performing the tabu-search. The number of iterations that the algorithm was run was 1000 

and only 7 nondominated solutions were found. 

 



Figure 4: Nondominated solutions where Nelite = 10 obtained by running the GA without tabu-search 

 

Figure 5: Results obtained every 100 iterations when the algorithm was run 1000 iterations 

 

 

Figure 5 shows the best results obtained every 100 iterations when the algorithm was run 1000 iterations. The 

results in Figure 5 reveal that not all the solutions in the new population after 1000 iterations were nondominated 

(only 10%). Hence, in the best solution found the satisfaction grades were =
1f

µ  0.400 and =
2fµ 0.919. 

Moreover, 83% of the jobs scheduled (i.e., 25 jobs) were finished on time; in other words, the corresponding 

satisfaction grade with respect to the fuzzy duedate was =
kdµ 1.0, while the other 17% of the jobs had a 

satisfaction grade 
kdµ in the range from 0.400 to 0.667.  

 

5.2 Analysis of multi-objective genetic algorithm performance 

 

The second analysis concerned the performance of the multi-objective genetic algorithm with local search using 

different combinations of crossover and mutation probabilities, in order to find the values of pc and pm that 

yielded the best results. The algorithm was run 1000 and 5000 iterations, and the results are shown in Table 1. 

All other parameters were as defined in Section 4 (N = 60, ps = 0.8, Nelite = 10). Some interesting observations are 
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outlined here. When the probability of crossover pc and the probability of mutation pm were 0, the multi-objective 

genetic algorithm with local search acted as a tabu-search with a selection mechanism. From Table 1, it can be 

seen that the maximum values of Dµ obtained when pc = 0 and pm = 0 are higher than the values of Dµ  when 

pc = 0.5 and pm = 0. In other words, the algorithm performs better when it is acting as a standard tabu-search than 

when it is incorporated with the GA because the mutation operator is not applied (pm = 0) and the probability of 

crossover is not high enough.  

pc pm 
Max µµµµD 

1000 iterations 

Max µµµµD 

5000 iterations 

0 0 0.451 0.451 

0.5 0 0.448 0.448 

0.5 0.2 0.723 0.803 

0.5 0.4 0.718 0.724 

0.5 0.6 0.719 0.721 

0.5 1 0.676 0.711 

0.8 0 0.724 0.724 

0.8 0.2 0.779 0.801 

0.8 0.4 0.712 0.725 

0.8 0.6 0.631 0.697 

0.8 1 0.612 0.659 

1 0 0.716 0.716 

1 0.2 0.812 0.819 

1 0.4 0.721 0.766 

1 0.6 0.677 0.713 

1 1 0.606 0.643 
 

Table 1: Results achieved with different crossover and mutation probabilities 

 

Furthermore, for the cases when pc = 0.8 and pm = 0, and pc = 1 and pm = 0, the same maximum Dµ were 

achieved when the algorithm was run 1000 iterations and 5000 iterations. Consequently, it can be concluded that 

the mutation operator is necessary in order to maintain diversity in the population before the local search 

procedure is applied. 

 

The results obtained, when pm = 1.0 i.e., the mutation operator was applied to the whole population, were very 

poor. Moreover, the worst result was found when pc = 1.0 and pm = 1.0 (the crossover and mutation operators 

were applied to the whole population). 

 

On the other hand, the best results were achieved in the cases when pc = 0.5 and pm = 0.2, pc = 0.8 and pm = 0.2, 

and pc = 1.0 and pm = 0.2. It can be concluded that in the cases when pc = 0.5, pc = 0.8 and pc = 1.0 the best 

results were obtained when pm = 0.2. Finally, as expected, the results were better when the algorithm was run 

5000 iterations, except in the cases mentioned above, when pm = 0. 



 

5.3 Analysis of local search performance 

 

Having found the GA parameter values, pc and pm, that yielded the best results, the local search effects on the 

algorithm’s search ability was analysed by considering different local search probabilities ps. Although, the best 

result for the GA was found when pc = 1.0 and pm = 0.2, it was decided to use also pc  = 0.5 and   pm = 0.2, and 

pc  = 0.8 and   pm = 0.2 in order to analyse the effects of different probabilities of crossover and a variable local 

search probability. 

 

Table 2 shows the results obtained with different local search probabilities and the parameters specified as: 

N = 60, pc  = 0.5, pm = 0.2, Nelite = 10. When ps = 1 the tabu-search was applied to every candidate solution in the 

algorithm. 

 

ps Max µµµµD 

5000 iterations 

0 0.644 

0.1 0.711 

0.2 0.721 

0.3 0.718 

0.4 0.775 

0.5 0.714 

0.6 0.716 

0.7 0.722 

0.8 0.803 

0.9 0.725 

1 0.721 
 

 

Table 2: Results achieved with different ps and pc = 0.5 and pm = 0.2 

 

The results obtained when ps = 0, i.e., when the local search was not performed in conjunction with the GA, were 

not satisfactory. When the ps value was increased, the algorithm yielded better results and the best result was 

achieved when ps = 0.8. It is important to note that the results obtained when ps = 1, i.e., when the local search 

was applied to all the strings in the primary population, were not as good as when ps = 0.8. Consequently, it is 

possible to conclude that although the addition of the local search to the genetic search enhanced the algorithm’s 

performance, the selection of the right local search probability value is important for the good operation of the 

multi-objective genetic algorithm with local search. 

 



Table 3 shows the results obtained with different local search probabilities considered and the GA parameters 

specified as previously, but with pc  = 0.8, pm = 0.2. The best result was achieved when ps = 0.6 and the worst 

result was obtained when ps = 1, showing the importance of using the right local search probability.  

 

ps Max µµµµD 

5000 iterations 

0 0.610 

0.1 0.672 

0.2 0.730 

0.3 0.729 

0.4 0.772 

0.5 0.730 

0.6 0.809 

0.7 0.804 

0.8 0.801 

0.9 0.728 

1 0.645 
 

 

Table 3: Results achieved with different ps and pc = 0.8 and pm = 0.2 

 

Additionally, the local search effect on the algorithm’s search ability was analysed by considering the GA 

parameters that yielded the best solution, specified as: N = 60, pc = 1.0, pm = 0.2, Nelite = 10. Table 4 shows the 

results obtained considering different search probabilities. The best result was achieved when ps = 0.8, showing 

the importance of selecting the right probabilities not only for the crossover and mutation operators but also for 

the local search procedure.  

 

ps Max µµµµD 

5000 iterations 

0 0.657 

0.1 0.704 

0.2 0.703 

0.3 0.711 

0.4 0.717 

0.5 0.721 

0.6 0.807 

0.7 0.814 

0.8 0.819 

0.9 0.734 

1 0.710 

 

Table 4: Results achieved with different ps and pc = 1.0 and pm = 0.2 

 

 

 



6. Summary 

 

A new approach to single machine scheduling is developed. A single machine scheduling is considered as a 

multi-objective problem with fuzzy due dates. In the presence of the fuzzy dates, the objectives become fuzzy 

too. They are considered simultaneously using the arithmetic mean as an aggregation operator of all the 

satisfaction grades achieved with respect to the given objectives. A GA combined with tabu-search is applied to 

find a scheduling solution that maximises the overall satisfaction grade.  

 

The algorithm is successfully applied to a real-world problem of kiln scheduling, that involved two objectives. 

The use of fuzzy duedates proved to be beneficial when subjective judgement is appropriate to use. The results 

obtained showed that the algorithm performs better when the genetic search and local search are combined. The 

algorithm developed is flexible in the sense that it can be applied to a problem with any number of fuzzy 

objectives.  

 

After discussing the preliminary results with the collaborating company, some directions for further research are 

outlined. 

 

Other parameters of importance for kiln scheduling will be included, such as earliness and tardiness penalties. 

Different membership functions for the jobs’ fuzzy duedates such as triangular or trapezoidal shapes will be 

used. 

 

Other kind of t-norms (such as product), as well as the use of other aggregation operators such as t-conorm and 

ordered weighted aggregating (OWA), will be analysed.  

 

Additional constraints related to car loading will be included into the model. The car loading is an indispensable 

element in the kiln scheduling since the total size and weight of products to be loaded are restricted. The effect 

that an appropriate car loading can have on energy consumption will be investigated. 
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