Skip to main content
Log in

Set covering-based surrogate approach for solving sup-\({\mathcal{T}}\) equation constrained optimization problems

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This work considers solving the sup-\({\mathcal{T}}\) equation constrained optimization problems from the integer programming viewpoint. A set covering-based surrogate approach is proposed to solve the sup-\({\mathcal{T}}\) equation constrained optimization problem with a separable and monotone objective function in each of the variables. This is our first trial of developing integer programming-based techniques to solve sup-\({\mathcal{T}}\) equation constrained optimization problems. Our computational results confirm the efficiency of the proposed method and show its potential for solving large scale sup-\({\mathcal{T}}\) equation constrained optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi Molai A., Khorram E. (2007) A modified algorithm for solving the proposed models by Ghodousian and Khorram and Khorram and Ghodousian. Applied Mathematics and Computation 190: 1161V1167

    Google Scholar 

  • Abbasi Molai A., Khorram E. (2008) An algorithm for solving fuzzy relation equations with max-T composition operator. Information Sciences 178(5): 1293–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Balas E., Carrera M. C. (1996) A dynamic subgradient-based branch and bound procedure for set covering. Operations Research 44: 875–890

    Article  MathSciNet  MATH  Google Scholar 

  • Balas E., Ho A. (1980) Set covering algorithms using cutting planes, heuristics and subgradient optimization: A computational study. Mathematical Programming 12: 37–60

    MathSciNet  MATH  Google Scholar 

  • Beasley J. E. (1987) An algorithm for the set covering problem. European Journal of Operational Research 31: 85–93

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley J. E. (1990) A Lagrangian heuristic for the set covering problem. Naval Research Logistics 37: 151–164

    Article  MathSciNet  MATH  Google Scholar 

  • Beasley J. E., Chu P. C. (1996) A genetic algorithm for the set covering problem. European Journal of Operational Research 94: 392–404

    Article  MATH  Google Scholar 

  • Blyth T. S., Janowitz M. F. (1972) Residuation Theory. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Caprara A., Toth P., Fischetti M. (2000) Algorithms for the set covering problem. Annals of Operations Research 98: 353–371

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola A., Sessa S., Pedrycz W., Sanchez E. (1989) Fuzzy relation equations and their applications to knowledge engineering. Kluwer, Dordrecht, Netherlands

    MATH  Google Scholar 

  • Elbassioni K. M. (2008) A note on systems with max-min and max-product constraints. Fuzzy Sets and Systems 159: 2272–2277

    Article  MathSciNet  MATH  Google Scholar 

  • Fang S.-C., Li G. (1999) Solving fuzzy relation equations with a linear objective function. Fuzzy Sets and Systems 103(1): 107–113

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher M. L., Kedia P. (1990) Optimal solutions of set covering/partitioning problems using dual heuristics. Management Science 36: 674–688

    Article  MathSciNet  MATH  Google Scholar 

  • Ghodousian A., Khorram E. (2006) An algorithm for optimizing the linear function with fuzzy relation equation constraints regarding max-prod composition. Applied Mathematics and Computation 178(2): 502–509

    MathSciNet  MATH  Google Scholar 

  • Golumbic M. C., Hartman I. B.-A. (2005) Graph theory, combinatorics and algorithms: Interdisciplinary applications. Springer, New York

    Book  MATH  Google Scholar 

  • Guu S. M., Wu Y. K. (2002) Minimizing a linear objective function with fuzzy relation equation constraints. Fuzzy Optimization and Decision Making 1(4): 347–360

    Article  MathSciNet  MATH  Google Scholar 

  • Held M., Wolfe P., Crowder H. P. (1974) Validation of subgradient optimization. Mathematical Programming 6: 62–88

    Article  MathSciNet  MATH  Google Scholar 

  • Khachiyan L., Boros E., Elbassioni K., Gurvich V. (2006) An efficient implementation of a quasi-polynomial algorithm for generating hypergraph transversals and its application in joint generation. Discrete Applied Mathematics 154: 2350–2372

    Article  MathSciNet  MATH  Google Scholar 

  • Khorram E., Ghodousian A. (2006) Linear objective function optimization with fuzzy relation equation constraints regarding max-av composition. Applied Mathematics and Computation 173(2): 872–886

    Article  MathSciNet  MATH  Google Scholar 

  • Klement E. P., Mesiar R., Pap E. (2000) Triangular norms. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Li, P., Fang, S.-C. & Zhang, X. (2008). Nonlinear optimization subject to a system of fuzzy relational equations with max-min composition. In Proceedings of the seventh international symposium of operations research and its applications, Lijiang, China, pp. 1–9.

  • Li P., Fang S.-C. (2008) On the resolution and optimization of a system of fuzzy relational equations with sup-\({\mathcal{T} }\) composition. Fuzzy Optimization and Decision Making 7(2): 169–214

    Article  MathSciNet  MATH  Google Scholar 

  • Li P., Fang S.-C. (2009) A survey on fuzzy relational equations, Part I: classification and solvability. Fuzzy Optimization and Decision Making 8: 179–229

    Article  MathSciNet  MATH  Google Scholar 

  • Li P., Fang S.-C. (2009) Latticized linear optimization on the unit interval. IEEE Transactions on Fuzzy Systems 17: 1353–1365

    Article  Google Scholar 

  • Loetamonphong J., Fang S.-C., Young R. (2002) Multi-objective optimization problems with fuzzy relation equation constraints. Fuzzy Sets and Systems 127(2): 141–164

    Article  MathSciNet  MATH  Google Scholar 

  • Loetamonphong J., Fang S.-C. (2001) Optimization of fuzzy relation equations with max-product composition. Fuzzy Sets and Systems 118(3): 509–517

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes F. B., Lorena L. A. (1994) Surrogate heuristic for set covering problems. European Journal of Operational Research 79: 138–150

    Article  MATH  Google Scholar 

  • Lorena, L. A. N. & Plateau, G. (1988) A monotone decreasing algorithm for the 0-1 multiknapsack dual problem, Rapport de recherche L.I.P.N. 89-1, Université Paris-Nord, France.

  • Lu J., Fang S.-C. (2001) Solving nonlinear optimization problems with fuzzy relation equation constraints. Fuzzy Sets and Systems 119(1): 1–20

    Article  MathSciNet  Google Scholar 

  • Markovskii A. (2005) On the relation between equations with max-product composition and the covering problem. Fuzzy Sets and Systems 153(2): 261–273

    Article  MathSciNet  MATH  Google Scholar 

  • Nemhauser K., Wolsey L. A. (1988) Integer and combinatorial optimization. Wiley, New York

    MATH  Google Scholar 

  • Parker R. G. (1988) Discrete optimization. Academic Press, New York

    MATH  Google Scholar 

  • Pedrycz W. (1985) On generalized fuzzy relational equations and their applications. Journal of Mathematical Analysis and Applications 107: 520–536

    Article  MathSciNet  MATH  Google Scholar 

  • Peeva K., Kyosev Y. (2004) Fuzzy relational calculus: Theory, applications, and software. World Scientific, New Jersey

    MATH  Google Scholar 

  • Sanchez E. (1976) Resolution of composite fuzzy relation equations. Information and Control 30(1): 38–48

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez E. (1977) Solutions in composite fuzzy relation equations: Application to medical diagnosis in Brouwerian logic. In: Gupta M. M., Saridis G. N., Gaines B. R. (eds) Fuzzy automata and decision processes. North-Holland, Amsterdam, pp 221–234

    Google Scholar 

  • Shieh B. S. (2010) A note on a paper by Molai and Khorram. Applied Mathematics and Computation 216: 3419–3422

    Article  MathSciNet  MATH  Google Scholar 

  • Wang H. F. (1995) A multi-objective mathematical programming problem with fuzzy relation constraints. Journal of Multi-Criteria Decision Analysis 4(1): 23–35

    Article  MATH  Google Scholar 

  • Wang P. Z., Zhang D. Z., Sanchez E., Lee E. S. (1991) Latticized linear programming and fuzzy relation inequalities. Journal of Mathematical Analysis and Applications 159(1): 72–87

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y. K., Guu S. M., Liu J. Y. C. (2002) An accelerated approach for solving fuzzy relation equations with a linear objective function. IEEE Transactions on Fuzzy Systems 10(4): 552–558

    Article  Google Scholar 

  • Wu Y. K., Guu S. M. (2004) A note on fuzzy relation programming problems with max-strict-t-norm composition. Fuzzy Optimization and Decision Making 3(3): 271–278

    Article  MathSciNet  MATH  Google Scholar 

  • Wu Y. K., Guu S. M. (2005) Minimizing a linear function under a fuzzy max- min relational equation constraint. Fuzzy Sets and Systems 150(1): 147–162

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J. H. & Cao, B. Y. (2007). Posynomial fuzzy relation geometric programming. In: Melin, P., Castillo, O., Aguilar, L. T., Kacprzyk, J., Pedrycz, W. (eds.), Proceedings of the 12th international fuzzy systems association world congress, Cancun, Mexico, pp. 563–572.

  • Yang, J. H. & Cao, B. Y. (2005). Geometric programming with fuzzy relation equation constraints. in proceedings of the ieee international conference on fuzzy systems, Reno, NV, pp. 557–560.

  • Zimmermann K. (2007) A note on a paper by E. Khorram and A. Ghodousian. Applied Mathematics and Computation 188: 244–245

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Feng Hu.

Additional information

This work was supported by the National Science Council (NSC) of R.O.C., under Grant NSC 99-2918-I-214-001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, CF., Fang, SC. Set covering-based surrogate approach for solving sup-\({\mathcal{T}}\) equation constrained optimization problems. Fuzzy Optim Decis Making 10, 125–152 (2011). https://doi.org/10.1007/s10700-011-9099-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-011-9099-0

Keywords

Navigation