Skip to main content
Log in

Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

This paper addresses the optimization problems with interval-valued objective function. For this we consider two types of order relation on the interval space. For each order relation, we obtain KKT conditions using of the concept of generalized Hukuhara derivative (\(gH\)-derivative) for interval-valued functions. The \(gH\)-derivative is a concept more general of derivative for this class of functions than other concepts of derivative. We make some comparison with previous result given by other authors and we show some advantages of our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assev, S. M. (1986). Quasilinear operators and their application in the theory of multivalued mappings. Proceedings of the Steklov Institute of Mathematics, 2, 23–52.

  • Aubin, J. P., & Cellina, A. (1984). Differential inclusions. New York: Springer.

    Book  MATH  Google Scholar 

  • Aubin, J. P., & Franskowska, H. (1990). Set-valued analysis. Boston: Birkhäuser.

    MATH  Google Scholar 

  • Aubin, J. P., & Franskowska, H. (2000). Introduction: Set-valued analysis in control theory. Set-Valued Analysis, 8, 1–9.

    Article  MATH  Google Scholar 

  • Banks, H. T., & Jacobs, M. Q. (1970). A differential calculus for multifunctions. Journal of Mathematical Analysis and Applications, 29, 246–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Bede, B., & Gal, S. G. (2005). Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets and Systems, 151, 581–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Bitran, G. R. (1980). Linear multiple objective problems with interval coefficients. Management Science, 26, 694–706.

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano, Y., & Román-Flores, H. (2008). On the new solution of fuzzy differential equations. Chaos, Solitons & Fractals, 38, 112–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano, Y., Román-Flores, H., & Jiménez-Gamero, M. D. (2011). Generalized derivative and \(\pi \)-derivative for set-valued functions. Information Sciences, 181, 2177–2188.

    Google Scholar 

  • Chanas, S., & Kuchta, D. (1996). Multiobjective programming in optimization of interval objective functions—a generalized approach. European Journal of Operational Research, 94, 594–598.

    Article  MATH  Google Scholar 

  • Das, S. K., Goswami, A., & Alam, S. S. (1999). Multiobjective transportation problem with interval cost, source and destination parameters. European Journal of Operational Research, 17, 100–112.

    Article  Google Scholar 

  • De Blasi, F. S. (1976). On the differentiability of multifunctions. Pacific Journal of Mathematics, 66, 67–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Delagado, M., Kacprzyk, J., Verdegay, J. L., & Vila, M. A. (Eds.). (1994). Fuzzy optimization: Recent advances. New York: Physica.

    Google Scholar 

  • Diamond, P., & Kloeden, P. (1994). Metric apace of fuzzy sets: Theory and application. Singapore: World Scientific.

    Book  Google Scholar 

  • Hong-yi, C. (2007). Interval programming model for risk-based partner selection of virtual enterprise. Chinese Business Review, 6, 34–41.

    Google Scholar 

  • Hukuhara, M. (1967). Integration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj, 10, 205–223.

    MathSciNet  MATH  Google Scholar 

  • Ibrahim, A.-G. M. (1996). On the differentiability of set-valued functions defined on a Banach space and mean value theorem. Applied Mathematics and Computation, 74, 76–94.

    Article  Google Scholar 

  • Ida, M. (1996). Multiple objective linear programming with interval coefficients and its all efficient solutions. In Proceedings of IEEE CDC in Kobe, (pp. 1247–1249).

  • Ida, M., & Katai, O. (1993). Discrimination methods of efficient solutions for multiobjective linear programming problems with interval coefficients. Transactions of the SICE, 29, 1247–1249.

    Google Scholar 

  • Inuiguchi, M., & Kume, Y. (1991). Goal programming problems with interval coefficients and target intervals. European Journal of Operational Research, 52, 345–360.

    Article  MATH  Google Scholar 

  • Inuiguchi, M., & Sakawa, M. (1995). Minimax regret solution to linear programming problems with an interval objective function. European Journal of Operational Research, 86, 526–536.

    Article  MATH  Google Scholar 

  • Inuiguchi, M., & Ramík, J. (2000). Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111, 3–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibushi, H., & Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 48, 219–225.

    Article  Google Scholar 

  • Jiang, C., Han, X., Liu, G. R., & Liu, G. P. (2008). A nonlinear interval number programming method for uncertain optimization problems. European Journal of Operational Research, 188, 1–13.

    Google Scholar 

  • Lai, Y.-J., & Hwang, C.-L. (1992). Fuzzy mathematical programming: Methods and applications. Lecture notes in economics and mathematical systems, (Vol. 394). Berlin: Springer.

  • Lai, Y.-J., & Hwang, C.-L. (1994). Fuzzy multiple objective decision making: Methods and applications. Lecture notes in economics and mathematical systems (Vol. 404). Berlin: Springer.

  • Markov, S. (1977). A non-standard subtraction of intervals. Serdica, 3, 359–370.

    MathSciNet  MATH  Google Scholar 

  • Markov, S. (1979). Calculus for interval functions of a real variable. Computing, 22, 325–377.

    Article  MathSciNet  MATH  Google Scholar 

  • Mishmast, N. H., & Alineghad, M. (2008). Solving programming problem by necessarily efficiency points. International Mathematical Forum, 3, 99–106.

    MathSciNet  MATH  Google Scholar 

  • Oliveira, C., & Henggeler Antunes, C. (2007). Multiple objective linear programming models with interval coefficients—an illustrated overview. European Journal of Operational Research, 181, 1434– 1463.

    Google Scholar 

  • Radströn, H. (1952). An embedding theorem for spaces of convex sets. Proceedings of the American Mathematical Society, 3, 165–169.

    MathSciNet  Google Scholar 

  • Slowiński, R. (Ed.). (1998). Fuzzy sets in decision analysis, operations research and statistics. Boston: Kluwer.

    MATH  Google Scholar 

  • Slowiński, R., & Teghem, J. (Eds.). (1990). Stochastic versus fuzzy approaches to multiobjective mathematical programming. Boston: Kluwer.

    MATH  Google Scholar 

  • Stefanini, L. (2010). A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and Systems, 161, 1564–1584.

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanini, L., & Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis, 71, 1311–1328.

    Article  MathSciNet  MATH  Google Scholar 

  • Tolstonogov, A. (2000). Differential inclusions in a Banach space. The Netherlands: Kluwer.

    Book  MATH  Google Scholar 

  • Wu, H.-C. (2003a). Duality theorems in fuzzy mathematical programming problems based on the concept of necessity. Fuzzy Sets and Systems, 139, 363–377.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2003b). Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optimization and Decision Making, 2, 61–73.

    Article  MathSciNet  Google Scholar 

  • Wu, H.-C. (2004). Evaluate fuzzy optimization problems based on biobjective programming problems. Computers and Mathematics with Applications, 47, 893–902.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2007). The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research, 176, 46–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2009a). The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions. Fuzzy Optimization and Decision Making, 8, 295–321.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2009b). The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. European Journal of Operational Research, 196, 49–60.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research in this paper has been partially supported by Fondecyt-Chile through project 1120665, FAPESP—Brasil under the grant 2011/13985-0 and Ministerio de Ciencia e Innovación, Spain, through grant MTM2008-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chalco-Cano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalco-Cano, Y., Lodwick, W.A. & Rufian-Lizana, A. Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optim Decis Making 12, 305–322 (2013). https://doi.org/10.1007/s10700-013-9156-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-013-9156-y

Keywords

Navigation