Skip to main content
Log in

Applying the concept of null set to solve the fuzzy optimization problems

  • Published:
Fuzzy Optimization and Decision Making Aims and scope Submit manuscript

Abstract

The concept of null set in the space of fuzzy numbers is introduced. Based on this concept, we can define two partial orderings according to the subtraction and Hukuhara difference between any two fuzzy numbers. These two partial orderings will be used to define the solution concepts of fuzzy optimization problems. On the other hand, we transform the fuzzy optimization problems into a conventional vector optimization problem. Under these settings, we can apply the technique of scalarization to solve this transformed vector optimization problem. Finally, we show that the optimal solution of the scalarized problem is also the optimal solution of the original fuzzy optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellmam, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Sciences, 17, 141–164.

    Article  MathSciNet  Google Scholar 

  • Buckley, J. J. (1988). Possibility and necessity optimization. Fuzzy Sets and Systems, 25, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley, J. J. (1989). Solving possibilistic linear programming problems. Fuzzy Sets and Systems, 31, 329–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Buckley, J. J. (1995). Joint solution to fuzzy programming problems. Fuzzy Sets and Systems, 72, 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano, Y., Lodwick, W. A., Osuna-Gómez, R., & Rufian-Lizana, A. (2016). The Karush–Kuhn–Tucker optimality conditions for fuzzy optimization problems. Fuzzy Optimization and Decision Making, 15, 57–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano, Y., Lodwick, W. A., & Rufian-Lizana, A. (2013). Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative. Fuzzy Optimization and Decision Making, 12, 305–322.

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano, Y., Silva, G. N., & Rufian-Lizana, A. (2015). On the Newton method for solving fuzzy optimization problems. Fuzzy Sets and Systems, 272, 60–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado, M., Kacprzyk, J., Verdegay, J.-L., & Vila, M. A. (Eds.). (1994). Fuzzy optimization: Recent advances. New York: Physica-Verlag.

    MATH  Google Scholar 

  • Diamond, P. (1991). Congruence classes of fuzzy sets form a banach space. Journal of Mathematical Analysis and Applications, 162, 144–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Herrera, F., Kovács, M., & Verdegay, J. L. (1993). Optimality for fuzzified mathematical programming problems: A parametric approach. Fuzzy Sets and Systems, 54(1993), 279–285.

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi, M. (2007). Necessity measure optimization in linear programming problems with fuzzy polytopes. Fuzzy Sets and Systems, 158, 1882–1891.

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi, M., & Ichihashi, H. (1990). Relative modalities and their use in possibilistic linear programming. Fuzzy Sets and Systems, 35, 303–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi, M., Ichihashi, H., & Kume, Y. (1993). Modality constrained programming problems: A unified approach to fuzzy mathematical programming problems in the setting of possibility theory. Information Sciences, 67, 93–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Inuiguchi, M., & Ramík, J. (2000). Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111, 3–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Jamison, K. D. (2000). Possibilities as cumulative subjective probabilities and a norm on the space of congruence classes of fuzzy numbers motivated by an expected utility functional. Fuzzy Sets and Systems, 111, 331–339.

    Article  MathSciNet  MATH  Google Scholar 

  • Jayswal, A., Stancu-Minasian, I., & Ahmad, I. (2011). On sufficiency and duality for a class of interval-valued programming problems. Applied Mathematics and Computation, 218, 4119–4127.

    Article  MathSciNet  MATH  Google Scholar 

  • Julien, B. (1994). An extension to possibilistic linear programming. Fuzzy Sets and Systems, 64, 195–206.

    Article  MathSciNet  Google Scholar 

  • Lai, Y.-J., & Hwang, C.-L. (1992). Fuzzy mathematical programming: Methods and applications., Lecture notes in economics and mathematical systems New York: Springer.

    Book  MATH  Google Scholar 

  • Lai, Y.-J., & Hwang, C.-L. (1994). Fuzzy multiple objective decision making: Methods and applications., Lecture notes in economics and mathematical systems New York: Springer.

    Book  MATH  Google Scholar 

  • Li, L., Liu, S., & Zhang, J. (2015). On fuzzy generalized convex mappings and optimality conditions for fuzzy weakly univex mappings. Fuzzy Sets and Systems, 280, 107–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Lodwick, W. A., & Bachman, K. A. (2005). Solving large-scale fuzzy and possibilistic optimization problems. Fuzzy Optimization and Decision Making, 4, 257–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Lodwick, W. A., & Jamison, K. D. (2007). Theoretical and semantic distinctions of fuzzy, possibilistic, and mixed fuzzy/possibilistic optimization. Fuzzy Sets and Systems, 158, 1861–1872.

    Article  MathSciNet  MATH  Google Scholar 

  • Lodwick, W. A., & Jenkins, O. A. (2013). Constrained intervals and interval spaces. Soft Computing, 17, 1393–1402.

    Article  MATH  Google Scholar 

  • Lodwick, W. A., & Kacprzyk, J. (Eds.). (2010). Fuzzy optimization: Recent advances and applications. Berlin: Springer.

    MATH  Google Scholar 

  • Luhandjula, M. K., Ichihashi, H., & Inuiguchi, M. (1992). Fuzzy and semi-infinite mathematical programming. Information Sciences, 61, 233–250.

    Article  MathSciNet  MATH  Google Scholar 

  • Markov, S. (2004). On quasilinear spaces of convex bodies and intervals. Journal of Computational and Applied Mathematics, 162, 93–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Osuna-Gomez, R., Chalco-Cano, Y., Hernandez-Jimenez, B., & Ruiz-Garzon, G. (2015). Optimality conditions for generalized differentiable interval-valued functions. Information Sciences, 321, 136–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Pirzada, U. M., & Pathak, V. D. (2013). Newton method for solving the multi-variable fuzzy optimization problem. Journal of Optimization Theorey and Applications, 156, 867–881.

    Article  MathSciNet  MATH  Google Scholar 

  • Słowiński, R. (Ed.). (1998). Fuzzy sets in decision analysis. Operations research and statistics. Boston: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Słowiński, R., & Teghem, J. (Eds.). (1990). Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty. Boston: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Tanaka, H., & Asai, K. (1984). Fuzzy linear programming problems with fuzzy numbers. Fuzzy Sets and Systems, 13, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka, H., Okuda, T., & Asai, K. (1974). On fuzzy-mathematical programming. Journal of Cybernetics, 3, 37–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Verdegay, J. L. (1984). A dual approach to solve the fuzzy linear programming problems. Fuzzy Sets and Systems, 14, 131–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2004). Duality theory in fuzzy optimization problems. Fuzzy Optimization and Decision Making, 3, 345–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2007). Duality theorems and saddle point optimality conditions in fuzzy nonlinear programming problems based on different solution concepts. Fuzzy Sets and Systems, 158, 1588–1607.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2008). The optimality conditions for optimization problems with fuzzy-valued objective functions. Optimization, 57, 473–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2009). The Karush–Kuhn–Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective functions. Fuzzy Optimization and Decision Making, 8, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H.-C. (2010). Duality theory for optimization problems with interval-valued objective functions. Journal of Optimization Theory and Applications, 144, 615–628.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann, H.-J. (1976). Description and optimization of fuzzy systems. International Journal of General Systems, 2, 209–215.

    Article  MATH  Google Scholar 

  • Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1, 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann, H.-J. (1985). Applications of fuzzy set theory to mathematical programming. Information Sciences, 36, 29–58.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsien-Chung Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HC. Applying the concept of null set to solve the fuzzy optimization problems. Fuzzy Optim Decis Making 18, 279–314 (2019). https://doi.org/10.1007/s10700-018-9299-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10700-018-9299-y

Keywords

Navigation