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Abstract
As a type of coronavirus, COVID-19 has quickly spread around the majority of coun-
tries worldwide, and seriously threatens human health and security. This paper aims to
depict cumulative numbers of COVID-19 infections in China using the growth model
chosen by cross validation. The residual plot does not look like a null plot, so we can
not find a distribution function for the disturbance term that is close enough to the
true frequency. Therefore, the disturbance term can not be characterized as random
variables, and stochastic regression analysis is invalid in this case. To better describe
this pandemic automatically, this paper first employs uncertain growthmodels with the
help of uncertain hypothesis tests to detect and modify outliers in data. The forecast
value and confidence interval for the cumulative number of COVID-19 infections in
China are provided.

Keywords Uncertainty theory · Uncertain statistics · Uncertain regression analysis ·
Uncertain hypothesis test · COVID-19

1 Introduction

Regression analysis estimates relationships among variables. Although stochastic
regression analysis has a long history of development, they are all considered under the
framework of probability theory. However, the premise of probability theory, i.e., the
estimated distribution being close enough to the true frequency, cannot be satisfied in
many cases. Motivated by this, Liu (2007, 2009) founded uncertainty theory based on
normality, duality, subadditivity, and product axioms to better address the inaccuracy
of the human system. Currently, this theory has been successfully applied in uncertain
statistics (Liu 2010). For example, Yang and Liu (2019) first presented uncertain time
series analysis to predict future values based on imprecise observations. Following that,
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more research interests (Yang and Ni 2020; Liu and Yang 2020b; Tang 2020) were
drawn to study and extend this topic. Especially, Ye and Yang (2020) applied uncer-
tain time series to modelling cumulative numbers of COVID-19 infections. Uncertain
regression analysis has been developed to address relationships between variables
under the framework of uncertainty theory. Yao and Liu (2018) proposed least squares
estimations for unknown parameters in uncertain multiple regression models. Moti-
vated by this, researchers considered other estimations such as least absolute deviations
estimations (Liu and Yang 2020a), Tukey’s biweight estimations (Chen 2020), and
maximum likelihood estimations (Lio and Liu 2020). In addition, Lio and Liu (2018)
provided the confidence interval for the response variable. To evaluate different uncer-
tain regression models, cross-validation methods (Liu and Jia 2020; Liu 2019) have
attracted some scholars’ attention. Later, estimations for the unknown parameters in
uncertain multivariate regression models were derived (Ye and Liu 2020b; Zhang
et al. 2020). The appropriateness of estimations for unknown parameters in uncer-
tain regression analysis can be tested using the uncertain hypothesis test (Ye and Liu
2020a).

There is no doubt that emerging infectious diseases seriously threaten human health
and security. Currently, as an emerging respiratory infectious disease, coronavirus dis-
ease 2019 (abbreviated “COVID-19”) is caused by severe acute respiratory syndrome
coronavirus, and is characterized as a “pandemic” by the World Health Organization.
Reported illnesses of COVID-19 have ranged from very mildness to severity, includ-
ing illness resulting in death. In a short time, the outbreak has rapidly worsened, and
has received considerable global attention. After the irresolution in December 2019
and January 2020, the Chinese government has taken a series of multifaceted public
health interventions, such as home confinement, traffic restrictions, and centralized
quarantine, to effectively strengthen the control of the COVID-19 outbreak. In con-
trast, many other countries are in the acceleration phase of the pandemic. According
to the World Health Organization (2020), the number of confirmed cases worldwide
reached 332, 930 byMarch 23, 2020. The relationship between the cumulative number
of COVID-19 infections and time is a core issue reflecting the severity of COVID-19.
For this purpose, growth models as a type of nonlinear regression model represent
how a particular quantity increases over time, and have been used to describe previous
epidemic growth patterns (Chowell et al. 2016).

To guide prevention and mitigation plans, this paper aims to characterize the cumu-
lative number of COVID-19 infections in China excluding imported cases (hereinafter
referred to as cumulative numbers of COVID-19 infections in China) using growth
models from February 13 to March 23, 2020. The data before February 13 are not
used because they are not real-time data due to the limitation of testing ability. Sec-
tion 2 will choose a best S-shaped growth model using cross validation among several
growth models, and give the results using stochastic growth models. Section 3 is
going to introduce some fundamental knowledge about the uncertain growth model.
The uncertain hypothesis test and data modification will be introduced in Sect. 4.
Section 5 will present an algorithm. Following that, Sect. 6 will analyze cumulative
numbers of COVID-19 infections in China using uncertain growth models and uncer-
tain hypothesis tests. Section 7 is going to compare results obtained from the stochastic
growth model and uncertain growth model. Finally, Sect. 8 will conclude this paper.
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Table 1 Cumulative numbers of COVID-19 infections in China excluding imported cases from January 20
to March 23, 2020 reported by http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml

291 440 571 830 1287 1975 2744 4515

5974 7711 9692 11,791 14,380 17,205 20,438 24,324

28,018 31,161 34,546 37,198 40,171 42,638 44,653 59,804

63,851 66,492 68,500 70,548 72,436 74,185 74,576 75,465

76,288 76,936 77,150 77,658 78,064 78,497 78,824 79,251

79,824 80,026 80,151 80,270 80,389 80,516 80,591 80,632

80,668 80,685 80,699 80,708 80,725 80,729 80,733 80,737

80,738 80,739 80,739 80,739 80,739 80,740 80,740 80,744
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Fig. 1 Cumulative numbers of COVID-19 infections in China excluding imported cases from February 13
(x = 1) to March 23, 2020 (x = 40) reported by National Health Commission of China

2 Stochastic growthmodel for the cumulative number of COVID-19
infections in China

Before February 13, cumulative numbers of COVID-19 infections in China are not
real-time data due to the limitation of testing ability. Thus we focus on cumulative
numbers of COVID-19 infections in China from February 13 toMarch 23, 2020 which
can be seen in Table 1.

As Fig. 1 shows, in this period, the pandemic growth pattern in China coincides
with an S-shaped growth curve due to the urgent and ambitious measures taken by
the government. For example, since January 23, the government blocked all outbound
transportation from Wuhan and banned public transit. A series of social distancing
measures such as compulsory mask wearing and cancellation of social gatherings,
were also implemented. On February 17, the government initiated a door-to-door
symptom screening for all residents.
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Table 2 Different S-shaped growth models and average testing error (ATE) with 5 fold cross validation

Model Form ATE

Logistic y = β0/(1 − β1 exp(−β2x)) + ε 1.6693 × 105

Gompertz y = β0 exp(−β1 exp(−β2x)) + ε 2.0507 × 107

Mitcherlich y = β0 − β1β
x
2 + ε 1.9857 × 107

Monomolecular y = β0(1 − β1 exp(−β2x)) + ε 2.0445 × 107

Negative exponential y = β0(1 − exp(−β1x)) + ε 9.3902 × 107

To select a model with the best generalization ability among some S-shaped growth
models, we apply v-fold cross validation. Data are partitioned into v almost equal-
sized subsets, and data in each subset are treated as future values to calculate square
testing error with parameters estimated using data in other subsets. Then, the model
with the smallest average testing error is selected. We use different S-shaped growth
models to investigate how the cumulative number of COVID-19 infections in China
increase over time. Average testing errors for different S-shaped growth models are
shown in Table 2.

Therefore, we choose the logistic growth model

y = β0/(1 − β1 exp(−β2x)) + ε

where the response variable y represents the cumulative number of COVID-19 infec-
tions in China, the explanatory variable x represents the day after February 12, 2020,
and ε is a disturbance term. From January 20 toMarch 23, 2020, values of the explana-
tory variable x are integers from−23 to 40, respectively. That is to say, the explanatory
variable x equals to−23,−22, . . ., 40 on January 20, January 21, . . ., March 23, 2020,
respectively. With cumulative numbers of COVID-19 infections in China from Febru-
ary 13 (x = 1) to March 23, 2020 (x = 40), the estimations (β̂0, β̂1, β̂2) for unknown
parameters (β0, β1, β2) using the function “lsqnonlin” inVersion 8.6.0.267246Matlab
are

(β̂0, β̂1, β̂2) = (80786,−0.3088, 0.1841).

Thus the stochastic growth model is

y = 80786/(1 + 0.3088 exp(−0.1841x)) + ε (1)

where ε has an estimated expected value ê = −0.3274 and an estimated variance
σ̂ 2 = 256.242.

To evaluate this model, we consider the coefficient of determination (R2), which
represents the proportion of the variance for a dependent variable that is explained
by variables in a regression model. With data (xi , yi ), i = 1, 2, . . . , n, the total sum
of squares is SStot = ∑

i (yi − ȳ)2 where ȳ = 1
n

∑n
i=1 yi , the sum of squares of

residual is SSres = ∑
i (yi − ŷi )2 where ŷi is the fitted value, and the coefficient of
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Fig. 2 Residual plot for the stochastic growth model (1)

determination R2 is R2 = 1 − SSres/SStot . The R2 for the stochastic growth model
(1) is 0.9963, where in the best case R2 = 1.

Stochastic regression analysis requires that a residual plot should look like a null
plot which has constant mean, constant variance, and no separated points. However, it
seems that the residual plot for the stochastic growth model (1) shown in Fig. 2 is not a
null plot. Under this situation, if we use stochastic regression analysis, the distribution
function we give is not close enough to the real frequency for the disturbance term.
Therefore, the disturbance term can not be characterized as a random variable. As a
result, stochastic regression analysis is invalid at this case, and that is the reason why
we try to use uncertain regression analysis next.

3 Uncertain growthmodel for the cumulative number of COVID-19
infections in China

In this section, we introduce some fundamental knowledge about the uncertain growth
model, including parameter estimation, residual analysis, and prediction.

The uncertain logistic growth model is

y = β0/(1 − β1 exp(−β2x)) + ε (2)

where y represents the cumulative number of COVID-19 infections in China, x repre-
sents the day after February 12, 2020, and ε is a disturbance term characterized as an
uncertain variable. With data (xi , yi ), i = 1, 2, . . . , n for the uncertain growth model
(2), the least squares estimations Yao and Liu (2018) (β̂0, β̂1, β̂2) for (β0, β1, β2) is
the solution of the minimization problem

min
β0>0,β1<0,β2>0

n∑

i=1

(yi − β0/(1 − β1 exp(−β2xi )))
2 , (3)
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and the fitted growth model is

y = β̂0/(1 − β̂1 exp(−β̂2x)).

In the uncertain growth model (2), there exists a disturbance term ε that represents
the difference between the predicted response variable’s value and the true response
variable’s value. The estimated expected value and variance for ε Lio and Liu (2018)
are suggested as

ê = 1

n

n∑

i=1

ε̃i , (4)

and

σ̂ 2 = 1

n

n∑

i=1

(ε̃i − ê)2, (5)

respectively, where ε̃i are the i-th residuals defined as

ε̃i = yi − β0/(1 − β1 exp(−β2xi )), (6)

i = 1, 2, . . . , n, respectively. If we further assume the disturbance term ε is a normal
uncertain variable, then the uncertainty distribution for ε can be suggested as

Φ(x) =
(

1 + exp

(
π(ê − x)√

3σ̂

))−1

.

For a new explanatory variable x , the forecast uncertain variable Lio and Liu (2018)
of y is

ŷ = β̂0/(1 − β̂1 exp(−β̂2x)) + ε, (7)

and the forecast value of y is

μ = β̂0/(1 − β̂1 exp(−β̂2x)) + ê. (8)

According to the operational law for calculating the inverse uncertainty distributions
Liu (2007), the inverse uncertainty distribution of ŷ equals to

Ψ̂ −1(α) = β̂0/(1 − β̂1 exp(−β̂2x)) + Φ−1(α) (9)

with

Φ−1(α) = ê +
√
3σ̂

π
ln

α

1 − α
.
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Then the β (0 < β < 1) confidence interval of y Lio and Liu (2018) is

[μ − b, μ + b] (10)

where b is the minimum value such that

Ψ̂ (μ + b) − Ψ̂ (μ − b) ≥ β.

4 Uncertain hypothesis test and datamodification

In this section, we apply the uncertain hypothesis test Ye and Liu (2020a) to testing
the appropriateness of the estimated expected value ê and the estimated variance σ̂ 2

for the disturbance term ε in the uncertain growth model (2), and modify outliers.
Suppose that the disturbance term ε in the uncertain growth model (2) is a nor-

mal uncertain variable with expected value e and variance σ 2, respectively, i.e.,
ε ∼ N(e, σ ). Then for the two-side hypothesis

H0 : e = ê and σ = σ̂ versus H1 : e �= ê or σ �= σ̂ ,

the uncertain hypothesis test is

W =
{
(ε̃1, ε̃2, . . . , ε̃n)

∣
∣
∣Φ−1(α) ≤ ε̃i ≤ Φ−1(1 − α), i = 1, 2, . . . , n

}c
(11)

where ε̃i are defined in (6), and

Φ−1(α) = ê +
√
3σ̂

π
ln

α

1 − α
.

The estimated expected value ê and estimated variance σ̂ 2 for the disturbance term ε

in the uncertain growth model (2) pass the test if and only if (ε̃1, ε̃2, . . . , ε̃n) /∈ W .
For each i (i = 1, 2, . . . , n), if

ε̃i < ê +
√
3σ̂

π
ln

α

1 − α
or ε̃i > ê +

√
3σ̂

π
ln

1 − α

α
,

then (xi , yi ) is called an outlier. We modify yi as

yi = β̂0/(1 − β̂1 exp(−β̂2xi )),

and get the corresponding modified data (xi , yi ).

5 Algorithm

In this section, we present an algorithm to summarize the previous section.
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Step 1 (Parameter estimation). With the data (x1, y1), (x2, y2), . . ., (xn, yn), com-
pute least square estimations (β̂0, β̂1, β̂2) for (β0, β1, β2) in the uncertain logistic
growth model y = β0/(1−β1 exp(−β2x))+ε, i-th residuals ε̃i (i = 1, 2, . . . , n),
the estimated expected value ê, and the estimated variance σ̂ 2 according to Eqs. (3),
(6), (4), and (5), respectively.
Step 2 (Uncertain hypothesis test). For a given significance level α (e.g. α = 0.01),
construct the uncertain hypothesis test W defined in (11).
Step 3 (Data modification) If (ε̃1, ε̃2, . . . , ε̃n) /∈ W , go to Step 4. Otherwise, for
each i (i = 1, 2, . . . , n), if

ε̃i < ê +
√
3σ̂

π
ln

α

1 − α
or ε̃i > ê +

√
3σ̂

π
ln

1 − α

α
,

then set yi = β̂0/(1 − β̂2 exp(−β̂2xi )). Go to Step 1.
Step 4 (Forecast) For a new explanatory variable x , calculate the forecast uncertain
variable, the forecast value, and the β (e.g. β = 0.95) confidence interval of y
suggested as Eqs. (7), (8), and (10), respectively.

6 Real data analysis using the cumulative number of COVID-19
infections in China

6.1 The first iteration

With cumulative numbers of COVID-19 infections in China from February 13 to May
2, 2020 shown in Table 1, the least squares estimations (β̂0, β̂1, β̂2) for (β0, β1, β2)

are

(β̂0, β̂1, β̂2) = (80786,−0.3088, 0.1841)

according to Eq. (3), and the fitted growth model is

y = 80786/(1 + 0.3088 exp(−0.1841x)). (12)

It follows from Eq. (6) that for each i (i = 1, 2, . . . , 40), the i-th residual can be
calculated as

ε̃i = yi − 80786/(1 + 0.3088 exp(−0.1841xi )),

and the estimated expected value and estimated variance of the disturbance term ε are

ê = 1

40

40∑

i=1

ε̃i = −0.3274,
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Fig. 3 Residuals for uncertain growth model (12)

and

σ̂ 2 = 1

40

40∑

i=1

(ε̃i − ê)2 = 256.242,

respectively, according to Eqs. (4) and (5). Assuming that the disturbance term for
uncertain growth model (12) is a normal uncertain variable with expected value
−0.3274 and variance 256.242, i.e., ε ∼ N(−0.3274, 256.24), the uncertain hypoth-
esis test (11) for model (12) at a level of significance α = 0.01 is

W =
{
(ε̃1, ε̃2, . . . , ε̃40)

∣
∣
∣ − 649.49 ≤ ε̃i ≤ 648.84, i = 1, 2, . . . , 40

}c
.

As shown in Fig. 3, data on February 18 does not pass the test.

6.2 The second iteration

Modify data on February 18, and reestimate unknown parameters in the logistic growth
model. It follows from Eq. (3) that uncertain least squares estimations are

(β̂0, β̂1, β̂2) = (80809,−0.3090, 0.1814),

and the fitted growth model is

y = 80809/(1 + 0.3090 exp(−0.1814x)). (13)

Similarly, the estimated expected value and estimated variance of the disturbance
term in uncertain growth model (13) are ê = 0.1196 and σ̂ 2 = 208.282, respec-
tively, according to Eqs. (4) and (5). Assume that the disturbance term is a normal
uncertain variable with expected value 0.1196 and variance 208.282, i.e., ε ∼
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Fig. 4 Residuals for uncertain growth model (13)

N(0.1196, 208.28). Then the uncertain hypothesis test (11) at a level of significance
α = 0.01 is

W =
{
(ε̃1, ε̃2, . . . , ε̃40)

∣
∣
∣ − 527.54 ≤ ε̃i ≤ 527.78, i = 1, 2, . . . , 40

}c
.

As shown in Fig. 4, data on February 17 does not pass the test.

6.3 The third iteration

Modify data on February 17, and reestimate unknown parameters in the logistic growth
model. According to Eq. (3), uncertain least squares estimations are

(β̂0, β̂1, β̂2) = (80822,−0.3100, 0.1802),

and the fitted growth model is

y = 80822/(1 + 0.3100 exp(−0.1802x)). (14)

The estimated expected value and estimated variance of the disturbance term in uncer-
tain growth model (14) are ê = 0.5998 and σ̂ = 183.822, respectively, according to
Eqs. (4) and (5). Assume that the disturbance term is a normal uncertain variable with
expected value 0.5998 and variance 183.822, i.e., ε ∼ N(0.5998, 183.82). Then the
uncertain hypothesis test (11) at a level of significance α = 0.01 is

W =
{
(ε̃1, ε̃2, . . . , ε̃40)

∣
∣
∣ − 465.09 ≤ ε̃i ≤ 466.29, i = 1, 2, . . . , 40

}c
.

As shown in Fig. 5, all data pass the test.
Fitted uncertain regression growth model (14) and cumulative numbers of COVID-

19 infections inChina from January 20 toMarch 23, 2020, are shown in Fig. 6. Forecast

123



Uncertain growth model for the cumulative number of… 239

0 5 10 15 20 25 30 35 40

-465.09

0

466.29

Fig. 5 Residuals for uncertain growth model (14)
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Fig. 6 Fitted growthmodel (14) (solid line), data (black dotted line) from January 20 (x = −23) to February
12 (x = 0), and data (red dotted line) from February 13 (x = 1) to March 23, 2020 (x = 40) for cumulative
numbers of COVID-19 infections in China

values given by fitted uncertain regression growth model (14) are larger than data in
Table 1 from January 20 to February 12. This result confirms that data before February
13 are not real-time data due to the limitation of testing ability. Next, we predict the
cumulative number of COVID-19 infections in China on March 24, 2020 with the
actual value 80744. According to Eqs. (7) and (8), with uncertain growth model (14)
the forecast uncertain variable of the cumulative number of COVID-19 infections on
March 24, 2020 in China is

ŷ = 80822/(1 + 0.31 exp(−0.1802 × 41)) + ε
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where ε is a normal uncertain variable N(0.5998, 183.82), and the forecast value for
the cumulative number of COVID-19 infections in China on March 24, 2020 is

μ = 80822/(1 + 0.31 exp(−0.1802 × 41)) + 0.5998 = 80807.

It follows from Eq. (9) that the inverse uncertainty distribution of ŷ is

Ψ̂ −1(α) = 80822/(1 + 0.31 exp(−0.1802 × 41)) + Φ−1(α)

where

Φ−1(α) = 0.5998 + 183.82
√
3

π
ln

α

1 − α
.

Then the 95% confidence interval for the cumulative number of COVID-19 infections
in China on March 24, 2020, is determined as [80,439, 81,175] according to Eq. (10).
From the uncertain growth model (14) we find that the cumulative number of COVID-
19 infections in China tends to reach a saturation value by March 23, 2020. Thus,
the containment measures implemented by China, such as the extreme lockdown of
Wuhan and centralized quarantine, effectively strengthened the control of the COVID-
19 outbreak.

7 Comparison results

In this section, we compare the stochastic growth model (1) and the uncertain growth
model (14). Because the residual plot for the stochastic growth model (1) shown in
Fig. 2 does not look like a null plot, we can not find a distribution function for the
disturbance term that is close enough to the true frequency. Therefore, the disturbance
term can not be characterized as a random variable, and stochastic regression analysis
is invalid. What’s more, as we can see from Table 3 the variance for the disturbance
term in the stochastic growth model (1), i.e., σ̂ 2 = 256.242, is larger than that in the
final uncertain growthmodel (14), i.e., σ̂ 2 = 183.822.With uncertain hypothesis tests,
we detected and modified outliers in the cumulative number of COVID-19 infections
in China. As a result, the disturbance term ε in the final uncertain growth model (14)
has a smaller estimated variance. This fact shows that uncertain logistic growth model
with the help of uncertain hypothesis tests is more suitable for handling the cumulative
number of COVID-19 infections in China.

8 Conclusion

The emerging infectious disease COVID-19 seriously threatens human health and
security worldwide. In this paper, the logistic growthmodel chosen by cross validation
was implemented to depict the cumulative number of COVID-19 infections in China
from February 13 to March 23, 2020. It seemed that the residual plot is not a null plot.
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Table 3 Stochastic growth model versus uncertain growth model where μ and σ̂ 2 represent the forecast
value for the cumulative number of COVID-19 infections in China on March 24, 2020 (with the actual
value 80744) and the estimated variance for the disturbance term, respectively

Stochastic growth model Uncertain growth model

Forecast value (μ) 80,773 80,807

Variance (σ̂ 2) 256.242 183.822

So we can not find a distribution function for the disturbance term that is close enough
to the true frequency. As a result, the disturbance term can not be characterized as a
random variable, and stochastic regression analysis is invalid in this case. This paper
first employed the uncertain growth model with the help of uncertain hypothesis tests
to detect and modify outliers in data, and produced a better result automatically. The
forecast value and confidence interval for the cumulative number of COVID-19 on
March 24, 2020 were given. In the future work, better ways to handle outliers and
better fitting models may be considered.
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