
Form Method Syst Des (2007) 30:249–273
DOI 10.1007/s10703-006-0029-7

An abstract interpretation toolkit for µCRL

Miguel Valero Espada · Jaco van de Pol

Published online: 29 December 2006
C© Springer Science + Business Media, LLC 2006

Abstract This paper describes a toolkit that assists in the task of generating abstract ap-
proximations of process algebraic specifications written in the language µCRL. Abstractions
are represented by Modal Labelled Transition Systems, which are mixed transition systems
with may and must modalities. The approach permits to infer the satisfaction or refutation of
safety and liveness properties expressed in the (action-based) µ-calculus. The tool supports
the abstraction of states and action labels, which allows to deal with infinitely branching
systems.

Keywords Model checking . Process algebra . muCRL . Abstract interpretation

1 Introduction

The automatic verification of distributed systems is limited by the well known state explosion
problem. Abstraction is a useful approach to reduce the complexity of such systems. From
a concrete specification, it is possible to extract an abstract approximation that preserves
some interesting properties of the original. In [34, 37], we have presented the theoretical
framework for abstracting µCRL [19] specifications. µCRL is a language that combines the
Algebra of Communicating Processes (ACP) [4] with Abstract Data Types (ADT). In this
paper, we will describe the toolkit that implements the theory.

Semantically, abstractions are represented by Modal Labelled Transition Systems (Modal-
LTS) [28], which are mixed transition systems in which transitions are labelled with actions
and with two modalities: may and must. May transitions determine the actions that are part

M. V. Espada (�)
Dept. de Sistemas Informáticos y Programación, Universidad Complutense de Madrid, E-28040,
Madrid, Spain
e-mail: mvaleroe@pdi.ucm.es

J. van de Pol
Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: Jaco.van.de.Pol@cwi.nl

Springer

250 Form Method Syst Des (2007) 30:249–273

of some refinements of the system while must transitions denote the ones that necessarily
appear in all refinements. The use of the two modalities allows to infer the satisfaction or
refutation of formulas written in (action-based) µ-calculus [26] from the abstract to the
concrete system.

µCRL specifications consist of an ADT part, defining data operations, and a process
specification part, specifying an event-based reactive system. Processes are defined using
among others sequential and parallel composition, non-deterministic choice and hiding.
Furthermore, atomic actions, conditions and recursion are present, and may depend on data
parameters. The µCRL toolset transforms specifications to linear process equations (LPE),
by eliminating parallel composition and hiding efficiently.

We implement abstract interpretation as a transformation from LPEs to Modal-LPEs.
Modal-LPEs capture the extra non-determinism arising from abstract interpretation. They
allow a single transition to lead to a set of states with a set of action labels. In [34], we have
shown that the Modal-LTS generated from a Modal-LPE is a proper abstraction of the LTS
generated from the original LPE.

The implementation of the previously developed theory is an indispensable step in order to
apply abstract interpretation techniques to realistic systems. There exist different abstraction
approaches that can be applied within the verification methodology. For example, variable
hiding or pointwise abstraction in which, first, the value of some variables of the specification
is considered as unknown, subsequently, extra non-determinism is added to the system when
there are predicates over the abstracted variables. Another automated abstraction technique is
the so-called predicate abstraction [1] in which only the value of some conditions is retained
and propagated over the dependent predicates of the specification. Program slicing [21] is
a technique that tries to eliminate all parts of the specification that are not relevant for the
current verification.

The most common abstraction technique consists in interpreting the concrete specification
over a smaller data domain. The user selects the set of variables to abstract and provides a new
abstract domain that reflects some aspects of the original. This technique requires creative
human interaction in order to select the parts of the system that are suitable to abstract and to
provide the corresponding data domains. Furthermore, the user must ensure that the abstract
interpretation satisfies some so-called safety requirements.

Our tool implements the automatic pointwise abstraction and, moreover, assists the user to
create his own abstractions (predicate abstraction and program slicing are not implemented
in the tool). The tool supports the use of two mainstream techniques for data abstraction.
One proposed by Long, Grumberg and Clarke [8, 14], in which the concrete and the abstract
data domain are related via a homomorphic function and another based on Cousots’ Abstract
Interpretation theory (we use Abstract Interpretation with upper cases to refer to Cousots’
work and abstract interpretation with lower cases to denote the general framework), see
for example [9, 10, 24, 25], in which data is related by Galois Connections. A lifting
mechanism is also implemented, which allows to automatically build Galois Connections
from homomorphisms, see [35].

Standard abstraction frameworks are only based on the abstraction of states, which make
them unable to deal with infinitely branching systems with action labels. A unique feature of
our tool is that it allows the abstraction of both states and action labels. In the implementation,
we try to reuse existing tools as much as possible. In particular, we encode Modal-LPEs as
LPEs and Modal-LTSs as LTSs, in order to reuse the µCRL [5] and CADP [16] toolsets. We
also provide a new method to reduce the 3-valued model checking problem to two 2-valued
model checking problems.

Springer

Form Method Syst Des (2007) 30:249–273 251

This paper is structured as follows: first we give an overview of the organisation and the
main functionalities of our tool, then we introduce the basic theoretical concepts of abstract
interpretation. We continue by describing the different components of the tool in more detail
and we conclude by presenting a case study that was successfully analysed using the tool.
The paper concludes with a comparison with other related tools.

2 ToolKit

The next figure shows the different possibilities to extract abstract approximations from
concrete specifications.

concrete spec (LPE)

�

(4)

abstract spec (Modal-LPE)

�
(1)

�
(5)

(3)

abstract system (Modal-LTS)

concrete system (LTS)

�

(2)

�����������

From a concrete system, encoded as a linear process equation (LPE), we can:

– Generate the concrete transition system (1), from which we compute the abstraction
(2). Even though the resulting abstraction is optimal, this option is not very useful for
verification because the generation of the concrete transition system may be impossible
(or too expensive) due to the size of the state space.

– Generate directly the abstract Modal-LTS (3), by interpreting the concrete specification
over the abstract domain. This solution avoids the generation of the concrete transition
system.

– First, generate a symbolic abstraction of the concrete system (4), and then extract the
abstract transition system (5).

Typically, standard abstract interpretation frameworks implement the second approach (arrow
(3) of the figure), however we believe that the third (arrow (4) followed by (5)) one is more
modular. Modal-LPEs act as intermediate representation that may be subjected to new
transformations. There exists several tools and algorithms (see [6]) that manipulate linear
equations, for instance state space reduction, elimination of dead code, confluence analysis
and symbolic model checking.

2.1 Overview of the tool

The following figure describes the tool architecture. Our three new tools (oval boxes with
bold lines) are the abstractor, the abstraction loader, and the abstract model checker. They
are shortly described below. The other tools (oval boxes) are from the CADP toolset (model
checker) or from the µCRL toolset (instantiator, theorem prover and optimization tools on
LPEs). The existing µCRL and CADP tools can be reused without any change, because we
encode all objects as standard LPEs, LTSs, or regular mu-calculus formulas.

Abstractor. It is in charge of performing the symbolic transformation from LPEs to Modal-
LPEs. It gets a µCRL specification in linear format and, typically, a set of parameters and

Springer

252 Form Method Syst Des (2007) 30:249–273

variables to abstract, then it generates a new specification. The new specification is the
skeleton of the abstraction, it has to be completed by adding the abstract data specification.
The tool allows the use of different ways of abstracting (homomorphisms, Galois Connections
and lifted homomorphisms), the resulting specification will depend on the user’s choice.

Abstraction Loader. It is in charge of managing the data specifications. From the Modal-LPE
skeleton, the Loader may export the abstract signature that the user has to provide in order
to complete the specification. It is also used to import abstract data types from external
files, and to generate automatic abstractions by hiding variables. As we mentioned already,
abstract interpretations have to be proved correct. The tool generates the safety criteria that
abstract functions have to satisfy. Some safety requirements can be automatically proved
correct using the µCRL theorem prover, the others need human interaction.

Abstract Model Checker. The transition system generated from an abstraction represents a
double approximation of the original. We use a 3-valued logic in order to infer the satisfaction
or refutation of properties. The 3-valued model checking problem can be transformed to two
standard 2-valued problems. Hence one can use the existing model-checking tools.

Action labels may be abstracted. Therefore, formulas have to be abstracted according to
the abstract action labels. Due to the abstraction of formulas, in some cases, we cannot infer
the exact result of the model checking of the concrete formula; in Section 6, we provide the
guidelines to model check and to infer the results.

3 Theoretical background

3.1 Transition systems with may and must steps

The semantics of a system can be captured by a Labelled Transition System (LTS).

Definition 1. We define a Labelled Transition System (LTS) as a tuple (S, Act, →, s0) in
which S is a non-empty set of states, Act a non-empty set of transition labels, → is a possibly
infinite set of transitions and s0 in S is the initial state. A transition is a triple s

a→ s ′ with
a ∈ Act and s, s ′ ∈ S.

Basically, s
a→ s ′ denotes that the state s can evolve into the state s ′ by the execution of

an action a. To model abstractions we use a different structure that allows to represent ap-
proximations of the concrete system in a more suitable way. In a Modal Labelled Transition
System (Modal-LTS), transitions have two modalities may and must, which denote the pos-
sible and necessary steps in the refinements. This concept was introduced by Larsen and
Thomsen [28]. The formal definition extends the definition of LTSs by considering the two
modalities.

Definition 2. A Modal Labelled Transition System (Modal-LTS) is a tuple (S, Act, →�,→�,

s0) where S, Act and s0 are as in definition 1 and →�,→� are possibly infinite sets of (may
or must) transitions of the form s

a→x s ′ with s,s ′ ∈ S, a ∈ Act and x ∈ {�, �}. We require
that every must-transition is a may-transition (

a→�⊆ a→�).

From a concrete system described by an LTS we can generate an abstraction of it by relating
concrete states and action labels with abstract ones. Given the abstraction relation, we

Springer

Form Method Syst Des (2007) 30:249–273 253

Fig. 1 Tool architecture

construct a double approximation of the concrete system modelled by a Modal-LTS. The
may-transitions correspond to an over-approximation of the original and the must ones to
an under-approximation. In [34], we have presented the complete formal framework for
abstracting, now we give an example (see Fig. 1) to introduce the basic intuition (note that
we use lower case to denote concrete states and concrete action labels and upper case for
abstract states and action labels; arrows without source indicate the initial states).

If all concrete states related to an abstract state S have a transition to a concrete state
related to an abstract state S′, then there is a must transition between S and S′. Therefore,
in Fig. 1, we have the abstract must transition S0 →� S0 and S1 →� S2. If there is some
concrete state related to an abstract state S with a transition to another state related to an
abstract state S′, then there is a may transition between S and S′. In the figure, these abstract
transitions are marked by the dashed arrows. Actions labels can also be abstracted, in the
example the concrete labels: {a0, a1} are mapped to the abstract label A and {b0, b1} to B as
is shown in the figure. Whenever there is a must transition, there is also a may one, we do
not explicitly draw such cases.

Figure 2 is an informal description of abstraction using homomorphisms. In this case,
we have defined two mapping functions from concrete states to abstract states and from
concrete action labels to abstract ones. Another approach is based on Galois Connections.
Two functions α and γ over two partially ordered sets (P,⊆) and (Q, �) such that α : P → Q
and γ : Q → P form a Galois Connection [31] if and only if the following conditions hold:

1. α and γ are total and monotonic.
2. ∀p : P · p ⊆ γ ◦ α(p).
3. ∀q : Q · α ◦ γ (q) � q .

Springer

254 Form Method Syst Des (2007) 30:249–273

Fig. 2 Example of modal
abstraction of an LTS

...

... ...

...

...

... ...
W(1)

R(0)
W(0)

R(0)

W(0)

W(1)
R(0)

W(2)

R(2)

R(1)

Fig. 3 Concrete transition
system of a bounded Buffer

Concrete and abstract domains would be represented by partially ordered sets. The order
is a relation based on the precision of the information contained in the elements of the
domain. The Galois Connection approach permits to relate concrete values to more than one
abstract value, which allows to define more expressive abstractions. Technical details and
definitions can be found in [37]. Now, we include a small example to illustrate the difference
between the two theories. Figure 3 describes a bounded buffer (with capacity greater than 1)
containing natural numbers, the action W is used to write new items and R to read.

Figure 4 presents a homomorphic abstraction in which the initial state is mapped to the
abstract state e (empty), the states in which the buffer is full are mapped to f (full) and the
rest to m (middle). On the left hand side of the figure only states are abstracted, on the right
hand side both, states and action labels are abstracted.

We see, that by abstracting only states, the system cannot be completely represented, even
if the set of states is finite, because it is infinitely branching. Abstraction frameworks only
based on abstraction of states cannot handle this kind of problems. In the final system, by the
combination of both abstractions, we have removed all the information about the values that
are in the buffer and the transferred data, only preserving the information about whether the
buffer is empty, full or neither of them. This abstraction allows to have a small finite model,
which keeps some information about the original; Section 6 describes which properties are
preserved. The example clearly illustrates the importance of the abstraction of action labels
to avoid infinitely branching abstractions.

Figure 5 presents an abstraction using the Galois Connection approach. The abstract
domain of states contains nF (nonFull) that represents the states in which the buffer is

Springer

Form Method Syst Des (2007) 30:249–273 255

Fig. 4 Abstraction using homomorphisms

READ

e

f

nE

m

e

f

nF

m

nF nE

WRITE

Fig. 5 Abstraction using Galois connections

not full, and nE (nonEmpty). The order defined over the abstract lattices gives a relation
about the precision of the information contained in the values. For example, empty has more
accurate information than nonFull.

In general, the Galois Connection approach is more precise than the homomorphic one.
For instance, in Fig. 5 we can prove a property saying that from an empty buffer it is certainly
possible to write two entries1 because from the state empty there is a write must-transition
to the state middle and from the later there is also a write must-transition to nonEmpty.
However, in the homomorphic abstraction of Fig. 4 the same property does not hold because
there is no must-transition outgoing from middle.

1 As is presented in Section 6, this property depends on the write must-transitions. It is true in the concrete
because we have assumed that the size of the buffer is greater than one.

Springer

256 Form Method Syst Des (2007) 30:249–273

3.2 Process equations with and without modalities

µCRL is a formal language for specifying protocols and distributed systems in an algebraic
style. A µCRL specification consists of two parts: one part specifies the data types, the other
part specifies the processes.

The specification of a process is constructed from action names from a set ActNames,2

recursion variables and process algebraic operators. Actions and recursion variables carry
zero or more data parameters. There are two predefined processes in µCRL: δ represents
deadlock, and τ a hidden action. They never carry data parameters.

Processes are represented by process terms, which describe the order in which the actions
may happen. Processes are constructed using the following algebraic operators: p·q which
denotes sequential composition and p + q non-deterministic choice, summation

∑
d:D p(d)

provides the possibly infinite choice over a data type D, and the conditional construct
p � b � q with b a data term of data type Bool behaves as p if b and as q if ¬b. Parallel
composition p ‖ q interleaves the actions of p and q; moreover, actions from p and q may
also synchronize to a communication action.

Atomic actions may have data parameters. The operator | allows synchronous parame-
terised communication. If two actions are able to synchronise we can force that they occur
always in communication using the encapsulation operator (∂H). The operator τI hides en-
closed actions by renaming into τ actions. The initial behaviour of the system can be specified
with the keyword init followed by a process term:

System = τI ∂H (p0 ‖ p1 ‖ . . .)
init System

A data type consists of a many-sorted signature in which a set of function symbols, and a
list of axioms are declared. For every specification, we assume the existence of the Boolean
sort (Bool), with the constants true and false (T and F) and their standard functions. Data
terms are interpreted over a model, which is a mathematical structure consisting of a universe
of values and total functions, in which all axioms are valid. The precise syntax and semantics
of µCRL are given in [19].

The following µCRL process specifies a bounded buffer implemented using a list. The
process can non-deterministically choose between executing a write or a read action. The
write can only be performed if the buffer is not full, i.e., the length of the list that models the
buffer is smaller than the maximal length (MAX). The read action can be performed if the
buffer is not empty. In the first case, the state parameter is updated by concatenating a new
bit to the list; in the second case, the first element of the list is removed.

Buffer(l : List) =
∑

b:Bit

write(b) · Buffer(add(b, l)) � lt(len(l), MAX) � δ

+ read(head(l)) · Buffer(tail(l)) � not(isEmpty(l)) � δ

This process definition assumes the specification of natural numbers (with the standard
operations equality eq, successor succ and predecessor pred), and bits. The data type List

2 From now on we will use ActNames (ActN for short) to refer just to the labels and Act to the set of action
labels together with the arguments

Springer

Form Method Syst Des (2007) 30:249–273 257

can then be defined as follows:

sort List, Bool, Nat
func emptyList :→ List

cons : Bit × List → List
add : Bit × List → List

map head : List → Bit
tail : List → List
len : List → Nat
isEmpty : List → Bool

var l : List
b, b′ : Bit

rew add(b, emptyList) = cons(b, emptyList)
add(b, cons(b′, l)) = cons(b′, add(b, l))
head(cons(b, l)) = b
tail(cons(b, l)) = l
len(emptyList) = 0
len(cons(b, l)) = succ(len(l))
isEmpty(l) = eq(0, len(l))

In the specification of the data type we have used the following keywords: sort to declare
the name of the data type, func and map to declare sorted operations (constructors and
defined functions, respectively), var to declare auxiliary variables and rew to define the
defining equations of the type.

Every µCRL system can be transformed to a special format, called Linear Process
Equation or Operator [20, 36]. An LPE (see definition below) is a single µCRL process,
which represents the complete system and from which parallel composition, encapsulation
and hiding have been eliminated.

X (d : D) =
∑

i∈I

∑

ei :Ei

ai (fi [d, ei]) · X (gi [d, ei]) � ci [d, ei] � δ (1)

In the definition, d denotes a vector of parameters d of type D that represents the
state of the system at every moment. We use the keyword init to declare the initial vector
of values of d . Action labels ai are selected from a set of action names ActNames. The
process is composed by a finite number I of summands, every summand i , has a list of
local variables ei , of possibly infinite domains, and it is of the following form: a condition
ci [d, ei], if the evaluation of the condition is true the process executes the action ai with
the parameter fi [d, ei] and will move to a new state gi [d, ei], which is a vector of terms of
type D. fi [d, ei], gi [d, ei] and ci [d, ei] are terms built recursively over variables x ∈ [d, ei],
applications of function over terms t = f (t ′) and vectors of terms. For example, we compose
two buffers in parallel, as follows:

comm read0|write1 = w

System = τ{w}∂{read0,write1}(Buffer0(emptyList) ‖ Buffer1(emptyList))
init System

where Buffer0 is equal to the process Buffer in which l is renamed to l0, write to write0 and
read to read0 (similar for Buffer1). We obtain the following linear form

X (l0, l1: List) =
∑

b:Bit

write0(b) · X (add(b, l0), l1) � lt(len(l0), MAX) � δ

+ τ.X (tail(l0), add(head(l0), l1))
�not(isEmpty(l0)) ∧ lt(len(l1), MAX) � δ

+ read1(head(l1)) · X (l0, tail(l1)) � not(isEmpty(l1)) � δ

Springer

258 Form Method Syst Des (2007) 30:249–273

To every LPE specification corresponds a labelled transition system. The semantics of the
system described by an LPE are given by the following rules:

– s0 = initlpe

– s
a→ s ′ if and only if exists i ∈ I and exists e : Ei such that ci [s, e] = T, ai (fi [s, e]) = a

and gi [s, e] = s ′

The LTS corresponding to the Buffer LPE can be generated for any finite value of the
constant MAX. The Buffer is modelled to contain bits, which makes it finite. If we change the
specification to have a container of natural numbers then the system will have an infinitely
branching behaviour, as the one presented in Fig. 3.

Basically, the abstraction process consists of a symbolic transformation of the original
specification into an intermediate format (Modal-LPE) that encodes the modal abstraction.
Modal-LPEs capture the extra non-determinism arising from abstract interpretation. They
allow a simple transition to lead to a set of states with a set of action labels.

X (d : P(D̂)) =
∑

i∈I

∑

ei :Ei

ai (Fi [d, ei]) · X (Gi [d, ei]) � Ci [d, ei] � δ (2)

The definition is similar to the one of Linear Process Equation, the difference is that the
state is represented by a list of power sets of abstract values and for every i : Ci returns a
non-empty set of Booleans, Gi a non-empty set of states. Actions are parameterised with
non-empty sets of values Fi , as well. From a Modal-LPE we can generate a Modal Labelled
Transition System following these semantic rules:

– S0 = initmlpe

– S
A→� S′ if and only if exists i ∈ I and exists e ∈ Ei (e
= ⊥) such that F/∈ Ci [S, e],

A = ai (Fi [S, e]) and S′ = Gi [S, e]

– S
A→� S′ if exists i ∈ I and exists e ∈ Ei (e
= ⊥) such that T∈ Ci [S, e], and A =

ai (Fi [S, e]) and S′ = Gi [S, e]

Modal-LPEs allow to capture in a uniform way both approaches: Galois Connection and
Homomorphism. In the second case, we restrict the rules by letting S0, S, A and S′ be only
singleton sets. The next section describes the tool and the methodology to apply abstract
interpretation of process algebraic specifications.

4 Abstractor

The Abstractor gets as input a Linear Process Equation and a set of parameters and local
variables to abstract. Alternatively, the user can provide a list of sorts. In this case all
parameters and variables of the selected sorts will be abstracted. Subsequently, the input is
transformed conforming the user selection by replacing the different symbols that appear in
the specification by their abstract counterparts.

We have seen that data terms fi (d, ei), gi (d, ei) and ci (d, ei) are composed by function
symbols, parameters and local variables. Based on the parameters and variables selected
by the user some (or all) function symbols are replaced by their abstract definition. In this
section, we present the abstraction criteria that the tool implements.

Springer

Form Method Syst Des (2007) 30:249–273 259

4.1 Abstraction of function symbols

The Abstractor will traverse the process specification, transforming the function symbols
according to the user input. In case the arguments of a function are modified the tool will
generate a new signature for the function and will replace the old one.

We recall that a way of capturing the non-determinism induced by the abstracted functions
is using sets of values. For instance, we can consider the abstraction of the integers to their
sign, i.e., {neg, zero, pos}; Intuitively, the definition of the abstract successor of zero and
pos will in both cases be pos. However the abstract successor of neg can be either neg
or zero, therefore, the sort of the abstract successor will be a set of abstract integers. We
define lifting to be the operation of replacing single values to sets of values. We give
now the rules for abstracting and lifting function symbols. Let us consider the function
f: S0 × · · · × Sn−1 → Sn :

1. If there is a data term in the process specification in which the i th argument of f is
abstracted then the signature of the function will change according to the following rules:

(a) All sorts Sj = Si with j ∈ [0, . . . , n − 1] will be abstracted.
(b) If Sn = Si then the target sort of f will be abstracted and lifted.
(c) If Sn
= Si then the target sort of f will be lifted.

Let us consider again the abstraction of integers, with the following functions: succ :
Int → Int, + : Int × Int → Int and <: Int × Int → Bool. Then, following the above pre-
sented rules:

– If there is a data term in which the argument of succ is abstracted then the target sort
of the abstract version of succ will be abstracted and lifted, i.e., abs succ : abs Int →
P(abs Int).

– If one argument of + is abstracted then the other argument will be abstracted as well and
the target sort will be abstracted and lifted, i.e., +̂ : abs Int × abs Int → P(abs Int)

– If one argument of < is abstracted then the other argument will be abstracted as well and
the target sort will be lifted, i.e., <̂ : abs Int × abs Int → P(Bool)

Let us consider, now, the abstraction of lists of type D, with the following standard
functions: cons : D × List → List and head : List → D. Then, following the rules:

– If the first argument of cons is abstracted then the new signature will be: abs cons :
abs D × List → P(List).

– If the second argument of cons is abstracted then the new signature will be: abs cons :
D × abs List → P(abs List).

– If both arguments of cons are abstracted then the new signature will be: abs cons :
abs D × abs List → P(abs List).

– If the argument of head is abstracted, the new signature will be: abs head : abs List →
P(D).

Furthermore:

2. If there is a data term in which the i th argument of f is lifted then:

(a) The target sort of f will be lifted.

Springer

260 Form Method Syst Des (2007) 30:249–273

For example:

– If the argument of succ is lifted (but not abstracted) then the target will be lifted, i.e.,
succ : P(Int) → P(Int).

– If the argument of succ is lifted and abstracted then the target be abstracted and lifted,
i.e., abs succ : P(abs Int) → P(abs Int). (Note that this is the result of the application of
rule 1.b).

The tool will automatically generate auxiliary functions and equations to manipulate sets,
by providing the pointwise lifting of the not lifted ones. For instance, for a function f in
which the i th sort has been lifted and the rest remains unlifted, i.e., f: D0 × · · · × P(Di) ×
· · · Dn−1 → P(Dn), the following equation will be generated:

– Let X be of type P(Di) and x of type Di

– f(· · · , X, · · ·) = ∪{f(· · · , x, · · ·) | x ∈ X}3

4.2 Abstraction of parameters and variables

The user selects the list of parameters and variables that he wants to abstract. The choice
may influence the sorts of other related parameters. To determine the sorts of the abstract
specification we follow the next rules:

3. If a parameter di : Di is selected to be abstracted then its sort will change. The new sort
of the abstract parameter will be the powerset of the abstract version of its concrete sort,
i.e., di : P(abs Di). The explanation why abstracted parameters are also lifted is that after
every recursion, the updated values of the parameters are computed from functions. And,
as we have seen in the previous section, to capture the extra non-determinism, functions are
lifted to sets. Therefore, the specification may contain assignments in which parameters
receive sets of values.

4. If a variable eai : Eai is selected to be abstracted then its sort is changed to the abstract
version of the concrete one, i.e., eai : abs Eai . In this case, we do not lift the sorts of the
values to powersets because their values are not induced from any abstracted data term.

5. If a parameter di : Di is not selected to be abstracted but there is an assignment of a
data term in which appears an abstract parameter or an abstract variable, or a lifted or
abstracted function then the parameter is lifted, i.e., di : P(Di).

4.3 Abstraction of sorts

For every abstracted sort the user will have to provide the abstract domain and the relation
with the concrete one. The tool supports three ways of relating the domains, the homomorphic
and the Galois Connection approach and also the combination of them that consists of the
lifting of a homomorphism to a Galois Connection. To define a Galois Connection from an
homomorphism H we proceed as follows:

If we have the concrete domain D and the abstract abs D, then we build the abstract
lattice as the power set of abstract values P(abs D) ordered by the set inclusion operator.
Furthermore, we define α : P(D) → P(abs D) and γ : P(abs D) → P(D) as:

– α(S) = {H (s) | s ∈ S}
– γ (Ŝ) = {s | ∃ abs s ∈ abs S ∧ H (s) = abs s}

3 Note that function symbols are overloaded.

Springer

Form Method Syst Des (2007) 30:249–273 261

Not all Galois Connections can be represented by a lifted homomorphism, however the use
of the lifted homomorphism may be convenient to perform rapid and powerful abstractions.
The lifting technique reduces the number of abstract definitions that the user has to provide
to specify the abstract system.

For every abstracted sort abs D, the tool will generate the signature of the
functions alpha : P(D) → P(abs D), gamma : P(abs D) → P(D) and �: P(abs D) ×
P(abs D) → P(Bool). The first one represents the abstraction function, the second one
the concretisation function and the third the order on the abstract domain. The user selects
one of the three types of abstraction. Then in case of homomorphism or lifted homomorphism
the following auxiliary function definitions will be generated:

– H : D → abs D
– H−1 : abs D → P(D)
– alpha(X) = {H (x) | x ∈ X}
– gamma(abs X) = ∪{H−1(abs x) | abs x ∈ abs X}

In case the user selects Galois Connections the tool will generate:

– α : P(D) → abs D
– γ : abs D → P(D)
– alpha(X) = {α({x}) | x ∈ X}
– gamma(abs X) = ∪{γ (abs x) | abs x ∈ abs X}
– lt(abs X, abs Y) = ∀ abs x ∈ abs X ∃ abs y ∈ abs Y.abs x � abs y

In the first case, the user will have to provide H and H−1 (if there are conflicting cases,
see next section). In the second α, γ and the order �. H−1 and γ do not have to be provided
in general, they are used to solve the conflicts. In some cases, it is not possible to define
them because they produce infinite sets. The need for the concretisation functions (H−1 and
γ) can be always avoided by abstracting more parameters or variables, in which case no
definition is required.

4.4 Type conflicts

Abstraction of data terms is done by abstracting first the parameters and variables that appear
inside the terms, and then by propagating the abstraction to the function symbols according
to the rules specified above. The abstraction may raise some type conflicts. We list below the
different conflicts and how they are resolved:

6. There is an assignment in which a parameter of sort P(D) gets a term d of sort D. Then
d is replaced by {d}.

7. There is an assignment in which a parameter or an argument of a function of sortP(abs D)
gets a term d of sort D. Then d is replaced by alpha({d})

8. There is an assignment in which a parameter of sort P(D) gets a term d of sort P(abs D).
Then d is replaced by gamma(d).

9. If the data term Ca of a condition is abstracted then it is replaced by gamma(Ca).

4.5 From LPEs to Modal-LPEs

The Abstractor replaces the data terms of the LPEs by their abstract counterparts, producing
Modal-LPEs. The user can select the parameters and variables to abstract, then the abstraction
is propagated over the data terms of the specification, with the rules that we presented in the

Springer

262 Form Method Syst Des (2007) 30:249–273

previous sections. Let us reconsider the example of the bounded buffer, that was explained
in Section 3.2:

Buffer(l : List) =
∑

b:Bit

write(b) · Buffer(add(b, l)) � lt(len(l), MAX) � δ

+ read(head(l)) · Buffer(tail(l)) � not(isEmpty(l)) � δ

Recall that the concrete specification has the following signature:

– add : Bit × List → List
– len : List → Nat
– lt : Nat × Nat → Bool
– gt : Nat × Nat → Bool
– head : List → Bit
– tail : List → List

If the user selects the parameter l to be abstracted then the propagation of the abstraction
will yield the following signature4:

– abs add : Bit × P(abs List) → P(abs List)
– abs len : P(abs List) → P(Nat)
– lt : P(Nat) × Nat → P(Bool)
– gt : Nat × P(Nat) → P(Bool)
– abs head : P(abs List) → P(Bit)
– abs tail : P(abs List) → P(abs List)

To complete the specification, the user has to provide the domain of the abstract list, abs List,
the relation between the concrete domain and the abstract one and the definitions for the new
functions. All the functions needed to manipulate sets of values are automatically provided
by the tool by performing a pointwise application of the non-abstracted ones.

4.6 From Modal-LPEs to LPEsmay/must

Modal-LPEs can be transformed back to standard Linear Process Equations. This allows the
reuse of the µCRL tools that are conceived to manipulate LPEs. To do that, first we extend
the action labels by adding two suffixes. Let ActNames (or ActN for short) be the set of
action labels of a Modal-LPE. We define ActNamesmay/must = {a may | a ∈ ActNames} ∪
{a must | a ∈ ActNames}. Then, we duplicate the number of summands generating for every
summand of the Modal-LPE two new ones, one for the may transitions and the other for
the must transitions. These new summands are built following the patterns presented below.
By

→
Ga we denote the sort of elements of Ga (the same holds for

→
Fa). The pattern for

4 The complete output of the Abstractor for this example is given in the next section.

Springer

Form Method Syst Des (2007) 30:249–273 263

homomorphisms is:

X (d : P(D)) =
∑

a∈Act N

∑

ea :Ea

∑

fa :
→
Fa

∑

ga :
→
Ga

a may(fa).X ({ga})

�member(T, Ca(d, ea))∧
member(fa, Fa(d, ea))∧
member(ga, Ga(d, ea)) � δ

+
∑

a∈Act N

∑

ea :Ea

∑

fa :
→
Fa

a must(fa).X (Ga(d, ea))

�not(member(F, Ca(d, ea)))

∧singleton(Fa(d, ea))

∧member(fa, Fa(d, ea))

∧singleton(Ga(d, ea))

�δ (MLPE to LPE (H))

The patterns are derived from the semantics of Modal-LPEs presented in Section 3.2. For
the homomorphism, we require the states of the process and the arguments of the actions
to be single abstract values, because every concrete value is mapped to only one abstract
one. However, for the Galois Connection we allow them to be sets of values. The pattern for
Galois Connections and lifted homomorphisms is:

X (d : P(D)) =
∑

a∈Act N

∑

ea :Ea

a may(Fa(d, ea)).X (Ga(d, ea))

�member(T, Ca(d, ea)) � δ

+
∑

a∈Act N

∑

ea :Ea

a must(Fa(d, ea)).X (Ga(d, ea))

�not(member(F, Ca(d, ea)))

�δ

(MLPE to LPE (GC))

For the above example, using the Galois Connection approach, the resulting LPEmay/must

will be:

X (l̂ : P(abs List))

=
∑

b:Bit

write may(b) · X (abs add(b, l̂))

�member(T, lt(abs len(l̂), MAX)) � δ

+
∑

b:Bit

write must(b) · X (abs add(b, l̂))

�not(member(F, lt(abs len(l̂), MAX))) � δ

+ read may(abs head(l̂)) · X (abs tail(l̂))

�member(T, not(abs isEmpty(l̂))) � δ

+ read must(abs head(l̂)) · X (abs tail(l̂))

�not(member(F, not(abs isEmpty(l̂)))) � δ

Springer

264 Form Method Syst Des (2007) 30:249–273

In [37], we characterized the relationship between Modal-LPEs and LPEmay/must , and be-
tween LPEs and Modal-LPEs. Basically, we proved that if the safety conditions (cf. Sec-
tion 5) between concrete and abstract data hold, then the result of the abstract process is a
sound approximation of the original system. Therefore, one can infer properties expressed
in µ-calculus from the abstract system to the concrete (cf. Section 6).

5 Loader

The Abstractor returns the skeleton of the abstraction, i.e, an incomplete Modal-LPE. In
order to generate the corresponding Modal-LTS, the user has to complete the Modal-LPE by
providing the abstract domains and the definition of the abstract functions. The Abstraction
Loader assists the user to manage abstract domains by providing import/export mechanisms
and an automatic abstraction generator.

The example of Section 4.5 can be continued, by defining abs List to be the domain with
three values {empty, one, more}. These values indicate whether the list is empty, has a single
element or more elements. All information about the value of the stored elements is removed.
Then, the user has to provide the mapping H : List → abs List,5 as for example:

– H (emptyList) = empty
– H (cons(b, nil)) = one
– H (cons(b, cons(b′, l))) = more

Furthermore, he has to provide the definition of the abstracted functions, for instance:

– abs add(b, empty) = {one}, abs add(b, one) = {more} and abs add(b, more) = {more}
– abs len(empty) = {0}, abs len(one) = {1} and abs len(more) = {2, 3, . . ., maxLength }
– abs head(l) = {b0, b1}
– abs tail(one) = {empty} and abs tail(more) = {one, more}
The Loader can export the signatures of the functions that are needed to complete the speci-
fication. We recall that the functions needed to manipulate sets are automatically generated
by the tool. It can also be used to import user-provided abstract definitions, or to perform
automatically the pointwise abstraction of sorts and functions.

A Modal-LTS, generated from an abstract Modal-LPE approximates the original system,
if every pair of functions (f, abs F) satisfies a formal requirement. The user must prove the
safety requirements to ensure the soundness of the abstraction. The list of safety conditions
is generated by the Loader in the format of the µCRL prover [33]. The form of the safety
conditions depends also on the type of abstraction. For the example above, choosing the
Galois Connection, the following conditions will be generated.

– ∀ b, abs l : lt(alpha(add(b, gamma({abs l}))), abs add(b, abs l))
– ∀ abs l : lt(alpha(len(gamma({abs l}))), abs len(abs l))
– ∀ abs l : lt(alpha(head(gamma({abs l}))), abs head(abs l))
– ∀ abs l : lt(alpha(tail(gamma({abs l}))), abs tail(abs l))

For the (lifted)-homomorphisms, the safety conditions are reduced to:

– ∀ b, l : H (add(b, l)) ∈ abs add(b, H (l))

5 or α : P(List) → abs List depending on the type of abstraction selected by the user.

Springer

Form Method Syst Des (2007) 30:249–273 265

– ∀ l : len(l) ∈ abs len(H (l))
– ∀ l : head(l) ∈ abs head(H (l))
– ∀ l : H (tail(l)) ∈ abs tail(H (l))

If the safety conditions hold for the function symbols then, by construction, they will hold
for the full data terms. Therefore, instead of proving the safety conditions for every guard,
action and next-state in a process specification we can prove in general that the abstract data
specification satisfies the “safety conditions” and then infer that any particular system does
as well. This would allow to reuse abstract specifications of the data into different systems
and create libraries of abstractions.

6 Abstract model checking

To integrate the abstract interpretation techniques in the verification methodology we have
to provide a relation between the satisfaction of a formula over the abstract system and its
reflection to the concrete. This section describes the abstract model checking process for
the homomorphic approach (the Galois Connection case can be defined in a similar way).
Typically, the process is as follows:

1. The user gives a concrete formula ϕ to prove in the concrete system M .
2. The arguments of the actions in ϕ, which are given as concrete sorts, are abstracted,

resulting in abs ϕ.
3. We check the satisfaction of abs ϕ over the abstract model (abs M , which is described

by a Modal-LTS).
4. The result of the satisfaction is inferred to the concrete system. The inferences, as we will

see, have some restrictions.

(step i) Concrete properties ϕ are described using the regular alternating-free action-based
µ-calculus [30]. The logic embeds regular expressions with modal and fixpoint operators.
There are three types of formulas, action (α), regular (β) and state formulas (ϕ), expressed
by the following grammars:

α ::= T | F | ¬α | α1 ∧ α2 | α1 ∨ α2 | a(d̄) | reg − exp

β ::= α | β1 · β2 | β1|β2 | β∗ | β+
ϕ ::= T | F | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [β]ϕ | 〈β〉ϕ | Y | µY · ϕ | νY · ϕ

a stands for an action label from ActNames, and d̄ for a, possibly empty, list of arguments.
When the list is empty, we just write a · a(d̄) matches transitions with the same action label
and exactly the same arguments. T matches all actions with any argument, ¬α matches all
actions but the ones matched by α· F matches no action, it could have been expressed by
¬ T · α1 ∧ α2 matches all action that match α1 and α2 · α1 ∨ α2 matches all action that match
α1 or α2. Action formulas can also be expressed as regular expressions that match using the
standard syntactic rules.

Regular formulas match sequences of actions; ‘.’ stands for the concatenation operator,
‘|’ is the choice operator, ‘∗’ is the transitive and reflexive closure operator, and ‘+’ is the
transitive closure operator.

The semantics of the state formulas is standard. [β]ϕ states that all continuations by se-
quences matching β satisfy ϕ · 〈β〉ϕ states that there exists at least one β sequence satisfying
ϕ · µ and ν are the minimal and maximal fixpoint operators.

Springer

266 Form Method Syst Des (2007) 30:249–273

(step ii) As we have shown in section 4, action arguments may be abstracted and/or lifted to
sets during the abstraction process. In order to prove ϕ, we transform it to abs ϕ by replacing
every concrete argument of the actions by its abstract counterpart, i.e, a(d) will be rewritten
to a(H (d)).

(step iii) Following [24], an abstract formula is interpreted dually over a Modal-LTS, i.e.
there will be two sets of states that satisfy it. A set of states that necessarily satisfy the formula
and a set of states that possibly satisfy it. From the practical point of view, an interesting
fact is that the 3-valued model checking problem can be easily transformed to two standard
2-valued problems. This allows the use of existing model checking tools such as the evaluator
of the CADP toolset [16].

To do the translation, we follow the ideas of [7, 17]. Basically, given a formula abs ϕ

we generate two different formulas abs ϕmust and abs ϕmay, the first one will be used to
determine when a system necessarily satisfies a property and the second when it possibly
does. They have the same structure as abs ϕ but are built over ActNamesmay/must instead
of over ActNames. For this purpose, we define two recursive operators Tmay and Tmust. See
below for the definition of the first one (Tmust is dual):

– Tmay(¬ abs ϕ) = ¬Tmust(abs ϕ)
– Replace each occurrence of [β] in abs ϕ by [βmust]
– Replace each occurrence of 〈β〉 in abs ϕ by 〈βmay〉
– For the rest of the cases, Tmay is pushed inwards.

βmay replaces all occurrences of α by αmay, which is defined as follows:

– if α = a(d̄) then αmay = a may(d̄).
– if α = T then αmay = Tmay. It matches all may actions.
– if α = F then αmay = ¬ (Tmay). It matches actions that are not may. ¬ (Tmay) is equivalent

to Tmust.
– if α = ¬ (α′) then αmay = ¬α′

may ∧ Tmay. It matches all may actions that do not match
α′

may .

These transformations are done time linear in the size of the formula. The difference
between this approach and the one used by Godefroid et al. [17] is that instead of generating
two different models and using one single formula, we use a single model and two versions
of the formula. In general formulas are much smaller than systems and their duplication is
less expensive. We present, below, some typical properties, in the abs ϕmust form:

Deadlock freedom, with regular expressions:

(P1): [’. ∗may .∗’∗] 〈 ’. ∗must .∗’∗ 〉 T

The dot . in the regular expressions inside the action formulas matches any character,
therefore .∗ matches any number of occurrences of any character.

Deadlock freedom, with fixed point operators:

(P2): ν X · (〈 ‘. ∗must .∗’ 〉 T∧ [‘. ∗may .∗’] X)

No execution sequence leads to a:

Springer

Form Method Syst Des (2007) 30:249–273 267

(P3): [‘. ∗may .∗’∗ . ‘amay’] F

There exists a sequence leading to a:

(P4): 〈 ‘. ∗must .∗’∗ . ‘amust’ 〉 T

All sequences lead to a:

(P5): µ X · (〈 ‘. ∗must .∗’ 〉 T∧ [¬(‘amay’ ∧ ‘. ∗may .∗’)] X)

(step iv) The result of the abstract model checking process gives a 3-valued result:

– abs M satisfies abs ϕmust.
– abs M satisfies abs ϕmay but does not satisfy abs ϕmust.
– abs M does not satisfy abs ϕmay.

In the first case, we are able to infer the satisfaction of ϕ, i.e., abs M |= Tmust(abs ϕ) ⇒
M |=H abs ϕ. In the third case, we are able to infer the refutation of ϕ , i.e., abs M
|=
Tmay(abs ϕ) ⇒ M
|=H abs ϕ However, the second case does not give any information about
satisfaction or refutation of the property. The inference of the satisfaction or refutation of the
concrete formulas is not straightforward. The reason is that by abstracting actions we have
lost the exact information about concrete transitions.

Above, |=H defines the satisfaction of an abstract formula over a concrete system. The
semantics of state and regular formulas do not change. We represent by �abs α�H the set of
concrete actions that satisfy the abstract action formula abs α. The semantics is given below:

�T�H = Act �F�H = ∅
�abs α1 ∧ abs α2�H = �abs α1�H ∩ �abs α2�H

�abs α1 ∨ abs α2�H = �abs α1�H ∪ �abs α2�H

�¬ abs α′�H = Act \ �abs α′�H

�a(abs d)�H = {a(d) | H (d) = abs d}
We now give an example. Let us consider the system in Fig. 6. The abstraction is built by
mapping s0 and s1 to S0, s2 and s3 to S1 and d0 and d1 to d . We want to prove the following
properties:

– “It is possible to do a transition a(d0) from the initial state”
s0 |= 〈a(d0)〉T. The abstract version of the formula is 〈a(d)〉T, which trivially holds for
S0. Therefore, we can infer that there exists x such that H (x) = d for which 〈a(x)〉T
holds in s0. In other words, s0 |= 〈a(d0) ∨ a(d1)〉T which implies that s0 |= 〈a(d0)〉T or
s0 |= 〈a(d1)〉T.

– “It is not possible to do a transition b(d0) from the initial state”
s0 |= [b(d0)] F. The abstract version of the formula is [b(d)] F, which trivially holds
for S0. Therefore, we can infer that for all x such that H (x) = d implies [b(x)] F holds
in s0. In other words, s0 |= [b(d0) ∨ b(d1)] F, which implies that s0 |= [b(d0)] F and
s0 |= [b(d1)] F.

In the first case, we have less information than we requested due to the abstraction, and we
cannot infer the exact satisfaction or refutation of the original formula in the concrete model.
In the second case we have enough to infer the exact result. The output of the inference can
be described by quantifiers over the actions using a logic such as the one presented in [38].

Springer

268 Form Method Syst Des (2007) 30:249–273

Fig. 6 Example of abstract
model checking

Note that in the special case of action labels without data arguments abs ϕ will be equal
to ϕ so the abstract model checking problem coincides with the classical theories based on
state abstraction only.

An important aspect of abstract model checking refers to spurious counter-examples.
Some formulae are not satisfied due to non-realistic scenarios i.e. abstract traces that do not
have any corresponding concrete one. In these cases, it is possible to improve the precision
of the abstract model in two ways:

– By removing the spurious may traces. This gives a model with less possible behaviours.
– By adding extra must traces. This gives a model with more necessary behaviours.

Classical theories such as [27] eliminate possible behaviours using refinement by symbolic
program execution. Another way to deal with spurious counter-example is to strengthen the
formula to prove, in order to discriminate the non-realistic traces, this possibility is studied
in [15]. None of these theories are implemented in our tool yet.

7 A case study: The bounded retransmission protocol

The BRP is a simplified variant of a Philips’ telecommunication protocol that allows to
transfer large files across a lossy channel. Files are divided in packets and are transmitted
by a sender through the channel. The receiver acknowledges every delivered data packet.
Both data and confirmation messages may be lost. The sender will attempt to retransmit each
packet at most MAX times.

The protocol presents a number of parameters, such as the length of the lists, the maximum
number of retransmissions and the contents of the data, that cause the state space of the system
to be infinite and limit the application of automatic verification techniques such as model
checking. We describe, here, the application of the abstract interpretation techniques to
remove uninteresting information of this protocol in order to use model checking to verify
it.

We base our solution on the µCRL model presented in the paper [18], in which Groote
and Van de Pol proved using algebraic methods that the model is branching bisimilar to the
desired external behaviour also specified in µCRL. This proof requires a strong and creative
human interaction in order to be accomplished.

The figure below shows the different agents that participate in the system. The system
contains a sender that gets a file that consists of a list of elements. It delivers the file
frame by frame through a channel. The receiver sends an acknowledgement for each frame,
when it receives a packet it delivers it to the external receiver client attaching a positive
indication Ifst, Iinc or Iok. The sender, after each frame, waits for the acknowledgements, if
the confirmation message does not arrive, it retransmits the packet. If the transmission was
successful, i.e., all the acknowledgements have arrived, then the sender informs the sending

Springer

Form Method Syst Des (2007) 30:249–273 269

client with a positive indication. When the maximum number of retransmissions is exceeded,
the transmission is cancelled and Inok is sent to the exterior by both participants. If the last
frame or its confirmation are lost the sender cannot know whether the receiver has received
the complete list, therefore it sends “I don’t know” to the sending client, Idk.

sort abs List
func empty :→ abs List

one :→ abs List
more :→ abs List
H : List → abs List
eq : abs List × abs List → Bool
abs head : abs List → P(abs D)
abs tail : abs List → P(abs List)
abs last : abs List → P(Bool)
abs indl : abs List → P(Bit)

var abs l :→ abs List
l : List

rew abs head(̂l) = {d0, d1, d2}
abs tail(empty) = {empty}
abs tail(one) = {empty}
abs tail(more) = {more, one}
abs last(empty) = {T}
abs last(one) = {T}
abs last(more) = {F}
abs indl(empty) = {e1}
abs indl(one) = {e1}
abs indl(more) = {e0}
eq(abs l, abs l) = T
eq(empty, one) = F
eq(..., ...) = ...

H (emptyList) = empty
H (cons(d, emptyList)) = one
H (cons(d, cons(d ′, l))) = more

The protocol depends on the time behaviour, which is controlled by two timers T1 and
T2. They determine when the messages are either delivered or lost, the retransmission of the
packets and the timeout that makes the participants give up the transmission. The solution
of [18] does not deal with the explicit time delays but with some non-deterministic signals
(modelled by channels 9 and 10).

We are interested in proving that the external indications delivered by the sender and the
receiver are “consistent”. For that purpose, we chose an abstraction that abstracts away the
data stored in the file to transmit and maps the list to three critical values: empty, one, more.
empty for when the list is empty, one when it has only one element, and more when it has
more than one. We provide a new data specification, which is shown in the µCRL code
below.

The function indl gives different bits when either a list is at its end (it is empty or
has only one element) or when there is more than one element, the rest of the functions
are standard. The maximum number of retransmissions is abstracted away, which makes

Springer

270 Form Method Syst Des (2007) 30:249–273

S R

K

L

3

10

2

6 5

1

9

7 8

9

T T1 2

4

Fig. 7 Overview of the bounded
retransmission protocol

the sender non-deterministically choose between resending a lost packet or giving up the
transmission.

Once we obtain the abstract Modal-LPE, we can use the state space generator of the
µCRL toolset to obtain the abstract Modal-LTS. The result consists of 446 states and 1016
transitions, from which 448 are must transitions and the rest mays.

The abstraction we have used allows to reason about the execution of the final part of
the protocol without knowing the exact content of data files or the number of retrials. For
example the following safety property: “after a positive notification by the receiver, the
sender cannot send a negative one” is necessarily satisfied by the abstract system.

(C1): [true* . ‘R(.∗,Iok)’ . (¬ ‘S(.∗)’)∗ . ‘S(Inok)’] F

The following liveness property expresses that: “After a negative notification by the
receiver, there exists a path that leads to a negative or don’t know notification by the
sender”.

(C2): [T* . ‘R(.∗,Inok)’] 〈 T* . (‘S(Idk)’ ∨ ‘S(Inok)’)〉 T

The next property is stronger than the previous, instead of only requesting that there exists
a path it states that the expected sender notification is inevitably achieved:

(C3): [T* . ‘R(.∗,Inok)’] µ X. (〈 T〉 T∧ [¬(‘S(Idk)’ ∨ ‘S(Inok)’)] X)

These three properties are necessarily satisfied in the abstract system, therefore we can
infer its satisfaction in the original one. However, the following property, which states
that ”after a positive notification by the receiver there exists a path that leads to a don’t
know notification by the sender” is not satisfied in the abstract system. The reason is that
we have abstracted away the maximum number of retransmissions, therefore if all the
acknowledgements are lost the sender can retransmit the frames forever:

(C4): [T* . ‘R(.∗,Iok)’] 〈 T* . ‘S(Idk)’ 〉 T

C4 is not necessarily satisfied but is possibly satisfied on the abstract, therefore we
cannot conclude anything on the concrete.

Other papers have verified different properties of the protocol using abstract interpretation,
we refer among others to [12, 29]. The approach of Manna et al. is based on automatic

Springer

Form Method Syst Des (2007) 30:249–273 271

predicate abstractions and is limited to the proof of invariants. Dams and Gerth propose a
number of creative abstractions in order to prove the satisfaction of safety properties on the
sequentiality of the delivered frames.

8 Conclusion and related work

Automated applications are indispensable to apply formal methods to realistic industrial
systems. Here we have described a toolkit that helps in using the abstraction techniques
theoretically introduced in [34]. The tool described is not the only one dedicated to such tasks.

The existing tool closest to ours is αSpin [15], which provides an interface for abstracting
PROMELA specifications. The user can select abstractions from a library. The tool produces
an over-approximation of the system. The Bandera toolset [21] implements the same method
of abstraction, furthermore it provides algorithms for program slicing and data dependency
analysis in order to automatically find suitable variables to abstract. Bandera generates
PROMELA code from simple Java programs.

FeaVer [23] and abC [13] abstract C programs by hiding variables. The first one translates
the code to PROMELA, furthermore it also allows the user to define his own abstractions,
the latter abstracts directly the C code by implementing an extension of the GCC compiler.
Java PathFinder [22], BeBop [2] and SLAM [3] use predicate abstraction. We refer to [11]
for an extended overview of tools and techniques for abstract model checking.

All the enumerated tools only generate over-approximations, therefore they are only able
to check for the satisfaction of safety properties. Our tool supports µ-calculus, therefore,
we can use indistinctly safety and liveness properties. Furthermore, the transformation from
LPEs to Modal-LPEs allows to reason about the abstract system on a syntactic level, and
embeds all the techniques in the existing µCRL tools. Finally, another feature that is not
provided by any other tool is the possibility of abstracting action labels.

In [32], the tool was used to attempt to improve the performance of distributed algorithms
for model checking and state space reduction. The idea is to introduce a new distribution
policy of state spaces over workers. This policy reduces the number of transitions between
states located at different workers. This in turn is expected to reduce the communication
costs of the distributed algorithms. We have used the automatic abstraction mechanism of
the tool to compute a small approximation of the state space, starting from some high level
description of the system. Based on this approximation, the connectivity of concrete states
is predicted. This information is used to distribute states with expected connectivity to the
same worker.

The tool implements a simple automatic abstraction approach, as variable hiding, and
facilitates the use of creative abstractions. More work is needed to automate the task of
selecting suitable abstractions and of providing correct abstract domains. As presented at
the end of the previous section, an interesting aspect that should be studied deeper is how to
deal with spurious counter-examples.

References

1. Ball T, Majumdar R, Millstein T, Rajamani SK (2001) Automatic predicate abstraction of C programs.
In: Proceedings of Conference on Programming Language Design and Implementation (PLDI), ACM, pp
203–213

2. Ball T, Rajamani SK (2000) BeBop: a symbolic model checker for Boolean programs. In: Proceedings of
SPIN model checking and software verification, LNCS, vol 1885, Springer, pp 113–130

Springer

272 Form Method Syst Des (2007) 30:249–273

3. Ball T, Rajamani SK (2001) Automatically validating temporal safety properties of interfaces. In: Pro-
ceedings of SPIN model checking and software verification, LNCS, vol 2057. Springer, pp 103–122

4. Bergstra JA, Klop JW (1985) Algebra of communicating processes with abstraction. Theor Comput Sci
37:77–121

5. Blom S, Fokkink W, Groote JF, van Langevelde I, Lisser B, van de Pol JC (2001) µCRL: a toolset for
analysing algebraic specifications. In: Proceedings of Computer Aided Verification (CAV), LNCS, vol
2102. Springer, pp 250–254

6. Blom S, Groote JF, van Langevelde I, Lisser B, van de Pol JC (2003) New developments around the
µCRL tool set. ENTCS 80

7. Bruns G, Godefroid P (1999) Model checking partial state spaces with 3-valued temporal logics. In:
Proceedings of Computer Aided Verification (CAV), LNCS, vol 1877. Springer, pp 274–287

8. Clarke EM, Grumberg O, Long DE (1992) Model checking and abstraction. J ACM, pp 343–354
9. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs

by construction of approximation of fixed points. J ACM 238–252
10. Dams D (1996) Abstract interpretation and partition refinement for model checking. PhD thesis, Eindhoven

University of Technology
11. Dams D (2002) Abstraction in software model checking: principles and practice (tutorial overview and

bibliography). In: Proceedings of SPIN model checking and software verification, LNCS, vol 2318,
Springer, pp 14–21

12. Dams D, Gerth R (2000) The bounded retransmission protocol revisited. ENTCS 9
13. Dams D, Hesse W, Holzmann G (2002) Abstracting C with abC. In: Proceedings of the Computer Aided

Verification (CAV), LNCS, vol 2404, Springer, pp 515–520
14. Long DE (1993) Model checking, abstraction, and compositional verification. PhD thesis, Carnegie

Mellon University
15. Gallardo MM, Martı́nez J, Merino P, Pimentel E (2004) αSPIN: a tool for abstract model checking. Int J

Softw Tools for Technol Transf (STTT) 5(2–3):165–184
16. Garavel H, Lang F, Mateescu R (2002) An overview of CADP 2001. Eur Assoc Softw Sci Technol Newsl

4:13–24
17. Godefroid P, Huth M, Jagadeesan R (2001) Abstraction-based model checking using modal transition

systems. In: Proceedings of the concurrency theory (CONCUR), LNCS, vol 2154, Springer, pp 426–440
18. Groote JF, van de Pol JC (1996) A bounded retransmission protocol for large data packets. In: Proceedings

of the Algebraic Methodology and Software Technology (AMAST), LNCS, vol 1101. Springer, pp 536–
550

19. Groote JF, Ponse A (1994) The syntax and semantics of µCRL. In: Algebra of communicating processes,
workshops in computing. pp 26–62

20. Groote JF, Ponse A, Usenko Y (2001) Linearization in parallel pCRL. J Logic Algebraic Programm
48(1–2):39–70

21. Hatcliff J, Dwyer M, Pasareanu C, Robby (2002) Foundations of the Bandera abstraction tools. In:
Proceedings of the essence of computation, LNCS, vol 2566, Springer, pp 172–203

22. Havelund K, Skakkebaek J (1999) Applying model checking in Java verification. In: Proceedings of the
SPIN model checking and software verification, LNCS, vol 1680, Springer, pp 216–232

23. Holzmann GJ, Smith MH (1999) A practical method for verifying event-driven software. In: Proceedings
of International Conference on Software Engineering (ICSE). ACM, pp 597–607

24. Huth M, Jagadeesan R, Schmidt D (2001) Modal transition systems: a foundation for three-valued program
analysis. In: Proceedings of the programming languages and systems (ESOP), LNCS, vol 2028, Springer,
pp 155–169

25. Jones ND, Nielson F (1995) Abstract interpretation: a semantics-based tool for program analysis. In:
Handbook of logic in computer science. Oxford Science Publications, pp 527–636

26. Kozen D (1982) Results on the propositional µ-calculus. In: Proceedings of the International Conference
on Automata, Languages and Programming (ICALP), LNCS, vol 140. Springer, pp 348–359

27. Kroening D, Groce A, Clarke EM (2004) Counterexample guided abstraction refinement via program
execution. In: Proceedings of the international conference on formal engineering methods (ICFEM),
LNCS, vol 3380. Springer, pp 224–238

28. Larsen KG, Thomsen B (1988) A modal process logic. In: Proceedings of the logic in computer science
(LICS). IEEE, pp 203–210

29. Manna Z, Colon M, Finkbeiner B, Sipma H, Uribe TE (1997) Abstraction and modular verification
of infinite-state reactive systems. In: Proceedings of the requirements targeting software and systems
engineering (RTSE), LNCS, vol 1526. Springer, pp 273–292

30. Mateescu R (1998) Verification des proprietes temporelles des programmes paralleles. PhD thesis, Institut
National Polytechnique de Grenoble

Springer

Form Method Syst Des (2007) 30:249–273 273

31. Ore O (1944) Galois connexions. Trans. Am Math Soc 55:493–513
32. Orzan S, van de Pol JC, Valero Espada M (2005) A state space distribution policy based on abstract

interpretation. ENTCS 128:35–45
33. van de Pol JC (2001) A prover for the µCRL toolset with applications. Technical Report SEN-R0106,

CWI
34. van de Pol JC, Valero Espada M (2004) Modal abstraction in µCRL. In: Proceedings of the Algebraic

Methodology and Software Technology (AMAST), LNCS, vol 3116, Springer, pp 409–425
35. Schmidt D (2002) Structure-preserving binary relations for program abstraction. In: Proceedings of the

essence of computation, LNCS, vol 2566, Springer, pp 245–268
36. Usenko Y (2002) Linearization in µCRL. PhD thesis, Eindhoven University of Technology
37. Valero M (2005) Modal abstraction and replication of processes with data. PhD thesis, Free University

Amsterdam
38. Willemse T (2003) Semantics and verification in process algebras with data and timing. PhD thesis,

Eindhoven University of Technology

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

