
HAL Id: hal-00541940
https://hal.science/hal-00541940

Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algebraic theory for behavioral modeling and
protocol synthesis in system design

Jean-Pierre Talpin, Paul Le Guernic

To cite this version:
Jean-Pierre Talpin, Paul Le Guernic. An algebraic theory for behavioral modeling and protocol syn-
thesis in system design. Formal Methods in System Design, 2006, 28 (2), pp.131-151. �10.1007/s10703-
006-7845-7�. �hal-00541940�

https://hal.science/hal-00541940
https://hal.archives-ouvertes.fr

An algebraic theory for behavioral modeling and protocol

synthesis in system design

Jean-Pierre Talpin and Paul Le Guernic
INRIA-IRISA, Campus de Beaulieu, 35042 Rennes, France

Abstract. The design productivity gap has been recognized by the semiconductor
industry as one of the major threats to the continued growth of system-on-chips and
embedded systems. Ad-hoc system-level design methodologies, that lifts modeling
to higher levels of abstraction, and the concept of intellectual property (IP), that
promotes reuse of existing components, are essential steps to manage design com-
plexity. However, the issue of compositional correctness arises with these steps. Given
components from different manufacturers, designed with heterogeneous models, at
different levels of abstraction, assembling them in a correct-by-construction manner
is a difficult challenge. We address this challenge by proposing a process algebraic
model to support system design with a formal model of computation and serve as
a type system to capture the behavior of system components at the interface level.
The proposed algebra is conceptually minimal, equipped with a formal semantics
defined in a synchronous model of computation. It supports a scalable notion and
a flexible degree of abstraction. We demonstrate its benefits by considering the
type-based synthesis of latency-insensitive protocols, showing that the synthesis of
component wrappers can be optimized by behavioral information carried by interface
type descriptions and yield minimized stalls and maximized throughput.

Keywords: Synchrony, process algebra, compositional modeling, GALS design.

1. Introduction

The design productivity gap has been recognized by the semiconductor
industry as one of the major threats to the continued growth of complex
system-chips and their applications. System level design methodologies
that lift design methods at higher-level of abstraction are essential to
manage design complexity. A number of advances in high-level mod-
eling and validation have been proposed over the past decade in an
attempt to improve the level of abstraction in system design, most of
these enable greater reuse of existing intellectual property (IP) blocks.

Design correctness is an important step in this move. Given the
complexity of system-level designs, it is important that the composition
of system-level IP blocks be guaranteed correct. However, a posteriori
validation of component compositions is a difficult problem. Techniques
are needed that ensure design correctness as a part of the design pro-
cess itself. To address this issue, methodological precepts have been
developed that separately focus on design reuse and correctness by

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

fmsd.tex; 10/12/2004; 8:49; p.1

2

construction. Both reuse and elevation of abstraction critically depend
on guaranteed design correctness. To improve the state of the art in
component composition from existing component libraries, we specifi-
cally seek to address the following issue: given a high level architectural
description and a library of implemented components, how can one
automate the selection of implementation of virtual components from
the library, and automatically ensure composability ?

Our approach is based on a high-level modeling and specification
methodology that ensures compositional correctness through an algebra
capturing behavioral aspects of component interfaces. It is presented
via a minimalist algebra, called the iSTS (implicit and synchronous
transition systems), that is akin to Pnueli’s synchronous transition sys-
tems (STS, [14]) and Dijkstra’s guarded commands [7]. This minimalist
formalism allows us to specify the state transitions, synchronization
relations and scheduling constraints implied by a given system, in the
presence of multiple-clocked synchrony (i.e. polychrony). Our approach
consists of using this formalism as a type system to describe the behav-
ior of system components and allow for global model transformations
to be performed on the system based on behavioral type information.
This approach builds upon previous work on scalable design explo-
ration using refinement/abstraction-based design methodologies [15],
implemented in the Polychrony workbench [16]. It is both concep-
tually minimal and equipped with a formal semantics defined in a
multi-clocked synchronous model of computation [12].

Roadmap After a detailed and informal exposition of our formalism,
Section 2, and of its model of computation, Section 3, we exemplify its
use as a behavioral type system in system design by the definition of a
model transformations, Section 6, and formal methodologies, Section 4,
applied to the synthesis of latency-insensitive protocol, Section 6.

2. A polychronous algebraic notation

We start with an informal outline of an algebraic formalism which
we call the iSTS (implicit synchronous transition systems). The key
notions put to work in this notation are essentially borrowed to Pnueli’s
STS [14] and Dijkstra’s guarded command language [7]. In the iSTS, a
process consists of simultaneous propositions that manipulate signals.
A signal is an infinite flow of values that is sampled by a discrete
series of instants or reactions. An event corresponds to the value carried
by a signal during a particular reaction or instant. The main features
of the iSTS notation are put together in the process P , below, that

fmsd.tex; 10/12/2004; 8:49; p.2

3

describes the behavior of a counter modulo 2, noted P , through a set
of simultaneous propositions, labeled from (1) to (3):

P
def=

¬s0 (1)
|| x̂ ⇒ s′ = ¬s (2)
|| s ⇒ ŷ (3)

− Proposition (1) is an invariant. It says that the initial value of the
signal s, denoted by s0, is false. This is written ¬s0.

− Proposition (2) is a guarded command. It says that if the signal x
is present during a given reaction then the value of s is toggled.

• The leftmost part of the sentence, the proposition x̂, is a
condition or a guard. It denotes the clock of x. It is true if
the signal x is present during the current reaction.

• The rightmost part of the sentence, the proposition s′ = ¬s,
is a transition. The term s′ refers to the next value of the
signal s. The proposition s′ = ¬s says that the next value of
s is the negation of the present value of s.

− Proposition (3) says “if s is true then y is present”.

Formal syntax The formal syntax of the iSTS is defined by the induc-
tive grammar P in Table I. A process P manipulates boolean values
noted v ∈ {0, 1} and signals noted x, y, z. A location l refers to the
initial value x0, the present value x and the next value x′ of a signal.
A reference r stands for either a value v or a signal x.

A clock expression e is a proposition on boolean values. When true,
a clock e defines a particular period in time. The clocks 0 and 1 de-
note events that never/always happen. The clock x = r denotes the
proposition: “x is present and holds the value r”. Particular cases are:

- the clock noted x̂=def(x = x) means that “x is present”
- the clock noted x=def(x = 1) means that “x is true”
- the clock noted ¬x=def(x = 0) means that “x is false”
Clocks are propositions combined using the logical combinators of

conjunction e ∧ f , to mean that both e and f hold, disjunction e ∨ f ,
to mean that either e or f holds, and symmetric difference e \ f , to
mean that e holds and not f . A process P consists of the simultane-
ous composition of elementary propositions. 1 is the process that does
nothing. The proposition l = r means that “l holds the value r” 1.
The proposition x → l means that “l cannot happen before x”. The

1 In Section 1, we wrote x′ = ¬x to mean x = 1 ⇒ x′ = 0 ||x = 0 ⇒ x′ = 1.

fmsd.tex; 10/12/2004; 8:49; p.3

4

process e ⇒ P is a guarded command. It means: “if e is present then
P holds”. Processes are combined using synchronous composition P ||Q
to denote the simultaneity of the propositions P and Q. Restricting a
signal name x to the lexical scope of a process P is written P/x. We
refer to the free variables vars(P) of a process P as the set of signal
names that occur free in the lexical scope of P .

Table I. Formal syntax of iSTS algebra

(reference) r ::= x | v
(location) l ::= x0 |x |x′

(clock) e, f ::= 0 |x = r | e ∧ f | e ∨ f | e \ f | 1
(process) P, Q ::= 1 | l = r |x → l | e ⇒ P | (P ||Q) |P/x

Notational conventions In the formal presentation of the iSTS, we re-
strict ourself to a subset of the elementary propositions in the grammar
of Table I, which we call atoms a. Conversely, syntactic shortcuts used
in the examples are defined as follows:

(atoms) a, b ::= x0 = v | l = y |x → l where l ::= x |x′

l = v
def= (l = x |x0 = v |x′ = x)/x iff x 6= l 6= x′

l := x
def= (l = x ||x → l)

x̂ = ŷ
def= (x̂ ⇒ ŷ || ŷ ⇒ x̂)

x̂
def= (x = x)

l
def= (l = 1)

¬l
def= (l = 0)

3. A polychronous model of computation

To deal with the apparent heterogeneity of synchrony and asynchrony
in GALS architectures, designers usually consider stratified models,
such as CSP (communicating sequential processes) or Kahn networks.

By contrast, polychrony (multi-clocked synchrony) establishes a con-
tinuum from synchrony to asynchrony: modeling, design, transforma-
tion, verification issues are captured within the same model and hence
independently of spatial and temporal considerations implied by a syn-
chronous (local) or an asynchronous (global) viewpoint. The definition
of uniform methodologies for the formal design of GALS architectures
has been the subject of recent and detailed studies in [12] and [15].

In this section, we cast polychrony in the context of the iSTS algebra
to explore abstraction and refinement relations between system-level
models in a way geared towards the aim of compositional system design.
The polychronous model of computation, inspired from [11] and pro-
posed in [12], consists of a domain of traces that does not differentiate
synchrony from asynchrony and of semi-lattice structures that render
synchrony and asynchrony using specific timing equivalence relations.

fmsd.tex; 10/12/2004; 8:49; p.4

5

3.1. Domain of polychrony

We consider a partially-ordered set (T ,≤, 0) of tags. A tag t ∈ T
denotes a symbolic instant or a period in time. We note C ∈ C a chain
of T . Signals, behaviors and processes are defined starting as follows:

DEFINITION 1 (polychrony).
- An event e ∈ T × V is the pair of a tag and a value.
- A signal s ∈ C → V is a function from a chain of tags to values.
- A behavior b ∈ B is a function from names x ∈ X to signals s ∈ S.
- A process p ∈ P is a set of behaviors that have the same domain.

We write tags(s) and tags(b)for the tags of a signal s and of a behavior
b; b|X for the projection of a behavior b on X ⊂ X and b/X = b|vars(b)\X
for its complementary; vars(b) and vars(p) for the domains of b and p.

Synchronous composition p || q of two processes p and q is defined by the
union of all behaviors b (from p) and c (from q) which are synchronous:
all signals along the interface I = vars(p) ∩ vars(q) between p and q
carry the same values at the same time tags.

p || q = {b ∪ c | (b, c) ∈ p× q, I = vars(p) ∩ vars(q), b|I = c|I }

Scheduling structure To render scheduling relations between events
occurring at the same time tag t, we equip the domain of polychrony
with a scheduling relation, noted tx → t′y, defined on the domain of
dates D = T × X , to mean that the event along the signal named y
at t′ may not happen before x at t. When no ambiguity is possible
on the identity of b in a scheduling constraint, we write it tx → ty.
We constraint scheduling → to contain causality so that t < t′ implies
tx →b t′x and tx →b t′x implies ¬(t′ < t).

3.2. Synchronous structure of polychrony

Building upon this domain of polychrony defined in Section 3.1, we
define the semi-lattice structure which relationally denotes synchronous
behaviors in this domain. The intuition behind this relation is to con-
sider a signal as an elastic with ordered marks on it (tags). If the elastic
is stretched, marks remain in the same relative and partial order but
have more space (time) between each other. The same holds for a set
of elastics: a behavior. If they are equally stretched, the order between
marks is unchanged.

DEFINITION 2 (clock equivalence [12]). A behavior c is a stretching
of b, written b ≤ c, iff vars(b) = vars(c) and there exists a bijection f
on T which satisfies

fmsd.tex; 10/12/2004; 8:49; p.5

6

∀t, t′ ∈ tags(b), t ≤ f(t) ∧ (t < t′ ⇔ f(t) < f(t′))
∀x, y ∈ vars(b),∀t ∈ tags(b(x)),∀t′ ∈ tags(b(y)), tx →b t′y ⇔ f(t)x →c f(t′)y

∀x ∈ vars(b), tags(c(x)) = f(tags(b(x))) ∧ ∀t ∈ tags(b(x)), b(x)(t) = c(x)(f(t))

Stretching is a partial-order relation and defines clock equivalence: b and
c are clock-equivalent, written b ∼ c, iff there exists d s.t. c ≥ d ≤ b.

3.3. Asynchronous structure of polychrony

The asynchronous structure of polychrony is modeled by weakening
the clock-equivalence relation to allow for comparing behaviors w.r.t.
the sequences of values signals hold regardless of the time at which
they hold these values. Relaxation individually stretches the signals of
a behavior in a way preserving scheduling constraints. It is a partial-
order that defines flow-equivalence: two behaviors are flow-equivalent
iff their signals hold the same values in the same order.

DEFINITION 3 (flow equivalence [12]). A behavior c is a relaxation
of b, written b v c, iff vars(b) = vars(c) and, for all x ∈ vars(b), there
exists a bijection fx on T which satisfies
∀t, t′ ∈ tags(b(x)), t ≤ fx(t) ∧ t < t′ ⇔ fx(t) < fx(t′))
∀t ∈ tags(b(x)),∀t′ ∈ tags(b(y)), tx →b t′y ⇔ (fx(t))x →c (fy(t′))y

tags(c(x)) = fx(tags(b(x))) ∧ ∀t ∈ tags(b(x)), b(x)(t) = c(x)(fx(t))
b, c are flow-equivalent, written b ≈ c, iff there exists d s.t. b w d v c.

Asynchronous composition p ‖ q is defined by considering the partial-
order structure induced by the relaxation relation . The parallel compo-
sition of p and q consists of behaviors d that are relaxations of behaviors
b and c from p and q along shared signals I = vars(p) ∩ vars(q) and
that are stretching of b and c along independent signals of p and q.

p ‖ q =
{
d ∈ B|vars(p)∪vars(q) | ∃(b, c) ∈ p× q, d/I ≥ (b/I || c/I) ∧ b|I v d|I w c|I}

3.4. From synchronous to asynchronous structures

Polychrony is designed to render the synchronous hypothesis and relate
it to asynchronous architectures using communication with unbounded
delay. In an embedded architecture, however, the flow of a signal usually
slides from another as the result of introducing finite delays using, e.g.,
finite Fifo buffers or relay stations. Definition 4 formalizes this relation
by considering the timing deformation between an initial behavior b and
a final behavior c performed by a one-place FIFO buffer of internal

fmsd.tex; 10/12/2004; 8:49; p.6

7

signal m and behavior d. The behavior d is defined by stretching b ≤
d/m and c/x by d/mx. Let us write predC(t) (resp. succC(t)) for the
immediate predecessor (resp. successor) of the tag t in the chain C.

DEFINITION 4 (finite relaxation). The behavior c is a 1-relaxation of
x in b, written b vx

1 c iff vars(b) = vars(c) and there exists a signal
m, a behavior d and a chain C = tags(d(m)) = tags(d(x))∪ tags(c(x))
such that d/m ≥ b, d/mx = c/x and, for all t ∈ C,

(1) t ∈ tags(d(x)) ⇒ d(x)(t) = d(m)(t) ∧ tx →d tm
(2) t 6∈ tags(d(x)) ⇒ d(m)(t) = d(m)(predC(t))
(3) t ∈ tags(c(x)) ⇒ c(x)(t) = d(m)(t) ∧ ∀y ∈ vars(d) \m, ty →∗

d tx
(4) t ∈ tags(c(x)) ⇒ c(x)(t) = d(x)(t) ∨ c(x)(succC(t)) = d(x)(t)

Rule (1) says that, when an input d(x) is present at some time t,
then d(m) takes its value. If no input is present along x at t, rule (2),
then d(m) takes its previous value. Rule (3) says that, if the output c(x)
is present at t, then it is defined by d(m)(t). Finally, rule (4) requires
this value to either be the present or previous value of the input signal
d(x), binding the size of the buffer to one place.

d(x) : • • • •↓(1) ↓(1) ↓(1) ↓(1)
d(m) : • • −→(2)• • • −→(2)•↓(3) ↓(3) ↓(3) ↓(3)c(x) : • • • •

(4) (4) (4) (4)

Definition 4 accounts for the behavior of bounded FIFOs in a way
that preserves scheduling relations. It implies a series of (reflexive-
anti-symmetric) relations vn (for n > 0) which yields the (series of)
reflexive-symmetric flow relations ≈n to identify processes of same flows
up to a flow-preserving first-in-first-out buffer of size n. We write b v1 c
iff b vx

1 c for all x ∈ vars(b), and, for all n > 0, b vn+1 c iff there exists
d such that b v1 d vn c. The largest equivalence relation modeled in
the polychronous model of computation consists of behaviors equal up
to a timing deformation performed by a finite FIFO protocol.

DEFINITION 5. b and c are finite flow-equivalent, written b ≈∗ c, iff
there exists 0 ≤ N < ∞ s.t. b ≈N c.

3.5. Denotational semantics of the algebra

The detailed presentation and extension of the polychronous model
of computation allows us to give a denotational model to the iSTS
notation introduced in Section 2. This model consists of relating a
proposition P to the set of behaviors p it denotes.

fmsd.tex; 10/12/2004; 8:49; p.7

8

Meaning of clocks. Let us start with the denotation of a clock ex-
pression e (Table II). The meaning [[e]]b of a clock e is defined relatively
to a given behavior b and consists of the set of tags satisfied by the
proposition e in the behavior b. In Table II, the meaning of the clock
x = v (resp. x = y) in b is the set of tags t ∈ tags(b(x)) (resp. t ∈
tags(b(x)) ∩ tags(b(y))) such that b(x)(t) = v (resp. b(x)(t = b(y)(t)).
In particular, [[x̂]]b = tags(b(x)). The meaning of a conjunction e ∧ f
(resp. disjunction e ∨ f and difference e \ f) is the intersection (resp.
union and difference) of the meaning of e and f . Clock 0 has no tags.

Table II. Denotational semantics of clock expressions

[[1]]b=tags(b) [[0]]b = ∅
[[x = v]]b={t ∈ tags(b(x)) | b(x)(t) = v}
[[x = y]]b={t ∈ tags(b(x)) ∩ tags(b(y)) | b(x)(t) = b(y)(t)}

[[e ∧ f]]b=[[e]]b ∩ [[f]]b
[[e ∨ f]]b=[[e]]b ∪ [[f]]b
[[e \ f]]b=b[[e]]b \ [[f]]b

Meaning of propositions. The denotation of a clock expression by a
set of tags yields the denotational semantics of propositions P , written
[[P]], Table III. The meaning [[P]]e of a proposition P is defined with
respect to a clock expression e. Where this information is absent, we
assume [[P]] = [[P]]1 to mean that P is an invariant (and is hence
independent of a particular clock). The meaning of an initialization
x0 = v , written [[x0 = v]]e, consists of all behaviors defined on x,
written b ∈ B|x such that the initial value of the signal b(x) equals
v. Notice that it is independent from the clock expression e provided
by the context. In Table III, we write B|X for the set of all behaviors of
domain X, min(C) for the minimum of the chain of tags C, succt(C)
for the immediate successor of t in the chain C and vars(P) and vars(e)
for the set of free signal names of P and e.

Table III. Denotational semantics of propositions

[[x = y]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,
t ∈ tags(b(x)) ∧ t ∈ tags(b(y)) ∧ b(x)(t) = b(y)(t)}

[[y → x]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,

t ∈ tags(b(x)) ⇒ t ∈ tags(b(y)) ∧ ty →b tx}
[[x′ = y]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,

t ∈ C = tags(b(x)) ∧ t ∈ tags(b(y)) ∧ b(x)(succt(C)) = b(y)(t)}
[[y → x′]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,

t ∈ C = tags(b(x)) ⇒ t ∈ tags(b(y)) ∧ ty →b (succt(C))x}
[[x0 = v]]e={b ∈ B|x | b(x)(min(tags(b(x)))) = v}
[[f ⇒ P]]e=[[P]]e∧f [[P ||Q]]e = [[P]]e || [[Q]]e [[P/x]]e = {c ≤ b/x | b ∈ [[P]]e}

fmsd.tex; 10/12/2004; 8:49; p.8

9

A proposition x = y at clock e is denoted by behaviors b defined
on vars(e) ∪ {x, y} and s.t. all tags of t ∈ [[e]]b belong to b(x) and to
b(y) and hold the same value. A scheduling specification y → x at
clock e denotes the behaviors b on vars(e) ∪ {x, y} which, for all tags
t ∈ [[e]]b, requires x to preceed y: if t is in b(x) then it is necessarily
in b(y) and satisfies ty →b tx. The propositions x′ = y and y → x′ is
interpreted similarly by considering the tag t′ that is the successor of t
in the chain C of x. The behavior of a guarded command f ⇒ P at the
clock e is equal to the behavior of P at the clock e ∧ f . The meaning
of a restriction P/x consists of the behaviors c of which a behavior
b/x from P are a stretching of. The behavior of P ||Q consists of the
composition of the behaviors of P and Q.

3.6. Properties of the denotational semantics

A remarkable syntactic property of iSTS with respect to the semi-lattice
of clock equivalence is that, if clock equivalence holds between two pro-
cesses P and Q, then it also holds in any context formed by “pluging”
either of the processes P or Q to a term K[] ::= [] | (P ||K[]) | (e ⇒
K[]) | (K[]/x). From the point of view of compositional design, this
property is important. It allows one to rely on the behavior expressed
once and for all by a process P to represent a class of processes equiv-
alent by clock equivalence and in any possible context K.

PROPERTY 1 (congruence). If P ∼ Q then K[P] ∼ K[Q].

Closure Property 2 states that the semantics of the iSTS is closed
by clock-equivalence. It means that, whenever a process P has a given
behavior b ∈ [[P]], then it also has any behavior c that is a stretch
of b. This is an important assessment on the expressive capability of
the iSTS: the property of closure implies that, whenever the intent
of a given proposition is to model a particular scenario, a particular
invariant of a system, then its implicit extent is the class of all behaviors
that are clock-equivalent to this scenario.

PROPERTY 2 (closure). If b ∈ [[P]] and b ≤ c then c ∈ [[P]].

Expressibility Property 3 extends this result to finite flow equivalence
with the aim of showing that the semantics of iSTS is expressive enough
to model systems composed of synchronous processes communicating
via reliable and bounded protocols, hence, encompass the specification
of GALS architectures. It says that, whenever a given process or system
has a given behavior b, and whenever c is a finite relaxation of b, then
another process Q can be found such that c is a behavior of P ||Q,

fmsd.tex; 10/12/2004; 8:49; p.9

10

demonstrating the closure of the iSTS for finite flow equivalent behav-
iors. Property 3 can also be seen as a justification on the lack of an
operator of parallel composition in the iSTS. Such an operator would
model an unreliable (because unbounded) communication medium.

PROPERTY 3 (expressibility).
If b ∈ [[P]] and b v∗ c then there exists Q s.t. c ∈ [[P ||Q]].

Finding a process Q satisfying Property 3 amounts to consider the
finite FIFO buffer protocols that are directly implied by the definition
of the relation of relaxation. The model of a 1-place FIFO buffer from x
to y is noted fifox,y

1 , below. It uses two local signals r and s. The initial
value of the state variable s is set to true (proposition s0 = 1). The
state variable s and the register are synchronized (proposition ŝ = r̂).
When s is true, the FIFO awaits the presence of the input signal x
(proposition s = x̂) and defines the next value of the register r by the
value of x (proposition s ⇒ r′ := x). When s is false, it synchronizes
with output signal y (proposition ¬s = ŷ), sends the current value of
the register r (proposition ¬s ⇒ y := r) and sustains the value of
r (proposition r′ := r). If either a value is loaded or stored then the
status of s changes (proposition ŝ ⇒ s′ = ¬s).

fifox,y
1

def=
[(

s0 =1
ŝ= r̂

)
||
(

s = x̂
s ⇒ r′ :=x

)
||
(

¬s = ŷ
¬s ⇒ y := r

)
||
(
¬s⇒ r′ := r

ŝ⇒ s′ :=¬s

)]
/rs

Compared to the input signal x, one easily observe that the output
signal y of the protocol fifox,y

1 has all tags shifted by at most one place
(the shift cannot pass the next input). This yields the result expected
in Property 3. Starting from the protocol fifox,y

1 , finite FIFO buffers of
length N > 1 and of width M > 1 can easily be defined by induction on
N and M . To attach a finite FIFO buffer to a given process P , we define
the template or generic process fifoN 〈P 〉 to redirect the input signals
x1..m = in(P) and the output signals xm+1..n = vars(P) \ in(P) of P
to an input buffer fifox1..m,y1..m

N and an output buffer fifo
ym+1..n,xm+1..n

N .
This is done by substituting the free variables x1..n by fresh signal
names y1..n. The definition of the function in(P) is given in Appendix.

fifox,y
N

def=
(
fifox,z

1 || fifoz,y
N−1

)
/z, ∀M,N > 1

fifox1..m,y1..m

N
def=

(
fifo

x1..m−1,y1..m−1

N || fifoxm,ym
)

fifoN 〈P 〉
def=

(
fifox1..m,y1..m

n || (P [yi/xi]ni=1) || fifo
ym+1..n,xm+1..n

N

)
/y1..n

fmsd.tex; 10/12/2004; 8:49; p.10

11

4. From processes to behavioral types

In the terminology of [8], a process P defines the dynamic interface
of a given system: it defines a transition system that specifies the
invariants of its evolution in time. The abstraction of a process P by
its static interface P̂ is defined by the type inference system e ` P : Q.
To a process P in a context of clock e, it associates the clock and
scheduling relations Q that form a static abstraction of P . We assume
the scheduling relation to be transitive: e ⇒ x → y | f ⇒ y → z implies
(e ∧ f) ⇒ x → z, and distributive: e ⇒ x → y | f ⇒ x → y implies
(e ∨ f) ⇒ x → y).

` 1 : 1 ` x0 = v : 1 e ` x → y : e ⇒ x → y

e ` x = y : e ⇒ x = y e ` x′ = y : (e ⇒ (x̂ = ŷ)) || (e ⇒ x̂) || (e ⇒ ŷ)

e ∧ f ` P : Q

e ` f ⇒ P : Q

e ` P : Q

e ` P/x : Q/x

e ` P1 : Q1 e ` P2 : Q2

e ` P1 ||P2 : Q1 ||Q2

The correctness of the inference system is stated by a denotational
containment relation, i.e., a soundness property:

PROPERTY 4. [[P]] ⊆ [[P̂]] and, if e ` P : Q, then [[P]]e ⊆ [[Q]]e.

4.1. Hierarchization

Behavioral type inference associates a system of clock equations P̂ with
an iSTS process P . Based on this information, a canonical represen-
tation of the partial order between the signal clocks of a process P
can be determined by a transformation called hierarchization [1]. The
control-flow graph it constructs is the medium which we use to perform
the verification, transformation and design exploration.

EXAMPLE 1. The implications of hierarchization to code generation
can be outlined by considering the specification of a one-place buffer.
The process buffer has input x, output y and implements two function-
alities. One is the process alternate which desynchronizes the signals x
and y by synchronizing them to the true and false values of an alternat-
ing boolean signal b. The other functionality is the process current. It
defines a cell in which values are stored at the input clock x̂ and loaded
at the output clock ŷ.

buffer < x, y >
def= alternate < x, y > || current < x, y >

alternate < x, y >
def=

(
s0 = 1 || x̂ = s || ŷ = ¬s || s′ := ¬s

)
current < x, y, b >

def=
(
r0 = b || r′ := x || x̂ ⇒ y := x || ŷ \ x̂ ⇒ y := r

)

fmsd.tex; 10/12/2004; 8:49; p.11

12

We observe that s defines the master clock of buffer. There are two other
synchronization classes, x and y, that corresponds to the true and false
values of the boolean flip-flop variable s, respectively. This defines three
nodes in the control-flow graph of the generated code. At the master
clock ŝ, the value of s is calculated from zs, its previous value. At the
sub-clock s = x̂, the input signal x is read. At the sub-clock ¬s = ŷ the
output signal y is written. Finally, the new value of zs is determined.

buffer_iterate () {
s = !zs;
cy = !s;
if (s && !r_buffer_i(&x)) return FALSE;
if (cy) { y = x; w_buffer_o(y); }
zs = s;
return TRUE; }

Figure 1. C code generated for the one-place buffer specification.

In Example 1, we observe that hierarchization involves both free and
bound signals of a proposition P . Hence, Definition 6 considers the lift
P of bound variables in P defined by induction on P by:

- a/X = a/X and P/x = Q/X ∪ {x} iff P = Q/X
- e ⇒ P = (e ⇒ Q)/X iff P = Q/X and vars(e) ∩X = ∅
- P1 ||Q1 = (P2 ||Q2)/XY iff P 1 = P2/X and Q1 = Q2/Y

Definition 6 uses the static abstraction Q̂ of P = Q/X to find clock
equivalence classes. In Definition 6, we write P |= Q iff the proposition
P implies the proposition Q.

DEFINITION 6 (hierarchization). The clock relation �P of a process
P is the partial order relation between elementary clocks (x = r), writ-
ten h, and defined with Q = P by -1. if Q̂ |= x̂ = h or Q̂ |= (x = v) = h

then x̂ � h -2. if x̂ � h1, x̂ � h2 and Q̂ |= h = h1 ? h2 for any
? ∈ {∧,∨, \} then x̂ � h. We say that h1 and h2 are clock-equivalent,
written h1≺�h2, iff h1 � h2 and h2 � h1.

Rule 1 defines equivalence classes for synchronous signals and con-
structs elementary partial orders for (x = v) and x̂. Rule 2 connects par-
tial orders. The insertion algorithm, introduced in [1], yields a canonical
representation by observing that there exists a unique minimum clock
below x such that rule 2 holds. A process whose clock relation is hierar-
chic, in the sense of Definition 7, meets a necessary criterion for being
implemented by a sequential program.

DEFINITION 7. A process P is hierarchic iff �P has a minimum.

fmsd.tex; 10/12/2004; 8:49; p.12

13

4.2. Transformation of hierarchical processes

On the path towards a sequential implementation of a hierarchical pro-
cess, an important step is the structural transformation of a process
P into a model from which formal design properties can easily be
checked and target code easily and structurally generated. We outline
such transformations implemented in the Polychrony workbench [16],
They consist of representing a process P either into a disjunctive form,
noted DP , or into a hierarchical form, noted HP . Table IV examplifies
such a transformation using the counter modulo 2 of Example 1.

The disjunctive form DP of the process P consists of its represen-
tation as the composition of elementary guards g ⇒ a consisting of a
conjunctive clock proposition g [g ::= 0 | 1 | (x = r) | g ∧ g | g \ g] and of
an atomic action a. The hierarchical form HP of the process P consists
of representing it according to the tree-like structure of its associated
clock relation �P . One of the benefits of this representation is to make
the control-flow of the process explicit to facilitate code generation.

D ::= G |D/x (disjunction)
G ::= g ⇒ a | (G ||G) (clause)

H ::= a | e ⇒ F (hierarchy)
F ::= H | (H ||F) (forest)

In Table IV, one easily observes the interplay between the disjunctive
and hierarchical forms of a process. The processDP is obtained from the
initial specification P by a structural decomposition of its propositions.
Using information carried by the clock relation �P , one iteratively
picks the elementary guarded commands g ⇒ a of DP that match
the successive clocks of �P to form its hierarchical decomposition.

Table IV. Disjunctive and hierarchical representations of a process

(process) (disjunctive form) (clock relation) (hierarchical form)

s0 =0
x̂= ŝ
s′:=¬s
s= ŷ
y:=s

s0 = 0
x̂⇒ ŝ
ŝ⇒ x̂
ŝ⇒s′ :=¬s
s⇒ ŷ
ŷ⇒ s
s⇒ y := s

x̂, ŝ
/ \

¬s s, ŷ

s0 = 0
x̂ = ŝ

x̂ ⇒

 s′ := ¬s
ŷ = s
s ⇒ y := s
¬s ⇒ 1



The disjunctive form of a process P is defined by application of the
function DP =defD[[P]]1 in Figure 2. We observe that we have [[DP]] =
[[P]] by construction. In Appendix it is used to easily identify the input
and output signals of a process, or, e.g., in Definition 12 to define
conflict-free transitions. The hierarchical form of a process P is defined

fmsd.tex; 10/12/2004; 8:49; p.13

14

by application of the function HP
def= H[[P]]1� in Figure 2. It takes an

initial clock 1 and the clock relation �P as parameters. This relation
is iteratively decomposed using the function top �, which returns the
clock equivalence class H on top of �, and the function bot �, which
returns the set of clock relations under H in �.

D[[l = r]]g = g ⇒ l = r
D[[x → l]]g = g ∧ x̂ ⇒ x → l
D[[a]]e∨g = D[[a]]e || D[[a]]g

D[[f ⇒ P]]e = D[[P]]e∧f

D[[P/x]]e = (D[[P]]e)/x
D[[P ||Q]]e = D[[P]]e || D[[Q]]e

H[[
∏n

i=1 gi ⇒ ai]]
g
� =

∏
i∈I ai || syncH ||h ⇒ F

where h ∈ H = top �
I = {0 < i ≤ n | P̂ |= g ∧ h = gi ∧ ai 6∈ H}
F =

∏
�j∈bot�H[[

∏
i6∈I gi ⇒ ai]]

g∧h
�j

Figure 2. Disjunctive and hierarchic normals form DP and HP of a process P

The algorithm H iteratively constructs a subset I of the indexed
clauses gi ⇒ ai of the disjunctive form DP . It selects propositions
gi ⇒ ai whose guard gi matches g, the clock on the path to the present
hierarchy �, and h, the clock of the present hierarchy �. It discards
those propositions gi ⇒ ai whose action ai is redundant with a clock
expression of H. The iteration continues breadth-first to define the
forest corresponding to bot � using the remaining propositions gi ⇒
ai, i 6∈ I. We write synch1,h2

def= h1 = h2 to synchronize the clock of
the equivalence class H of top �. Again, one easily observe that, by
construction, we have [[HP]] = [[P]] thanks to the semantics information
provided by the clock relation �.

5. Formal analysis of processes

A hierarchical process satisfies necessary conditions for the property
of endochrony to hold. A process is said endochronous (Definition 8)
iff, given an external (asynchronous) stimulation of its inputs, it re-
constructs a unique synchronous behavior (up to clock-equivalence). In
other words, endochrony denotes the class of processes that are stal-
lable or insensitive to internal and external propagation delays: patient
processes, in the sense of [6].

DEFINITION 8 (endochrony [12]).
P is endochronous iff ∀b, c ∈ [[P]], (b|in(P))≈(c|in(P)) ⇒ b ∼ c.

fmsd.tex; 10/12/2004; 8:49; p.14

15

In the Polychrony workbench [16], GALS architectures are modeled
starting from the property of endochrony and the criterion of endo-
isochrony [12]: two endochronous processes P and Q of interface I =
vars(P)∩vars(Q) are endo-isochronous iff (P |I) || (Q|I) is endochronous.
This criterion ensures that the refinement of the specification P ||Q by
a distributed implementation P ‖ Q is semantics-preserving. Although
restrictive, it is directly amenable to static verification.

5.1. Formal analysis of hierarchical processes

Starting from the algorithm specified in Definition 6 and the class of
hierarchical processes isolated in Definition 7, we seek towards processes
which satisfies the property of endochrony in the context of the iSTS
algebra by introducing the notion of controllability, Definition 13.

A correct definition of controllability requires a precise partition of
the signals of a process P into input signals in(P), output signals out(P)
and state variables def(P). This partition is defined in Appendix. A
signal x ∈ out(P) (resp. x ∈ def(P)) is an output (resp. state) of P iff,
whenever its presence is implied by a clock e, then there exists another
clock f implied by e whose action is x := y (resp. x′ := y) for some
reference y. The disjoint sets def(P) and out(P) define the input signals
in(P) of a process by their complementary in vars(P).

Definability A controllable process needs to correctly define its local
and bound signals in order to meet the property of determinism, and
hence endochrony. For instance, let us reconsider (left) the example of
the specification R, below.

R
def= (s ⇒ x || ¬s ⇒ y)/s Q

def= (s0 = 1 || s′ := z || s ⇒ x := s || ¬s ⇒ y := s)/s

It may seem controllable by apparently having two output signals x
and y defined upon the value of the signal s. However, notice that s is
left undefined. Hence the behavior of R is non-deterministic, since the
choice of the value of s is free. Had s been associated to some external
input z, as in Q (right), one could have concluded that it is indeed
controllable. In fact, notice that Q is a refinement of R: [[Q]] ⊆ [[R]].

DEFINITION 9. A process P is well-defined iff all bound variables of
P are output signals or state variables. By induction on P ,

- an atomic proposition a is well-defined.
- a guarded command e ⇒ P is well defined iff P is well-defined
- a composition P ||Q is well-defined iff P and Q are well-defined
- P/x is well-defined iff P is well-defined and x ∈ def(P) ∪ out(P).

fmsd.tex; 10/12/2004; 8:49; p.15

16

Causality Causality is another possible origin of non-determinism. Let
us consider the example of a clock proposition x̂=def(x = x). It does not
define an output signal, it just says that the signal x is present. It can be
regarded as an abstraction of the proposition x := y

def= (x = y || y → x),
which defines x as an output signal and assigns the value of the input
y to it. What happens next, if we additionally write y = x or y := x
? In the first case, one can still regard the process x := y || y = x as a
redundant yet deterministic specification: x takes the value of y. This
is not the case in the latter specification, which tries to mutually define
the output signals x and y: x := y || y := x. It is a non-deterministic
specification, as both true and false are possible values of x and y every
time this is needed. Thanks to the definition of x := y by x = y || y → x,
the analysis of causal specifications relies on the information provided
by the scheduling relation of a process P : a cyclic definition of output
signals yields a proposition e ⇒ x → x at some clock e in the transitive
closure of the scheduling relation implied by P̂ . Hence Definition 10.

DEFINITION 10 (causality).
P is non-causal iff (P̂ |= e ⇒ x → x) ⇒ (P̂ |= e = 0).

Determinism The isolation of well-defined and non-causal processes
allows to touch an important intermediate result. When a process both
defines its bound variables from the value of free variables and does not
define its outputs in a cyclic manner, it is deterministic in the sense of
Definition 11.

DEFINITION 11 (determinism).
P is deterministic iff ∀b, c ∈ [[P]], (b|in(P)) = (c|in(P)) ⇒ b = c.

PROPERTY 5 (determinism).
If P is well-defined and non-causal then P is deterministic

One may be surprised by the absence of a notion of conflict-freedom
in Definition 11. For instance, consider the process P=defe ⇒ x =
r || f ⇒ x = s, one may wonder why the invariant Q=defe ∧ s ⇒ s = r
is not required to check P deterministic. However, a careful atten-
tion to the denotational semantics of P shows that [[P]] = [[P ||Q]]
since synchronous composition filters conflicting behaviors. Checking
this property is nonetheless mandatory to specify a correct sequential
code generation scheme. In the Polychrony workbench, the resolution
of conflicting specifications is performed by the synthesizing a proof
obligation Q which is called a clock constraint:

DEFINITION 12. P is conflict-free iff DP =def (
∏m

i=1 gi ⇒ ai) /x1..n

and for all 0 < i, j ≤ m, ai=def(l := x) and aj=def(l := y) implies
P̂ |= gi ∧ gj ⇒ x = y.

fmsd.tex; 10/12/2004; 8:49; p.16

17

Controllability If Definition 11 is compared to the behavior depicted
in Example 1, one easily notices that a deterministic process still misses
some important capabilities to meet endochrony. A deterministic pro-
cess must have a way to initiate a reaction upon the arrival of a
pre-determined input signal, to check whether it needs further inputs
and finally produce an output. The notion of hierarchy allows to fill this
remaining gap. A hierarchical process P has a pre-determined input
tick, the minimum min �P of its clock relation. Upon the presence of
the tick, it is able to decide whether an additional input is needed or
not, it is able to decide whether it should produce outputs. However,
controllability requires this decision to be made starting from the input
signals of a process (and not its output signals or state variables).

DEFINITION 13 (controllability). A process P is controllable iff P
is well-defined, non-causal, hierarchical and for all y ∈ vars(P), there
exists x ∈ in(P) such that x �P y.

Definition 13 bridges the remaining gap from a deterministic specifi-
cation to an endochronous program. Property 6 generalizes the propo-
sition of [12] to the context of partially defined signals of iSTS.

PROPERTY 6. If P is controllable then P is endochronous.

6. Correct-by-construction protocol synthesis

Building upon iSTS and its implementation in the Polychrony work-
bench, we seek towards a formal methodology to characterize the invari-
ants of protocol synthesis and propose the use of global model trans-
formation to synthesize specialized and optimized component wrappers
using the behavioral type information.

6.1. A formal design methodology

To this end, we characterize a correct-by-construction methodology
for the compositional design of architectures starting from elementary
endochronous processes. We focus on the definition of a refinement
methodology and semantics preservation criterion that naturally pro-
ceed from the model of polychrony and define the spectrum of bounded
protocol synthesis in system design. Refinement-based design in the
Polychrony workbench using the criterion of flow-invariance has been
studied in a number of related works on system design [12, 15].

fmsd.tex; 10/12/2004; 8:49; p.17

18

In the present study, we chose to restrict ourselves to the scope of
polychrony excluding unbounded asynchrony. We therefore define the
following criteria, which recast endochrony and flow-invariance to the
context of finite flow-equivalence. We say that a process P is finite flow-
preserving iff given finite flow-equivalent inputs, it can only produce
behaviors that are finite flow equivalent.

DEFINITION 14 (finite flow-preservation).
P is finite flow-preserving iff ∀b, c ∈ [[P]], (b|in(P))≈∗(c|in(P)) ⇒ b ≈∗ c.

Example of finite flow-preserving processes are endochronous pro-
cesses. An endochronous process which receives finite flow equivalent in-
puts produces clock-equivalent outputs. It hence forms a restricted sub-
class of finite-flow preserving processes. Also note that flow-preservation
is stable to the introduction of a finite buffering protocol.

PROPERTY 7 (finite flow-preservation).
1. If P is endochronous then P is finite flow preserving.
2. If P is finite flow-preserving then fifoN 〈P 〉 is finite flow-preserving.

A refinement-based design methodology based on the property of
finite flow-preservation consists of characterizing sufficient invariants
for a given model transformation to preserve flows.

DEFINITION 15 (finite flow-invariance).
The transformation of P into Q such that I ⊂ in(P) = in(Q) is

finite flow-invariant iff ∀b ∈ [[P]], ∀c ∈ [[Q]], (b|I)≈∗(c|I) ⇒ b ≈∗ c.

The property of finite flow-invariance is a very general methodolog-
ical criterion. For instance, it can be applied to the characterization of
correctness criteria for model transformations such as protocol inser-
tion or desynchronization. Let P and Q be two finite flow-preserving
processes and R a protocol to link P and Q, such as a finite FIFO
buffer fifoN , or a double hand-shake protocol, or a relay station [6], or
a loosely time-triggered architecture [4].

DEFINITION 16 (flow-preserving protocol). The process R is a flow-
preserving protocol iff there exists n > 0 such that inputs in(R) =
{x1..n} are finite flow-equivalent to outputs out(R) = {y1..n}

∀b ∈ [[R]], b|x1..n ≈∗ (b|y1..n [xi/yi]0<i≤n)

Wrapping a process P with a protocol R, written R〈P 〉, is defined
by redirecting the signals of P to R using substitutions.

fmsd.tex; 10/12/2004; 8:49; p.18

19

DEFINITION 17 (wrapper). Let P be a process such that in(P) =
{x1..m} and out(P) = {xm+1..n}. Let R be a flow-preserving protocol
such that in(R) = {y1..n} and out(R) = {z1..n}. The wrapper of P with
R is the template process noted R〈P 〉 and defined by:

R〈P 〉 def=
(

((R[xi/zi]m<i≤n) [xi/yi]0<i≤m)
|| ((P [yi/xi]m<i≤n) [zi/xi]0<i≤m)

)
/y1..nz1..n

A sufficient condition for the insertion of a protocol between two
synchronous processes P and Q to finite preserve flow is to guaranty
that P |I ||Q|I is finite flow preserving for I = vars(P)∩vars(Q), meaning
that all communications between P and Q via a shared signal x ∈ I
should be flow preserving and that P and Q may otherwise evolve
independently. This condition is stated by Property 8.

PROPERTY 8 (protocol insertion). If R is a flow-preserving protocol
and P is finite flow-preserving then R〈P 〉 is finite flow-preserving. If
R is a flow-preserving protocol and P , Q, P |I ||Q|I are finite flow-
preserving then R〈P 〉 ||R〈Q〉 is finite preserving (I = vars(P)∩vars(Q)).

6.2. Case-study of latency-insensitive protocols

To demonstrate the extent of a methodology based on flow-preservation,
we consider the case-study of latency-insensitive protocols [6]. In the
model of latency-insensitive protocols [6], architecture components are
denoted by the notion of pearls (“intellectual property under a shell”)
and are required to satisfy an invariant of patience (robustness to
external delays). A latency-insensitive protocol consists of the client-
side controller of a patient or endochronous process P which aims at
guarantying the preservation of flows between P and the network Q.

The construction of a latency-insensitive protocol for a process P
consists of associating a channel to each signal x of the process P .
A channel chanx

P consists of a carrier, denoted by datax, of a clock,
denoted by clkx, and of a stop signal, noted stopx. The bus multiplexes
the signal x into the carrier datax, which repeatedly sends the current
value of x, and the clock clkx, which is true iff x is present.

The signal stopx can be used to either inhibit the calculation of the
process P (which is the server of x) or to forward the status of x (to
a client Q of P) by synchronizing it to the master clock tickP (resp.
tickQ). Since we wish to use channels to wrap both input and output
signals, the definition does not provide scheduling relation but just
equational propositions between the signal x and its channel’s bundle.

chanx
P

def=

 clkx ⇒ datax = x
clkx = x̂

t̂ickP ⇒ stopx = 0

 s.t. tickP ∈ {x | x̂ ∈ min(�P)} ∩ in(P)

fmsd.tex; 10/12/2004; 8:49; p.19

20

The relay station from a channel chanx to the channel chany is defined
by the generic process relayx,y

1 . Initially, the relay is stopped (proposi-
tion stop0

x = 1) and clock of the output y is false (proposition clk0
y = 0)

meaning that the initial data0
y is irrelevant (and does not have to be

specified). Then, the next value of stopx is set to the present value
of stopy (proposition stop′x := stopy) meaning that the stop signal is
propagated with a delay from the output channel y to the input x.

relayx,y
1

def=


(
clk0

y = 0 || stop0
x = 1 || stall0 = 0

)
||


stop′x := stopy

stall′ := stopx ∧ stopy

¬stall ⇒ (data′y := datax || clk′y := clkx)
stall ⇒ (data′y := datay || clk′y := 0)

 /stall


The next state of the relay is a stall (variable stall′) if its input channel
requests it to stop (stopx is true) and did already stop at the previous
period (stopy is true). If the relay is not stall (guard ¬stall) then the
next packet of the output channel y will be the present packet of input
channel x (propositions data′y := datax and clk′y := clkx). If the relay is
stall (guard stall) then it transmits a void packet (proposition data′y :=
datay, setting the output clock clk′y to false).

Connecting a relay station to a process P amounts to constrain
every input-output signal x of P to satisfy the invariants of the channel
chanx. An input signal x of P will be present iff not delayed by the
network Q (proposition clkx = x̂) and only upon request (proposition
tickP ⇒ ¬stopx). An output signal x of P will be made available to the
network Q only if it is present in P (proposition clkx = x̂) and only if
it is requested by the receiver (proposition tickP ⇒ ¬stopx). Just as for
a FIFO buffer, it is easy to assemble relays to form larger protocols:

relayx,y
n

def= (relayx,z
1 || relayz,y

n−1)/z, ∀m,n > 1
relayx1..m,y1..m

n
def= (relayx1..m−1,y1..m−1

n || relayxm,ym
n)

and define the wrapper of a process P by the template process imple-
menting a relay station connected to as many channels as free variables
in P . The wrapper relayN 〈P 〉 consists of redirecting the input signals
in(P) = x1..m and output signals out(P) = xm+1..n of P to an input re-
lay station relayx1..m,y1..m

N and an output relay station relay
ym+1..n,xm+1..n

N
by substituting the signal x1..n with fresh ones y1..n in P .

relayN 〈P 〉
def=

((
relayx1..m,y1..m

N

|| chany1..m

P

)
|| (P [yi/xi]ni=1) ||

(
chan

ym+1..n

P

|| relay
ym+1..n,xm+1..n

N

))
/y1..n

From [6], we easily observe that the relay satisfies the expected cor-
rectness criterion of finite flow-preservation, by inhibiting calculations

fmsd.tex; 10/12/2004; 8:49; p.20

21

on either side of the network upon the unavailability of a required sig-
nal. Since our model encompasses scheduling specifications, Property 9
additionally requires P ||Q be non-causal for flow-preservation to hold.

PROPERTY 9. If P is finite flow-preserving then relayN 〈P 〉 is finite
flow-preserving. If P , Q are finite flow-preserving and P ||Q is non-
causal then relayN 〈P 〉 || relayN 〈Q〉 is finite flow-preserving.

An advantage of the methodology defined by Property 9 compared to
that defined by Property 8 on protocol insertion is that the requirement
on P ||Q is limited, and hence that correctness can easily be satisfied by
construction. A potential draw-back of the approach is that a process P
will stall, by having its master clock inhibited by a stopx signal, as soon
as one of its clients Q will stall, or will not be able to transmit x fast
enough. To prevent a possible cascade of stalls, a careful dimensioning
of buffers is hence necessary to meet timing requirements.

Our approach departs from a latency-insensitive protocol by partly
revealing the structure of the pearl (the IPs) using P as a behavioral
type and by giving a multi-clocked specification to the shell (the wrap-
per). We may consider a variant busN 〈P 〉 of the protocol where the
signal stopx only inhibits the source signal x. The absence of x can be
propagated back to the server P and then be hierarchically propagated
in HP , allowing it to perform another action independently of x, e.g.,
interact with another non-stalled client. This can easily be done by
considering the following multiplexer:

busx
def= (clkx ⇒ datax = x || clkx = x̂ || x̂ ⇒ stopx = 0)

The matching flow-preserving protocol is defined by using relays to
buffer and transmit data. Notice that, in relay〈P 〉, one should synchro-
nize the clock of all stopx signals to define a minimum in the hierarchy
of relay〈P 〉, whereas in busN 〈P 〉, the clock of every stopx appears above
x̂ and helps to control the communication of the process P .

busN 〈P 〉
def=

((
relayx1..m,y1..m

N

|| busy1..m

)
|| (P [yi/xi]ni=1) ||

(
busym+1..n

|| relay
ym+1..n,xm+1..n

N

))
/y1..n

We meet the following instance of Property 8, which requires the
interaction between P and Q to be flow-preserving, but results in a
reduced latency. By contrast, notice that relay〈P 〉|I || relay〈Q〉|I satisfies
flow-preservation by design, because it inhibits the master clock of both
P and Q upon delayed transmission along the signals of I.

PROPERTY 10. If P is finite flow-preserving then busN 〈P 〉 is finite
flow-preserving. If P , Q are finite flow-preserving and P |I ||Q|I is finite
flow-preserving (for I = vars(P) ∩ vars(Q)) then busN 〈P 〉 || busN 〈Q〉 is
finite flow-preserving.

fmsd.tex; 10/12/2004; 8:49; p.21

22

6.3. A perspective in controller protocol synthesis

Placed in the context of protocol synthesis, where the specification of
a pearl or IP of behavioral type P may not necessarily be available, the
compilation of the behavioral type P with its wrapper (relayN or busN)
provides a controller of the pearl, that satisfies the expected invariant
of patience yet in a way that is cautious of the internal behavior of the
IP, as expressed by its behavioral type P .

This results in the synthesis of an optimized protocol, that consists
of the hierarchization of the behavioral type P and of its wrapper
relayN 〈P 〉 or busN 〈P 〉, allowing for the correct-by-construction plug
of the pearl of type P in the architecture.

In the methodology of latency-insensitive design, the pearl consid-
ered for composition in a network of characteristics Q is required to
satisfy the invariant of being patient or stallable. In the polychronous
model of computation, this invariant can be defined by the most ab-
stract process satisfying the criterion of controllability. It is a process
of master clock tickP and input-output signals x1..n defined by:

patientx1..m,y1..n def=
(
¬stopx ⇒ t̂ickP || t̂ickP = ∨n

i=1x̂i

)
An endochronous process P naturally satisfies the denotational con-
tainment relation [[P]] ⊆ [[patientvars(P)]]. It defines a controller that
has the capability of stopping output relays and of being interrupted
by input relays in a way that is contextually related to the state and
control of the pearl it is the type of. This naturally result in a reduced
latency. By contrast, a generic latency-insensitive protocol requires all
data to be retransmitted and resynchronized at each clock cycle or
conservatively stall.

7. Related works

Behavioral abstraction Our methodology of scalable and correct-by-
construction exploration of abstraction/refinement of system behaviors
is shared with the work of Henzinger et al. on interface automata [8].
Our approach primarily differs from interface automata in the data-
structure considered: clock equations, boolean propositions and state
variable transitions express the multi-clocked synchronous behavior of
a system. Compared to an automata-based approach, our declarative
approach allows to hierarchically explore abstraction capabilities and to
cover design exploration with the methodological notion of refinement
along the whole design cycle of the system, ranging from the early

fmsd.tex; 10/12/2004; 8:49; p.22

23

requirements specification to the latest sequential and distributed code-
generation [15, 12]. Our contribution contrasts from related studies
by the capability to capture scalable abstractions of the system. In
our type system, scalability ranges from the capability to express the
exact meaning of the program, in order to make structural transforma-
tions and optimizations on it, down to properties expressed by boolean
equations between clocks, allowing for a rapid static-checking of de-
sign correctness properties. Our system further allows for correct-by-
construction design abstraction and refinement patterns to be applied
on a model, e.g. abstraction of states by clocks, abstraction of existen-
tially quantified clocks, hierarchical abstraction, in the aim of choosing
an optimal degree of abstraction for a faster verification.
Synchrony and asynchrony Synchrony is a popular computational
model in hardware design. Desynchronization converts that model into
a more general one, a GALS model, that is suitable for system-on-chip
design. Therefore, one may naturally consider investigating the links
between these two models further, understand them as Ptolemy do-
mains [5], and study the refinement-based design of GALS architectures
starting from polychronous specifications captured from heterogeneous
elementary components. The aim of capturing both synchrony and
asynchrony in a unifying model of computation is shared by several ap-
proaches: communicating sequential processes [9], Kahn networks [10],
latency insensitive protocols [6], heterogeneous systems [3]. These mod-
els partition systems into synchronous islands (the pearls) and asyn-
chronous networks. Synchrony and asynchrony are not partitioned in
the present model. Both are captured within the same partially ordered
trace structure, and related by the clock and finite-flow equivalence
relations ∼ and ≈∗. The iSTS algebra carry over this unified model
to capture modeling, transformation and verification of embedded sys-
tems from the highest levels of requirements specification down to its
clock-accurate implementation as a GALS architecture.

8. Conclusions

In the theory of latency-insensitive protocols [6], the status of an ar-
chitecture components is rendered by the notion of pearls (“intellectual
property under a shell”) and assumed to satisfy the invariant of patience
(robustness to external delays) by interfacing it to a generic wrapper.
Our approach consists of compiling a behavioral model of the IP with
a wrapper that controls it. This approach still satisfies the expected
invariant of patience yet requires to capture the internal behavior of
the IP. This results in the synthesis of an optimized protocol allowing

fmsd.tex; 10/12/2004; 8:49; p.23

24

for a correct-by-construction architecture construction with minimized
local latency and maximized global throughput.

In conclusion, the latency-insensitive protocol approach can be seen
as a black-box approach, where a conservative yet generic wrapper
is connected to a given IP to ensure its functional correctness in the
architecture, whereas the desynchronization based approach is a grey-
box approach where part of the IP’s behavior need to be specified to
synthesize an architecture sensitive wrapper with its environment and
ensure functional correctness. Our presentation is based on a high-level
modeling and specification methodology that ensures compositional
correctness through an algebra capturing behavioral aspects of com-
ponent interfaces. This minimalist algebra, called iSTS, specifies the
state transitions, synchronization relations and scheduling constraints
implied by a given system, in the presence of multiple clocks.

References

1. Amagbegnon, T. P., Besnard, L., Le Guernic, P. “Implementation of
the data-flow synchronous language Signal”. In Conference on Programming
Language Design and Implementation. ACM Press, 1995.

2. Hoe, J., Arvind. “Synthesis of Operation-Centric Hardware Descriptions”.
Proceedings of International Conference on Computer Aided Design. IEEE
Press, November 2000.

3. Benveniste, A., Caspi, P., Carloni, L. P., Sangiovanni-Vincentelli, A.
L. “Heterogeneous Reactive Systems Modeling and Correct-by-Construction
Deployment”. In Embedded Software Conference. Lecture Notes in Computer
Science, Springer Verlag, October 2003.

4. Benveniste, A., Caspi, P., Le Guernic, P., Marchand, H., Talpin, J.-P.,
Tripakis, S. “A protocol for loosely time-triggered architectures”. In Embed-
ded Software Conference. Lecture Notes in Computer Science, Springer Verlag,
October 2002.

5. Buck , J.T., Ha, S. , Lee, E., and Messerschmitt, D. Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems. In Interna-
tional Journal of Computer Simulation, special issue on “Simulation Software
Development”v. 4, pp. 155-182. Ablex, April 1994.

6. Carloni, L. P., McMillan, K. L., Sangiovanni-Vincentelli, A. L.
“Latency-Insensitive Protocols”. In Proceedings of the 11th. International Con-
ference on Computer-Aided Verification. Lecture notes in computer science v.
1633. Springer Verlag, July 1999.

7. Dijkstra, E. “A Discipline of Programming”. Prentice Hall, 1976.
8. De Alfaro, L., Henzinger, T. A. “Interface theories for component-based

design”. International Workshop on Embedded Software. Lecture Notes in
Computer Science v. 2211. Springer-Verlag, 2001.

9. Hoare, C. Communicating sequential processes. Prentice Hall, 1985.
10. Kahn, G. The semantics of a simple language for parallel programming. In

Ifip Congress. North Holland, 1974.

fmsd.tex; 10/12/2004; 8:49; p.24

25

11. Lee, E., Sangiovanni-Vincentelli, A. “A framework for comparing models
of computation”. In IEEE transactions on computer-aided design, v. 17, n. 12.
IEEE Press, December 1998.

12. Le Guernic, P., Talpin, J.-P., Le Lann, J.-L. Polychrony for system design.
In Journal of Circuits, Systems and Computers. Special Issue on Application-
Specific Hardware Design. World Scientific, 2002.

13. Nowak, D., Talpin, J.-P., Le Guernic, P. “Synchronous structures”. In
International Conference on Concurrency Theory. Lecture Notes in Computer
Science, Springer Verlag, August 1999.

14. Pnueli, A., Shankar, N., Singerman, E. Fair synchronous transition
systems and their liveness proofs. International School and Symposium on
Formal Techniques in Real-time and Fault-tolerant Systems. Lecture Notes in
Computer Science v. 1468. Springer Verlag, 1998.

15. Talpin, J.-P., Le Guernic, P., Shukla, S., Gupta, R., and Doucet, F.
“Polychrony for formal refinement-checking in a system-level design method-
ology”. Application of Concurrency to System Design. IEEE Press, 2003.

16. Polychrony: http://www.irisa.fr/espresso/Polychrony, 2004.

Appendix

We refer to the free variables vars(P) of a process P as the set of signal
names that occur free in the lexical scope of P .

vars(x0 = v) =vars(x = v) = vars(x′ = v) = {x}
vars(x = y) =vars(x′ = y) = vars(x → y) = vars(x → y′) = {x, y}
vars(e ∧ f) =vars(e ∨ f) = vars(e \ f) = vars(e) ∪ vars(f)

vars(e ⇒ P) =vars(e) ∪ vars(P) vars(P ||Q) = vars(P) ∪ vars(Q)
vars(P/x) =vars(P) \ {x} vars(0) = vars(1) = ∅

The defined state and output signals def(P) and out(P) of a process
P are defined by the relation of Figure ?? starting from the disjunctive
form of P (Figure 2). A signal x ∈ out(P) (resp. x ∈ def(P)) is an
output of P iff, whenever its presence is implied by a guard g, then there
exists a guard h implied by g whose action is x := r (resp. x′ := r) for
some r. The sets def(P) and out(P) define the variables x ∈ vars(P)
that are the input signals in(P) of P . In the definition of the generic
function locs(P), we overload x̂ to l̂ and assume that x̂′

def= x̂.

x ∈ def(P) ⇔ x′ ∈ locs(DP) ∧ ∃0 < i ≤ n, gi
def= 1 ∧ ai

def= x0 = v
x ∈ out(P) ⇔ x ∈ locs(DP) ∧ x 6∈ def(P)

in(P) = (vars(P) \ def(P)) \ out(P)

l ∈ locs ((
∏n

i=1 gi ⇒ ai) /x1..m) ⇔
∀0 < i ≤ n s.t. P̂ |= gi ⇒ l̂,∃ 0 < j ≤ n, P̂ |= gi ⇒ gj ∧ aj

def= l := r

fmsd.tex; 10/12/2004; 8:49; p.25

fmsd.tex; 10/12/2004; 8:49; p.26

