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Abstract. We study the cost-optimal reachability problem for weighted timed automata such that positive and
negative costs are allowed on edges and locations. By optimality, we mean an infimum cost as well as a supremum
cost. We show that this problem is PSPACE-COMPLETE. Our proof uses techniques of linear programming, and
thus exploits an important property of optimal runs : their time-transitions use a timeτ which is arbitrarily close to
an integer. We then propose an extension of the region graph,the weighted discrete graph, whose structure gives
light on the way to solve the cost-optimal reachability problem. We also give an application of the cost-optimal
reachability problem in the context of timed games.

1 Introduction

Timed automata are a well-established formalism for the modeling and analysis of timed systems. Timed automata
augment finite state automata with clocks and clock constraints [AD94]. The reachability problem for a timed automa-
tonA asks, given a locationl of A, if there exists a run ofA that visits the locationl. This basic problem has been
shown PSPACE-COMPLETE in the seminal paper of Alur and Dill [AD94]. The verificationof more complex proper-
ties like properties expressed in the timed extension of theCTL logic, known as TCTL, is also a PSPACE-COMPLETE

problem [ACD93]. On the other hand, some problems have been shown undecidable on the model of timed automata.
For example, the universality problem that asks if a given timed automaton accepts the language of all timed words, has
been shown undecidable in [AD94]. As a direct consequence, the language inclusion problem between two timed au-
tomata is also undecidable. Not only a large number of important and interesting theoretical results have been obtained
on timed automata, but efficient verification tools have alsobeen implemented and successfully applied to industrially
relevant case studies [HHWT95,LPY97].

Recently, a useful extension of timed automata has been proposed:weighted timed automata1 [ALP01,BFH+01].
Weighted timed automata are natural models for embedded systems where, often, resources consumptions have to be
modeled. They extend classical timed automata with a cost functionC that maps every location and every edge to a
nonnegative integer (or rational) number. For a locationl, C(l) represents the cost per time unit for staying in locationl.
For an edgee, C(e) represents the cost of crossing the edge. As a consequence, an accumulated cost can be associated
to each run of a weighted timed automata and optimization problems can be defined. Thecost-optimal reachability
problemfor a weighted timed automatonA asks, given a locationl of A, what is the minimal accumulated cost of a
run that visitsl in A ?

Two different algorithmic solutions have been proposed independently to solve the cost-optimal reachability prob-
lem. First, in [ALP01], Alur et al. propose a non-trivial extension of the region automaton to solve the cost-optimal
reachability problem. This construction is the basis for anEXPTIME solution to the problem. The optimality of the
proposed solution is not studied there. Second, in [BFH+01], Larsen et al. propose a symbolic algorithm that manipu-
lates priced (weighted) extensions of zones. This second solution does not provide a complexity result: the termination
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of the algorithm is ensured by a well-quasi order for which the length of descending chains is not studied. The decid-
ability of the cost-optimal reachability problem can also be derived from a paper by Kesten et al. [KPSY99] where
some subclasses of integration graphs are shown decidable.In particular, weighted timed automata are integration
graphs with a single integrator test along each run (when entering the locationl).

In this paper, we further study the cost-optimal reachability problem. Our results are threefold.First, we show that
the cost-optimal reachability problem can be solved for a more general class of weighted timed automata: positive
as well as negative costs on edges and locations can be handled simultaneously. As a consequence, we study the
computation of the infimum and the supremum of costs for reachability. This extension is of practical interest. In fact,
assume that a weighted timed automatonA models the behaviors of an embedded controller and its environment.
Assume that the objective of the controller is to force the system to reach a given location with an optimal cost
whatever does the environment. To measure the quality of a fixed controller, one can consider the worst-case cost,
that is, the supremum cost of runs performed by this controller over all possible behaviours of the environment. The
smaller is this worst-case cost, the better is the controller. Our method does not find the optimal controller (which is
impossible because of the results of [BBR05]), but allows evaluating and comparing controllers.Second, we settle
the exact complexity of the cost-optimal reachability problem in weighted timed automata with positive and negative
costs. We show that this problem is PSPACE-COMPLETE. Third, our solution comes in the form of an extension of
the region graph which is simpler than the one proposed initially in [ALP01]. Our construction exploits an important
property of optimal runs: optimal runs only contain time-transitions with a timeτ arbitrarily close to an integer.

Our optimal algorithm relies on two main ingredients. First, we study a simpler version of the cost-optimal reach-
ability problem: thecost-optimal path reachability problem. In this problem, a sequence of locations of the underlying
timed automatonA is fixed a priori. Then the problem asks for the optimal time-transitions to switch between the
locations of the sequence. We show that this problem is closely related to a linear programming problem. We study
the structure of this linear programming problem and show that the associated polyhedron has vertices with integer
coordinates. As a consequence, we gain animportant knowledge: only time-transitions with a timeτ arbitrarily close
to an integer have to be considered. This important propertyallows us to propose and justify a simple extension of
the classical notion of region calledε-region. This notion ofε-region is at the heart of a finiteweighted discrete graph
whose optimal paths are related to optimal runs in the original weighted timed automatonA. The justifications for
the correctness of our construction are not straightforward. Indeed, we show that there is no reasonable simulation
relation between the states of the weighted discrete graph and the transition graph associated with the weighted timed
automatonA. Finally, to obtain an optimal PSPACE algorithm, we show that the construction of the entire weighted
discrete graph can be avoided and that this graph can be analyzed without being explicitly constructed.

Our approach easily extends to weighted timed automata witha more general cost functionC, for instance when
the cost of staying a timeτ in locationl is computed asC(l) · ln(τ) instead ofC(l) · τ . Indeed, the linear programming
problem related to the cost-optimal path reachability problem can still be solved in the more general case of concave
and convex cost functions. Moreover, since the notion ofε-region proposed in this paper is only dependent on the fact
that the associated polyhedron has vertices with integer coordinates, the weighted discrete graph can be easily adapted
to more general cost functions under mild hypotheses.

Other related works.In [ACH93], the authors study the reachability problem for timed automata augmented with
costs. Timed automata augmented with costs are a simple class of hybrid automata. The decidability border for hy-
brid automata has been extensively studied (for surveys see[Hen96,Ras05]). Among the numerous results about this
problem, let us mention the following ones. The important class ofinitialized rectangular automatahas a decidable
reachability problem; however several slight generalizations of these automata lead to an undecidable reachability
problem, in particular for timed automata augmented with one stopwatch [HKPV95]. The reachability problem is also
undecidable for the simple class ofconstant slope hybrid systemswhich are timed automata augmented with integra-
tors; the reachability problem becomes decidable when the integrators are used asobservers(they are neither reset nor
tested) [KPSY99].

The optimal reachability problem has also recently been studied in a game setting. In this setting, we are interested
in synthesizing optimal strategies for reachability objectives in weighted timed automata. In [ABM04], Alur et al. show
that optimal strategies for reachability in less thank transitions can be computed. In [BCFL04], the authors show that
optimal strategies for reachability can be computed for a restricted class of weighted timed automata that respect the
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condition ofstrong non-zenoness of cost. Recently in [BBR05], it is shown that, in the general case, optimal strategies
can not be constructed algorithmically. The interesting subcase of time-optimal strategies is solved in [AM99].

In [LR05], Larsen and Rasmussen consider the problem of determining the minimal cost of reaching a given
target location, with respect to some primary cost variable, while respecting upper bound constraints on the remaining
(secondary) cost variables. The proposed algorithm is an extension of the algorithm presented in [BFH+01].

In [BBL04], the optimal way of staying into a designated set of safe locations is studied. The construction proposed
in [BBL04], called corner point abstraction, shares several ideas with the construction proposed here for the weighted
discrete graph.

Organization of the paper.In Sect. 2, we recall the notion of timed automaton, region graph and weighted timed
automaton.

In Sect. 3, we introduce the cost-optimal reachability problem and we announce our main result that it is PSPACE-
COMPLETE. We also introduce the simpler problem of cost-optimal pathreachability. We show that solving this
problem reduces in solving a linear programming problem. When studying further the related linear programming
problem, we deduce the important observation that optimal runs have time-transitions with a timeτ arbitrarily close
to an integer.

In Sect. 4, we prove that the cost-optimal reachability problem is PSPACE-COMPLETE. PSPACE-HARDNESS is
straightforward. The proof of PSPACE-EASYNESSneeds several steps. First, due to the previous observation, we refine
the classical notion of region with the concept ofε-region. We therefore define theε-region graph. Second, while there
is no natural simulation between states of theε-region graph and the underlying weighted timed automaton,we are able
to relate them in a weaker way (this relation is not straightforward). Third we propose the notion of weighted discrete
graph where the cost-optimal reachability problem can be reformulated and solved with a PSPACE-complexity.

In Sect. 5, we show that some assumptions made at the beginning of the paper can be discarded without loss of
generality. In Sect. 6, we illustrate the interest of computing infimum and supremum costs in the context of timed
games. Finally we give a conclusion in the last section.

2 Preliminaries

In this section, we recall the notions of timed automaton andregion graph [AD94]. We introduce the concept of
weighted timed automaton [ALP01,BFH+01].

2.1 Timed automaton

Notations. Throughout the paper, we denote byX = {x1, . . . , xn} a set ofn clocks. A clock valuationis a map
ν : X → R

+, whereR
+ denotes the set of non-negative real numbers. Fori ∈ {1, ..., n}, we denote byνi the image

of the clockxi by ν, i.e. ν(xi) = νi. Given a clock valuationν, when no confusion is possible, we also denote byν
then-tuple of clock values(ν1, ..., νn). Let ν be a clock valuation andτ ∈ R

+, ν + τ is the clock valuation defined
by (ν1 + τ, . . . , νn + τ). A guard is any finite conjunction of expressions of the formxi ∼ c or xi − xj ∼ c where
xi, xj are clocks,c ∈ N is an integer constant, and∼ is one of the symbols in{<,≤, =, >,≥}. We denote byG the
set of guards. Letg be a guard andν be a clock valuation, notationν |= g means that(ν1, ..., νn) satisfiesg. A reset
Y ∈ 2X indicates which clocks are reset to0.

Definition 1. A timed automatonA = (L, X, E, I) has the following components:(i) L is a finite set oflocations,
(ii) X is a set ofclocks, (iii) E ⊆ L × G × 2X × L is a finite set ofedgesand(iv) I : L → G assigns aninvariant
to each location.

Thesemanticsof a timed automatonA is given by its transition systemTA.

Definition 2. A timed automatonA = (L, X, E, I) generates atransition systemTA = (Q,→) with a set ofstates
Q equal to

{(l, ν) | l ∈ L, ν ∈ (R+)n, ν |= I(l)}
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and atransition relation
→ =

⋃

τ∈R+

τ
→ ∪

⋃

e∈E

e
→

defined by

– time-transition(l, ν)
τ
→ (l′, ν′): if l = l′ andν′ = ν + τ ,

– switch-transition(l, ν)
e
→ (l′, ν′): if e = (l, g, Y, l′) ∈ E, ν |= g andν′

i = 0 if xi ∈ Y , ν′
i = νi otherwise.

A time-transition corresponds to anelapse of timeat a locationl, and a switch-transition corresponds to an instan-
taneous switch from a locationl to a locationl′.

Remark 1.Let us notice that notation(l, ν) → (l′, ν′) is ambiguous in some very particular cases, since it can represent
both a time-transition and a switch-transition. Indeed, one could have both(l, ν)

τ
→ (l, ν′) with τ = 0 and(l, ν)

e
→

(l, ν′) for somee ∈ E. However we use it in order to avoid a too heavy notation.

Remark 2.In this paper, we only consider bounded and diagonal-free timed automata. A timed automaton isdiagonal-
free if the guards used in the edges and the invariants contain no expression of the formxi − xj ∼ c, with xi, xj being
clocks,c ∈ N and∼∈ {<,≤, =,≥, >}. A timed automatonA is boundedif for each locationl, the invariantI(l)
is upper bounded on all clocks. In other words, there exists aconstantM such that each state(l, ν) of TA satisfies
νi ≤ M for all i ∈ {1, . . . , n}. In Sect. 5, we explain why these two hypotheses are not restrictions.

The states(l, ν) of TA are shortly denoted byq. Givenq = (l, ν) ∈ Q andτ ∈ R
+, we denote byq + τ the state

(l, ν + τ).
A run ρ of TA is a finite path

ρ = q0 → q1 → · · · → qm.

It is also shortly denotedρ = q0  qm. The runρ is calledinitialized if q0 is of the form(l, 0) with all the clock
values being null. We say thatρ is canonicalif it is of the formq0

τ1→ q1
e1→ q2

τ2→ q3
e2→ q4 · · · where time-transitions

and switch-transitions alternate.

Remark 3.A canonical (initialized) run can be associated with any (initialized) runρ = q0 → · · · → qm. Indeed

any two consecutive time-transitionsqk
τ
→ qk+1

τ ′

→ qk+2 can be replaced by the time-transitionqk
τ+τ ′

→ qk+2, and
time-transitionqk

τ
→ qk+1 with τ = 0 is allowed in Definition 2.

Remark 4.Let ρ be the following canonical initialized run

q′0 = (l0, 0)
τ1→ q1

e1→ q′1
τ2→ q2

e2→ q′2 · · ·
τk→ qk

ek→ q′k · · · .

Givenqk = (lk, νk) a state ofρ, the clock values(νk
1 , . . . , νk

n) at qk depend on{τ1, ..., τk} as follows : the valueνk
i

of the clockxi at stateqk is equal to

νk
i = τh+1 + τh+2 + · · · + τk−1 + τk

with 0 ≤ h ≤ k such thatqh
eh→ q′h is the last transition ofρ where the clockxi has been reset2.

2.2 Region graph

In this section, we define the region graph of a timed automatonA = (L, X, E, I). We first recall the usual equivalence
on clock valuations and its extension to the states ofTA. For every clockxi, let ci be the largest constant thatxi is
compared with in any guard ofE and any invariant ofI. Forτ ∈ R

+, ⌊τ⌋ denotes its integral part and̄τ denotes its
fractional part.

Definition 3. Two clock valuationsν andν′ are equivalent,ν ≈ ν′, iff the following conditions hold

2 We notice thath depends oni.
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– ⌊νi⌋ = ⌊ν′
i⌋ or νi, ν

′
i > ci, for all i ∈ {1, . . . , n};

– ν̄i ≤ ν̄j iff ν̄′
i ≤ ν̄′

j , for all i 6= j ∈ {1, . . . , n} with νi ≤ ci, νj ≤ cj ;
– ν̄i = 0 iff ν̄′

i = 0, for all i ∈ {1, . . . , n} with νi ≤ ci.

The equivalence relation≈ is extended to the states ofTA as follows

q = (l, ν) ≈ q′ = (l′, ν′) iff l = l′ andν ≈ ν′.

We use[ν] (resp.[q]) to denote the equivalence class to whichν (resp.q) belongs. Aregionis an equivalence class
[q]. The set of all the regions is denoted byR. A region[q] is closedif q + τ 6≈ q for anyτ > 0, otherwise it isopen.
A region[q] is unboundedif it satisfiesq = (l, ν) with νi > ci for somei ∈ {1, . . . , n}, otherwise it isbounded.

We notice that since timed automata are supposed to be bounded (see Remark 2), the states of any run ofTA never
belong to an unbounded region.

Remark 5.A nice representation of the regions has been introduced in [ACH93]. A region is fully specified by a
locationl, the integral parts of the clock values(ν1, . . . , νn), and the ordering of their fractional parts for the clocks
xi such thatνi ≤ ci. The representation proposed in [ACH93] consists in visualizing this ordering. For example, the
ordering0 < ν̄1 < ν̄2 < · · · < ν̄n < 1 is depicted on Fig. 1.

0 1ν̄1 ν̄2 · · · ν̄n

Fig. 1. The ordering of the fractional parts of the clock values in a region

We now define the region graph of a timed automatonA which is nothing else than the quotient ofTA by≈.

Definition 4. Let A be a timed automaton. Theregion graphRA = (R,→) is the finite graph given byTA/≈. Its
vertex set is equal toR. Its edge set is composed of the edgesr → r′, with r, r′ ∈ R, such that there exist two states
q ∈ r, q′ ∈ r′, and a transitionq → q′ in TA. The edger → r′ is called aswitch-edge(resp.time-edge) if q → q′ is a
switch-transition (resp. time-transition).

Given two distinct bounded regionsr = [q], r′ = [q′], we say thatr′ is asuccessorof r, writtenr′ = succ(r), if
∃τ ∈ R

+, q + τ ∈ r′, and∀τ ′ < τ , q + τ ′ ∈ r ∪ r′.
Given a runρ = q0 → q1 → · · · → qm of TA, we denote by[ρ] the corresponding path[q0] → [q1] → · · · → [qm]

in RA. Notice that due to Remark 2, each region[qk] with k ∈ {0, . . . , m}, is bounded. We say that a pathρR in
RA is canonical(resp.initialized) if ρR = [ρ] for some canonical (resp. initialized) runρ of TA. We use the notation
ρR = r  r′ for a path inRA starting with the regionr and ending with the regionr′. Let us notice that we only
consider finite paths ofRA in this paper.

Remark 6.We recall [AD94] that the size|RA| of the region graph, i.e. its number of regions and edges, is inO((|L|+
|E|)2|δ(A)|) whereδ(A) is the binary encoding of the constants (guards and costs) appearing inA. Thus|RA| is in
O(2|A|) where|A| takes into account the locations, edges and constants ofA.

2.3 Weighted timed automaton

We now introduce the notion of weighted timed automaton3, which is an extension of timed automaton with costs on
both locations and edges.

Definition 5. A weighted timed automatonis a timed automatonA = (L, X, E, I, C) augmented with acost function
C : L ∪ E → Z which assigns an integer cost to both locations and edges.

3 This model differs from the one used in [ALP01,BFH+01] since it allows negative costs.

5



The semantics of a weighted timed automatonA associates acostwith each run ofTA in the following way.

Definition 6. Let A be a weighted timed automaton andρ = q′0
τ1→ q1

e1→ q′1
τ2→ q2

e2→ q′2 · · ·
τm→ qm

em→ q′m be
a canonical run ofTA. Let lk be the location ofqk (and q′k−1) for eachk. Then thecost4 C(ρ) of ρ is equal to
Cd(ρ) + Cs(ρ) with

Cd(ρ) =
∑

k∈{1,...,m}

C(lk) · τk, Cs(ρ) =
∑

k∈{1,...,m}

C(ek).

In the previous definition,Cd(ρ) is called theduration costof ρ, andCs(ρ) theswitch costof ρ.

Example 1.Let A be the weighted timed automaton pictured on Fig. 2. The cost of each location is indicated on the
figure and the cost of each edge is null. The invariant(x1 ≤ 4) ∧ (x2 ≤ 2) is assigned to each location, showing that
A is bounded.

l0

l2

l1

l3

1

2

3

0

x1 < 2 x2 := 0

x1 > 3
x2 > 1

x1 ≤ 1

x1 := 0

x2 = 2

Fig. 2. A weighted timed automaton

x1

x2

Fig. 3. Its equivalence relation≈

The canonical run

ρ = (l0, 0, 0)
0.5
→ (l0, 0.5, 0.5) → (l1, 0, 0.5)

1.5
→ (l1, 1.5, 2) → (l3, 1.5, 2)

has a cost equal toCd(ρ) = C(l0) · 0.5 + C(l1) · 1.5 = 5.

3 Cost-optimal reachability problem

In this section, we define the cost-optimal reachability problem for weighted timed automata [BFH+01].5

Definition 7. LetA be a weighted timed automaton. Given two regionsr, r′ of RA, theoptimal costOptCost(r, r′)
of reachingr′ from r is the infimum (resp. supremum) of the costs of the runsρ = q  q′ of TA such thatq ∈ r and
q′ ∈ r′.

Moreover, we say thatOptCost(r, r′) is realizableif there exists such a runρ such thatC(ρ) = OptCost(r, r′).

Remark 7.In the previous definition, suppose that the infimum cost is considered. By conventionOptCost(r, r′) =
+∞ in the case there is no runρ = q  q′ such thatq ∈ r and q′ ∈ r′. Otherwise,OptCost(r, r′) ∈ R or
OptCost(r, r′) = −∞. Symmetric observations hold when the supremum cost is considered.

Problem 1. (Cost-optimal reachability problem)GivenA a weighted timed automaton, and two regionsr, r′ of RA,
compute the optimal costOptCost(r, r′).

Our main result is the following one. The rest of the paper is devoted to its proof.

4 In the caseρ ends with a time-transition,i.e. there is an additional transitionq′m
τm+1
→ qm+1, then there is an additional term

C(lm+1) · τm+1 in bothC(ρ) andCd(ρ).
5 In this paper, by cost-optimality we mean both infimum cost and supremum cost, while only infimum cost is studied in [BFH+01].
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Theorem 1. The cost-optimal reachability problem isPSPACE-COMPLETE.

Remark 8.In the sequel, we make twoassumptionsfor solving Problem 1. First, we suppose that the regionr given
in Problem 1 is composed of a unique state of the form(l, 0) such that all the clock values are null. Second, we focus
only on the computation of the infimum cost. Indeed these two assumptions can be discarded with little effort (see
Sect. 5).

Remark 9.Problem 1 refers to the computation ofOptCost(r, r′) for two regionsr, r′ of RA. An alternative problem
is the computation ofOptCost(q, q′) whereq = (l, ν), q′ = (l, ν′) are two given states ofTA. Whenq, q′ have
rational clocks valuesν, ν′, the optimal costOptCost(q, q′) can be computed by using our method for Problem 1. The
arguments are the following ones. Letλ ∈ N be such thatλ · ν, λ · ν′ are integers. LetAλ be the automaton obtained
from the weighted timed automatonA by replacing

– each constantc in each guard and invariant ofA by λ · c ;
– each costC(e) of each edgee by λ · C(e).

In this way the “granularity” of time has been modified, such that (l, ν)  (l′, ν′) is a run ofA with costκ iff
(l, λ · ν)  (l′, λ · ν′) is a run ofAλ with costλ · κ (see also [AD94]). Therefore computingOptCost(q, q′) in A is
equivalent to computing1

λ
OptCost(r, r′) in Aλ where the regionr (resp.r′) of RAλ

is composed of the unique state
(l, λ · ν) (resp.(l′, λ · ν′)).

The next example indicates how the cost-optimal reachability problem is related to a linear programming problem
(see the book [NW88] for details on linear programming).

Example 2.We consider again the weighted timed automaton of Fig. 2. We are interested in runs froml0 to l3.6 There
are mainly two families of such runs, the runs going throughl1, and the runs going throughl2. The first family can be
described by the following parameterized run7

ρ1(t1, t2) = (l0, 0, 0)
t1→ (l0, t1, t1) → (l1, 0, t1)

t2→ (l1, t2, t1 + t2) → (l3, t2, t1 + t2).

The parameterst1, t2 represent the time elapsed at locationsl0, l1 respectively. They are constrained by the next linear
inequalities

0 ≤ t1 ≤ 1, t2 ≥ 0 andt1 + t2 = 2. (1)

The cost of the parameterized runρ1(t1, t2) is given byt1 + 3 · t2. Therefore to find the infimum cost with respect to
the first family of runs reduces in computing the infimum valueof the functiont1 + 3 · t2 under the constraints (1).
This is a linear programming problem for which it is known that the optimal solution is given by one of the vertices of
the polyhedron defined by (1), here the point(1, 1) leading to the infimum cost4. On Fig. 4, the bold line represents
this polyhedron, and the dashed line represents the situation of an optimal costt1 + 3 · t2 = 4. Note that the optimum
cost4 is a minimum cost since it is realized by the runρ1(t1, t2) with t1 = t2 = 1.

Similarly the second family of runs is described by the following parameterized run

ρ2(t1, t2) = (l0, 0, 0)
t1→ (l0, t1, t1) → (l2, t1, 0)

t2→ (l2, t1 + t2, t2) → (l3, t1 + t2, t2).

In this case, parameterst1, t2 are constrained by the linear inequalities

0 ≤ t1 < 2, t2 > 1 andt1 + t2 > 3. (2)

The cost with respect toρ2(t1, t2) is given byt1 + 2 · t2. on Fig. 5, the shaded zone represents the polyhedron defined
by (2), and the dashed line represents the situation of the infimum costt1 + 2 · t2 = 4. This infimum cost is not a

6 In this example, we work with locations, instead of regions as indicated in Definition 7.
7 We can suppose that this run is canonical by Remark 3 and that it is initialized by Remark 8. Moreover we can assume that this

run ends with a switch-transition since we consider the infimum cost to reachl3. We also notice the form of the clock values as
described in Remark 4.
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t1

t2

1

1

Fig. 4. Optimizing the cost ofρ1(t1, t2)

t1

t2

1

1

Fig. 5. Optimizing the cost ofρ2(t1, t2)

minimum cost since no run realizes it. Indeed the value4 is achieved at the vertex(2, 1) of the polyhedron, a point that
does not belong to it.

Therefore in this simple example, the infimum cost of reaching locationl3 from locationl1 is equal to4, and it
is realizable. This value has been obtained by solving a linear programming problem for the two parameterized runs
ρ1(t1, t2) andρ2(t1, t2).

In order to solve the cost-optimal reachability problem, wefirst study an easier problem: thecost-optimal path
reachability problem. It is related to a given path in the region graphRA of a weighted timed automatonA. We define
this simpler problem in Section 3.1 below. We show in Section3.2 that solving the cost-optimal path reachability
problem reduces in solving a linear programming problem. InSections 3.3 and 3.4, we investigate further the approach
by linear programming. The obtained results will be a first step toward the solution of Problem 1 given in Sect. 4.

3.1 Cost-optimal path reachability problem

Definition 8. Let A be a weighted timed automaton. Given a canonical initialized pathρR in RA, theoptimal cost
OptCost(ρR) associated withρR is the infimum of the costsC(ρ) among the runsρ of TA such that[ρ] = ρR.

Moreover, we say thatOptCost(ρR) is realizableif there exists such a runρ such thatC(ρ) = OptCost(ρR).

Remark 10.In the previous definition, we can suppose thatρR is canonical and initialized due to Remarks 3 and 8.

Problem 2. (Cost-optimal path reachability problem)GivenA a weighted timed automaton, andρR a canonical ini-
tialized path inRA, compute the optimal costOptCost(ρR) associated withρR.

Remark 11.We notice that givenρR a path ofRA, we haveCs(ρ) = Cs(ρ
′) whenever[ρ] = [ρ′] = ρR. Hence the

cost-optimal path reachability problem reduces in computing the optimal duration costCd.

3.2 A linear programming problem

In this section we show that solving Problem 2 reduces in solving a linear programming problem. This idea was already
illustrated in Example 2. Before we formalize this idea, we go further with this example.

Example 3.We come back to the weighted timed automaton of Fig. 2 and its equivalence relation≈ given on Fig. 3.
We consider the following pathρR in RA

ρR = r′0 → r1 → r′1 → r2 → r′2

with the regions
r′0 = (l0, 0, 0),
r1 = (l0, 0 < x1 = x2 < 1),
r′1 = (l1, x1 = 0, 0 < x2 < 1),
r2 = (l1, 1 < x1 < 2, x2 = 2),
r′2 = (l3, 1 < x1 < 2, x2 = 2).
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Each runρ of TA such that[ρ] = ρR can be parameterized as

ρ(t1, t2) = (l0, 0, 0)
t1→ (l0, t1, t1) → (l1, 0, t1)

t2→ (l1, t2, t1 + t2) → (l3, t2, t1 + t2)

with the two parameterst1, t2 constrained by the next linear inequalities

0 < t1 < 1, 1 < t2 < 2 andt1 + t2 = 2. (3)

These constraints are obtained as follows. We haver1 = [(l0, t1, t1)] justifying the first inequality, andr2 = [(l1, t2, t1+
t2)] justifying the second and third inequalities.

In the same way it has been done in Example 2, we computeOptCost(ρR) as equal to4. Indeed, it is equal to
the infimum value of the costC(ρ(t1, t2)) = t1 + 3 · t2 under the constraints (3). This optimal cost is not realizable.
However it can be approximated byρ(1 − ε, 1 + ε) with ε > 0 arbitrarily small.

We now generalize arguments of Example 3 to any canonical initial pathρR of Definition 8. We suppose that it
has the following form with the last edge being a switch-edge8:

ρR = r′0 → r1 → r′1 → r2 · · · → rm → r′m. (4)

In this path, each regionrk (resp.r′k) is bounded since the timed automata studied in this paper are supposed to be
bounded (see Remark 2).

We recall the basic fact [AD94] that each regionr of A can be described by a location and a finite set of linear
constraints of the form

xi − xj ∼ c or xi ∼ c (5)

wherexi, xj are clocks,c ∈ Z and∼ ∈ {<,≤, =,≥, >}. We denote this set of linear constraints byr(x1, ..., xn).
All runs ρ of TA such that[ρ] = ρR can be parameterized as

ρ(t1, t2, . . . , tm) = q′0
t1→ q1

e1→ q′1
t2→ q2

e2→ · · ·
tm→ qm

em→ q′m (6)

where

– the first state is of the formq′0 = (l1, 0) such thatr′0 = [(l1, 0)],
– each other state can be written asqk = (lk, xk) = (lk, xk

1 , xk
2 , . . . , xk

n) (resp.q′k = (lk+1, x
′k)) such that each

clockxk
i (resp.x′k

i ) depends on the parameterst1, t2, . . . , tk.

For stateqk, this dependencexk
i = xk

i (t1, . . . , tk) is given in Remark 4:

xk
i (t1, . . . , tk) = th+1 + th+2 + · · · + tk−1 + tk (7)

with 0 ≤ h ≤ k such thatqh
eh→ q′h is the last transition ofρ(t1, . . . , tm) where the clockxi has been reset. For state

q′k, with ek = (lk, gk, Yk, lk+1), we have

x′k
i (t1, . . . , tk) = 0 if xk

i ∈ Yk (8)

= xk
i otherwise.

Since[ρ(t1, . . . , tm)] = ρR, we haverk = [qk] for all k ∈ {1, . . . , m}, this shows that the parameterst1, . . . , tm
are constrained by the following set of inequalities

Constr(ρR) =
⋃

k∈{1,...,m}

rk(t1, . . . , tk) (9)

rk(t1, . . . , tk) = rk(xk
1(t1, . . . , tk), . . . , xk

n(t1, . . . , tk)).
Therefore for all runsρ of TA such that[ρ] = ρR, we can writeρ = ρ(τ1, . . . , τm) such that(τ1, . . . , τm) ∈ (R+)m

satisfy the constraints ofConstr(ρR).

8 The case where the last edge is a time-edge can be treated similarly. All the results of Sect. 3.2 remain valid.
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Example 4.Let us illustrate the previous notation on the pathρR of Example 3. The setConstr(ρR) is composed of
the following linear constraints

– regionr1 : 0 < t1 < 1,
– regionr2 : 1 < t2 < 2, t1 + t2 = 2.

They have been obtained as follows. Fromr1 = (l0, 0 < x1 = x2 < 1) with the two clocks equal tot1, we obtain the
first constraint0 < t1 < 1. Fromr2 = (l1, 1 < x1 < 2, x2 = 2) with the two clocksx1, x2 respectively equal tot2
andt1 + t2, we obtain the second and third constraints1 < t2 < 2 andt1 + t2 = 2.

We now define the two following subsets of(R+)m:

A(ρR) = {(τ1, . . . , τm) ∈ (R+)m | [ρ(τ1, . . . , τm)] = ρR},

B(ρR) = {(τ1, . . . , τm) ∈ (R+)m | (τ1, . . . , τm) |= Constr(ρR)}.

This allows us to formulate the next lemma.

Lemma 1. A(ρR) = B(ρR).

Proof. From above we haveA(ρR) ⊆ B(ρR). For the other inclusion, consider(τ1, ..., τm) |= Constr(ρR), we have
to prove thatρ = ρ(τ1, . . . , τm) is a run ofTA satisfying[ρ(τ1, . . . , τm)] = ρR. The proof is by induction onk with
k ∈ {0, . . . , m}.

For k = 0, we haveq′0 = (l1, ν
′0) = (l1, 0) and[q′0] = r′0. For correctly starting the induction, we also need a

fictitious stateq0 = (l0, ν
0) = (l0, 0) and a fictitious edgee0 = (l0, g0, Y0, l1) with g = true andY0 = X .

Consider the casek > 0. Let ek−1 be the edge(lk−1, gk−1, Yk−1, lk).
By induction, we can suppose thatq′k−1 = (lk, ν′k−1) with ν′k−1 satisfying (8) and (7), that is

ν′k−1
i = 0 if the clockxi belongs toYk−1

= νk−1
i otherwise

where
νk−1

i = τh+1 + τh+2 + · · · + τk−1

with 0 ≤ h ≤ k − 1 such thatqh
eh→ q′h is the last transition ofρ where the clockxi has been reset. Moreover,

[q′k−1] = r′k−1.
Let us now study the form of the statesqk andq′k.
By definition of a time-transition, we haveqk = (lk, νk) with

νk
i = τk if ν′k−1

i = 0
= τh+1 + τh+2 + · · · + τk−1 + τk otherwise.

This shows thatνk satisfies (7). By hypothesis,τ1, . . . , τk satisfy the subset of constraintsrk(t1, . . . , tk) of Constr(ρR).
It follows that the transitionq′k−1

τk→ qk is a time-transition ofTA such that[qk] = rk.
Let ek be the edge(lk, gk, Yk, lk+1). By definition of a switch-transition, we haveq′k = (lk+1, ν

′k) with

ν′k
i = 0 if the clockxi belongs toYk

= νk
i otherwise.

Then we have a switch-transitionqk
ek→ q′k such that[q′k] = r′k andν′k satisfies (8). This ends the casek > 0 of the

induction. ⊓⊔

In Remark 11, we notice that solving the cost-optimal path reachability problem reduces in computing the optimal
duration costCd. Looking at the parameterized runρ(t1, . . . , tm) (see (6)), its duration cost is equal to

Cd(ρ(t1, . . . , tm)) =
∑

k∈{1,...,m}

C(lk) · tk. (10)
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Thus by Lemma 1, the optimal costOptCost(ρR) can be obtained by computing the infimum value ofCd(ρ(t1, . . . , tm))
under the set of constraintsConstr(ρR).

The setConstr(ρR) defines anm-dimensionalpolyhedronPol(ρR) equal to

Pol(ρR) = {(τ1, ..., τm) ∈ (R+)m | (τ1, ..., τm) |= Constr(ρR)} (11)

Notice that this polyhedron is bounded since the set of constraintsConstr(ρR) is constructed from bounded regions.
We also define theclosureof the polyhedronPol(ρR), denoted byPol(ρR). This polyhedron is obtained by con-

sidering the setConstr(ρR) where each constraint (see (5)) of the formxi − xj < c or xi < c (resp.xi − xj > c
or xi > c) is replaced byxi − xj ≤ c or xi ≤ c (resp.xi − xj ≥ c or xi ≥ c).9 Looking at (7), we notice that the
constraints ofConstr(ρR) have the form

ti + ti+1 + · · · + tj−1 + tj ∼ c

with i, j ∈ {1, . . . , m}, c ∈ Z and∼∈ {<,≤, =,≥, >}. It follows thatPol(ρR) can be defined by constraints of the
form

M · t ≤ d, t ≥ 0 (12)

whereM is a (p×m) matrix with integer coefficients (for somep), t is the column vector(t1, . . . , tm) such thatti ≥ 0
for all i ∈ {1, . . . , m}, andd is a column vector ofp integer constants.

As the duration cost is a linear function with integer coefficients (see (10)), the optimum value ofCd(ρ(t1, . . . , tm))
is obtained at one of the vertices of the polyhedronPol(ρR). Due to the form of (12), this can be computed by the
Simplex Method, a well-known method in linear programming (see [NW88]). Inthis way, we have shown how to solve
Problem 2.

Corollary 1. Problem 2 is decidable.

Notice that this problem is in PTIME (in p andm). We recall thatm is the length ofρR andp is related to the number
of constraints ofConstr(ρR) defined in (9).

With the linear programming approach, we can also decide whether the optimal costOptCost(ρR) is realizable.

Corollary 2. It is decidable whether the optimal costOptCost(ρR) is realizable.

Proof. Suppose that the minimum value ofCd(ρ(τ1, . . . , τm)) computed by the Simplex Method is equal tob. Recall
the form ofCd(ρ(τ1, . . . , τm)) given in (10). ThenOptCost(ρR) is realizable if and only if the intersection between

{(τ1, ..., τm) ∈ (R+)m |
∑

k∈{1,...,m}

C(lk) · τk = b}

andPol(ρR) is non empty. ⊓⊔

Remark 12.It is important to note that Corollary 1 remains true in the case of more general duration cost functions.
For instance, ifCd(ρ(t1, . . . , tm)) is a concave function, then its minimum value is obtained at one of the vertices of
the polyhedronPol(ρR) (see [Roc70]). We recall that a functionf(t) = f(t1, . . . , tm) is concaveif

f(λt + (1 − λ)t′) ≥ λf(t) + (1 − λ)f(t′)

with λ ∈ [0, 1]. Since everyt ∈ Pol(ρR) can be written ast =
∑

k λkvk with
∑

k λk = 1 and thevk ’s being the
vertices ofPol(ρR), we have

f(t) = f(
∑

k

λkvk) ≥
∑

k

λkf(vk) ≥
∑

k

λk min
k

{f(vk)} = min
k

{f(vk)}.

This shows that the minimum value ofCd(ρ(t1, . . . , tm)) is obtained at the vertexvl of Pol(ρR) such thatf(vl) =
mink{f(vk)}.

Symmetrically, ifCd(ρ(t1, . . . , tm)) is a convex function, then its maximum value is obtained at one of the vertices
of Pol(ρR) (see [Roc70]). A functionf(t) is convexif −f(t) is concave.

9 This definition corresponds to the notion of closure from thetopological point of view.
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3.3 3-Block matrices

LetA be a weighted timed automaton, andρR be a canonical initial path inRA. In this section we investigate in more
details the form of the polyhedronPol(ρR), and in particular its vertices. This study leads to the niceresults given in
Corollaries 4 and 5.

Coming back to the form of the matrixM given in (12), we observe that each row ofM is composed of three
blocks (possibly empty) : a first block of0’s, a second block of1’s (resp.−1’s) and a third block of0’s, that is

(0, . . . , 0, 1, . . . , 1, 0, . . . , 0) or (0, . . . , 0,−1, . . . ,−1, 0, . . . , 0).

We call3-blocka matrix of this form. This particularity of the matrixM will lead to very nice results. First we give
an illustration.

Example 5.Considering the pathρR of Example 3 with the setConstr(ρR) being composed of the linear constraints

0 < t1 < 1, 1 < t2 < 2, t1 + t2 = 2

(see Example 4). The polyhedronPol(ρR) is defined by the following matrix system

















−1 0
1 0
0 −1
0 1
1 1
−1 −1

















(

t1
t2

)

≤

















0
1
−1
2
2
−2

















.

Let us show that the matrixM is totally unimodular.

Definition 9. [NW88] An integer matrixM is saidtotally unimodularif the determinant of all its square submatrices
is equal to0, 1 or −1.

Lemma 2. Any 3-block matrix is totally unimodular.

Proof. We prove this lemma by induction on the sizel of the square submatrices ofM . The computation of their
determinant is done with the cofactor method.

If l = 1 the result clearly holds. Supposel > 1 and letA ∈ Z
l×l be a submatrix ofM . We have to prove that

det(A) equals0, 1 or−1. This proof is by induction onk the number of non null coefficients of the first column ofA.
If k = 0, thendet(A) = 0. If k = 1, then we obtain the desired result by the induction hypothesis onl.
In order to treat the casek > 1, we need to introduce some notation and definition. As usual we denote byAij the

coefficient ofA located in rowLi and columnCj of A. We consider the rowsLi of A such thatAi1 6= 0,10 and we
define a total ordering on these rows as follows

Li ⊆ Li′ iff ∀j Aij 6= 0 ⇒ Ai′j 6= 0.

Consider two rowsLi, Li′ such thatAi1 6= 0, Ai′1 6= 0 respectively, andLi ⊆ Li′ . We build a new matrixB from
A by replacing the rowLi′ by the rowLi′ − Li if Ai1 = Ai′1, and by the rowLi′ + Li if Ai1 = −Ai′1. The other
rows are left unchanged. SinceB is again 3-block,det(A) = det(B), andB hask − 1 non null coefficients in its first
column, we can conclude thatdet(A) equals0, 1 or−1 by the induction hypothesis onk. ⊓⊔

From the next theorem and Lemma 2, we have the following nice corollaries.

Theorem 2. [NW88] Consider the polyhedron{t ∈ R
m | M · t ≤ d} with M a totally unimodular (p × m) matrix

andd ∈ Z
p. Then the coordinates of its vertices are integers.

10 Recall thatM is 3-block. Thus such a rowLi is formed by a block of1’s (resp.−1’s) followed by a block of0’s.
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Corollary 3. The vertices of the polyhedronPol(ρR) have integer coordinates.

Corollary 4. The optimal costOptCost(ρR) is an integer.

In the next corollary, we indicate the relation between the optimal costOptCost(r, r′) of reaching the regionr′

from the regionr and the optimal costOptCost(ρR) associated with a pathρR of the region graph (see Definitions 7
and 8).

Corollary 5. LetA be a timed automaton andr, r′ be two regions ofRA. Then

OptCost(r, r′) = inf{OptCost(ρR) | ρR = r  r′ path inRA}.

Moreover, ifOptCost(r, r′) 6= ∞, then

OptCost(r, r′) = OptCost(ρR)

for some pathρR = r  r′ of RA, andOptCost(r, r′) is an integer.

Proof. The first part of the corollary follows from the next equality.

inf{C(ρ) | ρ = q  q′, q ∈ r, q′ ∈ r′}

= inf
ρR

inf{C(ρ) | ρ = q  q′, [ρ] = ρR}.

The second part is an immediate consequence of Corollary 4. ⊓⊔

3.4 ε-Semantics

We have shown that Problem 2 is decidable : with the notation of Section 3.2, the optimal costOptCost(ρR) can be ob-
tained by computing the infimum value of the duration costCd(ρ(t1, . . . , tm)) under the set of constraintsConstr(ρR).
By the Simplex Method, it is obtained at one of the vertices ofthe polyhedronPol(ρR). Moreover, these vertices have
integer coordinates by Corollary 3. All these results suggest that when computingOptCost(ρR), only time-transitions
with a timeτ “arbitrarily close to an integer” have to be considered (seealso the end of Example 3). We thus introduce
theε-semanticsin Definition 10 and we formalize the previous suggestion in Lemma 3.

The notion ofε-semantics of a timed automatonA is similar to the semantics given in Definition 2, except that
elapseτ of time at a location is restricted toτ close to an integer.

Definition 10. LetA = (L, X, E, I) be a timed automaton andε ∈]0, 1
2 ] be a real number. Theε-transition system

T ε
A = (Q,→ε) has the same setQ as inTA and atransition relation

→ε =
⋃

τ∈R
+
ε

τ
→ ∪

⋃

e∈E

e
→

such thatR+
ε = {τ ∈ R

+ | ∃N ∈ N |N − τ | < ε}.

We distinguish two kinds of time-transition
τ
→ with τ ∈ R

+
ε : either0 ≤ N − τ < ε, or 0 ≤ τ − N < ε.11 In the

first case we use notation
N−

→ , and in the second case
N+

→ .
A finite path in theε-transition systemT ε

A is called anε-run; it is denoted byρε. Clearly anyε-run of T ε
A can be

seen as a run ofTA.

Remark 13.When the context is clear enough, we use notationq → q′ instead ofq →ε q′ for transitions ofT ε
A.

In the next lemma, we show that the optimal costOptCost(ρR) can be approximated by the cost of some well-
chosenε-run.
11 The two cases are mutually exclusive by the choice ofε ∈]0, 1

2
].
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Lemma 3. LetA be a weighted timed automaton, andρR be a canonical initialized path inRA. Letε ∈]0, 1
2 ]. Then

there exists an initializedε-run ρε in T ε
A such that

[ρε] = ρR and |OptCost(ρR) − C(ρε)| < ε.

Proof. We use the notation of Sect. 3.2. We suppose thatρR has the form

ρR = r′0 → r1 → r′1 → r2 · · · → rm → r′m

with the related parameterized run

ρ(t1, t2, . . . , tm) = q′0
t1→ q1

e1→ q′1
t2→ q2

e2→ · · ·
tm→ qm

em→ q′m.

(see (4) and (6)). Consider the set of constraintsConstr(ρR) and the polyhedronPol(ρR) defined by them (see (9) and
(11)).

By Remark 11, we know that computing the optimal costOptCost(ρR) reduces in computing the optimal duration
costCd. By the Simplex Method and Corollary 3, this duration cost isobtained at one of the vertices(τ1, ..., τm) ∈ N

m

of Pol(ρR) with integer coordinates.
Let us show how to define the requiredε-run ρε. SupposeA = (L, X, E, I, C) and letK = maxl∈L |C(l)|. Let

ε′ be such that0 < ε′ ≤ ε andmKε′ < ε. SincePol(ρR) is the closure of the polyhedronPol(ρR), there exists a
point(τ ′

1, ..., τ
′
m) ∈ Pol(ρR) such that|τk − τ ′

k| < ε′ for all k ∈ {1, ..., m}. By Lemma 1, the runρ(τ ′
1, ..., τ

′
m) of TA

satisfies[ρ(τ ′
1, ..., τ

′
m)] = ρR. Moreover, sinceτk ∈ N, ∀k, andε′ ≤ ε, ρ(τ ′

1, ..., τ
′
m) is anε-run. Therefore we define

ρε = ρ(τ ′
1, ..., τ

′
m). Looking at Definition 6 and Remark 11, we have
∣

∣

∣OptCost(ρR) − C
(

ρε
)

∣

∣

∣ =
∣

∣

∣

∑

k∈{1,...,m}

C(lk)τk −
∑

k∈{1,...,m}

C(lk)τ ′
k

∣

∣

∣ ≤ Kmε′ < ε.

⊓⊔

4 Solving the cost-optimal reachability problem

In this section, we solve the cost-optimal reachability problem for weighted timed automata (Problem 1) and we prove
that it is PSPACE-COMPLETE as announced in Sect. 3. This proof needs several steps that we now briefly introduce.
By Lemma 3, we have seen that to solve Problem 2 for a weighted timed automatonA, it was sufficient to consider
runs of the transition systemTA restricted to theε-semantics (withε arbitrarily close to0). This observation motivates
the introduction of theε-region graph in Sect. 4.1, which is a refinement of the regiongraphRA. In Sect. 4.2, we
establish what is the correspondence between runs of theε-semantics and paths of theε-region graph (Lemmas 4
and 5). In Section 4.3, we introduce the notion of discrete graph, a notion similar to theε-region graph, which is
independent ofε. We show how to augment the discrete graph with a weight function in relation to the cost function of
A. Then, we give the counterparts of the two previous lemmas with weight (Lemmas 8 and 9). All these steps lead to
Theorem 3 where it is stated that solving Problem 1 reduces tocompute some minimum weight in the discrete graph.
The announced complexity of the cost-optimal reachabilityproblem is proved in Sect. 4.4.

4.1 ε-Region graph

In this section, given a timed automatonA, we define the concept ofε-region graph which can be seen as a refinement
of RA. The refinement that we propose is simpler than the one given in [ALP01].

Let ε ∈]0, 1
2 ]. We define theε-equivalence denoted≈ε on clock valuations. This new equivalence relation refines

the equivalence relation≈ given in Definition 3. We recall that for every clockxi, ci is the largest constant such that
xi is compared with in any guard and any invariant ofA.

Definition 11. Let ε ∈]0, 1
2 ]. Two clock valuationsν andν′ are ε-equivalent,ν ≈ε ν′, iff they satisfy the following

conditions12

12 With the choice ofε ∈]0, 1

2
], the last two conditions are mutually exclusive.
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– ν ≈ ν′;
– ν̄i < ε iff ν̄′

i < ε for all i ∈ {1, . . . , n} with νi ≤ ci;
– 1 − ε < ν̄i iff 1 − ε < ν̄′

i for all i ∈ {1, . . . , n} with νi ≤ ci.

Fig. 6 indicates the partition induced by theε-equivalence for the timed automaton of Fig. 2.

x1

x2

Fig. 6. Theε-equivalence≈ε

The relation≈ε is extended to the states ofTA as done previously with≈. An equivalence class is called an
ε-region. Theε-region to which a stateq belongs is denoted[q]ε and the set of allε-regions is denoted byRε.

In order to define theε-region graph of a timed automatonA, we do not need all theε-regions ofRε (contrarily to
the construction ofRA). Due to Lemma 3, we only need to consider theε-regions[(l, ν)]ε whose clock valuesν are
close enough ton-tuples of integers (the dashed zones on Fig. 6).

Definition 12. Given a timed automatonA andε ∈]0, 1
2 ], the set ofacceptableε-regions, denotedSε, is defined by

Sε =
{

[(l, ν)]ε | ∀i ∈ {1, . . . , n} : νi ≤ ci ⇒ (ν̄i < ε or 1 − ε < ν̄i)
}

.

Remark 14.If rε = [(l, ν)]ε is anε-region ofSε, then there exists a unique regionr ∈ R, equal to[(l, ν)], such that
rε ⊆ r. In the sequel,rε always denotes anε-region included in the regionr.13

Remark 15.Using the representation introduced in Remark 5, we can visualize anε-regionrε as on Fig. 7 (whenr
is a bounded region). We observe that the fractional partsν̄i of the clock values are either less thanε or greater than
1 − ε. We thus introduce the following notation14

Low(rε) = {xi | νi ≤ ci andν̄i < ε};

High(rε) = {xi | νi ≤ ci and1 − ε < ν̄i}.

This graphical representation of theε-regions is very helpful in the proofs below.

0 1

ν̄1 · · · ν̄i ν̄i+1 · · · ν̄n

ε 1 − ε

Fig. 7. Representation of the region0 < ν̄1 < · · · < ν̄i < ε ≤ 1 − ε < ν̄i+1 < · · · < ν̄n

13 Similarly if δ ≤ ε, we will also use notationrδ, rε, r with rδ ⊆ rε ⊆ r.
14 Notice that the setsLow(rε) andHigh(rε) are disjoint sinceε ≤ 1

2
.
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Remark 16.The acceptableε-regions that we propose as a refinement of the classical regions of [AD94] are simpler
than the refinement introduced in [ALP01]. Indeed in our case, the clock values of an acceptableε-regionrε are
arbitrarily close to one of the corners of the regionr, when in [ALP01] the clock values are arbitrarily close to one of
the boundaries ofr.

In the next example, we illustrate the interest of Definition12 for computing the optimal costOtpCost(r, r′) for
two regionsr, r′ of a timed automaton.

Example 6.We consider the weighted timed automatonA of Fig. 8. The cost of each location is indicated on the figure

l1 l2

l3

2 0

1

x = 1

0 < x < 10 < x < 1

Fig. 8. A weighted timed automaton

l1

leavingl1
enteringl3

leavingl3
enteringl1

leavingl1
enteringl2

0 1

Fig. 9. The runρ2(ε, 1 − 2 · ε, ε)

and the cost of each edge is null. The invariant(x ≤ 1) is assigned to each location, showing thatA is bounded. We
want to compute the optimal costOptCost(r, r′) for the two regionsr = [(l1, 0)] andr′ = [(l2, 1)] of RA.

Let ρ1 = (l1, 0) (l2, 1) be a run ofTA not going through locationl3. Clearly it has a costC(ρ1) = 2.
We now consider runsρ2 = (l1, 0)  (l2, 1) going throughl3. This family of runs can be described by the

parameterized run

ρ2(t1, t2, t3) = (l1, 0)
t1→ (l1, t1) → (l3, t1)

t2→ (l3, t1 + t2)

→ (l1, t1 + t2)
t3→ (l1, t1 + t2 + t3) → (l2, t1 + t2 + t3)

wheret1, t2 andt3 are constrained by

0 < t1 < 1, 0 < t1 + t2 < 1 andt1 + t2 + t3 = 1. (13)

The cost of the parameterized runρ2(t1, t2, t3) is given by2 · t1 + t2 + 2 · t3. One can check that the infimum value
of 2 · t1 + t2 + 2 · t3 under the constraints (13) is equal to1, and that it is obtained at the point(t1, t2, t3) = (0, 1, 0).

Therefore, the optimal costOptCost(r, r′) is equal to1.
We now study in more details the parameterized runρ2(t1, t2, t3) with (t1, t2, t3) arbitrarily close to(0, 1, 0). Let

us fix ε ∈]0, 1
2 ]. Given0 < δ < ε, the runρ2(δ, 1 − 2 · δ, δ) respects the constraints given in (13). This run is depicted

on Fig. 9. Notice on this figure how it was necessary to refine the region(l3, 0 < x < 1) into the two acceptable
ε-regions(l3, 0 < x < ε) and(l3, 1 − ε < x < 1).

GivenA a timed automaton andε ∈]0, 1
2 ], we now define theε-region graphRε

A. It is obtained in two steps: first
we define the quotient graphTA/≈ε , and then we restrict it to the setSε of acceptableε-regions.

Definition 13. LetA be a timed automaton andε ∈]0, 1
2 ]. Theε-region graphRε

A = (Sε,→) is the finite subgraph of
TA/≈ε induced bySε. Its vertex set is equal toSε. Its edge set is composed of the edgesrε → r′ε, with rε, r′ε ∈ Sε,
such that there exist two statesq ∈ rε, q′ ∈ r′ε, and a transitionq → q′ in TA. The edgerε → r′ε is called a
switch-edge(resp.time-edge) if q → q′ is a switch-transition (resp. time-transition).

A path inRε
A is denotedρSε . As for RA, the vertices of such a path are all bounded regions (see Remark 2). We

say that a pathρSε = rε
 r′ε in Rε

A is initialized if rε is of the form[(l, 0)]ε such that all the clock values are null.
Let us notice that we only consider finite paths ofRε

A in this paper.
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Remark 17.In the sequel, we only work with theε-regions that are acceptable. Therefore, we omit the term “accept-
able”.

Remark 18.The size|Sε| is bounded by(n + 1)|R|.15 Indeed a regionr of RA gives rise to at mostn + 1 different
ε-regionsrε ⊆ r, since each suchrε is specified by the way the interval[0, 1[ is cut into the setsLow(rε) andHigh(rε)
(see Fig. 7). Since|RA| is inO(2|A|), it follows that|Rε

A| is also inO(2|A|).

4.2 Links betweenT ε

A
and R

ε

A

In this section, given a timed automatonA andε ∈]0, 1
2 ], we show how the runs of theε-transition systemT ε

A are
linked to the paths of theε-region graphRε

A, and conversely (Lemmas 4 and 5).
First, it is important to notice that there are no natural simulation of Rε

A by T ε
A (Example 7) and no natural

simulation ofT ε
A byRε

A (Example 8).

Example 7.Let A be a timed automaton with one locationl and two clocksx1, x2. Let us fixε ∈]0, 1
2 ] andδ = ε

10 .
Let rε be theε-region such that0 < x2 < x1 < 1, Low(rε) = {x2} andHigh(rε) = {x1}, and letr′ε be theε-region
such that0 < x2 < x1 = 1, Low(r′ε) = {x1, x2} andHigh(r′ε) = ∅. We clearly haverε → r′ε. However given
(l, ν) = (l, 1 − ε + δ, ε − δ) ∈ rε, it is impossible to find(l, ν′) such that(l, ν) → (l, ν′) and(l, ν′) ∈ r′ε. This
situation is illustrated on Fig. 10.

x2

x1

Fig. 10.No natural simulation ofRε
A by T ε

A

Example 8.Let A be a timed automaton with one locationl and one clockx1. Let us fixε ∈]0, 1
3 ] andδ = ε

10 . We

consider the transition(l, ν)
2δ
→ (l, ν′) of T ε

A such thatν = ε − δ andν′ = ε + δ. Clearly (l, ν) belongs to some
ε-regionrε of Rε

A sinceν < ε. However, it is impossible to find anε-regionr′ε such that(l, ν′) ∈ r′ε because we
have neitherν′ < ε nor1 − ε < ν′ by the choice ofε andδ. (See Definition 12).

Although there is no natural simulation betweenRε
A andT ε

A, we are able to relate runs ofT ε
A and paths ofRε

A in
a weaker way. This relation is described in the next two lemmas.

We recall that the timed automata of this paper are bounded (see Remark 2). Therefore, the regions andε-regions
considered in these lemmas are supposed to be bounded.

Lemma 4. LetA be a timed automaton andε ∈]0, 1
3 ]. LetρSε = rε

0 → rε
1 → · · · → rε

m be an initialized path inRε
A.

Then there exists an initializedε-run ρε = (l0, ν
0) → (l1, ν

1) → · · · → (lm, νm) in T ε
A such that(lk, νk) ∈ rε

k for
all k ∈ {0, . . . , m}.

In the statement of this lemma, the sameε number is used in both the pathρSε in Rε
A and theε-runρε in T ε

A.
The proof proceeds by induction on the length ofρSε and therefore it requires the use ofm + 1 intermediate

εk ≤ ε, k ∈ {0, . . . , m}, of the formεk = ε
2m−k . For instance, to avoid the situation of Example 7, one takes(l, ν)

in r
ε

2 (instead ofrε) to obtain a transition(l, ν) → (l, ν′) with (l, ν′) ∈ r′ε (see Fig. 10). The proof is technical since
several cases have to be considered, however it is not difficult. It can be skipped at a first reading.

15 We recall thatn is the number of clocks.
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Proof (of Lemma 4).We are going to build the requiredε-run ρε as follows : for allk ∈ {0, . . . , m}, we will insure
that(lk, νk) ∈ rεk

k and the prefix

ρεk = (l0, ν
0)→(l1, ν

1) · · ·→(lk, νk) (14)

is a run inT εk

A , with εk = ε
2m−k . Sinceεk ≤ ε, we haverεk

k ⊆ rε
k andρεk is anε-run of T ε

A.16 Thus the thesis holds
with k = m.

We proceed by induction onk. Supposek = 0. SinceρSε is initial, rε
0 has the form[(l0, 0)]. The unique state of

ρε0 is thus(l0, 0).
Let k ≥ 0 and suppose by the induction hypothesis that we have built a path ρεk like in (14) with the desired

conditions. Sinceρεk is also anεk+1-run inT
εk+1

A , we have to show that we can find a transition(lk, νk)→(lk+1, ν
k+1)

in T
εk+1

A such that(lk+1, ν
k+1) ∈ r

εk+1

k+1 .
To make the sequel more readable, we change the notation as follows. We denote the state(lk, νk) by (l, ν) and

the state(lk+1, ν
k+1) by (l′, ν′). Similarly notationrε andr′ε is used instead ofrε

k andrε
k+1 respectively; notation

rεk andr′εk+1 is used instead ofrεk

k andr
εk+1

k+1 respectively. We denote byr (resp.r′) the region ofRA which contains
rεk (resp.r′εk+1 ).

We now consider the two possible cases, switch-edge and time-edge, for the edgerε → r′ε in Rε
A. In each case

we define the adequate state(l′, ν′).
Suppose thatrε → r′ε is a switch-edge. By the induction hypothesis,(l, ν) ∈ rεk . Sincer → r′ is a switch-edge

in RA, there exists a switch-transition(l, ν)
e
→ (l′, ν′) in TA. Sinceεk < εk+1 and(l, ν) ∈ rεk , this transition is also

a switch-transition inT εk+1

A such that(l′, ν′) ∈ rεk+1 .
We now treat the case whererε → r′ε is a time-edge. First we suppose thatr′ is a closed region. It follows that

there exists a unique(l, ν′) ∈ r′ (and a uniqueτ ) such that(l, ν)
τ
→ (l, ν′) is a time-transition inTA. Hence there

exists a clockxf whose fractional part is equal to0 in r′ (i.e. ν̄′
f = 0). We are going to prove that(l, ν)

τ
→ (l, ν′) is

a transition inT εk+1

A such that(l, ν′) ∈ r′εk+1 . In other words we show that|N − τ | < εk+1 for someN ∈ N (see
Definition 10) and̄ν′

i ∈ [0, εk+1[∪]1 − εk+1, 1[ for eachi ∈ {1, . . . , n} (see Definition 12). We have to distinguish
four cases depending on the belonging ofxf andxi to Low(rεk ) or High(rεk ).

1. If xf ∈ Low(rεk ), thenτ = N − ν̄f for someN ∈ N \ {0} (this case is illustrated on Fig. 11). ThusN − τ =
ν̄f < εk, showing that|N − τ | < εk+1. We distinguish two subcases.

ν̄f

Fig. 11.The proof at a glance whenxf ∈ Low(rεk )

(a) xi ∈ Low(rεk ).
If ν̄i ≥ ν̄f , thenν̄′

i = ν̄i − ν̄f . Hence by induction hypothesis we have0 ≤ ν̄′
i < εk < εk+1. If ν̄i < ν̄f , then

ν̄′
i = 1 − (ν̄f − ν̄i). Hence by induction hypothesis we have1 − εk+1 < 1 − εk < ν̄′

i < 1.
(b) xi ∈ High(rεk ).

We havēν′
i = ν̄i − ν̄f . By induction hypothesis, we conclude that1 − εk+1 = 1 − 2εk < ν̄′

i < 1.
2. If xf ∈ High(rεk ), thenτ = N−ν̄f for someN ∈ N\{0} (this case is illustrated on Fig. 12). Thusτ−N+1 < εk,

showing that|τ − N + 1| < εk+1. We distinguish two subcases.
(a) xi ∈ Low(rεk ).

We havēν′
i = ν̄i + (1 − ν̄f ). Hence0 ≤ ν̄′

i < 2εk = εk+1.
(b) xi ∈ High(rεk ).

If ν̄i < ν̄f , thenν̄′
i = ν̄i + (1 − ν̄f ) and1 − εk+1 < 1 − εk < ν̄i

′ < 1. If ν̄i ≥ ν̄f , thenν̄′
i = ν̄i − ν̄f and

0 ≤ ν̄′
i < εk < εk+1.

16 Notice that we use the notationrεk

k , rε
k as proposed in Remark 14.
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ν̄f

Fig. 12.The proof at a glance whenxf ∈ High(rεk)

This concludes the case whererε → r′ε is a time-edge such thatr′ is a closed region.17

We now treat the case whererε → r′ε is a time-edge such thatr′ is an open region. We have to defineτ and(l, ν′)

such that(l, ν)
τ
−→ (l, ν′) is a time-transition ofT εk+1

A and(l, ν′) ∈ r′εk+1 . We begin to introduce additional notation
(see Fig. 13). Among the clocks which belong toLow(rεk ), we denote byxa (resp.xb) the one whose valuation has the
smallest (resp. largest) fractional part. Similarly for the clocks ofHigh(rεk ), xc (resp.xd) is the one whose valuation
has the smallest (resp. largest) fractional part.

ν̄a ν̄b ν̄c ν̄d

Fig. 13.Additional notation

Since the regionr′ is supposed to be open, either there exists a closed regionr′′ such thatr → r′′ → r′ (with
possiblyr = r′′) such thatr′ = succ(r′′), or such a closed regionr′′ does not exist, and thenr = r′.

1. If r′′ exists, by using the previous case, we can find(l, ν′′) ∈ r′′ such that(l, ν)
τ ′

→ (l, ν′′) is a transition inT εk+1

A ,
|N−τ | < εk+1 for someN ∈ N, and(l, ν′′) ∈ r′′εk+1 . We then chooseτ ′′ such thatτ ′′ < min(εk+1− ν̄′′

b , 1− ν̄′′
d )

and|N − (τ ′ + τ ′′)| < εk+1 (see Fig. 14). We define(l, ν′) such that(l, ν′′)
τ ′′

−−→ (l, ν′). With τ = τ ′ + τ ′′, it
follows that(l, ν)

τ
−→ (l, ν′) is a transition inT εk+1

A such that(l, ν′) ∈ r′εk+1 .

ν̄′′
b ν̄′′

d

Fig. 14.The proof at a glance for transitionr′′ → r′

2. If r′′ does not exist, thenr = r′. In the caserε = r′ε, we proceed with an argument similar to the one of the
previous case. Indeed it suffices to takeτ < min(εk − ν̄b, 1 − ν̄d). With N = 0, we have|N − τ | < εk < εk+1.
In the caserε 6= r′ε, let us show that

Low(rε) = High(r′ε), andHigh(rε) = Low(r′ε) = ∅. (15)

The hypothesisε ≤ 1
3 will be necessary. Assume that (15) does not hold. Let us study in more detail the transition

rε → r′ε in the light of Definition 13. The situationLow(rε) = ∅ andHigh(rε) 6= ∅ is impossible. Therefore

Low(rε) andHigh(rε) are both non empty. Consider a time-transition(l, ν̃)
τ̃
−→ (l, ν̃′) of TA such that(l, ν̃) ∈ rε

and(l, ν̃′) ∈ r′ε. Sincerε 6= r′ε, we must have(i) ν̃b < ε, ν̃b + τ̃ > 1 − ε, and(ii) ν̃d > 1 − ε, ν̃d + τ̃ < 1 (see
Fig. 15). It follows that1− ε < ε+ τ̃ in case(i), and1− ε+ τ̃ < 1 in case(ii) . This is impossible becauseε ≤ 1

3 .

Since (15) holds, we chooseτ = 1 − εk. This case is illustrated on Fig. 16. The transition(l, ν)
τ
→ (l, ν′) is

17 The hypothesis thatr′ε is anε-region is of no importance in the arguments given in this case.
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τ̃
τ̃

Fig. 15.An impossible situation

thus a time-transition ofT εk+1

A . It remains to show that(l, ν′) ∈ r′εk+1 , that is,1 − εk+1 < ν̄′
c andν̄′

d < 1. We
haveν̄′

c = ν̄a + 1 − εk > 1 − εk > 1 − εk+1, showing the first inequality. To obtain the second one, notice that
ν̄′

d = ν̄b + 1 − εk < εk + 1 − εk = 1.

ν̄a ν̄b ν̄′
c ν̄′

d

Fig. 16.The proof at a glance whenLow(rε) = High(r′ε), andHigh(rε) = Low(r′ε) = ∅

⊓⊔

Lemma 5. LetA be a timed automaton. Letρδ = (l0, ν
0) → (l1, ν

1) → · · · → (lm, νm) be an initializedδ-run in
T δ
A, with δ ∈]0, 1

2(m+1) ]. Then, withε = (m + 1)δ, there exists a pathρSε = rε
0 → rε

1 → · · · → rε
m in Rε

A such that

(lk, νk) ∈ rε
k for all k ∈ {0, . . . , m}.

Contrary to Lemma 4 where the sameε number was used, the statement of this lemma requires the useof different
numbersε andδ. This is necessary to avoid the situation of Example 8. Againthe proof of this lemma is technical, but
not difficult. It can be skipped at a first reading.

Proof (of Lemma 5).Consider the regionsrk = [(lk, νk)] of RA, for k ∈ {0, . . . , m}. We are going to build the
required pathρSε as follows : for allk ∈ {0, . . . , m}, we have(lk, νk) ∈ rεk

k and the prefix

ρSε
k = rεk

0 → rεk

1 → · · · → rεk

k

is a path inRεk

A , with εk = (k + 1)δ.18 Sinceεk ≤ ε, we haverεk

k ⊆ rε
k andρSε

k is also a path inRε
A. Thus the thesis

holds withk = m.
We proceed by induction onk. If k = 0, then(l0, ν

0) ∈ rε0

0 sinceν0 = 0.
Let k ≥ 0. Suppose by induction hypothesis that we have built the pathρSε

k with the desired conditions. This path
can be seen as a path inR

εk+1

A sincerεk

j ⊆ r
εk+1

j for all j ∈ {0, . . . , k}. Consider the edgerk → rk+1 of RA. If we
show that(lk+1, ν

k+1) ∈ r
εk+1

k+1 , thenr
εk+1

k → r
εk+1

k+1 is an edge ofRεk+1

A , and casek + 1 is thus solved.
As in the proof of Lemma 4, we change the notation as follows. We denote the states(lk, νk), (lk+1, ν

k+1) by
(l, ν), (l′, ν′) respectively, and the regionsrk, rk+1 by r, r′ respectively. In a way to prove that(l′, ν′) ∈ r′εk+1 , we
treat the different types of transition(l, ν)→(l′, ν′) (see Definition 10).

Suppose that(l, ν)→(l′, ν′) is a switch-transition. Since(l, ν) ∈ rεk by induction hypothesis andεk < εk+1, then
(l′, ν′) ∈ r′εk ⊆ r′εk+1 .

Suppose now that(l, ν)
τ
→ (l′, ν′) is a time-transition such that|N − τ | < δ for someN ∈ N. We have to consider

the two cases(l, ν)
N+

→ (l, ν′) and(l, ν)
N−

→ (l, ν′).

1. Supposeτ = N + τ ′ with 0 ≤ τ ′ < δ. This case is illustrated on Fig. 17. We have to prove that(l, ν′) ∈ r′εk+1 ,
i.e. ν̄′

i ∈ [0, εk+1[∪]1 − εk+1, 1[ for all i ∈ {1, . . . , n}. A clock xi belongs either toLow(rεk

k ) or toHigh(rεk

k ).

18 As in the proof of the previous lemma, we use the notation discussed in Remark 14. On the other hand, notice thatε ∈]0, 1

2
] by

the choice ofδ.
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Fig. 17.The proof at a glance for transition(l, ν)
N+

→ (l, ν′)

(a) xi ∈ Low(rεk

k ). Thus by induction hypothesis,0 ≤ ν̄′
i = ν̄i + τ ′ < εk + δ = εk+1.

(b) xi ∈ High(rεk

k ). Then either̄ν′
i = ν̄i + τ ′ or ν̄′

i = ν̄i + τ ′ − 1. In the first case, we have1− εk+1 < 1− εk <
ν̄i ≤ ν̄′

i < 1. In the second case, we have0 ≤ ν̄′
i < δ < εk+1.

2. Suppose thatτ = N −τ ′ with 0 < τ ′ < δ. This case is illustrated on Fig. 18. Let us show thatν̄′
i ∈ [0, εk+1[∪]1−

Fig. 18.The proof at a glance for transition(l, ν)
N−

→ (l, ν′)

εk+1, 1[ for all i ∈ {1, . . . , n}.
(a) xi ∈ Low(rεk

k ). Then either̄ν′
i = ν̄i − τ ′, or ν̄′

i = ν̄i − τ ′ + 1. In the first case, we have0 ≤ ν̄′
i ≤ ν̄i < εk <

εk+1. In the second case, we have1 − εk+1 < 1 − εk < ν̄i < ν̄′
i < 1.

(b) xi ∈ High(rεk

k ). Thereforēν′
i = ν̄i − τ ′ and1 − εk+1 = 1 − εk − δ < ν̄′

i < 1.
⊓⊔

4.3 Weighted discrete graph

In the previous subsection, we gave the relation between theε-semantics and theε-region graph of a timed automaton
A. In this section, we introduce the notion of discrete graph,a notion similar to theε-region graph, which is indepen-
dent ofε (Definition 14). Then, we considerA as a weighted timed automaton with a cost functionC. We show how
the discrete graph can be augmented with a weight functionW in relation toC (Definition 15). We end the section
with an important result that indicates how the optimal costOptCost(r, r′), with r, r′ being two regions ofRA, can be
computed thanks to the weighted discrete graph (Theorem 3).

In [BBL04], Bouyer et al. propose the construction of a graphcalled the corner point abstraction, for studying
the optimal way of staying into a designated set of safe locations. This construction shares several ideas with the
construction proposed here for the weighted discrete graph.

Let A be a timed automaton. We begin with a lemma that states that all the ε-region graphsRε
A are isomorphic.

The proof is in the same vein as for Lemma 4.

Lemma 6. LetA be a timed automaton. Then all theε-region graphsRε
A, with ε ∈]0, 1

3 ], are isomorphic graphs.

Proof. ConsiderRδ
A = (Sδ,→) andRε

A = (Sε,→), with δ, ε ∈]0, 1
3 ] such thatδ < ε. We have to prove thatRδ

A and
Rε

A are isomorphic graphs, that is, there exists a one-to-one correspondence betweenSδ andSε that respects the edge
relation→ of each graph.

For anyδ-region rδ of Rδ
A, sinceδ < ε, there exists exactly oneε-region rε of Rε

A such thatrδ ⊆ rε.19

This establishes the one-to-one correspondence betweenSδ andSε. Of course we haveLow(rε) = Low(rδ) and
High(rε) = Low(rδ).

If rδ → r′δ is an edge inRδ
A, then clearly there is an edgerε → r′ε in Rε

A. The converse is more difficult to prove.
However the proof follows arguments similar to the ones given in the proof of Lemma 4. Let us explain them, with
less details.20

19 We again use the notation discussed in Remark 14
20 We use the notation of the proof of Lemma 4. Fig. 11-16 will be helpful.
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Let rε → r′ε be an edge inRε
A. It is a switch-edge or a time-edge. We have to show that thereexists an edge

rδ → r′δ in Rδ
A. If rε → r′ε is a switch-edge, it is not difficult to verify thatrδ → r′δ exists.

We now treat the case whererε → r′ε is a time-edge. Let(l, ν)
τ
→ (l, ν′) be a time-transition inTA such that

(l, ν) ∈ rε and(l, ν′) ∈ r′ε. We define new clock valuesµ from ν as follows

µi =

{

⌊νi⌋ + δ
2ε

ν̄i if xi ∈ Low(rε)

⌊νi⌋ + 1 − ( δ
2ε

(1 − ν̄i)) if xi ∈ High(rε)

One verifies that for eachi

µ̄i ∈ [0,
δ

2
[∪]1 −

δ

2
, 1[.

In particular,(l, µ) ∈ rδ. If we exhibit a time-transition(l, µ)
τ ′

→ (l, µ′) in TA with (l, µ′) ∈ rδ, then we obtain the
required time-edgerδ → r′δ of Rδ

A.
First we suppose thatr′ is a closed region. Hence, there exists a clockxf such thatν̄′

f = 0. It follows that
τ = N − νf with N = ν′

f ∈ N. We defineτ ′ = N − µf andµ′ = µ + τ ′. Let us show that(l, µ′) ∈ r′δ, i.e.
µ̄′

i ∈ [0, δ[∪]1 − δ, 1[ for eachi. We have to distinguish four cases.

1. xf ∈ Low(rε).
(a) xi ∈ Low(rε).

If µ̄i ≥ µ̄f , thenµ̄′
i = µ̄i − µ̄f . We have0 ≤ µ̄′

i < δ
2 < δ. If µ̄i < µ̄f , thenµ̄′

i = 1 − (µ̄f − µ̄i). We have
1 − δ < 1 − δ

2 < µ̄′
i < 1.

(b) xi ∈ High(rε).
We haveµ̄′

i = µ̄i − µ̄f . We conclude that1 − δ = 1 − 2 δ
2 < µ̄′

i < 1.
2. xf ∈ High(rε).

(a) xi ∈ Low(rε).
We haveµ̄′

i = µ̄i + (1 − µ̄f ). Hence0 ≤ µ̄′
i < 2 δ

2 = δ.
(b) xi ∈ High(rε).

If µ̄i < µ̄f , thenµ̄′
i = µ̄i + (1 − µ̄f ) and1 − δ < 1 − δ

2 < µ̄′
i < 1. If µ̄i ≥ µ̄f , thenµ̄′

i = µ̄i − µ̄f and
0 ≤ µ̄′

i < δ
2 < δ.

We have thus proved that(l, µ)
τ ′

→ (l, µ′) is a transition inTA with (l, µ′) ∈ r′δ .
We now treat the case wherer′ is an open region. Either there exists a closed regionr′′ such thatr → r′′ → r′ and

r′ = succ(r′′), or r′′ does not exist and thenr = r′.

1. If r′′ exists, by using the previous case, we can find a transition(l, µ)
τ ′

1→ (l, µ′′) in TA such that(l, ν′′) ∈ r′′δ.
We then chooseτ ′

2 such thatτ ′
2 < min(δ − µ̄′′

b , 1 − µ̄′′
d), and we defineµ′ = µ + τ ′

1 + τ ′
2. It follows that

(l, µ)
τ ′

1+τ ′

2−−−−→ (l, µ′) is a transition inTA such that(l, µ′) ∈ r′δ .
2. If r′′ does not exist, thenr = r′. In the caserε = r′ε, we proceed with an argument similar to the one of the

previous case withτ ′ < min(δ − µ̄b, 1 − ν̄d).
In the caserε 6= r′ε, we show as in the proof of Lemma 4 that

Low(rε) = High(r′ε), andHigh(rε) = Low(r′ε) = ∅. (16)

We then chooseτ ′ = 1 − δ. Let us show that, withµ′ = µ + τ ′, we have(l, µ′) ∈ r′δ, that is,1 − δ < µ̄′
c and

µ̄′
d < 1. We havēµ′

c = µ̄a + 1 − δ > 1 − δ, andµ̄′
d = µ̄b + 1 − δ < 1.

The proof is completed. ⊓⊔

Due to the previous lemma, the only difference between theε-region graphs, withε ∈]0, 1
3 ], is the size of their

ε-regions depending onε. We thus introduce the following graph, independently of any ε, which is isomorphic to all
Rε

A. It can be seen as the limit graph ofRε
A whenε converges to0.
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Definition 14. LetA be a timed automaton. We denote byṘA = (Ṡ,→) a graph isomorphic to eachRε
A = (Sε,→),

with ε ∈]0, 1
3 ], and we call it thediscrete graphofA. We also use the same terminology of switch-edge and time-edge.

Remark 19.In the sequel, as done in Remark 14, we use the same letterr to express that the vertexṙ of Ṡ is isomorphic
to the vertexrε of Sε. Moreover, we say that the edgeṙ → ṙ′ is isomorphicto rε → r′ε, and that the patḣr  ṙ′ is
isomorphicto rε

 r′ε.

We now want to augment the discrete graph with a weight function. First, in the next lemma, we show that given
a time-edgerε → r′ε in theε-region graphRε

A, we can associate a unique integerN which represents, up to2ε, the
time elapsed betweenrε andr′ε. We recall that bothε-regionsrε andr′ε are bounded (See Remark 2).

Let us notice that it is impossible to associate a unique integer with an edger → r′ of the region graphRA in such
a way.

Lemma 7. LetA be a timed automaton. Letrε → r′ε be a time-edge in theε-region graphRε
A, with ε ∈]0, 1

6 ]. Then

there exists a uniqueN ∈ N such that for all time-transitions(l, ν)
τ
−→ (l, ν′) in TA with (l, ν) ∈ rε, (l, ν′) ∈ r′ε:

|τ − N | < 2ε.

Moreover,N is independent ofε.

Proof. Let (l, ν)
τ
−→ (l, ν′) be a time-transition such that(l, ν) ∈ rε and(l, ν′) ∈ r′ε. We first prove that there exists

N ∈ N such that|τ − N | < 2ε. We then prove that this integerN is the same for all such time-transitions.

1. Existence. Assume the contrary, that is,|τ − N | ≥ 2ε for all N ∈ N. In particular forM = ⌊τ⌋, we have
τ = M + τ ′ and2ε ≤ τ ′ ≤ 1 − 2ε. Let xi be a clock. We consider two cases according toxi ∈ Low(rε) or
xi ∈ High(rε). Let us study bounds forν′

i = νi + τ .
(a) xi ∈ Low(rε). Thus we have

M + 2ε ≤ νi + M + τ ′ = ν′
i < ε + M + (1 − 2ε) = (M + 1) − ε.

It follows that2ε ≤ ν̄i < 1 − 2ε. This contradicts(l, ν′) ∈ r′ε.
(b) xi ∈ High(rε). It follows that

(M + 1) + ε = (1 − ε) + M + 2ε < νi + M + τ ′ = ν′
i < 1 + M + (1 − 2ε) = (M + 2) − 2ε.

It follows thatε < ν̄i ≤ 1 − 2ε again in contradiction with(l, ν′) ∈ r′ε.

2. Uniqueness. We consider two time-transitions(l, ν)
τ
−→ (l, ν′) and(l, ν̃)

τ̃
−→ (l, ν̃′) such that(l, ν), (l, ν̃) ∈ rε and

(l, ν′), (l, ν̃′) ∈ r′ε. We know that there existN, Ñ ∈ N such that|τ − N | < 2ε and|τ̃ − Ñ | < 2ε. Let us show
thatN = Ñ .

|Ñ − N | = |(τ − N) − (τ̃ − Ñ) + (τ̃ − τ)| < 4ε + |τ̃ − τ |.

For all i ∈ {1, . . . , n}, we haveν′
i = νi + τ and ν̃′

i = ν̃i + τ̃ . Moreover we recall that(l, ν), (l, ν̃) ∈ rε and
(l, ν′), (l, ν̃′) ∈ r′ε. Therefore

|τ̃ − τ | = |(ν̃′
i − ν′

i) − (ν̃i − νi)| < 2ε.

It follows that
|Ñ − N | < 6ε.

By hypothesisε ≤ 1
6 . HenceN = Ñ .

It remains to prove thatN is independent ofε. Let ε, ε′ ∈]0, 1
6 ] andN, N ′ ∈ N be such that|τ − N | < 2ε and

|τ − N ′| < 2ε′. Then
|N ′ − N | = |(τ − N) + (τ − N ′)| < 2ε + 2ε′ < 1.

Therefore,N = N ′.
⊓⊔
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Remembering the definition of the discrete graphṘA (see Definition 14), the numberN proposed in Lemma 7 for
the time-edgerε → r′ε of Rε

A can also be associated with the time-edgeṙ → ṙ′ of ṘA isomorphic torε → r′ε.
We now considerA as a weighted timed automatonA = (L, X, E, I, C), and we explain how to assign a weight

to each edge of the discrete graphṘA of A, in relation with the cost functionC. Let ε ∈]0, 1
6 ] and letṙ → ṙ′ be an

edge ofṘA. It is isomorphic to an edgerε → r′ε of theε-region graphRε
A. Consider a transition

(l, ν) → (l′, ν′) (17)

in TA such that(l, ν) ∈ rε and(l′, ν′) ∈ r′ε. It is a time-transition(l, ν)
τ
→ (l′, ν′) or a switch-transition(l, ν)

e
→

(l′, ν′).

1. Transition(l, ν)
τ
→ (l′, ν′). In this case,̇r → ṙ′ is a time-edge. We associate with it a weightW(ṙ, ṙ′) equal to

W(ṙ, ṙ′) = N · C(l) (18)

whereN is the unique integer of Lemma 7.
2. Transition(l, ν)

e
→ (l′, ν′). Thusṙ → ṙ′ is a switch-edge. We associate with it a weightW(ṙ, ṙ′) equal to

W(ṙ, ṙ′) = C(e). (19)

Definition 15. Let A be a weighted timed automaton. Theweighted discrete grapḣRw
A = (Ṡ,→,W) of A is the

discrete graphṘA ofA augmented with the weight functionW as defined in (18) and (19).

Remark 20.We are conscious that this definition is incorrect in some very particular cases. Indeed (see Remark 1),
both weights defined in (18), (19) can be assigned to the same edgeṙ → ṙ′ when the transition(l, ν)→(l′, ν′) defined
in (17) is both a time-transition and a switch-transition. If such a case happens, the edgeṙ → ṙ′ must be duplicated in
a way that each of the two weights is assigned to each of the twocopies.

Remark 21.We notice that weights labeling the edges ofṘw
A are polynomials in the constants appearing inA (see

(18) (19). Therefore, since|Rε
A| is inO(2|A|) by Remark 18, we also have|Ṙw

A| in O(2|A|) .

Definition 16. LetA be a weighted timed automaton. Letρ̇ = ṙ0 → ṙ1 → ṙ2 · · · → ṙm be a path inṘw
A. Then the

weightW(ρ̇) of ρ̇ is equal to

W(ρ̇) =

m−1
∑

k=0

W(ṙk, ṙk+1).

It is an integer number.

In the next two lemmas, we relate the weight of paths inṘw
A to the cost of runs inT ε

A. These lemmas are the
counterparts of Lemmas 4 and 5 with weight.

Lemma 8. LetA = (L, X, E, I, C) be a weighted timed automaton and letK =
∑

l∈L |C(l)|. Let ρ̇ = ṙ  ṙ′ be an
initialized path of lengthm in Ṙw

A. Letε ∈]0, 1
6 ]. Then there exist twoε-regionsrε, r′ε of Rε

A respectively isomorphic
to ṙ, ṙ′, and there exists anε-run ρε = q  q′ of lengthm in T ε

A such that

|W(ρ̇) − C(ρε)| ≤ 2εKm

andq ∈ rε, q′ ∈ r′ε.

Proof. Supposeρ̇ has the formṙ0 → ṙ1 → · · · → ṙm. It is isomorphic to theε-run ρSε = rε
0 → rε

1 → · · · →
rε
m in Rε

A. Since ρ̇ is initialized, rε
0 = [(l0, 0)]ε for some locationl0. By Lemma 4, there exists anε-run ρε =

(l0, 0)→(l1, ν
1) → · · ·→(lm, νm) in T ε

A such that(lk, νk) ∈ rε
k for all k. Looking at Definitions 6 and 16, by

Lemma 7, we verify that|W(ρ̇) − C(ρε)| ≤ 2εKm. ⊓⊔
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Lemma 9. LetA = (L, X, E, I, C) be a weighted timed automaton and letK =
∑

l∈L |C(l)|. Letρδ = q  q′ be an
initializedδ-run of lengthm in T δ

A, with δ ∈]0, 1
6(m+1) ]. Then there exist twoε-regionsrε, r′ε of Rε

A such thatq ∈ rε,

q′ ∈ r′ε, and there exists a patḣρ = ṙ  ṙ′ of lengthm in Ṙw
A such thatṙ, ṙ′ are respectively isomorphic torε, r′ε

and
|W(ρ̇) − C(ρδ)| ≤ 2εKm

with ε = (m + 1)δ.

Proof. Suppose thatρδ is of the form(l0, 0) → (l1, ν
1) → · · · → (lm, νm). By Lemma 5, there exists a path

ρSε = rε
0 → rε

1 → · · · → rε
m in Rε

A such that(lk, νk) ∈ rε
k for all k ∈ {0, . . . , m}. We consider the isomorphic path

ρ̇ = ṙ0 → ṙ1 → · · · → ṙm of Ṙw
A. As in the proof of Lemma 8 we conclude that|W(ρ̇) − C(ρδ)| < 2εKm. ⊓⊔

Let A be a timed automaton. Letr, r′ be two regions ofRA wherer satisfies the first assumption of Remark 8,
i.e.,r is composed of a unique state of the form(l, 0). We are going to state an important result aboutOptCost(r, r′).
Before, we need to fix some notation. Thus, givenε ∈]0, 1

2 ], there is exactly oneε-regionrε included inr (also
composed of the unique state(l, 0)). We denote bẏr the vertex ofṘw

A isomorphic torε. On the hand, the regionr′

gives rise to at mostn + 1 differentε-regionsr′ε ⊆ r′ (see Remark 18). We denote byS(r′) this set ofε-regions, and
by Ṡ(r′) the set of vertices oḟRw

A that are isomorphic to them.

Theorem 3. LetA be a weighted timed automaton andr, r′ two regions ofRA. Then

OptCost(r, r′) = inf{W(ρ̇) | ∃ṙ′ ∈ Ṡ(r′), ρ̇ = ṙ  ṙ′ path inṘw
A}. (20)

Proof. We denoteinf{W(ρ̇) | ∃ṙ′ ∈ Ṡ(r′), ρ̇ = ṙ  ṙ′} by InfWeight. SupposeOptCost(r, r′) = +∞, i.e. there is
no runρ = q  q′ of TA such thatq ∈ r, q′ ∈ r′, then there is no patḣρ = ṙ  ṙ′ for any ṙ′ ∈ Ṡ(r′). Otherwise, by
Lemma 8, there exists anε-runρε = q  q′ with q ∈ rε andq′ ∈ r′ε. Thisε-run can be seen as a runρ = q  q′ of
TA with q ∈ r andq′ ∈ r′, a contradiction. SoInfWeight = +∞ and (20) holds in this case.

AssumeOptCost(r, r′) ∈ R ∪ {−∞} andOptCost(r, r′) < InfWeight. By Corollary 5, it follows that there is a
pathρR = r  r′ in RA with lengthm such thatOptCost(ρR) < InfWeight. By Lemmas 3 and 9 respectively used
with ε andδ chosen small enough, we can find a pathρ̇ = ṙ  ṙ′ in Ṙw

A such thaṫr′ ∈ Ṡ(r′) andW(ρ̇) < InfWeight.
This is impossible.

Assume now thatOptCost(r, r′) ∈ R andOptCost(r, r′) > InfWeight. By definition of theinf operator, we have
OptCost(r, r′) > W(ρ̇) for someρ̇ = ṙ  ṙ′ with ṙ′ ∈ Ṡ(r′). We get a contradiction using Lemma 8 withε chosen
small enough.

This proves (20). ⊓⊔

4.4 Complexity

In this section, we prove the main result of this paper, that is the cost-optimal reachability problem is PSPACE-
COMPLETE (Theorem 1).

Proof (of Theorem 1).We begin with some preliminary considerations. The discrete graphṘw
A has size inO(2|A|),

and the weights labelling its edges are polynomials in the constants appearing inA (see Remark 21). In the sequel of
the proof, we consider pathṡρ in Ṙw

A with a length bounded by the number of vertices ofṘw
A, thus with a length at

most exponential in|A|. These paths are calledelementary. Therefore, the encoding of the cost of an elementary path
ρ̇ can be done in PSPACE.

Let us now prove that the cost-optimal reachability problemis in PSPACE. By Theorem 3, computing the opti-
mal costOptCost(r, r′) given two regionsr, r′ of RA, reduces in computinginf{W(ρ̇) | ∃ṙ′ ∈ Ṡ(r′), ρ̇ = ṙ  
ṙ′ path inṘw

A}. There are three possibilities :

– there is no patḣρ = ṙ  ṙ′ with ṙ′ ∈ Ṡ(r′) in Ṙw
A, and thusOptCost(r, r′) = +∞;

– there is such a patḣρ containing a cycle with a negative weight, and thusOptCost(r, r′) = −∞;
– there is such a patḣρ, and none of these paths contains a cycle with a negative weight. ThereforeOptCost(r, r′)

is an integer equal to the minimum value of{W(ρ̇) | ∃ṙ′ ∈ Ṡ(r′), ρ̇ = ṙ  ṙ′}.
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Let us notice that in the three previous situations, the considered paths and cycles can be supposed to be elementary.
In the third situation, a patḣρ with a minimum valueW(ρ̇) can also supposed to be elementary. The algorithm works
as follows.

1. Guess an elementary pathρ̇ = ṙ  ṙ′ for someṙ′ ∈ Ṡ(r′). Note that the length oḟρ is exponential in|A|, and
that each vertex oḟRw

A can be stored in polynomial space. Hence one can decide in NPSPACE, thus in PSPACE,
whetherOptCost(r, r′) is equal to+∞ or not.

2. We assumeOptCost(r, r′) 6= +∞.
Guess a verteẋr0 in Ṙw

A, and check whether there exist an elementary path fromṙ to ṙ0 and another one froṁr0

to someṙ′ ∈ S(r′) (as explained in 1., this can be done inPSpace). Then guess an elementary cycle fromṙ0 to ṙ0

and compute on-the-fly its weight (as explained at the beginning of the proof, the computation of this weight can
be done in PSPACE). Therefore it can be decided in PSPACE whetherOptCost(r, r′) is equal to−∞ or not.

3. We assumeOptCost(r, r′) ∈ Z.
Guess an elementary pathρ̇ = ṙ  ṙ′ with ṙ′ ∈ Ṡ(r′), and compute on-the-fly its weightW(ρ̇). As explained in
2., this can be done in PSPACE. Store the weightW(ρ̇) in variableaux. If there is no elementary patḣρ1 = ṙ  ṙ′1
with ṙ′1 ∈ Ṡ(r′) with a weight strictly less thanaux, then it means thatOptCost(r, r′) is equal toaux. Therefore
guess such a patḣρ1, compute its weightW(ρ̇1) on-the-fly, and compareW(ρ̇1) with aux. It follows that the
complexity of this procedure is in N-(CO-NPSPACE), thus in PSPACE.

The proposed algorithm is globally in PSPACE showing that the cost-optimal reachability problem is in PSPACE.
It remains to prove that it is PSPACE-hard. We do that by reduction of the reachability problem for timed automata
known to be PSPACE-complete [AD94]. LetA be a timed automaton. We augment it with a cost functionC that assigns
a null cost to each location and edge ofA. Then, trivially, a regionr′ is reachable from a regionr if and only if the
optimal costOptCost(r, r′) is different from+∞. ⊓⊔

We conclude Sect. 4 with the following important remark.

Remark 22.In Remark 12, we have mentioned that Problem 2 remains decidable if the duration cost is a concave
function (resp. convex function) and the considered optimum cost is an infimum (resp. supremum).

Given a weighted timed automatonA, we recall that the definitions ofε-semanticsT ε
A, ε-region graphRε

A and
discrete graphṘA have been introduced independently of the cost functionC used inA. Their definition was only
based on the crucial Corollary 3 indicating that when computing an optimum cost, only time-transitions with a timeτ
arbitrarily close to an integer have to be considered.

In Definition 15, we have shown how to augment the discrete graph ṘA with a weight functionW in relation
with C. We have given the related Lemmas 8 and 9.

Let us consider some possible generalizations of cost and weight functions. In (18), given a time-transition(l, ν)
τ
→

(l′, ν′) in TA and the related time-edgeṙ → ṙ′ in ṘA, the duration cost of the time-transition is equal to

τ · C(l), (21)

and the weight of the time-edge is equal to

N · C(l). (22)

The numberN is the unique integer of Lemma 7 satisfying|τ − N | < 2ε. Suppose that (21) and (22) are re-
spectively replaced byf(τ) · C(l) andf(N) · C(l) wheref is a continuous function. It follows that we still have an
analog of Lemma 7 with|f(τ)− f(N)| < δ andδ small enough, as well as the analog of Lemmas 8 and 9. Therefore,
Theorem 3 remains true with a concave duration cost functionand the continuous functionf mentioned above.21 If
additionally these functions are computable, we get a generalization of Theorem 1.

21 For instance withf = ln andCd(ρ(t1, . . . , tm)) =
P

k∈{1,...,m} C(lk) · ln(tk) (see (10)).
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5 Assumptions

Till this section, the whole paper has been written under twoassumptions concerning Problem 1 (see Remark 8) :
First, the regionr given in Problem 1 is composed of a unique state of the form(l, 0). Second, the infimum cost is only
considered. On the other hand, we have supposed in Remark 2 that the timed automata of this paper are diagonal-free
and bounded. We show in this section that all these assumptions can be discarded.

5.1 Supremum cost

Let us go through the paper and indicate the modifications to be done when the supremum cost is considered instead
of the infimum cost.

In Definition 7, the optimal costOptCost(r, r′) is the supremum of the costs of the runsρ = q  q′ of TA such
thatq ∈ r andq′ ∈ r′. It is equal to−∞ when there is no such runρ. Otherwise it belongs toR ∪ {+∞}. Similarly,
in Definition 8, the optimal costOptCost(ρR) is the supremum of the costsC(ρ) among the runsρ of TA such that
[ρ] = ρR.

The proof of Corollary 1 stating that Problem 2 is decidable is the same. Indeed the Simplex Method acts similarly
when a supremum or an infimum value has to be computed. Here thesupremum value ofCd(ρ(t1, . . . , tm)) is also
obtained at one of the vertices of the polyhedronPol(ρR). Therefore Corollaries 4 and 5 also hold for the supremum
costsOptCost(ρR) andOptCost(r, r′).22

In the case of a supremum cost, Theorem 3 states that

OptCost(r, r′) = sup{W(ρ̇) | ∃ṙ′ ∈ Ṡ(r′), ρ̇ = ṙ ṙ′ path inṘw
A}.

The proof has to be adapted since thesup operator is considered. This can be done easily.
The proof of Theorem 1 essentially remains the same. It must be slightly adapted to deal with thesup operator

instead of theinf operator.

5.2 Any regionr

In Definition 7, the optimal costOptCost(r, r′) is defined for any regionsr, r′ of RA. Along the paper, we have
assumed thatr is composed of a unique state of the form(l, 0). We now indicate the modifications to be done whenr
is anyregion. We here come back to the infimum cost.

We first consider Sect. 3.2 dedicated to the solution of Problem 2. The approach is similar : GivenρR = r  
r′ a path inRA, we construct a set of constraintsConstr(ρR) that define a polyhedronPol(ρR). The optimal cost
OptCost(r, r′) is then computed thanks to one of the vertices ofPol(ρR).

Let us go into details. We use the same notation as in Section 3.2. Let us writeρR as in (4)

ρR = r′0 → r1 → r′1 → r2 · · · → rm → r′m.

The runsρ of TA such that[ρ] = ρR can be parameterized as done in (6), with the difference thatthe first regionr′0 is
not equal to[(l1, 0)]. Instead of (6), we write

ρ(t1, t2, . . . , tn+m) = q′0
tn+1

→ q1
e1→ q′1

tn+2

→ q2
e2→ · · ·

tn+m

→ qm
em→ q′m

such that

– the stateq′0 depends on the parameterst1, t2, . . . , tn,
– each stateqk (resp.q′k) depends on the parameterst1, t2, . . . , tn+k, for k ∈ {1, . . . , m}.

22 Of course, theinf operator has to be replaced by thesup operator in Corollary 5.
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Let us study the form ofq′0 = (l1, x
′0
1 , x′0

2 , . . . , x′0
n ) ∈ r′0. Without loss of generality we can suppose that the ordering

of the clocks is as follows
0 ≤ x′0

1 ≤ x′0
2 ≤ · · · ≤ x′0

n−1 ≤ x′0
n .

We define then parameterst1, . . . , tn such that

tn−j =

{

x′0
1 if j = 0

x′0
j+1 − x′0

j otherwise
(23)

for j ∈ {0, . . . , n−1}. These parameters are represented on Fig. 19. With this definition, we havex′0
i = x′0

i (t1, . . . , tn),

0 x′0
1 x′0

2 x′0
3

· · · x′0
n−2 x′0

n−1 x′0
n

tn

z}|{
tn−1

z}|{
tn−2

z}|{ · · ·
t2

z}|{
t1

z}|{

Fig. 19.The parameterst1, . . . , tn.

for i ∈ {1, . . . , n}, equal to the sum

x′0
i (t1, . . . , tn) = tn−i+1 + · · · + tn−1 + tn (24)

which expresses a dependence on the parameterst1, . . . , tn like in (7).
Concerning the other statesqk = (lk, xk) (resp.q′k = (lk+1, x

′k)), with k ∈ {1, . . . , m}, we also have a de-
pendence on the parameters like in (7). The clocksxk

i (t1, . . . , tn+k) andx′k
i (t1, . . . , tn+k) are either null or of the

form
th+1 + th+2 + · · · + tn+k−1 + tn+k (25)

with n ≤ h ≤ n + k.
Therefore, as done in (9), we have to consider the set of constraints

Constr(ρR) = r′0(t1, . . . , tn) ∪
⋃

k∈{1,...,m}

rk(t1, . . . , tn+k) (26)

With the following subsets of(R+)n+m

A(ρR) = {(τ1, . . . , τn+m) ∈ (R+)n+m | [ρ(τ1, . . . , τn+m)] = ρR},

B(ρR) = {(τ1, . . . , τn+m) ∈ (R+)n+m | (τ1, . . . , τn+m) |= Constr(ρR)}.

we have the analog of Lemma 1, i.e.
A(ρR) = B(ρR).

The proof of this lemma is similar, except that the base case of the induction has to be adapted to the regionr′0. This
is easily done by using the additional constraintsr′0(t1, . . . , tn) appearing in (26).

Therefore, as done in Sect. 3.2, the optimal costOptCost(ρR) can be obtained by computing the infimum value of
the duration costCd(ρ(t1, . . . , tn+m)) under the set of constraintsConstr(ρR). This infimum value is obtained at one
of the vertices of the polyhedronPol(ρR) which is the closure of the polyhedronPol(ρR) equal to

Pol(ρR) = {(τ1, . . . , τn+m) ∈ (R+)n+m | (τ1, . . . , τn+m) |= Constr(ρR)}.

This can be computed by the Simplex Method. It follows that Problem 2 is decidable (Corollary 1) and that it is
decidable whetherOptCost(ρR) is realizable (Corollary 2).

Let us now go through Sect. 3.3. All the results of this section are similar because we have equations (24) and (25)
like in (7) that express each clock as a sum of consecutivetk.

In particular, since the vertices of the polyhedronPol(ρR) have integer coordinates, a runρ = ρ(τ1, . . . , τn+m)
with a costC(ρ) arbitrarily close toOptCost(ρR) has its first stateq′0 ∈ r′0 with its clock values arbitrarily close to an
integer (see (23)).

In Sect. 3.4, due to the previous discussion, the statement of Lemma 3 is modified as follows.
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Lemma 3. LetA be a weighted timed automaton, andρR = r  r′ be a canonical path inRA. Letε ∈]0, 1
2 ]. Then

there exists anε-run ρε = q  q′ in T ε
A such that[ρε] = ρR,

|OptCost(ρR) − C(ρε)| < ε

andq ∈ rε.

The only modification appears at the end of the lemma, withq ∈ rε. The proof remains the same.
We now go to Sect. 4. We have to pay attention to Lemmas 4, 5, 8 and 9, and to Theorems 3 and 1. We indicate the

modified statements.

Lemma 4. LetA be a timed automaton andε ∈]0, 1
3 ]. LetρSε = rε

0 → rε
1 → · · · → rε

m be a path inRε
A. Then there

exists anε-run ρε = (l0, ν
0) → (l1, ν

1) → · · · → (lm, νm) in T ε
A such that(lk, νk) ∈ rε

k for all k ∈ {0, . . . , m}.

The proof of this lemma is the same except for casek = 0. Instead of defining the first state(l0, ν0) = (l0, 0), we
choose it such that(l0, ν0) ∈ rε0

0 with ε0 = ε
2m .

Lemma 5. Let A be a timed automaton. Letρδ = (l0, ν
0) → (l1, ν

1) → · · · → (lm, νm) be aδ-run in T δ
A, such

that δ ∈]0, 1
2(m+1) ] and (l0, ν

0) ∈ rδ
0 for someδ-region rδ

0 of Rδ
A. Then, withε = (m + 1)δ, there exists a path

ρSε = rε
0 → rε

1 → · · · → rε
m in Rε

A such that(lk, νk) ∈ rε
k for all k ∈ {0, . . . , m}.

The proof of this lemma is the same except for casek = 0. By hypothesis, we have(l0, ν0) ∈ rδ
0 = rε0

0 .

Lemma 8. LetA = (L, X, E, I, C) be a weighted timed automaton and letK =
∑

l∈L |C(l)|. Let ρ̇ = ṙ  ṙ′ be a
path of lengthm in Ṙw

A. Let ε ∈]0, 1
6 ]. Then there exist twoε-regionsrε, r′ε of Rε

A respectively isomorphic tȯr, ṙ′,
and there exists anε-run ρε = q  q′ of lengthm in T ε

A such that

|W(ρ̇) − C(ρε)| ≤ 2εKm

andq ∈ rε, q′ ∈ r′ε.

The proof is unchanged.

Lemma 9. LetA = (L, X, E, I, C) be a weighted timed automaton and letK =
∑

l∈L |C(l)|. Letρδ = q  q′ be a
δ-run of lengthm in T δ

A, such thatδ ∈]0, 1
6(m+1) ] and(l0, ν

0) ∈ rδ
0 for someδ-regionrδ

0 of Rδ
A. Then there exist two

ε-regionsrε, r′ε of Rε
A such thatq ∈ rε, q′ ∈ r′ε, and there exists a patḣρ = ṙ  ṙ′ of lengthm in Ṙw

A such that
ṙ, ṙ′ are respectively isomorphic torε, r′ε and

|W(ρ̇) − C(ρδ)| ≤ 2εKm

with ε = (m + 1)δ.

The proof is unchanged.
Concerning Theorem 3, the modifications come from the fact thatr is any region. Instead of having a unique vertex

ṙ associated tor, we now have to consider all the verticesṙ ∈ S(r). The statement of the theorem is thus as follows,
with a similar proof.

Theorem 3. LetA be a weighted timed automaton andr, r′ two regions ofRA. Then

OptCost(r, r′) = inf{W(ρ̇) | ∃ṙ ∈ Ṡ(r), ∃ṙ′ ∈ Ṡ(r′), ρ̇ = ṙ  ṙ′ path inṘw
A}.

Finally, the proof of Theorem 1 is similar, except that the algorithm has to deal with pathṡρ = ṙ  ṙ′ such that
ṙ ∈ Ṡ(r) andṙ′ ∈ Ṡ(r′).
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5.3 Any timed automaton

In this paper, we have restricted our study to bounded and diagonal-free timed automata. These restrictions al-
ready appear in [BBL04,LR05]. Indeed, it is well known that diagonal constraints can be removed from timed au-
tomata [BDGP98] (while preserving strong bisimilarity), and we here shortly explain how to transform a diagonal-free
timed automaton into a bounded one. This construction is a folklore result. We recall it here since we could not find it
in any paper of the literature.

Let A = (L, X, E, I(, C)) be a (weighted) diagonal-free timed automaton. LetM be an integer strictly greater
than all constants appearing in guards ofA. Then we construct the following automatonA′ = (L′, X, E′, I ′(, C′)) :

– the setL′ of locations isL × 2X

– the setE′ of edges is
• ((l, Z), gZ , Y, (l′, Z ′)) if (l, g, Y, l′) is an edge ofA, andgZ is the guard obtained by replacing everyx ∼ c

with x ∈ Z by either true or false, depending on∼ : if ∼ is≥ or >, then it is replaced by true, otherwise it is
replaced by false. The setZ ′ is equal toZ \ Y

• ((l, Z), x = M, {x}, (l, Z ∪ {x})) for every location(l, Z)
– the invariantI ′ is such thatI ′(l, Z) = I(l) ∧

∧

x∈X x ≤ M
– The cost functionC′ is naturally defined byC′((l, Z), gZ, Y, (l′, Z ′)) = C(l, g, Y, l′), C′((l, Z), x = M, {x}, (l, Z∪
{x})) = 0, andC′(l, Z) = C(l).

Intuitively, a location(l, Z) represents the locationl where all clocks inZ are inactive (i.e. they should be strictly
above the greatest constant ofA, the truth value of every guard ofA is thus known).

The automatonA′ is clearly bounded (byM ). It is easy to check that every runρ of TA has a corresponding run
ρ′ in TA′ , andvice-versa. Moreover these two runs have exactly the same costs. Thus, computing the optimal cost in
A can be reduced to computing the optimal cost inA′.

However, the two constructions needed to restrict to bounded diagonal-free timed automata induce an exponential
blowup in the number of locations of the timed automaton. More precisely, the number of locations of the resulting
automaton is|L| · 2|Diag| · 2|X| where|Diag| is the number of diagonal guards in the original automaton, whereas the
number of edges becomes|E| · 2|Diag| · 2|X| + (|L| · 2|Diag| · 2|X|) · |X |. Nevertheless, the size of the region graph
of the resulting automaton remains exponential, because exponential factors are multiplied (see Remark 6). All our
complexity computations thus remain correct and computingthe optimal cost also remains PSPACE-COMPLETE.

6 Application to optimal reachability in timed games

In this section, we propose an application of Theorem 1 in thecontext of optimal reachability timed games. Contrarily
to the other sections, the presentation is quite informal, and the insight is given through an example. Optimal reacha-
bility timed games have been first introduced in [LMM02] and further studied in [ABM04,BCFL04,BBR05]. We refer
to [BBR05] for precise definitions.

A weighted timed gameAG is a weighted timed automaton with a distinguished set of winning locations, and
where the set of edges is split into controllable edges (played by thecontroller) and uncontrollable edges (played by
theenvironment). We assume a classical definition ofstrategy, and the aim of a game is, for the controller, from the
state(l0, 0), to reach a winning location and to minimize the cost of the plays, whatever does the environment. To
illustrate these notions, we better give an example.

Example 9.[BCFL04] We consider the weighted timed gameAG of Fig. 20. Dashed (resp. plain) arrows are for
uncontrollable (resp. controllable) edges. The only winning location isl4. When the cost is non null, it is indicated on
the edge/location.

Let us consider plays of the game starting from(l0, 0). If the environment chooses the edge from locationl1 to
locationl2, then the accumulated cost along the game is5t + 10(2 − t) + 1 wheret is the elapse of time at location
l0. If it chooses the edge froml1 to l3 is, the accumulated cost is then5t + (2− t) + 7. The optimal cost the controller
can ensure is thus

inf
t≤2

max(5t + 10(2 − t) + 1, 5t + (2 − t) + 7) = 14 +
1

3
,
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and the optimal elapse of time is thent = 4
3 . The optimal strategy for the controller is thus to wait in locationl0 until

x = 4
3 , and then enter locationl1. Then, the environment chooses to go either tol2 or to l3, and finally as soon as

x = 2, the controller goes tol4.

l0 l1

l2

l3

l4

y = 0

x ≤ 2

x ≤ 2

x ≤ 2

y := 0

y = 0

y = 0

x = 2

x = 2

5

10

1

1

7

Fig. 20.A weighted timed automaton inspired from [BCFL04]

This example indicates that the region partitioning of [AD94] is not sufficient for solving optimal weighted timed
games. Restricted decidability results have however been obtained in [ABM04,BCFL04]. But the general problem has
been recently proved undecidable [BBR05]. Thus optimal strategies cannot in general be computed.

However as an application of Theorem 1, given a weighted timed gameAG and a strategyλ, we can compute the
infimum (resp. supremum) cost obtained when considering executions ofAG played according toλ. This allows to
compare two given strategies on a weighted timed game. A natural criterion to prefer a strategy to another one could
be to choose the strategy with lower supremum cost. Let us illustrate how it works on the gameAG of Example 9.

When looking at Fig. 20, one can easily be convinced that a strategy onAG only consists in choosing the elapse
of time t at locationl0. The possible values fort are in the interval[0, 2]. Hence there are three natural strategies
to consider:λi which imposes to stayi time units in locationl0 wherei = 0, 1, 2. Considering the executions of
AG played according toλi is equivalent to consider the executions of the weighted timed automatonAi depicted on
Fig. 21. Let us notice that the weighted timed automatonAi has not to be considered as a timed game anymore.

Following Theorem 1 one can compute the infimum costInfCost (resp. supremum costSupCost) among the runs
ρ reaching locationl4 from (l0, 0). The different cases are illustrated on Fig. 22. The resultsare as follows.

– OnA0, InfCost = 9 andSupCost = 21,
– OnA1, InfCost = 13 andSupCost = 16,
– OnA2, InfCost = 11 andSupCost = 17

Thus if the criterion to prefer a strategy to another one is the lowest supremum cost, strategyλ1 is here the prefered
one.

l0 l1

l2

l3

l4

y = 0

x ≤ 2

x ≤ 2

x = i

y := 0

y = 0

y = 0

x = 2

x = 2

5

10

1

1

7

Fig. 21.The weighted timed automatonAi

time
0 1 2

9

11

13

16
17

21

Fig. 22.InfCost andSupCost for the strategiesλi,
i = 0, 1, 2
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Let us now briefly explain how we can use Theorem 1 in general inorder to compare strategies. Given a weighted
timed gameAG and a strategyλ, the first step is to compute the weighted timed automaton which results from the
weighted timed game constrained by the strategy. Let us callAλ this automaton. The first question we have to ask is
the following.“Is there an infinite run ofAλ that always avoids the winning locations ?”. If the answer isyes, the
strategyλ has to be rejected, since it does not ensure reaching a winning location. Otherwise, if the answer isno, we
directly apply Theorem 1 to the weighted timed automatonAλ. This leads to an upper boundSupCost and a lower
boundLowCost on the cost obtained by the executions ofAG played according toλ. Therefore different strategiesλ
for a weighted timed gameAG can be compared by referring to these valuesSupCost andInfCost.

7 Conclusion

In this paper, we have settled the exact complexity of the cost-optimal reachability problem: it is PSPACE-COMPLETE.
This result closes a gap left open by previous works where only an EXPTIME algorithm was proposed to solve the
problem [ALP01].

To establish our result, we have first studied the structure of the problem and shown that a simplier version of
the problem, the cost-optimal path reachability problem, is naturally related to a linear programming problem such
that the associated polyhedron has vertices with integer coordinates. As a direct consequence, optimal runs using
time-transitions with a timeτ arbitrarily closed to an integer always exist. Using this property, a finite discrete graph
called the weighted discrete graph, which refines the classical region graph, can be constructed. A formal relation
between optimal paths in the discrete weighted graph and optimal runs in the weighted timed automaton is established.
The construction that we propose is simple and can be explored nondeterministically to obtain an optimal PSPACE

algorithm.
Furthermore, we have shown that our construction extends tomore general settings: negative costs, cost-optimal

reachability with respect to the supremum, concave or convexe cost functions. Finally, computing optimal costs have
interesting applications in the design of controllers.
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[Roc70] R. T. Rockafellar.Convex Analysis. Princeton Univ. Press, New Jersey, 1970.

33


