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Abstract. We study the cost-optimal reachability problem for weightened automata such that positive and

negative costs are allowed on edges and locations. By olitmvee mean an infimum cost as well as a supremum
cost. We show that this problem is P& E-CoMPLETE. Our proof uses techniques of linear programming, and
thus exploits an important property of optimal runs : thiire-transitions use a timewhich is arbitrarily close to

an integer. We then propose an extension of the region gthphweighted discrete graph, whose structure gives
light on the way to solve the cost-optimal reachability peob. We also give an application of the cost-optimal

reachability problem in the context of timed games.

1 Introduction

Timed automata are a well-established formalism for the etind and analysis of timed systems. Timed automata
augment finite state automata with clocks and clock comar#h\D94]. The reachability problem for a timed automa-
ton A asks, given a locatiohof A4, if there exists a run of that visits the locatior. This basic problem has been
shown BPACECOMPLETE in the seminal paper of Alur and Dill [AD94]. The verificatiaf more complex proper-
ties like properties expressed in the timed extension o€fhk logic, known as TCTL, is also ad?PACECOMPLETE
problem [ACD93]. On the other hand, some problems have be@mrsundecidable on the model of timed automata.
For example, the universality problem that asks if a giveretl automaton accepts the language of all timed words, has
been shown undecidable in [AD94]. As a direct consequehedanguage inclusion problem between two timed au-
tomata is also undecidable. Not only a large number of ingmdidnd interesting theoretical results have been obtained
on timed automata, but efficient verification tools have alsen implemented and successfully applied to industrially
relevant case studies [HHWT95,LPY97].

Recently, a useful extension of timed automata has beempedpveighted timed automatdALPO1,BFH01].
Weighted timed automata are natural models for embeddéeinsgavhere, often, resources consumptions have to be
modeled. They extend classical timed automata with a costtitnC that maps every location and every edge to a
nonnegative integer (or rational) number. For a locatjdil) represents the cost per time unit for staying in location
For an edge, C(e) represents the cost of crossing the edge. As a consequeraeg@mulated cost can be associated
to each run of a weighted timed automata and optimizatioblpms can be defined. Thm®st-optimal reachability
problemfor a weighted timed automata# asks, given a locatiohof .4, what is the minimal accumulated cost of a
run that visitg in A ?

Two different algorithmic solutions have been propose@p®hdently to solve the cost-optimal reachability prob-
lem. First, in [ALPO1], Alur et al. propose a non-trivial exision of the region automaton to solve the cost-optimal
reachability problem. This construction is the basis folEx®TIME solution to the problem. The optimality of the
proposed solution is not studied there. Second, in [BEH, Larsen et al. propose a symbolic algorithm that manipu-
lates priced (weighted) extensions of zones. This secdnti@odoes not provide a complexity result: the terminatio
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of the algorithm is ensured by a well-quasi order for whioh ldngth of descending chains is not studied. The decid-
ability of the cost-optimal reachability problem can alsoderived from a paper by Kesten et al. [KPSY99] where
some subclasses of integration graphs are shown decidahparticular, weighted timed automata are integration
graphs with a single integrator test along each run (whegriggt the locatior).

In this paper, we further study the cost-optimal reachgfjilfoblem. Our results are threefolerst, we show that
the cost-optimal reachability problem can be solved for aengeneral class of weighted timed automata: positive
as well as negative costs on edges and locations can be Hasidialtaneously. As a consequence, we study the
computation of the infimum and the supremum of costs for ralaitity. This extension is of practical interest. In fact,
assume that a weighted timed automatdmodels the behaviors of an embedded controller and its @mvient.
Assume that the objective of the controller is to force thstay to reach a given location with an optimal cost
whatever does the environment. To measure the quality ofed fontroller, one can consider the worst-case cost,
that is, the supremum cost of runs performed by this comtralver all possible behaviours of the environment. The
smaller is this worst-case cost, the better is the contrdllar method does not find the optimal controller (which is
impossible because of the results of [BBRO5]), but allowal@ating and comparing controllerSecongdwe settle
the exact complexity of the cost-optimal reachability gesb in weighted timed automata with positive and negative
costs. We show that this problem is P& e-CoMPLETE. Third, our solution comes in the form of an extension of
the region graph which is simpler than the one proposealhitin [ALP01]. Our construction exploits an important
property of optimal runs: optimal runs only contain timartsitions with a time- arbitrarily close to an integer.

Our optimal algorithm relies on two main ingredients. Fivge study a simpler version of the cost-optimal reach-
ability problem: thecost-optimal path reachability problerm this problem, a sequence of locations of the underlying
timed automatord is fixed a priori. Then the problem asks for the optimal tirassitions to switch between the
locations of the sequence. We show that this problem is lglostated to a linear programming problem. We study
the structure of this linear programming problem and shaat the associated polyhedron has vertices with integer
coordinates. As a consequence, we gaimgportant knowledgeonly time-transitions with a time arbitrarily close
to an integer have to be considered. This important propitys us to propose and justify a simple extension of
the classical notion of region calleeregion This notion ofz-region is at the heart of a finitgeighted discrete graph
whose optimal paths are related to optimal runs in the caigiveighted timed automatad. The justifications for
the correctness of our construction are not straightfadwardeed, we show that there is no reasonable simulation
relation between the states of the weighted discrete gnaghthee transition graph associated with the weighted timed
automatonA. Finally, to obtain an optimal PE.CE algorithm, we show that the construction of the entire wiggh
discrete graph can be avoided and that this graph can bezadakljithout being explicitly constructed.

Our approach easily extends to weighted timed automataawittore general cost functi@h for instance when
the cost of staying a time in locationl is computed ag(!) - In(7) instead oC(!) - 7. Indeed, the linear programming
problem related to the cost-optimal path reachability feobcan still be solved in the more general case of concave
and convex cost functions. Moreover, since the notiostiafgion proposed in this paper is only dependent on the fact
that the associated polyhedron has vertices with integendaaates, the weighted discrete graph can be easily atlapte
to more general cost functions under mild hypotheses.

Other related works.In [ACH93], the authors study the reachability problem fioneéd automata augmented with
costs. Timed automata augmented with costs are a simple alds/brid automata. The decidability border for hy-
brid automata has been extensively studied (for surveyfHm®96,Ras05]). Among the numerous results about this
problem, let us mention the following ones. The importaasslofinitialized rectangular automathas a decidable
reachability problem; however several slight generailiwes of these automata lead to an undecidable reachability
problem, in particular for timed automata augmented wita stopwatch [HKPV95]. The reachability problem is also
undecidable for the simple classa@dnstant slope hybrid systemich are timed automata augmented with integra-
tors; the reachability problem becomes decidable whemtiegiators are used abservergthey are neither reset nor
tested) [KPSY99].

The optimal reachability problem has also recently beedistlin a game setting. In this setting, we are interested
in synthesizing optimal strategies for reachability objess in weighted timed automata. In [ABMO04], Alur et al. sho
that optimal strategies for reachability in less thatmansitions can be computed. In [BCFL04], the authors shwaw t
optimal strategies for reachability can be computed forstriced class of weighted timed automata that respect the



condition ofstrong non-zenoness of coRecently in [BBR05], it is shown that, in the general caginal strategies
can not be constructed algorithmically. The interestinocsise of time-optimal strategies is solved in [AM99].

In [LRO5], Larsen and Rasmussen consider the problem ofmé@ieng the minimal cost of reaching a given
target location, with respect to some primary cost varialléle respecting upper bound constraints on the remaining
(secondary) cost variables. The proposed algorithm is tameion of the algorithm presented in [BFBL1].

In [BBLO4], the optimal way of staying into a designated Setafe locations is studied. The construction proposed
in [BBLO4], called corner point abstraction, shares sehidmas with the construction proposed here for the weighted
discrete graph.

Organization of the paperln Sect. 2, we recall the notion of timed automaton, regicpbrand weighted timed
automaton.

In Sect. 3, we introduce the cost-optimal reachability peoband we announce our main result that it iPRSE-
CoMmPLETE. We also introduce the simpler problem of cost-optimal pathchability. We show that solving this
problem reduces in solving a linear programming problemekvktudying further the related linear programming
problem, we deduce the important observation that optiomad have time-transitions with a timearbitrarily close
to an integer.

In Sect. 4, we prove that the cost-optimal reachability probis P$ACE-COMPLETE. PSPACE-HARDNESSIS
straightforward. The proof of F3CE-EASYNESSheeds several steps. First, due to the previous obseryagamfine
the classical notion of region with the conceptafegion. We therefore define theregion graph. Second, while there
is no natural simulation between states of¢hegion graph and the underlying weighted timed automaterare able
to relate them in a weaker way (this relation is not straigitird). Third we propose the notion of weighted discrete
graph where the cost-optimal reachability problem can frmeulated and solved with a PSCE-complexity.

In Sect. 5, we show that some assumptions made at the begiahthe paper can be discarded without loss of
generality. In Sect. 6, we illustrate the interest of commmtnfimum and supremum costs in the context of timed
games. Finally we give a conclusion in the last section.

2 Preliminaries

In this section, we recall the notions of timed automaton seglon graph [AD94]. We introduce the concept of
weighted timed automaton [ALP01,BFt91].

2.1 Timed automaton

Notations. Throughout the paper, we denote By = {x;,...,z,} a set ofn clocks A clock valuationis a map
v: X — RT, whereR™ denotes the set of non-negative real numbers; Eof1, ..., n}, we denote by; the image
of the clockz; by v, i.e.v(z;) = v;. Given a clock valuatiow, when no confusion is possible, we also denote by
the n-tuple of clock valuegus, ..., v,,). Letv be a clock valuation and € R, v + 7 is the clock valuation defined
by (v1 +7,...,v, + 7). A guardis any finite conjunction of expressions of the fosn~ c or z; — z; ~ ¢ where
x;, xj are clockse € N is an integer constant, andis one of the symbols ifi<, <,=,>,>}. We denote by the
set of guards. Leg be a guard and be a clock valuation, notatian = g means thatv, ..., v,,) satisfiesy. A reset
Y € 2% indicates which clocks are reset(io

Definition 1. Atimed automatomd = (L, X, F, Z) has the following component§:) L is a finite set oflocations
(ii) X is a set ofclocks (iii) E C L x G x 2% x L is afinite set ofedgesand (iv) Z : L — G assigns arnvariant
to each location.

Thesemantic®f a timed automaton is given by its transition systeffi4.

Definition 2. A timed automatotd = (L, X, F,7) generates dransition systenT 4 = (Q, —) with a set ofstates
Q equalto
{(Lv)|le Live (RN, v EZ(1)}



and atransition relation

defined by

— time-transition(l, v) = (I’,/): if I = 1" andv’ = v + T,
— switch-transition(l,v) % (I',v/'): if e = (I,9,Y,l') € E,v = gandv, = 0if z; € Y, v/ = v; otherwise.

A time-transition corresponds to @hapse of timeat a locatior!, and a switch-transition corresponds to an instan-
taneous switch from a locatidrto a location’’.

Remark 1.Let us notice that notatiofd, ») — (I’, ') is ambiguous in some very particular cases, since it caesept

both a time-transition and a switch-transition. Indeeds oould have botli, v) = (I,2) with 7 = 0 and(l,v) >
(I,v") for somee € E. However we use it in order to avoid a too heavy notation.

Remark 2.In this paper, we only consider bounded and diagonal-freediautomata. A timed automatordiagonal-
freeif the guards used in the edges and the invariants contairpression of the form; — z; ~ ¢, with x;, z; being
clocks,c € Nand~e {<,<,=,>,>}. A timed automator4 is boundedif for each locatiorl, the invariantZ(l)

is upper bounded on all clocks. In other words, there existsrestant)/ such that each stat@, ) of T4 satisfies
v; < Mforalli e {1,...,n}.In Sect. 5, we explain why these two hypotheses are notaésts.

The stategl, v) of T4 are shortly denoted by. Giveng = (I,v) € Q andT € R*, we denote by, + 7 the state
(l,v+71).
A run p of T4 is a finite path
pP=Gqo = q1— " = qm.

It is also shortly denoted = ¢ ~ ¢.,. The runp is calledinitialized if ¢, is of the form(l,0) with all the clock

values being null. We say thatis canonicalif it is of the formgy = ¢1 = ¢2 2 ¢3 =3 ¢4 - - - where time-transitions
and switch-transitions alternate.

Remark 3.A canonical (initialized) run can be associated with anyti@fized) runp = ¢9 — --- — ¢,,. Indeed

any two consecutive time-transitions — qr4+1 — qr+2 can be replaced by the time-transitign TH Qr+2, and
time-transitiong;, — g1 with 7 = 0 is allowed in Definition 2.

Remark 4.Let p be the following canonical initialized run
2% =000 5 p3dg - BaSqg--.

Giveng, = (I, v"*) a state of, the clock valuesgvt, ..., %) at g, depend of{ry, ..., 7} as follows : the value*
of the clockz; at statey;, is equal to

k
Vi = Th41 + Th42 + -+ Th—1 + T

with 0 < h < k such thaty, & g}, is the last transition of where the clockr; has been resét

2.2 Region graph

In this section, we define the region graph of a timed automdte- (L, X, F, 7). We first recall the usual equivalence
on clock valuations and its extension to the state® of For every clocke;, let ¢; be the largest constant that is
compared with in any guard df and any invariant of. Forr € R*, | 7] denotes its integral part arddenotes its
fractional part.

Definition 3. Two clock valuations and:’ are equivalenty = v/, iff the following conditions hold

2 \We notice thak depends or.



— v =] orv, v > ¢, forallie {1,...,n};
- ﬂigﬂj iffz?éﬁz?;-,foralli;éje{1,...,n}withuigci,ujgcj;
-7, =0iff 7, =0,foralli e {1,...,n} withy; <g¢;.

The equivalence relatiory is extended to the states'Bf;, as follows
g=v) =~ ¢ =) iff I=0Iandv=/.

We uselv] (resp.[q]) to denote the equivalence class to whicfresp.q) belongs. Aregionis an equivalence class
[q]. The set of all the regions is denoted By A region|q] is closedif ¢ + 7 % ¢ for anyr > 0, otherwise it isopen
A region[q] is unboundedf it satisfiesq = (I, v) with v; > ¢; for somei € {1, ..., n}, otherwise it isbounded

We notice that since timed automata are supposed to be bosetRemark 2), the states of any ruf’'qfnever
belong to an unbounded region.

Remark 5.A nice representation of the regions has been introduceA@HP3]. A region is fully specified by a
locationl, the integral parts of the clock valués, . .., v, ), and the ordering of their fractional parts for the clocks
x; such that; < ¢;. The representation proposed in [ACH93] consists in vigirg] this ordering. For example, the
orderingd < iy < i, < --- < I, < 1is depicted on Fig. 1.

Fig. 1. The ordering of the fractional parts of the clock values iegion

We now define the region graph of a timed automatiowhich is nothing else than the quotientBf by ~.

Definition 4. Let.A be a timed automaton. Thegion graphR 4 = (R, —) is the finite graph given b§¥ 4/~. Its
vertex set is equal t®. Its edge set is composed of the edges r/, withr, ' € R, such that there exist two states
g €r,q €r',andatransitiony — ¢’ in T4. The edge — 1’ is called aswitch-edgdresp.time-edggif ¢ — ¢’ isa
switch-transition (resp. time-transition).

Given two distinct bounded regioms= [q], ' = [¢], we say that’ is asuccessoof r, writtenr’ = sucqr), if
IreRT,g+7€r, andvr < 71,q+7 €rur.

Givenarurp = go — ¢1 — - -+ — g Of T4, we denote byp] the corresponding patfho] — [¢1] — -+ — [gm)]
in R4. Notice that due to Remark 2, each regigp] with k£ € {0,...,m}, is bounded. We say that a paih in
R 4 is canonical(resp.initialized) if pr = [p] for some canonical (resp. initialized) rprof 7 4. We use the notation
pr = 1 ~» 1’ for a path inR 4 starting with the regiom and ending with the regiorf. Let us notice that we only
consider finite paths aR 4 in this paper.

Remark 6.We recall [AD94] that the sizgR 4| of the region graph, i.e. its number of regions and edges (X {| L| +
|E[)2/9A1) whered (A) is the binary encoding of the constants (guards and cospaaging in.A. Thus|R 4] is in
O(2141) where|.A| takes into account the locations, edges and constamts of

2.3 Weighted timed automaton

We now introduce the notion of weighted timed autom&tevhich is an extension of timed automaton with costs on
both locations and edges.

Definition 5. Aweighted timed automatads a timed automatol = (L, X, E, Z, C) augmented with aost function
C : L U E — Z which assigns an integer cost to both locations and edges.

% This model differs from the one used in [ALPO1,BEBt] since it allows negative costs.



The semantics of a weighted timed automatbassociates eostwith each run off’4 in the following way.

Definition 6. Let A be a weighted timed automaton apd= ¢}, = ¢1 = ¢} 2 ¢ 2 ¢4 ™ ¢ =2 ¢, be
a canonical run ofT 4. Let !, be the location ofy, (and ¢, ,) for eachk. Then thecost C(p) of p is equal to
Ca(p) + Cy(p) with

Calp)= D, Cl)-m  Clp)= D> Clew)

In the previous definitiorC4(p) is called theduration costof p, andC;(p) the switch cosof p.

Example 1.Let A be the weighted timed automaton pictured on Fig. 2. The dosach location is indicated on the
figure and the cost of each edge is null. The invarjant< 4) A (z2 < 2) is assigned to each location, showing that
A is bounded.

X2

x2 > 1 T

Fig. 2. A weighted timed automaton Fig. 3. Its equivalence relatior:

The canonical run
p = (lo,0,0) 22 (1,0.5,0.5) — (11,0,0.5) 22 (11,1.5,2) — (I3, 1.5,2)

has a cost equal ©;(p) = C(lp) - 0.5+ C(l1) - 1.5 = 5.

3 Cost-optimal reachability problem

In this section, we define the cost-optimal reachabilitygbem for weighted timed automata [BF#91] 5

Definition 7. Let.4 be a weighted timed automaton. Given two regigns of R 4, theoptimal costOptCost(r, r’)
of reachingr’ fromr is the infimum (resp. supremum) of the costs of the puasq ~~ ¢’ of T4 such thaty € » and
qger.

Moreover, we say thaptCost(r, ') is realizabldf there exists such a rupsuch thatC(p) = OptCost(r,’).
Remark 7.In the previous definition, suppose that the infimum cost issitered. By conventio®ptCost(r, ') =

+oo in the case there is no rum = ¢ ~ ¢’ such thaty € r and¢’ € r'. Otherwise,OptCost(r,7’) € R or
OptCost(r, ') = —oo. Symmetric observations hold when the supremum cost iSdenes.

Problem 1. (Cost-optimal reachability problei@jven.A a weighted timed automaton, and two regiens’ of R 4,
compute the optimal coQptCost(r, ’).

Our main result is the following one. The rest of the papeeigaded to its proof.
#n the casep ends with a time-transition,e. there is an additional transitiay,, Tt gm+1, then there is an additional term

C(lm+1) * Tm+1 in bOthC(p) andCd(p).
% In this paper, by cost-optimality we mean both infimum costsupremum cost, while only infimum cost is studied in [BFH].



Theorem 1. The cost-optimal reachability problemBSPACE-COMPLETE.

Remark 8.In the sequel, we make twassumptiongor solving Problem 1. First, we suppose that the regigiven

in Problem 1 is composed of a unique state of the @) such that all the clock values are null. Second, we focus
only on the computation of the infimum cost. Indeed these t®g8umptions can be discarded with little effort (see
Sect. 5).

Remark 9.Problem 1 refers to the computation@ptCost(r, ') for two regions, ' of R 4. An alternative problem

is the computation 0DptCost(q, ¢') whereq = (I,v),q" = (I,v') are two given states df 4. Wheng, ¢’ have
rational clocks values, v/, the optimal cosOptCost(q, ¢') can be computed by using our method for Problem 1. The
arguments are the following ones. Let N be such thah - v, X - v/ are integers. Letl, be the automaton obtained
from the weighted timed automatohby replacing

— each constantin each guard and invariantgfby A - ¢;
— each cost'(e) of each edge by X - C(e).

In this way the “granularity” of time has been modified, subltt(l,v) ~~ (I’,2') is a run of A with costx iff

(I, A-v) ~ (I';,\- V') is arun of Ay with cost) - k (see also [AD94]). Therefore computi@ptCost(q, ¢’) in A is
equivalent to computing OptCost(r, ') in Ay where the regiom (resp.r’) of R4, is composed of the unique state
(I, -v) (resp.(U', A - V).

The next example indicates how the cost-optimal reachbpiloblem is related to a linear programming problem
(see the book [NW88] for details on linear programming).

Example 2.We consider again the weighted timed automaton of Fig. 2. Ménéerested in runs frog to I5.6 There
are mainly two families of such runs, the runs going throligland the runs going throudh. The first family can be
described by the following parameterized fun

pi(ti,t2) = (1o,0,0) b, (lo,t1,t1) — (11,0,1) L (Li, ta, t1 +t2) — (I3, t2, t1 + t2).

The parameters, ¢o represent the time elapsed at locatign$, respectively. They are constrained by the next linear
inequalities

Ogtlgl,tQEOandtl—l-tQ:Z (1)

The cost of the parameterized run(t1, t2) is given byt; + 3 - t5. Therefore to find the infimum cost with respect to
the first family of runs reduces in computing the infimum vatdi¢he functiont; + 3 - t5 under the constraints (1).
This is a linear programming problem for which it is knowntttiee optimal solution is given by one of the vertices of
the polyhedron defined by (1), here the pdintl) leading to the infimum cost. On Fig. 4, the bold line represents
this polyhedron, and the dashed line represents the situatian optimal cost; + 3 - to = 4. Note that the optimum
cost4 is a minimum cost since it is realized by the rui{ty, t2) with ¢1 =t = 1.

Similarly the second family of runs is described by the failog parameterized run

pQ(tlv t2) = (107 Oa O) 2) (107 tlv tl) - (127 tlv O) 2) (127 tl + t27 tQ) - (137 tl + t27 t2)
In this case, parameters to are constrained by the linear inequalities
0<t; <2ty >1andt; +ty > 3. (2)

The cost with respect to,(¢1, t2) is given byt; + 2 - ¢2. on Fig. 5, the shaded zone represents the polyhedron defined
by (2), and the dashed line represents the situation of firaum costt; + 2 - to = 4. This infimum cost is not a

5 In this example, we work with locations, instead of regioasralicated in Definition 7.

" We can suppose that this run is canonical by Remark 3 andttisanitialized by Remark 8. Moreover we can assume that this
run ends with a switch-transition since we consider the infintost to reacly. We also notice the form of the clock values as
described in Remark 4.



to t2

Fig. 4. Optimizing the cost op1 (t1,t2) Fig. 5. Optimizing the cost op2 (1, t2)

minimum cost since no run realizes it. Indeed the valigachieved at the verté2, 1) of the polyhedron, a point that
does not belong to it.

Therefore in this simple example, the infimum cost of reaghdatationi; from location/; is equal to4, and it
is realizable. This value has been obtained by solving atipeogramming problem for the two parameterized runs
pP1 (tl, tQ) andpQ(tl, t2).

In order to solve the cost-optimal reachability problem, fiwst study an easier problem: tleest-optimal path
reachability problemlt is related to a given path in the region graRh of a weighted timed automato#. We define
this simpler problem in Section 3.1 below. We show in SecBdhthat solving the cost-optimal path reachability
problem reduces in solving a linear programming problensdations 3.3 and 3.4, we investigate further the approach
by linear programming. The obtained results will be a firaspsbward the solution of Problem 1 given in Sect. 4.

3.1 Cost-optimal path reachability problem

Definition 8. Let A be a weighted timed automaton. Given a canonical initidipathpr in R 4, the optimal cost
OptCost(pr) associated withyr is the infimum of the costq p) among the rung of T4 such thafp] = pr.
Moreover, we say thaptCost(pr) is realizablef there exists such a rupsuch thatC(p) = OptCost(pr).

Remark 10.In the previous definition, we can suppose thatis canonical and initialized due to Remarks 3 and 8.

Problem 2. (Cost-optimal path reachability proble@iven.A a weighted timed automaton, apg a canonical ini-
tialized path inR 4, compute the optimal co§iptCost(pr) associated withy .

Remark 11.We notice that givemr a path ofR 4, we haveC;(p) = Cs(p’) wheneverp] = [p'] = pr. Hence the
cost-optimal path reachability problem reduces in conmutire optimal duration cos};.

3.2 Alinear programming problem

In this section we show that solving Problem 2 reduces inisgla linear programming problem. This idea was already
illustrated in Example 2. Before we formalize this idea, veefgrther with this example.

Example 3.We come back to the weighted timed automaton of Fig. 2 andjitévalence relatior: given on Fig. 3.
We consider the following pathr in R4

PR=TH—T1 —T] — T2 — T
with the regions

/
0=
71 (lo, 0< 1 = X9 < 1),
7”/1 = (11,1'1 =0,0< 22 < 1)7
2 = (
5= (

T l1,1<.1'1<2,$2:2)7
T l3,1<1‘1<2,$2:2).

8



Each rurp of T4 such thafp] = pr can be parameterized as

t t
p(t1,t2) = (10,0,0) = (lo, t1,t1) — (11,0,t1) = (l1,ta,t1 +t2) — (I3, ta, t1 +t2)
with the two parameters, t> constrained by the next linear inequalities
0<t; <1,1<ty<2andt; +ts = 2. 3)

These constraints are obtained as follows. We have [(ly, t1,¢1)] justifying the firstinequality, angh = [(I1, t2, t1+
to)] justifying the second and third inequalities.

In the same way it has been done in Example 2, we comPpt€ost(pr) as equal tal. Indeed, it is equal to
the infimum value of the cost(p(t1,t2)) = t1 + 3 - t2 under the constraints (3). This optimal cost is not realzab
However it can be approximated byl — ¢, 1 + ) with £ > 0 arbitrarily small.

We now generalize arguments of Example 3 to any canonidlipiathpr of Definition 8. We suppose that it
has the following form with the last edge being a switch-édge

PR=TH—T1 =T —Ta = Ty — 70 4)

In this path, each region, (resp.r},) is bounded since the timed automata studied in this papeswgposed to be
bounded (see Remark 2).

We recall the basic fact [AD94] that each regioof .4 can be described by a location and a finite set of linear
constraints of the form

Ty —xj~cC O x;~cC (5)

wherez;, z; are clockse € Z and~ € {<, <,=, >, >}. We denote this set of linear constraintsify, ..., z,,).
All runs p of T4 such thafp] = pr can be parameterized as

t t t’VYL m
p(t17t27"'7tm)ZQ6_1’QIE’Qi_%Q23>"'_>Q7n€_’Q;n (6)
where
— the first state is of the forng, = (I1,0) such that|, = [(/1,0)],
— each other state can be written@s= (I, 2*) = (I, 2%, 2%, ..., 2%) (resp.qj, = (Ix+1,2'%)) such that each
clockz! (resp.z’*) depends on the parameteysts, . . . , t.

For statey;, this dependencel = z¥ (1, ..., ) is given in Remark 4:

Tty o te) = tha g+ oo+ o1 g (7)
with 0 < h < k such thaty, % q;, is the last transition 0p(¢1, . . . , t,,) where the clock:; has been reset. For state
q5., With e, = (g, gk, Ya, le+1), we have

x;k(tl,...,tk)ZOif .”L'?EY/C (8)
= z¥ otherwise.
Since[p(t1,...,tm)] = pr, we haver, = [gx] forall k € {1,...,m}, this shows that the parameters. .., ¢,
are constrained by the following set of inequalities
Constr(pr) = U ri(ty ... tk) 9)
ke{1,...,m}

ri(ty, ... ty) = Tk(l']f(tl, cey ), ,xﬁ(tl, oo tr)).
Therefore for all rung of T4 such thafp] = pr, we can writep = p(71, ..., 7,) suchthatr, ..., 7,) € (RT)™
satisfy the constraints @onstr(pr).

8 The case where the last edge is a time-edge can be treatéatfsimill the results of Sect. 3.2 remain valid.



Example 4.Let us illustrate the previous notation on the pathof Example 3. The sefonstr(pr) is composed of
the following linear constraints

— regionry 1 0 < t; < 1,
—regionry ;1 <to < 2,t1 + 1t = 2.

They have been obtained as follows. Frem= (Ip,0 < ;1 = z2 < 1) with the two clocks equal te;, we obtain the
first constrainD < ¢; < 1. Fromry = (I1,1 < 21 < 2,22 = 2) with the two clocksey, zo respectively equal to,
andt; + t, we obtain the second and third constraints t; < 2 andt; + t; = 2.

We now define the two following subsets @*)™:

Alpr) = {(71.-. ) € @)™ | [p(71... ... 7m)] = i}
B(pr) ={(11,--,7m) € ®R")™ [ (11,...,7m) = Constr(pr)}.

This allows us to formulate the next lemma.
Lemma 1. A(pr) = B(pr).

Proof. From above we have (pr) C B(pr). For the other inclusion, considér,, ..., 7,,) = Constr(pr), we have
to prove thap = p(m1,..., 7 ) is a run ofT 4 satisfying[p(71, ..., 7m)] = pr. The proof is by induction o& with
ke{0,...,m}.

Fork = 0, we haveg) = (I1,v"°) = (11,0) and|g)] = ). For correctly starting the induction, we also need a
fictitious stateyy = (lo, %) = (Io,0) and a fictitious edgey = (Io, go, Yo, [1) With g = true andYy = X.

Consider the case > 0. Lete,_; be the edg€l;—1, gr—1, Yi—1, k).

By induction, we can suppose that , = (I, 7’*~1) with v/~ satisfying (8) and (7), that is

vF=1=0  ifthe clockz; belongs taY;_;
=v¥~! otherwise
where
k—1
v, T =Thl + The2 + o+ TR

€n

with 0 < h < k — 1 such thatg, = ¢}, is the last transition op where the clockz; has been reset. Moreover,
[Gh—1] =71

Let us now study the form of the statgsandg;,.

By definition of a time-transition, we havg = (I, v*) with

Tk |f V,L{kil == O

Thil + Thea + -+ -+ Tk—1 + 71 Otherwise.

k
v;

This shows that* satisfies (7). By hypothesis,, . . . , 7, satisfy the subset of constraimigt,, . . ., tz) of Constr(pg).
It follows that the transition;, ™% g1, is a time-transition of 4 such thafgx] = 7.
Letey, be the edgély, gi, Y, lk+1). By definition of a switch-transition, we hayg = (Ix+1, v'F) with

vk =0 ifthe clockx; belongs toY;
=vF otherwise.

Then we have a switch-transitian <% ¢}, such thafg}] = r} andv’* satisfies (8). This ends the case> 0 of the
induction. O

In Remark 11, we notice that solving the cost-optimal pa#tthability problem reduces in computing the optimal

duration cost;. Looking at the parameterized ry(¢y, . . ., t,,,) (see (6)), its duration cost is equal to
Calp(tr, - tm)) = Y Clx) -t (10)
ke{l,....m}



Thus by Lemma 1, the optimal cd3ptCost(pr) can be obtained by computing the infimum valu€gip(t1, . . . , tm))
under the set of constrainf®nstr(pr).
The setConstr(pr) defines ann-dimensionapolyhedronPol(pr) equal to

Pol(pr) = {(11, .., Tm) € (RT)™ | (71, ..., 7m) = Constr(pr)} (12)

Notice that this polyhedron is bounded since the set of caimss Constr(pr) is constructed from bounded regions.

We also define thelosureof the polyhedrorPol(pr), denoted byPol(pr). This polyhedron is obtained by con-
sidering the se€onstr(pr) where each constraint (see (5)) of the fatin— z; < corz; < c (resp.z; —z; > ¢
orz; > c)isreplaced by, — z; < corax; < c(resp.x; — x; > corz; > c).° Looking at (7), we notice that the
constraints ofonstr(pr) have the form

tit+tiy1+---+tj-1+t;~c

withi,5 € {1,...,m}, ¢ € Zand~€ {<,<,=,>, >}. It follows thatPol(pr) can be defined by constraints of the
form

M -t <d, t>0 (12)
whereM is a (p x m) matrix with integer coefficients (for som#, ¢ is the column vectofty, . . ., t,,) such that;, > 0
foralli € {1,...,m}, andd is a column vector op integer constants.

As the duration cost is a linear function with integer coédfits (see (10)), the optimum value®f{ p(t1, ..., tm))
is obtained at one of the vertices of the polyhedPof(pr). Due to the form of (12), this can be computed by the
Simplex Methogda well-known method in linear programming (see [NW88])tHis way, we have shown how to solve
Problem 2.

Corollary 1. Problem 2 is decidable.

Notice that this problem is in RWE (in p andm). We recall thatn is the length ofpr andp is related to the number
of constraints ofConstr(pr) defined in (9).
With the linear programming approach, we can also deciddtvenéhe optimal cofDptCost(pr) is realizable.

Corollary 2. Itis decidable whether the optimal cd3ptCost(pr) is realizable.

Proof. Suppose that the minimum value@f(p(r1, ..., 7»)) computed by the Simplex Method is equabtdRecall

the form ofCy(p(71, ..., 7)) givenin (10). TherOptCost(pr) is realizable if and only if the intersection between
{(r, s mm) € ®D)™ ] > C(lk) - 7% = b}
ke{1,....m}
andPol(pr) is non empty. O

Remark 12.1t is important to note that Corollary 1 remains true in theecaf more general duration cost functions.
For instance, iC4(p(t1, - .. ,tn)) is @ concave function, then its minimum value is obtainednat af the vertices of
the polyhedrorPol(pr) (see [Roc70]). We recall that a functigiit) = f(¢4, ..., ) is concavef

FOE+ @ =Nt) ZAf(8) + (1= N f(F)

with A € [0,1]. Since every € Pol(pr) can be written ag = >, A\pvp with >~ A = 1 and thev,'s being the
vertices ofPol(pr), we have

FO =FOMvr) =D Mef(or) =D M min{f(v)} = min{f(vx)}-
k k k

This shows that the minimum value 6f(p(t1, ..., t,)) is obtained at the vertex of Pol(pr) such thatf(v;) =
ming{ f(vi)}.

Symmetrically, ifC4(p(t1, - - . , tm)) is @ convex function, then its maximum value is obtained atafrthe vertices
of Pol(pr) (see [Roc70]). A functiorf (¢) is convexf — f(t) is concave.

® This definition corresponds to the notion of closure fromttiological point of view.
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3.3 3-Block matrices

Let.4 be a weighted timed automaton, gngl be a canonical initial path i 4. In this section we investigate in more
details the form of the polyhedrd®ol(pr), and in particular its vertices. This study leads to the néseilts given in
Corollaries 4 and 5.

Coming back to the form of the matri¥/ given in (12), we observe that each row f is composed of three
blocks (possibly empty) : a first block 6fs, a second block of’'s (resp.—1's) and a third block ob’s, that is

(0,...,0,1,...,1,0,...,0)0r(0,...,0,=1,...,—1,0,...,0).

We call 3-blocka matrix of this form. This particularity of the matri¥/ will lead to very nice results. First we give
an illustration.

Example 5.Considering the pathr of Example 3 with the sefonstr(pr) being composed of the linear constraints
O<t1 <1, 1<ta<?2, t1+to=2

(see Example 4). The polyhedr8nl(pr) is defined by the following matrix system

-10 0
10 1
0 —1| (ta -1
0 1 <t2) = 2
11 2
~1-1 2

Let us show that the matri¥/ is totally unimodular.

Definition 9. [NW88] An integer matrix)/ is saidtotally unimodulaif the determinant of all its square submatrices
is equal to0, 1 or —1.

Lemma 2. Any 3-block matrix is totally unimodular.

Proof. We prove this lemma by induction on the sizef the square submatrices 8f. The computation of their
determinant is done with the cofactor method.

If I = 1 the result clearly holds. Suppose> 1 and letA € Z!*! be a submatrix of\/. We have to prove that
det(A) equal9), 1 or —1. This proof is by induction o the number of non null coefficients of the first columnAf

If k=0, thendet(A) = 0. If k£ = 1, then we obtain the desired result by the induction hypashes.

In order to treat the cage> 1, we need to introduce some notation and definition. As usealenote by4;; the
coefficient ofA located in rowZ; and columnC; of A. We consider the row$; of A such that4;; # 0,2 and we
define a total ordering on these rows as follows

Consider two rowd.;, L;» such thatd;; # 0, A;/1 # 0 respectively, and,; C L;,. We build a new matri3 from
A by replacing the row..;; by the rowL; — L; if A;; = A;1, and by the rowl;; + L; if A;; = —A;1. The other
rows are left unchanged. Sinékis again 3-blockdet(A) = det(B), andB hask — 1 non null coefficients in its first
column, we can conclude thétt(A) equald), 1 or —1 by the induction hypothesis dn O

From the next theorem and Lemma 2, we have the following ricellaries.

Theorem 2. [NW88] Consider the polyhedroft € R™ | M -t < d} with M a totally unimodular f x m) matrix
andd € ZP. Then the coordinates of its vertices are integers.

10 Recall thatM is 3-block. Thus such a row; is formed by a block ot’s (resp.—1’s) followed by a block of0’s.

12



Corollary 3. The vertices of the polyhedrétl(pr) have integer coordinates.
Corollary 4. The optimal cosOptCost(pr) is an integer.

In the next corollary, we indicate the relation between themoal costOptCost(r, ') of reaching the region’
from the region- and the optimal cosDptCost(pr) associated with a paih of the region graph (see Definitions 7
and 8).

Corollary 5. Let.A be a timed automaton and ' be two regions of? 4. Then
OptCost(r,r’") = inf{OptCost(pr) | pr = ~» 1’ pathinR 4}.
Moreover, ifOptCost(r, ') # oo, then
OptCost(r,r") = OptCost(pr)
for some pattpr = r ~ 1’ of R 4, andOptCost(r, r') is an integer.
Proof. The first part of the corollary follows from the next equality
inf{C(p) | p=q~ ¢ qerq er'}
= infinf{C(p) [ p = ¢~ ¢, [p] = pr}.

The second part is an immediate consequence of Corollary 4. O

3.4 e-Semantics

We have shown that Problem 2 is decidable : with the notati@eotion 3.2, the optimal co§tptCost(pr) can be ob-
tained by computing the infimum value of the duration €gp(t1, . . . , t.,)) under the set of constrain®nstr(pr).
By the Simplex Method, it is obtained at one of the verticethefpolyhedroriPol(pr). Moreover, these vertices have
integer coordinates by Corollary 3. All these results ssgteat when computin@ptCost(pr), only time-transitions
with a timer “arbitrarily close to an integer” have to be considered @se the end of Example 3). We thus introduce
thee-semanticsn Definition 10 and we formalize the previous suggestionémima 3.

The notion ofe-semantics of a timed automatchis similar to the semantics given in Definition 2, except that
elapser of time at a location is restricted toclose to an integer.

Definition 10. Let A = (L, X, F,T) be a timed automaton and<]0, 1] be a real number. The-transition system
T% = (Q,—°) has the same s€} as inT 4 and atransition relation

HE:U;UUi

reRT eeE
suchthafRt = {r e RT |IN e N [N — 7| < ¢}.

We distinguish two kinds of time-transitiod with 7 € Rt : either0 < N — 7 < ¢,0r0 <7 — N < e Inthe

. N~ . Nt
first case we use notatior> , and in the second case .

A finite path in thes-transition systenT’§ is called are-run; it is denoted byp*. Clearly anye-run of T can be
seen asarun dfy.

Remark 13.When the context is clear enough, we use notagien ¢’ instead ofy —¢ ¢’ for transitions ofl'§.

In the next lemma, we show that the optimal cOstCost(pr) can be approximated by the cost of some well-
chosere-run.

! The two cases are mutually exclusive by the choice ef0, 1].
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Lemma 3. Let.A be a weighted timed automaton, and be a canonical initialized path i 4. Lete €0, %]. Then
there exists an initializee-run p° in 7' such that

[p°] = pr and |OptCost(pr) — C(p°)| <e.
Proof. We use the notation of Sect. 3.2. We supposehdtas the form

pR:T6—>T1—>T/1—>’I’2"'—>Tm—>T;n
with the related parameterized run

1ty er s ta [ tm em /
pltista, . tm) =qo = q1 — @) = G2 = - 3 @ = Q.-

(see (4) and (6)). Consider the set of constraiiatsstr(pr ) and the polyhedroRol(p ) defined by them (see (9) and
(11)).

By Remark 11, we know that computing the optimal d@ptCost(pr) reduces in computing the optimal duration
costC,. By the Simplex Method and Corollary 3, this duration costhitained at one of the verticés,, ..., 7,,) € N™
of Pol(pr) with integer coordinates.

Let us show how to define the requiredun p°. Supposed = (L, X, E,Z,C) and letK = max;cy, |C()|. Let
¢’ be such that < ¢’ < e andmKe' < e. SincePol(pr) is the closure of the polyhedrd®l(pr), there exists a
point(r{,...,7,,) € Pol(pr) such thatr, — 7| < ¢’ forallk € {1,...,m}. By Lemma 1, the rup(r{, ..., 7},) of T4
satisfiegp(r, ..., 71,)] = pr. Moreover, sincey, € N, Vk, ande’ < ¢, p(11, ..., 7}, ) is ane-run. Therefore we define
p° = p(r,...,7),). Looking at Definition 6 and Remark 11, we have

:‘ S Cm- Y C(zk)f,;ngms’q.

ke{l,....m} ke{l,....m}

OptCost(pr) — C(p°)

4 Solving the cost-optimal reachability problem

In this section, we solve the cost-optimal reachabilitygpean for weighted timed automata (Problem 1) and we prove
that it is P$ACE-COMPLETE as announced in Sect. 3. This proof needs several steps é¢hvabw briefly introduce.
By Lemma 3, we have seen that to solve Problem 2 for a weighteztitautomaton, it was sufficient to consider
runs of the transition systeffi, restricted to the-semantics (wittz arbitrarily close td). This observation motivates
the introduction of the-region graph in Sect. 4.1, which is a refinement of the regi@phR 4. In Sect. 4.2, we
establish what is the correspondence between runs of-Hegnantics and paths of tkeregion graph (Lemmas 4
and 5). In Section 4.3, we introduce the notion of discreggpgr a notion similar to the-region graph, which is
independent of. We show how to augment the discrete graph with a weight fanat relation to the cost function of
A. Then, we give the counterparts of the two previous lemmésweight (Lemmas 8 and 9). All these steps lead to
Theorem 3 where it is stated that solving Problem 1 reducesrtgoute some minimum weight in the discrete graph.
The announced complexity of the cost-optimal reachaljlityplem is proved in Sect. 4.4.

4.1 e-Region graph

In this section, given a timed automatdnwe define the concept efregion graph which can be seen as a refinement
of R 4. The refinement that we propose is simpler than the one givgkLiP01].

Lete €]0, 3]. We define the-equivalence denoted* on clock valuations. This new equivalence relation refines
the equivalence relatiors given in Definition 3. We recall that for every cloak, ¢; is the largest constant such that
x; is compared with in any guard and any invariantof

Definition 11. Lete €]0, %]. Two clock valuations andv’ are e-equivalenty ~¢ v/, iff they satisfy the following
conditions?

12 with the choice of €0, 1], the last two conditions are mutually exclusive.
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- vV
—p<eiffvl <eforallie{1,...,n} withy; <g¢;
—l-e<piffl—e<pforallie{l,...,n}withy;, <c.

Fig. 6 indicates the partition induced by thequivalence for the timed automaton of Fig. 2.

€2

x1

Fig. 6. Thee-equivalencex®

The relation¢ is extended to the states ®f, as done previously with=. An equivalence class is called an
e-region Thee-region to which a state belongs is denoteld|® and the set of alt-regions is denoted bi=.

In order to define the-region graph of a timed automatoet we do not need all the-regions ofR¢ (contrarily to
the construction oR? 4). Due to Lemma 3, we only need to consider theegions|(l, v)]* whose clock values are
close enough ta-tuples of integers (the dashed zones on Fig. 6).

Definition 12. Given a timed automatad ande €]0, %], the set ofacceptable-regions, denoted®, is defined by
Se={ll,w)F|vie{l,....n}: <= (r<eorl—e <)}

Remark 14.If ¢ = [(I,v)]¢ is ane-region of S, then there exists a unique regiore R, equal to[(l, v)], such that
r¢ C r. In the sequek® always denotes astregion included in the region®®

Remark 15.Using the representation introduced in Remark 5, we caralimianc-regionr¢ as on Fig. 7 (whem
is a bounded region). We observe that the fractional partd the clock values are either less thaor greater than
1 — e. We thus introduce the following notatith

Low(r®) = {z; | v; < ¢; andy; < e};

High(r®) = {x; | vi < ¢; andl — e < 7; }.

This graphical representation of theegions is very helpful in the proofs below.

€ 1—c¢

IR

I

| 1

|

‘7

\Vig1l " Un
|

Fig. 7. Representation of theregion< 71 < -+ <7, <e<l—e<biy1 < -+ < Uy

13 Similarly if § < e, we will also use notation®, <, r with r’* C ¢ C 7.
14 Notice that the setsow(r°) andHigh(r<) are disjoint since < 1.
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Remark 16.The acceptable-regions that we propose as a refinement of the classicalnegf [AD94] are simpler
than the refinement introduced in [ALPO1]. Indeed in our cdise clock values of an acceptaklgegionr® are
arbitrarily close to one of the corners of the regionvhen in [ALPO1] the clock values are arbitrarily close teeaf
the boundaries of.

In the next example, we illustrate the interest of Definitidhfor computing the optimal co§itpCost(r, ') for
two regions-, r’ of a timed automaton.

Example 6.We consider the weighted timed automatéof Fig. 8. The cost of each location is indicated on the figure

h

leavingls
enteringls

leavingls
" enteringl;

' leavingly
enteringls

Fig. 8. A weighted timed automaton Fig.9.The runpz(e,1 — 2 - ¢,¢)

and the cost of each edge is null. The invarign 1) is assigned to each location, showing thais bounded. We
want to compute the optimal co8ptCost(r, r’) for the two regions = [({1,0)] andr’ = [(I2,1)] of R 4.

Letp; = (I1,0) ~ (I2, 1) be arun ofl 4 not going through locatiofy. Clearly it has a cost(p;) = 2.

We now consider rungs = (I1,0) ~ (l2,1) going throughls. This family of runs can be described by the
parameterized run

palti,tats) = (1, 0) 5 (I, t1) — (s, 1) 3 (I3, ty + t2)
— (I, b1 + 1) 2 (l,t +ta +t3) — (Lo, t1 + tg + t3)
wherety, to andtz are constrained by
0<ti<1,0<ty+ta <landty +t2+t3=1. (13)

The cost of the parameterized rpg(ty, t2, t3) is given by2 - 1 + t2 + 2 - t3. One can check that the infimum value
of 2-t; + t2 + 2 - t3 under the constraints (13) is equalltoand that it is obtained at the poifit , t2, t3) = (0, 1,0).
Therefore, the optimal co§iptCost(r, ') is equal tol.
We now study in more details the parameterizedgult, , t2, t3) with (¢4, t2,t3) arbitrarily close to(0, 1,0). Let
us fixe €0, %]. Given0 < 0 < ¢, therunp2(0,1 — 2 - §, ) respects the constraints given in (13). This run is depicted
on Fig. 9. Notice on this figure how it was necessary to refigerdgion(l3,0 < = < 1) into the two acceptable
e-regions(ls,0 < z < e)and(ls,1 —e < z < 1).

Given.A a timed automaton and€]0, %], we now define the-region graphR?,. It is obtained in two steps: first
we define the quotient grafify /~-, and then we restrict it to the s&t of acceptable-regions.

Definition 13. Let.4 be a timed automaton ande|0, %]. Thee-region graphRs, = (5S¢, —) is the finite subgraph of
T4/~ induced byS®. Its vertex set is equal t8°. Its edge set is composed of the edges- r'=, with =, 7' € S¢,
such that there exist two statgse r¢, ¢’ € r’¢, and a transitiong — ¢’ in T4. The edge — 7’¢ is called a
switch-edgdresp.time-edgeif ¢ — ¢’ is a switch-transition (resp. time-transition).

A path in R% is denotedps-. As for R 4, the vertices of such a path are all bounded regions (see RR&haNe
say that a paths- = r° ~» r’¢ in RS isinitialized if < is of the form[({, 0)]° such that all the clock values are null.
Let us notice that we only consider finite pathsit in this paper.
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Remark 17.In the sequel, we only work with theregions that are acceptable. Therefore, we omit the teovefat-
able”.

Remark 18.The size|S¢| is bounded byn + 1)| R|.X® Indeed a regiom of R 4 gives rise to at most + 1 different
e-regions< C r, since each sucH is specified by the way the interval, 1] is cut into the setbow(r<) andHigh(r<)
(see Fig. 7). Sinci 4 is in O(2141), it follows that| k5| is also inO(2141).

4.2 Links betweenT’ and RS,

In this section, given a timed automatehande €]0, 3], we show how the runs of thetransition systenT’5 are
linked to the paths of the-region graphi?,, and conversely (Lemmas 4 and 5).

First, it is important to notice that there are no naturaludation of R%, by T4 (Example 7) and no natural
simulation ofT’§ by R%, (Example 8).

Example 7.Let A be a timed automaton with one locatiband two clocksey, x». Let us fixe €]0, %] andd = 5.

Letr< be thes-region such thall < x2 < x1 < 1, Low(r®) = {z2} andHigh(r°) = {z1}, and letr’* be thes-region
such thal) < zo < 27 = 1, Low(r'®) = {x1, 22} andHigh(+*) = @. We clearly have< — r’¢. However given
(l,v) = (I,1 —e+ 6,6 — §) € re, itis impossible to find!, ') such thatl,v) — (I,v') and(l,v’) € r'=. This
situation is illustrated on Fig. 10.

x2

x1

Fig. 10.No natural simulation ofR% by 7%

Example 8.Let A be a timed automaton with one locatiband one clockr;. Let us fixe €]0, 3] andd = 5. We

consider the transitiofl, v) 2 (I,v") of T such thatr = ¢ — § andv’ = ¢ + 4. Clearly (I,
e-regionr® of R sincer < e. However, it is impossible to find astregions’® such that(l, »/
have neither’ < e norl — e < v/ by the choice ot andé. (See Definition 12).

v) belongs to some
) € 1’¢ because we

Although there is no natural simulation betweRf, and7'y, we are able to relate runs ®f; and paths of?®, in
a weaker way. This relation is described in the next two lesmima

We recall that the timed automata of this paper are bounasdRemark 2). Therefore, the regions anggions
considered in these lemmas are supposed to be bounded.

Lemma 4. Let.A be a timed automaton ande]0, 1]. Letpge = r§ — r{ — --- — r%, be an initialized path ink?,.
Then there exists an initializedrun p* = (Io,°) — (l1,v') — -+ — (L, v™) in T4 such that(l, v*) € r¢ for
allk €{0,...,m}.

In the statement of this lemma, the sasmeumber is used in both the patl- in R and thes-run p® in T5.

The proof proceeds by induction on the lengthpgt and therefore it requires the usesf+ 1 intermediate
er < e,k €{0,...,m}, of the forme;, = 57=. For instance, to avoid the situation of Example 7, one tgkeg
inr% (instead of-¥) to obtain a transitiortl, v) — (I,2') with (I,2') € r'¢ (see Fig. 10). The proof is technical since
several cases have to be considered, however it is not diifficcan be skipped at a first reading.

15 We recall that is the number of clocks.
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Proof (of Lemma 4)We are going to build the requiredrun p® as follows : for allk € {0,...,m}, we will insure
that(ly, v*) € ri* and the prefix

P = (lOvVO)_)(llvyl)'"H(lkvyk) (14)

is aruninT<F, with e, = s - Sincee < €, we haverf* C r§ andp®* is ane-run oijl.l6 Thus the thesis holds
with & = m.

We proceed by induction ok. Supposé: = 0. Sincepg: is initial, r§ has the forn(ly, 0)]. The unique state of
p°° is thus(ly, 0).

Let & > 0 and suppose by the induction hypothesis that we have buditta* like in (14) with the desired
conditions. Since®* is also are,..1-runinT’;***, we have to show that we can find a transition v*)— (lx+1, v**1)
in T3+ such tha(lyy1, /1) € it

To make the sequel more readable, we change the notatiofi@ssfowe denote the statéy, v*) by (I, ) and
the state(l11,v**1) by (I',/). Similarly notationr andr’ is used instead of; andr§_, respectively; notation
re+ andr’#s+! is used instead of* andri’ff respectively. We denote by(resp.r’) the region ofR 4 which contains
ek (resp.r’ek+1),

We now consider the two possible cases, switch-edge andetifge, for the edge® — ¢ in R%. In each case
we define the adequate stéte v’).

Suppose that® — r’¢ is a switch-edge. By the induction hypothesisy) € r°+. Sincer — ' is a switch-edge
in R4, there exists a switch-transitidh v/) = (I, /) in T4. Sinceey, < ;41 and(l, v) € r, this transition is also
a switch-transition iff’;*** such thafl’, ') € re++1.

We now treat the case wheré — r'¢ is a time-edge. First we suppose thats a closed region. It follows that
there exists a uniqué, v’) € ' (and a unique) such that(l, ) = (I,2') is a time-transition iril’,. Hence there
exists a clocke; whose fractional part is equal tin 7’ (i.e. 7, = 0). We are going to prove thét, v) L (1,v)is
a transition in7;*** such that(l,2’) € r’**+1. In other words we show thalV — 7| < ;41 for someN € N (see
Definition 10) and?, € [0, e,+1[U]1 — ex+1, 1[ for eachi € {1,...,n} (see Definition 12). We have to distinguish
four cases depending on the belonging:gfandz; to Low(r<#) or High(r<*).

1. If x; € Low(re*), thent = N — vy for someN € N\ {0} (this case is illustrated on Fig. 11). Thds— 7 =
vy < ek, showing thatN — 7| < 1. We distinguish two subcases.

ve o

== > B

Fig. 11. The proof at a glance whegy € Low(r®*)

(@) z; € Low(rex).
If o; > vy, thenv, = b; — y. Hence by induction hypothesis we havel 7] < ei, < ep11. If 7; < 7y, then
v, =1— (vy — ;). Hence by induction hypothesis we have ¢ <1 — ¢ < 7] < 1.

(b) z; € High(re*).
We haver; = 7; — ;. By induction hypothesis, we conclude that 41 =1 —2e, < 7 < 1.

2. If z; € High(r*), thent = N—u, forsomeN € N\{0} (this case is illustrated on Fig. 12). Thus N+1 < e,

showing that — N + 1| < ;41. We distinguish two subcases.

(@) z; € Low(rex).
We haver, = ; + (1 — ). Hencel < 7] < 2ej, = epy1.

(b) z; € High(re*).
If 7 < vy, thenv), = 0, + (1 — vp) andl —ep1 < 1 — e < 7' < 1. If o > vy, thenv] = ; — vy and
0< 171( <€k < €k41-

16 Notice that we use the notatief)*, ; as proposed in Remark 14.
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Fig. 12. The proof at a glance whery € High(r®*)

This concludes the case whefe— /¢ is a time-edge such thatis a closed regiof’

We now treat the case where — r'¢ is a time-edge such thatis an open region. We have to definand(i, v’)
such thatl,v) = (I,v) is a time-transition of ;""" and(l, ') € r’*~+1. We begin to introduce additional notation
(see Fig. 13). Among the clocks which belongd tev(r<* ), we denote by, (resp.z;) the one whose valuation has the
smallest (resp. largest) fractional part. Similarly foe tlocks ofHigh(r¢*), z. (resp.z,) is the one whose valuation
has the smallest (resp. largest) fractional part.

Ija b c Vq
Le—e F—|
re—*

Fig. 13. Additional notation

Since the region’ is supposed to be open, either there exists a closed refisach that — r” — r’ (with
possiblyr = r”’) such that’ = sucdr”), or such a closed regiorf does not exist, and then= r’.

1. If 7 exists, by using the previous case, we can find”) € r” such tha(l, v) = (I,v”) is a transition inl’}***,

|N—7| < epq1 forsomeN € N, and(l, ") € r"¢x+1, We then choose” such that” < min(eg11—7;,1—-7))

and|N — (7 + 7")| < ex41 (see Fig. 14). We defing, ') such that(l, ") T, (I,v). Witht = 7/ + 7", it
follows that(l,v) = (I,v) is a transition inl’}*** such thatl,v’) € r'sx+1.

A 7

Fig. 14.The proof at a glance for transitiof/ — r’

2. If " does not exist, then = 7’. In the case* = r'¢, we proceed with an argument similar to the one of the
previous case. Indeed it suffices to take: min(e, — 7y, 1 — 74). With N = 0, we havelN — 7| < g < €g41.
In the case* # r’¢, let us show that

Low(r®) = High(r®), andHigh(r®) = Low(r'"®) = @. (15)

The hypothesis < % will be necessary. Assume that (15) does not hold. Let ug/stuchore detail the transition
r¢ — r’¢ in the light of Definition 13. The situatiobhow(r¢) = & andHigh(r¢) # & is impossible. Therefore

Low(r¢) andHigh(r<) are both non empty. Consider a time-transitibi’) = (1, ') of T,4 such tha(l, 7) € r®
and(l, ') € r's. Sincer® # r’s, we musthavéi) v, < e, 0, +7 > 1—¢,and(ii) 7y > 1 —¢, 04+ 7 < 1 (see
Fig. 15). It follows thatl — ¢ < e 4+ 7 in case(i), andl — e + 7 < 1 in case(ii) . This is impossible because< %
Since (15) holds, we choose= 1 — ;. This case is illustrated on Fig. 16. The transiti@n) = (1,v) is

17 The hypothesis that® is ane-region is of no importance in the arguments given in thigcas
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Fig. 15. An impossible situation

thus a time-transition oTjk“. It remains to show thatl,»’) € r’¢#+1, thatis,1 — ex41 < 7, andv, < 1. We
haver, = 7, + 1 — e > 1 — e, > 1 — €11, showing the first inequality. To obtain the second one cedatiat
ﬂ&:Db+1_5k<5k+1_5k:1-

' | | | =1 =/
Va Up, ! ! ! Ve Va

| . . —

Fig. 16.The proof at a glance whdrow(r°) = High(r'®), andHigh(r®) = Low(r’®) = @

O

Lemma 5. Let A be a timed automaton. Le? = (I, °) — (l1,v') — -+ — (I,n, ™) be an initializeds-run in
T, with § €]0, 5,775]- Then, withe = (m + 1)4, there exists a paths: = 15 — 7§ — --- — 17, in R7 such that

(I, V) € r§ forall k € {0, ..., m}.

Contrary to Lemma 4 where the samerumber was used, the statement of this lemma requires tref dféerent
numberg andd. This is necessary to avoid the situation of Example 8. Agamproof of this lemma is technical, but
not difficult. It can be skipped at a first reading.

Proof (of Lemma 5)Consider the regions, = [(Ix,v*)] of Ry, for k € {0,...,m}. We are going to build the
required pathps- as follows : for allk € {0,...,m}, we have(l, v*) € ri* and the prefix

_ .Sk Ek €k
pPSek =T — Ty — s T

is a path inR%}, with e, = (k+1)8.18 Sincee, < ¢, we haver;* C rf andps-, is also a path itR%,. Thus the thesis
holds withk = m.

We proceed by induction oh If & = 0, then(ly, v°) € r5° sincer® = 0.

Letk > 0. Suppose by induction hypothesis that we have built the pathwith the desired conditions. This path

can be seen as a path}'iiif+1 sincerjk C r;’f"“ forall j € {0,...,k}. Consider the edge, — 7,11 Of R4. If we
show that(l,41,/51) € rii', thenr, ' — 7% is an edge of; "', and casé: + 1 is thus solved.

As in the proof of Lemma 4, we change the notation as follows.d&note the state$;, v*), (11, v5!) by
(I,v), (I',v") respectively, and the regioms, r;+1 by r, 7’ respectively. In a way to prove thélt, ') € r’e++1, we
treat the different types of transitigh v)— (I, /) (see Definition 10).

Suppose thatl, v)—(I’,v') is a switch-transition. Sinc@, v) € r°* by induction hypothesis and, < 41, then
(I', V') € r'ex C plehsr,

Suppose now that, v) = (I’,2') is a time-transition such thal' — 7| < § for someN € N. We have to consider
the two case§l, v) N (I,v")and(l,v) v, 1,0).

1. Suppose = N + 7/ with 0 < 7/ < §. This case is illustrated on Fig. 17. We have to prove that') € r'sx+1,
i.e.v] €[0,ep41[U]l —epq1, 1[foralli € {1,...,n}. Aclockz; belongs either thow(r;*) or to High(r*).

18 As in the proof of the previous lemma, we use the notationudised in Remark 14. On the other hand, notice4hald, %] by
the choice ob.
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Fig. 17.The proof at a glance for transitid, ) NT (@,

(@) z; € Low(r;*). Thus by induction hypothesi8,< 7, = ; + 7/ < e, + § = £j41.
(b) z; € High(r}*). Then eithew, = ; + 7’ or v, = v; + 7' — 1. In the first case, we havde— e, 11 <1 —¢; <
v; < 7, < 1. Inthe second case, we haVel 7] < § < €j41.
2. Supposethat = N — 7/ with 0 < 7/ < 4. This case is illustrated on Fig. 18. Let us show t#fat [0, ex41[U]1 —

I

‘ ‘ o ‘
= = — B =

Fig. 18.The proof at a glance for transitiqi, ) v, 1,v")

ept1,1[foralli e {1,...,n}.

(@) z; € Low(r;*). Then eithew, = v; — 7/, or v} = ; — 7’ + 1. In the first case, we have< 7 < 7; < ¢j, <
er+1. INnthe second case, we have- e, 11 <1 —¢, <7; <7} < 1.

(b) x; € High(ri*). Thereforer, = o; — 7/ andl — g1 =1 —¢,, — 0 <7, < 1.

4.3 Weighted discrete graph

In the previous subsection, we gave the relation betweestflaenantics and theregion graph of a timed automaton
A. In this section, we introduce the notion of discrete graphotion similar to the-region graph, which is indepen-
dent ofe (Definition 14). Then, we considef as a weighted timed automaton with a cost functioie show how
the discrete graph can be augmented with a weight fungtioim relation toC (Definition 15). We end the section
with an important result that indicates how the optimal éystCost(r, '), with r, 7’ being two regions oR 4, can be
computed thanks to the weighted discrete graph (Theorem 3).

In [BBLO4], Bouyer et al. propose the construction of a grapled the corner point abstraction, for studying
the optimal way of staying into a designated set of safe ionat This construction shares several ideas with the
construction proposed here for the weighted discrete graph

Let A be a timed automaton. We begin with a lemma that states thihteed-region graphsiz®, are isomorphic.
The proofis in the same vein as for Lemma 4.

Lemma 6. Let. A be a timed automaton. Then all theegion graphsik®,, with ¢ €]0, %], are isomorphic graphs.

Proof. ConsiderR’; = (S°, —) andR% = (S, —), with 6, €]0, 1] such that < e. We have to prove thak’ and
R¢, are isomorphic graphs, that is, there exists a one-to-omesmondence betweéid and.S¢ that respects the edge
relation— of each graph.

For anys-regionr® of Rj, sinced < e, there exists exactly oneregionr® of R% such thatr C .19
This establishes the one-to-one correspondence bet&eamd 5. Of course we havéow(r®) = Low(r?) and
High(r®) = Low(r?).

If r° — 7’ is an edge imkR%, then clearly there is an edgé — r’¢ in R%,. The converse is more difficult to prove.
However the proof follows arguments similar to the ones givethe proof of Lemma 4. Let us explain them, with
less detail?

19We again use the notation discussed in Remark 14
20 \We use the notation of the proof of Lemma 4. Fig. 11-16 will eépFul.
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Letr® — ¢ be an edge imk5,. It is a switch-edge or a time-edge. We have to show that tbeists an edge
r® — 1% in R%. If ¢ — 1'% is a switch-edge, it is not difficult to verify thaf — 1’ exists.

We now treat the case wheré — 1 is a time-edge. Letl,v) = (I,2') be a time-transition iff 4 such that
(I,v) € r¢ and(l, ") € r'=. We define new clock valugsfrom v as follows

)+ %Di if ; € Low(r®)
P ) 41— (£ (1 =) if 2 € High(r®)
One verifies that for each 5 5
i € [0, =[U]l — =, 1].
i € 0,101 = 5.1

’

In particular,(l, z) € r°. If we exhibit a time-transitiorl, ;) = (1, 1') in T4 with (1, /) € %, then we obtain the
required time-edge’ — 7/ of RY,.

First we suppose that is a closed region. Hence, there exists a clegksuch thatﬂ} = 0. It follows that
7= N —vywith N = v, € N. We definer’ = N — puy andy’ = p+ 7. Let us show thatl, ') € 0, ie.
[ € [0,0[U]1 — ¢, 1] for eachi. We have to distinguish four cases.

1. z; € Low(r®).
(@) z; € Low(r®).
If fi; > iy, then; = fi; — fiy. We haved < fii < § < 6. 1f i; < fiy, thenp, = 1 — (fiy — ji;). We have
1-6<1-3<p<l
(b) z; € High(r®).
We haveji; = ji; — jiy. We conclude that — 6 = 1 — 28 < i} < 1.
2. x5 € High(r®).
(a) x; € Low(r®).
We havei; = fi; + (1 — fig). Henced < fi} < 23 = 4.
(b) x; € High(r®).
If ; < fig, thenfi, = f; + (1 — fiy) andl — 6 < 1 — & < il < 1. If i; > iy, thenp} = fi; — fiy and
0< <3<
We have thus proved thét 1) kit (1, 1) is a transition inl" 4 with (1, u') € 7.
We now treat the case whertis an open region. Either there exists a closed regfosuch that — " — r’ and
r’ = sucdr”), orr’” does not exist and then= r’.
1. If " exists, by using the previous case, we can find a transftign = (1, 11”') in T4 such that(l,»") € .
We then choosey such thatr, < min(é — gy,1 — @), and we defing/’ = u + 71 + 74. It follows that

’ ’
T1+7o

(I, ) =2 (I, ') is a transition inl"4 such thatl, u') € .

2. If " does not exist, then = 7’. In the case* = r'¢, we proceed with an argument similar to the one of the

previous case with’ < min(§ — fp, 1 — 7g).
In the case® # r'¢, we show as in the proof of Lemma 4 that

Low(r®) = High(+'¢), andHigh(r®) = Low(r’¢) = &. (16)

We then choose’ = 1 — §. Let us show that, with/ = 1 + 7/, we have(l, ') € 7%, thatis,1 — § < fi’, and
g, <l.Wehavei, =f,+1—-60>1—-4,andi), =fp+1—-0 < 1.

The proof is completed. O

Due to the previous lemma, the only difference betweerethegion graphs, witlz €0, %], is the size of their
e-regions depending on We thus introduce the following graph, independently of anwhich is isomorphic to all
°,. It can be seen as the limit graph Bf, whene converges td.
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Definition 14. LetA be a timed automaton. We denotefy = (S, —) a graph isomorphic to eacRs, = (5¢, —),

with £ €]0, 3], and we call it thediscrete graplof .A. We also use the same terminology of switch-edge and tige-ed

Remark 19.In the sequel, as done in Remark 14, we use the samerléttexpress that the vertéxof S isisomorphic
to the vertex< of S¢. Moreover, we say that the edge— +/ is isomorphicto »° — »'¢, and that the path ~~ 7/ is
isomorphicto r¢ ~ r'c.

We now want to augment the discrete graph with a weight fonctirst, in the next lemma, we show that given

a time-edge® — r’¢ in thee-region graphR¢,, we can associate a unique integémhich represents, up 2, the
time elapsed betweer andr’c. We recall that botk-regionsr® andr’® are bounded (See Remark 2).

Let us notice that it is impossible to associate a uniqueganwith an edge — 1’ of the region grapt® 4 in such
a way.

Lemma 7. Let A be a timed automaton. Let — 7' be a time-edge in the-region graphRs,, withe €]0, 1]. Then
there exists a uniqu®’ € N such that for all time-transition8l, v) = (I,2') in T4 with (1,v) € ¢, (1,1') € '=:

|7 — N| < 2e.

Moreover,N is independent of.

T

Proof. Let (I,v) — (I,7) be a time-transition such thé, v) € r< and(l,v’) € r’=. We first prove that there exists
N € N such thafr — N| < 2e. We then prove that this integ@¥ is the same for all such time-transitions.

1. Existence. Assume the contrary, that|is— N| > 2¢ for all N € N. In particular forM = |7|, we have
T =M+ 7 and2e < 7’ < 1 - 2¢. Letz; be a clock. We consider two cases according.ta Low(r®) or
z; € High(r®). Let us study bounds far, = v; + 7.

(@) z; € Low(r¢). Thus we have

M+2<y+M+7=v.<e+M+(1-2)=(M+1)—e.

It follows that2e < 7; < 1 — 2¢. This contradictgl, v') € r’=.
(b) z; € High(r). It follows that

M+1)+e=Q-e)+M+2e<v;+M+4+7 =V <14+ M+ (1—-2)=(M+2)— 2.

It follows thate < 7; < 1 — 2¢ again in contradiction witlil, v") € r'=.

2. Uniqueness. We consider two time-transiti¢hs) — (1,+') and({,7) = ({,7) such tha(l, ), (I, 7) € r* and
(1,v"), (I,7") € r'*. We know that there exis¥, N € N such thaiT — N| < 2¢ and|7 — N| < 2¢. Let us show
thatN = N. ~ R

IN-N|=|(t—N)—(FT-N)+(F—-71)| <4e+|7—7|

Foralli € {1,...,n}, we havev; = v; + 7 andv, = i; + 7. Moreover we recall thafl, v), ({,7) € r* and
(1,v), (1,7") € r'*. Therefore
|7 — 7| =17 — v}) — (i —vi)| < 2e.

It follows that }
[N — N| < 6e.

By hypothesig < 1. HenceN = N.

It remains to prove thal is independent of. Lete, &’ €]0, ] and N, N’ € N be such thajr — N| < 2¢ and
|7 — N'| < 2¢'. Then
IN'—N|=|(t—=N)+ (= N')| <2e+2 < 1.

Therefore N = N'.
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Remembering the definition of the discrete grdpk (see Definition 14), the numb@f proposed in Lemma 7 for
the time-edge® — ' of R% can also be associated with the time-edge 7 of R4 isomorphic tors — 7.

We now consider4 as a weighted timed automatoh= (L, X, F,Z,C), and we explain how to assign a weight
to each edge of the discrete grah of A, in relation with the cost functiod. Lete €]0, %] and letr — 7/ be an

edge ofR 4. It is isomorphic to an edge — 1< of thee-region graphiz%,. Consider a transition
Lv) = 1,v) a7

in T4 such that(l,v) € ¢ and(’,') € r'. Itis a time-transition(l,v) = (I’,»') or a switch-transitior{/, )

{1, v).
1. Transition(l,v) = (I’,2'). In this caser — 7 is a time-edge. We associate with it a weighitr, 7') equal to
W(r, 7)) = N-C(l) (18)

whereN is the unique integer of Lemma 7.
2. Transition(l,v) % (I',v/). Thusr — 7 is a switch-edge. We associate with it a weiglitr, ') equal to

Wi, i) = C(e). (19)

Definition 15. Let .4 be a weighted timed automaton. Tiveighted discrete grapRA = (S,—,W) of Ais the
discrete graphz 4 of A augmented with the weight functidti as defined in (18) and (19).

Remark 20.We are conscious that this definition is incorrect in some particular cases. Indeed (see Remark 1),
both weights defined in (18), (19) can be assigned to the sdgme— 7’ when the transitioiil, v)—(I’, ') defined

in (17) is both a time-transition and a switch-transitidrsuch a case happens, the edge 7' must be duplicated in

a way that each of the two weights is assigned to each of thedp®s.

Remark 21.We notice that weights labeling the edgesmj are polynomials in the constants appearingdiffsee
(18) (19). Therefore, sinddrs, | is in O(214!) by Remark 18, we also hay&Y| in O(214/) .

Definition 16. Let A be a weighted timed automaton. Let 79 — 7, — 75 --- — 7, be a path inRjj{. Then the
weightW(p) of p is equal to

,_.

m—
W Tk, TkJrl
k=0

Itis an integer number.

In the next two lemmas, we relate the weight of pathsRif to the cost of runs iT’5. These lemmas are the
counterparts of Lemmas 4 and 5 with weight.

Lemma 8. Let A = (L, X, E,Z,C) be a weighted timed automaton andIét= ) ,_; |C(l)|. Letp = 7 ~ 7' be an

initialized path of lengthn in RA Lete €]0, ] Then there exist twe-regionsr<, ' of R, respectively isomorphic
tor,7/, and there exists agrrun p° = g ~ ¢’ of lengthm in T% such that

IW(p) — C(p*)| < 2eKm
andq € ¢, ¢’ € r'c.

Proof. Suppose has the formvy — 74 — --- — 7. It is isomorphic to the-run pge = r§ — r{ — --- —
ré, in R%. Sincep is initialized, r§ = [(lp,0)]° for some location,. By Lemma 4, there exists arrun p° =

(lo,0)—(l1,v*) — -+ —=(lm,v™) in T4 such that(l,,*) € r{ for all k. Looking at Definitions 6 and 16, by
Lemma 7, we verify thatW(p) — C(p®)| < 2e K'm. 0
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Lemma9. LetA= (L, X, E,Z,C) be aweighted timed automaton andtét=3",_, [C(I)|. Letp® = g ~ ¢’ be an
initialized d-run of lengthm in 79, with § €]0, 6(m+1 ] Then there exist twe-regionsr<, ' of R% such thay € r*

q € ¢, and there exists a path= 7 ~ 7/ of lengthm in Rw such that, 7’ are respectively isomorphic tﬁ,r
and
(W(p) = C(p°)| < 2eKm

with e = (m + 1)3.

Proof. Suppose thap® is of the form(ly,0) — (I1,v') — --- — (l,, ™). By Lemma 5, there exists a path
pse =r§ — 15 — -« — S in RS such thaily,v*) € r§ forall k € {0,...,m}. We consider the isomorphic path
p=1rg— 1 — -+ — Iy Of RY%. As in the proof of Lemma 8 we conclude tHav(s) — C(p?)| < 2e K'm. O

Let A be a timed automaton. Let r’ be two regions of? 4 wherer satisfies the first assumption of Remark 8,
i.e.,r is composed of a unique state of the foflyD). We are going to state an important result aboptCost(r, r’).
Before, we need to fix some notation. Thus, giver]0, %], there is exactly one-regionr¢ included inr (also
composed of the unique state0)). We denote by the vertex ofRﬁ isomorphic tor¢. On the hand, the regior
gives rise to at most + 1 differente-regions’® C 1’ (see Remark 18). We denote 8Yr”) this set ofe-regions, and
by S(r) the set of vertices ok, that are isomorphic to them.

Theorem 3. Let A be a weighted timed automaton and-’ two regions ofR 4. Then
OptCost(r, ') = inf{W(p) | I € S(+'), p = ~ i pathin RY}. (20)

Proof. We denotenf{W(p) | 3’ € S(r'), p = 7 ~» '} by InfWeight. Suppos@ptCost(r, ') = +oo, i.e. there is
norunp = ¢ ~» ¢’ of T4 such thayy € r, ¢ € +/, then there is no path = i ~ 7/ for any’ € S(r'). Otherwise, by
Lemma 8, there exists anrun p® = ¢ ~ ¢’ with ¢ € ¢ andq’ € . Thise-run can be seen as a run= ¢ ~ ¢ of
T4 with ¢ € r andq’ € /, a contradiction. StnfWeight = +oo and (20) holds in this case.

AssumeOptCost(r, r") € RU {—o0} andOptCost(r,r’) < InfWeight. By Corollary 5, it follows that there is a
pathpr = 7 ~ 7" in R4 with lengthm such thaOptCost(pr) < InfWeight. By Lemmas 3 and 9 respectively used
with £ andé chosen small enough, we can find a patk 7 ~ 7 in RA such that” € 8( ")y andW(p) < InfWeight.
This is impossible.

Assume now tha®ptCost(r,r’) € R andOptCost(r,r") > InfWeight. By definition of theinf operator, we have
OptCost(r, ") > W(p) for somep = 7 ~» 7 with 7 € S(r'). We get a contradiction using Lemma 8 witithosen
small enough.

This proves (20). O

4.4 Complexity

In this section, we prove the main result of this paper, teahe cost-optimal reachability problem is P&E-
COMPLETE (Theorem 1).

Proof (of Theorem 1)We begin with some preliminary considerations. The disacgﬁathﬁ has size in0(2M1),
and the weights labelling its edges are polynomials in thestamts appearing id (see Remark 21). In the sequel of
the proof, we consider pathisin Rjj{ with a length bounded by the number of verticeﬁﬁ, thus with a length at
most exponential in4|. These paths are calletementaryTherefore, the encoding of the cost of an elementary path
p can be done in P&\CE.

Let us now prove that the cost-optimal reachability problerim PS,ACE. By Theorem 3, computing the opti-
mal costOptCost(r, ') given two regions-, r’ of R 4, reduces in computingf{W(p) | I+ € S(r'), p = 7 ~»
7/ path inRjj{}. There are three possibilities :

— there is no path = 7 ~ # with # € S(r') in RY, and thuOptCost(r, ') = +o0;

— there is such a pathcontaining a cycle with a negative weight, and tlyg Cost(r, ') = —o0;

— there is such a path, and none of these paths contains a cycle with a negativentvdigereforeOptCost(r, r’)
is an integer equal to the minimum value{oh(p) | 3 € S(r'), p =7~ i'}.
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Let us notice that in the three previous situations, the idensd paths and cycles can be supposed to be elementary.
In the third situation, a path with a minimum valué/V(p) can also supposed to be elementary. The algorithm works
as follows.

1. Guess an elementary path= 7 ~» 7/ for somei’ € S(r'). Note that the length o is exponential in.A|, and
that each vertex QRZ{ can be stored in polynomial space. Hence one can decide irPNFESthus in P®$ACE,
whetherOptCost(r, ') is equal to+oo or not.

2. We assum@®ptCost(r, ") # +oo.

Guess a vertex, in Rjj{, and check whether there exist an elementary path fréon*, and another one frony

to some’ € S(r') (as explained in 1., this can be donePiBpace). Then guess an elementary cycle frégrto r
and compute on-the-fly its weight (as explained at the béginof the proof, the computation of this weight can
be done in P8acE). Therefore it can be decided in P& EwhetherOptCost(r, ') is equal to—oco or not.

3. We assum®ptCost(r,r’) € Z.

Guess an elementary paih= 7 ~ ' with 7/ € S(’), and compute on-the-fly its weigh? (). As explained in
2., this can be done in P&CE. Store the weightV () in variableaux If there is no elementary pafh = 7 ~ 7]
with 7 € S(r') with a weight strictly less thaaux, then it means thadptCost(r, ') is equal toaux Therefore
guess such a pathy, compute its weigh¥V(p;) on-the-fly, and compar®V(5,) with aux It follows that the
complexity of this procedure is in N-(@NP SPACE), thus in P®ACE.

The proposed algorithm is globally in P&t showing that the cost-optimal reachability problem is irPR&E.
It remains to prove that it is FcEe-hard. We do that by reduction of the reachability problemtimed automata
known to be P8AcE-complete [AD94]. Let4 be a timed automaton. We augment it with a cost fundafitimat assigns
a null cost to each location and edge4f Then, trivially, a region” is reachable from a regionif and only if the
optimal costOptCost(r, r’) is different from+oc. O

We conclude Sect. 4 with the following important remark.

Remark 22.In Remark 12, we have mentioned that Problem 2 remains daeidfathe duration cost is a concave
function (resp. convex function) and the considered optneost is an infimum (resp. supremum).

Given a weighted timed automatofy we recall that the definitions efsemanticsl’, e-region graphi?, and
discrete graphz 4 have been introduced independently of the cost fundfiarsed inA. Their definition was only
based on the crucial Corollary 3 indicating that when conmgLein optimum cost, only time-transitions with a time
arbitrarily close to an integer have to be considered.

In Definition 15, we have shown how to augment the discretglyfa, with a weight function\V in relation
with C. We have given the related Lemmas 8 and 9.

Let us consider some possible generalizations of cost arghtfenctions. In (18), given a time-transiti¢h v) —
(I’,v") in T4 and the related time-edge— 7 in R4, the duration cost of the time-transition is equal to

7-C(l), (21)
and the weight of the time-edge is equal to
N -C(l). (22)

The numberN is the unique integer of Lemma 7 satisfyihg— N| < 2. Suppose that (21) and (22) are re-
spectively replaced by(7) - C(I) and f(N) - C(I) wheref is a continuous function. It follows that we still have an
analog of Lemma 7 withf(7) — (V)| < 6 andd small enough, as well as the analog of Lemmas 8 and 9. Therefor
Theorem 3 remains true with a concave duration cost fun@iwhthe continuous functiofi mentioned abové! If
additionally these functions are computable, we get a gdization of Theorem 1.

2! For instance withf = In andCa(p(t1, - -,tm)) = >ie 1. my CUlk) - In(tr) (se€ (10)).

,,,,,
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5 Assumptions

Till this section, the whole paper has been written under assumptions concerning Problem 1 (see Remark 8) :
First, the region given in Problem 1 is composed of a unique state of the f@rf). Second, the infimum cost is only
considered. On the other hand, we have supposed in Remaak th¢htimed automata of this paper are diagonal-free
and bounded. We show in this section that all these assungpten be discarded.

5.1 Supremum cost

Let us go through the paper and indicate the modificationgtddne when the supremum cost is considered instead
of the infimum cost.

In Definition 7, the optimal cogDptCost(r, r’) is the supremum of the costs of the ryns- ¢ ~ ¢’ of T4 such
thatq € r andq’ € »'. Itis equal to—oco when there is no such ryn Otherwise it belongs t& U {4o0c}. Similarly,
in Definition 8, the optimal cosDptCost(pr) is the supremum of the cosf§p) among the rung of T4 such that
[o] = pr-

The proof of Corollary 1 stating that Problem 2 is decidablihe same. Indeed the Simplex Method acts similarly
when a supremum or an infimum value has to be computed. Heupitemum value of;(p(t1, ..., t,)) is also
obtained at one of the vertices of the polyhedPaipr). Therefore Corollaries 4 and 5 also hold for the supremum
costsOptCost(pr) andOptCost(r, r').22

In the case of a supremum cost, Theorem 3 states that

OptCost(r, ') = sup{W(p) | I € S(r'), p =i ~ 7' path inRY}.

The proof has to be adapted since ¢he operator is considered. This can be done easily.
The proof of Theorem 1 essentially remains the same. It mastiphtly adapted to deal with theip operator
instead of thénf operator.

5.2 Anyregionr

In Definition 7, the optimal cosOptCost(r,r’) is defined for any regions, ' of R 4. Along the paper, we have
assumed that is composed of a unique state of the foflyD). We now indicate the modifications to be done when
is anyregion. We here come back to the infimum cost.

We first consider Sect. 3.2 dedicated to the solution of k2. The approach is similar : Giver, = r ~~
r’ a path inR 4, we construct a set of constrain@enstr(pr) that define a polyhedroPRol(pr). The optimal cost
OptCost(r, ') is then computed thanks to one of the verticeBafpr).

Let us go into details. We use the same notation as in Sect®bih8t us writepg as in (4)

PR=TH —T1 =T —=To =Ty — 70

The runsp of T4 such thafp] = pr can be parameterized as done in (6), with the differencettledirst region-, is
not equal tJ(l;, 0)]. Instead of (6), we write

gt er g lni2 ez lngm em /
p(t17t27"'atﬂ+m)_QO — q1—q — q2— " — qm — 4y

such that

— the statey|, depends on the parameterst,, . . ., t,,
— each state;, (resp.¢;) depends on the parametersts, . .., th4x, fork € {1,...,m}.

22 Of course, thenf operator has to be replaced by tha operator in Corollary 5.
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Let us study the form of}, = (11, 272, 2%, ..., z!9) € r{. Without loss of generality we can suppose that the ordering
of the clocks is as follows
0<al <aff <o <all | <al,

n—1 =
We define the: parameters,, . .., t,, such that
P Lt j=0 (23)
TPy — 2 otherwise

forj € {0,...,n—1}. These parameters are represented on Fig. 19. With thistaefinve haver’” = 2/0(t1, ..., t,),

tn tn—1 th—2 to ty

I | | | | | l -
10 10 70 cee /0 10 10
0 Ty T2 T3 Tp—2 Tpn—-1 Tn

Fig. 19.The parameters, . . . , tx.

fori € {1,...,n}, equal to the sum
Igo(tlv'-'atn) =tlp—it1+ - Fitp_1+1ty (24)

which expresses a dependence on the parantgters, ¢, like in (7).

Concerning the other states = (I, ") (resp.qj, = (l+1,2'%)), with k € {1,...,m}, we also have a de-
pendence on the parameters like in (7). The clock&, ..., .1 %) and:c’f(tl, ..., tntk) are either null or of the
form

thi1 +thro + - Filnpr—1 +tntk (25)

withn < h <n + k.
Therefore, as done in (9), we have to consider the set of intt

Constr(pr) = r4(t1, -, ta) U | rmelti, o tusn) (26)
ke{l,....m}

With the following subsets ofR*+)"+™

A(pR) = {(7_17 SRR Tn-l-m) € (R+)n+m | [p(Tlv s 7Tn+m)] = pR}7
B(pr) = {(m1, ..., Tnam) € RT)" ™ | (11,...,7nsm) = Constr(pr)}.

we have the analog of Lemma 1, i.e.
A(pr) = B(pr).
The proof of this lemma is similar, except that the base cégieednduction has to be adapted to the regifnThis
is easily done by using the additional constraif§{g, . . ., t,,) appearing in (26).
Therefore, as done in Sect. 3.2, the optimal @stCost(pr) can be obtained by computing the infimum value of
the duration cos€4(p(t1, .. ., tn1m)) Under the set of constraint®nstr(pr). This infimum value is obtained at one
of the vertices of the polyhedrdtol(pr) which is the closure of the polyhedr®al(pr) equal to

Pol(pr) = {(T1,- -+, Tntm) € R ™ | (11, ..., Tuim) = Constr(pgr)}.

This can be computed by the Simplex Method. It follows thaiRem 2 is decidable (Corollary 1) and that it is
decidable whethedptCost(pr) is realizable (Corollary 2).

Let us now go through Sect. 3.3. All the results of this sectice similar because we have equations (24) and (25)
like in (7) that express each clock as a sum of consective

In particular, since the vertices of the polyhediRsi(pr) have integer coordinates, a run= p(71, ..., Tntm)
with a costC(p) arbitrarily close taOptCost(pr) has its first state(, € r(, with its clock values arbitrarily close to an
integer (see (23)).

In Sect. 3.4, due to the previous discussion, the statenfiéeinoma 3 is modified as follows.
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Lemma 3. Let.A be a weighted timed automaton, apg = r ~ r’ be a canonical path i 4. Lete €]0, 1]. Then
there exists a@-run p* = ¢ ~» ¢’ in T4 such thafp®] = pg,

[OptCost(pr) — C(p°)| < ¢
andq € rc.

The only modification appears at the end of the lemma, withr<. The proof remains the same.
We now go to Sect. 4. We have to pay attention to Lemmas 4, 5] 8 aand to Theorems 3 and 1. We indicate the
modified statements.

Lemma 4. Let A be a timed automaton ande|0, ). Letps: = r§ — r{ — --- — 5, be a path ink%. Then there
exists are-run p° = (lo, %) — (I1,v') — -+ — (I, v™) in TS such that(ly, v*) € r{ forall k € {0,...,m}.

The proof of this lemma is the same except for case 0. Instead of defining the first staté,, v°) = (lo,0), we

choose it such thaty, 1°) € r5° with eg = 5.

Lemma 5. Let A be a timed automaton. Lef = (lo,°) — (I1,v!) — -+ — (I, ™) be ad-run in T9, such

that§ €0, g777gy) and (lo, %) € r{ for somed-region+§ of RY. Then, withe = (m + 1)d, there exists a path

pse =15 —1{ — - — 1S in Rg such that(ly, v*) € r{ forall k € {0,...,m}.
The proof of this lemma is the same except for case 0. By hypothesis, we havgo, 1°) € r§ = r5°.

Lemma8. Let A = (L, X, E,Z,C) be a weighted timed automaton and Iét= } _,_, |C(l)|. Letp = 7 ~ 7' be a

path of lengthm in Rﬁ. Lete €]0, %]. Then there exist twe-regionsr<, r’* of R%, respectively isomorphic to, 7,
and there exists agrrun p° = ¢ ~~ ¢’ of lengthm in T3 such that

IW(p) = C(p°)| < 2eKm
andq € ¢, ¢’ € r'c.
The proofis unchanged.

Lemma9. LetA = (L, X, E,Z,C) be a weighted timed automaton andét= 3", |C(])|. Letp® = ¢ ~» ¢’ be a
g-run of lengthm in T, such tha €0, gry] and (lo, °) € r{ for somed-regionr§ of RY. Then there exist two

e-regionsr=, r’e of R5 such thaty € ¢, ¢’ € %, and there exists a path = 7 ~» 7 of lengthm in Rﬁ such that
7,7/ are respectively isomorphic to, r'¢ and

IW(p) = C(p°)| < 2eKm
withe = (m + 1)4.
The proofis unchanged.
Concerning Theorem 3, the modifications come from the fatttls any region. Instead of having a unique vertex

7 associated te, we now have to consider all the vertices S(r). The statement of the theorem is thus as follows,
with a similar proof.

Theorem 3. Let A be a weighted timed automaton and-’ two regions ofR 4. Then
OptCost(r, ') = inf{W(p) | I € S(r), 3 € S('), p =7 ~ ' pathinRY}.

Finally, the proof of Theorem 1 is similar, except that thgogithm has to deal with paths= 7 ~~ 7' such that
7 € S(r)andr’ € S(r').
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5.3 Any timed automaton

In this paper, we have restricted our study to bounded angodil-free timed automata. These restrictions al-
ready appear in [BBL0O4,LRO05]. Indeed, it is well known th@&gbnal constraints can be removed from timed au-
tomata [BDGP98] (while preserving strong bisimilarityhdawe here shortly explain how to transform a diagonal-free
timed automaton into a bounded one. This construction iskéofe result. We recall it here since we could not find it
in any paper of the literature.

Let A = (L, X, E,Z(,C)) be a (weighted) diagonal-free timed automaton. Lete an integer strictly greater
than all constants appearing in guardsfofThen we construct the following automatdh = (L', X, E',Z7'(,C")) :

— the setl’ of locations isL x 2%
— the setE”’ of edges is
o (1,2),92,Y,(I',Z")if (I,9,Y,l’) is an edge 0f4, andg is the guard obtained by replacing every- ¢
with z € Z by either true or false, depending en: if ~ is > or >, then it is replaced by true, otherwise it is
replaced by false. The sét is equal toZ \ Y’
e (I,2),x =M, {z},(l,ZU{z})) for every location(l, Z)
— theinvariantZ’ is such thatZ’(l, Z) = Z(I) A \yex * < M
— The cost functio’ is naturally defined b{’((1, Z2), 9z, Y, (I, Z")) = C(l, 9, Y, '), C'((I, Z),x = M, {z}, (I, ZU
{z}))=0,andC'(l,Z) = C(l).

Intuitively, a location(l, Z) represents the locatidnwhere all clocks inZ are inactive i(e. they should be strictly
above the greatest constant4fthe truth value of every guard of is thus known).

The automatord’ is clearly bounded (by/). It is easy to check that every runof T4 has a corresponding run
o’ in T 4/, andvice-versaMoreover these two runs have exactly the same costs. Thouting the optimal cost in
A can be reduced to computing the optimal costlin

However, the two constructions needed to restrict to bodidikgonal-free timed automata induce an exponential
blowup in the number of locations of the timed automaton. recisely, the number of locations of the resulting
automaton igL| - 2/P2el . 21X where|Diag| is the number of diagonal guards in the original automatdrgreas the
number of edges becom&s| - 2/Pi2el . 2I1X1 (|| . 2/Diael . 21X1) .| X|. Nevertheless, the size of the region graph
of the resulting automaton remains exponential, becaugenntial factors are multiplied (see Remark 6). All our
complexity computations thus remain correct and computiegptimal cost also remains P&E-COMPLETE

6 Application to optimal reachability in timed games

In this section, we propose an application of Theorem 1 irctrgext of optimal reachability timed games. Contrarily
to the other sections, the presentation is quite infornmal,the insight is given through an example. Optimal reacha-
bility timed games have been first introduced in [LMMO02] andlfier studied in [ABM04,BCFL04,BBRO05]. We refer
to [BBRO5] for precise definitions.

A weighted timed gamgél is a weighted timed automaton with a distinguished set ofhmig locations, and
where the set of edges is split into controllable edges guldyy thecontroller) and uncontrollable edges (played by
the environment We assume a classical definitiongifategy and the aim of a game is, for the controller, from the
state(lp, 0), to reach a winning location and to minimize the cost of theyp] whatever does the environment. To
illustrate these notions, we better give an example.

Example 9.[BCFL04] We consider the weighted timed gamde; of Fig. 20. Dashed (resp. plain) arrows are for
uncontrollable (resp. controllable) edges. The only wiigribcation is 4. When the cost is non null, it is indicated on
the edge/location.

Let us consider plays of the game starting fr@m 0). If the environment chooses the edge from locafipto
locationls, then the accumulated cost along the gani& is 10(2 — t) + 1 wheret is the elapse of time at location
lp. If it chooses the edge froi to I3 is, the accumulated cost is theh+ (2 — ¢) + 7. The optimal cost the controller
can ensure is thus

1
%Egmax(5t+10(2—t)+1,5t+ 2-t)+7) =14+ 3’
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and the optimal elapse of time is then- %. The optimal strategy for the controller is thus to wait iodtioni, until
T = %, and then enter locatiohh. Then, the environment chooses to go eithektor to I3, and finally as soon as
x = 2, the controller goes tty,.

y=0_1 10
r <2

.. &
I YIA

ot
<
=)
<
I
o
<
|
D /
8 8
! o
[} nNo

I3
1
r <2

Fig. 20. A weighted timed automaton inspired from [BCFL04]

This example indicates that the region partitioning of [MD& not sufficient for solving optimal weighted timed
games. Restricted decidability results have however bbtrireed in [ABM04,BCFL04]. But the general problem has
been recently proved undecidable [BBRO5]. Thus optimakstiies cannot in general be computed.

However as an application of Theorem 1, given a weighteddigeeneA; and a strategy, we can compute the
infimum (resp. supremum) cost obtained when consideringugians of. 4 played according to\. This allows to
compare two given strategies on a weighted timed game. Aalatriterion to prefer a strategy to another one could
be to choose the strategy with lower supremum cost. Letusstiite how it works on the garé; of Example 9.

When looking at Fig. 20, one can easily be convinced thatadegfy onA only consists in choosing the elapse
of time ¢ at locationly. The possible values farare in the interval0, 2]. Hence there are three natural strategies
to consider:\; which imposes to stay time units in location, wherei = 0, 1,2. Considering the executions of
Ag played according ta,; is equivalent to consider the executions of the weighteédimutomatom; depicted on
Fig. 21. Let us notice that the weighted timed automadgimas not to be considered as a timed game anymore.

Following Theorem 1 one can compute the infimum do&ost (resp. supremum coSupCost) among the runs
p reaching locatior, from (o, 0). The different cases are illustrated on Fig. 22. The resutiss follows.

— On Ay, InfCost = 9 andSupCost = 21,
— On Ay, InfCost = 13 andSupCost = 16,
— On As, InfCost = 11 andSupCost = 17

Thus if the criterion to prefer a strategy to another one ésltivest supremum cost, stratefjyis here the prefered
one.

21—
_ la :
y=0 110 Nz=2 17 E
. z<2 1 16 . "
lo TSt ly ly 13 e
5 =0 -7 h
Y P
y=0 \ / -
y=0 ls z =2 95~ 1 2
1 time
z <2 Fig. 22.InfCost andSupCost for the strategies,
Fig. 21. The weighted timed automatod; 1=0,1,2
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Let us now briefly explain how we can use Theorem 1 in genemaider to compare strategies. Given a weighted
timed gameA¢ and a strategy, the first step is to compute the weighted timed automatorchwigsults from the
weighted timed game constrained by the strategy. Let us/athis automaton. The first question we have to ask is
the following.“Is there an infinite run ofA, that always avoids the winning locations.?f the answer ig/es the
strategy\ has to be rejected, since it does not ensure reaching a witogation. Otherwise, if the answerris, we
directly apply Theorem 1 to the weighted timed automatbn This leads to an upper bousdpCost and a lower
boundLowCost on the cost obtained by the executions&f played according ta. Therefore different strategies
for a weighted timed gamé can be compared by referring to these valtigsCost andInfCost.

7 Conclusion

In this paper, we have settled the exact complexity of the-apsmal reachability problem: itis FBCE-COMPLETE.
This result closes a gap left open by previous works wherg anlExPTIME algorithm was proposed to solve the
problem [ALPO1].

To establish our result, we have first studied the structfitbeproblem and shown that a simplier version of
the problem, the cost-optimal path reachability problesmaturally related to a linear programming problem such
that the associated polyhedron has vertices with integerdamates. As a direct consequence, optimal runs using
time-transitions with a time arbitrarily closed to an integer always exist. Using thisgarty, a finite discrete graph
called the weighted discrete graph, which refines the daksiggion graph, can be constructed. A formal relation
between optimal paths in the discrete weighted graph anchaptuns in the weighted timed automaton is established.
The construction that we propose is simple and can be expluadeterministically to obtain an optimal P&E
algorithm.

Furthermore, we have shown that our construction extendsot@ general settings: negative costs, cost-optimal
reachability with respect to the supremum, concave or caneest functions. Finally, computing optimal costs have
interesting applications in the design of controllers.
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