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Abstract. We present a procedure for constructing sound finite-state discrete ab-
stractions of hybrid systems. This procedure uses ideas from predicate abstraction to
abstract the discrete dynamics and qualitative reasoning to abstract the continuous
dynamics of the hybrid system. It relies on the ability to decide satisfiability of
quantifier-free formulas in some theory rich enough to encode the hybrid system. We
characterize the sets of predicates that can be used to create high quality abstrac-
tions and we present new approaches to discover such useful sets of predicates. Under
certain assumptions, the abstraction procedure can be applied compositionally to
abstract a hybrid system described as a composition of two hybrid automata. We
show that the constructed abstractions are always sound, but are relatively complete
only under certain assumptions.
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1. Introduction

Hybrid systems describe a wide class of systems that exhibit both
discrete and continuous behaviors. The most natural examples of hy-
brid systems are obtained when a digital system is embedded in an
analog environment. Several such systems operate in safety-critical do-
mains, for example, inside automobiles, aircrafts, and chemical plants.
Developing effective analysis techniques for hybrid systems will expe-
dite the design process of embedded software while maintaining safety
guarantees.

Hybrid automata [2, 35] provide a formalism for modeling hybrid
systems by combining the discrete transition system formalism with
continuous dynamical systems. The development of tools for analysis
of hybrid automata is not an easy task. It has been shown that checking
reachability for very simple class of hybrid systems is undecidable [24].
Several decidable classes have been identified, see [5] for a survey, but
very often these classes are too weak to represent hybrid system models
that arise in practical applications.
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Abstraction is a technique to reduce the complexity of a system
design, while preserving some of its relevant behavior, so that the sim-
plified system is more accessible to analysis tools and is still sufficient
to establish certain safety properties. A powerful abstraction technique,
called predicate abstraction [16], has been successfully used for analyz-
ing discrete transition systems. In Section 3 of this paper, we present an
abstraction methodology for hybrid systems. The abstraction mapping
is defined in terms of a finite set of predicates over the continuous
variables. The discrete transitions of the hybrid systems are abstracted
using the standard predicate abstraction approach. The continuous be-
havior is, however, abstracted using qualitative reasoning [44, 30, 45].
In Section 2 the formal definition of a discrete abstraction of a hybrid
system is given using a simulation relation between the hybrid sys-
tem and a certain discretization of the hybrid system. The abstraction
algorithm is proved correct in Section 3.

It is well known that the quality of the abstract system depends
crucially on the choice of the abstraction predicates. The same is true in
our case. We present a characterization for what constitutes a “good”
set of predicates. Thereafter, we describe a collection of methods in
Section 4 for discovering and generating such predicates by closely
analyzing the continuous dynamics of the hybrid system. When the
dynamics is linear (Ẋ = AX), the eigenstructure of the matrix A
plays a crucial role in defining these predicates (Section 4.2). When
the dynamics is nonlinear, things are not so structured and we have to
search for these predicates (Section 4.3).

The process of construction of the abstract system requires logical
reasoning in some appropriate theory of the reals. The theory should
be rich enough to express the hybrid system being abstracted. In our
description of the procedure, we will leave the choice of theory open.
But a canonical example is the first-order theory of real closed fields
(over the signature 〈+,−, ∗, >,=〉), which is known to be decidable [47]
and to admit some practical algorithms [11, 32, 29, 26]. The theorem
proving issues and challenges are discussed in Section 6.

If a hybrid system is described as a composition of two hybrid
automata, then, under certain conditions, we can abstract it by inde-
pendently abstracting the two hybrid automata using our abstraction
algorithm and composing the abstract transition systems. We precisely
define the conditions and prove the correctness of the compositional
abstraction algorithm in Section 7. The qualitative approach for ab-
stracting continuous dynamics may appear weak, but if the set of
predicates is saturated under the Lie derivative computation (as de-
scribed in Section 4.1), then we can prove that the abstraction produced
by our method is relatively complete (Section 8).
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2. Hybrid Systems

A discrete state transition system DS is a tuple (Y, Init , t), where Y is a
finite set of variables interpreted over some (countable or uncountable)
domains, Y denotes the set of all valuations of Y over the respective
domains, Init ⊆ Y is a set of initial states, and t ⊆ Y × Y is a set
of transitions. The set Y is the state-space of DS . A run of DS is any
mapping σ : N 7→ Y satisfying

(a) initial condition: σ(0) ∈ Init , and

(b) discrete evolution: for all i ∈ N, (σ(i), σ(i+ 1)) ∈ t.

The set of all runs of DS is denoted by [[DS ]].
Since our interest is in formal verification of hybrid system models,

we formally define autonomous, or input-free, hybrid automata.

DEFINITION 1. An autonomous hybrid automaton HS is a tuple (Q,X,-
Init , Inv , t, f), where Q is a finite set of variables interpreted over finite
domains, Q denotes the finite set of all valuations of the variables
Q over the respective finite domains, X is a finite set of variables
interpreted over the reals R, X = RX is the set of all valuations of
the variables X, Init ⊆ Q×X is a set of initial states, Inv : Q 7→ 2X

assigns to each discrete state q ∈ Q an invariant set, t ⊂ Q×X×Q×X
is a set of (guarded) discrete transitions, f : Q 7→ (X 7→ TX) is a map-
ping from the discrete states to vector fields that specify the continuous
flow in that discrete state.

The set Q × X is the state-space of the hybrid automaton. The
variables in Q are said to be discrete whereas X are called continuous.
We refer to (q,x) ∈ Q ×X as the state of the hybrid automaton HS .
We assume that f satisfies the standard assumptions for existence and
uniqueness of solutions to ordinary differential equations. For example,
f could be specified using polynomials over X.

Example 1. Consider a thermostat that controls the heating of a
room. Assume that the thermostat turns the heater on when the tem-
perature is between 68 and 70 and it turns the heater off when the
temperature is between 80 and 82. Suppose the continuous dynamics
in the on and off modes is specified by the equations ẋ = −x + 100
and ẋ = −x respectively. If we assume that the heater is initially off
and the room temperature is between 70 and 80, the hybrid automaton
is given by HS = (Q,X, Init , Inv , t, f), where Q = {q1} is the set of
discrete variables, Q = {on, off } is the set of discrete states (thus,
q1 ∈ {on, off }), X = {x1} is the set of continuous variables, X = R
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is the set of continuous states, Init = {(off , x) : 70 < x < 80} is the
initial condition, Inv = {(on, x) : x < 82} ∪ {(off , x) : x > 68} is the
invariant set, t = {(on, x, off , x) : x ≥ 80} ∪ {(off , x, on, x) : x ≤ 70} is
the set of discrete transitions, and f(on) = −x+ 100 and f(off ) = −x
specifies the continuous flows.

Let S be a (finite) set and α : Q×X 7→ S be a function that maps
the uncountable state-space of HS onto S. The set S can be seen as
the set of observed states of the hybrid system HS . In the context of
a given mapping α, the semantics of the hybrid automaton HS can be
specified by associating a discrete transition system HSα with it.

DEFINITION 2. Given a hybrid automaton HS = (Q,X, Init , Inv , t, f)
and a mapping α : Q ×X 7→ S, the discrete transition system corre-
sponding to HS is the system HSα = (Q ∪ X, Init ,tα) with the same
state-space and initial states, and the following transitions:

(a) discrete transitions: ((q,x), (q′,x′)) ∈ tα if (q,x,q′,x′) ∈ t,
and

(b) continuous transitions: ((q,x), (q,x′)) ∈ tα if there exists a δ >
0 and a continuous function F : [0, δ] 7→ X such that for all τ ∈
(0, δ), Ḟ (τ) = f(q)(F (τ)), F (τ) ∈ Inv(q), and α((q, F (τ))) is a
constant function on either the domain [0, δ) or the domain (0, δ],
that is, either α((q, F (τ))) = α((q, F (0))) for all τ ∈ [0, δ), or
α((q, F (τ))) = α((q, F (δ))) for all τ ∈ (0, δ].

The set [[HS]] of runs of the hybrid automaton HS with respect to the
mapping α is now defined simply as [[HSα]]. Intuitively speaking, the
discrete transition system HSα captures all the different “observed”
behaviors of the hybrid system HS .

Note that we have assumed that there are no inputs. When taking
a discrete transition, both the discrete variables and the continuous
variables can change. In other words, the discrete transitions could
contain update functions for continuous variables.

The semantics of a hybrid system have been defined alternatively
as a collection of runs, where each run is a mapping from a dense time
interval to the state-space, or as an infinite-state discrete transition
system where only the discrete transitions are observable [1, 24, 20].
The semantics we use here captures the behavior of the hybrid system
during the discrete as well as the continuous evolutions. This is the
reason for the extra side condition in Definition 2 (b).

A hybrid automaton consisting of only one mode (that is,Q = ∅) and
no discrete transitions (that is, t = ∅) is called a continuous dynamical

4



system. It can be represented by the tuple (X, Init , Inv , f), or simply
by (X, Init , f) if the invariant is the whole space X.

Example 2. [Hybrid Automata] The Delta and Notch proteins are
involved in the process of cell differentiation through lateral inhibition.
A simple model of a cell with these two proteins can be described
by a hybrid system containing two state variables X = {xd, xn} that
store values of the concentrations of these two proteins in the cell [14].
The transcription of these two proteins could independently be ei-
ther “on” or “off”, so the cell can be in four modes. Thus, there are
two discrete variables, Q = {qd, qn} that take values over the domain
{off , on}. The rules of the lateral inhibition mechanism assert that
Notch inhibits the production of Delta in the same cell, whereas Delta
promotes Notch production in the adjacent cell. Let xu be a parameter
representing Delta concentration in the environment. Hence, we have
HS = (Q,X, Init , Inv , t, f), where the continuous flow f is specified by

f({qd = off , qn = off }) = [−λdxdi,−λnxni]
f({qd = on, qn = off }) = [∆d − λdxdi,−λnxni]
f({qd = off , qn = on}) = [−λdxdi,∆n − λnxni]
f({qd = on, qn = on}) = [∆d − λdxdi,∆n − λnxni]

and the discrete transitions t—twelve in all, one from each of the four
modes to each other mode—are obtained using the rules that qn = off
whenever xu < hn, qn = on whenever xu ≥ hn, qd = off whenever
xn > hd, and qd = on whenever xn ≤ hd. Here xu, λd, λn,∆d,∆n, hn, hd
are parameters that take values in R.

We are now ready to define what we mean by a discrete (finite-state)
abstraction of a hybrid system.

DEFINITION 3. Let HS = (Q,X, Init , Inv , t, f) be a hybrid automata
and DS = (Q′, Init ′, t′) be a discrete transitions system. We say DS is
an abstraction for HS if there exists a mapping α : Q×X 7→ Q′ such
that

(a) if (q,x) ∈ Init, then α(q,x) ∈ Init ′, and

(b) if ((q,x), (q′,x′)) ∈ tα is a transition in the discrete transition
system HSα corresponding to HS with respect to α, then there
exists a transition (α(q,x), α(q′,x′)) ∈ t′ in DS.

In other words, the abstraction DS of a hybrid automaton HS is
a discrete transition system that simulates the discrete system HSα
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associated with HS , where α defines the corresponding simulation re-
lation [33]. Consequently, if a ACTL∗ formula is true in the model DS ,
then it is also true in HSα [18].

We consider the problem of constructing discrete transition system
abstractions for continuous dynamical systems and hybrid systems in
the sense of Definition 3.

2.1. Representation

We represent a set of states of a hybrid automaton by a formula in a
suitable logical theory Th. For specifying hybrid systems, the theory of
reals is pertinent. A signature is a set of function and constant symbols
ΣF , and predicate symbols ΣP . For example, {+,−, ·, ,̂ exp, log, sin}
are function symbols and {=, >,≥} are examples of predicate symbols.
The theory of real-closed fields, R, for example, works over the signature
{Q,+,−, ·,=, >,≥}, where Q is the set of rational constants. The set
T (X) of terms over the variables X (and some signature) is defined
in the usual way. For example, in the theory R, the set of terms over
a set X of variables corresponds to the set of polynomials Q[X]. The
set ATM (X) of atomic formulas is obtained by applying a predicate
symbol to terms from T (X). If the signature contains the minus symbol
and =, >,<,≥,≤ are the only predicate symbols, then atomic formulas
over reals can always be written as p ∼ 0, where ∼∈ {=, >,≥} and
p ∈ T (X). The set WFF (X) of well formed formulas (over X) is
defined as the smallest set containing ATM (X) and closed under the
boolean operations (conjunction ∧, disjunction ∨, and negation ¬) and
quantification (existential ∃ and universal ∀). We denote formulas in
WFF (X) by greek symbols φ, ψ, possibly with subscripts and use p to
denote terms in the set T (X).

Let Th be some theory interpreted over the reals. We use the no-
tation Th |= φ(X) to denote the fact that the (first-order) formula
φ is true, in the theory of reals, for all valuations for X, that is,
Th |= ∀X : φ(X). Recall that we use x ∈ RX to denote a valuation,
or a point. Thus, the notation Th |= φ(x) denotes that φ evaluates to
true under the given valuation x. We say a term p occurs in a formula
φ if there is an atomic formula p ∼ 0 in φ.

Let X be a finite set of real valued variables. A formula φ(X) in
WFF (X) represents a set {x ∈ X : Th |= φ(x)} of states, which is
denoted by [[φ]]. For example, the formula x1 > 0 ∧ x2 > 0 represents
the first quadrant in the 2-dimensional x1-x2 plane. If Q is a finite set
of discrete variables, then we will assume that the set Q of discrete
modes is finite, and hence we can use any explicit representation for
subsets of Q.
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Consider a hybrid automaton HS = (Q,X, Init , Inv , t, f). The sets
Q and X can be specified by explicitly enumerating them. The sets
Init and Inv are represented using formulas from WFF (X), one for
each discrete mode. We assume that Inv∗ : Q 7→ WFF (X) represents
the invariant. The set t of discrete transitions are specified by giving the
source mode q, the target mode q′, the guard condition φ(X) (which
should evaluate to true for the transition to be enabled), and a set of
assignments X := F (X), where F (X) is a vector of terms over X. This
is written as

q, φ(X) −→ q′, X := F (X)

The set f is specified by enumerating all differential equations ẋ = p,
one for each variable x ∈ X and each mode in Q.

2.1.1. Inside-out representation
Switched hybrid systems are special kinds of hybrid systems which do
not involve any updates to the continuous variables during a discrete
transition. In practice, the explicit representation of a switched hy-
brid automaton, as described above, may not be sufficiently succinct.
Alternatively, the continuous dynamics (the f component) can be spec-
ified just once using additional parameters. The discrete transitions
(the t component) are then specified using conditional assignments to
these parameters, thus modifying the dynamics in the different dis-
crete modes. This style of specification avoids any explicit enumeration
of modes. Any switched system can be represented in this way by
introducing sufficiently many parameters. Our hybrid abstraction al-
gorithm can use the succinct representation to optimize the process of
abstracting the given switched hybrid system.

Example 3. Consider the hybrid system HS from Example 2. The
hybrid automaton HS can be specified succinctly using an inside-out
representation by giving the continuous dynamics as:

ẋd = Dd − λdxd
ẋn = Dn − λnxn

and specifying the discrete transitions by the following conditional
assignments to the newly introduced parameters Dd and Dn:

Dd = if (xn > hd) then 0 else ∆d

Dn = if (xu < hn) then 0 else ∆n

These four equations completely specify the dynamics of HS .
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3. Abstracting Hybrid Systems

Predicate abstraction refers to the idea of using predicates on the orig-
inal state variables as abstract variables in the new discrete system.
These abstract variables take values on a boolean domain, thus result-
ing in finite state systems. In this paper, we fix a set P ⊂ T (X) of terms
and abstract over the 3 ∗ |P | predicates {p > 0, p = 0, p < 0 : p ∈ P}.
But instead of using boolean variables in the abstract system, we will
use variables interpreted over the three valued domain {neg , pos, zero}.
Note that in the special case when Th = R, the terms in P would be
polynomials in Q[X].

We abstract a hybrid automaton HS = (Q,X, InitX , Inv , t, f) over
a given finite set P ⊂ T (X) of terms. The result will be a discrete
state transition system DS = (QA, InitA, tA) where QA = Q ∪ QP is
the set of discrete variables, QP = {qp : p ∈ P}, InitA ⊆ QA is the set
of initial states, and tA ⊆ QA ×QA is the set of transitions. The new
discrete variables QP are interpreted over the domain {pos,neg , zero}.
Thus, the set of states in the abstract system QA is Q × QP where
QP = {pos,neg , zero}QP .

Let qP ∈ QP be the abstract state ((qp = pos)p∈P1 , (qp = zero)p∈P2 ,-
(qp = neg)p∈P3), where P1 ∪ P2 ∪ P3 is a partition of the set P . The
concretization function γ : QA 7→ 2Q×X is a mapping from the abstract
states to subsets of the concrete states and is defined as follows:

γ((q,qP)) = {(q,x) ∈ Q×X|
∧
p∈P1

p(x) > 0 ∧
∧
p∈P2

p(x) = 0 ∧
∧
p∈P3

p(x) < 0}.

(1)
Conversely, if (q,x) ∈ Q × X is a concrete state of the system HS ,

then the abstraction function, α : Q×X 7→ QA, is defined by,

α((q,x)) = (q, ((qp = pos)p∈P1 , (qp = zero)p∈P2 , (qp = neg)p∈P3)), (2)

where P1 ∪ P2 ∪ P3 is a partition of the set P such that p ∈ P1 iff
p(x) > 0, p ∈ P2 iff p(x) = 0, and p ∈ P3 iff p(x) < 0. Note that we do
not abstract the discrete state space and only abstract the continuous
state space to a finite set.

We will also use γ and α to denote the restriction of the correspond-
ing functions to the second components so that γ : QP 7→ 2X and
α : X 7→ QP. The function α can be naturally extended to map subsets
of the concrete states, 2X, to subsets of the abstract states, 2QP , that
is, α : 2X 7→ 2QP . If S ⊆ 2X, we define α(S) as follows:

α(S) =
⋃
x∈S
{α(x)}. (3)
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The context will disambiguate these usages of the abstraction and
concretization functions.

3.1. The Abstract Initial States.

Since we use formulas in WFF (X) (over some theory Th) to represent
elements of 2X, we will be interested in the variants, α∗ : WFF (X) 7→
2QP and γ∗ : QP 7→ WFF (X), of the abstraction and concretiza-
tion functions, α : 2X 7→ 2QP and γ : QP 7→ 2X. If qP is abstract
state ((qp = pos)p∈P1 , (qp = zero)p∈P2 , (qp = neg)p∈P3), then γ∗(qP) is
defined as

γ∗(qP) =
∧
p∈P1

p(x) > 0 ∧
∧
p∈P2

p(x) = 0 ∧
∧
p∈P3

p(x) < 0 (4)

We define α∗ using Th-satisfiability.

α∗(φ(X)) = {qP ∈ QP : Th |= ∃X : γ∗(qP) ∧ φ(X)}. (5)

If the initial states Init of the hybrid system HS is
⋃
i{(qi,x) : x ∈

[[φi]]}, where each formula φi ∈WFF (X) represents the initial states in
a given discrete mode qi ∈ Q, then the initial states InitA are obtained
as

⋃
i{(qi,qP) : qP ∈ α∗(φi)}.

LEMMA 1. If φ(X) is a formula representing a set in 2X, then α([[φ]]) ⊆
α∗(φ). In particular, if HS = (Q,X, Init , Inv , t, f) is a hybrid system
with initial states Init =

⋃
i{(qi,x) : x ∈ [[φi]]} and DS, InitA, and α

are as defined as above, then, α(Init) ⊆ InitA.
Proof. Let x ∈ [[φ]]. We show that α(x) ∈ α∗(φ). It follows from the

definition of the γ∗ and α functions that the formula γ∗(α(x)) evaluates
to true on the point x. By assumption, the same is true for the formula
φ. Hence, α(x) ∈ α∗(φ). Applying this result to each mode of the hybrid
system, the second part of the claim is immediately proved.

3.2. The Abstract Transition Relation.

The transitions tA of the abstract system DS = (QA, InitA, tA) are
obtained by abstracting the discrete transitions and the continuous
flow of the concrete hybrid system HS separately.
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3.2.1. Abstractions of the discrete transitions
Let (q, φ1(X),q′, φ2(X)) represent the set of discrete transitions (q,x,q′,x′) ∈
t of the hybrid automaton HS , where x ∈ [[φ1]] and x′ ∈ [[φ2]]. Then,
the corresponding abstract transitions tA contain ((q,qP), (q′,q′P)),
where qP ∈ α∗(φ1(X)) and q′P ∈ α∗(φ2(X)).

However, the discrete transitions of a hybrid automaton are often
specified by a guarded command

q, φ(X) −→ q′, X := F (X) (6)

where q is the source mode, q′ is the target mode, φ(X) is the guard
condition, and X := F (X) is a set of assignments. In this case, for each
function pi(X) ∈ P , we compute the subsets Qi1, Qi2, Qi3 ⊆ 2QP of
abstract states such that

Th |= φ(X) ∧ Inv∗(q) ∧
∨

qP∈Qi1

γ∗(qP) ⇒ pi[X/F (X)] ≥ 0

Th |= φ(X) ∧ Inv∗(q) ∧
∨

qP∈Qi2

γ∗(qP) ⇒ pi[X/F (X)] 6= 0

Th |= φ(X) ∧ Inv∗(q) ∧
∨

qP∈Qi3

γ∗(qP) ⇒ pi[X/F (X)] ≤ 0

The notation p[X/F (X)] represents the term obtained by replacing the
variables X in p by terms F (X). For every qP ∈ α∗(φ), we add the
following transition in the abstract system:

q,qP −→ q′, (qpi :∈ ITE1 (qP, Qi1, Qi2, Qi3))pi∈P (7)

where the notation a :∈ Ameans that a is nondeterministically assigned
to some element in A and the function ITE1 (qP, Q1, Q2, Q3) is defined
as

ITE1 (qP, Q1, Q2, Q3) = if (qP ∈ Q1 ∩Q2) then {pos}
elsif (qP ∈ Q3 ∩Q2) then {neg}
elsif (qP ∈ Q1 ∩Q3) then {zero}
elsif (qP ∈ Q1) then {pos, zero}
elsif (qP ∈ Q2) then {pos,neg}
elsif (qP ∈ Q3) then {neg , zero}
else {pos,neg , zero}.

All the different abstract transitions (7) arising from the same guarded
command (6) can be represented by a single guarded command. Each
discrete transition in the hybrid automaton HS is abstracted in this
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way. This completes the abstraction of discrete transitions with up-
dates. Note that if pi(X) does not contain any of the variables that are
updated by the assignments, then the value of qpi can be left unchanged
(and we need not compute the sets Qi1, Qi2, and Qi3 in this case).

3.2.2. Abstracting the continuous flow
The continuous evolution of the hybrid system is abstracted using qual-
itative reasoning. Let X = {xi : i = 1, 2, . . . , n} be the n real valued
variables. Let p ∈ P be a term over the variables X. The notation
~dp denotes the 1 × n row vector, or the 1-form, consisting of partial
derivatives of p with respect to the n variables, that is, ~dp = [∂p/∂x1,-
∂p/∂x2, . . . , ∂p/∂xn]. If q is a mode of the hybrid automaton HS and
f(q) is the vector field in that mode, then the Lie derivative, Lf(q)(p),
of p with respect to the vector field f(q) is defined as

Lf(q)(p) = ~dpf(q) =
∂p

∂x1

dx1

dt
+

∂p

∂x2

dx2

dt
+ · · ·+ ∂p

∂xn

dxn
dt

(8)

Thus, the Lie derivative Lf(q)(p) is just the derivative dp/dt of p with
respect to time in mode q.

Let q be a mode of the hybrid automaton HS and f(q) be the vector
field in that mode. We add an abstract transition ((q,qP), (q,q′P)) ∈ tA
whenever all of the following conditions hold (for all p ∈ P ):

(a) if qp = neg in the state qP, then
(a1) if Th |= γ∗(qP) ∧ Inv∗(q)⇒ Lf(q)(p) ≤ 0, then qp = neg in q′P;
(a2) if not, then either qp = neg or qp = zero holds in q′P.

(b) if qp = zero in the state qP, then
(b1) if Th |= γ∗(qP) ∧ Inv∗(q)⇒ Lf(q)(p) < 0, then qp = neg in q′P;
(b2) if Th |= γ∗(qP) ∧ Inv∗(q)⇒ Lf(q)(p) = 0, then qp = zero in q′P;
(b3) if Th |= γ∗(qP) ∧ Inv∗(q)⇒ Lf(q)(p) > 0, then qp = pos in q′P;
(b4) if not, then either qp = pos, qp = zero, or qp = neg holds in q′P;

(c) if qp = pos in the state qP, then
(c1) if Th |= γ∗(qP) ∧ Inv∗(q)⇒ Lf(q)(p) ≥ 0, then qp = pos in q′P;
(c2) if not, then either qp = pos or qp = zero holds in q′P.

This procedure is implemented in the following way. For each mode
q ∈ Q and for each term pi ∈ P , we first compute Lf(q)(pi) sym-
bolically. Thereafter, we compute the subsets Qi1, Qi2, Qi3 ⊆ 2QP of
abstract states such that

Th |= Inv∗(q) ∧
∨

qP∈Qi1

γ∗(qP) ⇒ Lf(q)(pi) ≥ 0,

Th |= Inv∗(q) ∧
∨

qP∈Qi2

γ∗(qP) ⇒ Lf(q)(pi) 6= 0,
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Th |= Inv∗(q) ∧
∨

qP∈Qi3

γ∗(qP) ⇒ Lf(q)(pi) ≤ 0.

Subsequently, for each qP ∈ α(Inv(q)), we generate the following
discrete abstract transition

q, qP −→ q, (qpi :∈ ITE2 (qP, qpi , Qi1, Qi2, Qi3))pi∈P

where the mode q is left unchanged, but the abstract variables qpi are
assigned a value from the set returned by the function ITE2 (qP, qpi ,-
Qi1, Qi2, Qi3), which is defined as follows:

ITE2 (qP, qp, Q1, Q2, Q3) = if qp = pos
if qP ∈ Q1 then {pos} else {pos, zero}
elsif qp = neg
if qP ∈ Q3 then {neg} else {neg , zero}
else
if (qP ∈ Q1 ∩Q2) then {pos}
elsif (qP ∈ Q3 ∩Q2) then {neg}
elsif (qP ∈ Q1 ∩Q3) then {zero}
else {pos,neg , zero}

We repeat the process for each mode and compute the abstract tran-
sitions arising from the continuous dynamics of each mode separately.
This completes the phase of adding transitions to the abstract system.

Note that we can handle cases where the set Q of discrete states in
HS is infinite as long as the number of distinct “modes” (which can
each be specified as a formula over Q) are finite.

THEOREM 1. Let HS = (Q,X, Init , Inv , t, f) be a hybrid automaton
and P ⊂ T (X) be a finite set of terms over the set X of real variables.
If DS = (QA = Q ∪ QP , InitA, tA) is the discrete transition system
constructed by the above method, then DS is an abstraction for HS.

Proof. If (q,x) ∈ Q×X is a concrete state of the hybrid system HS ,
then the abstraction mapping α is defined by Equation 2. Lemma 1
establishes condition (a) of Definition 3. In order to establish condi-
tion (b), let ((q,x), (q′,x′)) ∈ tα be a transition in the discrete system
HSα corresponding to HS with respect to the mapping α. There are two
cases based on whether this is a discrete (Definition 2 (a)) or continuous
(Definition 2 (b)) transition.

Continuous transition. In this case q′ = q. Let F be as in Defi-
nition 2 (b). Without loss of generality, assume that α(q, F (τ)) is a
constant function on [0, δ). We claim that (α(q,x), α(q,x′)) ∈ tA. Let

α(x) = ((qp = pos)p∈P1 , (qp = zero)p∈P2 , (qp = neg)p∈P3).
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There are two subcases.
(1) α(x) = α(x′): Consider p ∈ P2. We note that p(F (τ)) = 0 for all
τ ∈ [0, δ]. It follows that Lf(q)(p) = 0 at all points F (τ), in particular
Lf(q)(p) = 0 at F (0) = x. At point x, the formula γ∗(α(x)) evaluates
to true, the formula Inv∗(q) is true, and the formula Lf(q)(p) = 0 is
true. Therefore, it is not possible to prove the theorems in cases (b1)
or (b3). Hence, we would apply either case (b2) or (b4) and in both
these cases we have the choice of maintaining qp = zero. Finally, for
p ∈ P1 ∪ P3, all cases in (a) and (c) allow for the possibility of keeping
the sign of qp unchanged.
(2) α(x) 6= α(x′): If for some p ∈ P1, p(F (δ)) = 0, then for some
τ ∈ (0, δ), Lf(q)(p) < 0 at the point F (τ) ∈ Rn. Let x′′ be this
intermediate point F (τ). Now, at this point, γ∗(α(x)) evaluates to true
(since, by assumption, α(x) = α(x′′)) and Inv∗(q) also evaluates to true
(since again, by assumption, the invariant is true at all intermediate
points), but Lf(q)(p) ≥ 0 evaluates to false. Consequently, case (c1)
cannot be applicable and we have to use case (c2), which shows that qp
can be chosen to be zero. Using similar arguments for all other cases
for p ∈ P2 and p ∈ P3, we conclude that there will be a transition
(α(q,x), α(q,x′)) ∈ tA.

Discrete transition. If ((q,x), (q′,x′)) ∈ tα is a discrete transition
(from Definition 2 (b)), then by definition (q,x,q′,x′) ∈ t. Assume
that this transition is captured in HS by the guarded assignment,
q, φ(X) −→ q′, X := F (X). Therefore, the formula φ evaluates to
true at the point x. It follows from Lemma 1 that α(x) is in α∗(φ).
Finally, we note that for p ∈ P , the value of p after the updates will
be identical to the value of p[X/F (X)] before the transition. It now
follows from the way the discrete transition is abstracted that there is
a transition (q, α(x),q′, α(x′)) ∈ tA. This completes the proof.

Example 4. We abstract the thermostat model from Example 1 using
the terms P = {x, x−68, x−70, x−80, x−82, x−100}, labeled p1, . . . , p6.
The abstract discrete transition system is defined over seven variables,
{q1, qp1 , . . . , qp6}. The dynamics are given as:

q1 = on, qp4 = pos −→ q1 := off
q1 = off , qp3 = neg −→ q1 := on
q1 = on, qp5 = neg −→ (qpi :∈ VN (qp1 , . . . , qp6 , i, 6))i=1,...,6

q1 = off , qp2 = pos −→ (qpi :∈ VN (qp1 , . . . , qp6 , i, 1))i=1,...,6

where the function VN (a1, a2, a3, a4, a5, a6, i, j) = ITE2 ((a1, . . . , a6),-
ai, {qP ∈ QP : qpj 6= pos}, {qP ∈ QP : qpj 6= zero}, {qP ∈ QP :
qpj 6= neg}). Note that the first two transitions above are abstractions

13



of the discrete transitions, while the latter two are abstractions of
the continuous dynamics. We have simplified the formulas here. For
example, x > 80 should be abstracted to qp4 = pos ∧ qp3 = pos · · ·,
but we have just included qp4 = pos above. We also note that certain
abstract states are infeasible, for example, qp4 = pos ∧ qp3 = zero. In
Section 5, we will add information to the abstract system to guarantee
that the abstract trajectories remain inside the feasible region and the
invariant set.

4. Choosing the Abstraction Mapping

The quality of the abstraction computed by our method depends cru-
cially on the terms P over which the abstraction is computed. In this
section, we discuss the approaches to identify (compute) P . It is clear
that the terms that occur in the statement of the property we wish to
verify are ideal candidates to include in P . For example, if we wish to
verify that x1 > x2 always, then we should add the term x1 − x2 to P .
Similarly, the terms that occur in the guards of discrete transitions are
added to P . The set P thus constructed is the seed set. We will add
more elements to P using the techniques described below.

4.1. Higher-order Lie Derivatives

Consider a set P0 = {p1, p2, . . . , pk} of k terms over variables X. Let
ψ ∈ WFF (X) be a formula containing free variables from X. Define
the extended monoid of the set P0 (relative to ψ) as the minimal set
EMonψ(P0) such that (i) P0 ⊂ EMonψ(P0), (ii) r ∈ EMonψ(P0) if r is
zero, positive or negative definite relative to ψ (that is, Th |= ψ ⇒ r =
0, or Th |= ψ ⇒ r > 0, or Th |= ψ ⇒ r < 0), (iii) p1p2 ∈ EMonψ(P0)
whenever p1, p2 ∈ EMonψ(P0). In other words, the set EMonψ(P0) is
the monoid over P0 and all relatively positive and negative definite
functions. An important property of the set EMonψ(P0) is that if the
signs (positive, negative, or zero) of all the terms in P0 are known,
then the sign of any term in EMonψ(P0) can be uniquely determined
(assuming ψ holds).

We add new functions to the set P by saturating the existing terms
in P under the Lie derivative computation (with respect to vector field
in a particular mode). Let q be a mode of the hybrid system HS and
f(q) be the corresponding vector field. The rule for adding new terms to
P is the following: If p ∈ P is a term, then we add the term Lf(q)(p) to
P unless Lf(q)(p) ∈ EMonInv∗(q)(P ). Thus, the process of constructing
new terms to add to P involves computing the Lie derivative Lf(q)(p)
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and testing if Lf(q)(p) ∈ EMonInv∗(q)(P ). Since the latter test could
be expensive, we sometimes replace it by the following weaker tests

Th |= Inv∗(q)⇒ Lf(q)(p) ∼ 0 ∼ ∈ {>,=, <}
Th |= Inv∗(q)⇒ Lf(q)(p) = cp′

for some constant c ∈ R and p′ ∈ P . If either of these proof obliga-
tions can be proved, then clearly Lf(q)(p) ∈ EMonInv∗(q)(P ) and hence
Lf(q)(p) is not added to P .

The functions added to P by the saturation process are useful when
qualitatively abstracting the continuous dynamics of HS , as outlined
in the previous section.

Note that for general vector fields f(q) the saturation process might
not terminate. But there are special cases where this process is guaran-
teed to terminate. For example, suppose a mode q has linear dynamics
given by a nilpotent matrix A, that is, f(q)(X) = AX such that
Ak = 0. Let p ∈ P be a polynomial with degree d. Then the (d ∗ k)-th
Lie derivative of p with respect to f(q) will be identically zero. As a
second example, consider a mode q that has linear dynamics given by
a matrix A, which satisfies the equation An = rAm for some constant
r ∈ R and n,m ∈ N. If p ∈ P is a linear polynomial, then the saturation
process can be shown to terminate. In particular, if p = ~aTX is a linear
polynomial, then the n-th Lie derivative of p will r times the m-th Lie
derivative. Since the n-th derivative of p is a constant multiple of the
m-th derivative of p, it does not get added to the set P of polynomials
in the saturation process.

We remark here that the termination of the saturation process is
determined by both the initial set P of seed terms and the vector fields f
(in all the different modes). However, the termination of the saturation
phase is not necessary for creating an abstraction. We can stop at any
point in the saturation process and compute the abstraction using the
set P computed upto that point. A larger set P yields a finer abstraction
as it results in a larger state space in the resulting abstract system.

Example 5. Consider the hybrid automaton HS from Examples 2
and 3. The guards of the discrete transitions give two terms P =
{xn − hd, xu − hn}. Let us assume that all symbolic parameters, such
as hd, hn, λd, are constrained to be positive constants by the invari-
ant. Note that the parameters are unchanging, that is, for example,
ẋu = 0 in all modes. Consequently, the Lie derivative of xu − hn is
identically zero in all four modes. Hence, nothing is added to the set
P . Next, we compute the Lie derivative of xn − hd in the four modes.
We get two distinct values, −λnxn and ∆n − λnxn. These get added
to P . Next, we compute the Lie derivative of −λnxn with respect to
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the four distinct vector fields. We get two different terms again, but
these are just −λn times the old terms. Hence, nothing new is added
to P . Similarly, when we compute the Lie derivative of ∆n − λnxn,
we get the same answers and do nothing. After saturation, finally
P = {xn − hd, xu − hn,−λnxn,∆n − λnxn}.

4.1.1. Heuristic for identifying important terms
We say that a set P0 of (polynomial) functions is closed under Lie
derivative computation with respect to f(q) and relative to Inv∗(q)
if for every function pi ∈ P0, the Lie derivative of pi w.r.t f(q) is
in EMonInv∗(q)(P0). Clearly, if P0 is a set which satisfies the above
property, then inclusion of P0 into P incurs no further additions to P
due to saturation. Hence, an important heuristic for identifying new
terms for inclusion into P is the following:

A set P0 of terms is good if, for each mode q of the hybrid system,
the set P0 is closed under Lie derivative computation with respect
to f(q) and relative to Inv∗(q).

In Sections 4.2 and 4.3, we will be guided by this basic heuristic rule
to compute important sets P0 and include them in P . Note that even
if a set P0 may not satisfy the above condition for every mode, it could
still be useful if P0 satisfies the condition for some modes.

4.2. Linear Dynamics

Useful linear functions can be computed for inclusion in P if there are
modes with linear dynamics. Let q be a mode of the hybrid system
HS with vector field given as f(q)(X) = AX, where A ∈ Qn×n. If λ
is a real eigenvalue of A and ~c = [c1, . . . , cn]T is an eigenvector of AT

corresponding to λ, then we add the linear function p = ~cTX to the set
P .

The reason why this particular p is a useful term to use for ab-
straction becomes clear when we compute the Lie derivative of p with
respect to f(q),

Lf(q)(p) = ~cT Ẋ = ~cTAX = (AT~c)TX = (λ~c)TX = λp.

This shows that the set {p} is closed under Lie derivative computation
in mode q. In this specific case, Lf(q)(p) vanishes on the surface p = 0
and hence flows will not cross this surface. If the system starts on
one side of this surface, it will continue to remain in that half space.
This information is preserved in the abstraction if p is included in the
set P . Hence, p = 0 can potentially be a barrier certificates [39]. We
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also remark here that the linear forms p can be used to approximate
reachability sets explicitly [49, 53, 54].

Each distinct real eigenvalue of A can be used to generate a suitable
linear function p for inclusion in the set P of abstraction terms. If
the eigenvalue is rational, then the computation and representation of
the corresponding eigenvector is straightforward. If not, then we use
polynomials to represent the coefficients of p.

Example 6. Consider a part of the leader control developed in [15]
and also discussed in [42] for collision avoidance in automated cruise
control in automobiles. The control is applied during safety-critical sit-
uations when the inter-vehicle distance is small, or the relative velocity
between vehicles is large. Let gap, vf , v, and a respectively represent
the gap between the two cars, the velocity of the leading car, and the
velocity and acceleration of the rear car. We are given,

v̇ = a, ȧ = −3a− 3(v − vf ) + (gap − (v + 10)), ˙gap = vf − v.

Formally, this describes a linear dynamical system withX = {v, vf , a, gap}.
Assuming the variable vf is a parameter (unchanging symbolic con-
stant), the dynamics can be written as Ẋ = AX +B, where

A =


0 0 1 0
0 0 0 0
−4 3 −3 1
−1 1 0 0

 B =


0
0
−10
0


By a change of variables, rgap ← gap − 10, we get Ẋ = AX, where
X = [v, vf , a, rgap]T . We leave the set Init of initial states and the
invariant sets unspecified. For a given set of possible initial states, the
problem is to verify that the rear car would never collide with the car
in front, that is, always gap > 0, or rgap > −10.

Now, the characteristic polynomial for A, λ(λ3 + 3λ2 + 4λ+ 1), has
exactly two real zeros. The nonzero real eigenvalue, denoted by λ, lies
between −1/3 and −1/4. Now, if ~c = [c1, c2, c3, c4]T is an eigenvector
of AT corresponding to λ, then AT~c = λ~c. We assume, without loss of
generality, that c4 = 1, and hence we get an eigenvector [c1, c2, c3, 1]T

where c1, c2 and c3 satisfy the equations c3 = λ, c1 = λ2 +3λ, and c2 =
−c1− 1. Therefore, the linear term corresponding to this eigenvector is
p = c1v−(c1 +1)vf +c3a+rgap. We add this term to the set P . In fact,
for certain initial states, the surface p = 0 acts as a barrier between
the initial states and the unsafe region and suffices to prove the safety
problem (under certain assumptions on the invariant set). We refer the
interested reader to [49] for further analysis of this example.
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4.2.1. Complex eigenvalues
Let y2 +ay+ b be a factor of the characteristic polynomial of A, where
a, b ∈ R and a 6= 0, 4b > a2. Let W denote the null space of the
transformation (AT )2 + aAT + bI, that is,

W = {~c ∈ Rn : ((AT )2 + aAT + bI)~c = 0}.

Since AT ∈ Qn×n, a ∈ R, and b ∈ R, it follows that W is nonempty.
Let ~c ∈ Rn be a nonzero vector in W . Consider the linear function

p = ~cTX over the state variables corresponding to this vector. Let ṗ
denote Lf(q)(p) and p̈ denote Lf(q)(ṗ). We have the following relation
between p̈, ṗ, and p.

p̈+ aṗ+ bp = ¨~cTX + a ˙~cTX + b~cTX = ~cTA2X + a~cTAX + b~cTX
= ~cT (A2 + aA+ bI)X = (((AT )2 + aAT + bI)~c)TX = 0

We add p and ṗ to the set P . Note that we can infer the sign of p̈ from
that of p and ṗ in many cases.

4.2.2. Computability issues
If eigenvalues are rational, then computation of the left eigenvector
would just involve simple arithmetic manipulation over rationals. How-
ever, if we have to deal with real numbers and the left eigenvectors are
composed of real numbers, then we require the ability to represent
and reason with algebraic numbers. This requires theorem proving
capability for a theory of reals defined over {+,−, ∗,=}.

4.3. Nonlinear Dynamics

We present some heuristic approaches to find useful terms for inclusion
in the set P when the dynamics in a given mode are nonlinear.

4.3.1. Linear barriers
We first discover important linear functions for inclusion into P . Let
Ẋ = f(q) specify the dynamics in mode q. Separate the nonlinear
component from the linear component and rewrite the above equation
as

Ẋ = AX +BY

where Y is the vector of non-linear functions of the state variables X,
see also Example 7. Here A is an n× n matrix, B is an n×m matrix,
X is a n×1 vector, and Y is a m×1 vector. Let ~c be a real eigenvector
of AT which is also in the kernel of BT (that is, the linear subspace of
zeros of BT ), that is,

AT~c = λ~c BT~c = ~0,
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where the components of ~c are reals. The transpose ~cT of the vector ~c
is a 1-form. Consider the linear function p = ~cTX.

Lf(q)(p) = ~cT Ẋ = ~cT (AX +BY ) = (AT~c)TX + (BT~c)TY
= (λ~c)TX +~0 = λp.

This shows that the set {p} is closed under Lie derivative computation
and hence, it is useful to include p in the set P . We note here that the
matrix A and B are unique upto permutations of their rows. It is easy
to see that any of these choices for B will result in the same outcome.

Example 7. If x1 and x2 represent concentrations of two proteins that
can bind together to form a dimer, then the law of mass action gives
the following differential equations governing the dynamics of x1 and
x2:

ẋ1 = ∆1 − λx1 − kx1x2

ẋ2 = ∆2 − λx2 − kx1x2

If we introduce a new variable x3 to homogenize the above (intuitively
x3 is always 1), we get A = [−λ, 0,∆1; 0,−λ,∆2; 0, 0, 0] is a (3 × 3)-
matrix, X = [x1;x2;x3] is a column vector, B = [−k;−k; 0] is a (3 ×
1)-matrix, and Y = [x1x2] is a vector with only one element. The above
equations can be written as Ẋ = AX + BY . If we use the method
outlined above and replace x3 by 1, we get the linear function p =
−λx1 + λx2 + ∆1 −∆2. We immediately observe that Lf (p) = −λp.

4.3.2. Nonlinear invariants
Assume that the dynamics in the mode q are given by Ẋ = f(q), where
f(q) ∈ Q[X]n is a polynomial vector field. A syzygy of the vector field
f(q) is a 1-form ~hT such that ~hT f(q) = 0. A 1-form ~hT is exact if
there exists a smooth function (polynomial, in our case) p such that
~hT = ~dp. Suppose there is a syzygy ~qT of the vector field f(q) which is
also exact. In other words, there is a polynomial p such that

∂p/∂x1 = q1, ∂p/∂x2 = q2, . . . , ∂p/∂xn = qn and
q1 ∗ (dx1/dt) + q2 ∗ (dx2/dt) + · · ·+ qn ∗ (dxn/dt) = 0.

Under these assumptions, it is easy to note that the Lie derivative of p
with respect to the vector field f(q) vanishes, that is, dp/dt = ~dpẊ =
~dpf(q) = 0. The set {p} is closed under Lie derivative computation. In
fact, in this case the value of the expression p(x1, x2, . . . , xn) remains
invariant through the time evolution of the nonlinear system and it is
fruitful to include p in the set P .
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Example 8. Consider the nonlinear dynamical system:

ẋ1 = x1x2 ẋ2 = −x1

It is the case that 1x1x2 +x2(−x1) = 0 and hence (1, x2) is a syzygy of
the polynomials x1x2,−x1. A solution for p that satisfies both ∂p/∂x1 =
1 and ∂p/∂x2 = x2, is V = x1 + x2

2/2. It is easily observed that ṗ = 0
and hence p is an invariant of the above dynamical system.

4.3.3. Nonlinear barriers
Assume again that the dynamics in the mode q are given by Ẋ = f(q),
where f(q) ∈ Q[X]n is a polynomial vector field. Suppose that there
exists a polynomial r such that r = ~qT f(q), the 1-form ~qT is exact (that
is, dp = ~qT for some p ∈ Q[X]), and r is nonnegative or nonpositive
definite relative to Inv∗(q)∧ p ∼ 0, where ∼ ∈ {>,<}. In other words,
we have

r = ~qT f(q), ~qT = dp,
Th |= Inv∗(q) ∧ p ∼ 0⇒ r ∼′ 0, ∼′∈ {≥,≤}.

In this case, we can add p to the set P , since Lf(q)(p) = r and we
can infer the sign of r given the sign of p. Note that r is in the ideal
generated by the polynomials in f(q).

4.3.4. Computability issues
The computation of nonlinear invariants and barriers, as described
above, requires the ability to (a) compute a syzygy basis for a finite set
of polynomials, (b) check for exactness of a given 1-form, and integrate
an exact 1-form, (c) enumerate elements in the ideal generated by a
finite set polynomials, and (d) test a polynomial for being relatively
nonnegative or nonpositive definite. Questions pertaining to ideal mem-
bership can be solved using Gröbner basis computation and syzygy
basis can also be computed using standard algorithms from compu-
tational algebraic geometry. Exactness of a 1-form ~hT can be tested
by checking if ∂hi/∂xj = ∂hj/∂xi, for all i, j [52]. Exact polynomial
1-forms can be integrated symbolically. The test for nonnegative or
nonpositive definiteness requires theorem proving capability.

Unlike the case of linear dynamics, the discovery of invariants and
barriers for nonlinear dynamics involves a search. We have to enumerate
syzygies or ideal members, and test if they satisfy the other constraints.
It is left for future work to determine if the sets of nonlinear invariants
and barriers are (algorithmically) computable.
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Example 9. Consider the nonlinear system

ẋ1 = x1 − x2 + x1x2 ẋ2 = −x2 − x2
2.

The nonnegative definite polynomial x2
2 is in the ideal generated by

x1 − x2 + x1x2 and −x2 − x2
2 and we correspondingly have x2

2 =
−x2(x1 − x2 + x1x2) − x1(−x2 − x2

2). The 1-form [−x2,−x1] is ex-
act since ∂(−x2)/∂x2 = ∂(−x1)/∂x1 = −1. Symbolically integrating
this 1-form, we get the polynomial −x1x2. In all, we conclude that
d/dt(−x1x2) = x2

2. Since x2
2 ≥ 0 is always true, we can infer that the

value of −x1x2 is nondecreasing.

4.4. Barrier Certificates

Consider a continuous dynamical system with dynamics given by Ẋ =
f(X) and initial states Init . Suppose that we are also given an unsafe
region Xu. A function p such that (a) Lf(q)(p) ≤ 0 whenever p = 0,
(b) p(x) > 0 whenever x ∈ Xu, and (c) p(x) ≤ 0 whenever x ∈ Init , is
called a barrier certificate [39, 40]. An existence of a barrier certificate
demonstrates that the unsafe region is not reachable from the initial
states. Several of the functions proposed by us to be included in the set
P satisfy conditions similar to condition (a). For example, the linear
functions defined by the left eigenvectors for linear dynamics satisfy
condition (a). Similarly, some of the functions proposed above for non-
linear dynamics also satisfy condition (a). These functions can become
barrier certificates if the initial and the unsafe regions additionally
satisfy conditions (b) and (c). Techniques based on convex optimization
have been proposed for the computation of barrier certificates [40]. Any
functions computed in this way can also be added to the set P .

Barrier certificates are good choices for inclusion into the set P since
they satisfy our general characterization of the set of good predicates.
Alternatively, our general characterization can be seen as a general-
ization of the notion of barrier certificates to sets of functions, which
if used together, can yield useful reachability information about the
hybrid system.

Example 10. The Volterra predator-prey model [52] is given by

ẋ1 = −x1 + x1x2 ẋ2 = x2 − x1x2

where x1 indicates the number of predators and x2 indicates the number
of prey. It is an easy exercise to note that the set of four polyno-
mials P0 = {x1, x2, (x2 − 1), (x1 − 1)} is closed under Lie derivative
computation. The qualitative abstraction of this model over the four
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polynomials in P0 shows the possible oscillatory behavior of the system.
Another choice of a closed set is {x1 + x2, x2− x1, x1 + x2− 2x1x2, 1−
2x1x2} and this can be used to refine the above abstraction.

5. Refining the Abstraction and Other Optimizations

The process of abstracting the continuous evolution of the hybrid sys-
tem HS is done using qualitative rules in our approach as outlined
above. As a consequence of this, the abstract transitions are obtained
as updates to the abstract variables, each one independent of the other,
as in cartesian abstraction [7]. This means that the concretization of
a new abstract state reached by taking an abstract transition could
be infeasible. Furthermore, certain abstract states can also be deleted
because they are explicitly disallowed by the given invariant set Inv of
the concrete system.

More specifically, any transition to the abstract state (q,qP) can be
deleted if

Th 6|= ∃X : γ∗(qP) ∧ Inv∗(q)(X).

Note that this process also removes infeasible abstract states, that is,
states (q,qP) such that Th 6|= ∃X : γ∗(qP). If the infeasible abstract
states were not removed, then we could have cases where we (spuri-
ously) reach a feasible abstract state via an infeasible abstract state.
Thus, removing the infeasible abstract states improves the quality of
abstraction by eliminating such spurious trajectories.

This refinement step is implemented by first computing the set
Feas = {qP ∈ QP : Th |= ∃X : γ∗(qP)} during the process of
constructing the abstraction. We modify each abstract transition by
adding an extra condition to check if the destination state is feasible
and satisfies the invariant of the destination mode. For example, if the
original abstract transition was

q, ψ1(QP ) −→ q′, QP := FQ(QP )

then we replace it by the new abstract transition

q, ψ1(QP ) −→ q′, QP := FQ(QP ), QP ∈ Feas ∩ α(Inv(q′))

where QP refer to the new values of these variables in the newly added
condition. The transition is allowed only if the additional condition
holds.
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5.1. Reducing the size of the abstract state space

The size of the abstract state space, O(|Q|×3|P |), grows exponentially
with the number of terms in the set P . This size can be reduced if not
all modes are abstracted using the same set P of terms. We can choose
a different subset of terms for different modes of the hybrid system.

Let Pq be a set of terms indexed by the modes q ∈ Q. When
abstracting a concrete predicate φ(X) in mode q, we will only use
the terms in Pq, so that Equation 5 is replaced by,

α∗Pq
(φ(X)) = {q′ ∈ QPq : Th |= ∃X : γ∗(q′) ∧ φ(X)}. (9)

The initial states can be abstracted using this modified equation now.
A discrete transition q, φ(X) −→ q′, X := F (X) is now abstracted

by the following transitions, defined for each qP ∈ α∗Pq
(φ(X)),

q, qP −→ q′, (qp := ITE1 (qP, Qp1, Qp2, Qp3))p∈Pq′

where Qp1, Qp2, Qp3 are now subsets of 2QPq . The only change in the
abstraction of the continuous evolution is that in mode q ∈ Q we only
make changes to the abstract variables qp, where p ∈ Pq. The size of
the state space of the resulting abstract system is now O(Πq∈Q|Pq|).

The process for obtaining terms to include in P , as outlined in Sec-
tion 4, works on discrete modes individually. If the term p is generated
when working in mode q, then p is added to Pq. For example, in
the saturation process that computes higher-order Lie derivatives, if
p′ = Lf(q)(p) for p ∈ Pq, then p′ is added to Pq and it is not added to
any of the other sets Pq′ , q′ 6= q.

6. Computability and Theorem Proving Obligations

We have described the abstraction procedure assuming that we have
a procedure to handle the theorem proving obligations that are gener-
ated. In fact, we have left the choice of the theory Th open until now.
In this section, we will briefly discuss the issues related to automating
the theorem proving support required for constructing abstractions of
hybrid systems as described in this paper.

We recapitulate the requirements on the theorem proving capability
required over the theory Th. We need the ability to decide satisfiability
of quantifier-free formulas (that is, implicitly existentially quantified
formulas) over Th. First, this is required to abstract initial states and
guards of discrete transitions, as given by Equation 5. Second, the proof
obligations arising in the process of abstracting the updates on discrete
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transitions and abstracting the continuous dynamics are of the form
Th |= ψ ⇒ p ∼ 0, where ∼∈ {≥, 6=,≤}. These are equivalent to testing
Th |= ∃X : (ψ ∧ p ∼′ 0), where ∼′ is respectively in {<,=, >}.
Finally, we note that we need to decide satisfiability of quantifier-free
formulas to eliminate the infeasible states from the abstract system.
The signature of Th is required to contain the symbols {−, >,=} and
any other symbol required either to specify the input hybrid system or
to express the Lie derivative of terms in Th with respect to the system
dynamics.

The time complexity of the basic abstraction procedure of Section 3,
ignoring the phase of generating the set P , is O(|Q||P |3|P |TTh(N) +
|Q|23|P |TTh(N)), where |S| denotes the cardinality of the set S, TTh is
the time-complexity of the satisfiability procedure for theory Th, andN
is the size of the input hybrid system HS . The first term results from the
phase of abstracting the continuous dynamics (Section 3.2.2) and the
second term is contributed by the discrete transitions (Section 3.2.1).
In our implementation, we attempt to overcome the two most expensive
factors, 3|P | and TTh , in the complexity.

In the process of constructing an abstraction, we do not explic-
itly enumerate the 3|P | states in QP. In the case of abstracting the
initial states, we do a depth-first enumeration of these exponentially
many states and cache witnesses of disproofs to avoid repeated theorem
proving effort. In the case of abstracting the dynamics, we use several
heuristics, such as slicing, to select a small subset P1 ⊆ P , and enumer-
ate only over the 3P1 states. These approximations do not compromise
the soundness of the abstraction, though they can potentially affect its
quality.

Special classes of hybrid systems, such as timed automata, can be
specified using the signature {Q,+,−, >,=}, which excludes the multi-
plication operator. The theory of reals over this signature, often called
the theory of linear arithmetic over reals, satisfies all our constraints in
this case and it can be used for abstracting such systems. Satisfiability
of a conjunction of atomic formulas is efficiently decidable for this
theory.

If the theory Th is the theory of reals defined over the signature
{Q,+,−, ∗, >,=}, then we can use polynomial expressions to specify
the dynamics of the hybrid system. This theory is called the theory of
the real closed fields and it can be used to abstract such polynomial
systems. This theory is known to be decidable [47, 11]. In particular,
the satisfiability problem is decidable. However, the decision procedure
is computationally expensive.

One can also use richer signatures by including the trigonometric
functions or the exponential function in the signature. The theory
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of reals over such richer signatures loses some of its nice decidability
results.

The abstraction procedures uses theorem proving in a “failure-tolerant”
mode, that is, the correctness of the procedure is preserved even when
the theorem prover ceases to be complete as long as it is sound. By
soundness, we mean that whenever the prover says a formula is unsat-
isfiable, then it really should be unsatisfiable. Completeness requires
that if the prover says satisfiable, then the formula should indeed be
satisfiable. The proof of Theorem 1 only requires that the theorem
prover be sound. The incompleteness in the theorem prover will only
result in a coarser abstract system. Thus, we can use efficient, sound,
but incomplete, procedures to test satisfiability of quantifier-free for-
mulas in the theory Th for constructing abstractions. This is especially
useful if it is computationally expensive, or impossible, to obtain sound
and complete decision procedures.

7. Compositional Abstraction

Let HS 1 = (Q1 ∪ Qin
1 , X1 ∪ X in

1 , Init1, Inv1, t1, f1) and HS 2 = (Q2 ∪
Qin

2 , X2 ∪X in
2 , Init2, Inv2, t2, f2) be a pair of hybrid automata, where,

for i = 1, 2, Qin
i is a finite set of input discrete variables, X in

i is a finite
set of input real variables, Init i ⊆ Qi×Xi, Inv i : Qi×Qin

i 7→ 2(Xi×Xin
i ),

ti : Qi ×Qin
i ×Xi ×Xin

i ×Qi ×Xi, and fi : Qi ×Qin
i 7→ (Xi ×Xin

i 7→
TXi). Let σ1 : (Qin

1 ∪ X in
1 ) 7→ (Q2 ∪ X2) and σ2 : (Qin

2 ∪ X in
2 ) 7→

(Q1 ∪X1) be two renaming functions that map the input variables to
other state variables1. The result of composing HS 1 and HS 2 (with
respect to σ1 and σ2) is the hybrid automaton HS = HS 1 × HS 2 =
(Q,X, Init , Inv , t, f), where Q = Q1∪Q2 is the set of discrete variables
so that the discrete modes of HS is given by Q = Q1 ×Q2 and X =
X1 ∪ X2 is the set of real variables and the continuous state-space of
HS is X = X1 × X2. If (q1,qin

1 ,x1,xin
1 ,q1

′,x1
′) ∈ t1 in HS 1, then

(q1,q2,x1,x2,q1
′,q2,x1

′,x2) ∈ t in HS if qin
1 matches q2 on the

variables made identical by σ1 and xin
1 matches x2 on the variables

made identical by σ1. Similarly, a discrete transition in t2 induces a
discrete transition in HS . Note that the hybrid automaton HS can
make a discrete transition exactly when one of its components can
make a discrete transition. If Ẋ1 = f1(q1)(X1, X

in
1 ) is the continuous

flow equation in the discrete mode q1 of the automaton HS 1, and Ẋ2 =
f2(q2)(X2, X

in
2 ) is the continuous flow equation in the discrete mode q2

1 For simplicity, we assume here that the composed hybrid automaton HS is
autonomous, that is, it has no inputs and all inputs of HS1 and HS2 are closed by
suitably renaming them to other state variables.
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of the automaton HS 2, then in the discrete state (q1,q2) of HS , there
is a continuous flow given by the equations Ẋ1 = f1(q1)(X1, σ1(X in

1 ))
and Ẋ2 = f2(q2)(X2, σ2(X in

2 )). Note that the time evolutions of the
component hybrid automata happen simultaneously.

Example 11. The Delta-Notch lateral inhibition model in Example 2
shows interesting behavior when there is more than one cell. A model of
two such cells is obtained as a composition of two hybrid automata, one
for each cell. For i = 1, 2, the hybrid automaton HS i = (Qi ∪Qin

i , Xi ∪
X in
i , Init i, Inv i, ti, fi) is obtained from the automaton HS described in

Example 2 by (a) appending index i in the subscript of names of all
variables, (b) setting Qin

i = ∅, and (c) setting X in
1 = {xu1} and X in

2 =
{xu2}. Define the renaming functions σ1 and σ2 so that σ1(xu1) = xd2
and σ2(xu2) = xd1. The two-cell Delta-Notch lateral signaling model is
now obtained by composing HS 1 and HS 2 with respect to σ1 and σ2.

7.1. Abstraction

Let HS 1 = (Q1 ∪ Qin
1 , X1 ∪ X in

1 , Init1, Inv1, t1, f1) and HS 2 = (Q2 ∪
Qin

2 , X2∪X in
2 , Init2, Inv2, t2, f2) be a pair of hybrid automata. We wish

to compositionally abstract the hybrid automaton HS = HS 1 × HS 2

obtained by composing HS 1 and HS 2 under given renaming functions
σ1, σ2. However, this is only possible under some strong assumptions
on the level of interaction between HS 1 and HS 2.

Assume that for i = 1, 2, it is the case that the hybrid automaton
HS i = (Qi ∪Qin

i , Xi ∪X in
i , Init i, Inv i, ti, fi) satisfies the following two

conditions:

(A1) The vector field fi(q) does not depend on the input variables X in
i .

(A2) There is no term containing variables from both Xi and X in
i that

occurs in the guard of discrete transitions and invariants.

As a consequence of Condition (A2), we can assume that all atomic
formulas in a guard or invariant in HS i are of the form p ∼ 0, where
p ∈ T (Xi) or p ∈ T (X in

i ). If either of these two conditions is violated
by either HS 1 or HS 2, then the compositional abstraction algorithm
fails. This algorithm is described as follows:

1. For i = 1, 2 let

P in
i := {p ∈ T (X in

i ) : p ∼ 0 occurs in HS i}
Pi := {p ∈ T (Xi) : p ∼ 0 occurs in HS i}
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2. Let P1 := P1 ∪ P in
2 and P2 := P2 ∪ P in

1 . Obtain the final sets Pi
of terms, over Xi, using saturation and other methods, for use in
abstracting HS i.

3. Abstract HS i using the terms in Pi to get a discrete transition
system DS i under the assumption that the input variables are un-
changed during both continuous evolutions and discrete transitions.
Note that DS i = (Qi∪Qin

i ∪QPi ∪QP in
i
, InitAi , t

A
i ), where QP in

i
and

Qin
i are input variables.

4. Construct DS = (Q1 ∪ Q2 ∪ QP1 ∪ QP2 , InitA1 × InitA2 , t
A), where

tA contains (a) all transitions of tA1 and tA2 that correspond to
abstractions of discrete transitions of either HS 1 or HS 2, and (b)
the cross-product of all the transitions that are abstractions of the
continuous dynamics. Return DS .

Note that Assumption (A1) guarantees that the continuous evolu-
tions of HS 1 and HS 2 are completely independent of each other. Hence,
to track the evolution of a pure term p over Xi along a flow, we only
need to consider the continuous dynamics of HS i. However, the discrete
transitions of HS 1 (HS 2) depend on variables that are set by HS 2 (HS 1)
via the terms p in guards and reset functions. Hence, HS 2 (HS 1) needs
to “track” such terms and this is the reason for Step 2 above.

THEOREM 2. Let HS i = (Qi ∪Qin
i , Xi ∪X in

i , Init i, Inv i, ti, fi) be two
hybrid automata and ρ1 : Qin

1 ∪X in
1 7→ Q2 ∪X2 and ρ2 : Qin

2 ∪X in
2 7→

Q1 ∪X1 be two renamings and HS be the result of composing HS 1 and
HS 2 with respect to the two renamings. Let P1, P2, and DS = (QA =
Q1∪Q2∪QP1∪QP2 , InitA, tA) be as computed by the procedure outlined
above. Then, DS is an abstraction of HS.

Proof. If ((q1,q2), (x1,x2)) ∈ Q1×Q2×X1×X2 is a concrete state
of the hybrid system HS , then the abstraction mapping α is

α(((q1,q2), (x1,x2))) = ((q1,q2), (αP1(x1), αP2(x2)))

where αPi are defined by Equation 2. Since InitAi is a correct abstraction
of Init i, it follows that InitA1 × InitA2 is a correct abstraction of Init1×
Init2.

Suppose that (((q1,q2), (x1,x2)), ((q′1,q
′
2), (x′1,x

′
2))) ∈ tα is a tran-

sition in the discrete system HSα corresponding to HS with respect to
the abstraction mapping α. Let this transition be a result of contin-
uous evolution (Definition 2 (b)). Since the continuous dynamics of
HS 1 (HS 2) are independent of the state variables of HS 2 (HS 1), we
know that there is a transition (qi, α(xi),qi, α(x′i)) ∈ tAi and hence, by
definition of DS , there is the required transition in DS .
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Next suppose that (((q1,q2), (x1,x2)), ((q′1,q
′
2), (x′1,x

′
2))) ∈ tα is

due to a discrete transition (Definition 2 (a)) taken by, say, HS 1. Now,
the guard and the updates of this discrete transition of HS 1 may depend
on state variables of HS 2. But the state variables of HS 2 do not change
in this transition, and hence q′2 = q2 and x′2 = x2. By correctness of the
abstraction on HS 1, it follows that ((q1, α(x1)), (q′1, α(x′1))) ∈ tA1 . By
definition of DS , it follows that ((q1,q2, α(x1), α(x2)), (q′1,q2, α(x′1),-
α(x2))) ∈ tA. This completes the proof.

Example 12. Consider the hybrid automaton HS obtained by com-
posing HS 1 and HS 2 from Example 11. In Step 1 of the procedure, we
compute P in

1 = {xd2 − hn} and P1 = {xn1 − hd}. Similarly we get the
values of P in

2 and P2. Now, in Step 2, P1 is set to {xn1 − hd, xd1 − hn}
and after saturation (also see Example 5), we get Pi = {xni, xni −
hd, xni−∆n/λn, xdi, xdi−hn, xdi−∆d/λd}. Note that we have sanitized
these saturated sets by multiplying them with appropriate positive or
negative values. Label the elements of Pi as pi1, . . . , pi6, in that order.
In Step 3, we compute the abstractions DS 1 and DS 2. DS 1 has six
state variables, qp1i , i = 1, . . . , 6 and one input variable qp25 .

(qp1i :∈ if (p25 = neg) then VN (qp11 , . . . , qp16 , 1i, 11)
else VN (qp11 , . . . , qp16 , 1i, 13))i=1,2,3

(qp1i :∈ if (p12 = pos) then VN (qp11 , . . . , qp16 , 1i, 14)
else VN (qp11 , . . . , qp16 , 1i, 16))i=4,5,6

Similarly, DS 2 has six local variables and one input variable qp15 and
it can be represented as above. Finally, the abstract system DS is
obtained by putting DS 1 and DS 2 together as in Step (4).

8. Relative Completeness

Our approach for abstracting hybrid systems uses a combination of
predicate abstraction and qualitative reasoning techniques. The quali-
tative approach for abstracting continuous dynamics appears to be very
weak. But there are indications that this approach is not far fetched,
and it can give good abstractions even when applied to purely con-
tinuous dynamical systems. Tabuada [46] has recently shown that the
sign abstraction based on qualitative reasoning gives a system which
is bisimilar to the original system in certain cases. In the following
theorem, we establish a relative completeness result for our qualitative
approach.
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Consider a simple system with one state variable, ẋ = −x, under-
going exponential decay. Let x = 1 initially. Clearly, the set of all
reachable states of the system is exactly x > 0 ∧ x ≤ 1. Thus, the
terms x and x − 1 are sufficient to precisely describe the reach set of
this example. If we abstract this system using P = {x, x − 1} and
compute the reachable set on the abstract system and concretize it, we
get x ≥ 0 ∧ x − 1 ≤ 0 as the reach set, which is the closure of the set
described by 0 < x ≤ 1. The following theorem formally states this
observation for general continuous dynamical systems.

We make standard assumptions on the vector field so as to guarantee
the existence of solutions to the differential equations. We also assume
that we use a sound and complete theorem prover to discharge the
proof obligations in constructing the abstraction for purposes of the
following theorem.

THEOREM 3. Let CS = (X, Init , f) be a continuous dynamical sys-
tem. Let φ(X) be a quantifier-free formula in the theory Th that repre-
sents the set of all reachable states of CS, that is, [[φ]] = Reach(CS).
Let P0 = {p ∈ T (X) : p ∼ 0 occurs in φ} and assume that the sat-
uration process of P0 under higher-order Lie derivative computation
terminates in the set P . Let DS = (QP , InitA, tA) be the abstraction
of CS with respect to the set P . If ψ is the reachable set of DS, then
[[φ]] ⊆ γ(ψ) ⊆ [[φ]]c, where [[φ]]c denotes the closure of [[φ]].

Proof. By correctness of the abstraction procedure, it follows that
[[φ]] ⊆ γ(ψ). We next show that γ(ψ) ⊆ [[φ]]c,

For q ∈ QP, we will call the set γ(q), whenever it is nonempty,
a region. We note that [[φ]] is just a finite union of such regions.
Consequently, if any point in a region is reachable, then all points
in that region are necessarily reachable. If q = ((qp = pos)p∈P1 , (qp =
zero)p∈P2 , (qp = neg)p∈P3), then we specify the region γ(q) by the triple
(P1, P2, P3). We observe that the region (P1, P2, P3) is on the boundary
of the region (P ′

1, P
′
2, P

′
3), if P1 ⊆ P ′

1, P3 ⊆ P ′
3, and P ′

2 ⊂ P2. This fact
is used in the proof below.

Since Init ⊆ [[φ]], and all predicates in φ are included in the set
of abstraction predicates, it follows that all the regions contained in
γ(InitA) are also contained in [[φ]], and hence γ(InitA) ⊆ [[φ]]. Now,
if γ(ψ) 6⊆ [[φ]]c, then there are two abstract feasible states q and q′

(and two corresponding regions (P1, P2, P3) and (P ′
1, P

′
2, P

′
3)), such that

(q,q′) ∈ tA, and the region γ(q′) is not, while the region γ(q) is,
contained in the closure [[φ]]c of the reachable set [[φ]].

First consider the case when γ(q) ⊆ [[φ]], that is, all points in the
region γ(q) are reachable in CS. Let x ∈ γ(q) be any point in this
region. Since we have assumed the existence of a solution of the differ-
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ential equation on Rn, we have that starting from point x the system
reaches a new point x′′ in a suitably small time step such that for all
p ∈ P1, p(x′′) > 0; for all p ∈ P3, p(x′′) < 0; and for all p ∈ P2, p(x′′)
is either positive, negative, or zero, depending on the sign of Lf (p)
at point x. In other words, if x′′ belongs to the region (P ′′

1 , P
′′
2 , P

′′
3 ),

then P ′′
1 = P1 ∪ P+

2 , P ′′
2 = P2 − P+

2 − P
−
2 , and P ′′

3 = P3 ∪ P−
2 , where

P+
2 = {p ∈ P2 : Lf (p)(x) > 0} and P−

2 = {p ∈ P2 : Lf (p)(x) < 0}.
Since x′′ is reachable, the full region (P ′′

1 , P
′′
2 , P

′′
3 ) is contained in [[φ]]

and is reachable. Using the qualitative abstraction rules (a)–(c) of Sec-
tion 3.2.2 and the fact that for all p ∈ P , the sign of Lf (p) can be
uniquely inferred in a given region (thanks to the closure of P under
Lie derivative computation), we conclude that P ′′

2 ⊆ P ′
2, P

′
1 ⊆ P ′′

1 ,
and P ′

3 ⊆ P ′′
3 . If P ′′

2 = P ′
2, then P ′′

1 = P ′
1 and P ′′

3 = P ′
3, and the new

reachable region (P ′′
1 , P

′′
2 , P

′′
3 ) is identically equal to the region γ(q′)

thus showing that γ(q′) ⊆ [[φ]], a contradiction. If P ′′
2 ⊂ P ′

2, then using
the above observation we infer that the region γ(q′) is on the boundary
of the region (P ′′

1 , P
′′
2 , P

′′
3 ). This shows that γ(q′) ⊆ [[φ]]c, leading to a

contradiction again.
Next consider the case when γ(q) is part of [[φ]]c− [[φ]], that is, the

set γ(q) is on the boundary of the set of reachable states of CS. As
in the previous case, we start with a point x ∈ γ(q), and construct a
new point x′′ reachable from x in a small time step such that γ(q′) ⊆
γ(α(x′′))c. But now, since x is not a reachable state, x′′ need not be
reachable. However, by assumption, there are reachable points in the
neighborhood of x. We pick a point x0 sufficiently close to x so that x0

reaches a point x′′0 that is sufficiently close to x′′. Since x ∈ γ(α(x0))c,
it follows that x′′ ∈ γ(α(x′′0))c. Combining this fact with the fact that
γ(q′) ⊆ γ(α(x′′))c, we get γ(q′) ⊆ γ(α(x′′0))c. But the point x′′ and all
points in γ(α(x′′)) are reachable, and this shows that γ(q′) ⊆ [[φ]]c,
which contradicts our assumption. This completes the proof.

The above theorem cannot be easily generalized to hybrid systems.
Even if all the assumptions made in Theorem 3 were true within each
mode, the abstract system could reach boundaries that are unreachable
in the concrete system. If there are discrete transitions from these
boundary points, then the abstract system would take the correspond-
ing abstract transitions and reach parts of state space unreachable in
the concrete. For example, in the exponential decay example discussed
above, suppose that there is a discrete transition on the condition that
x = 0, which takes the system into a new mode q′. The new mode q′

is unreachable in the concrete system, but it would be reachable in the
abstract system.
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9. Related Work

Qualitative reasoning has been used by researchers in Artificial In-
telligence for modeling and analyzing physical systems in the face of
incomplete knowledge of the system dynamics [44]. The idea is to in-
terpret a continuous variable, say x, over an abstract domain of the form
{(−∞, c0), c0, (c0, c1), c1, (c1, c2), c2, . . . , cn, (cn,∞)}, where c0, . . . , cn ∈
R are constants. Model construction involves keeping track of the sign
of the derivative of x. In [44], the authors give a method for proving
temporal properties about systems specified (incompletely) using qual-
itative differential equations. In [30] and [45], the authors assume a
(more) completely specified input model (using differential equations,
for example) and construct an abstraction either incrementally [30] or
directly [45]. We extend the ideas of qualitative reasoning for analyzing
hybrid models by using arbitrary functions over the state variables,
and not just state variables, for defining the qualitative state space.
The methods to seek the right functions by analyzing the differential
equations systematically is also novel in our approach. An important
realization is that a set of functions closed under Lie derivative compu-
tation is important for achieving effective abstractions of the original
hybrid system. We also use powerful theorem proving support in creat-
ing the abstraction. As a result, the abstractions we obtain have more
information and are more useful from an analysis point of view.

There has been a lot of work on constructing abstractions for hybrid
systems. These works can be categorized based on the semantics of the
hybrid system considered, the class of formulas preserved, the class
of hybrid systems considered, the class of abstract systems generated,
and whether the abstractions are conservative or accurate. Accurate
abstractions, or bisimulations, lead to decidability results [5]. In [36],
the interest is in abstracting certain restricted classes of linear hybrid
systems into another simpler class of hybrid systems called timed au-
tomata. The paper [25, 23] translates nonlinear hybrid systems into
linear hybrid automata, whereas timed automata approximations of
the original nonlinear system are considered in [21]. These approaches
can be viewed as abstracting a hybrid system by another hybrid system.

Approaches based on predicate abstraction have also been proposed
for timed systems [34] and more recently for hybrid systems [4]. Fi-
nite approximations of the system are also constructed in [9]. In both
approaches, the continuous dynamics are abstracted using differential
equation solvers. Similar approaches, but applied directly to overap-
proximating reach sets (rather than constructing an abstraction), have
been investigated in [27, 23]. There is also some recent work on refining
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abstractions based on the spurious counter-examples produced [34, 3,
10].

One can naturally associate an infinite state transition system, with
uncountably many states, with a continuous dynamical system or a
hybrid system. However, different abstractions attempt to preserve
different behaviors of this infinite transition system. In [24], certain
discrete transitions of the hybrid system are marked observables, and
the abstraction attempts to preserve the observable behavior. In other
cases [19], the discrete states in a run of the system are observed and
the abstraction attempts to preserve this sequence of discrete states.
In [8], the constructed abstraction captures all the discrete transition
made by the system. Therefore, one semantic step in [8] corresponds
to a continuous flow followed by exactly one discrete step. In our work,
the overall behavior of the hybrid system is abstracted with respect to
a finite set of polynomials and the original discrete states. In partic-
ular, the behavior inside a continuous evolution is captured too. Our
approach guarantees that the abstractions are sound. A price we pay
for this is that our method for computing the abstract transitions is
more approximate (and consequently much simpler computationally)
than some of these other methods. The work [43] is in the discrete-time
framework and assumes that the dynamics are specified by a solved
function, rather than differential equations, that also satisfies certain
conditions on the existence of inverse.

A related thread of work consists of the use of abstract interpre-
tation techniques, like widening, to accelerate reachability (or fixed
point) computation [22, 12]. In these works, abstract systems are not
generated as we do here, but the widening operation can be interpreted
as “working” on the abstraction.

Our work is also closely related to the work on over-approximating
reach sets for special kinds of systems. Exact reachability sets can be
computed for linear vector fields where the matrix A is diagonalizable
with all rational or all purely imaginary eigenvalues [28]. The linear
functions constructed from left eigenvectors for use in the abstraction
process capture partial reachability information. Thus, our techniques
can handle linear systems with mixed (reals and imaginary) eigenvalues,
unlike results by Lafferriere et. al. [5, 28], but we only get approximate
reachable sets. For more recent work on approximating reachable sets
using information from the eigenstructure of the A matrix, see [53].

Some of the good functions p we generate for purposes of abstracting
the original system are just “energy” or Lyapunov functions. Such func-
tions have been used to get analytical descriptions of trajectories and
provide arguments for stability or periodicity. However, the problem
of generating these functions and issues about computability have not
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been addressed. Moreover, such functions have not been used for defin-
ing abstraction mapping and getting over approximations of the reach
sets. These features distinguish this work from the well established
theory of nonlinear systems.

The sum of squares based method provides an alternative approach
to discharging the theorem proving obligations generated by our ap-
proach [41, 38, 37]. In our implementation, we use a sound, and in-
complete, decision procedure for satisfiability of conjunction of atomic
formulas in the theory of real closed fields [48].

10. Conclusion

We have presented a procedure for constructing sound abstractions for
hybrid systems. The procedure selects a finite set P of terms over some
theory and the abstraction mapping interprets these terms over the
three values sign domain, {pos, zero,neg}. The discrete transitions are
abstracted using the standard predicate abstraction approach, while the
continuous dynamics are abstracted using qualitative reasoning. Both
rely on the ability to decide satisfiability of quantifier-free formulas over
the theory of reals, defined over a suitable choice of signature.

The abstraction procedure can be applied compositionally, under
certain assumptions, to abstract a hybrid system composed of two
hybrid automata that interact through a well-defined set of input and
output state variables. We also show that our abstraction procedure is
sound and relatively complete.

The quality of the generated abstraction depends crucially on the
choice P of terms used. We have identified an important property,
viz. closure under Lie derivative computation, which appears to be
critical for providing good abstraction mappings. We have outlined
some approaches for computing good abstraction predicates.
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