
Constructing Invariants for Hybrid Systems

Sriram Sankaranarayanan, Henny Sipma, Zohar Manna?

Computer Science Department
Stanford University

Stanford, CA 94305-9045
{srirams,sipma,zm}@theory.stanford.edu

Abstract. An invariant of a system is a predicate that holds for ev-
ery reachable state. In this paper, we present techniques to generate
invariants for hybrid systems. This is achieved by reducing the invariant
generation problem to a constraint solving problem using methods from
the theory of ideals over polynomial rings. We extend our previous work
on the generation of algebraic invariants for discrete transition systems
in order to generate algebraic invariants for hybrid systems. In doing so,
we present a new technique to handle consecution across continuous dif-
ferential equations. The techniques we present allow a trade-off between
the complexity of the invariant generation process and the strength of
the resulting invariants.

1 Introduction

Hybrid Systems are reactive systems that combine discrete mode changes with
the continuous evolution of the system variables, specified in the form of differen-
tial equations. The analysis of hybrid systems is an important problem that has
been studied extensively both by the control theory, and the formal verification
community for over a decade. The most important analysis questions for hybrid
systems are those of safety, i.e, deciding whether a given property ψ holds in all
the reachable states, and the dual problem of reachability, i.e, deciding if a state
satisfying the given property ψ is reachable. Both these problems are computa-
tionally hard — intractable even for the simplest of cases, and undecidable for
most practical cases.

In this paper, we provide techniques to generate invariants for hybrid systems.
An invariant of a hybrid system is a property ψ that holds in all the reachable
states of the system. An inductive assertion of a hybrid system is an assertion ψ
that holds at the initial state of the system, and is preserved by all discrete and
continuous state changes of the system. Therefore, any inductive assertion being
true of all the reachable states is also an invariant assertion. Furthermore, the
standard technique for proving a given assertion ϕ invariant is to generate an

? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134
and CCR-02-09237, by ARO grant DAAD19-01-1-0723, by ARPA/AF contracts
F33615-00-C-1693 and F33615-99-C-3014, and by NAVY/ONR contract N00014-
03-1-0939.

inductive assertion ψ that implies ϕ. The advantage of an inductive assertion is
that it can be checked easily [15]. Therefore, the problem of invariant generation
is one of inductive assertion generation. This problem has received wide attention
in the program analysis community [13, 6, 7, 19, 17, 5, 2]. The generation of linear
inductive assertions for the special case of linear hybrid systems has also been
studied [10]. Many other approaches that compute the exact or the approximate
reach-set of a given hybrid system, can also be shown to compute reach-sets that
are inductive assertions [11, 18, 14].

In this paper, we extend our previous work on non-linear inductive assertion
generation [17] for discrete systems, by adapting it to generate invariants for
hybrid systems. We use the theory of ideals over polynomials and standard com-
putational techniques in algebraic geometry involving Gröbner bases to provide
a technique for computing inductive assertions for a given hybrid system. The
key idea behind our technique is that given a template assertion, i.e, a polyno-
mial of bounded degree in the system variables with unknown coefficients, we
derive constraints on the unknown coefficients so that any solution to these con-
straints is an inductive assertion. In order to keep these constraints tractable,
however, we consider several restrictions on the nature of an invariant. In par-
ticular, we consider stronger conditions for inductiveness than the traditional
requirements [15]. Also, we provide conceptually simple techniques to handle
the continuous evolution; these techniques require neither a closed form solution
to the differential equations nor an approximation thereof.

The key advantage of our technique is that it can construct inductive asser-
tions using less time and space than traditional techniques. Depending on the
nature of the consecution condition chosen, our constraint generation technique
is linear in the number of modes and discrete transitions, and polynomial in the
number of system variables. Furthermore, the constraints generated can range in
complexity from the more intractable non-linear constraints requiring quantifier
elimination to simple constraints involving only linear equalities. Of course, the
more complex constraints can potentially yield stronger invariants than the sim-
pler constraints. This trade-off is useful in practice, and contributes to making
the method scale.

The rest of the paper is organized as follows: Section 2 presents our compu-
tational model and the basic theory behind ideals and Gröbner bases. Section 3
presents the constraint generation process. The nature of these constraints and
their solution techniques are discussed in Section 4. In Section 5, we present some
examples demonstrating the application of our techniques. Section 6 concludes
with a discussion of the pros and cons.

2 Preliminaries

To model hybrid systems we use hybrid automata [12].

2.1 Computational Model: Hybrid Automata

Definition 1 (Hybrid System) A hybrid system Ψ : 〈V,L, T , Θ,D, I, `0〉 con-
sists of the following components:

– V , a set of real-valued system variables. The number of variables(|V |) is
called the dimensionality of the system;

– L, a finite set of locations;
– T , a set of (discrete) transitions. Each transition τ : 〈`1, `2, ρτ 〉 ∈ T consists

of a prelocation `1 ∈ L, a postlocation `2 ∈ L, and an assertion ρτ over
V ∪ V ′, representing the next-state relation, where V ′ denotes the values of
V in the next state;

– Θ, an assertion specifying the initial condition;
– D, a map that maps each location ` ∈ L to a differential rule D(`), an

assertion over V ∪ {v̇ | v ∈ V }. The differential rule at a location specifies
how the system variables evolve in that location;

– I, a map that maps each location ` ∈ L to a location condition (location
invariant), I(`), an assertion over V ;

– `0 ∈ L, the initial location.

Definition 2 (Computation) A computation of a hybrid automaton is an in-
finite sequence of states 〈l,x〉 ∈ L ×R|V | of the form

〈l0,x0〉 , 〈l1,x1〉 , 〈l2,x2〉 , . . .

such that the initiation condition l0 = `0 and x0 |= Θ holds, and for each
consecutive state pair 〈li,xi〉, 〈li+1,xi+1〉, one of the two consecution conditions
below is satisfied.

Discrete Consecution: there exists a transition τ : 〈`1, `2, ρτ 〉 ∈ T such that
li = `1, li+1 = `2, and 〈xi,xi+1〉 |= ρτ , or

Continuous Consecution: li = li+1 = `, and there exists a time interval
δ ≥ 0, and a continuous and differentiable function f : [0, δ] 7→ Rn, such
that f evolves from xi to xi+1 according to the differential rule at location
`, while satisfying the location condition I(`). Formally,
1. f(0) = x1, f(δ) = x2, and (∀ t ∈ [0, δ]), f(t) |= I(`),

2. (∀t ∈ [0, δ)),
〈

f(t), ḟ(t)
〉

|= D(`).

Example 1 (Bouncing Ball). Figure 1 shows a graphical representation of the
following hybrid system, representing a ball bouncing on a soft floor (y = 0):

V = {y, vy, δ}
L = {l},
T = {τ}, where, τ =

〈

l, l,

[
δ > 0 ∧ y = 0 ∧ y′ = y ∧
v′y = − vy

2 ∧ δ′ = 0

]〉

Θ = (y = 0 ∧ vy = 16 ∧ δ = 0)

D(l) =
(

ẏ = vy ∧ v̇y = −10 ∧ δ̇ = 1
)

I(l) = (y ≥ 0)

l : y ≥ 0

ẏ = vy

v̇y = −10

δ̇ = 1

y = 0, δ > 0
v′

y = −
vy

2
, y′ = y

δ′ = 0,

τ

Fig. 1. The hybrid automaton for a bouncing ball

The variable y represents the position of the ball, vy represents its velocity, and
δ denotes the time elapsed since its last bounce. A bounce is modelled by the
transition τ , in which the velocity vy of the ball is halved and the ball reverses
direction.

Definition 3 (Invariant) An invariant of a hybrid system Ψ at a location ` is
an assertion ψ such that for any reachable state 〈`,x〉 of Ψ , x |= ψ.

Definition 4 (Inductive Assertion Map) An inductive assertion map η is
a map that associates with each location ` ∈ L an assertion η(`), satisfying the
following requirements:

Initiation Θ |= η(`0),
Discrete Consecution For each discrete transition τ : 〈`1, `2, ρ〉, starting

from a state satisfying η(`1), ρτ establishes η(`2):

η(`1) ∧ ρτ |= η(`2)
′

Continuous Consecution For every location ` ∈ L, and states 〈`,x1〉, 〈`,x2〉
such that x2 evolves from x1 according to the differential rule D(`) at `, if
x1 |= η(`) then x2 |= η(`).

An assertion ϕ is inductive if the assertion map that maps each location to ϕ
is an inductive assertion map. It is easy to see that an inductive assertion is an
invariant. However, an invariant assertion is not necessarily inductive.

Example 2. For the hybrid system in Example 1, the assertion y = vyδ − 5δ2 is
an inductive invariant assertion. On the other hand, the assertion vy ≤ 16 is an
invariant but not inductive.

2.2 Algebraic Assertions

Our target invariants are algebraic assertions. The invariant generation method
is based on the theory of ideals in polynomial rings and makes use of Gröbner
bases. We will give a brief overview of the relevant concepts in this theory. A
more detailed description can be found in our previous work [17] or in standard
textbooks [8, 16, 1].

Notation The set of reals is denoted by R and the complex numbers by C. The
set of polynomials over variables x1, . . . , xn, with coefficients in the field K is
denoted by K[x1, . . . , xn] or K[x].

Definition 5 (Algebraic Assertion) An algebraic assertion over R[x1, . . . , xn]
is an assertion of the form

∧n
i=1(pi(x) = 0), where each polynomial pi ∈ R[x]

for 1 ≤ i ≤ n. The same algebraic assertion can alternatively be described by
the polynomial set {p1, . . . , pm}.

Definition 6 (Algebraic Hybrid Systems) An algebraic hybrid system is a
hybrid system Ψ : 〈V,L, T , Θ,D, I, `0〉, where, for each transition τ : 〈`1, `2, ρτ 〉 ∈
T , the relation ρτ is an algebraic assertion, and the initial condition Θ, and the
location conditions I(`) are algebraic assertions. Furthermore each rule D(`) is
an algebraic assertion of the form

∧

i ẋi = pi(x1, . . . , xn).

Definition 7 (Ideal) An ideal I ⊆ R[x1, . . . , xn] is a set of polynomials with
the following properties:

– 0 ∈ I,
– If p1, p2 ∈ I then p1 + p2 ∈ I,
– If p ∈ I and q ∈ R[x] then pq ∈ I.

The ideal generated by a set P = {p1, . . . , pm} ⊆ R[x], n ≥ 0, of polynomials is
written as

〈P 〉 = {g1p1 + · · · + gmpm | p1, . . . , pm ∈ P, g1, . . . , gm ∈ R[x]}

Ideal I is finitely generated if I = 〈P 〉 for some finite set P , called the basis of
I. It can be shown that any ideal in R[x1, . . . , xn] is finitely generated.

An ideal can be viewed as representing the polynomial consequences of a
finite set of polynomials. It contains all polynomials whose zeroes are a superset
of the common zeroes of the polynomials in the basis set.

Theorem 1. Let I be an ideal generated by the basis {p1, . . . , pm}. Then for
any polynomial p, if p ∈ I then {p1 = 0, . . . , pm = 0} |= (p = 0).

Proof. Since p ∈ I, p = g1p1 + . . . gmpm for some g1, . . . , gm. Therefore, if for
some z ∈ Cn, p1(z) = 0 ∧ · · · ∧ pm(z) = 0 then p(z) = 0.

Theorem 1 states that in order to establish the entailment ϕ |= (p = 0), it is
sufficient to test membership of p in the ideal generated by ϕ. In the remainder of
this section we will describe a method for testing ideal membership. The converse
also holds (under some restrictions), known as Hilbert’s Nullstellensatz [8], but
is not relevant to the soundness of our method.

Let X = {x1, . . . , xn} be a set of variables. A monomial over X is of the form
xr1

1 x
r2

2 · · ·xrn

n , where each ri ∈ N . A term is of the form c · p where c ∈ R and p

is a monomial. Our technique assumes the presence of a linear ordering among
terms that satisfies certain criteria not discussed here. An example of such an
ordering is the lexicographic ordering. Given a linear ordering ≺ on the variables
in X(x1 � x2 � · · · � xn), the lexicographic extension ≺lex is the lexicographic
ordering on the tuple 〈r1, . . . , rn〉 corresponding to a term xr1

1 · · ·xrn

n . Given a
polynomial g, we define its lead term (denoted lt(g)) to be the largest among
all its terms w.r.t. a given term-ordering.

Definition 8 (Reduction) Let f, g be polynomials, with a term-ordering <.

The reduction relation over polynomials,
g−→ is defined as: f

g−→ f ′ iff there
exists term p in f s.t. lt(g) divides p, where, f ′ = f − p

lt(g)g

The reduction cancels out the term p that was selected. If no such reduction can

be made, then f is said to be a normal-form w.r.t.
g−→, denoted g ∈ nfP (f).

For a finite set P of polynomials, f
P−→ f ′ iff (∃g ∈ P) f

g−→ f ′. The transitive

closure of
P−→ is denoted

P
�. The reduction

P−→ can be shown to be terminating
for all P . The reduction is confluent if every polynomial can be shown to reduce
to a unique normal form [1].

Theorem 2 (Ideal Membership). Let I = 〈P 〉 be an ideal and f be a poly-

nomial. If f
P
� 0 then f ∈ I.

Example 3. Assume a set of variables x, y, z with ordering x > y > z. Let
I =

〈
f : x2 − y, g : y − z, h : x+ z

〉
and p = x2 − y2. The lead term in the

polynomial f : x2 − z is x2, which divides the term t : x2 in p. Thus, p
f−→ p′,

where

p′ = (x2 − y2)
︸ ︷︷ ︸

p

−
x2

x2
︸︷︷︸

t
lt(f)

(x2 − y)
︸ ︷︷ ︸

f

= (−y2 + y)

The following sequence of reductions shows the membership of p in I

p
h−→ −zx− y2 h−→ z2 − y2 g−→ −yz + z2 g−→ −z2 + z2 ≡ 0

thus p
I
� 0 and hence p ∈ I. However, the reduction sequence

p
f−→ −y2 + y

g−→ −yz + y
g−→ −z2 + y

g−→ −z2 + z

reaches a normal-form without showing the ideal membership.

For an arbitrary ideal basis P , the reduction relation
P−→ may not be confluent,

and hence, may not provide a decision procedure for ideal membership. However,
given an ideal I, there is a special basis G, called the Gröbner basis, such that

I = 〈G〉, and the reduction relation
G−→ is confluent.

Theorem 3 (Gröbner Basis). Let I = 〈P 〉 be an ideal and f be a polynomial.

Let G be the Gröbner basis of I. Then f
G
� 0 iff f ∈ I.

A proof of this theorem can be found in any standard text or survey on this
topic [8, 16]. The standard algorithm for computing the Gröbner basis of an ideal
is known as the Buchberger algorithm with numerous implementations [20].

Example 4. Consider again the ideal I =
〈
x2 − y, y − z, x+ z

〉
from Exam-

ple 3. The Gröbner basis for I is G =
〈
z2 − z, y − z, x+ z

〉
. With this basis,

every reduction of p : x2 − y2 will yield a normal form 0.

2.3 Algebraic Templates

Our technique for invariant generation aims to find polynomials that satisfy
certain properties, namely the conditions for invariance. The method starts with
a candidate invariant that is a generic polynomial template with coefficients that
are linear expressions over a set of template variables. Satisfaction of the desired
properties then imposes constraints on the template variables, and the solution
to these constraints provides the coefficients of the target invariant.

We give a brief overview how to extend the theory of ideals over polynomial
rings to templates. A more detailed description can be found in [17].

Definition 9 (Template) Let A be a set of template variables and L(A) be
the domain of all linear expressions over variables in A of the form c0 + c1a1 +
. . . + cnan, ci ∈ R. A template over A,X is a polynomial in L(A)[x]. An A-
environment is a map α that assigns a real value to each variable in A, and by
extension, maps each expression in L(A) to a real value, and each template in
L(A)[x1, . . . , xn] to a polynomial in R[x1, . . . , xn].

Example 5. Let A = {a1, a2, a3}, hence L(A) = {c0 + c1a1 + c2a2 + c3a3 |
c0, . . . , c3 ∈ R}. An example template is (2a2 + 3)x1x

2
2 + (3a3)x2 + (4a3 + a1 +

10). The environment α ≡ 〈a1 = 0, a2 = 1, a3 = 2〉, maps this template to the
polynomial 5x1x

2
2 + 6x2 + 18.

The reduction
g−→ for polynomials can be extended to templates as follows:

Definition 10 (Reduction of Templates) Let p be a polynomial in R[x1, . . . , xn]
and f, f ′ be templates over A and {x1, . . . , xn}. The reduction relation is de-

fined as: f
p−→ f ′ iff the lead term lt(p) divides a term c(a0, . . . , am) · t in f and

f ′ = f − c·t
lt(p)p

Example 6. Let p be the polynomial x2 − y, with lt(p) = x2. Consider the
template f : ax2 + by2 + cz2 + dz + e. The lead-term of p (lt(p)) divides the

term ax2 in f . Therefore, f
p−→ f ′, where

f ′ : (ax2 + by2 + cz2 + dz + e) − ax2

x2
(x2 − y) = by2 + cz2 + dz + e+ ay

In [17] it is shown that confluence of the reduction relation w.r.t. Gröbner bases
extends to templates in the natural way.

The heart of our invariant generation method is to establish the conditions
on the template variables that identify all A-environments for which the corre-
sponding template instance belongs to a given ideal. Recall that a polynomial p
belongs to an ideal I iff its normal form w.r.t. a Gröbner basis for I is identically
zero.

Theorem 4. A polynomial p(x1, . . . , xn) is zero for all the possible values of
x1, . . . , xn iff all its coefficients are identically zero.

Thus given a template f and an ideal I with Gröbner basis G all instances of
the template belong to I if the coefficients of all terms in the normal from of f
are zero.

Example 7. Consider the template f = a1x
2 + a2y

2 + a3xy + a4y and the ideal
I given by the Gröbner basis

〈
x2 − 2y, y2

〉
. The normal form of f is nfG =

(2a1 + a4)y + a3xy. Thus for all A-environments for which 2a1 + a4 = 0 and
a3 = 0 the corresponding template instance belongs to I.

3 Constraint-Generation

Our invariant generation algorithm consists of the following steps:

1. fix a template map for the candidate invariant;
2. encode the conditions for invariance as an ideal-membership question;
3. derive the constraints on the template variables that guarantee the appro-

priate ideal-membership from (2);
4. solve the constraints to obtain the desired class of invariants.

In this section we describe and illustrate the the first three steps; the last step
is presented in section 4.

3.1 Template Map

The first step in our method is to fix the shape of the desired invariants. Let
A = {a1, a2, . . .} be a set of template variables and let Ψ be an algebraic hybrid
system with location set L = {`1, . . . , `m} and variables V = {x1, . . . , xn}. A
generic degree-k template over A and V is the sum of all monomials of degree k
or less, written as

∑

i1+···+in≤k

a〈i1,i2,...,in〉x
i1
1 · · ·xin

n

with a total of

(
n+ k
k

)

terms, and as many template variables. For example,

a degree-2 template for 5 variables has 21 terms.
A template map η associates each location ` with a template. For maximum

generality, the template variables in the templates should be all different. How-
ever, templates for different locations may have different degree.

Example 8. For the system introduced in Example 1 we fix the template map η
as follows:

η(l) = a1y
2 + a2v

2
y + a3δ

2 + a4yvy + a5vyδ + a6yδ + a7y + a8vy + a9δ + a10

with the objective to identify the values of the coefficients a1 . . . a10 for which
the assertion

a1y
2 + a2v

2
y + a3δ

2 + a4yvy + a5vyδ + a6yδ + a7y + a8vy + a9δ + a10 = 0

is an invariant at location l.

3.2 Encoding Invariance Conditions

The second step in our technique is the encoding of the conditions for invariance
as an ideal membership statement. The idea is, given a template η(`), to recast
the invariance conditions in the form

η(`) ∈ 〈p1, . . . , pk〉

where p1, . . . , pk are appropriate polynomials representing the condition. This is
equivalent to nfG(η(`)) ≡ 0, where G is the Gröbner basis of 〈p1, . . . , pk〉.
Initiation: The initiation condition,Θ |= (η(`0) = 0), is encoded by η(`0) ∈ 〈Θ〉,
that is, the template must belong to the ideal generated by the initial condition,
and thus nfΘ(η(`0)) ≡ 0.

Example 9. The initial condition for the bouncing ball example (Example 1) is
(y = 0, vy = 16, δ = 0). Taking the template from Example 8 the normal form
w.r.t. Θ is nf(η(l0)) = a10 + 256a2 + 16a8. Hence the constraint corresponding
to initiation is a10 + 256a2 + 16a8 = 0.

Discrete Consecution: The consecution condition states that the invariant
map must be preserved by all transitions, that is, for each transition 〈`1, `2, ρ〉,
(η(`1) = 0) ∧ ρ |= (η(`2)

′ = 0) must hold. Encoding this exactly would require
the reduction of one template (η(`2)) w.r.t. to another template (η(`1)). As
noted in our previous work [17], this leads to complex constraints which are
hard to solve in general. As an alternative we propose to use stronger conditions
for consecution that imply the original consecution condition, but avoid the
template in the antecedent. It is easily shown that this is sound [17]. However,
it may sacrifice completeness, because some invariant may satisfy the general
condition of consecution but not the stronger condition.

Figure 2 shows the different consecution conditions together with their en-
codings. The first condition (LC) states that the transition simply establishes
the invariant at the post location, without any assumptions on the precondition.
Invariants that can be established in this way are also known as local invari-
ants or reaffirmed invariants. The constant-value (CV) condition states that the
value of the polynomial at the prelocation (η(`1)) and post location (η(`2)) is not

Name Condition Encoding

Local (LC) ρ |= (η(l2)
′ = 0) nfρ(η(l2)

′) ≡ 0

Constant-Value(CV) ρ |= (η(l1) = η(l2)
′) nfρ(η(l1) − η(l2)

′) ≡ 0

Constant-Scale(CS) (∃ λ) ρ |= (η(l2)
′ = λη(l1)) (∃λ) nfρ(η(l2)

′ − λη(l1)) ≡ 0

Polynomial-Scale(PS) (∃ f) ρ |= (η(l2)
′ = f · η(l1))

Fig. 2. Consecution Conditions for Algebraic Templates

changed by the transition. Hence, if it is zero before the transition, then it will be
zero after the transition, thus preserving the invariant map. The constant-scale
condition states that the value of the polynomial may only change by a constant
factor, λ. The last condition states that the transition may change the value
of the polynomial by a polynomial factor. In all these cases, if the value of the
polynomial is zero before the transition is taken, it will be zero after-wards. In
the last two cases new unknowns, namely λ and f are added to the constraint
solving problem, generally rendering the constraint problem non-linear, as we
will see in the next section.

The encodings for the consecution conditions involve the system variables and
the primed system variables. To ensure that the primed variables are eliminated
as much as possible, a variable ordering must be chosen such that V ′ > V .

Example 10. The transition relation for the discrete transition τ in Example 1
is

[
δ > 0 ∧ y = 0 ∧ y′ = y ∧ v′y = − vy

2 ∧ δ′ = 0
]

Omitting the conjunct δ > 0 to make the transition relation algebraic (note that
it is sound to weaken the antecedent), the reduction of the template given in
Example 8 according to local consecution yields a normal form

nfρ(η
′(`)) =

a2

4
v2

y − a8

2
vy + a10

Reduction of the same template according to the constant scale consecution
condition leads to the normal form

nfρ(η
′(`)−λη(`)) =

4a2λ− a2

4
v2

y−a5λvyδ−
2a8λ+ a8

2
vy−a3λδ

2−a9λδ−a10(λ−1)

Continuous Consecution: The continuous consecution condition states that
if the invariant holds at some state 〈`,x1〉 then it must hold at any state 〈`,x2〉
where x2 can be reached from x1 according to the differential rule D(`), while
satisfying I(`). As in the discrete case, encoding this exactly is not practical,
and therefore we impose stronger conditions, shown in Figure 3.

The first condition states that the value of the polynomial is constant through-
out the continuous move, expressed by the condition that the derivative of the
template invariant with respect to time is zero, thus guaranteeing that the as-
sertion is preserved. Noting that the system variables are functions of time only,

Name Condition Encoding

Constant Value (CV) I(`) |= ˙η(`) = 0 nfI(`)(˙η(`)) ≡ 0

Constant Scale (CS) (∃ λ) I(`) |= ˙η(`) − λη(`) = 0 (∃λ)nfI(`)(˙η(`) − λη(`)) ≡ 0

Fig. 3. Continuous consecution conditions

the derivative of the template can be obtained by the chain rule as follows:

˙η(`) =
∑

i

(
∂η(`)

∂xi

ẋi

)

Recall that in algebraic hybrid systems the differential rule is a conjunction of
the form

∧

i ẋi = pi(x1, . . . , xn), yielding the following template for ˙η(`):

˙η(`) =
∑

i

(
∂η(`)

∂xi

pi(x1, . . . , xn)

)

The second condition, CS, makes use of the fact that the value of the poly-
nomial is zero, resulting in the more general condition that requires only that
the difference between the derivative and a constant factor times the invariant
itself be zero.

The encodings are similar to those for the discrete case. In both cases we
compute the normal form with respect to the location invariant and equate the
result to zero to obtain the constraints.

Example 11. Returning to the bouncing-ball system from Example 1, and the
template from Example 8, the derivative of the template is

˙η(l) =

(2a1y + a4vy + a6δ + a7) ẏ +
(2a2vy + a4y + a5δ + a8) v̇y +

(2a3δ + a5vy + a6y + a9) δ̇

which, with D(l) : ẏ = vy ∧ v̇y = −10 ∧ δ̇ = 1 gives

˙η(l) =

(
a4v

2
y + 2a1yvy + a6δvy + (−20a2 + a5 + a7)vy+

(2a3 − 10a5)δ + (−10a4 + a6)y + (a9 − 10a8)

)

For this system the location condition I(l) does not have any algebraic conjuncts

and therefore nfI(l)(
˙η(l)) = ˙η(l).

3.3 Deriving the constraints

The constraints on the template coefficients a1, . . . , an are derived by equating
to zero the coefficients of the normal forms of the template w.r.t. the initial con-
dition, and the consecution conditions for all discrete transitions and continuous
moves. By Theorem 4 the solutions to these constraints provide all combina-
tions of values of the template coefficients for which the corresponding assertion
satisfies the imposed conditions.

Condition Restriction Constraint types

Initiation linear equalities

Local (LC) linear equalities
Consecution Constant Value (CV) linear equalities

Constant Scale (CS) eigenvalue problems
Polynomial Scale (PS) non-linear algebraic

Fig. 4. Constraints obtained from different conditions for inductive assertions

Example 12. Consider again the system presented in Example 1 and the tem-
plate of Example 8. From above we have that the normal forms representing
the initial condition, discrete consecution (LC) of τ and continuous consecution
(CV) at location ` are

nf(η(l0)) = a10 + 256a2 + 16a8

nfρ(η
′(`)) = a2

4 v
2
y − a8

2 vy + a10

nfI(`)(
˙η(l)) =

(
a4v

2
y + 2a1yvy + a6δvy + (−20a2 + a5 + a7)vy+

(2a3 − 10a5)δ + (−10a4 + a6)y + (a9 − 10a8)

)

yielding the set of constraints

a10 + 256a2 + 16a8 = 0, a2 = a8 = a10 = a4 = a1 = a6 = 0
−20a2 + a5 + a7 = 0, a3 − 5a5 = 0, a6 − 10a4 = 0, a9 − 10a8 = 0

A solution to this set of constraints is presented in the next section.

4 Solving Constraints

The encodings presented in the previous section can generate several types of
constraints. Figure 4 shows the different types obtained for the various conditions
and encodings. Solution techniques for linear inequalities are well understood and
tend to be computationally inexpensive. For example Gaussian elimination can
be done efficiently in polynomial time. The set of solutions is finitely generated
by a set of basis vectors. On the other hand, techniques for solving non-linear
equalities are complex, either requiring specialized techniques as in the case of
eigenproblems, or generic elimination techniques such as quantifier elimination
over complex or real numbers [3].

The non-linearities in the constraints are due to the use of scale parameters
(λ) or parametric polynomials (in PS consecution). The constraints correspond-
ing to constant scale (CS) consecution yield a generalized eigenvalue problem of
the form Ax = λBx. Solution techniques to these problems may be numerical
or symbolic. Numerical solution techniques are faster and more easily imple-
mented. However errors in numerical computation may create errors in the final
result, and plugging in an inaccurate value for λ will yield only the trivial solu-
tion. On the other hand symbolic techniques depend on polynomial root solving

s, x, v ≥ 0
ẋ = v

v̇ = 2
ṫ = 1

l0

s, x ≥ 0,

v = 5
ẋ = v

v̇ = 0
ṫ = 1

l1
s, x, v ≥ 0

ẋ = v

v̇ = −1
ṫ = 1

l2
τ1

τ2

τ3

Fig. 5. Hybrid Automaton for the Train System

techniques which work only in special cases. In our experience the use of numer-
ical techniques are adequate provided the values obtained for λ are rational or
algebraic of a low degree.

General non-linear constraints are much harder to solve than linear con-
straints. For small to medium size systems these constraints can be handled
using a combination of simplification and quantifier elimination, with the help
of a tool suited to low degree polynomials such as redlog[9]. For higher-degree
polynomials generic quantifier elimination techniques over the reals are required,
which have been shown to be successful for small sized problems [4].

Example 13. The generator of the solutions to the linear equality constraints
derived in example 12 is given by

a5 = 1, a3 = 5, a7 = −1, a1 = a2 = a4 = a6 = a8 = a9 = a10 = 0

corresponding to the inductive assertion −y + 5δ2 + vyδ = 0.

5 Applications

We demonstrate the results of our technique on some application examples.

Train System: Figure 5 shows a hybrid automaton modeling a train acceler-
ating (location l0), travelling at constant speed (l1), and decelerating (l2). The
system has three continuous variables: x, the position of the train, v, the train’s
velocity, and t, a masterclock. The system has one discrete variablem s, rep-
resenting the number of stops made so far. The initial condition is given by
x = s = t = v = 0. There are three discrete transitions, τ1, τ2, and τ3, with
transition relations

ρτ1
: v = 5

ρτ2
: true

ρτ3
: v = 0 ∧ s′ = s+ 1 ∧ t′ = t+ 2

Application of our technique resulted in the following assertion map:

η(l0) : v2 − 4x− 10v + 115s− 20t = 0
η(l1) : 5v2 + 4xv + 115vs− 20vt = 0
η(l2) : 2v2 + 4x− 20v + 115s− 20t+ 75 = 0

With v = 5 at l1 the assertion η(l1) can be simplified to 4x+115s−20t+25 = 0.

An analytic argument for the assertion η(l0) is as follows. Consider the system
at the state 〈l0, 〈s, v, x, t〉〉. Each stop s consists of accelerating from 0 to 5
in l0 and decelerating from 5 to 0 in l2. The distance covered in these two
modes is 25

4 and 25
2 respectively. Furthermore, accelerating from 0 to v in l0

advances the position another v2

4 . Hence the total distance travelled is given by

x = s(25
4 + 25

2) + v2

4 + 5tl1 , where tl1 , the time spent in location l1 is given by
t− tl0 − tl2 = t− (v/2 + s(5

2))− (5
1s+ 2s). Substituting, we obtain the inductive

assertion 4x = v2 − 115s+ 20t− 10v. Similar arguments can be provided for the
other locations.

Looping the Loop: Consider a heavy particle on a circular path of radius 2
with an initial angular velocity ω = ω0 starting at x = 2, y = 0. The differential
equation for its motion is given by

ẋ = ˙r(cos θ) = −r(sin θ)θ̇ = −yω
ẏ = ˙r(sin θ) = xω

ω̇ = − g sin θ
r

= − 5
2x

Using CV consecution, the quadratic invariants obtained were x2 + y2 = 4 and
ω2 + 5y = ω2

0 . The former invariant is a result of our modelling (though not
explicitly posed as a location invariant) and the latter is the energy conservation
equation. This invariant also establishes that unless ω0 ≥

√
10, the particle will

be unable to complete a full circle.

6 Conclusion

We have presented a constraint-based technique for generating inductive asser-
tions of hybrid systems. One of the main features of this technique is that it
generates constraints without solving the differential equations. These differen-
tial equations may be hard to solve symbolically in practice, and may also involve
exponentials lying outside the chosen assertion domain. We also avoid the use
of over-approximations to these equations, relying instead on the conceptually
simpler constant value and constant scale consecutions.

The technique is not guaranteed to generate the exact solution to the reach-
ability problem, because of the relaxations made to maintain tractability. It also
requires a degree bound to be specified a priori, the choice of which may be arbi-
trary. We are investigating strategies for guessing optimal degree bounds. A more
serious shortcoming is that, at present, the technique does not handle inequal-
ities. Inequalities frequently occur in the guards and location conditions, and
not being able to use them in the constraint generation process may weaken the
resulting invariants considerably. However, preliminary investigations indicate
that a relatively simple extension may be sufficient to incorporate inequalities.

References

1. Baader, F., and Nipkow, T. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

2. Bensalem, S., Bozga, M., Fernandez, J.-C., Ghirvu, L., and Lakhnech,

Y. A transformational approach for generating non-linear invariants. In Static
Analysis Symposium (June 2000), vol. 1824 of LNCS, Springer Verlag.

3. Bockmayr, A., and Weispfenning, V. Solving numerical constraints. In Hand-
book of Automated Reasoning, A. Robinson and A. Voronkov, Eds., vol. I. Elsevier
Science, 2001, ch. 12, pp. 751–842.

4. Collins, G. E., and Hong, H. Partial cylindrical algebraic decomposition for
quantifier elimination. Journal of Symbolic Computation 12, 3 (sep 1991), 299–328.

5. Colón, M., Sankaranarayanan, S., and Sipma, H. Linear invariant generation
using non-linear constraint solving. In Computer Aided Verification (July 2003),
F. Somenzi and W. H. Jr, Eds., vol. 2725 of LNCS, Springer Verlag, pp. 420–433.

6. Cousot, P., and Cousot, R. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
ACM Principles of Programming Languages (1977), pp. 238–252.

7. Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
the variables of a program. In ACM Principles of Programming Languages (Jan.
1978), pp. 84–97.

8. Cox, D., little, J., and O’Shea, D. Ideals, Varieties and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra. Springer,
1991.

9. Dolzmann, A., and Sturm, T. REDLOG: Computer algebra meets computer
logic. ACM SIGSAM Bulletin 31, 2 (June 1997), 2–9.

10. Halbwachs, N., Proy, Y., and Roumanoff, P. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design 11, 2 (1997), 157–
185.

11. Henzinger, T., and Ho, P.-H. Algorithmic analysis of nonlinear hybrid systems.
In Computer-Aided Verification, P. Wolper, Ed., LNCS 939. 1995, pp. 225–238.

12. Henzinger, T. A. The theory of hybrid automata. In Logic In Computer Science
(LICS 1996) (1996), IEEE Computer Society Press, pp. 278–292.

13. Karr, M. Affine relationships among variables of a program. Acta Inf. 6 (1976),
133–151.

14. Lafferriere, G., Pappas, G., and Yovine, S. Symbolic reachability compu-
tation for families of linear vector fields. J. Symbolic Computation 32 (2001),
231–253.

15. Manna, Z., and Pnueli, A. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

16. Mishra, B., and Yap, C. Notes on Gröbner bases. Information Sciences 48
(1989), 219–252.

17. Sankaranarayanan, S., Sipma, H., and Manna, Z. Non-linear loop invariant
generation using Gröbner bases. In ACM Principles of Programming Languages
(POPL), to appear (2004).

18. Tiwari, A. Approximate reachability for linear systems. In Hybrid Systems:
Computation and Control HSCC (2003), vol. 2623 of LNCS, pp. 514–525.

19. Tiwari, A., Rueß, H., Säıdi, H., and Shankar, N. A technique for invariant
generation. In TACAS 2001 (2001), vol. 2031 of LNCS, pp. 113–127.

20. Windsteiger, W., and Buchberger, B. Gröbner: A library for computing
Gröbner bases based on saclib. Tech. rep., RISC-Linz, 1993.

