N
N

N

HAL

open science

Full simulation coverage for SystemC transaction-level
models of systems-on-a-chip

Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz

» To cite this version:

Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz. Full simulation coverage for Sys-
temC transaction-level models of systems-on-a-chip. Formal Methods in System Design, 2009, 35

(Number 2 / October, 2009), p. 152-189. 10.1007/s10703-009-0075-z . hal-00429058

HAL Id: hal-00429058
https://hal.science/hal-00429058
Submitted on 19 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00429058
https://hal.archives-ouvertes.fr

Full Simulation Coverage for SystemC
Transaction-Level Models of Systems-on-a-Chip

C. Helmstetter':3, F. Maraninchi!, and L. Maillet-Contoz?

! Verimag (CNRS, Grenoble INP, UJF), Centre équation - 2, avenue de Vignate,
38610 GIERES — France
2 STMicroelectronics, 12 rue Jules Horowitz,
38019 GRENOBLE — France
3 INRIA Grenoble - Rhne-Alpes, 655 avenue de ’Europe,
38330 Montbonnot Saint Martin - France

Abstract. Transaction-Level Models (TLM) are used for the early val-
idation of embedded software. A TL model is a virtual prototype of the
hardware part of a System-on-a-Chip (SoC). When using SystemC for
transaction level modeling, the main parallel entities of the hardware
platform (processors, DMAs, bus arbiters, etc.) are modeled by asyn-
chronous processes, which are scheduled at simulation time. The spec-
ification of this scheduling mechanism is non-deterministic; the set of
all possible schedulings of the parallel activities represents the physical
parallelism faithfully. Moreover TL models may contain loose timing an-
notations (intervals for instance), and the set of all possible values of
time in these intervals is also meant to represent the hardware behaviors
faithfully.

However, any simulation engine is built on a deterministic scheduler, and
at runtime will use specific values in the time intervals. This means that
only a very small subset of all the possible schedulings and timings are
exhibited during simulation. Some bugs may be missed if they are due to
some behaviors of the hardware that are represented by other schedulings
or timings.

For a given finite test scenario, the set of valid schedulings and timings of
a model is finite, but far too large to be explored fully. We present a so-
lution to cover the set of schedulings and timings efficiently. Our solution
is based on dynamic partial order reduction and constraint solving tech-
niques. It gives a complete scheduling and timing set, which guarantees
the detection of all local errors and deadlocks for a fixed test scenario.

1 Introduction

1.1 Transactional Models for the Simulation of SoCs

A System-on-a-Chip (SoC) integrates many components on the same chip: a
processor, several memory components, one or several buses, and specific com-
ponents like video or audio decoders. A growing part of the functionality is
implemented in the software part.

The development of the embedded software for such a dedicated hardware
platform requires specific methods and tools, as explained later in this article.

The embedded software can, of course, be executed on the physical chip; this
approach is fast and perfectly realistic with respect to the final SoC. However,
this approach is not feasible for two main reasons: cost and time-to-market. If ex-
ecuting the software reveals a bug in the hardware, then it is prohibitively costly
to correct it. In addition, the execution of software on real hardware offers no
detailed debugging capabilities. Finally, because of time-to-market constraints,
the embedded software should be ready and tested before the physical chip is
delivered, to shorten the integration phase.

The embedded software can also be executed on the RTL description of the
hardware. This approach is still precise; if necessary, hardware bugs can be fixed
at this stage; all information is available for the debugging (the value of each
signal at each clock tick is known). However, the RTL description is available too
late with respect to time-to-market constraints. Furthermore, RTL simulation is
too slow for complex data treatments: for example, the decoding of one image
can take up to one hour.

The solution is to develop abstract models of the real system, with just
enough details to be able to simulate the embedded software. This level of ab-
straction is called Transaction level modeling (TLM) [1]. Since the TL model
of a system is less detailed than the RTL description, the TL model can be
available earlier. TL simulations are much faster than RTL simulations: the de-
coding of an image takes only a few seconds. These advantages are obtained at
the price of precision loss. The most abstract TL models do not allow timing
performance evaluation, in particular because the non-functional features, like
pipelines, are not modeled. The level of abstraction of TL models implies that
automatic synthesis of RTL descriptions from TL models is not possible. Con-
sequently, TL models do not replace RTL descriptions; they are used earlier in
the design cycle.

1.2 Faithfulness of Models and Comprehensive Simulation

The systematic use of TL models raises two independent problems, illustrated
by Fig. 1.

Faithfulness of Models Since a TL model is an abstraction of the not yet
fully known hardware part of the SoC, the question of whether it represents
faithfully the possible behaviors of the final chip is very hard to answer.
However, it is quite clear that a high level model like the TL model has to
be non-deterministic, so as to represent a set of possible behaviors.

In the TL models written in SystemC, the non-determinism affects the
scheduling of the asynchronous processes representing real hardware enti-
ties, as well as the timing constraints used to simulate time.

Although the faithfulness question cannot be stated in formal terms, it is
important to understand what elements in a modeling language can be used
to represent sets of behaviors, and what are the guidelines for writing a

. 1

I behaviors we should
subset simulate :
)

Simulator 2nd problem:

bad good simulation of the models

+ loose timing= super-set

1st problem:

f — faithfulness of models

[TL-Modelz nondeterministic scheduling]

real system|
version 1

environment

Fig. 1. The 2 problems: Faithfulness of Models and Comprehensive Simulation

faithful model. Section 3 further examines the faithfulness question. It helps
understanding the class of models we have to simulate at the transaction
level, and why the comprehensive simulation problem appears.
Comprehensive Simulation of Models Because of non-deterministic
schedulings and loose timings, a TL model can define a large set S of
behaviors. The faithfulness of a TL model with respect to a real hardware
platform relies on the fact that the set S is a super-set of all the possible
behaviors of the hardware. Validating a property of a SoC, given a TL model
of the hardware, amounts to checking this property against all behaviors in
S, and it cannot be done with one single (deterministic) simulation run.
Consider one test scenario (i.e., a sequence of data values as it could be
generated by an independent tool). One solution would be to run several
executions of this test scenario with random choices in the scheduler and
for loose timing functions (the original OSCI SystemC simulator does not
support random scheduling, but it is open-source and can be patched eas-
ily [2]). For any loose timing function call (specifying that the simulation
should wait some finite amount of time, in some interval [a, b]), the execu-
tion engine draws a value in [a, b]. If the function call appears within a loop,
a new value is drawn for each execution of the function. However, such a
random policy slows the simulations without guaranteeing that interesting
cases are explored. The resulting coverage is uncertain.
Another theoretical solution would be to systematically try all the choices.
In practice, this solution fails due to the combinatorial explosion for any
real-size example.
The solution we advocate is the following: for any test scenario, we should
try all the choices (schedulings and timings) that “matter” for the result of

the test scenario. Intuitively, we try two different choices only if they are
likely to give different test results. In practice, we try two different choices
only if we cannot prove that they would give the same result.

The rest of the paper explains this principle, and the technical solutions to
implement it for SystemC/TL models of systems-on-a-chip.

An important point to notice is the following: when testing a TL model, we
are interested in exploring all potential behaviors of the hardware that matter for
the software. Since the faithfulness of the TL model with respect to the hardware
cannot be stated formally, the best we can do for ensuring this property is to
split the problem into two parts: faithfulness is enforced by guidelines; once the
TL model is built, we guarantee comprehensive exploration.

It is quite likely that the two problems we identified for SystemC/TL models
of systems-on-a-chip are also present in other modeling and simulation contexts.
As soon as we need to model the behaviors of physically parallel objects, we
need a modeling language that offers some parallel construct, and the faithful-
ness problem arises if the objects do not behave deterministically. Moreover, the
simulation of the model needs some kind of a scheduler: it is quite unlikely that
the machines used for simulation offer as many processes as there are physically
parallel entities to be simulated. Hence the comprehensive simulation problem
also arises.

1.3 Contributions and Structure of the Paper

In this article, we contribute to the two points mentioned above:
— We first show why non-determinism is mandatory to design faithful models of
Systems-on-Chip, and we explain the guidelines for writing faithful models.
— We present techniques to cover the simulations, i.e., to execute only those
simulations that matter for a given test scenario. We are interested in proving
properties, so we have to select enough behaviors such that a property which
is false on a possible behavior is also false on at least one executed behavior.
Since the sets of executed behaviors are far smaller than the sets of all
possible behaviors, the method enables us to validate properties on large
examples, up to medium-sized industrial case studies.
Concerning the second point, we first adapt the dynamic partial order reduction
technique of [3] to SystemC, which enables us to cover the set of schedulings
efficiently. We do not reuse directly the algorithm of [3]. We present a new al-
gorithm, based on the same idea, which guarantees the same coverage property:
all local errors and deadlocks for a given test scenario are detected. An error
is local to a process of the system under test if this error can be checked dy-
namically by adding an assertion in this process. Deadlocks are not local errors
since one needs to consider all the processes to detect them, but the scheduler
of the simulator can detect them since it knows if at least one process is active.
The correctness of our algorithm is based on the new concept of scheduling con-
straint trees, whereas the correctness of most partial order reduction algorithms,
including [3], is based on persistent sets.

The idea is to look at the actions performed by the processes, in order to
assess whether a change in their order (as what would be produced by distinct
scheduler choices) could affect the final state (i.e., the content of the mem-
ory when the simulation terminates). If this change could affect the final state,
then we generate a new scheduling. We repeat the same analysis on each newly
generated scheduling. Successive iterations eventually give a complete (but not
necessarily minimal) set of scheduling directives for the execution engine, which
guarantees that all the executions of a test scenario “that matter” are explored.
This guarantees the detection of all local errors and deadlocks for a fixed test
scenario.

Secondly, in order to validate TL models with loose timing annotations, we
also have to cover the set of valid timings too. We present a novel algorithm to
solve this problem; it combines dynamic partial order reduction techniques with
constraint solving techniques. It generates a set of valid timings that serve as
execution directives. It guarantees, again, that all local errors and deadlocks for
a fixed test scenario are detected.

Previous versions of these algorithms have been presented at the 6th FMCAD
conference [4], at the 11th FMICS workshop [5], and in the PhD thesis [6]. In this
article, we complement them such that they now generate scheduling constraint
trees, which allow to define a mapping from any valid scheduling to an equivalent
scheduling that is actually executed by the method.

The algorithms presented in this article have been implemented. The tool
has been run on a real TL model provided by STMicroelectronics, which led to
the discovery of a synchronization error that had not been found before.

The paper is structured as follows: Section 2 presents the SystemC language
and the TLM library; Section 3 details the faithfulness problem and solutions.
Section 4 details the simulation coverage problem. Section 5 recalls the theo-
retical background on partial order reduction techniques, and presents the new
concept of the scheduling constraint tree, on which our algorithms are based.
Section 6 explains how we cover the scheduling space for models with only fixed
durations. The extension to models with loose timing annotations is described
in Section 7. We present our implementation and its evaluation in Section 8,
related work in Section 9, and we conclude with Section 10.

2 SystemC and the TLM Library

SystemC is a C++ library used for the description of SoCs at different levels
of abstraction, from cycle accurate to pure functional models. SystemC comes
with a simulation environment, and is becoming a de facto standard.

A TL model written in SystemC is based on an architecture, i.e., a set of
parallel components and connections between them. Each component has typed
connection ports, and its behavior is given by a set of communicating processes
that can be programmed in full C++. For managing processes, SystemC provides
a scheduler, and several synchronization mechanisms: the low-level events, the
synchronous signals that trigger an event when their value changes, and higher

level mechanisms. When a SystemC model is simulated, first the static architec-
ture is built by executing the so-called elaboration phase (ELAB), which creates
components and connections. Then the scheduler starts running the processes of
the components, according to the informal automaton of Fig. 2-(a). A simula-
tion of a SystemC model looks like a sequence of evaluation phases (EV). Signal
update phases (UP) and time elapse phases (TE) separate them (see Fig. 2-(b)).

(a) ELAR build the =0 (b) T4
platform - -
>
™=
ﬁﬁav elect a process] . g
and run it A
<
| Sl Ta
ligibl y]
3 eligible process 10 CAEIDIe PTocess 4™
UP update &3
signal values <
| o eligible process 1=
3 eligible process 1O eglbie process |
H
TE advance _ =
[simulation time] t=t+d -T-
| END g ¢
3 eligible process no eligible process % '<

Fig. 2. (a) Automaton of the SystemC scheduler; (b) Diagram of an execution.

2.1 The SystemC Scheduler

The SystemC Language Reference Manual [7] describes the scheduler algorithm.
At the end of the elaboration phase ELAB, some processes are eligible, some
others are waiting. During the evaluation phase E'V, eligible processes are run in
an unspecified order, non-preemptively, and explicitly suspend themselves when
reaching a wait function. A process may wait for some time to elapse, or for
an event to occur. While running, it may access shared variables and signals,
enable other processes by notifying events, or program delayed notifications.
An eligible process cannot become “waiting” without being executed. When
there are no more eligible processes, signal values are updated (UP) and J-
delayed notifications are triggered, which can wake up processes. A d-cycle is
the duration between two update phases. Since there is no interaction between
processes during the update phase, the order of the updates has no consequence.
When there is still no eligible process at the end of an update phase, the scheduler
lets time elapse (TE), and awakes the processes that have the earliest deadline.

A notification of a SystemC event can be immediate, J-delayed or time-delayed.
Processes can thus become eligible at any of the three steps EV, UP or TE.

2.2 The TLM Library

In a TL model, all communications between components are done by transac-
tions, which are implemented by function calls [8]. We distinguish the initiator
port and the target port of a transaction. When a process in a component I
(initiator) wants to communicate with another component T (target), it calls a
method of one initiator port of I. The initiator port forwards the function call to
its associated target port on T, which is linked to the code that implements this
method. The initiator process continues when the function call returns. It does
not yield back to the scheduler, allowing for atomic sequences of transactions.

INITIATOR

data read(addr) {...}

D=port.read(A);
port.write(A,D);

write(addr,data) {...}

. : Q TARGET
transactions
shared variables /

+ SystemC events

Fig. 3. Communications in TL models. Circles with arrows represent processes; large
plain arrows represent the function calls (transactions); dashed arrows represent com-
munications between processes.

In a TL model, processes communicate together inside components. Develop-
ers are free to use full C++ code for these communications. Generally, they use
SystemC events and shared objects, such as atomic variables, FIFOs or arrays.

In this paper, we study the consequences of scheduling choices. The architec-
ture and the transactions are independent of the scheduling. Hence, we mainly
care about communications between processes. However, the problem studied is
directly related to the high abstraction level of TL models, specifically to their
use of asynchronous parallelism.

3 Faithfulness of TL models

Ideally, the embedded software should behave the same on the real system and
on the TL model. However, the behavior of the hardware part considered alone

is non-deterministic, because the physical chip will run in a non-deterministic
environment. On the other hand, the physical hardware is not available yet
when the TL model is developed, and many technical variants of the hardware
may still be investigated. To be faithful, TL models must specify a super-set
of the realistic behaviors of the hardware. To do that, designers rely on non-
deterministic schedulings and loose timings. Although rarely explained in the
literature on transaction level modeling, using asynchronous models of hardware
is not new. In 1999, [9] stated that:

In microprocessors and memory systems, several actions may occur asyn-
chronously. These systems are not amenable to sequential descriptions
because sequentiality either causes over-specification or does not allow
for consideration of situations that may arise in a real implementation.

We illustrate the effects of scheduling and timing on a simplified example,
whose architecture is described by Fig. 4. There are a CPU, a memory and a
DMA linked by a bus. A signal running from the DMA to the CPU notifies
the activity of the DMA. Fig. 5 shows a piece of embedded software we want to
simulate.

running
i
memory DMA
N
| bus

Y f

Fig. 4. Part of the architecture of the example

sl //step 1: program and start the DMA
s2 bus.write(addr_DMA+src_reg_offset, image_addr);
s3 bus.write(addr_DMA+dest_reg_offset, dest_addr);
s4 bus.write(addr_DMA+start_reg_offset, 1);
sb //step 2: do some independent computations
s6 x=bus.read(a); y=f(x); bus.write(a,y);
s7 //step 3: test if the DMA has finished
s8 if (running.read())
s9 {execute A}
s10 else {execute B}

Fig. 5. Embedded software executed by a CPU

Fig. 6 describes the DMA behavior, at the cycle-accurate abstraction level.
It is here considered as a faithful description of the real system. In practice, we
should refer to the RTL description, but for obvious reasons of space, we only
give this simple description. It is enough to show the main issues for the design
of TL models.

cl wait(start_event);

c2 running.write(1);

c3 wait(clock);

c4 for (a=0; a<size_register; ++a) {

ch wait(clock); d=bus.read(src_register+a);

cb wait(clock); bus.write(dest_register+a, d);}
c7 running.write(0);

Fig. 6. Cycle-accurate description of the DMA

3.1 Modeling with Fixed Durations

A usual way of modeling a component at the transaction level is to use the
SystemC wait function with fixed durations. Here, “fized durations” means that
the value is given as a constant in the test scenario, and is the same for all exe-
cutions. Duration values refer to the SystemC simulated time. In our examples,
they are expressed in nanoseconds (“SC_NS”). A timed TL model of the DMA
is given by Fig. 7.

dl wait(start_event);

d2 running.write(1);

d3 D=bus.read_block(src_register, size_register);

d4 bus.write_block(dest_register, size_register, D);
d5 wait(size_register*period+cst, SC_NS);

d6 running.write(0);

Fig. 7. TL model of the DMA with fixed durations

According to the context, an instruction-accurate model of the
CPU is not mandatory to simulate the embedded software. We only
have to annotate the software with wait functions, such as: {step
1} wait(duration for step 1); {step 2 3} wait(duration for step
2); if (running.read()) {A} else {B}.

In the real system, the CPU and the DMA will run concurrently. On the
contrary, the simulator has only one processor, so it has to schedule the DMA
and the CPU. The observed behavior depends on the order of the two events “the
DMA finishes” and “the CPU tests the running signal”: either A is executed

or B is executed. To validate the software, both of these possibilities have to be
checked. Unfortunately, with fixed durations, only one of them can be observed
for a given input (the size of the transfer is fixed by the test scenario). Since
the physical chip is still unknown, and the traffic on the bus may depend on
non-deterministic factors, timing annotations can only be approximations and
so we have no guarantee that the observed behavior will be the same on the
real system. The conclusion is that fixed timing annotations reduce the set of
observable behaviors to a subset of the realistic behaviors.

3.2 Modeling without Time Information

We can imagine designing TL models without any temporal information. Any
wait function with a fixed duration needs to be replaced by a function that
yields back to the scheduler, but leaves the current process eligible. There are no
variants of wait functions to do that in SystemC (wait (SC_ZERO_TIME) prevents
a process from being elected again before the next d-cycle; wait () refers to a
statically defined list of events). So a new function is needed; we call it “yield”.
This function allows the simulator to execute other tasks, but the current task
remains eligible. If one is not interested in covering all the realistic behaviors, the
empty function is a deterministic, fast and valid implementation of the “yield”
function.
In the DMA TL model, we replace line d5 by the code below:
d5: yield();

We apply the same transformation to all wait functions inserted in the embedded
software.

d2: running.write(1);
/ d6: running.write(0);

DMA T ; -
! |
'y Y
running=0 running=1 ‘\ running=0

: ¥~ ~ . 2 \\]

: 3. R ~ . \\ /I 1
S~

CPU+Soft - — -
\\ *s8:if (running.read())

‘sd:bus.write (addr_DMA+start_reg offset, 1);

Fig. 8. Diagram of CPU+DMA Possible Executions

This new version allows more schedulings than the previous version with
fixed durations. They are three possible behaviors, as shown by Fig. 8:

10

1. Line s8 of the software is executed after the DMA has finished (line d6)

2. Line s8 is executed before the DMA has finished but after it has started

3. Line s8 is executed before the DMA has started (line d2)
The first two behaviors are realistic and so the TL model must allow their
simulation. Conversely, the third behavior is not realistic. In this last case, the
software thinks the DMA has finished whereas it has not started yet. Such non-
realistic behaviors are very problematic for engineers using the models: rapidly,
they will find more false errors than real bugs. A complete absence of timing
information is therefore not suitable: this approach leads to a too large super-set
of the realistic behaviors.

3.3 Modeling with Loose Timing Annotations

The solution currently investigated at STMicroelectronics is to use loose tim-
ing annotations. In place of fixed durations, we specify intervals of time. An in-
struction pv_wait (duration, delta, time_unit) means that the current task
waits for a duration belonging to [duration — delta,duration + delta.
Finally, we replace line d5 of the DMA TL model by the code below:
d5: pv_wait(size_register*period+cst, delta, SC_NS);

We apply the same transformation to all yield functions inserted in the software.
We get as many “delta” variables as pv_wait functions. Modifying their values
allows to approach the set of realistic behaviors (Fig. 9).

_ - without time (4; = +o0)

_ - —with fixed durations (4A; = 0)

~ ~ ~with loose timing annotations
(various A;)

Fig. 9. Realistic SoC behaviors (gray shape, darker means more realistic), and behavior
sets covered by untimed models, models with fixed durations and models with loose
durations.

11

The idea of interpreting timing annotations in a loose way is quite natural.
This idea was already present in some modeling approaches based on so-called
fuzzy time (see, for instance, [10]), or based on time Petri nets [11].

To summarize, the guidelines for writing faithful models are:

— Avoid fixed durations, since using only fixed durations hides realistic behav-
iors.
— Do not remove all timing annotations, since untimed models produce too
many non-realistic behaviors.
— Add loose timing annotations, because it is, up to now, the best way to tune
the model in order to approach a faithful model of the real system.
Notice that we do not provide a formally justified way of choosing the loose
timing values. But introducing the loose timing functions, and providing a way
to cover the associated variations, are a good support for a test methodology.

In the rest of the paper, we will consider TL models without questioning
their faithfulness again. The only remaining question is how to cover the choices
allowed by non-deterministic schedulings and loose timings.

4 Comprehensive Simulation:
the Effect of Scheduling and Timing

Before presenting our solutions for full simulation coverage, we present SystemC
examples that show the effects of scheduling and timing choices on the result of
a test.

4.1 Examples with Fixed Durations

void top::P() { void top::QQ0) {
wait(e); e.notify();
wait(20); x = 0;

if (x) cout << "Ok\n"; wait (20);

else cout << "Ko\n";} x =1;}

Fig. 10. The foo example

void top::P()

as in example foo
void top::QQ)

as in example foo

void top::R(O) {
wait (20);
}

Fig. 11. The foobar example

To illustrate the possible consequences of scheduling choices, let us intro-
duce two small examples of SystemC programs. Since the architecture and the
transactions have no consequences for the synchronization analysis, we have fully

12

abstracted them. Fig. 10 shows the example foo made of two processes P and
Q. The example foo has three possible executions depending on the scheduling,
leading to very different results. We describe them below, with the following no-
tation: an execution is denoted by a sequence of process names (to show which

process is elected) and strings of the form “[ti>D]” that serve to show the TE
phase of the scheduler; d represents the duration elapsed and D the new global
date (these strings can be deduced from other information, but we include them
for readability reasons). The three executions are:
— P;Q;P;[tEQO];Q;P: this scheduling leads to the printing of “Ok”.
— P;Q;P;[t 29, 20];P;Q: the string “Ko” is printed. It is a typical case of data-race:
x is tested before it has been set to 1.
— QP;[¢ 29, 20];Q: the execution ends after three steps only. The notification
of event e has been executed before any “wait(e)” statement. Since events
are not persistent in SystemC, process P has not been woken up. It is a
particular form of deadlock.
Testing all executions of the foo example is useful because these executions
lead to different final states. But consider now the foobar example defined in
Fig. 11. foobar has 30 possible executions, but only 3 different final states. 12 ex-

ecutions are equivalent to “R;P;Q;P;[t 2, 20];R;Q;P”, 12 to “R;P;Q;P;[t 2, 20];R;P;Q”
and 6 to “R;Q;P;[tEQO};R;Q”. Our method will generate only 3 executions, one
for each final state (or equivalence class).

4.2 Examples with Loose Durations
Fig. 12 presents a new version foochi of the foo example, with loose durations.

To execute this example, we must choose a value for ¢; between 3-d1 and 3+d1,
a value for to between 40-d2 and 40+d2, etc.

void PO) { void QO {
pv_wait(3,d1); //t pv_wait(6,d3); //ts3
wait(e); e.notify();
pv_wait(40,d2); // t2 x = 0;
if (x) cout << "Ok\n"; pv_wait(24,d4); //ta
else cout << "Ko\n";} x = 1;}

Fig. 12. The foochi example

If d1 = d2 = d3 = d4 = 0, then all delays are fixed and there are only two
valid and equivalent executions (the index on process names is used to identify
the occurrence): P1;Q; or Qp;P; followed by [t 32, 3]; Pa; [t 32, 6]; Q2; P3; [t 24,
30];Qs; [t 16, 46];P4. Py and Q; occur at T = Ons, Py at T = 3ns, Q2 and Pj
at T = 6ns. Next Q3 runs at T = 24 + 6 = 30ns. At last, the string “Ok” is
displayed by P4 at T' = 6 4 40 = 46ns.

13

Giving non-null values to the variables di allows to explore more cases. If
we take d1 = d2 = d3 = d4 = 2, then it is possible to permute the wait
function call and the notification of the SystemC event e: we choose t; = 5ns
and t3 = 4ns. With these values, it is still impossible to permute Q3 and Py.
If we increase d2 (resp. d4) to 10 (resp. 6), then Q3 and P4 may occur at the
same time T = 6 + 30 = 36ns (30 = 24 + 6 = 40 — 10). Next, playing with the
non-determinism of the scheduler allows to execute P4 before Q3. We have found
the two errors of the foo example again.

Our method will generate timings and schedulings automatically, in order to
find the executions that lead to these errors.

5 Formal Setting

The method for generating the schedulings and timings that matter for a given
test scenario is based on partial order reduction techniques. We first review the
main concepts used in this paper, expressing them in the SystemC/TLM context.
Subsections 5.1 and 5.2 are only adaptations of existing works. Subsection 5.3
presents our new concept of scheduling constraint tree, on which the correctness
of the algorithm presented in the next section is based.

5.1 Schedulings and Transitions

In the whole section, the system under test (SUT) is a SystemC program. We
suppose that we have an independent tool for generating test cases that only
contain the data. We call SUTD the object made of the SUT plus one particular
test data*. We have to generate a relevant set of schedulings for this data.

When data is fixed, a SUT execution is entirely defined by its scheduling; a
scheduling is entirely defined by an element of P* where P is a set of process
identifiers. We define full states of a SUTD to be full dumps of the SUTD mem-
ory, including the position in the code of each process. The SUTD can be seen
as a function from the schedulings to the full states. This function is partial: not
all the elements of P* represent possible schedulings of the SUTD (because of
the synchronization constraints between processes).

Definition 1 (Schedulings, Valid Schedulings and Terminated
Schedulings). Let M be a SUTD. Py is the set of its processes; Sy is
the set of its reachable full states; Fir @ Py; — S is its associated function.
Vi C Py is the definition domain of Fyy.
— A scheduling is an element of Py;.
— A valid scheduling is an element of Vi,.
— A walid scheduling u is terminated if and only if there is no more eligible
process in the state Far(u) (i.e., u cannot be extended: Vp € Ppy,up & Vs);
in this case, the state Fy(u) is final.

4 Strictly speaking, the SUT includes a data generator, not a single piece of data.
But the generator does not depend on the scheduling, hence the distinction is not
necessary here.

14

A transition of a scheduling begins when the scheduler elects one process,
and ends when this process yields back to the scheduler. Given a scheduling, we
identify a transition by a pair: its process identifier, indexed by its occurrence
number. A second index enables the scheduling to be make precise, when useful.

Definition 2 (Identification of Transitions). p; , denotes the i-th execution
of the process p in the scheduling u.

For example, in the scheduling u = pgp there are 3 transitions: pq 4, g1, and
P2y, in this order. This definition implies that writing “up;” (i.e., scheduling u
followed by the i-th execution of process p) is correct only if the process p is
executed exactly ¢ — 1 times in the scheduling u.

Note that, given two schedulings v and v of the same SUTD, two transitions
Diw and p; , may read different values from memory or execute different pieces
of code, due to interference with other processes.

A scheduling v defines a total order over its transitions. We have p; » <u @ju
if and only if p; ,, occurs before g; ,,.

5.2 Equivalence of Schedulings

The theory of partial order reduction relies on the definition of dependent tran-
sitions [12]. A dependency relation determines whether the permutation of two
transitions has a consequence on the behavior. Intuitively, two transitions which
do not access the same shared object are independent; a transition accessing
only local variables is independent of all transitions of other processes.

An equivalence relation between schedulings can be directly defined from a
dependency relation between transitions: two schedulings are equivalent if they
differ only by the order of independent transitions. One equivalence class can be
represented by a partial order, called the happens-before relation [13], such that
each scheduling of this equivalence class defines a total order over its transitions,
which is a linear extension of the happens-before relation.

When a dependency relation is valid, two equivalent schedulings lead to the
same final state. As a consequence, it is sufficient to execute only one schedul-
ing of each equivalence class to discover all local errors (i.e., errors that can be
checked dynamically by adding an assertion in a SystemC process) and dead-
locks. The common goal of all partial order reduction algorithms is to simulate
at least one scheduling of each equivalence class, without simulating all the valid
schedulings. As in [3], the dependency relation on transitions is deduced dynam-
ically from the execution traces. The computation of this dependency relation is
based on static rules depending on operation types: for instance, two transitions
writing to the same variable are dependent.

The relation that contains all the pairs of transitions is always a valid de-
pendency relation. However, if there are no independent transitions, then each
equivalence class contains a single scheduling and the partial order reduction
does not reduce the number of schedulings to be simulated. The more transi-
tions we can prove independent, the more efficient the partial-order reduction

15

will be. Computing an efficient dependency relation for a SystemC program is
discussed in section 6.3.

Below we give formal definitions of the dependency-based equivalence re-
lation, the valid-dependency relation and the happens-before relation. These
definitions do not provide a way to compute a valid dependency relation, but
give the properties that a dependency relation must satisfy in order to guarantee
the correctness of the concepts and algorithms presented later. We show how to
compute dynamically a valid dependency relation for SystemC in subsection 6.3.

Definition 3 (Dependency-based Equivalence Relation). Let D be a bi-
nary relation between transitions. The equivalence relation =p between schedul-
ings, associated with D, is the reflexive, symmetric and transitive closure of:

{(u,v) € Vag x Virlu = u'pigiu” Ao =u'gpu” A (pis, au) € D}

Definition 4 (Valid Dependency Relation). A relation D between transi-
tions is a valid dependency relation only if:
Vu € Var, (Diw,j.u) € D implies the conjunction of the 3 properties below:
1. Yw such that uvw € Vs, (Diuw, @,uw) € D
2. Yv € Vi such that uw =p v, (pi v, ¢j,v) € D
3. Yv € Vi such that u =p v with v = v'p;q;v",
v'qips € Vir N Far(V'piqs) = Far(v'q;pi)

Property 1 of this definition implies that the dependency of two transitions
does not depend on the future; when transitions are defined statically, this prop-
erty is implicit. Property 2 implies that if u =p v, then (piu,qju) € D &
(Piv,gj,0) € D; informally, two transitions are dependent in all or none of the
schedulings of an equivalence class. As a consequence, conditional dependency
relations in the sense of [14] are not valid dependency relations according to our
definition. Property 3 of this definition corresponds to the classic definition of a
valid dependency relation.

At last, we recall the definition of the happens-before relation, which is a
partial order describing an equivalence class. We note [u] the equivalence class
of a scheduling u: v € [u] if and only if w =p v. The happens-before relation
of [u] specifies which transitions cannot be permuted in u without permuting
dependent transitions.

Definition 5 (Happens-before Relation). Let u be a valid scheduling and D
a valid dependency relation. The happens-before relation of an equivalence class
[u], denoted by “<,)”, is defined by the property below:

Diu '<[u] qju <= Yo € Vg Av =p Uy Piv <v Qv

5.3 Trees of Scheduling Constraints

The algorithms we present in the next sections are based on the concept of
scheduling constraints. We use them to describe execution directives and equiv-
alence classes. This concept is specific to the work presented in this paper. Trees

16

of scheduling constraints are used to prove the correctness of the algorithm pre-
sented in the next section, in the same way that persistent sets are used to prove
the algorithm of [3] and many other partial order reduction algorithms.

Definition 6 (Scheduling Constraints). A scheduling constraint is a tuple
(p,i,q,7), noted by “p; < q;”. A scheduling u satisfies a scheduling constraint
i < qj if and only if:

Qi €EU =D CUNDiu <u QGu

In that case, we denote: u = p; < q;. If ¢ = p; < qj, then ¢~ represents the
inverse constraint “q; < p;”.

A scheduling satisfies a set of scheduling constraints if and only if it satisfies
each constraint of this set.

Note that:

— A scheduling constraint can be interpreted in any scheduling.

— If a scheduling does not satisfy ¢, then it satisfies ¢ *.

— A scheduling satisfies both “p; < ¢;” and its inverse “gq; < p;” if and only if
neither p; nor ¢; are in this scheduling (i.e., p is executed less than ¢ times
and ¢ is executed less than j times). In particular, the empty scheduling
satisfies all scheduling constraints.

In the following section, some particular cases will require the notion of ter-
minated scheduling assuming a given set of scheduling constraints. A scheduling
is said to be terminated assuming some constraints if there are no schedulings
that are longer, valid, and satisfy all these constraints.

7

Definition 7 (Scheduling Terminated Assuming a Scheduling Con-
straint Set). A wvalid scheduling u is terminated assuming a set of scheduling
constraints C' if and only if:

uEC A Ype Py, ~(up€ Vi Aup = C)
(“up” means the scheduling “u” extended by one execution of the process “p”)

In particular, “u is terminated assuming ()” is equivalent to “u is terminated”,
according to definition 1. Another direct consequence of this definition is that
a scheduling u terminated assuming a set C, is terminated assuming any set D
such that C C D Au = D.

We will use complete sets of scheduling constraints to describe equivalence
classes. A set of scheduling constraints is complete if it defines the order of all
pairs of dependent transitions, whose order is not already fixed (by the program
itself or by previous scheduling constraints).

Definition 8 (Complete Set of Scheduling Constraints). Let C be a set
of scheduling constraints. C' is complete, according to a dependency relation D,
if and only if:

Yu,v € Vi with v and v terminated assuming C,u = CAv = C = u=pv

17

Our algorithm to cover the schedulings of a test scenario generates a binary
tree of scheduling constraints. A scheduling constraint tree is used to classify
a set of schedulings according to which scheduling constraints are fulfilled by
each scheduling. Schedulings are associated with the leaves and constraints are
associated with the other nodes. Each tree node tagged by a constraint ¢ has
two sub-trees; we put the scheduling satisfying ¢ on the “true” side, and we put
others on the “false” side. Each path from the root to a leaf ¢ defines a set of
scheduling constraints C, such that the scheduling associated with ¢ satisfies
C; if C is complete, then this path defines an equivalence class. We explain
below how a scheduling constraint tree can give a compact description of all the
equivalence classes of a test scenario.

Definition 9 (Valid Tree of Scheduling Constraints). A tree of scheduling
constraints is a binary tree such that:
— Fach leaf node ¢ is associated with a wvalid scheduling u (noted :“p =
leaf(u)”)
— Other nodes 8 have two children t (“true” side) and f (“false” side) and are
associated with a scheduling constraint ¢ (noted: “8 = node(c,t, f)”)
Given a sub-tree of root o, we note nodes_of («) its nodes and leaves_of () its
leaves; formally:

nodes_of (8 = node(c, t, f
nodes_of (¢ = leaf (u
leaves_of (8 = node(c, t, f

leaves_of (¢ = leaf(u

) = {8} Unodes_of (¢) U nodes_of(f)
) =10
) =1
)

= leaves_of (t) U leaves_of ()

A tree of scheduling constraints « is valid if and only if:
VB = node(c, t, f) € nodes_of (),

(Vy = leaf(u) € leaves_of (t),u |= ¢) and (V6 = leaf(v) € leaves_of(f),v = ¢ 1)

(i.e., the schedulings associated with the sub-tree t must satisfy ¢ and the schedul-
ings associated with the sub-tree f must satisfy c=1).

According to this definition, each scheduling associated with a leaf of a valid
tree must satisfy one constraint for each node from the root a to this leaf (.
We note C'(a, 3) this constraint set. The set C'(a, 3) can be computed using the
inductive rules (note that C(«, 3) is defined even if 3 is not a leaf):

—C(3,8) =0
— C(node(e,t, f),) = {c} UC(t,B) if B is a sub-tree of ¢
— C(node(c,t, f),8) = {c7} UC(f, B) if B is a sub-tree of f
As direct consequences of this definition, we have:
— When « is a valid tree, and § = leaf(u) is one of its leaves, we have: u |=
C(o, B).

— When « is a tree, 8 a sub-tree of «, and 7 a sub-tree of 3, we have:

Cla,7) = Cla, B) U C(B,7).

18

Such a tree can be used to map any scheduling to a scheduling associated
with a leaf. Given a scheduling u and a tree of root «, we define the mapping
M AP (u, «) inductively, as follows:

— MAP(u,leaf(v)) = v
— MAP(u,node(c,t, f)) = if u = c then MAP(u,t) else MAP(u, f)

The computations M AP (u,a) and C(a, MAP(u,«)) are done by visiting

the tree following the same path. As a consequence, the lemma below holds:

Lemma 1. Yu € Vy,Va,u = Cla, MAP(u, o))

Proof. By induction. There are three cases:

— a =leaf(v): then MAP(u,a) = a and C(a, MAP(u,a)) = Cla,) =
so u = Ca, MAP(u,))

— a =node(c, t, f) and u |= ¢: then MAP(u, o) = M AP(u,t)
and C(a, MAP(u,«)) = {c} UC(a, MAP(u,t));
inductively u = C(o, MAP(u,t)) and by hypothesis u = ¢
sou = {c}UC(a, MAP(u,t)) = C(a, MAP(u,))

— a =node(c,t, f) and u = ¢t then MAP(u,) = MAP(u, f)
and C(a, MAP(u,a)) = {c*} U C(a, MAP(u, f));
inductively u = C(a, M AP(u, f)) and by hypothesis u = ¢!
sou = {c 1} UC(a, MAP(u, f)) = C(a, MAP(u, a))

Fig. 13 shows an example of a scheduling constraint tree. The wide gray ar-
row represents the computation of M AP(p1q1¢2paps,), where « is the root
of the tree of scheduling constraints. According to the definition of MAP,
MAP(u,a) = @ implies that u satisfies one scheduling constraint for each node
on the path from the root a to the leaf 5. By construction, M AP(u,a) = v
implies that v and v satisfy one scheduling constraint for each node on the path
from the tree root to the leaf associated with v. Here, p1q1q2p2ps and p1q1p2q2ps
satisfy {p1 < q1,¢2 < p3}. This set of scheduling constraints is complete with re-
spect to the untimed version of the foo example, whose code is given by Fig. 14;
as a consequence, p1qiqap2p3 and p1q1p2qeps are equivalent.

P3 < G2

P1 < q1
&) v 1 P1G1P2P3q2

%
U = p19192P2P3 “ N ? 2 0 1 P1G1P2Gap3

€ q1P192

Fig. 13. Scheduling constraint tree for the untimed version of foo, and mapping of a
scheduling v = p1q1q2p2ps: MAP(u,a) = MAP(u,3) = MAP(u,d) = p1q1p2q2p3.

Trees of scheduling constraints are useful because of the property below:

19

void P() { void QO {

wait(e); e.notify();
yield(); x = 0;

if (x) cout << "Ok\n"; yield(Q);
else cout << "Ko\n";} x = 1;}

Fig. 14. Untimed version of the foo example

Property 1. Let o be the root of a valid tree of scheduling constraints. If for
all leaves = leaf(u), C(«,) is a complete set of scheduling constraints and
u is terminated assuming C(a, 3), then for all valid and terminated schedulings
v € V), there exists a leaf v = leaf(w) of the tree whose root is «, such that
v = w.

Proof. We just have to choose v = M AP(v, «). Indeed, we have:

— MAP(v,a) E C(a, MAP(v,«)) because MAP(v,«) is a leaf of the valid

tree whose root is «

— v E C(a, MAP(v,«)) according to the lemma 1
The scheduling v is terminated (assuming (), so it is terminated assuming
C(a, MAP(v,a)) too (since § C C(a, MAP(v,))). As v, MAP(v,«) is ter-
minated assuming C(a, M AP(v,«a)), and both v and MAP(v,«a) satisfy the
complete set of scheduling constraints C'(a, M AP(v, «)), so they are equivalent.
0

6 Covering the Schedulings of a Test Scenario

We describe in this section how to generate a set a schedulings that cover a
test scenario. Concretely, we give an algorithm to compute a tree of scheduling
constraints that satisfies the hypothesis of the property 1.

6.1 Main Algorithm

Fig. 15 gives an overview of our algorithm. For a given SoC description and a
given test scenario (a SUTD as explained in section 5.1), the algorithm generates
a set of directives for the execution engine so that it explores all the scheduling
variants that matter for this test scenario. The goal is to generate at least one
element in each equivalence class as formalized in the previous section.

We start by executing the SUTD without any constraints. We get an exe-
cution trace. The trace analyzer computes the dependencies between the tran-
sitions of this execution. The associated happens-before relation describes the
equivalence class of this execution. The trace analyzer returns a description of
this equivalence class in the form of a complete set of scheduling constraints.
From these constraints, the generator of execution directives generates new sets
of scheduling constraints, which specify uncovered schedulings. Next, we execute
the SUTD with each new execution directive and follow the same loop for each

20

SUTD.exe +

execution trace
(sequence of transitions)

execution
directives
(constraint sets)

covered space
(constraints)

covered space

\ trace analyzer

generator of
execution directives

current equivalence class
(additional constraints)

Fig. 15. Main loop for automatic generation of the set of execution directives

generated execution trace. To avoid looping infinitely, we keep at each iteration
a set of scheduling constraints that describe what has already been covered.

When the algorithm stops, we get a set of schedulings such that any equiv-
alence class has been covered at least once. Like the number of equivalence
classes, the cost of the main algorithm is obviously exponential in the number
of transitions.

Fig. 16 provides a formal definition of the algorithm G.S. This algorithm
requires two external functions:

— A function execute which takes one argument: a set of scheduling constraints
D (called the execution directive). This function returns a scheduling u such
that u is terminated assuming D (which implies u = D, according to defini-
tion 7).

— A function analyze which takes two arguments: a set of scheduling con-
straints D and a scheduling u terminated assuming D. This function returns
a set C' such that: D U C is a complete set of scheduling constraints and
uEDUC.

Subsection 6.2 presents how to implement a valid function “execute”. Sub-
section 6.3 presents how to implement a valid function “analyze”.

Implementing the algorithm G S requires choosing a way to pick one element
¢ in C (line 6). The shape and size of the generated tree may vary for different
choices, but the properties given below always hold.

G S returns a tree in which each leaf corresponds to a generated and executed
scheduling. To prove that these schedulings cover all the equivalence classes,
we first need to prove that GS always generates a valid tree of scheduling
constraints.

Property 2. If the algorithm GS terminates for a given SUTD, then it returns a
valid tree of scheduling constraints.

To prove this property, we need to prove the two lemmas below.
Lemma 2. All calls to GDg(D,u,C) satisfy the condition uw =D UC.

Proof (lemma 2). The function GDg is called in lines 4 and 7 of Fig. 16. On
line 4, v = D U C thanks to the specifications of the analyze and execute

21

GS(constraint set D) = //initial call: GS(0)
scheduling u = execute(D);

constraint set C' = analyze(D,u);

return GDg (D, u,C);

s W N e

where the sub-function GDgs (abbreviation of “generate directives”)
is defined by the two inductive rules:

GDs(D,u,0) = leaf(u)

GDgs(D,u,{c}UC’) = node(c,
GDs(D U {c},u,C"),
GS(Du{c™'})) //withcgC’

0o ~N o o

Fig. 16. Main algorithm for the generation of schedulings

functions. If u = DU ({c} UC") is true on line 6, then u = (DU {c})UC" is true
on line 7 too. So the lemma is true by induction. [J

Lemma 3.
VD,Vu € schedulings-of(GS(D)),u = D and

VDVuYC, Yu € schedulings_of(GDg(D,v,C)),u = D.

Proof (lemma 3). Inductive proof: this lemma holds on line 5 since the previous
lemma implies that u = DU; if this lemma holds on lines 7 and 8, any scheduling
of the sub-tree built on line 6 satisfies either DU{c} (line 7), or DU{c ™1} (line 8),
so it always satisfies D = (DU {c}) N (D U {c¢™1}); if the lemma holds on line 4,
then it holds obviously on line 1. [J

Proof (property 2). Nodes are created only on line 6, with the constraint ¢, the
“true” side t = GDg(D U {c},u,C") and the “false” side f = GS(D U {c™'}).
The lemma 3 implies that ¥y = leaf(v) € leaves_of(t),v |= ¢ since ¢ € D U {c},
and V6 = leaf(w) € leaves_of (f),w = ¢! since ¢c™! € DU {c7!}. It is exactly
what the definition of valid trees requires. [

Next we have to prove that GiS(()) satisfies the hypothesis of the property 1.
Property 3. Let a = GS(0).

V3 = leaf(v) € leaves_of(«a), C(«, B) is complete.

Lemma 4. All calls to GDs(D,u,C) satisfy the condition D U C' is complete.
Proof (lemma 4). Inductive proof: this lemma is true on line 4 because of the

specification of the analyze function; if it is true on line 6 then it is true on
line 7 too, since we just move one constraint from D to C. [

22

Proof (property 3). For each leaf 3 created on line 5, we note Dg the value of D
at the time this leaf is created. Similarly, for each node 7 created on line 6, we
note D., the value of D at the time this leaf is created. In particular, D, = ()
(with a = GS(0)).
For any sub-tree 3 of a:
— If @ = (3 then C(,) = 0 = Dg
— If @ # [then 3y = node(c, t, f) such that:
e either t = S A Dg = D, U{c}, so Dy = C(a,v) = C(,) = Cla,y) U
C(3.8) = D, U{c} = Dy
eor f=03ADg=D,U{c'}, s0 D, =C(a,y) = Cla, 3) = C(a,7) U
C(7,8) = D, U{c"'} = Dy
By induction on the number of nodes between a and 3, C(a, 5) = Dg.
In particular, for each leaf 3, C(a,) = Dg and the lemma 4 implies that
the set Dg is complete. [

Finally, Property 1 implies that the algorithm GS generates at least one
element of each equivalence class, which was our main goal.

6.2 Execution with Respect to Scheduling Constraints

We describe here how to execute a SUTD given a set of scheduling constraints
D, called the directive. The goal is to provide a function execute that returns a
scheduling w that is terminated assuming D.

Here is the idea: at the beginning of each execution step, the scheduler re-
ceives the list of eligible processes; we remove from this list all the processes
whose election would violate a scheduling constraint at the current step.

Definition 10 (Index Function). Let u be a scheduling and p a process, we
note ind, (p) and we call index of p in u the number of occurrences of p in u.

We use this first definition for the definition below. We can note that p; € u &
t <ind, (p)

We “freeze” a process p after the execution of a partial scheduling w if the
scheduling up (u followed by p) violates at least one constraint we must fulfill.

Definition 11 (Set of frozen processes). Let E(u) be the set of eligible pro-
cesses after the execution of a (partial) scheduling u, and C a set of scheduling
constraints. The set Fo(u) of the frozen processes is defined by:

Fo(u) ={p € E(u)|3(q; < pi) € Cyi = indy(p) + 1A j > indy(q)}

Next, we patch the scheduler to restrict its choice to E(u) \ Feo(u) at each
step, as formalized by Fig. 17. Evaluating F(u) (line 2) implies running one step
of the system under test.

At the end of the execution, we get a scheduling u such that v = C. This
scheduling is always terminated assuming C' (according to definition 7), and most
of the time it is also terminated assuming () (or according to the definition 1).

23

1 execute(directive D, prefix u) =
2 if 3p € E(u) \ Fp(u)

3 then ezecute(D, up)

4 else u

Fig. 17. Algorithm of an execute function, which returns a scheduling terminated as-
suming a directive (if no prefix is given, then u is assumed to be the empty scheduling).

The schedulings which are not terminated assuming () are not useful for the final
set of schedulings that the G.S algorithm generates, since they do not represent
any equivalence class. The risk of getting only a partial scheduling depends on
the scheduling constraints. For example, we always get a terminated scheduling
if the constraint set is complete. We will discuss the ratio of these partial and
useless executions for the case study (section 8).

6.3 Generation of a Complete Set of Scheduling Constraints

We explain here how to generate a complete set of scheduling constraints C' (Cf.
definition 8) for a given scheduling u, which is terminated assuming a directive D
(Cf. definition 7). This requires computing the happens-before relation (Defini-
tion 5) which represents the equivalence class of u (Definition 3). The algorithm
G S will execute the SUTD at least once for each constraint of the generated set.
Consequently, we should generate a set as small as possible.

Property 4 below gives a hint on how to generate a complete set. The defi-
nition and the lemma below are required to define and prove this property.

Definition 12 (Co-eligible Transitions). Two transitions are co-eligible if
there exists a state in which both are eligible; formally: p;, and q;. are co-
eligible if and only if: Jv = vv" € Vi, u =p v Av'p; € Vg AV'q; € Vg

Note that if p; ,, and g;,,, are co-eligible, then p; ., and g; ., are co-eligible for any
scheduling w equivalent to u.

Lemma 5. Let u = v'u” be a valid terminated scheduling such that u'p; is a
valid scheduling. Let D be a valid dependency relation. There exists a scheduling
v such that: v =p u and v = u'v'pv" and Vq; € V', qj0 <[] Piyw-

Proof (sketched). u'p; being a valid scheduling means that the process p is eligible
after the execution of v’ and the process p has been executed 7 — 1 times in o'
In SystemC a process cannot be disabled by another process, and the scheduling
u = u'u” is terminated, so the process p is executed at least once in u after u’.
It means that u” contains p;. Thus, the scheduling u is in the form u = v'zp;y.

Next, according to the definition of the happens-before relation, all transi-
tions in that do not happen before p; ,, can be moved after p; ,, by successive

permutations of independent transitions. []

24

Property 4. Let u be a valid terminated scheduling and D a valid dependency
relation. The set C(u) = {“pi < ¢;”|Piw <[u] Gu N Piw,Gju are co-eligible} is
complete.

Proof. Let v be a valid terminated scheduling such that v = C(u). We want to
prove that v =p u.

Let v' be the longest prefix of v such that: 3w =p u,w = v'w’. There may
be two cases:

1. If v" = v then w’ is empty since v’ is terminated, so v = w, and v =p u;

2. Otherwise v = v'p;v”. According to the lemma 5, there exists a scheduling
x such that: x =p w and z = v'a'p;x” and Vg; € 2',qj» <[w) Pi2- Again,
there may be two cases:

— If 2’ is empty, then v'p; is a prefix of v longer than v’ that satisfies the
same property. As v is already the longest, this case is not possible.

— Otherwise let ¢; , be the first transition of #’. The scheduling v’g; is valid
(prefix of) and v is terminated so v contains g;,, (property of the Sys-
temC scheduler), and g¢;,, is after p; . ¢;» and p; are co-eligible, since
both are eligible in F,(v"). Moreover, ;. <[u] Piz, 50 ¢j < p;i € C(x).
x =p u implies C(u) = C(x) since the relations used in the definition
of C(u) are constant inside an equivalence class. However, v does not
satisfy ¢; < p;. It is contradictory with v = C(u) so this second case is
not possible.

Both cases of 2. are not possible so only case 1. of the first enumeration is
valid.
O

The algorithm described by Fig. 18 computes the set C'(u). It loops over all
of the transition pairs, and adds a constraint “g; < p;” each time g;, happens
before p; ,, and is co-eligible with p; ,,. Finally, it returns the set C’ = C'(u) \ D.
The set C’ U D is complete because of Property 4. This algorithm uses two
predicates dependent and may-be-co-eligible; Fig. 19 and Fig. 20 explain how to
compute these two predicates.

We reuse the idea from [3] (Figure 4) to compute the happens-before relation.
The happens-before relation is saved in an array LP (“Last Predecessor”) of size
size(u) X size(P) where size(u) is the number of transitions in u and size(P) is
the number of processes. The element LP[num(p;.,), q] is the number of the last
transition of process ¢ which happens before the transition p; ,,, or 0 if no tran-
sitions g;,, satisfies g;. < Piu; 161 @ < Piu < num(g;u) < LP[num(p;u), q)
(num is defined by: Yu = vp,w,num(p;.) = size(v) + 1). We do not provide
a proof for this algorithm; the correctness of this algorithm can be established
using the invariant of line 13 and the property 4. We can optimize this algorithm
by considering that g;, and p;, cannot be co-eligible if ¢; < p; € D.

The algorithm of [3] does not generate a tree of scheduling constraints as
G S, but it computes the happens-before relation associated with each generated
scheduling too. The algorithm of Fig. 18 is an adaptation of the corresponding
sub-part of the algorithm of [3] (in [3], the code to compute the happens-before

25

1 analyze(D,u) =
2 initially: VnVp, LP[n,p| =0; C =0
3 forn=1to size(u) do
4 | let p; be the n-th transition in u
5 | LP[n,pl=n
6 | form=1ton—1do
7 | | let g; be the m-th transition in u
8 | | if m > LP[n,q] and dependent(q;,u,pi,n) then
9 | | | if may-be-co-eligible(q;u,pi,n) then
o [| | C=CU{qg <pi}
11 | | | for all processes r do
12 | | | LP[n,r] = max(LP[m,r], LP[n,r])
13 | //here: Vg¥j¥rVk with num(g;..) < num(ry.) <n,

Gjou = T & num(gju) < LP[num(ry,u), q]
14 return C\ D

Fig. 18. Algorithm for the generation of a complete set of constraints

relation is merged with the whole algorithm). In general, our analyzer generates
a scheduling constraint where the algorithm of [3] adds a process identifier to
a backtrack set. The predicates dependent and may-be-co-eligible are specific to
SystemC, so that is one of our contributions.

The predicate may-be-co-eligible(q;,u, pi,.) returns false only in the
cases below:
1. p and g represent the same process
2. one transition has been enabled by the other transition, by a
notification of a SystemC event
3. they are not in the same o0-cycle, if all durations are fixed (we
will talk of SUTDs with loose durations in the next section)

Fig. 19. Rules to compute the may-be-co-eligible predicate

Pairs of co-eligible and dependent transitions are implied by non-
commutative accesses to a common shared object. As a first approximation,
we can consider that two transitions that access a common shared object are
always dependent. However, we refine the dependency relation by taking into
account the kind of access. For example, two “read”s on the same variable do
not imply any dependency.

Since the analysis is dynamic (that is to say, done for each executed schedul-
ing), the use of arrays or pointers is not a problem: we always know which
memory location has been actually accessed.

To prove the dependent and may-be-co-eligible predicates, one needs a for-
mal semantics of C++ and SystemC. Only one particular case is easy to
prove: dependent(...) always true and may-be-co-eligible(...) always true; if
the dependent predicate returns always true, then GS generates all the valid

26

The predicate dependent(q;j.,pi,u) returns true only in the cases
below:
1. they cannot be co-eligible (may-be-co-eligible(q;,u, pi,) returns

false)

2. gju and p;,. access the same shared variable, and at least one
access is a write

3. gj,u and p; . access the same SystemC event, and at least one
access is a notify

Fig. 20. Rules to compute the dependent predicate

schedulings. If the may-be-co-eligible predicate returns true too often, then G.S
will generate schedulings which are useless since they are not terminated. If the
dependent predicate returns true too often, then GS will generate schedulings
which lead to the same final state and exhibit the same local errors (each “false
dependent” may multiply the number of generated schedulings by 2, as shown
by the case study).

In this paper, we consider only shared variables and SystemC events, but this
list can be augmented. The computation of the dependency relation for abstract
types such as FIFOs has already been detailed in existing works [15]. We detail
below the dependency cases for the SystemC events.

There are two main operations on SystemC events: wait and notify. A tran-
sition can be enabled by a notify. There are two obvious cases of dependency:

— A transition contains a wait and the other transition contains a notify on
the same event (the permutation can lead to a dead-lock, see the examples

of section 4.1).

— A transition p; . enables a transition g; ,, so they are dependent but cannot
be co-eligible.

However, as shown by the example below, considering these two cases is not
enough to get a valid dependency relation.

Suppose one runs this three-process model:

— Initial state: process p waiting for e, processes q and r eligible
— Process p: cout <<’p’;

— Process q: cout <<’q’; e.notify();

— Process r: cout <<’r’; e.notify(Q;

Each process executes exactly once before the execution terminates. Four
schedulings are valid: u = qpr, v = qrp, w = rqp and x = rpq. They lead to the
same final state. However, there is no valid dependency relation such that these
4 schedulings are equivalent. Indeed, a valid dependency relation D contains at
least (g1,4,p1,4) since pgr is not a valid scheduling (constraint 3 of definition 4);
so u =p w would imply (¢1,4,P1,w) € D (constraint 2 of definition 4), which is
contradictory with w =p x since w and x differ only by the order of p and gq.
Intuitively, the problem is that we cannot represent the property “p is after ¢ or
r” with a partial order. A solution to get a valid dependency relation is to con-
sider that two notifications of the same event are dependent. Thus, the example

27

above has two equivalence classes: {gpr, ¢rp} and {rpq,rgp}; the corresponding
dependency relation is: D = {(Ch,uypl,u)a (ql,ua rl,u)v (Q1,vap1,v)7 (q1,v7 Tl,v)a

(Tl,w;pl,w)a (qu, Tl,w)a (Tl,zypl,m)» (Ch,m rl,m)}
The analyzer computes only the subset of D that concerns the transitions of the
analyzed scheduling. For the scheduling u of this example, the analyzer computes
only that D contains {(q1,u,P1,4), (@1,usT1,u) }-

One way to represent an happens-before relation for human reading is to
use graphics. Fig. 21-(a) represents the happens-before relation associated with
the scheduling P;Q;P;Q;P, denoted p1q1p2qgeps, of the foo program of Fig. 10.
Fig. 21-(b) represents the happens-before relation associated with an execution
of foochi. Each horizontal line is a process. Time elapses are represented by plain
vertical lines if all delays are fixed, otherwise by dotted vertical lines. The wavy
lines represent loose durations. Each box is a process transition. Arrows between
boxes indicate that the two transitions are dependent; we draw dashed arrows
if the transitions are co-eligible, plain arrows otherwise. We may move some
transitions on the horizontal axis, remaining among the wvalid and equivalent
schedulings, provided we do not permute two boxes linked by an arrow, nor
move a transition through a plain vertical line. To generate a complete set of
scheduling constraints for a scheduling, we just have to generate one constraint
for each dashed arrow. For example, the happens-before relation depicted by
Fig. 21-(a) gives the complete set {p; < ¢1,92 < p3}.

(b) foochi with scheduling p;q1p2gap3qspa

and timing: t; — 3,ty +— 40,13 +— 6,4 +— 24

Fig. 21. Graphical representations of a happens-before relation

28

7 Covering the Timings of a Test Scenario

The algorithm of the previous section applies to models with only fixed durations,
or no time annotations at all. In this section, we present an extension for models
with loose timing annotations.

7.1 The SystemC Models We Consider

First, we need to make the context of our work more precise. We allow
the use of temporal information only inside the pv_wait function (and the
wait which is a particular case). As defined in subsection 3.3, an instruction
pv_wait(duration, delta, time_unit) means that the current process waits
for a duration belonging to [duration — delta, duration + delta]. We consider
that the global date (variable ¢ of Fig. 2) is private and cannot be accessed by
processes. This means that the processes cannot use the timing annotations to
perform functional effects. This is consistent with the context of several TL mod-
els, where the timing annotations are added to a functional model for faithfulness
and performance evaluation only.

Moreover, we restrict ourselves to SystemC programs whose executions have
only one d-cycle between two “time-elapse” phases. Indeed, the semantics of -
cycle delays for abstract models with loose durations is unclear and such delays
should not be used in timed TL models.

Any timed model that satisfies these constraints can be translated into an
untimed model, whose executions are a super-set of the original model: we have
to replace each call to pv_wait(...) or wait(...) by a call to yield(). As
a consequence, a valid scheduling of a timed model can be executed without
the timing information on this untimed variant of the model, giving the same
functional behavior.

7.2 Main ideas

With examples that use only fixed delays, two transitions cannot be permuted
if they occur at different dates. This is no longer true for SUTDs with loose
delays: an alternative concrete timing may allow or force the permutation of
some transitions. Now, for all pairs of dependent transitions such that their
permutation is not prevented by explicit synchronizations, we have to determine
whether there exist concrete timings allowing their permutation. If such timings
do exist, we have to choose one among them and to re-execute the SUTD with
it. In the algorithm presented in section 6.1 above, it is the only point that has
to be rewritten for the generation of timings; the rest is identical.

For an execution of the SUTD and a set of scheduling constraints, we compute
the conjunction of all temporal constraints that must be satisfied. Fortunately,
all temporal constraints give linear constraints whose variables are the effective
durations associated with the pv_wait calls. Consequently their conjunction
gives a system of linear constraints S, which can be solved with linear program-
ming techniques. If the system of constraints is built correctly, its solutions are

29

valid timings which make the given set of scheduling constraints feasible. With
the current semantics of the pv_wait function, S defines an octahedron [16] (all
variable coefficients are in {—1,0,1}) but not an octagon [17] (a constraint may
use more than two variables).

7.3 The Temporal Constraints

To define the temporal constraints formally and the way we compute them,
we have to introduce some complementary notations and definitions: with each
pv-wait(D,d) function call present in the source code, we associate an identifier
w € §2, where 2 is an uninterpreted set of identifiers. We note B(w) (B stands
for “Bounds’) the interval [D — d, D 4 d] and #,(w) the number of times an
execution of w occurs in a scheduling . A timing T is a function from pairs
(w,n) € 2x[1..#,(w)] to durations d € R*. T(w,n) = d means that we wait for
a duration d when we execute the function call identified by w for the n-th time.
The timing T is valid if and only if V(w,n) € 2 x [1..#4(w)], T(w,n) € B(w).

There are two types of temporal constraints. First, the solution must corre-
spond to valid timings. So for all (w,i) € 2 x [1..#(w)] with B(w) = [a,b], we
add the two constraints a < T'(w,?) and T(w,i) < b. Second, each scheduling
constraint implies a temporal constraint.

In order to build temporal constraints implied by scheduling constraints, we
need the following definition. With each transition p; ,, we associate a symbolic
date noted sdate(p;). A symbolic date is a sum of variables T'(w,) and con-
stants. We compute the symbolic date of a transition p; ,, as follows:

1. If p; ,, follows a wait with loose duration (p;_1,, ended by a call to pv_wait),
then: sdate(p;) = sdate(p;—1,,) + T(w,n) where w is the identifier of this
pv_wait function call and n is its occurrence number.

2. If p; ,, follows a wait with fixed duration (p;_1 ., ended by a call to wait (k)),
then: sdate(p;) = sdate(pi—1.4) + k.

3. If p; . has been enabled by an immediate notification from transition g; .,
then: sdate(p;) = sdate(g;u)-

4. If p is initially eligible, then p; = 0.

We illustrate these rules on the example foochi with u = p1q1p2g2pP393P4-
Symbolic dates do not depend on the timing. We have sdate(py) = sdate(q) = 0
(rule 4); next sdate(qz) = ts3 and sdate(p2) = t1 and sdate(qs) = t3 +t4 (rule 1).
According to rule 3 on immediate notifications, we have sdate(ps) = sdate(qz) =
t3 and so sdate(ps) = sdate(ps) + ta = t3 + to (rule 1).

Let “p; < g;” be a scheduling constraint, so we build the associated temporal
constraint as follows: we first evaluate sdate(p;.) and sdate(g;), which yields
two expressions e and es; we then add to S the constraint “e; < e;”. With a set
of scheduling constraints, we associate the conjunction of the linear constraints
associated with each scheduling constraint.

30

7.4 The Algorithm

Fig. 22 presents the new algorithm. C' is a set of scheduling constraints and
a scheduling. S is a linear program and the functions is_feasible and solution_of
can be implemented with the simplex algorithm. The function is_feasible returns
true if S is satisfiable; the function solution_of returns one solution of S. On
line 2, the timing 7" may be incomplete, i.e., the value for some pv_wait function
calls may be unspecified. If it is unspecified, then the simulation engine is free
to choose any value in the given interval. Initially we call GT with an empty set
of scheduling constraints and an empty timing. Let T3, be the concrete timing
of the current scheduling u. In general, T}, is not a solution of the linear system
S associated with D U {c™'} (line 7). However, T,, is always a solution of the
system of linear constraints associated with D U C.

1 GT(constraint set D,timing T) = //initial call: GT'(0,)
2 scheduling u = execute(D,T);

3 constraint set C = analyze(D,u);

4 return GDr(D,u,C);

where the sub-function GDr is defined by the two inductive rules:

5 GDr(D,u,0) = leaf(u)
6 GDr(D,u,{c}uC’) =
7 linear system S = A.
8 if is_feasible(S)

pi<a;” €DU{c—1} sdate(piu) < sdate(qju);

9 then return node(c,
10 GDr(D U{c},u,C"),
11 GT(D U {c™'}), solution_of(S));
12 else return GD7(D,u, C');

Fig. 22. Main algorithm for the generation of schedulings and timings

We describe the first call to GT on the example foochi to illustrate this
algorithm. If we ignore the temporal aspects, the analysis of u = p1q1D2¢20393P4
generates the set {ps < ¢2;¢3 < ps}. Inductive calls to GDr suggest two direc-
tives D': {q2 < p2} and {p2 < q2;ps < g3}. We have to check whether there
exists at least one valid timing for each of them.

The first set of constraints {g2 < p2} gives a linear system S’ containing only
the constraint sdate(qz) < sdate(ps), which rewrites to t3 —t; < 0. We must also
respect the bounds on variables: ¢; € [1,5] and ¢35 € [4,8]. We request a solution
from the linear programming library and get the solution ¢; = t3 = 4. Finally,
we call GT({g2 < p2},{t1 = 4,t3 = 4}). These scheduling constraints and this
timing lead to the first error of foochi mentioned at the end of section 2.

The second set of constraints {ps < g2;ps < g3} gives the two constraints
t3 —t1 >0 and to — t4 < 0. With the bounds ¢; € [1, 5], to € [30, 50}7 t3 € [4, 8]

31

and t4 € [18,30], one solution is t; = t3 = 4 and t2 = ¢4 = 30. Finally, we call
GT again with this set of constraints and this timing as arguments. This leads
to the second error of foochi.

7.5 Elements for the Correctness of the Algorithm

In the general case, GT' generates at least one representative of each equivalence
class, as GS does. On this example, we have generated one element of each
equivalence class. First, we do not consider anymore that two transitions p; ,, and
gj» can be co-eligible only if date(p;) = date(g;,). We call GS’ the algorithm
GS in which this assumption has been suppressed (i.e., we remove the case 3
of the predicate “may-be-co-eligible(p; ., q;.)” in subsection 6.3). Running G5’
on the SUTD generates a very large set E’ of schedulings which are valid if all
bounds of loose durations are extended to [0, ool. It is equivalent to removing all
delays of the SUTD. E’ contains at least one element of each equivalence class
of this “untimed” version of the SUTD.

Second, we have encoded the temporal constraints into a linear system S.
The only difference between GS” and GT is that GT checks the feasibility of S.
We know by construction that there exists an execution (u,T) which satisfies a
set of scheduling constraints C' if and only if the system S built from C is feasible.
Hence GT generates all elements of GS’ that satisfy the temporal constraints.
Fig. 23 represents the sets of executions generated by GS, GS’ and GT.

p
\
-
N
N

A
Set of all executions Set of all executions Set of all executions
with fixed delays with bounded delays with unbounded delays

Fig. 23. Sets of all executions of the SUTD. The dashed lines delimit the equivalence
classes. The surrounded crosses represent generated executions, with arrows from par-
ent to child. GSS returns the surrounded crosses of the set A, GT those of B and GS’
those of C.

32

8 Case Studies

8.1 The Tool Chain

Fig. 24 is an overview of the tools®. The analyzer implements the algorithm
described in section 6.3. It needs to be aware of all communication actions. Some
of them can be detected by instrumenting the SystemC kernel, some others
cannot (like accesses to a shared variable, that are invisible from the SystemC
kernel).

For non-atomic shared objects such as SystemC events or mutexes, the easiest
solution is to patch the class implementation itself. Detecting the accesses to
atomic shared variables is more difficult. We tried two techniques:

1. instrumenting each access. For example, consider the instruction x=y+2
where x and y are shared variables. The two following instructions are added
close to the assignment: recorder->read(&y); recorder->write(&x).

2. instrumenting variable declarations. For example, we replace int x,y
by probe<int> x,y. The template class probe<T> has two attributes: an id
and a value of type T. Each operation, such as assignment and conversion to
type T, is overloaded to: 1) apply the operation on the value, then 2) notify
the operation to the recorder.

We developed a prototype for the automatic instrumentation based on the open-
source SystemC front-end Pinapa [18]. Our prototype is able to detect all shared
variables and their accesses. However, applying the required modifications au-
tomatically to the source code still fails on some syntactic structures. With the
second technique, few modifications have to be applied, so manual instrumenta-
tion is possible.

SystemC Fooo visualization
model

tools

Pinapa
analyzer

SystemC

. 1 new linear
mtrumgznlte constraints programming
mode + timings

Fig. 24. The Tool Chain Architecture

® The tool chain is available on the web: http://my-trac.assembla.com/scrv/wiki/.

33

The instrumented SystemC program is compiled with a patched SystemC
kernel. The patches are: 1) replacing the election algorithm of the SystemC
scheduler by an interactive version, still complying with the SystemC specifi-
cation; 2) adding code to record the communication actions that we do not
detect by instrumenting the code of the processes, and their consequences (e.g.,
enabling of a process). When we execute the instrumented platform with the
patched SystemC kernel, we can detect dependencies dynamically or save a de-
tailed trace and run the analyzer afterwards. In both cases, we get a list of new
execution directives to be executed, and a record of the computed dependencies,
usable as input for other checkers or visualization tools.

8.2 Benchmarks

This subsection presents the results of our algorithm on two benchmarks taken
from previous publications.

The Indexer Example The indexer benchmark first appeared in [3]. The
original version is described for a preemptive scheduler, so the SystemC version
is slightly different in order to preserve all the behaviors the original version may
exhibit.

There are n components and one global 128-element array used as a hash
table. Each component is composed of two SystemC threads that communicate
using a shared variable and an event. Each component writes four messages in the
global hash table. This corresponds to schedulings of length 11 x n. For n < 11,
there is no collision in the hash table and all schedulings lead to the same final
state. For n > 12 there are collisions hence non-equivalent schedulings. In this
example, we generate exactly one scheduling per equivalence class. The number
of generated schedulings is far smaller than the number of valid schedulings (at
least 3.35FE11 for n = 2, and 2.43E25 for n = 3). Results are summarized in
table 1. On this example, it appears that our algorithm G.S works as well as the
algorithm of [3] combined with the sleep set technique.

components|generated schedulings| time
1...11 1 <0.13s

12 8 0.27 s

13 64 1.68 s

14 512 134 s

15 4096 112 s

Table 1. Results for the indexer example

The Chain Benchmark The Chain benchmark is a small SystemC/TLM
program that appeared first in [19], and has been reused in [20]. It has been

34

written to evaluate formal verification techniques for SystemC/TLM, but it is a
good example for dynamic partial order reduction, because: 1) it is not cyclic;
2) only the scheduling is not deterministic. Consequently, the G.S algorithm and
formal techniques provide the same information about the correctness of the
program: both methods prove that no assertion is violated.

[19] presents a translation of SystemC/TLM into Promela, in order to verify
properties of the TL model using SPIN. [20] describes a similar approach using
the Lotos language and the CADP toolbox. The translation is partly manual.
In this section, we use this benchmark to compare two approaches for the verifi-
cation of TL models: 1) translation into an input language of an existing model
checker; 2) dynamic and direct validation of the TL model without translation.

This benchmark consists of a chain of interrupt transmitter modules, whose
length is parametrized by n. Modules communicate through transactions, and
threads synchronize with events. Fig. 25 presents this benchmark for n = 1.
To increase n, one adds a transmitter module between the last transmitter and
the module Sink. There are always n + 2 SystemC threads (methods named
initiate, compute, and complete) and n+ 1 events (attribute e of each module
except Source). All target modules (Transmitter and Sink) export a method
f to the previous initiator module (Source or Transmitter) through a pair of
TLM ports.

Source Transmitter Sink

void initiate() {

void £() {e.notify();} void £() {e.notify();}

port.f();
} void compute() { void complete() {
wait(e); port.f(); wait(e);
//assert(false);
}

Fig. 25. The chain benchmark for n =1

Table 2 recalls the results from [19] and [20] for the model-checking step, and
presents the new results obtained with G\S' (“na” means not available). It appears
that the number of equivalence classes computed by GS grows linearly whereas
the state space grows exponentially. Consequently, on this particular benchmark,
the technique presented in this paper scales up better than the approach based
on translation and model-checking. A lot of partial order reductions are possible
on this benchmark but the translations of SystemC/TLM into Promela or Lotos
seem to hide some possible reductions.

8.3 The MPEG Decoder System

We have evaluated the tool on a small industrial case-study. This system has
5 components: a master, a MPEG decoder, a display, a memory and a bus
model. There are about 50 000 lines of code and only 4 processes. This is quite

35

using Spin [19]|using CADP [20] GS
n="7 <0.1s 246 s 0.29 s (9 executions)
n=11 1.1s 4.37 s 0.47 s (13 executions)
n=15 47 s 60.3 s 0.61 s (17 executions)
n=19 na 8293 s 0.78 s (21 executions)
n=23 na na 0.94 s (25 executions)

Table 2. Results for the chain benchmark

common in the most abstract models found in industry, because there is a lot
of sequential code, and very few synchronizations. Complete models of SoCs
are typically 3 to 6 times bigger than this MPEG decoder. The test scenario
provided by STMicroelectronics is stopped after the third decoded image, which
corresponds to 150 transitions. One simulation takes 0.39 s. The experiments
have been run on a Pentium 4 cadenced at 2.80 GHz.

First, we run the G'S prototype on a timed version without loose durations.
It generates 128 schedulings in 1 min 08 s. The total time spent splits into
50 s for running the SUTD 128 times and 18 s for generating the test directives.

Studying the recorded traces shows that each generated scheduling contains
7 pairs of dependent and co-eligible transitions. Such a property does not always
hold, but is frequent for real programs which are designed not to depend on the
scheduling. When this property holds, that is to say: each scheduling contains
the same number n of pairs of dependent and co-eligible transitions, then there
are 2" equivalence classes.

The co-eligible and dependent transitions of the LCMPEG correspond to
three different places in the source code:

1. Permutations that have no effect; we see how to avoid these spurious depen-
dencies in subsection 8.4.

2. Permutations that have no functional effect but modify the simulation time
and the number of transactions: the master does polling on the LCMPEG
to test whether it has finished; according to the scheduling, the master can
detect the end at the date d, or at the next read transaction at time d + 10.

3. A data-race whose participants are the LCMPEG and the display: with
some schedulings, the display controller reads the third image instead of the
second. This data-race is a real synchronization error since it leads to an
incorrect display.

This bug concerning an incorrect display had not been found prior to the vali-
dation of this TL model with our new prototype.

The GS prototype can also be used on an untimed version. This untimed
version is obtained by replacing all timed functions with their corresponding
untimed functions. But the prototype fails to run to completion because the
scheduling space to explore is far too large. Indeed, removing time constraints
allows many new schedulings. For the untimed version, we estimate the number
of relevant schedulings to about 232. Executing these schedulings would take
many years. Most of this time would be spent exploring unrealistic schedulings.

36

The prototype of GT allows us to test bounded-delay versions which are
intermediate between the fixed-delay version and the fully untimed version. We
replace all function calls wait(d) by pv_wait(d,d*r). The number of valid
schedulings increases when the global variable r increases. The goal is to validate
the SUTD with r as big as possible. We succeeded in validating this MPEG
decoder system with r = 0.2. The GT prototype generates 3584 schedulings
and timings in 35 min 11 s. One must spend 23 min 18 s to execute this
system 3584 times, so the prototype spends 11 min 53 s to generate the test
directives. Our goal is to validate the system with r = 0.5 but the first attempt
shows that our prototype is not fast enough yet.

We said in section 6 that our method can generate useless schedulings for
two reasons:

1. The number of equivalence classes depends on the computed dependency re-
lation; the analyzer (Fig. 18) may not compute the most efficient dependency
relation.

2. The algorithm GS (Fig. 16) may generate many schedulings in the same
equivalence class, or schedulings which are not terminated (with respect to
definition 1).

On this case study, the algorithm GS generates exactly as many schedulings as
equivalence classes. That is to say, each generated scheduling is terminated and
it corresponds to a distinct equivalence class. Actually, we have observed the
generation of more schedulings than equivalence classes only on small examples
that we have built for this purpose.

However, the dependency relation computed by the analyzer may be non-
optimal in several situations. We illustrate one of these situations in the next
subsection.

8.4 Improvement: Persistent Events

This MPEG decoder, as many other TL models, uses a pair (event, variable) to
implement a persistent event as follows (x is initially 0):

Process p runs: ...; x=1; e.notify(Q);
Process ¢ runs: ...; if (!x) wait(e); x=0;

The two valid schedulings pq and gpq lead to the same final state, but our tool
currently generates both schedulings because it cannot prove it. The intuition is
that these schedulings are not equivalent according to the dependency relation
we compute.

In order to improve the analyzer, we propose to take this kind of structures
into account explicitly for the computation of the dependency relation. For all
models in which persistent events are needed, we suggest that the designers
now use a dedicated structure, instead of encoding it by hand as above. Then
this dedicated structure is recognized by our analyzer. Using this structure also
improves the readability of the models.

Concretely, we define a new class pevent with two private attributes: an
event e and a Boolean x, and two public methods wait and notify:

37

struct pevent {
pevent(): x(false) {}
void notify() {x=1; e.notify(;}
void wait() {if (!'x) wait(e); else yield(); x=0;}
3

Adding the yield function call in the wait method is mandatory because
the theory on partial orders does not allow us to consider as equivalent two
schedulings of distinct lengths (for example, pg and gpg above). It is a conser-
vative approximation for safety properties as it only allows new schedulings. In
practice, this approximation adds very few false errors since the developer must
consider that the waiting process can yield back to the scheduler.

The example of code presented at the beginning of this subsection can now
be replaced by the code below, where pe is an instance of the pevent structure,
replacing x and e:

Process p runs: ...; pe.notify();
Process g runs: ...; pe.wait();

We upgrade the LCMPEG decoder to use this new dedicated structure and
we complement our trace analyzer to take persistent events into account. Next,
we run the G'S prototype on the timed version (fixed durations) again. The GS
prototype needs to generate 32 schedulings instead of 128, and it takes only
13 seconds instead of 1 min 08 s. On this program, we removed two “false
dependencies”, and consequently the number of generated schedulings is divided
by 4.

This experiment shows that using persistent events leads to a significant
improvement of validation time. Other patterns could be studied. The idea tested
here is similar to the idea presented in the example 3.16 of [15]: we refine the
dependencies between operations, but to do that we need to merge two objects
in one new object.

9 Related Work

Related work can be found in at least three directions: the general problem of
writing models that are faithful with respect to some real system; the formal
techniques that have been investigated for SoCs and SystemC/TLM, including
runtime-verification techniques, static verification, etc.; and the various algo-
rithms that have been proposed for dynamic partial-order reduction.

9.1 Designing Faithful Models

The position paper [21] gives an overview of techniques which are of interest for
the verification of SoC models. The authors target the validation of executable
micro-architectural specifications (MAS), which are very similar to the TL models
we are interested in. As they correctly state, there is no full formal equivalence

38

between the real system (RTL) and its model (MAS). They suggest using formal
verification techniques to check the “compatibility” of the model against the real
system. Even if we assume that it is technically possible, it is not a panacea.
Indeed, such verification requires that both the model and the real system be
available. In our context, models are developed and used long before the real
system is built. Consequently, if a non-compatibility is found at this step, this
requires a modification of the model, and all the work done on the model is
invalidated.

As explained in section 3, our point of view is that models should be non-
deterministic to specify a super-set of the possible real system behaviors, so as to
avoid such a problem. Note that we can always remove non-determinism when
we gain knowledge on the real system, without invalidating the work done (in
our context: the embedded software).

As far as time is concerned, our notion of loose timing is related to the so-
called fuzzy time modeling (see, for instance, [10]). The common idea is that a
time delay in a high-level model can never be a fixed value. The model has to
cover several behaviors of the real system, whose precise timing is not known.
In all these approaches, tuning the fuzzy or loose timing annotations is a way of
approaching the real system, but this cannot be proven formally.

9.2 Formal Verification Techniques Applied to SoCs and
SystemC/TLM

Many works targeting the formal verification of SoC models written in SystemC
share the same approach: first the SystemC program is translated into some
formal language, such as finite state machines [22], Petri nets [23], Promela [19],
or labeled Kripke structures [24]; next the formal model is verified with existing
tools. The first step implies abstractions, as formal languages are in general less
expressive than full C++. The tool LusSy [25] is able to automatically trans-
late and abstract TL models to synchronous automata with variables [25], for
which numerous symbolic verification tools exist. LusSy works on small SystemC
models, but in order to scale up, more abstraction is required (this should be au-
tomatic; a manual abstraction of SystemC programs into some formal language is
much too error prone). Partial order reduction techniques should be investigated
too (the encoding of [19] does not allow efficient partial order reductions).

The approach described in the present paper is different since we work di-
rectly on the SystemC program. It is intermediate between testing and formal
verification: we can prove a property for a given set of data, but we cannot prove
it for any data. As this approach scales better than verification techniques, it
provides a high level of confidence in properties which are too complex to be
checked by formal verification techniques. Furthermore, our approach avoids the
problem of relating a formal model with the source code, and does not generate
false errors (i.e., all the errors detected are present in the TL model).

39

9.3 Algorithms for Partial-Order Reduction

Our dynamic partial order algorithm GS presented in section 6 is functionally
equivalent to the algorithm of [3]: given an acyclic program with fixed data, it
covers the space of the valid schedulings such that all local errors and deadlocks
are found. Since these algorithms have not been implemented for a common
language, there is little experimental data to compare their efficiency. According
to the indexer benchmark, our algorithm seems as efficient as the algorithm
of [3] combined with the sleep set technique of VeriSoft [26]. Both algorithms
generate more schedulings than equivalence classes on some particular cases
but it does not happen on the same particular cases; examples are available
in [6]. More recently, [27, 28] have studied the combination of static analysis and
dynamic partial order reduction for the verification of SystemC programs.

The algorithm GT of section 7 extends the concept of dynamic partial order
reduction to cover the valid timings in addition to the valid schedulings. We have
not found any other extension of dynamic partial order reduction for programs
with loose timing annotations. Combining partial order reduction and linear
programming for the validation of programs with bounded delays has already
been investigated in [29]. They run the formal verifier VINAS-P on a program with
bounded delays to get test cases which exhibit “failures”. Next, for each failure
trace, they generate a system of linear constraints and solve it using an integer
linear programming solver, in order to deduce a new timing constraint which
prevents this failure. Partial order reduction is used during the formal verification
step. Compared to our work, they use static analysis and so static partial order
reduction, whereas our approach is based on simulations and dynamic partial
order reduction. Moreover, in their work, linear programming is not used to
validate the program, but to generate a correct version of the program (i.e.,
linear programming does not help them in finding the failures).

More recent tools [30, 31] are able to generate relevant sets of data in addition
to schedulings, or to manage cyclic programs [32]; integrating these techniques
in our tool should be helpful for the validation of TL models.

10 Conclusion and Further Work

10.1 Summary

In this paper, we address the problem of validating functional properties of SoCs,
given models of these SoCs at a very high level of abstraction. The problem can
be split into two parts: first, one must exploit the characteristics of the modeling
language in such a way that the high level models are faithful with respect to the
(not yet existing) real system; second, the high level models should be explored
exhaustively, for a given test scenario.

For the first problem, we explained that the high level models have to be
non-deterministic, and we introduced the notion of loose timing, which can be
used to build models whose possible behaviors are reasonable supersets of the
possible behaviors of the final system. Since the faithfulness of a model cannot

40

be expressed formally, we then assume that guidelines in SystemC are used to
guarantee faithfulness.

The second problem is solved by using partial order reduction techniques. We
presented a method to explore the set of valid schedulings of a SystemC program
and a given data input. Next, we described an extension for the exploration of
valid timings. Exploring alternative timings may reveal more synchronization er-
rors such as deadlocks, data-races, or violations of specified temporal constraints.
We work directly on the program so all errors found are true errors and not false
warnings. The conjoint use of dynamic partial order reduction and linear pro-
gramming avoids redundant simulations of the system under test. As a result, we
are now able to increase the test coverage of real size SoC models. The current
implementation is already efficient enough to cover exhaustively small timing
variations (about 20%) of medium size SoC models, or parts of full big SoCs.

As a consequence of these two points, if we cover all the specified behaviors of
the model when testing a property P, P will hold for any particular implemen-
tation of the physical chip. In our context, this enables development of robust
embedded software.

10.2 Possible Improvements

The possible improvements can be organized into four categories: implementa-
tion improvements, new algorithms, refinements of the dependency relation, and
restrictions to a sub-problem.

The current implementation of the prototype is sequential. However, we could
improve the validation time by distributing the validation on many processors
or computers. Indeed, each time the trace analyzer generates several execution
directives, each of them can be treated independently of the others. For large case
studies, the improvement factor can approach the number of available computers
or processors. A distributed version of the algorithm of [3] has already been
presented in [33]. Another possible improvement of the implementation is to use
backtrack points to avoid restarting each execution from the beginning, as in
VeriSoft [26].

The algorithm presented in this article can generate many equivalent schedul-
ings for a given dependency relation. Like the algorithm of [3], it is not optimal.
Examples can be found in [6] (section 7.1). [3] shows that combining the sleep set
technique [15] with dynamic partial order reduction can avoid some redundant
executions. We should investigate using sleep sets with our algorithm, but the
improvement we can obtain is small. Indeed, non-optimal cases are already very
rare.

On the other hand, refining the dependency relation has already given signif-
icant results. We gave in section 8.4 the example of the persistent events. Other
synchronization structures should be studied, such as event queues and hash
tables.

Dynamic partial order reduction enables detection of both local errors (as-
sertion failures) and deadlocks. Conversely, net unfolding techniques [34] search
only for local errors. Not searching for deadlocks allows to reduce the number

41

of visited states. Unfolding algorithms exist for Petri nets and for synchronous
products of automata [35]. However, it is not clear how these algorithms can be
implemented for languages as expressive as SystemC.

10.3 Dependency Analysis for the Simulator Parallelization

The SystemC simulator has been built to run on only one processor. One way
to accelerate simulations is to parallelize the SystemC simulator in order to take
advantage of multiprocessor machines. Of course, if we have many simulations to
run, it is easier to distribute the simulations. Here, we suppose that the developer
wants to run only one simulation. The idea is to distribute the SystemC processes
on as many operating system processes as there are processors available on the
machine that runs the simulator.

A parallel SystemC simulator still has to respect the specification.
In particular, the SystemC processes must still behave as if they were
run on a non-preemptive scheduler. For example, we must not inter-
leave an instruction assert(x!=42) inside an atomic SystemC transition
“x=42; y=(x); x=0; wait();”.

Intuitively, two dependent transitions must not be run in parallel. From a
theoretical point of view, an execution d on a parallel simulator can be repre-
sented by a partial order “<g4”, such that p; 4 <q g¢j,q if and only if transition
pi,a ended before transition ¢; 4 started. A parallel simulator is valid only if for
any parallel execution d, there exists a valid scheduling u such that p; , <y ¢
implies p; ¢ <q gj,4 for any (p,i,q,7) € P x N x P x N. Note that the definition
of a valid dependency relation has to be slightly adapted to take into account
all schedulings allowed by the operating system scheduler.

Consequently, a valid parallel scheduler can elect a transition only if it is inde-
pendent of all already running transitions. A dynamic analysis is not applicable
in this context since the dependency relation must be known before the sched-
uler elects a new transition. [36] is based on the assumption that two transitions
are independent if they start from two different components. Unfortunately, this
assumption does not hold for SystemC models using the TLM library. We have
worked with Yussef Bouzouzou and Pascal Raymond on a parallel scheduler and
a static analysis tool to allow valid parallelization for TL model simulations.

10.4 Other Applications and Extensions

We mentioned in the introduction that it is quite likely that the two problems
we identified for SystemC/TLM models of systems-on-a-chip are also present in
other modeling and simulation contexts.

In a number of industrial contexts, validating the embedded software early,
using a virtual prototype of the execution platform (hardware plus operating
system or middleware layers), is a crucial problem. The degree of parallelism
that has to be modeled is far greater then the number of processors or machines
that can be used for the simulation of a virtual prototype. For instance, if this
virtual prototyping approach is to be applied in a avionics context, it may be

42

the case that the execution platform to be modeled contains several hundreds
of processors, several buses, and several dedicated devices. If we think of sensor
networks, a useful virtual prototype for the development of an application should
model the behavior of several thousands of sensor nodes. Hence it is always the
case that the available parallelism for the simulation is far smaller than the
physical parallelism to be modeled.

Consequently, the simulation techniques have to rely on schedulers, and the
coverage problem for which we proposed a solution does occur.

We think that our informal study of the faithfulness notion, together with
the techniques developed for full coverage simulations are applicable to other
contexts.

References

1. Ghenassia, F., ed.: Transaction-Level Modeling with SystemC. TLM Concepts and
Applications for Embedded Systems. Springer (2005) ISBN 0-387-26232-6.

2. Herrera, F., Villar, E.: Extension of the SystemC kernel for simulation cover-
age improvement of system-level concurrent specifications. In: FDL’06: Forum on
Specification & Design Languages. (2006)

3. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, New York, NY, USA, ACM Press
(2005) 110-121

4. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L., Moy, M.: Automatic genera-
tion of schedulings for improving the test coverage of systems-on-a-chip. FMCAD
(2006) 171-178

5. Helmstetter, C., Maraninchi, F., Maillet-Contoz, L.: Test coverage for loose timing
annotations. In: 11th International Workshop on Formal Methods for Industrial
Critical Systems, Springer-Verlag (2006)

6. Helmstetter, C.: Validation de modeles de systemes sur puce en présence
d’ordonnancements indéterministes et de temps imprécis. PhD thesis, INPG,
Grenoble, France (2007)

7. Open SystemC Initiative: SystemC v2.1 Language Reference Manual (IEEE Std
1666-2005). (2005) http://www.systemc.org/.

8. Open SystemC Initiative: OSCI SystemC TLM 2.0, draft 1 for public review (2006)
http://wuw.systemc.org/web/sitedocs/TLM_2_0.html.

9. Arvind, Shen, X.: Using term rewriting systems to design and verify processors.
IEEE Micro 19 (1999) 3646

10. L. A. Kunzle, R. Valette, B.P.C.: Temporal reasoning in fuzzy time Petri nets.
Technical Report 98073, LAAS Toulouse (1998)

11. Merlin, P., Farber, D.: Recoverability of communication protocols—implications of
a theoretical study. Communications, IEEE Transactions on [legacy, pre - 1988]
24 (1976) 1036-1043

12. Mazurkiewicz, A.: Trace theory. In: Advances in Petri nets 1986, part IT on Petri
nets: applications and relationships to other models of concurrency, New York, NY,
USA, Springer-Verlag New York, Inc. (1987) 279-324

13. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21 (1978) 558-565

43

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Katz, S., Peled, D.: Defining conditional independence using collapses. Theoretical
Computer Science 101 (1992) 337-359

Godefroid, P.: Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem. Volume 1032. Springer-Verlag Inc., New
York, NY, USA (1996)

Clarisd, R., Cortadella, J.: The octahedron abstract domain. In Giacobazzi, R., ed.:
Static Analysis, 11th International Symposium, SAS 2004, Verona, Italy, August
26-28, 2004, Proceedings. Volume 3148 of Lecture Notes in Computer Science.,
Springer (2004) 312-327

Miné, A.: The octagon abstract domain. In: WCRE. (2001) 310

Moy, M., Maraninchi, F., Maillet-Contoz, L.: Pinapa: An extraction tool for Sys-
temC descriptions of systems-on-a-chip. In: EMSOFT. (2005)

Traulsen, C., Cornet, J., Moy, M., Maraninchi, F.: A SystemC/TLM semantics
in Promela and its possible applications. In: 14th Workshop on Model Checking
Software SPIN. (2007)

Helmstetter, C., Ponsini, O.: A comparison of two SystemC/TLM semantics for
formal verification. In: MEMOCODE. (2008)

Vardi, M.Y.: Formal techniques for SystemC verification. In: DAC’07: Proceedings
of the 44th annual conference on Design automation. (2007) Position Paper.
Niemann, B., Haubelt, C.: Formalizing TLM with communicating state machines.
In: FDL’06: Forum on Specification & Design Languages. (2006) 285-292
Karlsson, D., Eles, P., Peng, Z.: Formal verification of SystemC designs using a
Petri-net based representation. In: DATE ’06: Proceedings of the conference on
Design, automation and test in Europe, 3001 Leuven, Belgium, Belgium, European
Design and Automation Association (2006) 1228-1233

Kroening, D., Sharygina, N.: Formal verification of SystemC by automatic hard-
ware/software partitioning. In: Proceedings of MEMOCODE 2005, IEEE (2005)
101-110

Moy, M., Maraninchi, F., Maillet-Contoz, L.: LusSy: an open tool for the analysis
of systems-on-a-chip at the transaction level. Design Automation for Embedded
Systems (2006) special issue on SystemC-based systems.

Godefroid, P.: Software model checking: The verisoft approach. Formal Methods
in System Design 26 (2005) 77-101

Kundu, S., Ganai, M., Gupta, R.: Partial order reduction for scalable testing of
SystemC TLM designs. In: DAC ’08: Proceedings of the 45th annual conference
on Design automation, New York, NY, USA, ACM (2008) 936-941

Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In:
Proceedings of ICCAD 2008, IEEE (2008) 356-363

Yoneda, T., Kitai, T., Myers, C.J.: Automatic derivation of timing constraints by
failure analysis. In: CAV ’02: Proceedings of the 14th International Conference on
Computer Aided Verification, London, UK, Springer-Verlag (2002) 195-208
Godefroid, P., Klarlund, N.,; Sen, K.: Dart: directed automated random testing. In:
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, New York, NY, USA, ACM Press (2005)
213-223

Godefroid, P.: Compositional dynamic test generation. In: POPL ’07: Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM (2007) 47-54

Yi, X., Wang, J., Yang, X.: Stateful dynamic partial-order reduction. In: ICFEM.
Volume 4260 of Lecture Notes in Computer Science., Springer (2006) 149-167

44

33.

34.

35.

36.

Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Distributed dynamic partial
order reduction based verification of threaded software. In: SPIN. Volume 4595 of
Lecture Notes in Computer Science., Springer (2007) 58-75

McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the ver-
ification of asynchronous circuits. In: CAV ’92: Proceedings of the Fourth Inter-
national Workshop on Computer Aided Verification, London, UK, Springer-Verlag
(1992) 164-177

Esparza, J., Romer, S.: An unfolding algorithm for synchronous products of tran-
sition systems. In: Proc. of CONCUR’99. Number 1664 in Lecture Notes in Com-
puter Science, Springer-Verlag (1999) 2-20

Chopard, B., Combes, P., Zory, J.: A conservative approach to SystemC par-
allelization. In: International Conference on Computational Science (4). (2006)
653-660

45

